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Résumé

L’équation de Dirac non linéaire en physique du solide et en optique non

linéaire.

Cette thèse porte sur l’étude de certains modèles issus de la physique du solide et de

l’optique non linéaire qui font intervenir l’opérateur de Dirac. Ces dernières années, de

nouveaux matériaux bidimensionnels aux propriétés surprenantes ont été découverts, le

plus connu étant le graphène. Dans ces matériaux, les électrons du niveau de Fermi ont

une masse apparente nulle, et peuvent être décrits par l’équation de Dirac sans masse. Un

tel phénomène apparâıt dans des situations très générales, pour les matériaux bidimen-

sionnels ayant une structure périodique en ”nid d’abeille”. La présence d’une perturbation

extérieure, sous certaines hypothèses, correspond à un terme de masse dans l’équation

de Dirac efficace. De plus, la prise en compte d’interactions mène à des équations non

linéaires, qui apparaissent également dans l’étude des paquets d’ondes lumineuses dans

certaines fibres optiques. Récemment, des équation de Dirac non linéaires sur des graphes

quantiques on été proposées comme modèles efficaces pour des guides d’ondes.

Le but de cette thèse est d’étudier l’existence et la multiplicité de solutions stationnaires

de ces équations avec termes non linéaires sous-critiques et critiques. Du point de vue

mathématique, on doit résoudre les équations d’Euler-Lagrange de fonctionnelles d’énergie

fortement indéfinies faisant intervenir l’opérateur de Dirac. Il s’agit en particulier d’étudier

le cas des non-linéarités avec exposant critique, encore mal comprises pour ce type de

fonctionnelle, et qui apparaissent naturellement en optique non linéaire.

Le premier chapitre est consacré à une discussion des motivations physiques de cette

thèse et notamment des modèles physiques où l’équation de Dirac intervient comme

équation efficace. Ensuite, les propriétés spectrales de l’opérateur de Dirac en dimen-

sion deux et dans le cas de certains graphes quantiques sont présentées dans le deuxième

chapitre. Des résultats d’éxistence et de localisation pour des équations de Dirac non

linéaires font l’objet du troisième chapitre. En particulier, nous démontrons l’existence

de solutions stationnaires pour des équations de Dirac cubique en dimension deux, qui
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sont critiques pour les injections de Sobolev. Le quatrième chapitre porte sur l’étude

d’un modèle pour la conduction d’électrons dans des échantillons de graphène. Il s’agit

d’étudier une équation de type Dirac-Hartree, pour laquelle nous démontrons l’existence

d’une infinité de solutions stationnaires. Finalement, le dernier chapitre est consacré à

l’étude d’une famille déquations de Dirac non linéaires sur des graphes quantiques. Nous

prouvons l’existence et la multiplicité de solutions, dont nous étudions la limite non rela-

tiviste. Plus précisement, dans certains régimes de paramètres, les solutions de l’équation

de Dirac non linéaires convergent vers celles de l’équation de Schrödinger avec le même

type de non-linéarité.

The nonlinear Dirac equation in solid state physics and nonlinear optics.

The present thesis deals with nonlinear Dirac equations arising in solid state physics and

nonlinear optics. Recently new two dimensional material possessing surprising properties

have been discovered, the most famous being graphene. In this materials, electrons at the

Fermi level can be described by a massless Dirac equations.This holds, more generally, for

two dimensional honeycomb structures, under fairly general hypothesis. The effect of a

suitable external perturbations can be described adding a mass term in the effective Dirac

operator. Moreover, taking into account interactions naturally leads to nonlinear Dirac

equations, which also appear in the description of the propagation of light pulses in optical

fibers. Nonlinear Dirac equations have also been recently proposed as effective models for

waveguides arrays.

The aim of this thesis is to investigate existence and multiplicity properties of station-

ary solutions to sub-critical and critical Dirac equations, which arise as Euler-Lagrange

equations of strongly indefinite functionals involving the Dirac operator. We have to

deal with the case of critical nonlinearities, still poorly understood (at least in the low

dimensional case), and which appear naturally in nonlinear optics.

The first chapter is devoted to the physical motivations of our work, and more precisely

to the presentation of the physical models where the Dirac equation appears as effective

model. The spectral properties of the Dirac operator in dimension two and for the case

of metric graphs with particular vertex conditions are presented in the second chapter.

Existence and localization results for nonlinear Dirac equations in two dimensions are

the object of the third chapter. More precisely, we prove the existence of stationary

solutions for cubic two dimensional Dirac equations, which are critical for the Sobolev

embedding. The fourth chapter deals with a model for electron conductions in graphene

samples. We study a Dirac-Hartree equation for which we prove the existence of infinitely

many solutions. Finally, in the last chapter we study a class of nonlinear Dirac equations
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on quantum graphs. We prove the existence of multiple solutions and study the non

relativistic limit. More precisely, we show that for a certain choice of parameters the

solutions of nonlinear Dirac equations converge toward the solutions of the Schrödinger

equation with the same type of nonlinearity.
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Chapter 1

Nouveaux matériaux, graphes

quantiques et l’équation de Dirac

L’équation de Dirac a été largement utilisée dans le cadre de la physique quantique rela-

tiviste [52] pour décrire des particules elémentaires (électrons, quarks, neutrinos...). Ces

dernières années des nouveaux matériaux , appelés Dirac materials, ont été découverts.

Leur particularité est que les électrons au niveau de Fermi peuvent être décrits par une

équation de Dirac sans masse. Dans ces matériaux les bandes de valence et de con-

duction ont un croisement conique au niveau de Fermi, d’où l’apparition de l’opérateur

de Dirac comme opérateur effectif décrivant le comportement des électrons. Ce type de

phénomène apparâıt de façon générale dans des structures périodiques hexagonales en

2D, et qui peuvent donc être considerées comme des semiconducteurs à gap nul, et dans

l’étude des états de surface pour certains isolants topologiques (voir [39]). La propriété

de faire apparâıtre des fermions de masse nulle décrits par une équation relativiste est

particuliérement intéressante pour la physique fondamentale. Plus précisément, dans ces

systemes la vitesse de la lumière c est remplacée par la vitesse de Fermi vF ≃ c/300.

Cela pourrait permettre, en principe, de tester des éffets relativistes dans des systèmes

de physique du solide et donc à des échelles d’énergie facilement accesibles et contrôlables

[75].

Dans la suite de ce chapitre nous allons nous concentrer sur le cas particulier du

graphène, le plus fameux de ces nouveaux matériaux. Nous montrerons comment les

cones de Dirac apparaissent dans la déscription du graphène dans le cadre d’un modèle

de tight-binding. Ensuite, nous allons illustrer des résultats récents dus à Fefferman and

Weinstein [56, 57] qui prouvent rigoureusement l’éxistence de croisements coniques pour

les bandes de dispersion pour opérateurs de Schrödinger périodiques ayant les symétries
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1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

d’un réseau hexagonal, sous des hypothèses très générales. Ils montrent aussi un resultat

de validité de Dirac comme équation effective pour la description de la dynamique linéaire

pour l’équation de Schrödinger correspondante, pour des paquets d’ondes concentrés (en

fréquence) autour des croisement coniques des bandes. Le cas non linéaire sera traité dans

les chapitres suivants. Le reste de ce chapitre est consacré à l’étude de certaines modèles

qui permettent de décrire des échantillons de graphène de tailles finie et à un bref rappel

sur les graphes quantiques, qui sera utile dans la suite de la thèse.

1.1 Un exemple célèbre: le graphène

Le graphène est un matériau bidimensionnel cristallin d’un seul atome d’épaisseur. Il est

constitué par un réseau hexagonal d’atomes de carbone, et il est l’élément structurel de

base d’autres formes allotropiques du carbone, comme les nanotubes, le graphite ou le

fullerènes (voir e.g. [39, 79]). Son existence a été théorisée par Wallace dans les années

’40 [123]. Il a été fabriqué pour la première fois en 2004 par A. Geim and K. Novoselov,

qui ont reçu le prix Nobel en 2010 pour cette découverte surprenante.

La structure du graphène correspond à un réseau hexagonal H, donné par la superpo-

sition de deux réseaux triangulaires H = (A+ Λ) ∪ (B + Λ) (voir Fig. 1.1), où

Λ = Za1 ⊕ Za2

et les vecteurs a1, a2 ∈ R2 sont linéairement indépendants. Le réseau dual

H
∗ =

{
k ∈ R

2 : k · a ∈ 2πZ,∀a ∈ Λ
}

est encore hexagonal et sa cellule élementaire B est appelé zone de Brillouin du réseau.

Supposons que Λ soit un réseau avec un nombre fini de sommets N = |H|. En l’absence

de potentiels extérieurs et de déformations du réseau le système peut être décrit par le

hamiltonien de tight-binding selon le formalisme de la second quantification1

(1.1) H0 = t
∑

<x,y>

(c†
xcy + c†

ycx)

où nous n’avons pas considéré le spin des électrons.2 Dans cette formule c†
x, cx représentent,

1Cela revient à considérer une matrice hors-diagonale sur l2(H,C), ayant tous les éléments hors diagonale
égaux à t.

2Une description plus générale doit tenir compte de la présence de champs extérieurs et de déformations

2



1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

respectivement, l’opérateur de création et d’annihilation d’un électron en x, et t ≃ −2.7eV

est l’amplitude de saut des électrons. La notation < x, y > indique que la somme est

effectuée uniquement par rapport aux sites adjacents.

Supposons que le réseau Λ soit engendré par les vecteurs

(1.2) a1 =
√

3lex, a2 =
l

2

(√
3ex + 3ey

)
,

où l = 0,142nm est la longueur des liens de carbone, et soient

(1.3) δ1,2 =
l

2

(
±

√
3ex + ey

)
, δ3 = −ley

le vecteurs qui connectent les sommets adjacents des deux réseaux Alors le hamiltonien

Figure 1.1. La structure en nid d’abeille du graphène [39].

(1.1) devient

(1.4) H0 =
∑

r∈A

3∑

α=1

(
c†
B(r + δα)cA(r) + c†

A(r)cB(r + δα)
)
.

On peut diagonaliser (1.4) à l’aide de la tranformation de Fourier

(1.5) cj(r) =
1√
N

∑

k∈B
e−ik·rcj(k), j = A,B,

du réseau. Cela consiste à rajouter dans l’hamiltonien (1.1) un terme du type U
∑

x

(
nx,↑ − 1

2

) (
nx,↓ − 1

2

)

qui répresente une intéractions localisé et un terme de déformation
∑

<x,y>
F (txy). Dans la formule, nx,σ

est l’opérateur qui compte les electrons dans le site x avec spin σ. On peut supposer que le coefficient t
dépende des sites aussi: t = tx,y. Dans le cadre de ce type de modèle, Frank et Lieb [58] ont récemment
classifié les configurations possibles pour le réseau. On rémarque que en presence d’un champ magnétique
on a t ∈ C et t(c†

xcy + c†
ycx) → (tc†

xcy + t∗c†
ycx).
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1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

et cela donne

H0 =
∑

k∈B

(
t

3∑

α=1

(
c†
B(k)eik·δαcA(k) + c†

A(k)e−ik·δαcB(k)
))

=
∑

k∈B

(
c†
A(k), c†

B(k)
)( 0 t

∑3
α=1 e

−ik·δα

t
∑3
α=1 e

ik·δα 0

)(
cA(k)

cB(k)

)(1.6)

où l’on a adopté cette notation pour remarquer qu’il s’agit d’un opérateur autoadjoint hors-

diagonale. Donc la matrice qui apparâıt dans la formule (1.6) peut s’écrire en fonction des

matrices de Pauli comme

(1.7) h(k) :=

(
0 t

∑3
α=1 e

−ik·δα

t
∑3
α=1 e

ik·δα 0

)
= d1(k)σ1 + d2(k)σ2, k ∈ B.

Les fonctions d1(k), d2(k) sont à valeurs réelles et satisfont

(1.8) d1(k) + id2(k) = t
3∑

α=1

eik·δα .

Le spectre en énergie des électrons est donc donné par le spectre de la matrice qui apparâıt

dans (1.6)

(1.9) E±(k) = ±
√
d2

1(k) + d2
2(k), k ∈ R

2.

La fonction E− décrit la bande de valence du graphène et E+ correspond à la bande de

conduction. Les deux bandes se touchent dans les points k ∈ B tels que

(d1(k), d2(k)) = 0.

Un calcul direct montre qu’il y a deux points non équivalents (Dirac points) dans l’éspace

dual

(1.10) k = ±K = ± 4π

3
√

3l
ex.

au sens où les autres solutions sont obtenues en appliquant les translations du réseau

dual à ±K. L’opérateur de Dirac apparâıt dans cette description, si l’on développe le

hamiltonien H(k) au premier ordre autour des points ±K.

Soit k = ±K + q, avec |q|l ≪ 1 où q = qxex + qyey est une petite perturbation de ±K.

On réécrit les opérateurs de création/annihilation cA±K(q) = cA(±K + q). Au premier

4



1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

ordre autour de k = ξK (ξ = ±1) on trouve

(1.11) H
(ξK)
0 = vF

∑

k

(
c†
AξK(k), c†

BξK(k)
)( 0 ξqx − iqy

ξqx + iqy 0

)(
cAξK(k)

cBξK(k)

)

où vF = −3lt/2 ≃ 106m.s−1 ≃ c/300 est la vitesse de Fermi. On voit donc qu’autour

des points de Dirac les électrons sont décrits par deux copies de l’operateur de Dirac

bidimensionnel (voir Chapitre 2).

Si l’on adopte la notation

(c†
j(q))

4
j=1 = (c†

A+K(q), c†
B+K(q), c†

B−K(q), c†
A−K(q)),

on peut réécrire le hamiltonien linéarisé sous la forme

(1.12) H0 =
∑

q

4∑

j,k=1

c†
j(q)[vFσ3 ⊗ (σ · q)]j,kck(q).

En général, au niveau de Fermi, les électrons sont décrits par une fonction d’onde à valeur

dans C4 = C2 ⊗ C2. Néanmoins, on verra dans la suite que si un électron est concentré

en fréquence autour d’un seul des deux points ±K, on peut se limiter à considerer des

fonction à valeur dans C2 et donc tout simplement l’opérateur de Dirac en 2D.

Remark 1.1. Dans le cadre de modèles relativistes, la fonction d’onde d’un électron est à

valeurs dans C4 (en dimension 3) car cela permet de décrire de façon naturelle son spin

et de tenir compte de la presence de son antiparticule, le positron [118, 92]. Dans le cas

du graphène, par contre, le fait d’avoir un spineur à valeur dans C4 = C2 ⊗ C2 correspond

au fait que le réseau hexagonal du cristal est donné par la superposition de deux réseaux

triangulaires inéquivalents et la même chose est vraie pour le réseau dual. Donc il y a

4 = 2 × 2 degré de liberté pour les électrons. De plus, comme on l’a déjà remarqué, il n’y

a pas d’interpretation des deux parties du spectre de l’opérateur de Dirac en termes de

particules/antiparticules, mais elles représentent plutôt les bandes de conduction/valence

du matériau.

1.2 L’opérateur de Dirac dans les structures en nid d’abeille

1.2.1 Opérateurs de Schrödinger et potentiels en nid d’abeille

Nous avons vu au paragraphe précédent que la structure d’une feuille de graphène est

celle d’un réseau hexagonal, d’une structure en nid d’abeille. Au niveau macroscopique,

5



1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

on peut décrire le comportement des électrons par un opérateur de Schrödinger périodique

(1.13) − ∆ + V (x), x ∈ R
2,

où le potentiel V : R2 → R doit avoir la symétrie du réseau, afin de tenir compte de la

structure cristalline sous-jacente, comme d’habitude en physique du solide [104, 76]. Donc

le comportement des électrons, en absence d’interactions, sera décrit par l’équation de

Schrödinger linéaire suivante:

(1.14) i∂tu = (−∆ + V (x))u =: HV u, u : Rt × R
2
x −→ C.

En particulier, les propriétés du propagateur e−iHV t sont directement liées aux propriétés

spectrales de l’opérateur HV qui dépendent elles-mêmes des symètries du réseau. Le

définition suivante formalise l’idée d’un potentiel qui a les symétries du réseau hexagonal.

Definition 1.2. On appelle un potentiel V ∈ C∞(R2) potentiel en nid d’abeille (hon-

eycomb potential) [56], s’il existe x0 ∈ R2 tel que Ṽ (x) = V (x − x0) a les proprietés

suivantes:

1. Ṽ est périodique par rapport à Λ, c’est à dire, Ṽ (x+ v) = Ṽ (x), ∀x ∈ R2,∀v ∈ Λ;

2. Ṽ est paire: Ṽ (−x) = Ṽ (x), ∀x ∈ R2;

3. Ṽ est invariant par rapport à la rotation de 2π
3 (au sens antihoraire)

R[Ṽ ](x) := Ṽ (R∗x) = Ṽ (x),∀x ∈ R
2,

où R est la matrice de rotation correspondante:

(1.15) R =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
.

Dans la suite on prend x0 = 0 pour simplifier les notations.

Remark 1.3. (Quelques exemples de potentiels en nid d’abeille [56])

1. Potentiels ”atomiques”: Soit H = (A + Λ) ∪ (B + Λ) un réseau hexagonal (voir

fig.1.1). On considére une fonction radiale V0 ∈ C∞(R2) et qui décrôıt rapidement

à l’infini (avec une vitesse polynômiale, par example) et qui représente le potentiel

engendré par un noyau situé sur un sommet du réseau. Le potentiel

V (x) =
∑

y∈H

V0(x− y)

6



1 – Nouveaux matériaux, graphes quantiques et l’équation de Dirac

est donc donné par la superposition des potentiels atomiques. On peut vérifier que

V (x) est un potentiel en nid d’abeille (Def.1.2).

2. Réseaux optiques: L’enveloppe ψ du champ électrique d’un faisceau de lumière

monochromatique qui se propage dans un milieu diélectrique peut être décrite par

une équation de Schrödinger. Plus précisement, si l’on note z la direction de propa-

gation du faisceau et on suppose que l’indice de réfraction du milieu varie uniquement

dans les diréctions transversales (x, y), la fonction ψ est une solution de

(1.16) i∂zψ = (−∆ + V (x, y))ψ

Dans ce cas le potentiel en nid d’abeille est engendré grâce à des techniques d’interférence

de faisceaux de lumière [98]. Typiquement, le potentiel V (x, y) est de la forme

(1.17)

V (x, y) ≃ V0 (cos(k1 · (x, y)) + cos(k1 · (x, y)) + cos((k1 + k2) · x)) , V0 ∈ R, k1, k2 ∈ R
2.

Pour chaque k ∈ R2 fixé on considère le problème aux valeurs propres avec conditions

de pseudo-périodicité suivant (voir [56] and [104, Sec. XIII.16])

(1.18)




HV Φ(x; k) = µ(k)Φ(x; k), x ∈ R2

Φ(x+ v; k) = eik·vΦ(x; k), v ∈ Λ.

Si on pose Φ(x; k) = eik·xp(x; k), on peut aisément vérifier que p(x; k), k ∈ B, est périodique

et est une solution du problème equivalent

(1.19)




HV (k)p(x; k) = µ(k)p(x; k), x ∈ R2

p(x+ v; k) = p(x; k), v ∈ Λ.

où

HV (k) := (∇ + ik)2 + V (x).

Remark 1.4. Les fonction propres Φ(x; k) sont de classe C∞ d’après la théorie de la

régularité élliptique classique [63].

Pour tout k ∈ B, la résolvante de HV (k) est compacte et donc le spectre de l’opérateur

est discret et réel et s’accumule à +∞:

(1.20) µ1(k) 6 µ2(k) 6 ... 6 µj(k) 6 ... ↑ +∞.
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Si on fixe n ∈ N on dit que la fonction k → µn(k) est la n-ième bande de dispérsion de

l’opérateur HV et on appelle n-ième onde de Bloch la fonction Φn(x, k). Le spectre de

HV peut avoir des lacune (gaps). Il s’obtient comme union des graphes des bandes de

l’opérateur

(1.21) Spec(HV ) =
⋃

n∈N

µn(B),

et il est donné par l’union des intervalles µn(B).

Les ondes de Bloch forment un système complet, au sens où pour tout f ∈ L2(R2)

(1.22) f(x) −
∑

16n6N

∫

B
〈Φn(·, k), f(·)〉L2(R2)Φn(x; k)dk −→ 0

dans L2(R2), pour N −→ +∞ [56, 104]. Le problème de Cauchy

(1.23)




i∂tu(t, x) = HV u(t, x), (t, x) ∈ R × R2,

u(0, x) = u0(x) ∈ L2(R2),

admet la solution

(1.24) e−iHV tu0 =
∑

n∈N

∫

B
e−iµn(k)〈Φn(·, k), u0(·)〉L2(R2)Φn(x, k)dk.

Donc c’est évident que la dynamique (1.24) est influencée par le comportement des fonc-

tions µn(·), n ∈ N.

Les propriétés spectrales des structures en nid d’abeille on été largement étudiées dans

la littérature, notamment dans le régime limite de tight-binding ou dans le cas de potentiels

concentré sur des graphes [79, 123] et dans le regime de potentiels faibles avec arguments

pertubatifs [2, 69, 66]. Un résultat général concernant l’existence de croisements coniques

pour les bandes de dispersion d’opérateurs de Schrödinger en nid d’abeille a été prouvé

par Fefferman and Weinstein dans [56].

Soit V un potentiel en nid d’abeille (Def.1.2) et soit K un sommet de la zone de

Brillouin du réseau H∗. On considère l’espace des fonctions L2 K-pseudopériodiques, L2
K

défini par

(1.25) L2
K =

{
f ∈ L2(Ω) : f(x+ v) = eK·vf(x),∀v ∈ Λ

}
.

où Ω est la cellule élémentaire du réseau H.

8
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Si f : R2 −→ R, on pose

(1.26) R[f ](x) := f(R∗x), x ∈ R
2,

et R est la matrice (1.15). Le laplacien étant invariant par rotation et le potentiel étant

R-invariant, on peut montrer la relation de commutation suivante

(1.27) [R, HV (K)] = 0.

De plus, soient 1, τ = exp 2πi/3, τ les valeurs propres de R, on peut en conséquence

décomposer L2
K comme somme directe des sous-espaces spectrals de R

(1.28) L2
K = L2

K,1 ⊕ L2
K,τ ⊕ L2

K,τ ,

où

(1.29) L2
K,σ :=

{
f ∈ L2

K : Rf = σf
}
, σ = 1, τ, τ .

Definition 1.5. (Points de Dirac / Dirac points, [56]) Soit V un potentiel en nid d’abeille

et B la zone de Brillouin du réseau hexagonal sous-jacent. On dit que K ∈ B est un point

de Dirac si les propriétés suivantes sont verifiées.

Il existe n ∈ N, µ∗ ∈ R et λ, δ > 0 tels que:

1. dim ker (HV (K) − µ∗) = 2,

2. ker (HV (K) − µ∗) = span {Φ1(x,K),Φ2(x,K)}, où Φ1 ∈ L2
K,τ et Φ2 = Φ1(−x) ∈

L2
K,τ ,

3. Il existe deux fonctions Lipschitz E± : Uδ → R, où Uδ :=
{
y ∈ R2 : |y| < δ

}
, telles

que pour |k −K| < δ,

(1.30)




µn+1(k) − µ(K) = |λ#||k −K| (1 + E+(k −K)) ,

µn(k) − µ(K) = −|λ#||k −K| (1 + E−(k −K)) .

avec E±(y) = O(|y|), pour |y| → 0.

La constante λ# ∈ C \ {0} dépend du potentiel V [56].

Essentiellement, un point de Dirac est un point de la zone de Brillouin K ∈ B tel que

l’hamiltonien HV (K) ait une valeur propre double (1.19) et cela correspond à deux bandes

µn, µn+1 qui se touchent en un point tel que, au premier ordre, le graphe de la relation de

9
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dispersion soit un cône. En particulier, les bandes sont seulement des fonctions Lipschitz

autour de ces points coniques.

Figure 1.2. Une représention des cones de Dirac aux sommets de la zone de Brillouin [61].

Remark 1.6. La propriété (1.30) explique pourquoi ces points sont appelée points de Dirac.

D’après la formule (2.16) il est évident que pour le cas à masse nulle, la relation de

dispersion de l’opérateur de Dirac donne exactement un cône.

Dans [56] Fefferman and Weinstein ont démontré que les opérateurs de Schrödinger

en nid d’abeille possèdent des points de Dirac dans leur spectre, sous des hypothèses très

générales.

Theorem 1.7. (Existence des points de Dirac, [56]) Soit V (x) un potentiel en nid d’abeille

et supposons que le coefficient de Fourier de V , V1,1 ne soit pas nul;

(1.31) V1,1 :=

∫

Ω
e−i(k1+k2)·xV (x) dx /= 0.

Considérons la famille de hamiltoniens en nid d’abeille suivante

(1.32) Hε := −∆ + εV (x), ε > 0,

Il existe un ensemble fermé dénombrable C ⊂ R tel que pour tout ε /∈ C, les sommets de la

zone de Brillouin B sont des points de Dirac au sens de la définition 1.5.

Plus précisement, on peut montrer qu’il existe ε0 > 0 tel que ∀ε ∈ (−ε0, ε0) \ {0}

i) si εV1,1 > 0, la 1ère et la 2ème bande ont un croisement conique,

ii) si εV1,1 < 0, la 2ème et la 3ème bande ont un croisement conique.

10
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et donc C∩(−ε0, ε0) = ∅. L’existence de l’ensemble C est due à des obstructions topologiques

[56]. Une question très importante au niveau théorique et pour les applications et celle

de la stabilité des point de Dirac. Pour le graphène, par example, il est bien connu dans

la littérature physique que la symètries fondamentale qui protège les cônes de Dirac est

la symètrie PT , c’est à dire la composition de la symètrie par renversement du temps

et de la parité spatiale [39]. Et donc une perturbation qui respecte cette symétrie peut

déformer le cônes, mais en général, cela ne suffit pas pour ouvrir un gap dans le spectre.

Pourtant, un mécanisme pour l’ouverture d’un gap au niveau de Fermi par déformation

du réseau a été recemment proposé dans la littérature [87]. On peut ouvrir un gap dans

le spectre si l’on tient compte du spin ou si l’on rajoute un champ magnétique [68, 74].

Les mécanisme d’ouverture d’un gap au niveau de Fermi ont été classifiés et peuvent être

décrits en termes d’un hamiltonien efficace qui fait intervenir l’opérateur de Dirac [39].

Dans [56] l’effet d’une petite perturbation sur les points de Dirac d’un opérateur de

Schrödinger en nid d’abeille a été étudié.

Remark 1.8. Dans le cadre de la mécanique quantique non relativiste, les opérateurs de

parité (par rapport à l’origine) et de renversement du temps sont donnés, respectivement,

par

(1.33) Pu(x) = u(−x), T u(x) = u(x),

où u : Rd −→ C est la fonction d’onde de la particule [107].

Soit V (x) un potentiel en nid d’abeille qui a des points de Dirac dans son spectre.

Theorem 1.9. (Stabilité des points de Dirac,[56]) Soit W ∈ C∞(R2; R) un potentiel pair,

Λ-invariant, mais pas forcement R-invariant (voir def. 1.5). Considérons l’opérateur

(1.34) H(η) := −∆ + V (x) + ηW (x), η ∈ R.

1. Il existe η1 > 0 et des fonctions de classe C∞

(1.35)




η → µ(η) = µ(K) +O(η) ∈ R, η → K(η) = K +O(η) ∈ B,
η → φ

(η)
j (x;K(η)) = φj(x) +O(η) ∈ L2(R/Λ).

définies sur {|η| < η1}, tels que µ(η) est une valeur propre double pour H(η) dans

L2
K(η) avec sous-espace associé engendré par

{
Φ

(η)
1 ,Φ

(η)
2

}
=
{
eiK

(η)·xφ(η)
1 (x;K(η)), eiK

(η)·xφ(η)
2 (x;K(η))

}
.
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2. L’operateur H(η) a un croisement conique de ses bandes de dispersion autour des

points K(η) = K+O(η), et les bandes qui se touchent sont données par des fonctions

µ
(η)
n (k), µ

(η)
n+1(k) définies autour de K(η)

(1.36)


µ

(η)
n+1(k) − µ(K(η)) = ηb(η) · (k −K(η)) +

(
Q(k −K(η))

) 1
2
(
1 + E

(η)
+ (k −K(η))

)

µ
(η)
n (k) − µ(K(η)) = ηb(η) · (k −K(η)) −

(
Q(k −K(η))

) 1
2
(
1 + E

(η)
− (k −K(η))

)
.

où b(η) ∈ R2 et la forme quadratique Q(η)(·) sont des fonctions de classe C∞ de η.

