, Nml min-1 , 50 vol% of H2 in N2 flow through the active packed bed, heated from room temperature to 850 °C by a 5 °C min-1 heating ramp, and kept at 900 °C for 30 min, order to reduce NiO to metallic Ni

, Cooling 1. The reactor is cooled at 5 °C min-1 , down from 8500 °C to 650 °C, while a mild reducing stream flows (7.5 Nml min-1 of H2 and 142.5 Nml min-1 of N2)

. Steaming, At 650 °C, for 4 min, 0.240 ml min-1 of liquid distilled water are fed together with 150 Nml min-1 of N2

. Reforming, At 650 °C, the inlet stream contains 75 Nml min-1 of CH4, with inlet molar steam/carbon ratio equal to 4 or 3. Two different durations are chosen: long reforming steps last 40 min, so to measure packed-bed's breakthrough i.e. sorbent saturation; for other cycles, reforming lasts 20 min, so to avoid breakthrough occurrence. After the reforming, reactor is purged at 650 °C for 2 min by 150

, The active packed-bed is heated by a 10 °C min-1 ramp, from 650 °C to 925 °C, and kept at 925 °C for 15 min, feeding 150 Nml min-1 of CO 2. After that, reactor is purged at 925 °C for 1 min by 150 Nml min-1 of N2

. Cooling-reduction, at 5 °C min-1 ; afterwards, a highly reducing stream (100 Nml min-1 of H2 and 100 Nml min-1 of N2) flows through the bed at 850 °C to restore metallic Ni; eventually, the reactors cools down under a mild reducing stream (7.5 Nml min-1 of H2 and 142.5 Nml min-1 of N2) down to 650 °C. Tests were carried out on: ? the 2-material system in raw mixing configuration, made of CaO30-IFE (9 g, particle diameter in the range 212-300 µm) and Ni-comm, The reactor cools down from 925 °C min-1 to 850 °C, under 150 Nml min-1 of N2

, ? CaO30Ni-IFE (12.0 g, particle diameter in the range 212-300 µm): after Pre-reduction

, on CaO30Ni-IFE are shown in Figure A.1 and Figure A.2, respectively. The raw mixing, tested with inlet molar steam/carbon ratio of 4, have a very stable performance in terms of CH2,out and CCO2,out respectively within the range 93-95 vol% dry, dilution-free and 2.0-3.0 vol% dry, dilution-free in the pre-breakthrough period, and very close to SMR equilibrium values in the post-breakthrough, multicycle SESMR/regeneration test on the raw mixing CaO30-IFE + Ni-comm and

A. Gettelman and R. B. Rood, Climate Change and Global Warming, pp.23-35, 2016.

R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer et al., Contribution of Working Groups I, Synthesis Report, p.151, 2014.

B. D. Santer, K. E. Taylor, T. M. Wigley, T. C. Johns, P. D. Jones et al., A search for human influences on the thermal structure of the atmosphere, Nature, vol.382, pp.39-46, 1996.

N. Oreskes, The scientific consensus on climate change, p.306, 2013.

Z. Li, N. Cai, and Y. Huang, Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based CO2 Sorbent, Ind. Eng. Chem. Res, pp.1911-1917, 2006.

J. F. Mitchell, The "Greenhouse" effect and climate change, Rev. Geophys, vol.27, pp.115-139, 1989.

M. Maccracken and F. M. Luther, Projecting the Climatic Effects of Increasing Carbon Dioxide, 1985.

F. Pachauri, K. Rajendra, L. Meyer, J. Van-ypersele, and . Brinkman, Climate Change 2013-The Physical Science Basis, Line Leprince-Ringuet, 2014.

E. C. and C. , ActionCauses of climate change, 2016.

T. J. Blasing, Recent Greenhouse Gas Concentrations., Carbon Dioxide Inf, Anal. Center, Oak Ridge Natl. Lab, pp.1-5, 2009.

, CDIAC, Carbon Dioxide Information Analysis Center (CDIAC), 2017.

C. and D. ,

, Global climate change indicators

, IPCC, Summary for Policymakers, 2017.

S. Levitus, J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia et al., Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems, Geophys. Res. Lett, vol.36, 2009.

C. L. Sabine, The Oceanic Sink for Anthropogenic CO2, Science, pp.367-371, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02088162

R. Kwok and D. A. Rothrock, Decline in Arctic sea ice thickness from submarine and ICESat records, Geophys. Res. Lett, vol.36, pp.1958-2008, 2009.

, world glacier monitoring service-under the auspices of: ICSU (WDS), IUGG (IACS), 2017.

N. and S. Cover, Global Maps, 2017.

J. A. Church and N. J. White, A 20th century acceleration in global sea-level rise, Geophys. Res. Lett, vol.33, 2006.

, Attribution of Extreme Weather Events in the Context of Climate Change, 2016.

P. A. Stott, N. Christidis, F. E. Otto, Y. Sun, J. P. Vanderlinden et al., Attribution of extreme weather and climate-related events, Wiley Interdiscip. Rev. Clim. Chang, vol.7, pp.23-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587354

J. Bongaarts, Slow down population growth: within a decade, women everywhere should have access to quality contraceptive services, Nature, vol.530, pp.409-413, 2016.