Enfin,

(|λ#|2 − C|η|)
(
y2

1 + y2
2

)
6 Q(η)(y) 6

(
|λ#|2 + C|η|

)
(y2

1 + y2
2)

pour |η| 6 η1 et y = (y1, y2) ∈ R2, avec 0 < η1 ≪ 1. De plus on a
∣∣∣E(η)

± (y)
∣∣∣ 6 C|y|,

pour |η| 6 η1, |y| 6 δ, où 0 < δ ≪ 1 et C > 0.

Donc le théoreme dit que si l’on rajoute une petite perturbation qui n’est pas forcément

R-invariante mais qui respecte la symétrie de parité et le renversement du temps (le

potentiel W est réel) alors l’opérateur correspondant a toujours des croisements coniques,

mais qui ne sont plus forcément situés aux sommets de la zone de Brillouin. De plus, la

valeur de l’énergie qui correspond au sommet du cône peut changer, et en général elle est

du type µ(K)+O(η), où η est la taille de la perturbation. En particulier, on peut montrer

que si W est un potentiel en nid d’abeille on a K(η) = K.

Remark 1.10. Soit W ∈ C∞(R2), Λ-périodique mais pas forcément tel que W (−x) =

W (x),∀x ∈ R2, et donc qui brise la parité. Typiquement, dans ce cas on a

(1.37) 〈Φ1,WΦ1〉 /= 〈Φ2,WΦ2〉.

Sous cette hypothèse on peut montrer qu’il n’y a plus de croisement conique, car les deux

valeurs propres correspondantes deviennent simples et donc on ouvre un trou spectrale,

et les bandes de dispersion sont de classe C∞ [56]. Dans ce cas, le gap corréspond à un

terme de masse constante dans l’opérateur de Dirac efficace [110].

1.2.2 Paquets d’onde et points de Dirac

Dans la section précédente nous avons énoncé le résultat de Fefferman and Weinstein [56]

qui montre que les opérateurs de Schrödinger en nid d’abeille ont des cônes de Dirac

dans le spectre, sous des hypothèses très générales. Il est donc naturel que l’évolution

d’un paquet d’onde concentré autour d’un point de Dirac soit décrite par une équation de

Dirac et que cette approximation soit consistante au moins pour un temps fini, lorsque
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le paquet d’onde reste concentré autour du croisement conique. De façon générale, la

dynamique pour des données initiales concentrées (en fréquence) autour d’un point dans

l’espace dual est décrite, au moins localement en temps, par un opérateur efficace qui

dépend des proprietés géométriques des bandes, comme montré par exemple dans [11, 70].

Soit u0 = uε0 un paquet d’onde concentré autour d’un point de Dirac, et qui est donc

une modulation d’ondes de Bloch:

(1.38) uε0(x) =
√
ε(α0,1(εx)Φ1(x) + α0,2(εx)Φ2(x)), x ∈ R

2, ε > 0,

où les fonctions Φj(x) := Φj(x,K), j = 1,2 sont les ondes de Bloch au point de Dirac

k = K (1.18), et les α0,j sont des amplitudes (complexes) à déterminer. On s’attend à

ce que, au premier ordre en ε, la solution de (1.14) avec donnée initiale (1.38) soit encore

une modulation d’ondes de Bloch, avec des coefficients qui dépendent du temps:

(1.39) uε(t, x) ∼
ǫ→0+

√
ε (α1(εt, εx)Φ1(x) + α2(εt, εx)Φ2(x) + O(ε)) .

Remark 1.11. Le facteur
√
ε dans les formules (1.38,1.39) n’a aucun influence sur le

résultat, évidemment, car il s’agit d’une équation linéaire. Le seul effet de ce change-

ment d’échelle est de normaliser la norme L2 des solutions.

Dans [57] Fefferman and Weinstein ont démontrer le résultat suivant

Theorem 1.12. (Linear Dirac dynamics in honeycomb structures,[57]) On fixe ρ > 0,δ >

0,N ∈ N. L’équation de Schrödinger i∂tu = (−∆ + V )u admet une seule solution, qui est

de la forme

(1.40) uε(t, x) = e−iµ∗t




2∑

j=1

√
εψj(εt, εx)Φj(x) + ηε(t, x)




with uε(0, x) = uε0(x), ηε(0, x) = 0. Pour tout |β| 6 N on a

(1.41) sup
06t6ρε−2+δ

‖∂βxηε(t, x)‖L2
x(R2)

ε→0−−−→ 0.

Les coefficients (ψ1, ψ2)T satisfont l’équation de Dirac suivante

(1.42) i∂t

(
ψ1

ψ2

)
=

(
0 λ(∂1 + i∂2)

λ(∂1 − i∂2) 0

)(
ψ1

ψ2

)
, 0 /= λ ∈ C,

13
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avec données initiales

(
ψ1(0, x)

ψ2(0, x)

)
=

(
ψ1,0(x)

ψ2,0(x)

)
∈ [S(R2)

]2
.

Remark 1.13. Le résultat a été démontré pour des données initiales de classe de Schwartz,

mais Fefferman and Weinstein indiquent que c’est seulement une hypothèse technique.

Le théorème ci-dessus montre donc qu’effectivement si l’on prend des données initiales

qui sont des modulation d’ondes de Bloch pour k = K, la solution de (1.14) reste une

modulation d’ondes de Bloch, plus une erreuer qui reste petit sur un interval de l’ordre

ε−2+δ, pour tout δ > 0. Ici ε > 0 répresent l’échelle de variation/concentration des données

initiales (1.38).

L’idée de la preuve du Théor ème 1.12 consiste à faire un ansatz du type (1.40) pour

la solution de (1.14). Cela donne une equation pour l’erreur ηε, qui peut être estimée

avec la formule de Duhamel en décomposant le propagateur eit(−∆+V ) de façon à analyser

séparément les terme supportés (en fréquence) autour et loin de K. L’équation de Dirac

(1.42) apparait donc comme condition de non-résonance qui permet de contrôler les termes

supportés autour de K et de prouver l’estimation (1.41) [57].

1.2.3 Échantillons de graphène

Afin d’étudier les propriétés électroniques du graphène il est intéressant de tenir compte

des dimensions finies des échantillons. Cela mène naturellement à considérer des conditions

au bord (locales) pour l’opérateur de Dirac efficace3. Les conditions acceptables doivent

respecter le principe de conservation du courant et la symétrie par renversement du temps

[9, 122]. Les conditions plus utilisées dans la littérature physique sont les conditions

zigzag, armchair et infinite mass. Les deux premières sont liées à la géométrie du bord

de l’échantillon de graphène, tandis que la dernières correspondent à rajouter un terme de

Figure 1.3. Bord zigzag (rouge) et armchair (vert), pour un échantillon de graphène [109].

3Des conditions locales au bord pour un opérateur de Dirac avaient déjà été considérées dans la
littérature physique pour des raisons théoriques [22].
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masse ”infinie” dans le hamiltonien efficace (voir le lemme 2.9). La condition infinite mass

est physiquement réalisée à partir de la condition zigzag, par des différences de potentiel

opposées sur les sommets des deux réseaux triangulaires qui constituent la structure en nid

d’abeille du graphène [9]. La condition armchair est réalisée uniquement pour un ensemble

discret d’orientations du bord de l’échantillon, dans les autres cas la condition étant de

type zigzag. Vu que pour cette dernière il n’y a pas de trou spectrale on en déduit que

dans ce cas le graphène se comporte génériquement comme un métal [59]. Le conditions

zigzag et infinite mass ont, au contraire, un gap dans le spectre, comme expliqué dans

la section 2.2. En imposant la conservation du courant et la symètrie par renversement

du temps, on trouve una famille de conditions linéaires au bord [9, 122]. Les conditions

zigzag,armchair et infinite mass peuvent être décrites dans ce cadre, comme on verra dans

la suite (section 2.2).

1.3 Graphes quantiques

Dans la literature on appelle graphes quantiques (quantum graphs) des graphes metriques

(Figure 1.3) munis d’un opérateur différentiel defini sur chaque arête, identifié avec un

segment ou une demi-droite. Afin d’avoir un opérateur auto-adjoint on doit imposer des

conditions de raccordement sur les sommets du réseau. L’opérateur représent le hamil-

tonien du système, d’où le nom graphes quantiques. Des definitions et des références plus

précises seront données dans la section 2.3.

Dans la littérature physique, le graphes quantiques ont été proposés pour decrire des

systèmes qui peuvent être considerés essentiellement unidmensionnels. Dans ces cas le

confinement des particules est realisé grâce à des potentiels de piégeage, qui justifient

l’approximation de graphe. Dans le dernières années l’equation de Schrödinger suivante

(1.43) i
dv

dt
= −d2v

dx2
− |v|p−2v, p > 2,

a été étudiée comme modele efficace pour décrire le comportement des condensés de Bose-

Einstein dans des piégeages ramifiés, notamment dans le cas p = 4, voir e.g. [65]. En

particulier, on peut s’interesser à l’éxistence de solutions stationnaires

(1.44) v(t, x) = e−iλtu(x), λ ∈ R

et donc à l’equation

(1.45) − d2u

dx2
− |u|p−2u = λu.
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On cherche des solutions de (1.45) qui satisfont des conditions de raccordement sur le

sommets du réseau, dont le plus utilisées sont le condition de type Kirchoff (voir la section

2.3).

Figure 1.4. Un exemple de graphe non compacte G.

Récemment des equations de Dirac non linéaires unidimensionnelles ont été proposés

comme modele efficace pour des guides d’ondes [120, 121, 119]. Dans le papier [106] une

équation de Dirac cubique sur un 3-star graph (Figure 1.3) a été proposée, où l’on impose

des conditions de type Kirchoff pour le spineur.

Figure 1.5. The infinite 3-star graph.

Dans les chapitres suivants on montrera que l’opérateur de Dirac avec ces conditions

aux sommets est auto adjoint (section 2.3). Le chapitre 5 est consacrée à l’etude d’une

famille d’équations de Dirac sur des graphes ayant une partie non compacte non triviale

(compact core) K ⊆ G, sur laquelle la nonlinéaritée est définie. Notamment, on montrera

l’existence d’une infinitée de solutions stationnaires et qu’elles convergent, dans un certain

regime de paramètres, vers les solutions d’une équation de Schrödinger non linéaire.
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Chapter 2

The Dirac operator in dimension

one and two

In this section we quickly review Dirac’s original argument which led to the equation which

bears its name, in the attempt of describing the relativistic motion of spin-1
2 particles in

R3. Our presentation is based on [118].

The derivation of the Dirac equation raised the question whether there exists a square

root of the laplacian. Consider a particle in R3 with spin 1
2 . Denote by m > 0 its mass and

by E and p its energy and momentum, respectively. Then, according to Special Relativity,

the Hamiltonian of the particle is

(2.1) E =
√
c2p2 +m2c4, p = |p|.

The transition from classical to quantum mechanics is usually accomplished by substituting

classical quantities with operators acting on the wavefunction of the particle, according to

the prescription

(2.2) E −→ i~
∂

∂t
, p −→ −i~∇

Then the energy-momentum relation (2.1) gives the square-root Klein-Gordon equation

for the wavefunction of the particle ψ

(2.3) i~
∂

∂t
ψ(t, x) =

(√
−c2~2∆ +m2c4

)
ψ(t, x), t ∈ R, x ∈ R

3.

Here
√

−c2~2∆ +m2c4 is the pseudo-differential operator of symbol
√
c2|ξ|2 +m2c4.

Dirac reconsidered the relation (2.1) and linearized it before applying the quantization
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rules (2.2). He wrote

(2.4) E = c
3∑

j=1

αjpj + βmc2 = cα · p + βmc2,

where α = (α1, α2, α3) and β have to be determined imposing (2.1). It turns out that

α and β must be anticommuting quantities, and they can be naturally assumed to be

matrices n × n complex matrices. Comparing E2 according to (2.1) and (2.4) one finds

that the following relations must be satisfied

αjαk + αkαj = 2δj,k1n, j, k = 1,2,3,

αjβ + βαj = 0n, j = 1,2,3,

β2 = 1n.

(2.5)

here δj,k is the Kronecker symbol and 0n and 1n are the zero and the unit n-dimensional

matrix, respectively. Moreover, one looks for hermitian matrices αj , β, as the resulting

operator should be self-adjoint. The (minimal) dimension n of the matrices can be deter-

mined as follows. The relations (2.5) imply that

(2.6) trαj = trβ2αj = − tr (βαjβ) = − trαjβ
2 = − trαj = 0

and thus the matrices αj are traceless. On the other hand, there holds α2
j = 1n and

then n must be an even number. For n = 2 there are at most three linearly independent

anticommuting matrices. Indeed, it can be easily checked that the Pauli matrices

(2.7) σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

together with the unit matrix 12 form a basis in the space of hermitian 2 × 2 matrices.

Then, in two dimensions there is no ”rest energy” matrix β.

Passing to four dimensions, one can easily verify that the relations (2.5) are satisfied

choosing the following block matrices

(2.8) αj =

(
02 σj

σj 02

)
, β =

(
12 02

02 −12

)
.

This choice of matrices is known in the Physics literature as the Dirac or standard represen-

tation of the Dirac matrices. Other choices are possible, each having its own advantages.
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2 – The Dirac operator in dimension one and two

Remark 2.1. This fact is related to an underlying algebraic structure. Indeed, Pauli matri-

ces are the generators of a representation of the Clifford algebra of the three dimensional

euclidean space, on the vector space C4. Thus different choices of the Dirac matrices cor-

respond to unitarily equivalent representations. Those structures allow, more generally, to

define the Dirac operators on suitable riemannian manifolds (the so-called spin manifolds).

More details can be found e.g. in [73, 60].

Translating (2.4) using the quantization rules one obtains the Dirac equation

(2.9) i~
∂

∂t
ψ(t, x) = Dψ(t, x)

where D is given by the matrix-valued differential expression

(2.10) D = −i~cα · ∇ + βmc2 =

(
mc212 −i~cσ · ∇

−i~cσ · ∇ −mc212

)

where σ = (σ1, σ2, σ3). The Dirac operator acts on vector-valued functions, usually called

spinors

(2.11) ψ(t, x) =




ψ1(t, x)

ψ2(t, x)

ψ3(t, x)

ψ4(t, x)




∈ C
4.

In space-dimension two and one, it is sufficient to use Pauli matrices and the minimal

dimension such that the relations (2.5) are satisfied is n = 2 in both cases. Then the

operator acts of C2-valued spinors. More precisely, in the two-dimensional case a common

choice is

(2.12) D = −i~c
(
σ1

∂

∂x1
+ σ2

∂

∂x2

)
+ σ3mc

2.

In one dimension only two anticommuting matrices are needed. We will define the Dirac

operator as follows

(2.13) D = −i~cσ1
d

dx
+mc2σ3.

In the next sections we will focus on Dirac operators in dimension one and two. We

will describe different self-adjoint realizations as L2- operators of the formal differential

expressions (2.12,2.13), obtained imposing suitable boundary conditions. In the following
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2 – The Dirac operator in dimension one and two

we shall always use units where ~ = 1 and c = 1. Except in Chapter 5 where we study

the nonrelativistic limit (c → +∞) of solutions to Dirac equations on metric graphs.

2.1 The case of R2

In this section we follow again the presentation given in [118].

The Dirac operator can be easily analyzed using the Fourier transform1F . In order to

distinguish between the variabiles, we shall write

FL2(R2, dx)2 = L2(R2, dp)2.

The latter is often called the momentum space. The key point, as usual, is that a matrix

differential operator with constant coefficient in L2(R2, dx)2 is transformed by F into a

matrix multiplication operator on the momentum space L2(R2, dp)2, which is much easier

to analyze.

For the Dirac operator D = −i (σ1∂x1 + σ2∂x2) +mσ3 one obtains

(2.15)
(
FDF−1

)
(p) = h(p) =

(
m p1 − ip2

p1 + ip2 −m

)
.

For each p ∈ R2 the hermitian matrice h(p) has eigenvalues

(2.16) λ1(p) = −λ2(p) =
√

|p|2 +m2.

The matrix h(p) is diagonalized by the unitary transformation

(2.17) u(p) = a+(p)12 + a−(p)σ3
σ · p
|p| ,

where

(2.18) a±(p) =
1√
2

√
1 ± m

λ(p)
.

1We adopt the following convention

(2.14) (Fψk)(p) :=
1

2π

∫

R2

e
−ip·x

ψk(x) dx, k = 1,2,

in the definition of the transform.
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2 – The Dirac operator in dimension one and two

One can check that there holds

(2.19) u(p)h(p)u−1(p) = σ3λ(p) =

(
λ(p) 0

0 −λ(p)

)
.

Then combining (2.15) and (2.19) we conclude that the unitary transformation

(2.20) W = uF

converts the Dirac operator D into the operator of multiplication by the matrix2

(2.22)
(
WDW−1

)
(p) = σ3λ(p)

on the momentum space L2(R2, dp)2.

Theorem 2.2. The Dirac operator (2.12) is essentially self-adjoint on the dense domain

S(R2)2 3 and self-adjoint on the Sobolev space

(2.23) Dom(D) = H1(R2)2 =

{
ψ ∈ L2(R2, dx)2|

(
1 + |p|2

) 1
2 (Fψ) ∈ L2(R2, dp)2

}
.

Its spectrum is purely absolutely continuous and given by

(2.24) σ(D) = (−∞,−m] ∪ [m,+∞).

Proof. We know from (2.22) that the Dirac operator D is unitarily equivalent to σ3λ(·),
and then it is self-adjoint on

(2.25) Dom(D) = W−1 Dom(σ3λ(·)) = F−1u−1 Dom(λ(·)) = F−1 Dom(λ(·)),

where we have used the fact that the multiplication by the unitary matrix u−1(p) does

not modify the domain of any multiplication operator. By the very definition of H1(R2)2,

2In the Hilbert space WL2(R2, dx)2 upper (lower) component spinors correspond to positive (negative)
energies. Moreover, it is immediate to see that via the transformation UF W := F−1W, also knwon as
Foldy-Wouthuysen transformation [118], the Dirac operator is unitarily equivalent to a pair of square-root
Klein-Gordon equations

(2.21) UF W DU−1
F W =

(√
−∆ +m2 0

0 −
√

−∆ +m2

)

3This symbol denotes Scwartz class functions, that is, functions of rapid decrease [103].
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2 – The Dirac operator in dimension one and two

it is the inverse Fourier transform of the set

{
φ ∈ L2(R2, dp)2|

(
1 + |p|2

) 1
2 φ ∈ L2(R2, dp)2

}
.

Then this set coincides with Dom(λ(·)). We thus conclude that the spectrum of D equals

the spectrum of the multiplication operator σ3λ on the momentum space, which is simply

given by the range of the functions λi(p), i = 1,2.

Consider the Dirac operator on the domain S(R2)2, and denote it by D̃

(2.26) Dom(D̃) = S(R2)2, D̃ψ = −iσ · ∇ψ +mψ,ψ ∈ S(R2)2.

Recall that S(R2)2 is invariant with respect to the Fourier transform, and then D̃ is

unitarily equivalent to the restriction of the multiplication operator h(p) to S(R2)2. The

latter is essentially self-adjoint, as its closure is the self-adjoint operator h(p), and the

same holds for D̃ and its closure is D, the self-adjoint Dirac operator.

The fact that

σ(D) = σac(D) = (−∞,m] ∪ [m,+∞)

follows from (2.15),(2.16). See also [103, Ch. VII]

2.2 Local boundary conditions on a bounded domain Ω ⊂ R2

As explained in Section 1.1, the hexagonal symmetry implies that in absence of external

fields low-energy electronic excitations behave as massless Dirac fermions. Rather than us-

ing the effective hamiltonian (1.12), it is more convenient to work in the so-called isotropic

representation [9] and then to consider the hamiltonian

(2.27) H = vF1 ⊗ (σ · (i∇)) =

(
D 0

0 D

)
, on L2(R2,C2) ⊕ L2(R2,C2).

One can check that

(2.28) H = UH0U
−1, U =

1

2
(1 + σ3) ⊗ 1 +

1

2
(1 − σ3) ⊗ σ3,

and then the hamiltonians H0 and H are unitarily equivalent, through the transformation

U . The form of the operator H takes into account the fact that there are two inequivalent

Dirac points (or valleys) K and K ′ in the first Brillouin zone of the honeycomb lattice. In

the case where the contributions from the two Dirac points do not couple, it is sufficient

to study the operator D.
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2 – The Dirac operator in dimension one and two

Consider a bounded domain Ω ⊂ R2, which corresponds to a region of the plane where

the (quasi-)particles are confined. Then one should impose boundary conditions for D,

which may break the block-diagonal structure in (2.27). That choice may change the

spectrum of the resulting operator and thus the transport properties of graphene ribbons

[9, 90]. Particularly important for practical purposes is the presence of a gap around zero,

which turns graphene into a semiconductor. In this section we shall quickly recall the

definition and basic properties of a family of boundary conditions for the Dirac operator

which includes zigzag, armchair and infinite mass boundary conditions, following the recent

works [19, 20].

Dealing with a bounded domain, one has to find necessary conditions that make the

Dirac operator D symmetric on Ω. Let u, v ∈ H1(Ω,C2), then integration by parts and

the hermiticity of Pauli matrices imply that

〈u,Dv〉L2 =

∫

D
−i(u,σ · ∇v)C2 =

∫

D
−i∇ · (u,σv)C2 + i

∫

Ω
(σ · ∇u, v)C2

= 〈Du, v〉L2 − i

∫

∂Ω
(u,n · σv)C2 ,

(2.29)

where n is the outward vector to ∂Ω. Then the boundary term in (2.29) must vanish.

Consider the orthogonal projectors P±,η defined as

(2.30) P±,η =
1

2
(12 ± Aη), Aη = cos(η)σ · t + sin(η)σ3,

t being the unit vector tangent to the boundary ∂Ω and η : ∂Ω −→ R. Define

(2.31) Dom(Dη) :=
{
u ∈ H1(Ω,C2)|(P-,η ◦ γ)u = 0

}
,

where γ is the trace operator on ∂Ω. Here we denote by the operator acting as D and

with domain (2.31). The anticommutation relations of Pauli matrices give

(2.32) {Aη,n · σ} = 0.

A direct calculation shows that the boundary term in (2.29) cancels and the operator Dη

is symmetric.

Remark 2.3. Recall that for any φ ∈ Dom(Dη),

(2.33) Jφ(x) = (φ(x),σφ(x))
C2

can be interpreted as the current density [9, 113]. Then, as shown in [9], the condition
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2 – The Dirac operator in dimension one and two

(2.32) is equivalent to the vanishing of the normal component of the current density in

the state φ

(2.34) (φ,n · σφ)C2 = 0,

that is, there is no current normal to the boundary of Ω and thus quasi-particles are

confined in Ω.

The self-adjointness of Dη can be proved in the case of C∞ boundaries adapting the

results of [25] to the present case. However, a simpler proof which works at limited

regularity has been recently given in [19], where the following theorem has been proved.

Theorem 2.4. Given a bounded domain Ω ⊂ R2 with C2 boundary, and η ∈ C1(∂Ω),

consider Dη as above. Then if cos(η(s)) /= 0, for all s ∈ ∂Ω, the operator Dη is self-

adjoint on Dom(Dη). Moreover the spectrum σ(Dη) ⊆ R of Dη is purely discrete and

accumulates at ±∞.

Remark 2.5. A priori the function η could be arbitrary, but in most physically relevant

cases it is constant on the connected components of the boundary ∂Ω, as explained in the

following.

Remark 2.6. The spectrum of Dη is discrete as a consequence of the compactness of the

Sobolev embedding H1(Ω) →֒ L2(Ω).

For constant η and simply connected domains Ω the following lower bound for the

spectral gap are proved in [20].

Theorem 2.7. Take Ω ⊂ R2 be a simply connected domain with C2-boundary and let η be a

constant such that cos η /= 0 and define Dη as above. Define B = min
(∣∣∣ cos η

1−sin η

∣∣∣ ,
∣∣∣1−sin η

cos η

∣∣∣
)
.

If λ ∈ σ(Dη), then

(2.35) λ2 >
2π

|Ω|B.

Following [20], we quickly explain how zigzag, infinite mass and armchair boundary

conditions can be described in the above framework, working with the full operator (2.27).

We adopt the notations of [9]. We shall consider uniform boundary conditions (η is

constant) and then we will drop the dependence on η. Then boundary conditions for H,

fulfilled by four-spinors are of the form

(2.36) P−(A)ψ :=
1

2
(14 −A)ψ = 0 on ∂Ω,
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2 – The Dirac operator in dimension one and two

where A is a 4 × 4 unitary matrix belonging to family of matrices explicitly computed in

[9], see Section 1.2.3.

Zigzag boundary conditions. These conditions do not mix the valleys, and the matrix

A is the following block matrix

(2.37) A =

(
σ3 02

02 −σ3

)
.

This matrix corresponds to the choice η ≡ π
2 , and then to two copies of D π

2
. Remark

that this case is not covered by Theorem 2.4. It has been proved in [108], ante litteram,

that the zigzag Dirac operator D π
2

is not self-adjoint on H1(Ω,C2) as it has zero as an

eigenvalue of infinite multiplicity. Then its domain cannot be included in H1(Ω,C2) (see

Remark 2.6). It has been described in [108].

Infinite mass boundary conditions. The matrix encoding the boundary conditions in

this case is

(2.38) A =

(
σ · t 02

02 −σ · t

)

and does not mix the valleys. We get a block-diagonal operator D0 ⊕ Dπ and Theorem

2.4 applies. Here the domain is Dom(D0) ⊕ Dom(Dπ) ⊆ H1(Ω,C4).

Armchair boundary conditions. The boundary conditions are given by

(2.39) A =

(
02 ν∗σ · t

νσ · t 02

)

with |ν| = 1. These boundary conditions can be put into a block-diagonal form as follows.

Using the unitary transformation

(2.40) Uν =

(
ν12 02

02 12

)
,

one can, without loss of generality, consider only the case ν = 1. We can act on the matrix

A via the unitary transformation

(2.41) V =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



,
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2 – The Dirac operator in dimension one and two

which exchanges the second and fourth spinor components. This converts the boundary

conditions into

(2.42) B = V AV ∗ =

(
σ · t 02

02 σ · t

)
,

and transforms the Hamiltonian as

(2.43) K = V HV ∗ =

(
02 D
D 02

)
.

Then also the armchair boundary conditions can be included in this description.

In the following (see Chapter 4) we will be particularly interested in infinite mass

boundary conditions. In this case η ≡ 0 or η ≡ π and then Aη = ±σ · t. Then using the

anticommutation properties of Pauli matrices, a direct calculation shows that the domain

of the operator Dom(D0,π) is invariant with respect to the antiunitary transformation

U := σ1C, where C is the complex conjugation on L2(Ω,C2). Given ϕ ∈ Dom(D0,π) we

have

UD0,πϕ = −D0,πUϕ.

Moreover, in this case the constant B appearing in the gap estimates (2.7) is equal to 1.

We summarize the above observations in the following

Proposition 2.8. The spectrum of the Dirac operator with infinite mass boundary condi-

tions D0,π is discrete, symmetric and accumulates to ±∞. Moreover, if λ is an eigenvalue

of D0,π there holds

(2.44) λ2 >
2π

|Ω| .

We remark that in [113], Stockmeyer and Vugalter proved that infinite mass Dirac

operators are the limit, in a suitable sense, of Dirac operators on R2 with a mass term

supported outside Ω. More precisely, given M > 0 define the following Dirac operator

with domain H1(R2,C2)

(2.45) HM = D + σ3M(1 − χΩ),

where χΩ denotes the characteristic function of Ω. Since the domain Ω is bounded, it is

easy to see that the operator HM is a compact perturbation of the self-adjoint operator

DM and then σess(HM ) = σess(DM ) (see the previous section) and it has purely discrete

spectrum on (−M,M) (see [103, Thm S.13]). Let us denote the infinite mass Dirac
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2 – The Dirac operator in dimension one and two

operator by H∞. The main result proven in [113] is the following

Theorem 2.9. (Convergence of spectral projections) Let Ω be a connected bonded domain

with C3 boundary and let λ be an eigenvalue of H∞. Then for any 0 < ε < dist(σ(H∞)),

there holds

(2.46)
∥∥∥Ẽ{λ}(H∞) − E(λ−ε,λ+ε)(HM )

∥∥∥ −→ 0 as M −→ +∞,

where we have rewritten the spectral projector Ẽ{λ}(H∞) = E{λ}(H∞) ⊕ {0} in terms of

the splitting

L2(R2,C2) = L2(Ω,C2) ⊕ L2(R2 \ Ω,C2).

In particular, the eigenvalues of HM converge toward those of H∞ as M → +∞ and any

eigenvalue of H∞ is the limit of eigenvalues of HM .

The above result justifies, in some sense, the name ”infinite mass” adopted for those

boundary conditions.

2.3 Quantum graphs with Kirchoff-type conditions

The aim of this section is to present some basics on metric graphs and on the Dirac

operator, needed for the results contained in Chapter 5. This is part of a joint work with

Raffaele Carlone and Lorenzo Tentarelli [29].

2.3.1 Metric graphs and functional setting

A complete discussion of the definition and the features of metric graphs can be found in

[3, 21, 78] and the references therein. Here we limit ourselves to recall some basic notions.

Throughout, a metric graph G = (V,E) is a connected multigraph (i.e., multiple edges

and self-loops are allowed) with a finite number of edges and vertices. Each edge is a finite

or half-infinite segment of line and the edges are glued together at their endpoints (the

vertices of G) according to the topology of the graph (see Figure 5.1).

Unbounded edges are identified with (copies of) R+ = [0,+∞) and are called half-

lines, while bounded edges are identified with closed and bounded intervals Ie = [0, ℓe],

ℓe > 0. Each edge (bounded or unbounded) is endowed with a coordinate xe, chosen in

the corresponding interval, which has an arbitrary orientation if the interval is bounded,

whereas presents the natural orientation in case of a half-line.

As a consequence, the graph G is a locally compact metric space, the metric given

by the shortest distance along the edges. Clearly, since we assume a finite number of
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edges and vertices, G is compact if and only if it does not contain any half-line. A further

important notion, introduced in [4, 111] is the following.

Definition. If G is a metric graph, we define its compact core K as the metric subgraph

of G consisting of all its bounded edges. In addition, we denote by ℓ the measure of K,

namely

ℓ =
∑

e∈K
ℓe.

A function u : G → C can be regarded as a family of functions (ue), where ue : Ie → C

is the restriction of u to the edge (represented by) Ie. The usual Lp spaces can be defined

in the natural way, with norm

‖u‖pLp(G) :=
∑

e∈E

‖ue‖pLp(Ie), if p ∈ [1,∞), and ‖u‖L∞(G) := max
e∈E

‖ue‖L∞(Ie),

while H1(G) is the space of functions u = (ue) such that ue ∈ H1(Ie) for every edge e ∈ E,

with norm

‖u‖2
H1(G) = ‖u′‖2

L2(G) + ‖u‖2
L2(G)

(and in this way one can also define H2(G), H3(G), etc . . . ). Consistently, a spinor

ψ = (ψ1, ψ2)T : G → C2 is a family of 1d-spinors

ψe =



ψ1
e

ψ2
e


 : Ie −→ C

2, ∀e ∈ E,

and thus

Lp(G,C2) :=
⊕

e∈E

Lp(Ie) ⊗ C
2,

endowed with the norm

‖ψ‖pLp(G,C2) :=
∑

e∈E

‖ψe‖pLp(Ie), if p ∈ [1,∞), and ‖ψ‖L∞(G,C2) := max
e∈E

‖ψe‖L∞(Ie),

while

H1(G,C2) :=
⊕

e∈E

H1(Ie) ⊗ C
2

endowed with the norm

‖ψ‖2
H1(G,C2) :=

∑

e∈E

‖ψe‖2
H1(Ie)

(and so on for H2(G,C2), H3(G,C2), etc . . . ). Equivalently, one can say that Lp(G,C2) is
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the space of the spinors such that ψ1, ψ2 ∈ Lp(G), with

‖ψ‖pLp(G,C2) := ‖ψ1‖pLp(G) + ‖ψ2‖pLp(G), if p ∈ [1,∞),

‖ψ‖L∞(G,C2) := max
{

‖ψ1‖L∞(G), ‖ψ2‖L∞(G)

}
,

and that H1(G,C2) is the space of the spinors such that ψ1, ψ2 ∈ H1(G), with

‖ψ‖2
H1(G,C2) := ‖ψ1‖2

H1(G) + ‖ψ2‖2
H1(G).

Remark 2.10. In the literature on metric graphs, the usual definition of the space H1(G)

consists also of a global continuity requirement, which forces all the components of a

function that are incident to a vertex to assume the same value at that vertex. However,

in this case it is worth keeping this global continuity notion separate and introduce it when

it is actually required (see (5.16)).

Remark 2.11. In view of the isomorphism Lp(G,C2) ≃ Lp(G)⊗C2, 1 6 p 6 ∞ we will inter-

changeably use both notations, and similarly for other spaces of vector valued functions.

A similar notation will be correspondingly adopted also for differential operators.

2.3.2 The Dirac operator with Kirchhoff-type conditions

We want to study the spectral properties of the following Dirac operator on the graph G

(2.47) D := −ıc d
dx

⊗ σ1 +mc2 ⊗ σ3,

The expression given by (2.47) of the Dirac operator is purely formal, since it does

not clarify what happens at the vertices of the graph, given that the derivative d
dx is well

defined just in the interior of the edges.

As well as for the laplacian in the Schrödinger case, the way to give a rigorous meaning

to (2.47) is to find suitable self-adjoint realizations of the operator imposing suitable vertex

conditions. However, an extensive discussion of all the possible self-adjoint realizations of

the Dirac operator on graphs goes beyond the aims of this thesis. We limit ourselves to the

case of the Kirchhoff-type conditions (introduced in [106]) which represent the free case for

the Dirac operator, namely, the case in which there are no attractive or repulsive effects

at the vertices, which then play the role of mere junctions between the edges. Roughly

speaking these conditions “split” the requirements of Kirchhoff conditions: the continuity

condition is imposed only on the first component of the spinor, while the second component

(in place of the derivative) has to satisfy a “balance” condition (see (2.49)&(2.50)).
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For more details on self-adjoint extensions of the Dirac operator on metric graphs we

refer the reader to [101, 33].

Definition. Let G be a metric graph and let m, c > 0. We call Dirac operator with

Kirchhoff-type boundary conditions the operator D : L2(G,C2) → L2(G,C2) with action

D|Ie
ψ = Deψe := −ıc σ1ψ

′
e +mc2 σ3ψe, ∀e ∈ E,

σ1, σ3 being the matrices defined in (5.4), and domain

(2.48) dom(D) :=
{
ψ ∈ H1(G,C2) : ψ satisfies (2.49) and (2.50)

}
,

where

ψ1
e(v) = ψ1

f (v), ∀e, f ≻ v, ∀v ∈ K,(2.49)

∑

e≻v
ψ2
e(v)± = 0, ∀v ∈ K,(2.50)

“e ≻ v” meaning that the edge e is incident at the vertex v and ψ2
e(v)± standing for ψ2

e(0)

or −ψ2
e(ℓe) according to whether xe is equal to 0 or ℓe at v.

Remark 2.12. Note that the operator D actually depends of the parameters m, c, which

represent the mass of the generic particle described by the operator and the speed of light

(respectively). For the sake of simplicity we omit this dependence unless it be necessary

to avoid misunderstandings.

The basic properties of the operator (2.47) with the above conditions are summarized

in the following

Proposition. The Dirac operator (2.47) with Kirchoff-type conditions (2.49),(2.50) is

self-adjoint on L2(G,C2) with domain (2.48). Moreover its spectrum is given by

(2.51) σ(D) = (−∞,−mc2] ∪ [mc2,+∞).

Using well-known results from the literature about selfadjoint extensions one can prove

that linear boundary conditions like (2.49), (2.50) lead to a selfadjoint Dirac operator

on a graph ( see, e.g. [33, 94, 10, 100]). In particular, the main result in [33] proves

self-adjointness for Dirac operators on metric graphs with a wide family of linear vertex

conditions, including the Kirchoff-type conditions (2.49),(2.50).

In order to study the spectral properties of the operator (2.47) one first has to study

the operator on the single components of the graph (segments and halflines) imposing
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2 – The Dirac operator in dimension one and two

suitable boundary conditions. Then one needs to describe the effect of connecting those

one-dimensional components according to the topology of the graph, through the vertex

condtions (2.49),(2.50). This can be achieved, for instance, using the theory of boundary

triplets. In this section we limit ourselves to a brief presentation of the main ideas and

techniques. We refer the reader to [38, 62] and references therein for more details.

Preliminarly let us recall some basic notions. Let A be a densely defined closed symmetric

operator in a separable Hilbert space H with equal deficiency indices n±(A) = dim N±i 6

∞, where Nz := ker(A∗ − z) is the defect subspace.

Definition. A triplet Π = {H,Γ0,Γ1} is called a boundary triplet for the adjoint operator

A∗ if H is an auxiliary Hilbert space and Γ0,Γ1 : dom(A∗) → H are linear mappings such

that the second abstract Green identity

(2.52) (A∗f, g) − (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom(A∗),

holds and the mapping Γ :=

(
Γ0

Γ1

)
: dom(A∗) → H ⊕ H is surjective.

Let us consider A0 := A∗ ↾ ker Γ0 and its resolvent set ρ(A0).

The operator valued functions γ(·) : ρ(A0) → L(H,H) and M(·) : ρ(A0) → L(H) defined

by

(2.53) γ(z) :=
(
Γ0 ↾ Nz

)−1
and M(z) := Γ1γ(z), z ∈ ρ(A0),

are called the γ-field and the Weyl function, respectively, corresponding to the boundary

triplet Π.

The graph G can be decomposed in finite length edges e ∈ Es identified with segments

Ie = [0, ℓe], and non-compact edges Eh identified with half-lines R+ = [0,+∞).

Consider a finite edge e ∈ Es of the graph and the corresponding minimal operator D̃e

on He = L2(Ie) ⊗ C2 given by the differential expression

(2.54) D = −i c d

dx
⊗ σ1 +mc2 ⊗ σ3 =

(
mc2 −i c d

dx

−i c d
dx −mc2

)
,

and with domain H1
0 (Ie) ⊗ C2. The domain of the adjoint operator (formally acting as D)

is

Dom(D̃∗
e) = H1(Ie) ⊗ C

2.
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2 – The Dirac operator in dimension one and two

A suitable choice of trace operators [62] is Γe0,1 : H1(Ie) ⊗ C2 → C2, defined by

(2.55) Γe0

(
ψ1

ψ2

)
=

(
ψ1(0)

icψ1(ℓe)

)
, Γe1

(
ψ1

ψ2

)
=

(
icψ2(0)

ψ2(ℓe)

)
.

Given the boundary triplet {He,Γe0,Γe1}, with He = C2, one can find the gamma field

and the Weyl function, defined as in (2.53). Moreover, it can be proved that the above

operator has defect indices n±(D̃e) = 2. Remark that the operator

(2.56) De = D̃∗
e , Dom(De) = ker Γe0,

is self-adjoint, by construction.

Analogously, for a half-line e′ ∈ Eh we consider the minimal operator D̃e′ given by the

same differential expression (2.54) on He′ = L2(R+) ⊗C2, with domain H1
0 (R+) ⊗C2. The

adjoint operator has domain

Dom(D̃∗
e′) = H1(R+) ⊗ C

2.

In this case the trace operators Γe
′

0,1 : H1(R∗) ⊗ C2 → C can be defined as

(2.57) Γe
′

0

(
ψ1

ψ2

)
= ψ1(0), Γe

′

1

(
ψ1

ψ2

)
= icψ2(0),

and one can find the gamma field and the Weyl function, as for the case of the segment,

with respect to the boundary triplet
{
He′ ,Γe

′

0 ,Γ
e′

1

}
, with He′ = C. Moreover, one can

show that the operator D̃e′ has defect indices n±(D̃e′) = 1. As before, we can define a

self-adjoint operator as a restriction of the adjoint, as

(2.58) De′ = D̃∗
e′ , Dom(De′) = ker Γe0.

Consider the following operator on H =
⊕

e∈Es
He ⊕⊕

e′∈Eh
He′ defined as the direct

sum

(2.59) D0 :=
⊕

e∈Es

De ⊕
⊕

e′∈Eh

De′ ,

whose domain is given by the direct sum of the domains of the summands. The spectrum

of the operator D0, it is given by the superposition of the spectra of each summand, that
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2 – The Dirac operator in dimension one and two

is

(2.60) σ(D0) =
⋃

e∈Es

σ(De) ∪
⋃

e′∈Eh

σ(De′)

Precisely, in [38] it is proved that each segment Ie, e ∈ Es contributes to the point spectrum

of D0 with eigenvalues given by

(2.61) σ(De) = σp(De) =



±

√
2mc2π2

ℓ2e

(
j +

1

2

)2

+m2c4 , j ∈ N



 , ∀e ∈ Es,

while the spectrum on half-lines, on the contrary, is purely absolutely continuous and is

given by

(2.62) σ(De) = σac(De) = (−∞,−mc2] ∪ [mc2,+∞), ∀e ∈ Eh.

Let us now describe the Dirac operator with vertex conditions (2.49),(2.50) using the

boundary triplets formalism. Consider the operator

(2.63) D̃ :=
⊕

e∈Es

D̃e ⊕
⊕

e′∈Eh

D̃e′ ,

and its adjoint

(2.64) D̃∗ :=
⊕

e∈Es

D̃∗
e ⊕

⊕

e′∈Eh

D̃∗
e′ ,

with obvious definition of the domains. Define the trace operators

Γ0,1 =
⊕

e∈Es

Γe0,1 ⊕
⊕

e′∈Eh

Γe
′

0,1.

One can prove that {H,Γ0,Γ1}, with H = CM and M = 2|Es| + |Eh|, is a boundary triplet

for the operator D̃∗, and it is possible to find the corresponding gamma-field and Weyl

function, as already remarked. Notice that boundary conditions (2.49),(2.50) are ”local”,

in the sense that at each vertex they are expressed independently from the conditions on

other vertices. As a consequence, they are expressed by suitable block diagonal matrices

A,B ∈ CM×M with AB∗ = BA∗. Then conditions (2.49),(2.50) can be written as

(2.65) AΓ0ψ = BΓ1ψ.
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The model case studied at the end of the section clarifies the above notation. Notice that

the sign convention of (2.50) can be incorporated in the definition of the matrix B.

The Dirac operator with Kirchoff-type conditions is then defined as

(2.66) D = D̃∗, Dom(D) = ker(AΓ0 −BΓ1),

and thus by construction the operator is self-adjoint.

Remark 2.13. The boundary triplets method provides an alternative way to prove the self-

adjointness of the Dirac operator with conditions (2.49),(2.50), different from the classical

approach à la Von Neumann adopted in [33]. However, in some sense those methods are

equivalent.

As for the Schrödinger case [77], the following Krein-type formula for resolvent opera-

tors can be proved

(2.67) (D − z)−1 − (D0 − z)−1 = γz (BM(z) −A)−1Bγ∗
z , ∀z ∈ ρ(D) ∩ ρ(D0),

and thus the resolvent of the operator D can be regarded as a perturbation of the resolvent

of the operator D0. In the above formula γz and M(z) are, respectively, the gamma-

field and the Weyl function associated with D (see [38]). It turns out that the operator

appearing in the right-hand side of (2.67) is of finite rank. As explained in [77] for the

case of the laplacian, this is a consequence of the fact that each summand in (2.54) has

finite defect indices (see again [38]).

Therefore using Weyl’s Theorem [104, Thm XIII.14] one can conclude from (2.67) that

(2.68) σess(D) = σess(D0) = (−∞,−mc2] ∪ [mc2,+∞).

Notice that the point eigenvalues (2.61) for D0 are embedded in the continuous spectrum

(2.62). Then it remains to prove that they cannot enter the gap (−m,m) as vertex

conditions (2.49), (2.50) are imposed.

Let λ ∈ σ(D) be an eigenvalue. Then for some ψ ∈ Dom(D), there holds

(2.69) Dψ = λψ.

In matrix notation the above equation reads as

(2.70)

(
mc2 −ic ddx

−ic ddx −mc2

)(
ψ1

ψ2

)
= λ

(
ψ1

ψ2

)
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2 – The Dirac operator in dimension one and two

that is

− ic
dψ2

dx
= (λ−mc2)ψ1,

− ic
dψ1

dx
= (λ+mc2)ψ2.

(2.71)

Assuming |λ| /= m, we can divide both sides of the second equation in (2.71) by

(λ+mc2) and plug the value of ψ2 into the other equation obtaining:

(2.72) − c2d
2ψ1

dx2
= (λ2 −m2c4)ψ1, on G.

In addition, combining conditions (2.49),(2.50) give:

∑

e≻v

dψ1
e

dx
(v)± = 0,

ψ1
ei

(v) = ψ1
ej

(v), ∀ei, ej ≻ v.

(2.73)

Then ψ1 turns out to be an eigenfunction of the laplacian on G, satisfying continuity

and Kirchoff vertex conditions. Multiplying (2.72) by ψ1 and integrating one concludes

that

(2.74) |λ| > mc2,

thus proving that there are no eigenvalues of D in (−mc2,mc2) for our choice of boundary

conditions. Then we conclude that imposing the Kirchoff-type conditions the eigenvalues

(2.61) can at most move to the tresholds ±mc2 but not enter the gap.

Remark 2.14. Singularities (eigenvalues, resonances...) of the resolvent correspond to the

zeroes of det(BM(z) − A). However, a more detailed study of resonances formation is

beyond the scope of the present work and will be the object of future investigation.

Let us consider, finally, an example to clarify the main idea of the definition of Kirchoff-

type conditions in the above construction. The graph considered is a 3-star graph with a

finite edge, as depicted in Figure 2.1.

In this case the finite edge is identified with the interval I = [0, L] and 0 corresponds

to the common vertex of the segment and the half-lines.
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2 – The Dirac operator in dimension one and two

Figure 2.1. A 3-star graph with a finite edge.

Consider the trace operators

(2.75) Γ0ψ =




ψ
(1)
1 (0)

ψ
(1)
2 (0)

ψ
(1)
3 (0)

icψ
(1)
3 (L)



, Γ1ψ =




icψ
(2)
1 (0)

icψ
(2)
2 (0)

icψ
(2)
3 (0)

ψ
(2)
3 (L)



,

where ψjk is the k-th component of the spinor on the j-th edge. Moreover, k = 1,2

correspond to the halflines, while k = 3 represents the segment.

The Kirchoff-type conditions (2.49), (2.50) can be rewritten asAΓ0ψ = BΓ1ψ, AB∗ =

BA∗, where

(2.76) A =
2

3




−2 1 1 0

1 −2 1 0

1 1 −2 0

0 0 0 a



, B = −ı2

3




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 b




Choosing the parameters a, b ∈ C we can fix the value of the spinor on the non-connected

vertex. Since, as already remarked, conditions (2.49), (2.50) are defined independently on

each vertex, one can iterate the above construction for a more general graph structure.

Then matrices A,B will have a block structure, each block corresponding to a vertex. For

the sake of brevity we omit the details, as the idea of the construction is now clear.
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Chapter 3

Cubic Dirac equations with Kerr

nonlinearities in 2D

3.1 Introduction

The following nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP) equation.

(3.1) i∂tu = −∆u+ V (x)u+ κ|u|2u, x ∈ R
2, κ ∈ R,

describes, in the quantum setting, the dynamics of Bose-Enstein condensates, and u is

the wavefunction of the condensate [99, 49]. Here V (x) models a magnetic trap and

the nonlinear potential κ|u|2 describes a mean-field interaction between particles. The

parameter κ is the microscopic 2-body scattering length. Another important field of

application of NLS/GP is nonlinear optics, namely in the description of electromagnetic

interference of beams in photorefractive crystals [93]. In this case V (x) is determined by

the spatial variations of the background linear refractive index of the medium, while the

nonlinear potential accounts for the fact that regions of higher electric field intensity have

a higher refractive index (the so-called Kerr nonlinear effect). In this case κ < 0 represents

the Kerr nonlinearity coefficient. In the latter situation, the variable t ∈ R denotes the

distance along the direction of propagation and x ∈ R2 the transverse dimensions. In the

above systems, honeycomb structures can be realized and tuned through suitable optical

induction techniques based on laser or light beam interference [69]. They are encoded in

the properties of the periodic potential V (x).

We assume that the potential V (x) admits Dirac points in its dispersion relations,

in the sense of Def. 1.5. Then as for the linear case (see section 1.2), one expects the
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3 – Cubic Dirac equations with Kerr nonlinearities in 2D

Dirac equation to appear as effective equation describing the dynamics of initial data

concentrated at a Dirac point K. Moreover, the effective equation should contain a cubic

nonlinearity, corresponding to the cubic term in (3.1) modulated by some coefficients which

depend on the potential V . This is actually the case, as formally first computed in [80]

where the authors showed that assuming spectrally concentrated intial data for (3.1)

(3.2) uε0(x) =
√
ε(α0,1(εx)Φ1(x) + α0,2(εx)Φ2(x)), x ∈ R

2, ε > 0,

and making the ansatz

(3.3) uε(t, x) = e−iµ∗t




2∑

j=1

√
εψj(εt, εx)Φj(x) + ηε(t, x)


 ,

by a calculation similar to the one done for the linear case [57] one finds the following

Dirac system for the amplitudes ψj

(3.4)




∂tψ1 + λ#(∂x1 + i∂x2)ψ2 = −iκ(2β2|ψ1|2 + β1|ψ2|2)ψ1

∂tψ2 + λ#(∂x1 − i∂x2)ψ1 = −iκ(β1|ψ1|2 + 2β2|ψ2|2)ψ2

,

where

(3.5) β2 :=

∫

Y
|Φ1(x)|2|Φ2(x)|2dx 6 β1 :=

∫

Y
|Φ1(x)|4dx =

∫

Y
|Φ2(x)|4dx.

Here λ# ∈ C \ {0} is the same constant as in Def. 1.5 (see [57],[56]).

A rigorous derivation has been recently given by Arbunich and Sparber in [16], where

the system (3.4) is obtained by a multiscale expansion.

Remark 3.1. The modulating coefficients are scaled so that the nonlinearity and the Dirac

dynamics enter on the same time-scale. The factor
√
ε corresponds here to the critical

scaling, in this sense.

Theorem 3.2. (Dirac dynamics for NLS/GP, [16]) Take T > 0 and S > s + 3 with

s > 1. Consider a solution ψ ∈ C([0, T ), HS(R2))2 to (3.4). Then for any T∗ ∈ [0, T )

and considering initial data (3.2), the solution u ∈ C([0, T∗ε−1), Hs(R2)) to the NLS/GP

equation

(3.6) i∂tu = −∆u+ V (x)u+ κ|u|2u, x ∈ R
2, κ ∈ R,
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is of the form (3.3) and there holds

(3.7) sup
06t6T∗ε−1

‖ηε(t, x)‖Hs
x(R2)

ε→0−−−→ 0.

In [16] the system (3.4) is obtained using a multiscale expansion. More precisely, one

looks for an approximate solution to (3.6) of the form

(3.8) uε(t, x) ≃ε→0 u
ε
N (t, x) := e−iµ∗t/ε

√
ε
N∑

k=1

εkuk(εt, εx, x), N ∈ N.

Plugging the ansatz (3.8) into (3.6) formal computations show that the leading order term

in the expansion is a modulation of Bloch functions, as in (3.3), where ψ = (ψ1, ψ2)T

solves (3.4).

Remark 3.3. The existence of a local solution HS
x (R2)2 to (3.4) is obtained by a standard

fixed point argument exploiting the fact that this space is a Banach algebra for S > 1

[16, 116]. The choice S > s + 3 > 4 in the assumptions of Theorem 3.2 is a technical

one related to the fact that in their proof Arbunich and Sparber need to compute higher

order terms in the multiscale expansion. Moreover, the result proved in [16] is slightly

more general, as it is proved that for data close enough to spectrally concentrated ones,

the dynamics is well approximated by the Dirac system (3.4).

Remark 3.4. In the cubic case the Dirac dynamics is shown to be valid on a time scale

O(ε−1), which is considerably smaller than for the linear case (1.41) where it is of order

O(ε−2+δ), for all δ > 0. This can be regarded as a nonlinear effect, due to the cubic term

in (3.1).

A closely related and interesting problem is the study of the long-time behavior of

solutions to nonlinear Dirac equations. However it seems to be quite delicate. Indeed, a

major complication to prove global well-posedness is the fact that the energy associated to

a solution does not have a definite sign. This is related to the fact that the Dirac spectrum

is unboundend on both sides of R. In particular, we are interested in the Cauchy problem

for the effective equation (3.12). Recently, Bournaveas and Candy [30] proved global well-

posedness of a massless cubic Dirac equation in the critical regularity space H̊
1
2 (R2,C2),

for small initial data. They deal with Lorenz-invariant nonlinearities and their proof relies

on the corresponding null-structure, which seems to be absent in our case. This leaves

open the problem of global well-posedness, even in the perturbative regime of small data.

A further complication is given by the fact that in the massless case the spectral subspaces

for the Dirac operator are not separated.

It could be also interesting to study the massive variant (3.127), which appear as
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effective equation for (3.1) in the presence of a suitable perturbation breaking spatial

parity (see, e.g. [56, 26]). In that case the existence of stationary solutions can be deduced

combining the results of [28, 26]. The global well-posedness for Lorenz-invariant cubic

nonlinearities has been treated in [18]. Again, the (apparent) lack of a null-structure of

the nonlinear term leaves open the problem for ”positive” nonlinearities, as in (3.127).

We remark that global well-posedness results might be achievable requiring additional

(angular) regularity on initial data in order to prove suitable Strichartz estimates, as

explained in the survey [34] for the 3-D case and in references therein. Recently the idea

of imposing algebraic conditions on initial data has also been investigated, as it might

allow to prove GWP for open sets of large initial data [37, 42].

3.2 Weakly localized solutions the massless case

The main result presented in this section is contained in the paper [28].

We are interested in studying zero-modes of (3.4) for κ = −1, that is, we look for

particular stationary solutions of the form

ψ(t, x) = ψ(x), (t, x) ∈ R × R
2.

It will turn out that they are in general weakly localized, as they are not even square-

integrable, in contrast to the results mentioned for the evolution problem. We expect those

zero-modes to be useful to prove approximation results for stationary solutions to (3.1)

in the focusing case κ = −1, analogous to the ones proved in [57],[16] for the evolution

problem, somehow in the spirit of [70]. Indeed, recall that the energy of a Dirac point

µ∗ ∈ σ−∆ + V corresponds to the zero-energy for the Dirac operator 0 ∈ σ(D), that is,

to the vertex of the cone. Looking for a stationary solution

u(t, x) = e−iµ∗tw(x),

one has to study the stationary NLS equation for the profile w

(3.9) (−∆ + V − µ∗)w = −κ|w|2w.

It is then natural make an ansatz of the form

(3.10) w(x) =
√
ε

2∑

j=1

ψj(εx)Φj(x) + ηε(x), ε > 0, x ∈ R
2,
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analogous to the time-dependent case. Then the effective equation solved by the coeffi-

cients ψj will be the stationary version of (3.4).

However, the rigorous justification of the ansatz (3.10) seem to be a delicate task, as

the absence of a gap at the Dirac point is a serious problem to deal with. This will be

the object of a future investigation and will be addressed elsewhere. The first step of this

program consists in the study of the effective equation for the modulation coefficients, as

presented in this section.

As shown in the next section, the amplitudes ψj satisfy the following system

(3.11)




λ#(∂x1 + i∂x2)ψ2 = i(2β2|ψ1|2 + β1|ψ2|2)ψ1

λ#(∂x1 − i∂x2)ψ1 = i(β1|ψ1|2 + 2β2|ψ2|2)ψ2

Moreover, we can easily get rid of λ# /= 0. Indeed, setting

ψ1(x) =
1

|λ#| ψ̃1(x), ψ2(x) =
λ#

|λ#|2 ψ̃2(x), x ∈ R
2

and defining

β̃j :=
βj

|λ#|3 , j = 1,2,

one ends up (dropping superscripts) with the system:

(3.12)





(∂x1 + i∂x2)ψ2 = i(2β2|ψ1|2 + β1|ψ2|2)ψ1

(∂x1 − i∂x2)ψ1 = i(β1|ψ1|2 + 2β2|ψ2|2)ψ2

where 0 < β2 6 β1, as in (3.5).

For simplicity, we state our main result in terms of equation (3.12).

Theorem 3.5. (Existence of weakly localized states [28]) Equation (3.12) admits a family

of solutions ψ ∈ H̊
1
2 ∩ C∞(R2,C2) of the form

(3.13) ψ(r, ϑ) =

(
iu(r)eiϑ

v(r)

)

with u, v : [0,+∞) −→ R, (r, ϑ) being polar coordinates in R2.