D. and S. A. , United Nations, World Population Prospects, 2015.

, IEA, Key World Energy Statistics, p.80, 2016.

G. Buxton, The Montreal protocol on substances that deplete the ozone layer, 1988.

, Kyoto Protocol To the United Nations Framework Kyoto Protocol To the United Nations Framework, Rev. Eur. Community Int. Environ. Law, vol.7, pp.214-217, 1998.

E. Commission, A European strategy for smart, sustainable and inclusive growth, 2010.

, United Nations, Paris Agreement, 21st Conf. Parties, p.3, 2015.

A. , Analysis & Trends The sixth Kondratieff-long waves of prosperity, 2010.

J. S. Wallace and C. A. Ward, Hydrogen as a fuel, Int. J. Hydrogen Energy, vol.8, issue.83, pp.90136-90138, 1983.

T. N. Vezirolu and F. Barbir, Hydrogen: the wonder fuel, Int. J. Hydrogen Energy, vol.17, pp.391-404, 1992.

T. Da-silva, T. S. Veras, D. Mozer, A. Da-costa-rubim-messeder-dos-santos, and . Da-silva-césar, Hydrogen: Trends, production and characterization of the main process worldwide, Int. J. Hydrogen Energy, vol.42, pp.2018-2033, 2017.

L. Zhou, Progress and problems in hydrogen storage methods, Renew. Sustain. Energy Rev, vol.9, pp.395-408, 2005.

F. Zhang, P. Zhao, M. Niu, and J. Maddy, The survey of key technologies in hydrogen energy storage, Int. J. Hydrogen Energy, vol.41, pp.14535-14552, 2016.

P. Zakkour and G. Cook, CCS Roadmap for Industry: High-purity CO2 sources, 2010.

M. Broda, V. Manovic, Q. Imtiaz, A. M. Kierzkowska, E. J. Anthony et al., High-Purity Hydrogen via the Sorption-Enhanced Steam Methane Reforming Reaction over a Synthetic CaO-Based Sorbent and a Ni Catalyst, Environ. Sci. Technol, vol.47, pp.6007-6014, 2013.

D. P. Harrison, Sorption-Enhanced Hydrogen Production: A Review, Ind. Eng. Chem. Res, vol.47, pp.6486-6501, 2008.

T. K. Mandal and D. H. Gregory, Hydrogen: A future energy vector for sustainable development, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, vol.224, pp.539-558, 2010.

J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catal. Today, vol.139, pp.244-260, 2009.

, Hydrogen Production and Storage. R&D Priorities and Gaps, vol.13, pp.90106-90107, 2006.

L. Bromberg, D. R. Cohn, A. Rabinovich, C. O'brie, and S. Hochgreb, Plasma Reforming of Methane, Energy & Fuels, vol.12, pp.11-18, 1998.

Y. F. Wang, Y. S. You, C. H. Tsai, and L. C. Wang, Production of hydrogen by plasmareforming of methanol, Int. J. Hydrogen Energy, vol.35, pp.9637-9640, 2010.

N. Muradov, Emission-free fuel reformers for mobile and portable fuel cell applications, J. Power Sources, pp.320-324, 2003.

A. Orazio, S. Rapagnà, P. Foscolo, and K. Gallucci, Gas conditioning in H 2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles, Int. J, 2015.

S. Rapagnà, K. Gallucci, M. Di-marcello, M. Matt, M. Nacken et al., Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier, Bioresour. Technol, vol.101, pp.7123-7130, 2010.

S. Rapagna, N. Jand, and P. U. Foscolo, Catalytic gasification of biomass to produce hydrogen rich gas, Int. J. Hydrog. Energyt. J. Hydrog. Energy, vol.23, pp.551-557, 1998.

L. Di-felice, C. Courson, N. Jand, K. Gallucci, P. U. Foscolo et al., Catalytic biomass gasification: Simultaneous hydrocarbons steam reforming and CO2 capture in a fluidised bed reactor, Chem. Eng. J, vol.154, pp.375-383, 2009.

A. Steinfeld, Solar thermochemical production of hydrogen-A review, Sol. Energy, vol.78, pp.603-615, 2005.

L. R. Snowdon, Natural gas composition in a geological environment and the implications for the processes of generation and preservation, Org. Geochem, vol.32, pp.51-52, 2001.

S. Faramawy, T. Zaki, and A. A. Sakr, Natural gas origin, composition, and processing: A review, J. Nat. Gas Sci. Eng, vol.34, pp.34-54, 2016.

R. Kothari, D. Buddhi, and R. L. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods, Renew. Sustain. Energy Rev, vol.12, pp.553-563, 2008.

K. Liu, C. Song, and V. Subramani, Hydrogen and syngas production and purification technologies, 2010.

R. Chaubey, S. Sahu, O. O. James, and S. Maity, A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources, Renew. Sustain. Energy Rev, vol.23, pp.443-462, 2013.

L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Hydrogen production through sorptionenhanced steam methane reforming and membrane technology: A review, Energy, vol.33, pp.554-570, 2008.

E. Simsek, A. K. Avci, and Z. I. Önsan, Investigation of catalyst performance and microstructured reactor configuration for syngas production by methane steam reforming, Catal. Today, vol.178, pp.157-163, 2011.

U. Izquierdo, V. L. Barrio, J. F. Cambra, J. Requies, M. B. Güemez et al., Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems, Int. J. Hydrogen Energy, vol.37, pp.7026-7033, 2012.

A. Boyano, A. M. Blanco-marigorta, T. Morosuk, and G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen production, Energy, vol.36, pp.2202-2214, 2011.

L. Di-felice, C. Courson, P. U. Foscolo, and A. Kiennemann, Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture, Int. J. Hydrogen Energy, vol.36, pp.5296-5310, 2011.

M. R. Cesário, B. S. Barros, Y. Zimmermann, C. Courson, D. M. Melo et al., CO2 Sorption Enhanced Steam Reforming of Methane Using Ni/CaO · Ca12Al14O33 Catalysts, Adv. Chem. Lett, vol.1, pp.292-299, 2013.

J. R. Rostrup-nielsen, Catalytic Steam Reforming, Catal. Sci. Technol, vol.5, pp.1-117, 1984.

I. Dybkjaer, Tubular reforming and autothermal reforming of natural gas-an overview of available processes, Fuel Process. Technol, vol.42, pp.85-107, 1995.

M. Shokrollahi-yancheshmeh, H. R. Radfarnia, and M. C. Iliuta, High temperature CO<inf>2</inf> sorbents and their application for hydrogen production by sorption enhanced steam reforming process, Chem. Eng. J, vol.283, pp.420-444, 2016.

D. L. Trimm, Coke formation and minimisation during steam reforming reactions, Catal. Today, vol.37, pp.233-238, 1997.

S. M. Hashemnejad and M. Parvari, Deactivation and regeneration of nickel-based catalysts for steam-methane reforming, Chinese J. Catal, vol.32, issue.10, pp.60175-60176, 2011.

G. Natta, I. Pasquon, and P. Centola, Principi della chimica industriale, vol.2, 1978.

L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Hydrogen production through sorptionenhanced steam methane reforming and membrane technology: A review, Energy, vol.33, pp.554-570, 2008.

A. B. Stambouli and E. Traversa, Solid oxide fuel cells (SOFCs): A review of an References 142 environmentally clean and efficient source of energy, Renew. Sustain. Energy Rev, vol.6, pp.433-455, 2002.

V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg et al., Recent advances and challenges of fuel cell based power system architectures and control-A review, Renew. Sustain. Energy Rev, vol.73, pp.10-18, 2017.

O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev, vol.32, pp.810-853, 2014.

S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogenpowered vehicle requirements, Catal. Today, vol.120, pp.246-256, 2007.

A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation-A review, Renew. Sustain. Energy Rev, vol.20, pp.430-442, 2013.

S. H. Jensen, P. H. Larsen, and M. Mogensen, Hydrogen and synthetic fuel production from renewable energy sources, Int. J. Hydrogen Energy, vol.32, pp.3253-3257, 2007.
DOI : 10.1016/j.ijhydene.2007.04.042

, Hydrogen Fuel Cell Car | Toyota Mirai, 2017.

, Clarity Fuel Cell-Environmentally-Conscious Vehicles | Honda, 2017.

, ix35 Fuel Cell Highlights | Eco Cars-Hyundai Worldwide, 2017.

J. Alazemi and J. Andrews, Automotive hydrogen fuelling stations: An international review, Renew. Sustain. Energy Rev, vol.48, pp.483-499, 2015.

D. C. Miller, J. T. Litynski, L. A. Brickett, and B. D. Morreale, Toward transformational carbon capture systems, AIChE J, vol.62, pp.2-10, 2016.
DOI : 10.1002/aic.15066

C. Marchetti, On geoengineering and the CO2 problem, Clim. Change, vol.1, pp.59-68, 1977.

E. Blomen, C. Hendriks, and F. Neele, Capture technologies: Improvements and promising developments, Energy Procedia, pp.1505-1512, 2009.
DOI : 10.1016/j.egypro.2009.01.197

URL : https://doi.org/10.1016/j.egypro.2009.01.197

D. Y. Leung, G. Caramanna, and M. M. Maroto-valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev, vol.39, pp.426-443, 2014.

B. Metz, O. Davidson, and H. De-coninck, IPCC special report on carbon dioxide capture and storage, 2005.

N. Macdowell, N. Florin, A. Buchard, J. Hallett, A. Galindo et al., An overview of CO2 capture technologies, Energy Environ. Sci, vol.3, p.1645, 2010.

A. S. Bhown and B. C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol, vol.45, pp.8624-8632, 2011.
DOI : 10.1021/es104291d

M. T. Sander and C. L. Mariz, The Fluor Daniel's econamine FG process: Past experience and present day focus, Energy Convers. Manag, vol.33, pp.341-348, 1992.
DOI : 10.1016/0196-8904(92)90029-v

T. Mimura, S. Shimojo, T. Suda, M. Iijima, and S. Mitsuoka, Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant, Energy Convers. Manag, vol.36, issue.95, p.29, 1995.
DOI : 10.1016/0196-8904(95)00029-d

M. E. Boot-handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani et al., Carbon capture and storage update, Energy Environ. Sci, vol.7, pp.130-189, 2014.