Moreover, the spinor components satisfy

(3.14) u(r)v(r) > 0, ∀r > 0,
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and there holds

(3.15) |u(r)| ∼ 1

r
, |v(r)| ∼ 1

r2
, as r → +∞,

In particular,

ψ ∈ Lp(R2,C2), ∀p > 2,

but

ψ /∈ L2(R2,C2).

For this reason, we say that those solutions are weakly localized.

Remark 3.6. Heuristically, weak localization is expected as the L2-spectrum of the massless

Dirac operator is equal to R, as it is easily seen using the Fourier transform (see [118] for

more details). As shown in Theorem 4.3, in general stationary solutions in the massless

case only exhibit a polynomial decay at infinity. This is in striking contrast with the

massive case, where stationary solutions (of arbitrary fom) are exponentially localized

(see, e.g., [31] where the method of [23] has been generalized to deal with nonlinear bound

states in any dimensions).

Remark 3.7. Equation (3.12) is invariant by scaling. Indeed, it can be easily checked that

if ψ is a solution, then the same holds for the rescaled spinor

(3.16) ψδ(·) :=
√
δψ(δ·), ∀δ > 0.

Thus it suffices to prove the existence of one (non-trivial) solution, to get multiplicity.

Observe also that if ψ solves the equation, then

(3.17) ψ̃(·) := −ψ(·)

is another solution.

Remark 3.8. Theorem 4.3 is in some sense suggested by the literature on the spinorial

Yamabe problem. A particular family of test spinors is used to study conformal invariants

or nonlinear Dirac equations on spin manifolds (see e.g. [15],[72] and references therein).

It is given by

(3.18) ϕ(y) = f(y)(1 − y) · ϕ0 y ∈ R
2

where ϕ0 ∈ C2, f(y) = 2
1+|y|2 and the dot represents the Clifford product.

It can be easily checked that these spinors are H̊
1
2 (R2,C2)-solutions to the following
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”isotropic” Dirac equation (corresponding to β1 = 1, β2 = 1
2)

(3.19) Dϕ = |ϕ|2ϕ

The spin structure of euclidean spaces is quite explicit and the spinors in (3.18) can be

rewritten in matrix notation as

ϕ(y) = f(y)(12 + iy1σ1 + iy2σ2) · ϕ0 y ∈ R
2

12 and σi being the identity and the Pauli matrices, respectively. See [73] for more details.

One can show that (3.174) is of the form (4.2.1) and has the decay properties stated in

Theorem 3.5.

The present section is organized as follows. The effective equation (3.12) is derived

in the next section. Then in Section 3.2.2 we prove Theorem 3.5, exploiting a particular

radial ansatz. The proof follows by direct dynamical systems arguments. Then we show

in (Section 3.2.3) that the solutions found in the first part of the section admit a varia-

tional characterization as H̊
1
2 -critical points of a suitable functional. This is done using

duality, combined with standard concentration compactness theory and Nehari manifold

arguments.

3.2.1 Formal derivation

The aim of this subsection is to formally derive the effective Dirac equation (3.12) governing

the amplitudes ψj appearing in (3.2). To this aim we will perform a multiscale expansion

(see e.g. [70, 16, 2]). Since the coefficients ψj(εx) and the Bloch functions Φj(x) vary

on different scales, one can consider x and y := εx, 0 < ε ≪ 1 as independent variables.

Moreover, we look for solution to (3.9) as formal power series in ε, as follows

(3.20) uε =
√
εUε(x, y), Uε(x, y) = U0(x, y) + εU1(x, y) + ε2U2(x, y) + ...

We moreover impose K-pseudoperiodicity with respect to x, i.e.

(3.21) Uε(x+ v, y) = e−iK·vUε(x, y), ∀v ∈ Λ, x, y ∈ R
2.

Similarly, we look for µε of the form

(3.22) µε = µ∗ + εµ1 + ε2µ2 + ...

43



3 – Cubic Dirac equations with Kerr nonlinearities in 2D

Rewriting (3.9) in terms of Uε and µε then gives

(3.23)
(
− (∇x + ε∇y)

2 + V (x) − µε
)
Uε(x, y) = ε |Uε(x, y)|2 Uε(x, y).

Plugging (3.20,3.22) into (3.23) one finds a hierarchy of equations corresponding to the

different powers of ε in the expansion. In particular, one obtains at order O(ε0)

(3.24) (−∆x + V − µ∗)U0 = 0.

Recall that kerL2
K

(−∆ + V − µ∗) = Span {Φ1,Φ2}, and then by (3.21) we have

(3.25) U0(x, y) = ψ1(y)Φ1(x) + ψ2(y)Φ2(x),

where the amplitudes are to be determined solving the next equation in the formal expan-

sion. Looking at the equation for O(ε) terms one finds

(3.26) (−∆x + V − µ∗)U1 = (2∇x · ∇y + µ1)U0 + |U0|2 U0.

By Fredholm alternative [32], in order to solve the above equation, its right hand side

must be L2-orthogonal to the kernel of (−∆x + V − µ∗). Then the amplitudes ψj are

determined imposing orthogonality to the Bloch functions Φk. For simplicity we deal with

linear part and the cubic term in the right hand side of (3.26) separately.

The linear terms can be calculated using the following lemma from [56]

Lemma 3.9. Let ζ = (ζ1, ζ2) ∈ C2 be a vector. Then we have

〈Φk, ζ · ∇Φk〉L2(Ω) = 0, k = 1,2,

2i〈Φ1, ζ · ∇Φ2〉L2(Ω) = 2i〈Φ2, ζ · ∇Φ1〉L2(Ω) = −λ# (ζ1 + iζ2) ,

2i〈Φ2, ζ · ∇Φ1〉L2(Ω) = −λ#(ζ1 − iζ2)

(3.27)

Notice that (∇x · ∇y)U0 =
∑2
j=1 ∇yψj · ∇xΦj and then applying Lemma 3.9 with

ζ = ∇yΦj , j = 1,2 we get

2i〈Φ1,∇yψ2 · ∇Φ2〉L2(Ω) = 2i〈Φ2,∇yψ2 · ∇Φ1〉L2(Ω) = −λ# (∂y1 + i∂y2)ψ2,

2i〈Φ2,∇yψ1 · ∇Φ1〉L2(Ω) = −λ#(∂y1 − i∂y2)ψ1

(3.28)

Thus we see that taking the L2(Ω) scalar product of the linear part in the right hand side

of (3.26) with the Bloch functions Φj gives the linear part of (3.11). We now want to show

that the cubic nonlinearity in (3.11) is obtained calculating the same product for the cubic
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term in (3.26). A symmetry argument allows to show that taking this projection many

terms vanish. The cubic term reads as

(3.29) |U0|2 U0 =
∑

16j,k,l62

ψjψkψkΦjΦkΦl.

Let us consider, for instance, the term ψ1ψ1ψ2Φ1Φ1Φ2 and then project it onto Φ1. We

compute

〈Φ1,Φ1Φ1Φ2〉L2(Ω) =

∫

Ω
Φ1(x)Φ1(x)Φ1(x)Φ2(x)dx

=x=R∗y
∫

RΩ
Φ1(R∗y)Φ1(R∗y)Φ1(R∗y)Φ2(R∗y)dy

∫

RΩ
τΦ1(y)τΦ1(y)τΦ1(y)τΦ2(y)dy

τ2
∫

Ω
Φ1(x)Φ1(x)Φ1(x)Φ2(x)dx = τ2〈Φ1,Φ1Φ1Φ2〉L2(Ω)

(3.30)

where R is the rotation matrix (1.15), recalling that RΦ1 = τΦ1 and RΦ2 = τΦ2, see

(1.29,1.28). We see from (3.30) that

(1 − τ2)〈Φ1,Φ1Φ1Φ2〉L2(Ω) = 0,

and thus

〈Φ1,Φ1Φ1Φ2〉L2(Ω) = 0.

Iterating this calculations one can check that

(3.31)





〈Φ1, |U0|2 U0〉L2(Ω) = (2β2|ψ1|2 + β1|ψ2|2)ψ1

〈Φ2, |U0|2 U0〉L2(Ω) = (β1|ψ1|2 + 2β2|ψ2|2)ψ2

thus recovering the cubic term in (3.11), with

(3.32) β1 :=

∫

Ω
|Φ1|4dx =

∫

Ω
|Φ2|4dx, β2 :=

∫

Ω
|Φ1|2|Φ2|2.

It is then easy to see that (3.11) appears as compatibility condition for the solvability of

(3.26), combining (3.28, 3.31) and taking µ1 = 0 in (3.26).

3.2.2 Existence and asymptotics

In this section we prove Theorem (4.3), providing the existence and the exact asymptotic

behavior of (non-trivial) solutions of (3.12) satisfying the ansatz (4.2.1). The latter allows
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us to convert the PDE (3.12) into a dynamical system. Indeed, passing to polar coordinates

in R2, (x1, x2) → (r, ϑ), the equation reads as:

(3.33)





−eiϑ
(
i∂r − ∂ϑ

r

)
ψ2 = −

(
2β2|ψ1|2 + β1|ψ2|2

)
ψ1,

−e−iϑ
(
i∂r +

∂ϑ
r

)
ψ1 =

(
β1|ψ1|2 + 2β2|ψ2|2

)
ψ2.

Plugging the ansatz

(3.34) ψ(r, ϑ) =

(
iu(r)eiϑ

v(r)

)

into (3.33) gives:

(3.35)





u̇+
u

r
= v(2β2u

2 + β1v
2)

v̇ = −u(β1u
2 + 2β2v

2)

Thus we are led to study the flow of the above system.

In particular, since we are looking for localized states, we are interested in solutions

to (3.35) such that

(u(r), v(r)) −→ (0,0) as r → +∞

In order to avoid singularities and to get non-trivial solutions, we choose as initial

conditions

(3.36) u(0) = 0 , v(0) = λ /= 0

Moreover, the symmetry of the system allows us to consider only the case λ > 0. Thus

(Theorem 4.3) reduces to the following

Proposition. For any λ > 0 there exists a unique solution

(uλ, vλ) ∈ C∞([0,+∞),R2)

of the Cauchy problem (3.35,3.36).

Moreover, there holds

(3.37) uλ(r), vλ(r) > 0, ∀r > 0,
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and

(3.38) uλ(r) ∼ 1

r
, vλ(r) ∼ 1

r2
, as r → +∞,

In particular,

ψ ∈ Lp(R2,C2), ∀p > 2,

but

ψ /∈ L2(R2,C2).

Figure 3.1. The trajectory of a representative solution of (3.35) with λ > 0.

The proof of (Prop. 3.3.3) will be achieved in several intermediate steps.

Local existence and uniqueness of solutions of (3.35) are guaranteed by the following

Lemma 3.10. Let λ > 0. There exist 0 < Rλ 6 +∞ and (u, v) ∈ C1([0, Rλ),R2) unique

maximal solution to (3.35), which depends continuously on λ and uniformly on [0, R] for

any 0 < R < Rλ.

Proof. We can rewrite the system in integral form as

(3.39)





u(r) =
1

r

∫ r

0
sv(s)(2β2u

2(s) + β1v
2(s))ds

v(r) = λ−
∫ r

0
u(s)(β1u

2(s) + 2β2v
2(s))ds

where the r.h.s. is a Lipschitz continuous function with (u, v) ∈ C1. Then the claim
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follows by a contraction mapping argument, as in [40].

Given λ > 0, we will denote by (uλ, vλ) the corresponding (maximal) solution. Drop-

ping the singular term in (3.35) we obtain a hamiltonian system

(3.40)




u̇ = v(2β2u

2 + β1v
2)

v̇ = −u(β1u
2 + 2β2v

2)

whose hamiltonian is given by

(3.41) H(u, v) =
β1

4
(u4 + v4) + β2u

2v2

Consider

(3.42) Hλ(r) := H(uλ(r), vλ(r))

then a simple computation gives

(3.43) Ḣλ(r) = −u2
λ(r)

r
(β1u

2
λ(r) + 2β2v

2
λ(r)) 6 0

so that the energy H is non-increasing along the solutions of (3.35).

This implies that ∀r ∈ [0, Rx), (uλ(r), vλ(r)) ∈ {H(u, v) 6 H(0, λ)}, the latter being a

compact set. Thus there holds

Lemma 3.11. Every solution to (3.35) is global.

Remark 3.12. Smoothness of solutions follows by basic ODE theory.

Heuristically, (3.35) should reduce to (3.40) in the limit r → +∞ (u being bounded),

that is, dropping the singular term in the first equation. The following lemma indeed

shows that the solutions to (3.35) are close to the hamiltonian flow (3.40) as r → +∞.

The proof is the same as in [40].

Lemma 3.13. Let (f, g) be the solution of (3.40) with initial data (f0, g0). Let (u0
n, v

0
n)

and ρn be such that

ρn
n→+∞−−−−−→ +∞ and (un, vn)

n→+∞−−−−−→ (f0, g0)
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Consider the solution of





u̇n +
un

r + ρn
= (2β2u

2
n + β1v

2
n)vn

v̇n = −(β1u
2
n + 2β2v

2
n)un

such that un(0) = u0
n and vn(0) = v0

n. Then (un, vn) converges to (f, g) uniformly on

bounded intervals.

Proposition. For any λ > 0, we have

(3.44) uλ(r), vλ(r) > 0, ∀r > 0.

and

(3.45) lim
r→+∞

(uλ(r), vλ(r)) = (0,0).

Proof. Using the equations in (3.35) one can compute

(3.46)
d

dr
(ruλ(r)vλ(r)) = β1r(v

4
λ − u4

λ),

and

(3.47)
d

dr
(r2Hλ(r)) =

β1

2
r(v4

λ − u4
λ).

Combining (3.46) and (3.47) and integrating gives

(3.48) uλ(r)vλ(r) = 2rHλ(r)

and (3.44) follows, Hλ being positive definite.

Combining (3.44) and the second equation in (3.35) one sees that v̇λ(r) 6 0 for all

r > 0, and then

(3.49) ∃ lim
r→+∞

vλ(r) =: µ > 0.

Moreover, since u is bounded, there exists a sequecnce rn ↑ +∞ such that

(3.50) ∃ lim
n→+∞

uλ(rn) = δ > 0.
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We claim that

(3.51) lim
r→+∞

uλ(r) = δ.

By contradiction, suppose that (3.51) does not hold. Then there exist ε > 0 and another

sequence sn ↑ +∞ such that

(3.52) |uλ(sn) − δ| > ε > 0, ∀n ∈ N.

Up to subsequences, we can suppose that

(3.53) lim
n→+∞

uλ(sn) = γ /= δ,

for some γ > 0. Recall that H decreases along the flow of (3.35), as shown in (3.43), and

then

(3.54) ∃ lim
r→+∞

Hλ(r) = h > 0.

Then it follows that

(3.55) (δ, µ), (γ, µ) ∈ {H(u, v) = h} .

It is easy to see that the algebraic equation for u

(3.56) H(u, µ) = h,

has (at most) one non-negative solution and thus δ = γ, reaching a contradiction. This

proves the claim (3.51), and then there holds

(3.57) lim
r→+∞

(uλ(r), vλ(r)) = (δ, µ).

Let (ρn)n ⊆ R be a sequence such that

(3.58) lim
n→+∞

ρn = +∞ , lim
n→+∞

(uλ(ρn), vλ(ρn)) = (δ, µ)

and consider the solution (U, V ) to (3.40) such that

(U(0), V (0)) = (δ, µ).

By Lemma 3.28, it follows that (uλ(ρn + ·), vλ(ρn + ·)) converges uniformly to (U, V ) on
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bounded intervals. But since

(3.59) lim
n→+∞

(uλ(ρn + r), vλ(ρn + r)) = (δ, µ), ∀r > 0,

this implies that

(3.60) (U(r)), V (r)) = (δ, µ), ∀r > 0

and thus (δ, µ) = (0,0) as the latter is the only equilibrium of the hamiltonian system

(3.40). This proves (3.45).

The above proposition shows that the solutions of (3.35) actually correspond to local-

ized solutions of the PDE (3.12). The aim of the rest of the section is then to provide the

exact asymptotic behavior.

Proposition. For large r > 0, there holds

(3.61)
1

r2
. u2

λ(r) + v2
λ(r) .

1

r
.

Proof. Remark that

(3.62) (u2
λ(r) + v2

λ(r))2 ∼ Hλ(r).

Moreover, by (3.150,3.43) one gets

Ḣλ(r) > −4
Hλ(r)

r
,

and the comparison principle for ODEs implies that

Hλ(r) &
1

r4

and thus by (3.151), we get the first inequality in (3.165).

The second part of (3.165) follows by (3.48,3.151), using the elementary inequality

2uλ(r)vλ(r) 6 u2
λ(r) + v2

λ(r), ∀r > 0.

The first equation in (3.35) can be rewritten as

(3.63)
d

dr
(ruλ(r)) = rvλ(r)(2β2u

2
λ(r) + β1v

2
λ(r))
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Since vλ > 0, we deduce from (3.63) that the function f(r) := (ruλ(r)) is strictly

increasing and thus

(3.64) lim
r→+∞

f(r) =: l ∈ (0,+∞]

Suppose that

(3.65) l = +∞.

This implies that

(3.66) uλ(r) >
1

r

for r > 0 large. Combining (3.66) and (3.165), using the second equation in (3.35) we

deduce that

(3.67) v̇λ(r) . − 1

r3
.

Using again the comparison principle, we conclude that

(3.68) vλ(r) .
1

r2

for r > 0 large. By (3.165,3.68), integrating (3.63) gives

(3.69) f(r) =

∫ r

0
vλ(s) (2β2u

2
λ(s) + β1v

2
λ(s))s︸ ︷︷ ︸

bounded

ds .

∫ +∞

0

ds

s2
< +∞, ∀r > 0,

thus contradicting (3.65). Then 0 < l < +∞, and this implies that

(3.70) uλ(r) ∼ 1

r

for large r > 0. Since (3.68) holds, using the second equation in (3.35) and (3.70) one gets

(3.71) v̇λ(r) ∼ − 1

r3
.

and then for large r > 0, we have

(3.72) vλ(r) ∼ 1

r2
.
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The integrability properties of the solution follow by the fact that

|ψ(r)|2 = u2
λ(r) + v2

λ(r) ∼ 1

r2
,

as r −→ +∞. This concludes the proof of (Prop. 3.3.3), and thus of (Theorem 4.3).

3.2.3 Variational characterization

The solutions of (3.12) found in the previous section by dynamical systems methods admit

a variational characterization. Indeed, one can prove that they are critical points of a

suitable action functional. More precisely one can show that they are least action critical

points of the corresponding action. In this sense they can be considered as ground state

solutions. Our variational argument also provides an alternative, more sophisticated,

existence proof. This is not only interesting in itself, but also gives more information

about the properties of those solutions.

Remark 3.14. The argument presented in this section works for H̊
1
2 -solutions of (3.73)

of arbitrary form. However, we focus on symmetric solutions of the form (4.2.1) as in

that case we can also provide the exact asymptotic behavior of solutions, by the method

described in the previous section.

Theorem 3.15. Equation (3.12) admits a family of smooth solutions in H̊
1
2 (R2,C2), of

the form (4.2.1) and satisfying the decay estimates (3.31). Moreover, they coincide with

the solutions found in the previous section (Theorem 4.3).

This section is devoted to the proof of the above theorem. Some preliminary definitions

are in order.

The system (3.12) can be written in a more compact form as:

(3.73) Dψ = ∇Gβ1,β2(ψ),

with ψ =

(
ψ1

ψ2

)
: R2 −→ C2, where

(3.74) Gβ1,β2(ψ) :=
β1

4
(|ψ1|4 + |ψ2|4) + β2|ψ1|2|ψ2|2.

To simplify notations, in the sequel we omit the indices βj .

Here

(3.75) D := −i(~σ · ∇)
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is the Dirac operator and ~σ · ∇ := σ̃1∂1 + σ̃2∂2, where

(3.76) σ̃1 :=

(
0 1

1 0

)
, σ̃2 :=

(
0 i

−i 0

)

are Pauli-type matrices1.

It is easy to see that (3.73) is, formally, the Euler-Lagrange equation of the action

functional

(3.77) L(ψ) :=
1

2

∫

R2
〈ψ,Dψ〉dx−

∫

R2
G(ψ)dx.

We look for critical points of (5.22) belonging to the Sobolev space H̊
1
2 (R2,C2), as this is

a natural choice in view of the continuous embedding

(3.78) H̊
1
2 (R2,C2) →֒ L4(R2,C2).

given by the Gagliardo-Nirenberg inequality (see, e.g.[55]). Moreover, it is not hard to see

that L ∈ C1(H̊
1
2 (R2,C2)).

More precisely, we will work with the closed subspace of functions satisfying (4.2.1):

(3.79) E :=

{
ψ ∈ H̊

1
2 (R2,C2) : ψ(r, ϑ) =

(
iu(r)eiϑ

v(r)

)
, u, v : [0,+∞) −→ R

}
,

(r, ϑ) being polar coordinates in R2. To simplify the presentation, we will sometimes adopt

the notation

(3.80) ψ = (u, v)

for ψ ∈ E, and more generally for spinors satisfying (4.2.1). We will often identify ψ with

the pair (u, v).

If ψ ∈ E, the action functional on E reads as

(3.81) S(u, v) =
L(ψ)

2π
=

∫ +∞

0

(
1

2

(
u̇v +

uv

r
− uv̇

)
−H(u, v)

)
rdr

1We could rewrite the equation (3.12) in terms of standard Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
. This amounts to an unitary transformation on the spinor space C

2 and does not affect our

argument. However we prefer not to do so, in order to remain consistent with the notations of [16].
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where H is the hamiltonian defined in (3.150). It is not hard to see that the Euler-Lagrange

equation for (3.81) is given by the ODE (3.35).

Looking for critical points of (3.81) one may try to prove that it has a linking geometry

( see e.g. in [54]). However, since this may not be straightforward we rather exploit the

convexity of the hamiltonian H in order to use duality techniques. This allows us to easily

define a minimax level, the dual functional possessing a mountain pass structure. Duality

is a classical tool in the study of hamiltonian systems (see [89, 47]), which turns out to be

useful also for elliptic PDEs as shown, for instance, in [72, 12].

Lemma 3.16. The function

H : (u, v) ∈ R
2 −→ H(u, v) ∈ R

is convex.

Proof. A simple computation gives

(3.82) detD2H(u, v) = 6β1β2(u4 + v4) + (9β1
2 − 12β2

2)u2v2.

Recall that 0 < β2 6 β1, and then by (3.82)

(3.83) detD2H(u, v) > β2
2

[
6(u4 + v4) − 3u2v2

]
>

9

2
β2

2(u4 + v4)

thanks to the elementary inequality 2u2v2 6 u4 + v4, and the claim follows.

We can thus define the Legendre transform H∗ : R2 −→ R∪{+∞} of H as the function

(3.84) H∗(w, z) = sup{〈(u, v), (w, z)〉R2 −H(u, v) : (u, v) ∈ R
2}

The hamiltonian H is a homogeneous polynomial of degree 4. This implies that H∗ is

everywhere finite and, thanks to basic scaling properties of the Legendre transform, it is

homogeneous of degree 4
3 . Moreover, since H(0,0) = 0, it immediately follows from (3.84)

that H∗ is positive definite. We collect those remarks in the following

Proposition. The function H∗ is everywhere finite, positive definite and homogeneous of

degree 4
3 .

Consider the functional, defined for (u, v) ∈ L4(R+, rdr)
2 as

(3.85) H(u, v) :=

∫ +∞

0
H(u, v)rdr
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Its Legendre transform (or dual) is the functional

(3.86) H∗ : L
4
3 (R+, rdr)

2 −→ R

defined (with an abuse of notation) as

H∗(w, z) : = sup{〈(u, v), (w, z)〉
L4×L 4

3
− H(u, v) : (u, v) ∈ L4(R+, rdr)

2}

=

∫ +∞

0
H∗(w, z)rdr

(3.87)

where 〈·, ·〉
L4×L 4

3
stands for the duality product. There holds

(3.88) dH ◦ dH∗ = id
L

4
3
, dH∗ ◦ dH = idL4 .

Consider the following isomorphism

(3.89) D : E −→ E∗,

and its inverse

(3.90) A := D−1 : E∗ −→ E.

where E∗ is the dual of E. Let

(3.91) j : E −→ L4(R+, rdr)
2

be the Sobolev embedding. Consider the following sequence of maps

(3.92) K : L
4
3 (R+, rdr)

2 E∗ E L4(R+, rdr)
2,

j∗
A j

The action functional (3.81) can be rewritten as

(3.93) S(u, v) =
1

2
〈(w, z),D(w, z)〉E×E′ − H(j(u, v)), (u, v) ∈ E.

Then for ψ = (u, v) ∈ E the differential of S reads as

(3.94) dS(ψ) = Dψ − j∗dH(j(ψ)) ∈ E∗.
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We finally define the dual action functional

S∗(w, z) : = H∗(w, z) − 1

2
〈K(w, z), (w, z)〉

L4×L 4
3

=

∫ +∞

0
H∗(w, z)rdr − 1

2

∫ +∞

0
〈K(w, z), (w, z)〉rdr

(3.95)

for (w, z) ∈ L
4
3 (R+, rdr)

2,which is of class C1 on L
4
3 (R+, rdr)

2.

Proposition. There is a one-to-one correspondence between critical points of S in E and

critical points of S∗ in L
4
3 (R+, rdr)

2.

Proof. Let ψ ∈ E be a critical point of S. Then by (3.94), we have Dψ = j∗dH(j(ψ)).

Define ϕ = dH(j(ψ)) ∈ L
4
3 (R+, rdr)

2, so that Dψ = j∗(ϕ). This implies that ψ = A◦j∗(ϕ)

and

(3.96) j(ψ) = j ◦A ◦ j∗(ϕ) = K(ϕ).

On the other hand, by (3.88) we have

(3.97) j(ψ) = dH∗(ϕ).

Combining (3.96) and (3.97) we obtain

(3.98) dS∗(ϕ) = dH∗(ϕ) −K(ϕ) = 0,

and then ϕ is a critical point of S∗.

Conversely, suppose ϕ ∈ L
4
3 (R+, rdr)

2 is a critical point of S∗, and define ψ = A ◦
j∗(ϕ) ∈ E. Since ϕ is a critical point, we have dH∗(ϕ) − K(ϕ) = 0. Then (3.88) implies

that

(3.99) ϕ = dH ◦K(ϕ) = dH ◦ j ◦A ◦ j∗(ϕ) = dH(j(ψ)).

We have j∗(ϕ) = j∗ ◦ dH(j(ψ)) and Dψ = j∗ ◦ dH(j(ψ)), and thus ψ is a critical point of

S.

Remark 3.17. More generally, S and S∗ have the same compactness properties and there

is a one-to-one correspondence between their Palais-Smale sequences (see, e.g. [72] for

more details).

Since finding a critical point of S is equivalent to finding a critical point of the dual

functional S∗ we will focus on the latter, which has a simpler structure. More precisely,
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we will exploit the homogeneity properties of S∗ using a Nehari-manifold argument (see,

e.g. [115] and references therein). However, the fact that the second integral in (3.95) is

not positive definite must be taken into account. We remark that a Nehari-type argument

has been previously used by Ding and Ruf [43], in the study of semiclassical states for

critical Dirac equations.

We have pointed out (Remark 3.7) that the equation (3.73), and thus the functional

(5.22), is scale-invariant. The same holds, of course, for the dual action S∗. Indeed, one

can verify that it is invariant with respect to the following scaling

(3.100) ψ(·) → ψδ(·) := δ
3
2ψ(δ·), δ > 0.

Moreover, even if the functional (5.22) is invariant by translation, this is no longer true for

(3.95) thanks to the ansatz (4.2.1). Thus scaling is the only (local) symmetry which may

prevent strong convergence in our variational procedure. In what follows we only sketch

the rest of the proof, as it is based on standard arguments from concentration-compactness

theory [84, 85, 114].

First of all, it easy to see that the functional S∗ possesses a mountain-pass geometry.

Lemma 3.18. There exists ρ > 0 such that

α := inf{S∗(w, z) : (w, z) ∈ L
4
3 (R+, rdr)

2, ‖(w, z)‖ 4
3

= ρ} > 0.

Moreover, for (w, z) ∈ L
4
3 (R+, rdr)

2 such that
∫+∞

0 〈K(w, z), (w, z)〉rdr > 0, there holds

lim
t→+∞

S∗(t(w, z)) = −∞.

Proof. Recall that the dual functional is defined as

S∗(w, z) =

∫ +∞

0
H∗(w, z)rdr − 1

2

∫ +∞

0
〈K(w, z), (w, z)〉rdr

for (w, z) ∈ L
4
3 (R+, rdr)

2. Since H∗ is homogeneous of degree 4
3 , as already remarked, the

first assertion follows is ρ > 0 is sufficiently small, the other term being quadratic. The

second part of the claim follows immediately, for the same reason.

In view of the above lemma it is natural to define the mountain-pass level for S∗ as

c := inf

{
max
t>0

S∗(t(w, z)) : (w, z) ∈ L
4
3 (R+, rdr)

2,

∫ +∞

0
〈K(w, z), (w, z)〉rdr > 0

}
.
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Remark that there holds

(3.101) max
t>0

S∗(t(w, z)) > α > 0, ∀(w, z) ∈ L
4
3 (R+, rdr)

2,

where α > 0 is as in Lemma 3.18. Then we have

(3.102) c > α > 0.

Moreover, the homogeneity properties of the terms appearing in S∗ imply that

(3.103) c = inf
(w,z)∈N

S∗(w, z) > 0,

where N is the Nehari manifold

(3.104) N := {(w, z) ∈ L
4
3 (R+, rdr)

2 \ {0} : 〈dS∗(w, z), (w, z)〉 = 0}.

We are thus led to study the minimization problem (3.103).

Let (wn, zn)n∈N ⊆ N be a minimizing sequence for S∗. By Ekeland’s variational

principle (see [47]), we can assume that it actually is a Cerami-sequence, that is:

(3.105)





S∗(wn, zn) −→ c,

(1 + ‖(wn, zn)‖
L

4
3
)dS∗(wn, zn)

L4

−→ 0,
as n −→ ∞.

Proposition. The sequence (wn, zn)n∈N ⊆ N is bounded in L
4
3 (R+, rdr)

2.

Proof. We have

dS∗(wn, zn) = ∇H∗(wn, wn) −K(wn, zn).

Since the function H∗ is 4
3 -homogeneous there holds

〈∇H∗(wn, wn), (wn, zn)〉 =
4

3
H∗(wn, zn).

Then by the definition of the Nehari manifold (3.104), it follows that

(3.106) S∗(wn, zn) =
1

3

∫ +∞

0
H∗(wn, zn)rdr.

The claim thus follows because

(3.107)

∫ +∞

0
H∗(wn, zn)rdr ∼ ‖(wn, zn)‖

4
3

L
4
3
,
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and (wn, zn)n∈N is a minimizing sequence.

By the above lemma we may assume that

(3.108) (wn, zn) ⇁ (w, z), weakly in L
4
3 (R+, rdr)

2,

as n → +∞. One needs to study the concentration behavior of the minimizing sequence

in order to prove strong L
4
3 -convergence.

We already remarked that scaling invariance may prevent strong convergence, as Ce-

rami sequences may blow-up around some points. Since we are essentially working with ra-

dial functions, concentration may only occur at the origin. More precisely (recall (3.107)),

there holds

(3.109) H∗(wn, zn)rdr =: νn ⇁ ν := H∗(w, z)rdr + α0δ0,

weakly in the sense of measures, where δ0 is a Dirac mass concentrated at the origin and

α0 > 0.

Recall that

(3.110)

∫ +∞

0
H∗(wn, zn)rdr = 3S∗(wn, zn) → 3c, as n → +∞.

Suppose that the minimizing sequence (wn, zn)n∈N splits into two bumps, one of them

centered around the origin and the other one carrying a positive part of the ”mass” at

infinity (the dichotomy case [84]). More precisley, assume that there exist 0 < b < 3c, and

two sequences of radii rn, r
′
n → +∞, with rn

r′
n

→ 0 such that

(3.111)

∫ rn

0
H∗(wn, zn)rdr → b,

∫ r′
n

rn

H∗(wn, zn)rdr → 0, as n → +∞.

Take a cutoff function θ ∈ C∞
c ([0,∞)), 0 6 θ 6 1 such that θ ≡ 1 on [0,1] and θ ≡ 0 on

[2,∞), and define

(3.112) (w1
n, z

1
n)(r) := θ

(
r

rn

)
(wn, zn), (w2

n, z
2
n) :=

(
1 − θ

(
r

r′
n

))
(wn, zn)(r).

There holds

S∗(wn, zn) − S∗(w1
n, z

1
n) − S∗(w2

n, z
2
n) → 0, as n → +∞,
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and both sequences in (3.112) are Cerami sequences for the functional S∗, that is

(3.113) 0 < S∗(wkn, z
k
n) → ck < c,

and

(3.114)
(
1 + ‖(wkn, z

k
n)‖

L
4
3

)
dS∗(wkn, z

k
n)

L4

−→ 0,

as n → +∞, with k = 1,2.

Remark 3.19. The above estimates can be worked out (along the same lines as in [86,

Section 2.1]) recalling that the operator K in (3.95) acts as D−1 and exploiting the decay

of the corresponding Green kernel

G(x, y) = − 1

2π

x− y

|x− y|2 ·,

where the dot indicates the Clifford product (see Remark 3.8).

Consider, for instance, the sequence (w1
n, z

1
n)n∈N. Then the condition (3.114) implies

that

(3.115) 〈dS∗(w1
n, z

1
n), (w1

n, z
1
n)〉

L4×L 4
3

−→ 0, as n → +∞,

that is, the sequence is asymptotically on the Nehari manifold N .

Moreover, there exists a sequence tn > 1 such that tn(w1
n, z

1
n) ∈ N ,∀n ∈ N ( see, e.g.

[115] ). Recalling that H∗ is 4
3 -homogeneous, the definition (3.104) of N then gives

(3.116)
4

3t
2
3
n

∫ ∞

0
H∗(w1

n, z
1
n)rdr =

∫ ∞

0
〈K(w1

n, z
1
n), (w1

n, z
1
n)〉rdr, ∀n ∈ N.

Combining (3.115) and (3.116) one gets

(3.117)

(
1 − t

− 2
3

n

)
4

3

∫ ∞

0
H∗(w1

n, z
1
n)rdr −→ 0, as n → +∞,

and thus the first condition in (3.111) implies that

(3.118) lim
n→+∞

tn = 1.
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Then since tn(w1
n, z

1
n) ∈ N , by (3.111) and (3.118) there holds

S∗(tn(w2
n, z

2
n)) =

t
4
3
n

3

∫ +∞

0
H∗(w1

n, z
1
n)rdr ∈ (0, c),

for n large, contradicting the minimality of c = infN S∗. This means that dichotomy

cannot occur, and then the sequence of measures (dνn)n∈N in (3.109) is tight. Consequently,

up to extraction, (3.110) gives

(3.119)

∫

R2
dν = 3c.

Up to suitably rescaling the sequence, we may assume that the weak limit is non-trivial,

that is, vanishing is also excluded [84]. Indeed, one can find a sequence λn > 0, n ∈ N

such that for the rescaled spinor

(3.120) (w̃n, z̃n)(·) := λ
3
2
n (wn, zn)(λn·)

there holds

(3.121) Qn(1) =

∫ 1

0
H∗(w̃n, z̃n)rdr = c, ∀n ∈ N,

where Qn(·) is the concentration function of (w̃n, z̃n) [84, 85].

Assume that (w, z) = (0,0). Then by (3.109) we have ν = α0δ0, and the normalization

(3.121) gives α0 6 c. Then (3.109) and (3.119) imply

(3.122) 3c =

∫

R2
dν = α0 6 c,

which is clearly absurd. This allows us to conclude that

(3.123) (w, z) /= (0,0),

that is, the above normalization (3.121) rules out the vanishing case.

The last step in order to conclude the strong convergence of the minimizing sequence

(wn, zn)n∈N is to show that actually α0 = 0 in (3.109). If this is not the case, since by

(3.121) there holds 0 < α0 6 c, this property and the tightness of the sequence (dνn)n∈N

imply that the sequence (wn, zn)n∈N splits into two parts, one blowing up at the origin,

as n → +∞, and concentrating a portion α0 of the mass at that point, and another non-

trivial part carrying the rest of the mass, essentially localized in an interval of the form
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[1, R] (corresponding to an annulus in R2), for some R > 0. Exploiting again the scale-

invariance of the problem, one can suitably rescale the sequence, as in (3.120), removing

the blowup at the origin, and at the same time ”sending at infinity” the bump localized

in [1, R]. In this way we have created a sequence for which dichotomy holds (see (3.111)),

and this is not possible, as already shown.

Finally, we conclude that α0 = 0 in (3.109) and then

(3.124) (wn, zn)
L

4
3−−→ (w, z) ∈ N as n → +∞.

Thus S∗(w, z) = minN S∗, and correspondingly

(u, v) = (A ◦ j∗) (w, z),

is a critical point of S.

Remark 3.20. Since the Nehari manifold N contains all critical points of S∗ and S∗(w, z) =

minN S∗, we conclude that (w, z) is a least action critical point of S∗. In this sense it can

be considered a sort of ground state. The same remark holds for (u, v), as a critical point

of S.

Since we are dealing with a critical equation, smoothness of solutions is not authomatic

as standard bootstrap arguments do not apply. Anyway, the regularity result proven

in [124] (which holds for weak solutions in L4) ensures that (u, v) actually is of class

C∞. Being a critical point of S, (u, v) solves the Euler-Lagrange equation (3.35), and

smoothness forces

(3.125) u(0) = 0,

as we cannot have singularities. Moreover, since (u, v) is a non-trivial solution, necessarily

(3.126) v(0) /= 0.

Assume, for instance, v(0) = λ > 0. Since the equation is scale-invariant and odd, as

anticipated in Remark (3.7), we get a continuous family of (non-trivial) solutions (uλ, vλ)

parametrized by λ /= 0, applying those symmetries. Uniqueness for (3.35) then allows to

conclude the proof.
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3.3 Stationary solutions in the massive case

As explained in section 1.2.1, Dirac points for honeycomb Schrödinger operators are pro-

tected by the PT symmetry, and then a mass term may appear in the effective Dirac

operator as consequence of a symmetry breaking. In the next section we will quickly

show how an effective massive Dirac equation can be derived in that case using the same

multiscale expansion as in section 3.2.1. In this case the effective Dirac equation reads as

(3.127)




∂tψ1 + λ#(∂x1 + i∂x2)ψ2 + imψ1 = i(2β2|ψ1|2 + β1|ψ2|2)ψ1

∂tψ2 + λ#(∂x1 − i∂x2)ψ1 − imψ2 = i(β1|ψ1|2 + 2β2|ψ2|2)ψ2

where m > 0 is the mass of the (quasi-)particles described by the equation.

The main result of this section is the existence of exponentially localized smooth solu-

tions to the above equation (3.127), as shown in [26] for a particular case.

Remark 3.21. As remarked in [28], using the main result of [28] one can easily realize that

thanks to the asymptotic estimates (3.31) the proof can be easily adapted to the general

case (3.127).

In order to agree with the notations adopted in the paper [26] some changes are needed.

More precisely, we will exchange spinor components

(3.128) ψ1 → ψ2, ψ2 → ψ1,

this does not affect our arguments, but allows us to rewrite the equation in terms of

standard Pauli matrices (see chapter 2). Moreover, we will deal with the particular choice

of coefficients

(3.129) β1 = 1, β2 =
1

2
.

After these formal manipulations, we obtain the equation

(3.130) i∂tψ + (D +mσ3)ψ = |ψ|2ψ.

We look for stationary solutions to the above equations. For a frequency ω ∈ (−m,m) in

the mass gap of the operator (D +mσ3) (see section 2.1), we put

(3.131) ψ(t, x) = e−itωψ(x), (t, x) ∈ Rt × R
2
x,
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with a little abuse of notation. Then we get the stationary equation

(3.132) (D +mσ3 − ω)ψ − |ψ|2ψ = 0.

Our main result is the following

Theorem 3.22. (Localized solutions in the massive case, [26, 28]) Equation (3.127) ad-

mits a smooth localized solution, with exponential decay at infinity.

Remark 3.23. For the sake of simplicity we give the proof of Theorem (4.3) for the par-

ticular case (3.132).

Remark 3.24. The result presented here is at odds with the case of the pseudo-relativistic

operator √
−∆ +m2 > 0

Indeed, a simple Pohozaev-type argument shows that there is no smooth exponentially

localized solution to the following equation

(3.133)
(√

−∆ +m2
)
ψ − ωψ = |ψ|2ψ on R

2

with 0 < ω < m. Thus the existence of solutions is related to the presence of the negative

part of the spectrum of the Dirac operator.

Weak solutions to (3.132) correspond to critical points of the following functional

(3.134) L(ψ) :=
1

2

∫
〈(D +mσ3 − ω)ψ,ψ〉 − 1

4

∫
|ψ|4

defined for ψ ∈ H
1
2 (R2,C2).

The above functional is strongly indefinite, that is, it is unbounded both from above

and below, even modulo finite dimensional subspaces. This is due to the unboundedness

of Spec(D). Several techniques have been introduced to deal with such situations (see for

instance [114]).

Moreover, the main difficulty in our case is given by the lack of compactness of the

Sobolev embedding H
1
2 (R2,C2) →֒ L4(R2,C2). This implies the failure of some compact-

ness properties used to prove linking results (see [114] and references therein), due to the

invariance by translations and scaling.

In what follows we will only give a sketch of the compactness analysis for the above

functional, referring to the mentioned papers for more details.

As we will see in the next section, equation (3.132) is compatible with a particular
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radial ansatz, leading us to work in the closed subspace

(3.135) E =

{
ψ ∈ H

1
2 (R2,C2) : ψ(r, ϑ) =

(
v(r)

iu(r)eiϑ

)
, u, v : (0,+∞) → R

}

where (r, ϑ) are the polar coordinates of x ∈ R2.

Restricting the problem to the subspace E breaks the invariance by translations, and

thus to recover compactness one has to deal with the invariance by scaling only. The

latter causes the so-called bubbling phenomenon, that is, energy concentration associated

to the appearance of blow-up profiles. In [72] Isobe analyzed the behavior of a generic

Palais-Smale sequence for some critical Dirac equations on compact spin manifolds. The

same can be done in our case.

Given a Palais-Smale sequence (ψn) ⊆ H
1
2 (R2,C2) it easy to see that it is bounded,

and thus we may suppose, up to extraction, that it weakly converges

ψn ⇀ ψ∞ ∈ H
1
2 (R2,C2).

Generally speaking, the invariance by scaling prevents the strong convergence and we

have the profile decomposition

(3.136) ψn = ψ∞ +
N∑

k=1

ωkn + o(1) in H
1
2 (R2,C2)

where N ∈ N and ωkn is a properly rescaled H̊
1
2 (R2,C2)-solution of the limit equation

Dϕ = |ϕ|2ϕ

centered around points akn → ak ∈ R2, as n → +∞, for 1 6 k 6 N .

The bubbles ωkn are in a finite number, since one can prove a uniform lower bound for

their energy. Moreover, this implies that we have compactness only in a suitable energy

range and gives a treshold value for the appearance of bubbles in min-max methods (see

[114]). Then there holds

(3.137) |ψn|4dx ⇀ |ψ∞|4dx+
N∑

k=1

νkδak ,

weakly in the sense of measures.Here νk > 0 and the δak are delta measures concentrated

at ak. Morever, since we are essentially working with radial functions, it’s not hard to see
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that the blow-up can only occur at the origin, that is, we actually have

(3.138) |ψn|4dx ⇀ |ψ∞|4dx+ νδ0

with ν > 0 and δ0 being the delta concentrated at the origin.

We thus conclude that in order to recover compactness for the variational problem one

should be able to control the behavior of Palais-Smale sequences near the origin.

However, our proof is based on a shooting method and thus not variational. In this

case the concentration phenomenon (3.138) manifests itself in the difficulty of controlling

the behavior of solutions of the resulting dynamical system when initial data are large.

This makes the analysis quite delicate and requires a careful asymptotic expansion of the

solution, after a suitable rescaling (see section 3.3.3).

We mention that the first rigorous existence result of stationary solutions for the Dirac

equation via shooting methods is due to Cazenave and Vazquez [40], who studied the Soler

model for elementary fermions. Subsequently, those methods have been used to prove the

existence of excited states [17] for the Soler model and in mean field theories for nucleons

(see e.g. [53],[81], [52] and references therein). We remark that a variational proof has been

given by Esteban and Séré in [54], under fairly general assumptions on the self-interaction.

In particular, after a suitable radial ansatz, they prove a multiplicity result exploiting the

Lorentz-invariance. Remarkably, their method works without any growth assumption on

the nonlinearity. However, the proof is designed to deal with the Lorentz-invariant form

of the nonlinear term and is not applicable in our case. In [44] Ding and Wei proved an

existence result for the 3D Dirac equation with a subcritical Kerr-type interaction. The

case of a critical nonlinearity in 3D has been investigated by Ding and Ruf [43] in the

semiclassical regime, using variational techniques. They take advantage of the presence

of a negative potential to prove compactness properties. However, in our case we deal

with a critical Kerr nonlinearity without additional assumptions and so we need to adopt

a different strategy.

3.3.1 Formal derivation

The aim of this section is to derive the massive Dirac equation (3.127) thanks to a multi-

scale expansion as in section 3.2.1. We adopt the same notations here.

As already remarked, breaking the PT symmetry lifts the conical degeneracy in the dis-

persion relation of a honeycomb Schrödinger operator (−∆ + V ) admitting Dirac points.

Let us consider the following equation

(3.139) (−∆ + V + εW − µ∗)u = |u|2u,
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that is, we consider a potential perturbation of (3.9) where we add a linear term W

breaking parity. More precisely, we assume that W is odd

(3.140) W (−x) = −W (x), ∀x ∈ R
2.

The only difference with respect to the analysis outlined in section 3.2.1 is an additional

term at order O(ε) corresponding to the potential εW in (3.139). Then we have to compute

the projections

(3.141) 〈WU0,Φk〉L2(Ω) =
2∑

j=1

ψj〈WΦj ,Φk〉L2(Ω), k = 1,2.

Recall that

(3.142) Φ2(x) = Φ1(−x),

and this relation allows us to compute

〈WΦ2,Φ1〉L2(Ω) =

∫

Ω
(WΦ2) (x)Φ1(x)dx =

∫

Ω
W (x)Φ1(−x)Φ1(x)dx

=y=−x
∫

−Ω
W (−y)Φ1(y)Φ1(−y)dy = −

∫

Ω
(WΦ2) (y)Φ1(y)dy

= −〈WΦ2,Φ1〉L2(Ω),

(3.143)

where we have also used (3.140). We thus obtain

(3.144) 〈WΦ2,Φ1〉L2(Ω) = 〈WΦ1,Φ2〉L2(Ω) = 0.

Moreover, arguing as in (3.143) one easily finds

(3.145) 〈WΦ1,Φ1〉L2(Ω) = −〈WΦ2,Φ2〉L2(Ω).

and then

2∑

j=1

ψj〈WΦj ,Φ1〉L2(Ω) = 〈WΦ1,Φ1〉L2(Ω)

2∑

j=1

ψj〈WΦj ,Φk〉L2(Ω) = −〈WΦ1,Φ1〉L2(Ω).

(3.146)

Assuming that m := 〈WΦ1,Φ1〉L2(Ω) > 0, we obtain the mass term in (3.127).
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3.3.2 Existence by shooting method

To begin with, we first convert equation (3.132) into a dynamical system thanks to a

particular ansatz. Then we will give some qualitative properties of the flow, particularly

useful in understanding the long-time behavior of the system.

Passing to polar coordinates in R2 (x, y) → (r, ϑ), the equation

(D +mσ3 − ω)ψ − |ψ|2ψ = 0

reads as

(3.147)





−e−iϑ
(
i∂r +

∂ϑ
r

)
ψ2 =

(
|ψ1|2 + |ψ2|2

)
ψ1 − (m− ω)ψ1,

−eiϑ
(
i∂r − ∂ϑ

r

)
ψ1 = −

(
|ψ1|2 + |ψ2|2

)
ψ2 − (m+ ω)ψ2.

where ψ =

(
ψ1

ψ2

)
∈ C2, and this suggests the following ansatz (see [41]):

(3.148) ψ(r, ϑ) =

(
v(r)eiSϑ

iu(r)ei(S+1)ϑ

)

with u and v real-valued and S ∈ Z. In the sequel, we set S = 0.

Plugging the above ansatz into the equation one gets

(3.149)





u̇+
u

r
= (u2 + v2)v − (m− ω)v

v̇ = −(u2 + v2)u− (m+ ω)u

Thus we are lead to study the flow of the above system.

In particular, since we are looking for localized states, we are interested in solutions

to (3.149) such that

(u(r), v(r)) → (0,0) as r → +∞

In order to avoid singularities and to get non-trivial solutions, we choose as initial

conditions

u(0) = 0 , v(0) = λ /= 0

Moreover, the symmetry of the system allows us to consider only the case λ > 0.
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Studying the long-time behavior of the flow of (3.149) it is useful to introduce the

following system

(3.150)




u̇ = (u2 + v2)v − (m− ω)v

v̇ = −(u2 + v2)u− (m+ ω)u

Heuristically, (3.149) should reduce to (3.150) in the limit r → +∞ (u being bounded),

that is, dropping the singular term in the first equation.

As one can easily check, (3.150) is the hamiltonian system associated with the function

(3.151) H(u, v) =
(u2 + v2)2

4
+
m

2
(u2 − v2) +

ω

2
(u2 + v2)

It is easy to see that the level sets of the hamiltonian

{H(u, v) = c}

are compact, for all c ∈ R, so that the flow is globally defined.

The equilibria of the hamiltonian flow are the points

(3.152) (0,0), (0,±
√
m− ω)

and there holds

(3.153) H(0,0) = 0, H(0,±
√
m− ω) < 0

Local existence and uniqueness of solutions of (3.149) are guaranteed by the following

Lemma 3.25. Let λ > 0. There exist 0 < Rλ 6 +∞ and (u, v) ∈ C1([0, Rλ),R2) unique

maximal solution to (3.149), which depends continuously on λ and uniformly on [0, R] for

any 0 < R < Rλ.

Proof. We can rewrite the system in integral form as

(3.154)





u(r) =
1

r

∫ r

0
sv(s)[u2(s) + v2(s) − (m− ω)]ds

v(r) = λ−
∫ r

0
u(s)[(u2(s) + v2(s)) + (m+ ω)]ds

where the r.h.s. is a Lipschitz continuous function. Then the claim follows by a contraction

mapping argument, as in [40].
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Given λ > 0, define

(3.155) Hλ(r) := H(uλ(r), vλ(r)) , r ∈ [0, Rλ)

where (uλ, vλ) is the solution of (3.149) such that (u(0), v(0)) = (0, λ).

A simple computation gives

(3.156) Ḣλ(r) = −u2
λ

r
(m+ ω + u2

λ(r) + v2
λ(r)) 6 0 , ∀r ∈ [0, Rλ)

so that the energy H is non-increasing along the solutions of (3.149).

This implies that ∀r ∈ [0, Rx), (uλ(r), vλ(r)) ∈ {H(u, v) 6 H(0, λ)}, the latter being a

compact set. Thus there holds

Lemma 3.26. Every solution to (3.149) is global.

Remark 3.27. The above result is in contrast with the case of Lorentz-invariant models in

3D ([17]), where the energy has no definite sign and blow-up may occur.

The following lemma indeed shows that the solutions to (3.149) are close to the hamil-

tonian flow (3.150) as r → +∞. The proof is the same as the one given in [40].

Lemma 3.28. Let (f, g) be the solution of (3.150) with initial data (f0, g0). Let (u0
n, v0n)

and ρn be such that

ρn
n→+∞−−−−−→ +∞ and (un, vn)

n→+∞−−−−−→ (f0, g0)

Consider the solution of





u̇n +
un

r + ρn
= (u2

n + v2
n)vn − (m− ω)vn

v̇n = −(u2
n + v2

n)un − (m+ ω)un

such that un(0) = u0
n and vn(0) = v0

n.

Then (un, vn) converges to (f, g) uniformly on bounded intervals.

Since we know from (3.156) that the energy Hλ decreases along the flow of (3.149)

and that each solution is bounded, Lemma (3.28) allows us to conclude (see the proof

of Lemma (3.31)) that any solution must tend to an equilibrium of the hamiltonian flow

(3.150). Thus a solution eventually entering the negative energy region

{H(u, v) < 0}
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will converge to

(0,±
√
m− ω)

spiraling toward that point. A proof of this property follows along the same lines of the

analogous one given in [53]. This is illustrated by the following picture:

Figure 3.2. The energy level {H = 0} and two solutions entering the negative
energy set {H < 0}.

If, on the contrary, there holds

Hλ(r) > 0, ∀r > 0

then necessarily the solution tends to the origin, thus corresponding to a localized solution

of our PDE.

In our proof we use some ideas from [81], [91].

Definition 3.29. Put I−1 = ∅. For k ∈ N we define

(3.157)

Ak =

{
λ > 0 : lim

r→+∞
Hλ(r) < 0, vλ changes sign k times on (0,+∞)

}

Ik =

{
λ > 0 : lim

r→+∞
(uλ(r), vλ(r)) = (0,0), vλ changes sign k times on (0,+∞)

}
.

It is immediate so see that

A0 /= ∅
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as it includes the interval
(
0,
√

2(m− ω
]
, since

{0} ×
(

0,
√

2(m− ω)

]
⊆ {(u, v) ∈ R

2 : H(u, v) 6 0}

Moreover, numerical simulations indicate that the set A0 is bounded and that A1 is

non-empty and unbounded. This implies that I0 is non empty (see 3.33). Solutions tending

to the origin are expected to appear in the shooting procedure when λ passes from Ak to

Ak+1, as in (Figure 3.2).

Remark 3.30. We found no numerical evidence for the existence of excited states. This may

lead to conjecture that there are no nodal solutions, that is Ik = ∅ for k > 1. The absence

of excited states is compatible with the bubbling phenomenon (see the previous section),

which might prevent the existence of those solutions. However in 3D Lorentz-invariant

models ([52],[17]) it is known that they exist.

In this section we show that I0 is non empty, thus proving (Theorem 4.3). This will

be achieved in several intermediate steps.

We start with some preliminary lemmas, which are an adaptation of analogous results

from [81].

Lemma 3.31. Let (uλ, vλ) be a solution of (3.149) such that vλ changes sign a finite

number of times and

lim
r→+∞

Hλ(r) > 0

then

(3.158) |uλ(r)| + |vλ(r)| 6 Ce−( m−ω
2 )r , ∀r > 0

and thus

lim
r→+∞

(uλ(r), vλ(r)) = (0,0)

Proof. We start by showing that under the above assumptions there exists R ∈ (0,+∞)

such that

(3.159) uλ(r)vλ(r) > 0 , ∀r > R

Since vλ changes sign a finite number of times, we may suppose w.l.o.g. that for some

R > 0

vλ(r) > 0 , ∀r > R
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We have to prove that ∃R < R < +∞ such that

uλ(r) > 0 , ∀r > R

Assume, by contradiction, that

uλ(r) < 0 , ∀r > R

Then the second equation of (3.149) implies that v̇λ(r) > 0,∀r > R, and vλ is increasing

for r > R. Thus

lim
r→+∞

vλ(r) = δ ∈ (0,+∞]

Indeed, we cannot have δ = +∞ as in that case

lim
r→+∞

Hλ(r) = +∞

contradicting the fact that Hλ is decreasing along solutions of (3.149).

Let (ρn)n ⊆ R be a sequence such that

lim
n→+∞

ρn = +∞ , lim
n→+∞

ux(ρn) = λ

for some λ ∈ R, and consider the solution (U, V ) of (3.150) such that

(U(0), V (0)) = (λ, δ)

By (3.28), it follows that (uλ(ρn + ∗), vλ(ρn + ∗)) converges uniformly to (U, V ) on

bounded intervals. Since

lim
n→+∞

vλ(ρn + r) = δ , ∀r > 0

we have V (r) = δ, for any r > 0. The second equation of (3.150) implies that U(r) = 0

for all r > 0.

We conclude that (U, V ) is an equilibrium of the hamiltonian flow (3.150). Since δ > 0,

(λ, δ) = (0,
√
m− ω)

This is absurd, since we would have

0 6 lim
r→+∞

Hλ(r) 6 H
(
0,

√
m− ω

)
< 0
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Thus there exists R ∈ (R,+∞) such that uλ(R) = 0. Note that we have

u̇λ(R) > 0

Indeed, u̇λ(R) = vx(R)
[
v2
λ(R) − (m− ω)

]
> 0 where the term in the r.h.s. is positive,

otherwise the point (0, vλ(R)) would belong to the negative energy region, contradicting

our assumptions on Hλ(r).