A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Memb. Sci, vol.359, pp.115-125, 2010.
DOI : 10.1016/j.memsci.2009.11.040

A. Samanta, A. Zhao, G. K. Shimizu, P. Sarkar, and R. Gupta, Post-combustion CO 2 capture using solid sorbents: A review, Ind. Eng. Chem. Res, vol.51, pp.1438-1463, 2012.
DOI : 10.1021/ie200686q

F. Karadas, M. Atilhan, and S. Aparicio, Review on the use of ionic liquids (ILs) as alternative fluids for CO 2 capture and natural gas sweetening, Energy and Fuels, vol.24, pp.5817-5828, 2010.

C. Chen and E. S. Rubin, CO2 control technology effects on IGCC plant performance and cost, Energy Policy, vol.37, pp.915-924, 2009.
DOI : 10.1016/j.enpol.2008.09.093

I. Y. Mohammed, M. Samah, G. Sabina, and A. Mohamed, Comparison of SelexolTM and Rectisol® Technologies in an Integrated Gasification Combined Cycle (IGCC) Plant for Clean Energy Production, Int. J. Eng. Res, vol.3, pp.742-744, 2014.

S. García, M. V. Gil, C. F. Martín, J. J. Pis, F. Rubiera et al., Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture, Chem. Eng. J, vol.171, pp.549-556, 2011.

J. Forsyth, CACHET Publishable final activity report CACHET Carbon Dioxide Capture and Hydrogen Production from Gaseous Fuels DSP 5.3 Publishable Final Activity Report

, ASCENT project, 2014.

B. Feng, H. An, and E. Tan, Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems, Energy & Fuels, vol.21, pp.426-434, 2007.

B. R. Stanmore and P. Gilot, Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration, Fuel Process. Technol, vol.86, pp.1707-1743, 2005.

N. Hu and A. W. Scaroni, Calcination of pulverized limestone particles under furnace injection conditions, Fuel, vol.75, pp.177-186, 1996.

G. D. Silcox, J. C. Kramlich, and D. W. Pershing, A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles, Ind. Eng. Chem. Res, vol.28, pp.155-160, 1989.

B. Dou, C. Wang, Y. Song, H. Chen, B. Jiang et al., Solid sorbents for in-situ CO 2 removal during sorption-enhanced steam reforming process : A review, Renew. Sustain. Energy Rev, vol.53, pp.536-546, 2016.
DOI : 10.1016/j.rser.2015.08.068

I. Aloisi, N. Jand, S. Stendardo, and P. U. Foscolo, Hydrogen by sorption enhanced methane reforming: A grain model to study the behavior of bi-functional sorbentcatalyst particles, Chem. Eng. Sci, vol.149, pp.22-34, 2016.

I. Aloisi, A. Di-giuliano, A. Di-carlo, P. U. Foscolo, C. Courson et al., Sorption enhanced catalytic Steam Methane Reforming: Experimental data and simulations describing the behaviour of bi-functional particles, Chem. Eng. J, vol.314, pp.570-582, 2017.

Z. Li, Y. Liu, and N. Cai, Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2, Fuel, vol.127, pp.88-93, 2014.

J. C. Abanades and D. Alvarez, Conversion Limits in the Reaction of CO2 with Lime, Energy & Fuels, vol.17, pp.308-315, 2003.

S. K. Bhatia and D. D. Perlmutter, Effect of the product layer on the kinetics of the CO2lime reaction, AIChE J, vol.29, pp.79-86, 1983.

Z. Li, H. Sun, and N. Cai, Rate equation theory for the carbonation reaction of CaO with CO 2, in: Energy and Fuels, pp.4607-4616, 2012.

J. Blamey, E. J. Anthony, J. Wang, and P. S. Fennell, The calcium looping cycle for large-scale CO2 capture, Prog. Energy Combust. Sci, vol.36, pp.260-279, 2010.
DOI : 10.1016/j.pecs.2009.10.001

G. S. Grasa and J. C. Abanades, CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles, Ind. Eng. Chem. Res, vol.45, pp.8846-8851, 2006.

A. I. Lysikov, A. N. Salanov, and A. G. Okunev, Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles, Ind. Eng. Chem. Res, vol.46, pp.4633-4638, 2007.

P. Sun, J. R. Grace, C. J. Lim, and E. J. Anthony, A discrete-pore-size-distribution-based gas-solid model and its application to the CaO + CO 2 reaction, Chem. Eng. Sci, vol.63, pp.57-70, 2008.

A. Silaban, M. Narcida, and D. P. Harrison, Characteristics Of The Reversible Reaction Between CO2(g) And Calcined Dolomite, Chem. Eng. Commun, vol.146, pp.149-162, 1996.

A. Bandi, M. Specht, P. Sichler, and N. Nicoloso, situ Gas Conditioning in Fuel Reforming for Hydrogen Generation, 2017.

H. Lu, E. P. Reddy, and P. G. Smirniotis, Calcium oxide based sorbents for capture of carbon dioxide at high temperatures, Ind. Eng. Chem. Res, vol.45, pp.3944-3949, 2006.