Now suppose that there exists R < R < R′ such that uλ(R′) = 0 and uλ(r) > 0 on

(R,R′). This implies that u̇λ is negative in a left neighborhood of R′. By the first equation

of (3.149), we get

v2
λ(R′) − (m− ω) 6 0

Then (0, vλ(R′)) ∈ {H(u, v) < 0}, and this is absurd as already remarked.

We thus conclude that

(3.160) uλ(r) > 0 , ∀r > R

The second equation of (3.149) shows that vλ is decreasing on (R,+∞) and by (3.28),

arguing as above, it can be proved that

(3.161) lim
r→+∞

(uλ(r), vλ(r)) = (0,0)

We now prove the exponential decay.

By (3.149), (5.49), (3.160), we have for all r > R

(3.162)




u̇λ 6

(m− ω)

2
vλ − (m− ω)vx

v̇ 6 −(m+ ω)uλ

Then
d

dr
(uλ + vλ) 6 −(m− ω)

2
(uλ + vλ)

for all r > R. Then the claim follows, since

uλ(r), vλ(r) > 0, ∀r > R.

Lemma 3.32. There exists a constant C0 > 0 such that, if for some R > 1
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1. Hλ(R) < C0
R ;

2. uλ(R)vλ(R) > 0 and v2
λ(R) < 2(m− ω);

3. vλ changes sign k times on [0, R];

then λ ∈ Ak ∪ Ik ∪Ak+1.

Proof. Suppose, by contradiction, that λ /∈ Ak ∪ Ik ∪Ak+1.

W.l.o.g. we can assume that uλ(R) > 0 and vλ(R) > 0. Let

R := inf{r > R : uλ(r) 6 0} ∈ (R,+∞]

Note that vλ changes sign exactly once in (R,R). Indeed, as long as uλ > 0 the second

equation of (3.149) shows that vλ is decreasing. Moreover we cannot have vλ(r) > 0 for

all (R,R), as in that case the solution would enter the negative energy zone or tend to the

origin. This is impossible, since λ /∈ Ak ∪ Ik.

Now suppose that R = +∞. We have seen that there exists R < R̃ < +∞ such that

vλ < 0 on (R̃, R). Arguing as in the proof of (Lemma 3.31), one easily sees that

lim
r→+∞

vλ(r) = δ ∈ (−∞,0)

Moreover, the solution tends to an equilibrium (λ, δ) of the hamiltonian system (3.150),

as r −→ +∞.

Thus (λ, δ) = (0,−√
m− ω), giving a contradiction as

0 6 lim
r→+∞

Hλ(r) = H

(
0,−

√
(m− ω)

)
< 0

Then R < +∞ and we have

uλ(R) = 0 , vλ(R) 6 −
√

2(m− ω)

since we must have Hλ(R) > 0.

Let R < R1 < R2 < R be such that

(3.163) vλ(R1) = −
√
m− ω

2
, vλ(R2) = −

√
m− ω

Since R > 1, we have Hλ(R) < C0 and if C0 is sufficiently small we have that

(3.164) uλ(r) 6
√
m− ω , ∀r ∈ [R1, R2]
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We have, since vλ is decreasing and by (3.149,3.178,3.163)

√
m− ω

2
= vλ(R1) − vλ(R2) = −

∫ R2

R1

v̇λ(r)dr =

∫ R2

R1

√
m− ω (3m− ω) dr

and then

(3.165) (R2 −R1) >
1

2(3m− ω)

Moreover, a simple computation gives

(3.166)
1

r

d

dr

(
r2Hλ(r)

)
= 2Hλ(r) + rḢλ(r) = −u4

λ(r)

2
+
v2
λ(r)

2

[
v2
λ(r) − 2(m− ω)

]

and then

(3.167)
d

dr

(
r2Hλ(r)

)
< 0 , ∀r ∈ [R,R2]

By (3.163,3.166) we have

(R2)2Hλ(R2) − (R1)2Hλ(R1) 6 −
∫ R2

R1

(m− ω)2

2
rdr

= −(m− ω)2

4
(R2 +R1)(R2 −R1)

6 − (m− ω)2

4(3m− ω)
R

(3.168)

Since the map r → r2Hλ(r) is decreasing on [R,R2] by (3.167), then (3.168) implies that

(R2)2Hλ(R2) 6 (R1)2Hλ(R1) − (m− ω)2

4(3m− ω)
R

6 R2

(
Hλ(R) − (m− ω)2

4R(3m− ω)

)
6 0

(3.169)

if C0 6
(m−ω)2

4(3m−ω) . Then

Hλ(R2) 6 0

reaching a contradiction, and the lemma is proved.

The next lemma gives the main properties of the sets Ak and Ik.

Lemma 3.33. For all k ∈ N we have

1. Ak is an open set;
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2. if λ ∈ Ik then there exists ε > 0 such that (λ− ε, λ+ ε) ⊆ Ak ∪ Ik ∪Ak+1;

3. if Ak /= ∅ and it is bounded, we have supAk ∈ Ik;

4. if Ik /= ∅ and it is bounded, then sup Ik ∈ Ik.

Proof. 1. It follows from the continuity of the flow (3.149) w.r.t. the initial datum

(Lemma 3.25);

2. Let λ ∈ Ik. By Lemma (3.31)

|uλ(r)| + |vλ(r)| 6 C exp

(
−m− ω

2
r

)
, ∀r > 0

and then, given C0 > 0 as in Lemma (3.166), ∃R > 1 such that Hλ(R) < C0
R ,

uλ(R)vλ(R) > 0 and vλ changes sign k times on [0, R].

The continuity of the flow (3.149) implies that the same holds for an initial datum

y ∈ (λ− ε, λ+ ε) for ε > 0 small. The claim then follows by Lemma (3.166).

3. Let λ = supAk and (λi) ⊆ Ak such that limi→+∞ λi = λ.

If we suppose that λ ∈ Ar for some r ∈ N, then by continuity of the flow we also

have λi ∈ Ar, for i large. This implies that r = k, that is, λ ∈ Ak which is absurd

because Ak is an open set, by point (1).

Thus there holds λ ∈ Is, for some s ∈ N, and by point (2) there exists ε > 0 such

that

λ ∈ As ∪ Is ∪As+1

which implies that the same holds for λi, provided i is large. Then, as before, we

have s = k.

Moreover, as already remarked

λ /∈
⋃

j∈N

Aj

and then the claim follows.

4. Arguing as in the proof of point (3) we get that

sup Ik ∈ Ir

for some r ∈ N. Then we conclude as before, using point (2).
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Figure 3.3. A solution entering the lower half-plane {v < 0}.

We want to prove that the set A0 is bounded, showing that if λ > 0 is large enough then

there exists Rλ > 0 such that vλ(Rλ) = 0, as strongly suggested by numerical simulations

(see Figure 3.3.2). To do so we relate solutions corresponding to such data to those of a

limiting problem, inspired by [91].

3.3.3 Asymptotic expansion

In this section we provide, after a suitable scaling, a precise asymptotic expansion that

will allow us to control the behavior of the solution in term of the initial datum.

Put ε = λ−1 and consider the following rescaling

(3.170)




Uε(r) = εuλ(ε2r)

Vε(r) = εvλ(ε2r)

Using (3.149) we find the system for (Uε, Vε):

(3.171)




U̇ε +

Uε
r

= (U2
ε + V 2

ε )Vε − ε2(m− ω)Vε

V̇ε = −(U2
ε + V 2

ε )Uε − ε2(m+ ω)Uε

together with the initial conditions Uε(0) = 0, Vε(0) = 1.

The limiting problem as ε → 0 (and thus λ → +∞) is
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(3.172)




U̇0 +

U0

r
= (U2

0 + V 2
0 )V0

V̇0 = −(U2
0 + V 2

0 )U0

with U0(0) = 0, V0(0) = 1.

As in [15] we consider the family of spinors given by

(3.173) ϕ(y) = f(y)(1 − y) · ϕ0 y ∈ R
2

where ϕ0 ∈ C2, f(y) = 2
1+|y|2 and the dot represents the Clifford product.

It can be easily checked that they are H̊
1
2 (R2,C2)-solutions to the following Dirac

equation

(3.174) Dϕ = |ϕ|2ϕ

Remark 3.34. The spin structure of euclidean spaces is quite explicit and the spinors given

in (5.44) can be rewritten in matrix notation, as

ϕ(y) = f(y)(12 +iy1σ1 + iy2σ2) · ϕ0 y ∈ R
2

12 and σi being the identity and the Pauli matrices, respectively.

See [73] for more details.

A straightforward (but tedious) computation shows that the spinors defined in (5.44)

are of the form of the ansatz (3.148), thus being solutions to the system (3.172). Exploiting

the conformal invariance of (3.174) (see [72]) one can easily see that the solution matching

the above initial conditions is

(3.175)

(
U0(r) =

2r

4 + r2
, V0(r) =

4

4 + r2

)

Lemma 3.35. We have

(Uε, Vε)
ε→0−−−→ (U0, V0)

uniformly on [0, T ], for all T > 0, where (U0, V0) is the solutions to the limiting problem

(3.172).

Proof. Fix T > 0 and let r ∈ [0, T ].

Remark that the system (3.171) is equivalent to
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(3.176)





Uε(r) =
1

r

∫ r

0
sVε(s)[U

2
ε (s) + V 2

ε (s) − ε2(m− ω)]ds

Vε(r) = 1 −
∫ r

0
Uε(s)[(U

2
ε (s) + V 2

ε (s)) + ε2(m+ ω)]ds

Similarly, we can rewrite (3.172) as

(3.177)





U0(r) =
1

r

∫ r

0
sV0(s)(U2

0 (s) + V 2
ε (s))ds

V0(r) = 1 −
∫ r

0
U0(s)(U2

0 (s) + V 2
0 (s))ds

Arguing as for (3.149), for each fixed ε > 0 we associate a hamiltonian to the system

(3.171)

H̃ε(U, V ) :=
(U2 + V 2)2

4
+ ε2m

2
(U2 − V 2) + ε2ω

2
(U2 + V 2)

It’s easy to see that H̃ε is decreasing along the flow, so that

H̃ε(Uε(r), Vε(r)) 6 H̃ε(0,1) 6 1 ∀r > 0.

The coercivity of Hε then implies that

(3.178) |Uε(r)| + |Vε(r)| 6 C ∀r > 0

for some C > 0 independent of ε.

By (3.176,3.177) and since r ∈ [0, T ] we get

|Uε(r) − U0(r)|+|Vε(r) − V0(r)| 6
∫ r

0

∣∣∣Vε(V 2
ε + U2

ε ) − V0(V 2
0 + U2

0 )
∣∣∣ ds

+

∫ r

0

∣∣∣Uε(V 2
ε + U2

ε ) − U0(V 2
0 + U2

0 )
∣∣∣ ds+ 2ε2mT

(3.179)

It is not hard to see that the first two integrands in the r.h.s of the above inequality are

locally Lipschitz. Then by (3.178) we have

(3.180) |Uε(r) − U0(r)| + |Vε(r) − V0(r)| .
∫ r

0
(|Uε − U0| + |Vε − V0|) ds+ 2ε2mT

Since r ∈ [0, T ], the Gronwall lemma gives

(3.181) |Uε(r) − U0(r)| + |Vε(r) − V0(r)| . ε2
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thus proving the claim.

The above results is not enough to conclude that Vε changes sign, since V0 > 0 for all

r > 0.

We obtain a more refined analysis of the behavior of the solution thanks to a continuity

argument.

We consider the solution (Uε, Vε) as a perturbation of (U0, V0), as follows:

(3.182)




Uε(r) = U0(r) + ε2h1(r) + ε4h2(r, ε)

Vε(r) = V0(r) + ε2k1(r) + ε4k2(r, ε)

and substituting into (3.171) we get the following linear system for ε2-order terms

(3.183)




ḣ1 +

h1

r
= −(m− ω)V0 + 2U0V0h1 + (U2

0 + 3V 2
0 )k1

k̇1 = −(m+ ω)U0 − 2U0V0k1 − (3U2
0 + V 2

0 )h1

and we impose the initial conditions

(3.184) h1(0) = 0 , k1(0) = 0

Rewriting (3.183) in integral form, as in (3.154), we have:

(3.185)





|h1(r)| 6
∫ r

0
(m− ω)V0ds+

∫ r

0

[
2U0V0|h1| + (U2

0 + 3V 2
0 )|k1|

]
ds

|k1(r)| 6
∫ r

0
(m+ ω)U0ds+

∫ r

0

[
2U0V0|k1| + (3U2

0 + V 2
0 )|h1|

]
ds

Remark that

U0V0(r) + V 2
0 (r) 6 U2

0 (r) 6 V0 , ∀r > 2

and that

V0 ∈ L1(R+).

Moreover, there holds

(3.186) U0(r) =
2r

4 + r2
∼ 2

r
as r −→ +∞.

Then summing up both sides of (3.185) we get:

(3.187) |h1(r)| + |k1(r)| .
∫ r

0
U0ds+

∫ r

0
(|h1| + |k1|)V0ds
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The Gronwall inequality thus gives:

(3.188) |h1(r)| + |k1(r)| .
(∫ r

0
U0ds

)
exp

(
C

∫ r

0
V0ds

)
.

∫ r

0
U0ds

where C > 0 is a constant.

By (3.186) we can thus conclude that

(3.189) |h1(r)| + |k1(r)| . ln(r) as r −→ +∞

The above estimates imply that

2U0V0k1, (3U
2
0 + V 2

0 )h1 ∈ L1(R+)

and then integrating the second equation in (3.183) we get

(3.190) h1(r) ∼ − ln(r) as r −→ +∞

We now have to deal with remainder terms in (3.182).

In particular, we want to analyze the behavior of those terms on the time interval(
0, 1

ε

)
, thanks to a continuity argument based on the Gronwall inequality.

Let

(3.191) rε := sup
{
r ∈

[
0, ε−1

)
: |h2(r, ε)| + |k2(r, ε)| < ε− 3

2

}

Since h2(0, ε) = k2(0, ε) = 0, by continuity it is evident that

rε > 0

As shown in the Appendix using the equations for h2 and k2 one gets the following esti-

mates:

(3.192) |h2(r, ε)| + |k2(r, ε)| . 1

ε
ln

(
1

ε

)
+

∫ r

0

(
V0(s) + ε2

)
(|h2(s, ε)| + |k2(s, ε)|) ds

for 0 < r < rε 6
1
ε .

The Gronwall estimates then imply that

(3.193) |h2(r, ε)| + |k2(r, ε)| . 1

ε
ln

(
1

ε

)
exp

(
C

∫ r

0

(
ε2 + V0(s)

)
ds

)

for some C > 0. Since r < 1
ε and V0 ∈ L1(R+) we thus obtain
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(3.194) |h2(r, ε)| + |k2(r, ε)| . 1

ε
ln

(
1

ε

)

Now, if we suppose that

rε <
1

ε

by (3.194) and by continuity there exists δ > 0 such that

1

ε
ln

(
1

ε

)
. |h2(r, ε)| + |k2(r, ε)| 6 ε− 3

2

for all r ∈ [rε, rε + δ), thus contradicting the definition in (3.191).

Then there holds:

(3.195) |h2(r, ε)| + |k2(r, ε)| < ε− 3
2 , ∀r ∈

(
0,

1

ε

)

Recall that the second equation in (3.182) reads as

Vε(r) = V0(r) + ε2k1(r) + ε4k2(r, ε)

By (3.194) and (3.175) we see that

V0 = O(ε2) , k2 = o(ε2) as r →
(

1

ε

)−

Then by (3.190) we get

(3.196) Vε(r) ∼ −ε2 ln
1

ε
as r →

(
1

ε

)−

Thus we have

(3.197) Vε(Rε) = 0 for some Rε ∈
(

0,
1

ε

)

In view of the scaling (3.170), we conclude that for large initial data λ > 0, the

corresponding solution (uλ, vλ) of (3.149) has at least one node.

This proves the following (recall the definition (3.33))

Lemma 3.36. The set A0 is bounded.

Then by (Lemma 3.33) we have that I0 /= ∅, that is the system (3.149) admits a
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solution without nodes, tending to (0,0) as r → +∞, which corresponds to a localised

solution of equation (3.132). The exponential decay follows by (Lemma 3.31). This proves

(Theorem 4.3).

Appendix

In this section we prove the estimates (3.192) for remainder terms in (3.182).

For the sake of brevity we only deal with k2. The estimate for h2 follows along the

same lines with obvious modifications.

Inserting the ansatz (3.182) into the system (3.171), using equations (3.175) and (3.183)

and imposing the initial condition we get the following equation

(3.198)





d

dr
k2(r, ε) = K0(r) + ε2K2(r) + ε4K4(r) + ε6K6(r) + ε8K8(r)

k2(0, ε) = 0

for all ε > 0. Note that the Kis do not depend on ε.

The terms in the r.h.s. are given by

(3.199)





K0 = −
(
2U2

0 + V 2
0 + 2U0V0

)
h2 − U0

(
3h2

1 + k2
1

)
− 2V0h1k1 − (m+ ω)h1

K2 = −U0 (4h1h2 + 2k1k2) − (h3
1 + h1k

2
1) − 2V0(h1k2 + k1h2) − (m+ ω)h2

K4 = −
(
U0(2h2

2 + k2
2) + 2V0h2k2

)
− (2h1k1k2 + 2h2

1h2 + k2
1h2)

K6 = −h1h
2
2 − k1k

2
2 − h1h

2
2 − k1k2h2

K8 = −h3
2 − h2k

2
2

Our aim is to estimate |k2(r, ε)| for 0 < r < r (see (3.191)) and 0 < ε ≪ 1.

This is achieved integrating (3.198) and estimating the integral of the absolute value

of each term in (3.199).

Remark that, by the definition of (U0, V0), (3.175)

(3.200) 2U2
0 + V 2

0 + 2U0V0 6 V0 ∈ L1(R+)

Moreover, (3.189) and (3.186) imply that U0
(
3h2

1 + k2
1

)
/∈ L1(R+) and then

(3.201)

∫ r

0
U0

∣∣∣3h2
1 + k2

1

∣∣∣ ds .
∫ 1

ε

1

ln(s)

s
ds . ε− 1

4
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By the above remarks and (3.189), we have

(3.202) V0h1k1 ∈ L1(R+)

and

(3.203)

∫ r

0
|h1|ds = O(r ln(r)), as r → +∞

Collecting the above esimates we get

(3.204)

∫ r

0
|K0|ds .

∫ r

0
V0|h2|ds+ ε−1| ln(ε)|

The second term is estimated as follows.

Recall that

(3.205) |h2(r)| + |k2(r)| 6 ε− 3
2

for 0 < r 6 r. Then by (3.200) we have

(3.206)

∫ r

0
U0 |4h1h2 + 2k1k2| ds . ε− 3

2

∫ 1
ε

1

ln(s)

s
ds . ε− 7

4

Using again (3.189), it’s not hard to see that

(3.207)

∫ r

0
|h3

1 + h1k
2
1|ds . ε− 5

4

Since

V0h1, V0k1 ∈ L1(R+)

by (4.38) we have

(3.208)

∫ r

0
V0 (|h1k2| + |k1h2|) ds . ε− 3

2

We then conclude that

(3.209)

∫ r

0
|K2|ds . ε− 7

4 +

∫ r

0
|h2|ds

Let’s turn to the third term.

By (3.200) and (4.38) and since U0(r) = 2r
4+r2 , we get
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(3.210)

∫ r

0
|U0(2h2

2 + k2
2) + 2V0h2k2|ds . ε−3

∫ 1
ε

1
U0ds . ε−3| ln(ε)|

Using (3.189) and (4.38) we can estimate

(3.211)

∫ r

0
|K4|ds . ε−3| ln(ε)| + ε− 5

4 . ε−3| ln(ε)|

All the terms appearing in K6 have the same behavior, so that by (3.189),(4.38) and

above estimates it’s easy to see that

(3.212)

∫ r

0
|K6|ds . ε−4| ln(ε)|

Lastly, by (4.38) we can estimate

(3.213)

∫ r

0
|K8|ds . ε− 11

2

Combining (5.49,4.59,3.211,3.212,3.213), integrating (3.199) gives

(3.214) |k2(r, ε)| . ε−1| ln(ε)| +

∫ r

0
(V0(s) + ε2)|h2(s, ε)|ds

Analogous estimates can be worked out for h2, obtaining

(3.215) |h2(r, ε)| . ε−1| ln(ε)| +

∫ r

0
(V0(s) + ε2)|k2(s, ε)|ds

and the claimed inequality (3.192) follows by summing up the last two estimates.
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Chapter 4

A model for electron conduction

in graphene

4.1 Introduction

This chapter is based on the paper [27].

Our aim is to study a quantum model for the transport of an electron gas in a graphene

layer, in the case where particles are constrained in a bounded domain Ω ⊂ R2.

As recalled in section 3.1, in [16] the authors gave a rigorous proof of the large, but

finite, time-scale validity of a cubic Dirac equation, as a good approximation for the

dynamics of the cubic nonlinear Schrödinger equation (NLS) with a honeycomb potential,

in the weakly nonlinear regime. Their analysis indicates that an analogous result holds

for the case of NLS with Hartree nonlinearity. We remark that ground state properties of

graphene have been studied in [67] in the context of a Hartree-Fock model.

The (semi-classical) dynamics of electrons in a graphene layer can be described by the

following NLS, the interaction being described by a self-consistent potential:

(4.1)




iε∂tΦ

ε = −ε2∆Φε + V
(
x
ε

)
Φε + εκ

(
1

|x| ∗ |Φε|2
)

Φε

Φε(0, x) = Φε
0(x)

where V is a honeycomb potential and κ ∈ R is a coupling constant.

One expects that, as ε → 0, the dynamics of WKB waves spectrally concentrated

around a vertex of the Brillouin zone of the lattice (where the conical degeneracy occurs)
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can be effectively described by the following Dirac-Hartree equation:

(4.2)




i∂tϕ = −iσ̃ · ∇ϕ+ κ

(
1

|x| ∗ |ϕ|2
)
ϕ

ϕ(0, x) = ϕ0(x)

where φ : Rt × R2
x −→ C2, σ̃ := (σ̃1, σ̃2) = (Λσ1,Λσ2), with σi being the first two Pauli

matrices

(4.3) σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)

and

(4.4) Λ :=

(
λ 0

0 λ

)
.

Here λ is a constant depending on the potential V (formula 4.1 in [56]).

In the above model, the particles can move in all the plane and the potential is the

trace on the plane {z = 0} of the 3-D Coulomb potential.

Remark 4.1. While the electrons in graphene are essentially confined in 2-D, the electric

field clearly still acts in all three spatial dimensions. This justifies the choice of the 3-D

Coulomb potential, given by the Riesz potential (−∆)− 1
2 .

We consider the case where the electrons are constrained to a bounded domain Ω ⊆ R2

modeling an electronic device. Following El-Hajj and Mehats [48], we define the self-

consistent potential using the spectral resolution of (−∆)
1
2 with zero boundary conditions,

in order to describe confinement of the electrons. In the same paper, the authors give a

formal derivation of the potential V (recalled in the next section), starting from the 3-D

Poisson equation. Moreover, in [48] El-Hajj and Mehats also prove local well-posedness

for two models of electron transport in graphene. More precisely, they treat both the case

where Ω = R2 and Ω ⊆ R2 is a bounded domain. In the latter case, they replace the Dirac

operator by

σ1(−∆)
1
2 =

(
0 (−∆)

1
2

(−∆)
1
2 0

)
,

with zero Dirichlet data. It is easy to see that this operator displays a conical band

dispersion structure and being off-diagonal it also couples valence and conduction bands,

thus mimicking the Dirac operator. More details can be found in the references cited in

[48].
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Remark 4.2. In the case of graphene the zero-energy for the Dirac operator corresponds to

the Fermi level. Then the positive part of the spectrum corresponds to massive conduction

electrons, while the negative one to valence electrons.

Here we will instead work with the Dirac operator under suitable boundary conditions.

It is well-known, in fact, that the Dirac operator, as well as general first order elliptic

operators, is not self-adjoint with Dirichlet boundary conditions (see sections 8.2, 10.1 in

[103] for a counterexample).

From now on Ω ⊆ R2 will denote a smooth bounded open set.

Let (en)n∈N ⊆ L2(Ω) be an orthonormal basis of eigenfunctions of the Dirichlet lapla-

cian (−∆), with associated eigenvalues 0 < µn ↑ +∞.

We define the potential V(ϕ) as

(4.5) V(ϕ) :=
∑

n>0

µ
− 1

2
n 〈|ϕ|2, en〉en

Thus V satisfies

(4.6) (−∆)
1
2 V = |ϕ|2 in Ω.

Working on a bounded domain, we need to choose local (for physical reasons) boundary

conditions for the Dirac operator. We shall use infinite mass boundary conditions (see

section 2.2), which have been employed in the Physics literature to model quantum dots

in graphene (see [9] and reference therein).

Formally, infinite mass boundary conditions are defined imposing

(4.7) Pψ :=
1

2
(12 − σ̃ · t)ψ = 0, on ∂Ω

where t is the tangent to the boundary and 12 is the unit matrix. It can be easily seen

that such conditions make the Dirac operator

T := (−iσ̃ · ∇)

symmetric on L2(Ω,C2).

As explained in section 2.2 they actually belong to a larger class of local boundary

conditions for the Dirac operator [9] employed in the theory of graphene, and which are

related to M.I.T. and chiral boundary conditions (see [19] and references therein).

Proposition. The unbounded operator D formally acting as T := (−iσ̃ · ∇) on L2(Ω,C2)
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is self-adjoint on the domain

(4.8) D∞ := {ψ ∈ H1(Ω,C2) : (P ◦ γ)ψ = 0}

where P is the matrix defined in (4.7) and γ is the trace operator.

The model we are going to study thus is given by

(4.9)




i∂tφ = Dφ+ κV(φ)φ, in R × Ω

φ(0, x) = φ0(x)

Before stating our main theorem, we quickly review the spectral theory for the Dirac

operator with infinite-mass boundary conditions, already recalled in section 2.2.

The compactness of the Sobolev embedding H1(Ω,C2) →֒ L2(Ω,C2) gives that the

spectrum of D is discrete. Moreover, the domain D∞ is invariant with respect to the

antiunitary transformation U := σ1C, where C is the complex conjugation on L2(Ω,C2).

Given ϕ ∈ D∞ we have

UDϕ = −DUϕ.

The above observations can be summarized in the following

Proposition. The spectrum σ(D) ⊆ R of D is purely discrete, symmetric and accumulates

at ±∞.

Let (ψk)k∈Z be a Hilbert basis of L2(Ω,C2) composed of eigenspinors of D, and (λk)k∈Z

the associated eigenvalues, with limk→±∞ λk = ±∞.

It has been noted in the Physics literature that Dirac operators with infinite mass

boundary condition are gapped. A rigorous proof has been recently given in [20], where

the following result is proved.

Proposition. For any k ∈ Z we have

λ2
k >

2π

|Ω| ,

where |Ω| denotes the area of Ω.

We look for stationary solutions to the equation (4.9), that is, of the form

φ(t, x) = e−iωtψ(x).
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Plugging it into the equation one gets

(4.10) (D − ω)ψ + κV(ψ)ψ = 0

Our main result is the following:

Theorem 4.3. (Multiple solutions for the Dirac-Hartree equation,[27]) Fix ω /∈ σ(D).

Then equation (4.10) admits infinitely many solutions in C∞(Ω,C2) satisfying the bound-

ary condition (4.7).

We remark that a variational proof of existence and multiplicity for 3D Maxwell-Dirac

and Dirac-Coulomb equations can be found in [51]. Those results have been improved in

[1]. The case of subritical Dirac equations on compact spin manifolds has been treated in

[71], for nonlinearity with polynomial growth, and using a Galerkin-type approximation.

Our proof is variational and based on direct arguments. The present work has been

inspired by the above mentioned articles and by the papers [16, 48].

For the sake of simplicity we will restrict ourselves to ω ∈ (−λ1, λ1).

Remark 4.4. Without loss of generality, we can choose κ < 0. In particular, we take

κ = −1. The case κ > 0 follows considering the functional

L(ψ) := −I(ψ)

(see below).

Solutions to (4.10) will be obtained as critical points of the functional

(4.11) I(ψ) =
1

2

∫

Ω
〈(D − ω)ψ,ψ〉 − 1

4

∫

Ω
V(ψ)|ψ|2

which is defined and of class C2 on the Hilbert space

(4.12) X :=



ψ ∈ L2(Ω,C2) : ‖ψ‖2

X :=
∑

k∈Z

|λk − ω||〈ψ,ψk〉|2 < ∞




endowed with the scalar product

〈φ, ψ〉X := 〈φ, ψ〉L2 +
∑

k∈Z

|λk − ω|〈φ, ψk〉L2〈ψ,ψk〉L2 .