G. Grasa, B. González, M. Alonso, and J. C. Abanades, Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions, Energy and Fuels, vol.21, pp.3560-3562, 2007.
DOI : 10.1021/ef0701687

L. Yang, H. Yu, S. Wang, H. Wang, and Q. Zhou, Carbon dioxide captured from flue gas by modified Ca-based sorbents in fixed-bed reactor at high temperature, Chinese J. Chem. Eng, vol.21, pp.199-204, 2013.

V. Manovic and E. J. Anthony, Steam Reactivation of Spent CaO Based Sorbent for Multiple CO2 Capture Cycles, Environ. Sci. Technol, vol.41, p.1420, 2007.
DOI : 10.1021/es0621344

V. Manovic and E. J. Anthony, Thermal activation of CaO-based sorbent and selfreactivation during CO2 capture looping cycles, Environ. Sci. Technol, vol.42, pp.4170-4174, 2008.
DOI : 10.1021/es800152s

J. M. Valverde, A. Perejon, and L. A. Perez-maqueda, Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions, Environ. Sci. Technol, vol.46, pp.6401-6408, 2012.

M. H. Sedghkerdar, N. Mahinpey, Z. Sun, and S. Kaliaguine, Novel synthetic sol-gel CaO based pellets using porous mesostructured silica in cyclic CO2 capture process, Fuel, vol.127, pp.101-108, 2014.
DOI : 10.1016/j.fuel.2013.08.007

M. Mohammadi, P. Lahijani, and A. R. Mohamed, Refractory dopant-incorporated CaO References 145 from waste eggshell as sustainable sorbent for CO2 capture: Experimental and kinetic studies, Chem. Eng. J, vol.243, pp.455-464, 2014.
DOI : 10.1016/j.cej.2014.01.018

J. Park and K. B. Yi, Effects of preparation method on cyclic stability and CO 2 absorption capacity of synthetic CaO-MgO absorbent for sorption-enhanced hydrogen production, Int. J. Hydrogen Energy, vol.37, pp.95-102, 2012.

C. T. Yu and W. C. Chen, Preparation, characterization of Ca/Al carbonate pellets with TiO2 binder and CO2 sorption at elevated-temperature conditions, Powder Technol, vol.239, pp.492-498, 2013.
DOI : 10.1016/j.powtec.2013.02.035

X. Zhang, Z. Li, Y. Peng, W. Su, X. Sun et al., Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation, Chem. Eng. J, vol.243, pp.297-304, 2014.
DOI : 10.1016/j.cej.2014.01.017

D. S. Tsvetkov, A. S. Steparuk, and A. Y. Zuev, Defect structure and related properties of mayenite Ca12Al14O33, Solid State Ionics, vol.276, pp.142-148, 2015.
DOI : 10.1016/j.ssi.2015.04.003

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, Structure and oxygen mobility in mayenite (Ca12Al 14O33): A high-temperature neutron powder diffraction study, Acta Crystallogr. Sect. B Struct. Sci, vol.63, pp.675-682, 2007.
DOI : 10.1107/s0108768107030005

J. T. Irvine, M. Lacerda, and A. R. West, Oxide ion conductivity in Ca12Al14O33, Mater. Res. Bull, vol.23, pp.90059-90060, 1988.
DOI : 10.1016/0025-5408(88)90059-1

J. Eufinger, A. Schmidt, M. Lerch, J. Janek, ;. et al., Novel anion conductorsconductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C 12 A, Phys. Chem. Chem. Phys, vol.7, pp.6844-6857, 2015.
DOI : 10.1039/c4cp05442c

URL : http://pubs.rsc.org/en/content/articlepdf/2015/cp/c4cp05442c

A. N. Christensen, Neutron Powder Diffraction Profile Refinement Studies on Ca11.3Al14O32.3 and CaClO(D0.88H0.12).pdf, Acta Chem. Scand, vol.41, pp.110-112, 1987.
DOI : 10.3891/acta.chem.scand.41a-0110

URL : http://actachemscand.org/pdf/acta_vol_41a_p0110-0112.pdf

H. Hosono, K. Hayashi, K. Kajihara, P. V. Sushko, and A. L. Shluger, Oxygen ion conduction in 12CaO·7Al2O3: O2-conduction mechanism and possibility of Ofast conduction, Solid State Ionics, vol.180, pp.550-555, 2009.
DOI : 10.1016/j.ssi.2008.10.015

C. Li, D. Hirabayashi, and K. Suzuki, A crucial role of O2-and O2 2-on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33, Appl. Catal. B Environ, vol.88, pp.351-360, 2009.

C. Li, D. Hirabayashi, and K. Suzuki, Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas, Fuel Process. Technol, vol.90, pp.790-796, 2009.
DOI : 10.1016/j.fuproc.2009.02.007

L. Palacios, A. Cabeza, S. Bruque, S. García-granda, and M. A. Aranda, Structure and electrons in mayenite electrides, Inorg. Chem, vol.47, pp.2661-2667, 2008.
DOI : 10.1021/ic7021193

A. Di-giuliano, J. Girr, R. Massacesi, K. Gallucci, and C. Courson, Sorption enhanced steam methane reforming by Ni-CaO materials supported on mayenite, Int. J. Hydrogen Energy, vol.42, pp.13661-13680, 2017.

J. A. Satrio, B. H. Shanks, and T. D. Wheelock, Development of a novel combined catalyst and sorbent for hydrocarbon reforming, Ind. Eng. Chem. Res, vol.44, pp.3901-3911, 2005.
DOI : 10.1021/ie040284m

URL : http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1223&context=cbe_pubs

B. T. Carvill, J. R. Hufton, M. Anand, and S. Sircar, Sorption-enhanced reaction process, AIChE J, vol.42, pp.2765-2772, 1996.
DOI : 10.1002/aic.690421008

G. Xiu, P. Li, and A. E. Rodrigues, Sorption-enhanced reaction process with reactive regeneration, Chem. Eng. Sci, vol.57, pp.245-247, 2002.
DOI : 10.1016/s0009-2509(02)00245-2

C. S. Martavaltzi, E. P. Pampaka, E. S. Korkakaki, and A. A. Lemonidou, Hydrogen Production via Steam Reforming of Methane with Simultaneous CO 2, Chem. Eng. J, vol.33, pp.2589-2595, 2010.
DOI : 10.1021/ef9014058

K. F. Tzanetis, C. S. Martavaltzi, and A. A. Lemonidou, Comparative exergy analysis of sorption enhanced and conventional methane steam reforming, Int. J. Hydrogen Energy, vol.37, pp.16308-16320, 2012.
DOI : 10.1016/j.ijhydene.2012.02.191

G. A. Olah, A. Goeppert, and G. K. Prakash, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons, J. Org. Chem, vol.74, pp.487-498, 2009.

I. Ganesh, Conversion of carbon dioxide into methanol-a potential liquid fuel: Fundamental challenges and opportunities (a review), Renew. Sustain. Energy Rev, vol.31, pp.221-257, 2014.

B. Balasubramanian, A. L. Ortiz, S. Kaytakoglu, and D. P. Harrison, Hydrogen from methane in a single-step process, Chem. Eng. Sci, vol.54, pp.3543-3552, 1999.

C. S. Martavaltzi and A. A. Lemonidou, Hydrogen production via sorption enhanced reforming of methane: Development of a novel hybrid material-reforming catalyst and CO2 sorbent, Chem. Eng. Sci, vol.65, pp.4134-4140, 2010.

C. S. Martavaltzi, T. D. Pefkos, and A. A. Lemonidou, Operational Window of Sorption Enhanced Steam Reforming of Methane over CaO?Ca 12 Al 14 O 33, Ind. Eng. Chem. Res, vol.50, pp.539-545, 2011.

E. Ochoa-fernández, G. Haugen, T. Zhao, M. Rønning, I. Aartun et al., Process design simulation of H 2 production by sorption enhanced steam methane reforming: evaluation of potential CO 2 acceptors, Green Chem, vol.9, pp.654-662, 2007.

A. L. García-lario, M. Aznar, I. Martinez, G. S. Grasa, and R. Murillo, Experimental study of the application of a NiO/NiAl2O4 catalyst and a CaO-based synthetic sorbent on the Sorption Enhanced Reforming process, Int. J. Hydrogen Energy, vol.40, pp.219-232, 2015.

J. Kim, C. H. Ko, and K. B. Yi, Sorption enhanced hydrogen production using onebody CaO-Ca12Al14O33-Ni composite as catalytic absorbent, Int. J. Hydrogen Energy, vol.38, pp.6072-6078, 2013.

K. Johnsen, H. J. Ryu, J. R. Grace, and C. J. Lim, Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO 2-acceptor, Chem. Eng. Sci, vol.61, pp.1195-1202, 2006.

K. R. Rout and H. A. Jakobsen, A numerical study of pellets having both catalytic-and capture properties for SE-SMR process: Kinetic-and product layer diffusion controlled regimes, Fuel Process. Technol, vol.106, pp.231-246, 2013.

N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana et al., Hydrogen Production via Sorption Enhanced Steam Methane Reforming Process Using Ni/CaO Multifunctional Catalyst, Ind. Eng. Chem. Res, vol.50, pp.13662-13671, 2011.

M. R. Cesário, B. S. Barros, C. Courson, D. M. Melo, and A. Kiennemann, Catalytic performances of Ni-CaO-mayenite in CO2 sorption enhanced steam methane reforming, Fuel Process. Technol, vol.131, pp.247-253, 2015.

A. L. García-lario, G. S. Grasa, and R. Murillo, Performance of a combined CaO-based sorbent and catalyst on H2 production, via sorption enhanced methane steam reforming, Chem. Eng. J, vol.264, pp.697-705, 2015.

Z. S. Li, N. S. Cai, and J. B. Yang, Continuous production of hydrogen from sorptionenhanced steam methane reforming in two parallel fixed-bed reactors operated in a cyclic manner, Ind. Eng. Chem. Res, vol.45, pp.8788-8793, 2006.

W. E. Waldron, J. R. Hufton, and S. Sircar, Production of hydrogen by cyclic sorption enhanced reaction process, AIChE J, vol.47, pp.1477-1479, 2001.

J. Meyer, J. Mastin, and C. Sanz, Sustainable Hydrogen Production from Biogas Using Sorption-Enhanced Reforming, Energy Procedia, vol.63, pp.6800-6814, 2014.