In the proof of Theorem 1 in [19] it is shown that for some C > 0 there holds

(4.13) ‖ϕ‖H1 6 C(‖ϕ‖L2 + ‖Tϕ‖L2)
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for all ϕ ∈ D∞, that is, for spinors in the operator domain.

This implies that the H1-norm and the quantity in brackets in the r.h.s. of (4.13) are

equivalent on D∞. Then interpolating between L2(Ω,C2) and D∞, one gets the following

Remark 4.5. The X-norm above defined and the H
1
2 -norm are equivalent on the space X.

This will be repeatedly used in the sequel in connection with Sobolev embeddings.

We can thus split X as the direct sum of the positive and the negative spectral sub-

spaces of (D − ω):

(4.14) X = X+ ⊕X−

Accordingly we will write ψ = ψ+ + ψ−.

The functional (5.22) then takes the form

(4.15) I(ψ) =
1

2

(
‖ψ+‖2

X − ‖ψ−‖2
X

)
− 1

4

∫

Ω
V(ψ)|ψ|2

Smoothness of the solutions will follow by standard bootstrap arguments.

Remark 4.6. Despite the term in (5.22) involving the potential being 4-homogeneous we

can take advantage of regularization property of (−∆)− 1
2 , thus avoiding compactness issues

related to the limiting Sobolev embedding X →֒ L4. This is in contrast with the equations

studied in the previous chapter, where we considered Kerr-like cubic nonlinearities. We

dealt with the lack of compactness through a suitable radial ansatz, reducing the proof to

dynamical systems arguments.

In the sequel, we will denote X-norm and the Lp-norm of a spinor ψ by ‖ψ‖ and ‖ψ‖p,
respectively. Occasionally, we will also omit the domain of definition of functions, denoting

Lp and Sobolev spaces.

4.1.1 A formal derivation of V.

Our argument follows the one given in [48]. It is included here for the reader’s convenience.

We show how the potential V is obtained as the trace on the plane {z = 0} of the

solution of the 3D Poisson equation. We consider only the simple case where the boundary

is connected to a cilindrical perfect conductor.

In our model, the electrons are constrained to a bounded domain

Ω × {0} ⊆ R
3.
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Then the 3D potential satisfies

(4.16) (−∂2
z − ∆)V 3D = n(x)δ(z)︸ ︷︷ ︸

density

, (x, z) ∈ Ω × R

where ∆ = ∂2
x + ∂2

y and δ(z) is the Dirac mass.

We also impose the boundary conditions

V 3D(x, z) = 0, (x, z) ∈ ∂Ω × R, V 3D z→±∞−−−−→ 0.

Let (ek)k∈N ⊆ L2(Ω) be an orthonormal basis of eigenfunctions of the Dirichlet laplacian

(−∆), with associated eigenvalues 0 < µk ↑ +∞.

Projecting equation onto en, for each n ∈ N, gives

−∂2
zV

3D
k + µnV

3D
k = nkδ(z)

with V 3D
k (z) =

∫
Ω V

3D(x, z)ek(x)dx and nk =
∫

Ω n(x)ek(x)dx.

Solving the last equation one gets

V 3D(x, z) =
1

2

∑

kN

nkek(x)
e−

√
µk|z|

√
µk

(x, z) ∈ Ω × R

and thus

V(x) = V 3D(x,0) =
1

2

∑

kN

(µk)
− 1

2nkek(x) =
1

2
(−∆)− 1

2n.

4.2 Existence of multiple solutions

4.2.1 The variational argument

This section is devoted to the proof of our main theorem. The strategy consists in exploit-

ing the Z2-symmetry of the functional using topological arguments, in order to get multiple

solutions. Our argument proceeds suitably splitting the Hilbert space X according to the

spectral decomposition of the operator (D − ω). This allows us to define an increasing

sequences of critical values cj ↑ +∞ for the action functional (5.22). Compactness of

critical sequences is proved exploiting the regularizing effect of (−∆)− 1
2 .

It is easy to see that the functional I is even :

I(−ψ) = I(ψ), ∀ψ ∈ X
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and this allows us to prove a multiplicity result using a straightforward generalization of

the fountain theorem, well-known for semi-definite functionals (see, e.g. [125]). It in turn

relies on the following infinite-dimensional Borsuk-Ulam theorem [105].

Let H be a Hilbert space.

Definition 4.7. We say that Φ : H −→ H is a Leray-Schauder map (LS-map) if it is of

the form

(4.17) Φ = I +K

where I is the identity and K is a compact operator.

Theorem 4.8. (Borsuk-Ulam in Hilbert spaces) Let Y 6 H be a codimension one subspace

of H and U be a symmetric (i.e. U = −U) bounded neighborhood of the origin. If Φ :

∂U −→ Y is an odd LS-map, then there exists x ∈ ∂U such that Φ(x) = 0.

The proof of the above theorem is achieved approximating the compact map by finite

rank operators and using the finite-dimensional Borsuk-Ulam theorem, as shown in [105].

Consider an Hilbert basis (ek)k∈Z of H. For j ∈ Z we define

(4.18) H1(j) := span{ek}
k=j

−∞, H2(j) := span{ek}
+∞
k=j

Given 0 < rj < ρj we set

B(j) := {ψ ∈ H1(j) : ‖ψ‖ 6 ρj}

S(j) := {ψ ∈ H1(j) : ‖ψ‖ = ρj}

N(j) := {ψ ∈ H2(j) : ‖ψ‖ = rj}

Let L ∈ C1(H,R) be an even functional of the form

(4.19) L(ψ) =
1

2
〈Lψ,ψ〉 + F (ψ)

where

L : H1(j) ⊕H2(j) −→ H1(j) ⊕H2(j)

is linear, bounded and self-adjoint and dF is a compact map.

It is a well-known result (see,e.g. ([102], Appendix) and [114]) that such a functional

admits an odd pseudo-gradient flow of the form
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(4.20) η(t, ∗) = Λ(t, ∗) +K(t, ∗) = Λ1,j(t, ∗) ⊕ Λ2,j(t, ∗) +K(t, ∗),

where Λi,j(t, ∗) : Hi(j) → Hi(j) is an isomorphism (i = 1,2), and K(t, ∗) is a compact

map.

Theorem 4.9. (Fountain theorem) With the above notations, define the min-max level

(4.21) cj := inf
γ∈Γ(j)

sup L(γ(1, B(j)))

where Γ(j) is the class of maps γ ∈ C0([0,1] ×B(j), H) such that

γ(t, ψ) = ψ, ∀(t, ψ) ∈ [0,1] × S(j)

and which are homotopic to the identity through a family of odd maps of the form (4.20).

If there holds

(4.22) inf
ψ∈N(j)

L(ψ) =: bj > aj := sup
ψ∈S(j)

L(ψ),

then cj > bj and there exists a Cerami sequence (ψjn)n∈N ⊆ H, that is

(4.23)





L(ψjn) −→ cj

(1 + ‖ψjn‖)dL(ψjn)
H∗

−−→ 0 as n −→ ∞

where H∗ is the dual space of H.

Moreover, if Cerami sequences are pre-compact, then cj is a critical value.

Proof. The proof follows by a standard deformation argument (see [102, 114]). However,

we quickly sketch the proof for the convenience of the reader. More details can be found

in the above-mentioned references.

Fix j ∈ N. We first show that

(4.24) cj > bj > aj ,

where cj is the min-max value defined in (5.43) and bj is as in (4.22). To this aim, we

need to prove the intersection property

γ(1, B(j)) ∩N(j) /= ∅
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for any γ ∈ Γ(j). Since γ is odd in the second variable, γ(1,0) = 0 and the set

(4.25) U = {u ∈ B(j) : ‖γ(1, u)‖ < r}

is a bounded neighborhood of the origin such that −U = U .

Let P : H −→ Y := span{ek}
k=j−1

−∞ be the projection. Consider the map (P ◦γ)(1, ∗) :

∂U −→ Y . We have to prove that the equation

(4.26) (P ◦ γ)(1, u) = 0

admits a solution u0 ∈ ∂U .

Recall that γ(1, ∗) is of the form (4.20). Then (4.26) is equivalent to

u+ (P ◦ Λ−1(1, ∗) ◦K)︸ ︷︷ ︸
compact

(1, u) = 0

and the claim follows by the Borsuk-Ulam theorem (Theorem 4.8).

We claim that there is a Palais-Smale sequence at level cj (PScj
sequence, for short),

that is, there exists a sequence (ψjn)n∈N ⊆ H such that there holds

(4.27)





L(ψjn) −→ cj

dL(ψjn)
H∗

−−→ 0 as n −→ ∞.

If this is not the case, since L is of class C2 this implies that there exist δ, ε > 0 such that

(4.28) ‖dL(ψ)‖ > δ > 0

for ψ ∈ {cj − ε 6 L 6 cj + ε}.

By (5.43) it follows that there exists γε ∈ Γ(j) such that

sup L(γε(1, B(j))) 6 cj + ε.

Following the construction explained, for instance, in [102, 114], one can construct a

suitable vector field (a pseudo-gradient vector field for L) whose flow is as in (4.20) and

such that d
dtL(η(t, ψ)) 6 0, ∀(t, ψ) ∈ [0,1] × H. Moreover, combining (4.24,4.28) and

choosing ε > 0 small, one can also obtain η(t, ψ) = ψ, for ψ /∈ {cj − ε 6 L 6 cj + ε}, and

that η(1, ·) maps {L 6 cj + ε} to {L 6 cj − ε}. Combining those observations one gets
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that η ◦ γǫ ∈ Γ(j). But then

(4.29) sup L(η ◦ γǫ(1, B(j))) 6 cj − ε,

contradicting the definition of the min-max value (5.43). This proves the existence of a

PScj
-sequence (ψjn)n. Moreover, applying Ekeland’s variational principle [47] this can be

promoted to a Cerami sequence, thus concluding the proof.

Our aim is to apply the fountain theorem to the functional I. First of all, we need to

study the geometry of the functional I.

Proposition. The functional

I(ψ) =
1

2

∫

Ω
〈(D − ω)ψ,ψ〉 − 1

4

∫

Ω
V(ψ)|ψ|2

is of the form (4.19).

Proof. The term involving the potential is 4-homogeneous, but we can avoid compactness

issues related to the critical Sobolev embedding H
1
2 (Ω,C2) →֒ L4(Ω,C2) thanks to the

regularizing properties of (−∆)− 1
2 , as shown in Proposition (4.2.2).

For each j > 1, consider the splitting

(4.30) X = X1(j) ⊕X2(j) =
(
span{ψk}

j

k=−∞
)

⊕
(
span{ψk}

+∞
k=j

)

where (ψk)k∈Z is an orthonormal basis of eigenspinors of D.

Lemma 4.10. Let j > 1, there exists ρj > 0 such that I(ψ) 6 0, for ψ ∈ X1(j) and

‖ψ‖ > ρj.

Proof. Let ψ ∈ X1(j) be such that ‖ψ‖ > ρj > 0. Recall that

ψ = ψ− + ψ+ ∈ Y := X− ⊕ span{ek}k=1
j .

Suppose that

(4.31) ‖ψ−‖ > ‖ψ+‖.

It is immediate from (4.15) that I(ψ) 6 0.

Now assume

(4.32) ‖ψ+‖ > ‖ψ−‖.
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We claim that there exists C = C(j) > 0 such that

(4.33) Q(ψ) :=

∫

Ω
V(ψ)|ψ|2 > C‖ψ‖4

for all ψ ∈ Y satisfying (4.32).

Suppose the claim is false. Then arguing by contradiction and by the 4-homogeneity

of Q, there exists a sequence (ψn)n∈N ⊆ Y satisfying (4.32), and such that ‖ψn‖ = 1 and

Q(ψn) −→ 0, as n → +∞.

Notice that (4.32) implies that

(4.34) ‖ψ+
n ‖ >

1√
2

Up to subsequences, we can assume that there exists ψ∞ ∈ Y such that ψ−
n weakly

converges to ψ−
∞, while ψ+

n strongly converges to ψ+
∞, the latter sequence lying in a finite-

dimensional space. Thus there holds

(4.35) ‖ψ+
∞‖ >

1√
2
.

Since Q is continuous and convex it also is weakly lower semi-continuous, and then

Q(ψ∞) = 0.

This implies that

ψ∞ = ψ+
∞ + ψ−

∞ = 0

and thus

(4.36) ψ+
∞ = 0

ψ−
∞ and ψ+

∞ being orthogonal, contradicting (4.35).

Then , given (4.33), we have

(4.37) I(ψ) 6 ‖ψ+‖ − ‖ψ−‖ − C‖ψ‖4

for all ψ ∈ Y such that (4.32) holds. Thus I(ψ) 6 0, for ρj > 0 large enough.
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Lemma 4.11. For 1 6 p < 4 define

βj,p := sup{‖ψ‖p : ψ ∈ X2(j), ‖ψ‖ = 1}.

Then βj,p −→ 0 as j → ∞.

Proof. By definition, for each j > 1 there exists ψj ∈ X2(j) such that ‖ψj‖ = 1 and 1
2βj,p <

‖ψj‖p. The compactness of the Sobolev embedding implies that, up to subsequences,

ψj ⇀ ψ weakly in X and ψj −→ ψ strongly in Lp(Ω,C2). It is evident that ψ = 0. Then

1

2
βj,p < ‖ψj‖p −→ 0.

The above result allows us to prove the following:

Lemma 4.12. There exists rj > 0 such that

bj := inf{I(ψ) : ψ ∈ X2(j), ‖ψ‖ = rj} −→ +∞

as j −→ +∞.

Proof. By the Hölder inequality, we get

(4.38)

∫

Ω
V(ψ)|ψ|2 6

(∫

Ω
|ψ|3

) 2
3
(∫

Ω
V(ψ)3

) 1
3

6 C‖ψ‖4
3.

Recall that V(ψ) := (−∆)− 1
2 (|ψ|2). Since |ψ|2 ∈ L

3
2 (Ω, C2), and (−∆)− 1

2 sends L
3
2 (Ω,C2)

into W 1, 3
2 (Ω,C2) →֒ L3(Ω,C2), we easily get (4.38).

Take ψ ∈ X2(j) such that ‖ψ‖ = r. Then by (4.38) and Lemma 4.11 we have

I(ψ) =
1

2

∫

Ω
〈(D − ω)ψ,ψ〉 −

∫

Ω
V(ψ)|ψ|2

>
1

2
‖ψ‖2 − 1

2
‖ψ‖2

2 − C‖ψ‖4
3

>
1

2
r2 − 1

2
r2β2

j,2 − Cr4β4
j,3

>
1

4
r2 − Cβ4

j,3r
4

(4.39)

where we used the fact that β2
j,2 6 1

2 .
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The function r → 1
4r

2 −Cβ4
j,3r

4 attains its maximum at r = (8Cβ4
j,3)− 1

2 . Then taking

rj := (8Cβ4
j,3)− 1

2 we get

b(j) > (64Cβ3
j,3)−1 −→ +∞

and this concludes the proof.

The above results allow us to apply the Fountain theorem (Theorem 4.9) to the func-

tional I. We thus get the existence of a sequence of min-max values

(4.40) cj −→ +∞, as j → +∞,

and, for each j ∈ N, of a Cerami sequence (ψnj )n∈N ∈ X:

(4.41)





I(ψnj ) −→ cj

(1 + ‖ψnj ‖)dI(ψnj )
X∗

−−→ 0 as n −→ ∞

Lemma 4.13. Cerami sequences for I are pre-compact .

Proof. Let (ψn) ⊆ X be an arbitrary Cerami sequence for I.

Then

(4.42)





I(ψn) −→ c

(1 + ‖ψn‖)(Dψn − V(ψn)ψn)
X∗

−−→ 0 as n −→ ∞

for some c > 0.

The second condition in (4.42) implies that

(4.43)

∫

Ω
〈Dψn, ψn〉 −

∫

Ω
V(ψn)|ψn|2 −→ 0.

Combining (4.43) and the first line in (4.42) one gets

(4.44) ‖V(ψn)‖2

H̊
1
2

=

∫

Ω
|(−∆)

1
4 V(ψn)|2 =

∫

Ω
V(ψn)|ψn|2 −→ 2c.

By the Sobolev embedding (V(ψn))n∈N is thus bounded in L4. Moreover, since (−∆)− 1
2

is positivity-preserving (see section 4.2.2), (4.44) implies that (V(ψn)|ψn|2)n∈N is bounded

in L1.
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By the above remarks, writing

(4.45) V(ψn)|ψn| =
(
V(ψn)|ψn|2

) 1
2

︸ ︷︷ ︸
L2−bounded

(V(ψn))
1
2

︸ ︷︷ ︸
L8−bounded

and by the Hölder inequality, we easily get that (V(ψn)ψn)n∈N is bounded in L
8
5 . The

second line of (4.42) gives

(4.46) ψn = ψ1
n + ψ2

n := (D − ω)−1(V(ψn)ψn) + o(1), in H
1
2 (Ω,C2)

It is immediate to see that (ψ1
n)n∈N is bounded in W 1, 8

5 →֒ H
1
2 , and thus (ψn)n∈N is

bounded in H
1
2 .

Up to subsequences, there exists ψ∞ ∈ X such that ψn ⇀ ψ∞ weakly in X and

ψn → ψ∞ strongly in Lp for all 1 6 p < 4.

Since (ψn)n∈N is a Cerami sequence, there holds

(4.47) o(1) = 〈dI(ψn), ψ+
n − ψ+

∞〉 =

∫

Ω
〈Dψ+

n , ψ
+
n − ψ+

∞〉 −
∫

Ω
V(ψn)〈ψn, ψ+

n − ψ+
∞〉.

Moreover, the Hölder inequality gives

∣∣∣∣
∫

Ω
V(ψn)〈ψn, ψ+

n − ψ+
∞〉
∣∣∣∣ 6

∫

Ω
V(ψn)|ψn||ψ+

n − ψ+
∞|

6 ‖V(ψn)|ψn|‖2‖ψ+
n − ψ+

∞‖2

6 ‖V(ψn)‖6‖ψn‖3‖ψ+
n − ψ+

∞‖2

6 C‖ψ+
n − ψ+

∞‖2

(4.48)

where in the last line we used the fact that (ψn) is bounded in H
1
2 →֒ L3 and that

(V(ψn))n∈N is L6-bounded. Combining (4.47) and (4.48) we get

(4.49)

∫

Ω
〈Dψ+

n , ψ
+
n − ψ+

∞〉 = o(1)

On the other hand, for any η+ ∈ X+, there holds

(4.50)

∫

Ω
〈Dη+, η+〉 > (1 + (λ1)−1)‖η+‖2

as it can be easily checked. By (4.50) and (4.49) we thus obtain

(4.51) ‖ψ+
n − ψ+

∞‖2 6 C

∫

Ω
〈D(ψ+

n − ψ+
∞), ψ+

n − ψ+
∞〉 = o(1).
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An analogous argument gives

(4.52) ‖ψ−
n − ψ−

∞‖2 = o(1)

thus proving the pre-compactness of Cerami sequences.

Our main theorem (Theorem 4.3) is thus proved, as the regularity of solutions follows

by standard bootstrap techniques, exploiting the regularization property of (−∆)− 1
2 .

4.2.2 Auxiliary results

This section contains some auxiliary results used in the proof of our main theorem.

Compactness of dF.

Lemma 4.14. Let (Y, ‖ ·‖Y ) be a uniformly convex Banach space and consider a sequence

(yn)n∈N ⊆ Y . Suppose that yn ⇀ y weakly in Y and ‖yn‖Y → ‖y‖Y .

Then yn −→ y strongly in Y , as n → +∞.

See [32] for a proof. The above lemma allows us to prove the following

Proposition. Let (ψn)n∈N ⊆ X be a sequence such that ψn → ψ ∈ X strongly in Lp, for

all 1 6 p < 4.

Then, up to a subsequence |ψn|2 → |ψ|2 strongly in L
3
2 , as n → +∞.

Proof. We have

(4.53) ‖|ψn|2‖ 3
2

= ‖ψn‖2
3 −→ ‖ψ‖2

3 = ‖|ψ|2‖ 3
2

as n → +∞, since ψn → ψ strongly in L3.

Moreover, it is easy to see that

(4.54) ‖|ψn|2‖ 3
2

= ‖ψn‖2
3 6 C

and thus, up to a subsequence, |ψn|2 ⇀ |ψ|2 weakly in L
3
2 .

Then the claim follows by Lemma 4.14, Lp spaces being uniformly convex for 1 < p <

+∞ (see,e.g. [32]). .

Consider the map F : X −→ R, defined as

(4.55) F (ψ) :=
1

4

∫

Ω
V(ψ)|ψ|2
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It can be easily seen that the differential dF : X −→ X∗ acts as follows:

(4.56) 〈dF (ψ), ϕ〉X∗×X =

∫

Ω
V(ψ)ℜ(ψϕ), ∀ψ,ϕ ∈ X,

where ℜ(·) denotes the real part of a complex number.

Proposition. The differential dF is compact.

Proof. Let (ψn)n∈N ⊆ X be a bounded sequence. Then the compactness of the Sobolev

embedding H
1
2 (Ω,C2) →֒ Lp(Ω,C2), for 1 6 p < 4, implies that, up to subsequences,

ψn → ψ ∈ X, strongly in Lp.

Take ϕ ∈ X with ‖ϕ‖ 6 1. We then have

∣∣∣∣
∫

Ω
(V(ψn)ψn − V(ψ)ψ)ϕ

∣∣∣∣ 6
∫

Ω
|(V(ψn)ψn − V(ψn)ψ)ϕ|

+

∫

Ω
|(V(ψn)ψ − V(ψ)ψ)ϕ|

(4.57)

We estimate the first term in the r.h.s. as follows.

Applying the Cauchy-Schwarz inequality we get

∫

Ω
|(V(ψn)ψn − V(ψn)ψ)ϕ| 6

(∫

Ω
|V(ψn)ϕ|2

) 1
2
(∫

Ω
|ψn − ψ|2

) 1
2

6 ‖ϕ‖4‖V(ψn)‖4‖ψn − ψ‖2

6 C‖ψn − ψ‖2 −→ 0

(4.58)

for n → +∞, using the fact that (−∆)− 1
2 maps continuously L2 to H1 →֒ L4, and

V(ψ) = (−∆)− 1
2 |ψ|2.

For the second term in (4.57), we use again the Cauchy-Schwarz inequality and get

∫

Ω
|(V(ψn)ψ − V(ψ)ψ)ϕ| 6

(∫

Ω
|ψϕ|2

) 1
2
(∫

Ω
|V(ψn) − V(ψ)|2

) 1
2

6 ‖ϕ‖4‖ψ‖4‖V(ψn) − V(ψ)‖2

6 C‖V(ψn) − V(ψ)‖2 −→ 0

(4.59)

as n → +∞, since V(ψn) = (−∆)− 1
2 |ψn|2 ∈ W 1, 3

2 (Ω,C2) →֒ L2(Ω,C2) and |ψn|2 → |ψ|2
strongly in L

3
2 , as shown in Prop.(5.48).

Thus combining (4.58) and (4.59) we have

(4.60)

∣∣∣∣
∫

Ω
(V(ψn)ψn − V(ψ)ψ)ϕ

∣∣∣∣ −→ 0
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uniformly with respect to ϕ, as n → +∞.

(−∆)− 1
2 is positivity-preserving. For the sake of brevity we will only sketch the argu-

ment, referring to the mentioned references for more details.

Recall that −∆ is the Dirichlet laplacian on L2(Ω), with domain H1
0 (Ω).

The starting point is the following identity of L2-operators:

(4.61) (−∆)− 1
2 =

1√
π

∫ +∞

0
e−t2∆dt.

Indeed, let (en)n∈N ⊆ L2(Ω) be a Hilbert basis of eigenfunctions of −∆, with associated

eigenvalues 0 < µn ↑ +∞.

For any n ∈ N the operator on the r.h.s. of (4.61) acts on each en as the multiplication

operator by the function

(4.62)
1√
π

∫ +∞

0
e−t2µndt =

1√
µn
.

To prove the claim it is thus sufficient to prove that the heat kernel e−s∆ is positivity-

preserving. This follows from the

Theorem 4.15. (First Beurling-Deny criterion) Let L > 0 be a self-adjoint operator on

L2(Ω). Extend 〈u, Lu〉L2 to all L2 by setting it equal to +∞, when u does not belong to

the form-domain of L. The following are equivalent:

• e−sL is positivity-preserving for all s > 0;

• 〈|u|, L|u|〉L2 6 〈u, Lu〉L2 , ∀u ∈ L2(Ω).

A proof of the above result can be found in ([104], Theorem XIII.50).

Taking L = −∆, the second condition in the above theorem corresponds to the well-

known fact that for any u ∈ H1
0 (Ω) there holds

|∇|u|| 6 |∇u| a.e. in Ω

and then

〈|u|, L|u|〉L2 =

∫

Ω
|∇|u||2 6

∫

Ω
|∇u|2 = 〈u, Lu〉L2

(see Theorem 6.1 in [83]). This concludes the proof.
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Chapter 5

Nonlinear Dirac equations on

quantum graphs with localized

nonlinearities

The present chapter is based on the forthcoming paper [29]. This is a joint work with

Raffaele Carlone and Lorenzo Tentarelli. We study the nonlinear Dirac (NLD) equation

on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-

type conditions at the vertices. Precisely, we discuss existence and multiplicity of the

bound states (arising as critical points of the NLD action functional) and we prove that,

in the L2-subcritical case, they converge to bound states of the NLS equation in the

nonrelativistic limit, for a wide range of parameters.

5.1 Introduction

The investigation of evolution equations on metric graphs (see, e.g., Figure 5.1) has become

very popular nowadays as they are assumed to represent effective models for the study

of the dynamics of physical systems confined in branched spatial domains. A specific

attention has been addressed to the focusing nonlinear Schrödinger (NLS) equation, i.e.

(5.1) ı∂tv = −∆v − |v|p−2 v, p > 2,

with suitable vertex conditions, as it is supposed to well approximate (for p = 4) the

behavior of Bose-Einstein condensates in ramified traps (see, e.g., [65] and references

therein).

From the mathematical point of view, the discussion has been mainly focused on the
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Figure 5.1. a general noncompact metric graph.

study of the stationary solutions of (5.1), namely functions of the form v(t, x) = e−iλt u(x),

with λ ∈ R, that solve the stationary version of (5.1), i.e.

−∆u− |u|p−2 u = λu ,

with vertex conditions of δ-type. In particular, the most investigated subcase has been

that of the Kirchhoff vertex conditions, which impose at each vertex:

(i) continuity of the function (for details see (5.16)),

(ii) “balance” of the derivatives (for details see (5.17)).

For a short bibliography limited to the case of noncompact metric graphs with a finite

number of edges (which is the one discussed here) we refer the reader to, e.g., [3, 4, 5, 6,

35, 36, 82, 96, 97] and the references therein.

Following [64, 95], a particular attention has also been devoted to a simplified version

of the model where the nonlinearity localized on the compact core K of the graph, which

is the subgraph consisting of all the bounded edges (see, for instance, Figure 5.2); namely,

(5.2) − ∆u− χ
K

|u|p−2 u = λu

with Kirchhoff vertex conditions. Here χ
K

denotes the characteristic function of K. This

problem has been studied in the L2-subcritical case in [111, 112, 117], while some new

results on the L2-critical case have been presented in [46].

Remark 5.1. We also mention some interesting results on the problem of the bound states

on compact graphs. For a purely variational approach we recall, e.g., [45], whereas for a

bifurcation approach we refer to, e.g., [88].

As a further development, in the last years also the study of the Dirac operator on

metric graphs has generated a growing interest (see, e.g., [8, 24, 33, 101]). In particular,
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Figure 5.2. the compact core of the graph in Figure 5.1.

[106] proposed (although in the toy case of the infinite 3-star graph, depicted in Figure 5.3)

the study of the nonlinear Dirac equation on networks, namely (5.1) with the laplacian

replaced by the Dirac operator

(5.3) D := −ıc d
dx

⊗ σ1 +mc2 ⊗ σ3,

where m > 0 and c > 0 are two parameters representing the mass of the generic particle

of the system and the speed of light (respectively), and σ1 and σ3 are the Pauli matrices,

i.e.

(5.4) σ1 :=

(
0 1

1 0

)
and σ3 :=

(
1 0

0 −1

)
,

and with the wave function v replaced by the spinor χ := (χ1, χ2)T . Precisely, [106]

suggests the investigation of stationary solutions, that is χ(t, x) = e−iωt ψ(x), with ω ∈ R,

that solve

(5.5) Dψ − |ψ|p−2 ψ = ωψ .