A. L. García-lario, M. Aznar, and G. S. Grasa, Evaluation of process variables on the performance of Sorption Enhanced Methane Reforming n Murillo, J. Power Sources, vol.285, pp.90-99, 2015.

A. P. Simpson and A. E. Lutz, Exergy analysis of hydrogen production via steam methane reforming, Int. J. Hydrogen Energy, vol.32, pp.4811-4820, 2007.

J. R. Rostrup-nielsen, J. Sehested, and J. K. Nørskov, Hydrogen and synthesis gas by steam-and C02 reforming, Adv. Catal, vol.47, p.47006, 2002.

J. Meyer, J. Mastin, T. Bjørnebøle, T. Ryberg, and N. Eldrup, Techno-economical study of the Zero Emission Gas power concept, Energy Procedia, vol.4, pp.1949-1956, 2011.

E. Marceau, M. Che, J. ?ejka, and A. , Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM-41 and Ni/Al-MCM41 Catalysts, pp.413-422, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00604777

J. Estellé, P. Salagre, Y. Cesteros, M. Serra, F. Medina et al., Comparative study of the morphology and surface properties of nickel oxide prepared from different precursors, Solid State Ionics, vol.156, pp.612-616, 2003.

S. B. Ren, J. H. Qiu, C. Y. Wang, B. L. Xu, Y. N. Fan et al., Influence of nickel salt precursors on the hydrogenation activity of Ni/gamma-Al2O3 catalyst, Chinese J. Catal, vol.28, pp.60056-60060, 2007.

G. Wu, C. Zhang, S. Li, Z. Han, T. Wang et al., Hydrogen production via glycerol steam reforming over Ni/Al 2O3: Influence of nickel precursors, ACS Sustain. Chem. Eng, vol.1, pp.1052-1062, 2013.

J. A. Dias and J. M. Assaf, Influence of calcium content in Ni/CaO/??-Al2O3 catalysts for CO2-reforming of methane, Catal. Today, pp.59-68, 2003.

C. K. Choong, Z. Zhong, L. Huang, Z. Wang, T. P. Ang et al., Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism, Appl. Catal. A Gen, vol.407, pp.145-154, 2011.

P. Forzatti, Catalyst deactivation, Catal. Today, vol.52, pp.165-181, 1999.

M. Broda, A. M. Kierzkowska, D. Baudouin, Q. Imtiaz, C. Copéret et al., Sorbent-enhanced methane reforming over a Ni-Ca-based, bifunctional catalyst sorbent, ACS Catal, vol.2, pp.1635-1646, 2012.
DOI : 10.1021/cs300247g

L. Dietz, S. Piccinin, and M. Maestri, Mechanistic insights into CO2 activation via reverse water-Gas shift on metal surfaces, J. Phys. Chem. C, vol.119, pp.4959-4966, 2015.
DOI : 10.1021/jp512962c

J. Werther and J. Reppenhagen, Catalyst Attrition in Fluidized-Bed Systems, React, Kinet. Catal, vol.45, 1999.
DOI : 10.1002/aic.690450916

Z. Li, N. Cai, Y. Huang, and H. Han, Synthesis, Experimental Studies, and Analysis of a New Calcium-Based Carbon Dioxide Absorbent, Energy Fuels, vol.19, pp.1447-1452, 2005.

H. Chen and C. Zhao, Development of a CaO-based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation, Chem. Eng. J, vol.171, pp.197-205, 2011.

N. Florin and P. Fennell, Synthetic CaO-based Sorbent for CO2Capture, Energy Procedia, pp.830-838, 2011.
DOI : 10.1016/j.egypro.2011.01.126

URL : https://doi.org/10.1016/j.egypro.2011.01.126

V. Manovic and E. J. Anthony, CaO-Based Pellets Supported by Calcium Aluminate Cements for High-Temperature CO 2 Capture, Environ. Sci. Technol, vol.43, pp.7117-7122, 2009.
DOI : 10.1021/es901258w

M. Broda, A. M. Kierzkowska, and C. R. Müller, Influence of the calcination and carbonation conditions on the CO 2 uptake of synthetic Ca-based CO2 sorbents, Environ. Sci. Technol, vol.46, pp.10849-10856, 2012.

P. Xu, Z. Zhou, C. Zhao, and Z. Cheng, Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming, AIChE J, vol.60, pp.3547-3556, 2014.
DOI : 10.1002/aic.14543

I. Zamboni, Y. Zimmermann, A. Kiennemann, and C. Courson, Improvement of steam reforming of toluene by CO2 capture using Fe/CaO e Ca12Al14O33 bi-functional materials, Int. J. Hydrogen Energy, vol.40, pp.5297-5304, 2015.

A. Orazio, A. Di-carlo, N. Dionisi, A. Dell&apos;era, and F. Orecchini, Toluene steam reforming properties of CaO based synthetic sorbents for biomass gasification process, Int. J. Hydrogen Energy, vol.38, pp.13282-13292, 2013.

F. Micheli, Risparmio energetico e micro generazione distribuita, Clean Coal Technologies: CO2 capture, 2014.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc, vol.73, pp.373-380, 1951.

A. Monshi, Modified Scherrer Equation to Estimate More Accurately NanoCrystallite Size Using XRD, World J. Nano Sci. Eng, vol.2, pp.154-160, 2012.

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr, vol.11, pp.102-113, 1978.

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem, vol.87, pp.1051-1069, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

M. Thommes and K. A. Cychosz, Physical adsorption characterization of nanoporous materials: progress and challenges, Adsorption, vol.20, pp.233-250, 2014.

P. A. Monson, Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory, Microporous Mesoporous Mater, vol.160, pp.47-66, 2012.

J. Landers, G. Y. Gor, and A. V. Neimark, Density functional theory methods for characterization of porous materials, Colloids Surfaces A Physicochem. Eng. Asp, vol.437, pp.3-32, 2013.

M. Ruszak, S. Witkowski, P. Pietrzyk, A. Kotarba, and Z. Sojka, THE ROLE OF INTERMEDIATE CALCIUM ALUMINATE PHASES IN SOLID STATE SYNTHESIS OF MAYENITE ( Ca 12 Al 14 O 33 ), Funct. Mater. Lett, vol.4, pp.183-186, 2011.

A. A. Lemonidou, M. A. Goula, and I. A. Vasalos, Carbon Dioxide Reforming of Methane over 5 wt.% Nickel Calcium Aluminate Catalysts-Effect of Preparation Method, Catal. Today, vol.46, pp.175-183, 1998.

J. A. Medrano, H. P. Hamers, G. Williams, M. Van-sint-annaland, and F. Gallucci, NiO/CaAl 2 O 4 as active oxygen carrier for low temperature chemical looping applications, Appl. Energy, vol.158, pp.86-96, 2015.

B. Matovi?, M. Prekajski, J. Panti?, T. Bräuniger, M. Rosi? et al., Synthesis and densification of single-phase mayenite (C12A7), J. Eur. Ceram. Soc, vol.36, pp.4237-4241, 2016.

C. Li, D. Hirabayashi, and K. Suzuki, Synthesis of higher surface area mayenite by hydrothermal method, Mater. Res. Bull, vol.46, pp.1307-1310, 2011.

A. D. ,

J. Clague,

T. Donnet,

J. C. Wang,

. Peng, A comparison of diesel engine soot with carbon black, Carbon N. Y, vol.37, pp.35-39, 1999.

, TEM imaging with Gatan digital camera, 2017.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem, vol.57, pp.603-619, 1984.

N. Salhi, A. Boulahouache, C. Petit, A. Kiennemann, and C. Rabia, Steam reforming of methane to syngas over NiAl2O4 spinel catalysts, Int. J. Hydrogen Energy, vol.36, pp.11433-11439, 2011.

A. Gil, A. Diaz, L. M. Gandia, and M. Montes, Influence of the preparation method and the nature of the support on the stability of nickel catalysts, Appl. Catal. A, Gen, vol.109, pp.80116-80125, 1994.

Z. Xu, Y. Li, J. Zhang, L. Chang, R. Zhou et al., Bound-state Ni species-a superior form in Ni-based catalyst for CH4/CO2 reforming, Appl. Catal. A Gen, vol.210, pp.45-53, 2001.

A. Cabello, P. Gayán, F. García-labiano, L. F. De-diego, A. Abad et al., Relevance of the catalytic activity on the performance of a NiO/CaAl2O4 oxygen carrier in a CLC process, Appl. Catal. B Environ, vol.147, pp.980-987, 2014.

P. Bolt, On the Role of a Nial2O4 Intermediate Layer in the Sintering Behavior of Ni/?-Al2O3, J. Catal, vol.151, pp.300-306, 1995.

R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti et al., Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions, J. Mol. Catal. A Chem, pp.637-646, 2003.
DOI : 10.1016/s1381-1169(03)00346-7

C. Dueso, A. Abad, F. García-labiano, L. F. De-diego, P. Gayán et al., Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemicallooping combustion, Fuel, vol.89, pp.3399-3409, 2010.
DOI : 10.1016/j.fuel.2010.03.043

URL : https://digital.csic.es/bitstream/10261/76980/1/Reactivity%20of%20a%20NiO-Al2O3%20oxygen%20carrier....2010.pdf

A. Cimino, M. Lo-jacono, and M. Schiavello, Structural, magnetic, and optical properties of nickel oxide supported on .eta.-and .gamma.-aluminas, J. Phys. Chem, vol.75, 1971.

R. A. Robie, P. M. Bethke, and K. M. Beardsley, X-ray Crystallographic Data, Molar Volumes, and Densities of Minerals and Related Substances, Handb. Chem. Phys, p.308, 1969.
DOI : 10.3133/ofr66113

S. Rapagnà, M. Virginie, K. Gallucci, C. Courson, M. D. Marcello et al., Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions, Catal. Today, pp.163-168, 2011.

S. Stendardo and P. U. Foscolo, Carbon dioxide capture with dolomite: A model for gas-solid reaction within the grains of a particulate sorbent, Chem. Eng. Sci, vol.64, pp.2343-2352, 2009.

T. Numaguchi and K. Kikuchi, Intrinsic kinetics and design simulation in a complex reaction network; steam-methane reforming, Chem. Eng. Sci, vol.43, pp.2295-2301, 1988.
DOI : 10.1016/0009-2509(88)87118-5