Figure 5.3. infinite 3-star graph.

In this chapter, we discuss the case of (5.5) with localized nonlinearity (or, equivalently,
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the Dirac analogue of (5.2)), namely

Dψ − χ
K

|ψ|p−2 ψ = ωψ .

The reduction to this simplified model, as in the Schrödinger case, is due to the fact that

one assumes that nonlinearity affects only the compact core, while since localized sta-

tionary solutions decay exponentially on half-lines the nonlinear terms become negligible

outside a compact part of the graph. However, the investigation of the case with the

”extended” nonlinearity, i.e. (5.5), will be discussed in a forthcoming paper.

In the sequel we will tacitly make use of the properties of the operator D with Kirchoff-

type conditions, summarized in Section 2.3. For the convenience of the reader, we recall

here the main result of that section.

Proposition 5.2. The Dirac operator D (5.3) with Kirchoff-type vertex conditions (2.49),(2.50)

is self-adjoint on L2(G,C2) with domain given by (2.48). Its spectrum is given by

σ(D) = (−∞,−mc2] ∪ [mc2,+∞).

5.2 Definition of the form domain

The standard cases of the Dirac operator Rd, d = 1,2,3 do not require any further remark

on the associated quadratic form, which can be easily defined using the Fourier transform

(see e.g. [54]). Unfortunately, in the framework of (noncompact) metric graphs this tool is

not available and hence it is necessary to resort to the Spectral Theorem. This represents a

more abstract way to diagonalize the Dirac operator and consequently define the associated

quadratic form QD using real interpolation theory [14, 7]. Define the space

(5.6) Y :=
[
L2(G,C2),dom(D)

]
1
2

,

namely the interpolated space of order 1/2 between L2 and the domain of the Dirac

operator. First, we note that Y is a closed subspace of

H1/2(G,C2) :=
⊕

e∈E

H1/2(Ie) ⊗ C
2,
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with respect to the norm induced by H1/2(G,C2). Indeed, dom(D) is clearly a closed

subspace of H1(G,C2) and there results (arguing edge by edge) that

H1/2(G,C2) =
[
L2(G,C2), H1(G,C2)

]
1
2

,

so that the closedness of Y follows by the very definition of interpolation spaces . As a

consequence, by Sobolev embeddings there results that

(5.7) Y →֒ Lp(G,C2), ∀p > 2,

and that, in addition, the embegging in Lp(K,C2) is compact, due to the compactness of

K. On the other hand, there holds

(5.8) dom(QD) = Y,

and hence the form domain inherits all the properties pointed out before, which are in

fact crucial in the sequel.

Let us quickly sketch the proof of (5.8). As already remarked, it can be achieved

combining the Spectral Theorem and real interpolation theory.

One of the most commonly used forms of the Spectral Theorem states, roughly speak-

ing, that every self-adjoint operator on a Hilbert space is isometric to a multiplication

operator on a suitable L2-space. In this sense the operator can be ”diagonalized” in an

abstract way.

Theorem 5.3. ([103, thm. VIII.4]) Let H be a self-adjoint operator on a separable

Hilbert space H with domain Dom(H). There exists a measure space (M,µ), with µ a

finite measure, a unitary operator

(5.9) U : H −→ L2 (M,dµ) ,

and a real valued function f on M , a.e. finite, so that

1. ψ ∈ Dom(H) if and only if f(·)(Uψ)(·) ∈ L2(M,dµ),

2. if ϕ ∈ U [DomH], then
(
UHU−1

)
(m) = f(m)ϕ(m), ∀m ∈ M .

The above theorem essentially says that H is isometric to the multiplication operator

by f (still denoted by the same symbol) on the space L2(M,dµ), whose domain is given

by

(5.10) Dom(f) :=
{
ϕ ∈ L2(M,dµ) : f(·)ϕ(·) ∈ L2(M,dµ)

}
.

110



5 – Nonlinear Dirac equations on quantum graphs with localized nonlinearities

endowed with the norm

(5.11) ‖ϕ‖2
1 :=

∫

M
(1 + f(m)2)ϕ(m)2dµ(m)

The form domain of f has an obvious explicit definition, as f is a multiplication operator.

Anyway, it can be recovered using real interpolation theory as follows. We follow the

presentation given in [7, 14], to which the reader can refer for more details.

Consider the Hilbert spaces H0 := L2(M,dµ) with the norm ‖x‖0 := ‖x‖L2(dµ), and

H1 := Dom(f). Then H1 ⊂ H0. Let us define the following quadratic version of Peetre’s

K-functional

(5.12) K(t, x) := inf
{

‖x0‖2
0 + t‖x1‖2

1 : x = x0 + x1, x0 ∈ H0, x1 ∈ H1

}
.

The squared norm ‖x‖2
1 is a densely defined quadratic form on H0, represented by

(5.13) ‖x‖2
1 = 〈(1 + f2(·))x, x〉0,

where 〈·, ·〉0 is the scalar product of H0.

By standard arguments (see e.g. [14] or [7, Ch. 7] and references therein) the inter-

mediate spaces H1 ⊂ [H0,H1]θ ⊂ H0, 0 < θ < 1, are given by the elements x ∈ H0 such

that the following quantity is finite:

(5.14)

∫ ∞

0

(
t−θK(t, x)

) dt
t
< ∞.

Then for the spaces Hθ := [H0,H1]θ there holds

‖x‖2
θ = 〈(1 + f2(·))θx, x〉0.

Then for θ = 1
2 one recovers the form domain of the operator f . Now taking H = D and

H = L2(G,C2) with domain as in (2.48), we conclude that the space defined in (5.6) is

exactly the form domain of D, and there holds Y = U−1H 1
2
.

Finally, for the sake of simplicity (and following the literature on the NLD equation),

we denote throughout the form domain by Y , in view of (5.8), and

QD(ψ) =
1

2

∫

G
〈ψ,Dψ〉 dx, and QD(ψ,ϕ) =

1

2

∫

G
〈ψ,Dϕ〉 dx,

with 〈 · , · 〉 denoting the euclidean sesquilinear product of C2, since this does not give rise

to misunderstandings. In particular, as soon as ψ and/or ϕ are smooth enough (e.g., if
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they belong to the operator domain) the previous expressions gain an actual meaning as

Lebesgue integrals.

We also recall that in the sequel we denote duality pairings by 〈 · | · 〉 (the function

spaces involved being clear from the context).

Remark 5.4. Note that the the combination between spectral theorem and interpolation

theory is (to the best of our knowledge) the sole possibility to define the quadratic form,

since also classical duality arguments fail due to the fact that it is not true in general

that H−1/2(G,C2) is the topological dual of H1/2(G,C2) (due to the presence of bounded

edges).

5.2.1 Main results

We can now, state the main results of this chapter. Preliminarily, we give the definition

of bound state of the NLD and of the NLS equations on noncompact metric graphs with

localized nonlinearities.

Definition (Bound states of the NLDE). Let G be a noncompact metric graph with

nonempty compact core K and let p > 2. Then, a bound state of the NLDE with Kirchhoff-

type vertex conditions and nonlinearity localized on K is a spinor 0 /≡ ψ ∈ dom(D) for

which there exists ω ∈ R such that

(5.15) Deψe − χ
K

|ψe|p−2ψe = ωψe, ∀e ∈ E,

with χ
K

the characteristic function of the compact core K.

Definition (Bound states of the NLSE). Let G be a noncompact metric graph with

nonempty compact core K, and let p > 2 and α > 0. Then, a bound state of the NLSE

equation with Kirchhoff vertex conditions and focusing nonlinearity localized on K is a

function 0 /≡ u ∈ H2(G) that satisfies

ue(v) = uf (v), ∀e, f ≻ v, ∀v ∈ K,(5.16)

∑

e≻v

due
dxe

(v) = 0, ∀v ∈ K,(5.17)

where due

dxe
(v) stands for u′

e(0) or −u′
e(ℓe) according to whether xe is equal to 0 or ℓe at v,

and for which there exists λ ∈ R such that

(5.18) − u′′
e − αχ

K
|ue|p−2ue = λue, ∀e ∈ E.
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Remark 5.5. We recall that conditions (5.16)&(5.17) make the laplacian self-adjoint on G
and are called Kirchhoff conditions. We also recall that the parameters ω and λ are usually

referred to as frequencies of the bound states of the NLDE and NLSE (respectively),

whereas α is usually connected to the scattering length of the particles.

Theorem 5.6 (Existence and multiplicity of the bound states [29]). Let G be a noncompact

metric graph with nonempty compact core and let m, c > 0 and p > 2. Then, for every

ω ∈ (−mc2,mc2) there exists infinitely (distinct) pairs of bound states of frequency ω of

the NLDE.

Some comments are in order. First of all, to the best of our knowledge this is the

first rigorous result on the stationary solutions of the nonlinear Dirac equation on metric

graphs.

On the other hand, some relevant differences can be observed with respect to the

Schrödinger case. Bound states of Theorem 5.6 arise (as we will extensively show in the

next section) as critical points of the functional

L(ψ) :=
1

2

∫

G
〈ψ, (D − ω)ψ〉 dx− 1

p

∫

K
|ψ|p dx.

However, due to the spectral properties of D, the kinetic part of L (that is, the quadratic

form associated with D) is unbounded from below even if one constrains the functional

to the set of the spinors with fixed L2-norm, in contrast to the NLS functional. As a

consequence, no minimization can be performed and, hence, the extensions of the direct

methods of calculus of variations developed for the Schrödinger case are useless.

Furthermore, such a kinetic part is also strongly indefinite, so that the functional

possesses a significantly more complex geometry with respect to the NLS case, thus calling

for more technical tools of critical point theory.

Finally, the spinorial structure of the problem as well as the implicit definition of the

kinetic part of the functional, whose domain is not embedded in L∞(G,C2), prevent the

(direct) use of some useful tools developed for the NLS on graphs such as, for instance,

rearrangements and “graph surgery”.

In view of these issues, in the proof of Theorem 5.6 we rather adapted some techniques

from the literature on the NLDE on standard noncompact domains. Anyway, the fact

that we are dealing with a nonlinearity defined only on a compact part of the graph makes

the study of the geometry of the functional a bit more delicate (see Lemma 5.11). For

the same reason, the uniform H1-boundedness needed to study the non relativistic limit

of bound states is achieved in different steps (see Sec.5.4).

The second (and main) result of this section, on the other hand, shows the connection
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between the NLDE and the NLSE, suggested by the physical interpretation of the two

models.

Before presenting the statement, we recall that, by the definition of D, the bound

states obtained via Theorem 5.6 depend in fact on the speed of light c. As a consequence,

they should be meant as bound states of frequency ω of the NLDE at speed of light c.

Theorem 5.7 (Nonrelativistic limit of the bound states [29]). Let G be a noncompact

metric graph with nonempty compact core, and let m > 0, p ∈ (2,6) and λ < 0. Consider

real sequences (cn), (ωn) such that

0 < cn, ωn → +∞,(5.19)

ωn < mc2
n,(5.20)

ωn −mc2
n −→ λ

m
,(5.21)

as n → +∞. If {ψn = (ψ1
n, ψ

2
n)T } is a bound state of frequency ωn of the NLDE (5.15) at

speed of light cn, then up to subsequences there holds

ψ1
n −→ u and ψ2

n −→ 0 in H1(G),

as n → +∞, where u is a bound state of frequency λ of the NLSE (5.18) with α = 2m.

First, we recall that the expression “speed of light cn, with cn → ∞” has to be meant

as if it is bigger and bigger with respect to the proper scale of the phenomenon one is

focusing on. In addition, for any choices for which the proof of Theorem 5.7 holds, there

results that the parameter α in the NLSE solved by the limit function u is equal to 2m.

The main interest of Theorem 5.7 arises from the fact that it suggests that the two

models provided by the NLDE and the NLSE are indistinguishable at those scales where

the relativistc effects become negligible. Hence our result provides a mathematical evidence

to these intuitive guesses.

Moreover, we point out that Theorem 5.7, in contrast to Theorem 5.6, holds only

for a fixed range of power exponents, namely the so-called L2-subcritical case p ∈ (2,6).

However, this is the only range of powers for which multiplicity results are known for the

NLSE (see [111]). On the other hand, these results are parametrized by the L2 norm of

the wave function while Theorem 5.7 is parametrized by the frequency and hence (in some

sense) it presents as a byproduct a new result for the NLSE.

Remark 5.8. We also mention that Theorem 5.6 and Theorem 5.7 can be proved, without

significant modifications, also in the case of more general nonlinearities, by means of several
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ad hoc assumptions. We limit ourselves to the power case in this presentation for the aim

of simplicity.

5.3 Existence of infinitely many bound states

In this Section we prove Theorem 5.6. Note that, since the parameter c here does not play

any role, we set c = 1 throughout the section. In addition, in the sequel (unless stated

otherwise) we always tacitly assume that the mass parameter m is positive, the frequency

ω ∈ (−m,m), the power of the nonlinearity p > 2 and that G is a noncompact metric

graph with nonempty compact core.

5.3.1 Preliminary results

The first point is to prove that the bound states coincide with the critical points of the

C2 action functional L : Y → R defined by

(5.22) L(ψ) =
1

2

∫

G
〈ψ, (D − ω)ψ〉 dx− 1

p

∫

K
|ψ|p dx.

Recall that the spectrum of D is given by

(5.23) σ(D) = (−∞,−m] ∪ [m,+∞).

Proposition. A spinor is a bound state of frequency ω of the NLDE if and only if it is a

critical point of L.

Proof. One can easily see that a bound state of frequency ω of the NLDE is a critical

point of L. Let us prove, therefore, the converse.

Assume that ψ is a critical point of L, namely that ψ ∈ Y and

(5.24) 〈dL(ψ)|ϕ〉 =

∫

G
〈ψ, (D − ω)φ〉 dx−

∫

K
|ψ|p−2〈ψ,ϕ〉 dx = 0, ∀φ ∈ Y.

Now, for any fixed edge e ∈ E, if one chooses

(5.25) φ =



φ1

0


 , with 0 /= φ1 ∈ C∞

0 (Ie)
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(namely, φ1 possesses the sole component φ1
e, which is a test function of Ie), then

ı

∫

Ie

ψ2
e (φ

1
e)

′ dxe =

∫

Ie

[
(m− ω)ψ1

e + χ−K|ψe|p−2ψ1
e

]

︸ ︷︷ ︸
∈L2(Ie)

φ
1
e dxe,

so that ψ2
e ∈ H1(Ie) and an integration by parts yields the first line of (5.15). On the other

hand, simply exchanging the role of φ1 and φ2 in (5.25), one can see that ψ1
e ∈ H1(Ie) and

satisfies the second line of (5.15), as well.

It is then left to prove that ψ fulfills (2.49) and (2.50). First, fix a vertex v of the

compact core and choose

dom(D) ∋ φ =



φ1

0


 , with φ1(v) = 1, φ(v′) = 0 ∀v′ ∈ K, v′ /= v.

Integrating by parts in (5.24) and using (5.15), there results

∑

e≻v

φ1
e(v)ψ2

e(v)± = 0

and, hence, ψ2 satisfies (2.50) (recall the meaning of ψ2
e(v)± explained in Definition 2.3.2).

On the other hand, let v be a vertex of the compact core with degree greater than or equal

to 2 (for vertices of degree 1 (2.49) is satisfied for free). Morevoer, let

dom(D) ∋ φ =




0

φ2


 , with φ2

e1
(v)± = −φ2

e2
(v)±, φ2

e(v) = 0 ∀e /= e1, e2,

where e1 and e2 are two edges incident at v, and φ2
e ≡ 0 on each edge not incident at v.

Again, integrating by parts in (5.24) and using (5.15),

φ2
e1

(v)±ψ1
e1

(v) + φ2
e2

(v)±ψ1
e2

(v) = 0.

Then, repeating the procedure for any pair of edges incident at v one gets (2.49).

Finally, iterating the same arguments on all the vertices one concludes the proof.

Remark 5.9. In addition to Proposition 5.3.1, it is worth mentioning that, due to the

linear behavior outside the compact core, the bound states are known explicitly on the
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half-lines. Pecisely, if e ∈ E is a half-line with starting point v, then

(5.26)





ψ1
e(xe) = −ı ψ1

e(v)

√
m+ ω

m− ω
e−

√
m2−ω2xe

ψ2
e(xe) = ψ2

e(v)e−
√
m2−ω2xe

, xe ∈ [0,∞).

The second preliminar step is to prove that the functional L possesses a so-called

linking geometry ([54, 114]), since this is the main tool in order to prove the existence of

Palais-Smale sequences.

Recall that, according to (5.23) we can decompose the form domain Y as the orthogonal

sum of the positive and negative spectral subspaces for the operator D, i.e.

Y = Y + ⊕ Y −.

As a consequence, every ψ ∈ Y can be written as ψ = P+ψ + P−ψ =: ψ+ + ψ−, where

P± are the orthogonal projectors onto Y ±. In addition one can find an equivalent (but

more convenient) norm for Y , i.e.

‖ψ‖ := ‖
√

|D|ψ‖L2 , ∀ψ ∈ Y.

Remark 5.10. Borel functional calculus for self-ajoint operators [103, Thm. VIII.5] allows

to define the operators |D|α, α > 0, and more general operators of the form f(D), where

f is a Borel function on R.

In view of the previous remarks and using again the Spectral theorem, the action

functional (5.22) can be rewritten as follows

(5.27) L(ψ) =
1

2
(‖ψ+‖2 − ‖ψ−‖2) − ω

2

∫

G
|ψ|2 − 1

p

∫

K
|ψ|p dx,

which is the best form in order to prove that L has in fact a linking geometry (see e.g.

[114, Sec. II.8]).

Lemma 5.11. For every N ∈ N there exist R = R(N, p) > 0 and an N -dimensional space

ZN ⊂ Y + such that

(5.28) L(ψ) 6 0, ∀ψ ∈ ∂MN ,

where

∂MN =
{
ψ ∈ MN : ‖ψ−‖ = R or ‖ψ+‖ = R

}
.
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and

(5.29) MN :=
{
ψ ∈ Y : ‖ψ−‖ 6 R and ψ+ ∈ ZN with ‖ψ+‖ 6 R

}
.

Proof. Let e be a bounded edge, associated with the segment Ie = [0, ℓe], and let V be the

space of the spinors

η =



η1

0


 , with η1 ∈ C∞

0 (Ie),

which is clearly a subset of dom(D) and hence of Y . Moreover, a simple computation

shows that

(5.30)

∫

G
〈η,Dη〉 dx = m

∫

G
|η1|2 dx

and thus, in view of (5.27), if η1 /= 0 then η+ /= 0.

Assume first that dimV + = ∞, where V + = V ∩ Y +. For every fixed N ∈ N, choose

N linearly independent spinors η+
1 , ..., η

+
N ∈ V + and set ZN := span{η+

1 , ..., η
+
N}. As a

consequence, if ψ ∈ ∂MN , then ψ = ϕ+ ξ with ϕ ∈ Y − and ξ ∈ ZN , so that

L(ψ) = L(ϕ+ ξ) =
1

2

(
‖ξ‖2 − ‖ϕ‖2

)
− 1

p

∫

K
|ϕ+ ξ|p dx.

It is clear that, if ‖ϕ‖ > ‖ξ‖, then

L(ϕ+ ξ) 6 −
∫

K
|ϕ+ ξ|p dx 6 0

If, on the contrary, ‖ξ‖ > ‖ϕ‖, then some further effort is required. Since ψ ∈ ∂MN ,

‖ξ‖ = R and thus

L(ϕ+ ξ) 6
R2

2
− 1

p

∫

K
|ϕ+ ξ|p dx.

From the Hölder inequality

(5.31)

∫

K
|ϕ+ ξ|2 6 ℓ

p−2
p

(∫

K
|ϕ+ ξ|p dx

) 2
p

(recall that ℓ = |K|) and hence

(5.32) L(ϕ+ ξ) 6
R2

2
− ℓ

p(2−p)
4

p

(∫

K
|ϕ+ ξ|2 dx

) p
2

.

Now, by definition, ξ =
∑N
j=1 λjη

+
j , for some λj ∈ C. On the other hand, denoting by η−

j
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the spinors such that η−
j + η+

j =: ηj ∈ V , since ϕ ∈ Y −, there results that ϕ = ϕ⊥ + χ,

with χ :=
∑N
j=1 λjη

−
j and ϕ⊥ the orthogonal complement of χ in Y −. Therefore, as ϕ⊥ is

orthogonal to χ and ξ in L2(G,C2),

(5.33)

∫

G
|ϕ+ ξ|2 dx =

∫

G
|ϕ⊥|2 dx+

∫

G
|ξ + χ|2 dx;

while, as ξ + χ =
∑N
j=1 λjηj vanishes outside I ⊂ K,

(5.34)

∫

G
|ϕ+ ξ|2 dx =

∫

G\K
|ϕ+ ξ|2 dx+

∫

K
|ϕ+ ξ|2 dx =

∫

G\K
|ϕ⊥|2 dx+

∫

K
|ϕ+ ξ|2 dx.

Combining (5.33) and (5.34) we get

∫

K
|ϕ+ ξ|2 dx =

∫

K
|ϕ⊥|2 dx+

∫

G
|χ+ ξ|2 dx

and, plugging into (5.32),

(5.35)

L(ϕ+ξ) 6
R2

2
− ℓ

p(2−p)
4

p

(∫

K
|ϕ⊥|2 dx+

∫

G
|χ+ ξ|2 dx

) p
2

6
R2

2
− ℓ

p(2−p)
4

p

(∫

G
|χ+ ξ|2 dx

) p
2

.

Then, since χ and ξ are orthogonal by construction and χ+ξ belongs to a finite dimensional

space (so that its L2-norm is equivalent to the Y -norm), there exists C > 0 such that

L(ϕ+ ξ) 6
R2

2
− C

(
‖χ‖2 + ‖ξ‖2

) p
2
6
R2

2
− C‖ξ‖p =

R2

2
− CRp

and thus, for R large, the claim is proved.

Finally, consider the case dimV + < ∞. As dimV = ∞, we have dimV − = ∞. On the

other hand, there holds σ2V
− ⊂ Y + and that σ2V

+ ⊂ Y −, where σ2 is the Pauli matrix

σ2 =




0 −i

i 0


 ,

as this matrix anticommutes with the Dirac operator. Therefore (also recalling that σ2 in

unitary), if one defines Ṽ = σ2V , which consists of spinors of the form.

η =




0

η2


 , with η2 ∈ C∞

0 (Ie),

so that Ṽ + = σ2V
− and Ṽ − = σ2V

+, and then arguing as before one can easily prove
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(5.28).

Lemma 5.12. There exist r, ρ > 0 such that

inf
S+

r

L > ρ > 0,

where

(5.36) S+
r :=

{
ψ ∈ Y + : ‖ψ‖ = r

}
.

Proof. The proof is an immediate consequence of the definition of L given in (5.22), in

view of the fact that p > 2 and ω ∈ (−m,m).

Finally, we mention that it will be useful in the sequel to use quantities that incorpo-

rates the frequency ω ∈ (−m,m). Indeed, note that as the spectrum of the (self-adjoint)

operator (D − ω) is given by

(5.37) σ(D − ω) = (−∞,−m− ω] ∪ [m− ω,+∞)

(and as |ω| < m), one can define an equivalent norm

(5.38) ‖ψ‖ω := ‖
√

|D − ω|ψ‖L2 , ∀ψ ∈ Y,

and the two spectral projectors P±
ω on the positive/negative subspace of (D − ω). Then

there holds:

(5.39) ψ = P+
ω ψ + P−

ω ψ ∀ψ ∈ Y.

As a consequence (5.27) can be also written as

L(ψ) =
1

2
(‖ψ+‖2

ω − ‖ψ−‖2
ω) − 1

p

∫

K
|ψ|p dx.

5.3.2 Existence and multiplicity of the bound states

The aim of this section is to prove, for p > 2, the existence of infinitely many (pairs of)

bound states of the NLDE for any frequency ω ∈ (−m,m). The techniques used below

(such as Krasnoselskij genus, pseudo-gradient flow, . . . ) are well-known in the literature

in their abstract setting and can be found for instance in [102, 114] (see also [54] for an

application to nonlinear Dirac equations).
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Recall the definition of Krasnoselskij genus for the subsets of Y .

Definition. Let A be the family of sets A ⊂ Y \{0} such that A is closed and symmetric

(namely, ψ ∈ A ⇒ −ψ ∈ A). For every A ∈ A, the genus of A is the natural number

defined by

γ[A] := min{n ∈ N : ∃ϕ : A → R
n\{0}, ϕ continuous and odd}.

If no such ϕ exists, then one sets γ[A] = ∞.

In addition, one easily sees that the action functional L is even, i.e.

L(−ψ) = L(ψ), ∀ψ ∈ Y.

As a consequence, it is well known (see, e.g., [102, Appendix]) that there exists an odd

pseudo-gradient flow (ht)t∈R
associated with the functional L, which satisfies some useful

properties. This construction is based on well-known arguments and, thus, here we only

present an outline of the proof, refering the reader to [102, Appendix] and [114, Chapter

II] for details.

Since the interaction term is concentrated on a compact set K ⊂ G, the compactness

of Sobolev embeddings imply that ht can be chosen of the following form

ht = Λt +Kt : [0,∞) × Y −→ Y,

where Λt is an isomorphism and Kt is a compact map, for all t > 0. Moreover, one can

also prove that

Λt : Y − ⊕ Y + −→ Y − ⊕ Y +, ∀t ∈ R,

that is, Y ± are invariant under the action of Λt for all t > 0.

Fix, then, ε > 0 such that ρ − ε > 0. Exploiting suitable cut-off functions on the

pseudogradient vector field, one can get that, for all t > 0,

(5.40) ht(ψ) = ψ, ∀ψ ∈ {ϕ ∈ Y : L(ϕ) < ρ− ε},

namely, the level sets of the action below ρ− ε are not modified by the flow.

In view of these remarks, we can state the following lemma.

Lemma 5.13. Let r, ρ > 0 be as in Lemma 5.12. Then, for every N ∈ N, there results

(5.41) γ[ht(S
+
r ) ∩ MN ] > N, ∀t > 0,
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with S+
r and MN defined by (5.36) and (5.29), respectively.

Proof. For each fixed ψ ∈ Y , the function t → L ◦ ht(ψ) is increasing. Then Lemma 5.11

implies that

ht(S
+
r ) ∩ ∂MN = ∅, ∀t > 0.

Note, also, that by the group property of the pseudogradient flow

(ht)
−1 = h−t = Λ−t +K−t,

so that

ht(S
+
r ) ∩ MN = ht

(
S+
r ∩ h−t (MN )

)
.

Then, a degree-theory argument (see e.g. [114, Section II.8]) shows that S+
r ∩h−t (MN ) /=

∅.

On the other hand, by (5.40) and Lemma 5.11, it is easy to see that

ht(S
+
r ) ∩ MN = ht(S

+
r ) ∩ (Y − ⊕ ZN ),

and thus

(5.42) ht(S
+
r ) ∩ MN = ht

(
S+
r ∩ (Y − ⊕ Z ′

N +K−t(Y − ⊕ ZN )
))
,

where Z ′
N := Λ−t(ZN ) is a N -dimensional subspace of Y + and where we used the fact that

Λs is an isomorphism for all s ∈ R and preserves Y ±. Now, since ht(0) = 0 and Λt(0) = 0,

we have Kt(0) = 0. As a consequence

Y − ⊕ Z ′
N ⊂ (

Y − ⊕ Z ′
N

)
+K−t(Y − ⊕ ZN ),

and hence, exploiting (5.42) and the monotonicity of the genus,

γ
[
ht(S

+
r ) ∩ MN

]
> γ

[
S+
r ∩ (Y − ⊕ Z ′

N )
]
> γ

[
S+
r ∩ Z ′

N

]
= N,

as S+
r ∩ Z ′

N ≃ SN is homeomorphic to an N -dimensional sphere.

Lemma 5.41 has an immediate consequence, which provides the existence of the Palais-

Smale sequences at the min-max levels.

Corollary 5.14. Let the assumptions of Lemma 5.13 be satisfied and define, for any
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N ∈ N,

(5.43) αN := inf
X∈FN

sup
ψ∈X

L(ψ),

with

(5.44) FN :=
{
X ∈ A : γ[ht(S

+
r ) ∩X] > N, ∀t > 0

}
.

Then, for every N ∈ N, there exists a Palais-Smale sequence (ψn) ⊂ Y at level αN , i.e.





L(ψn) −→ αN

dL(ψn)
Y ∗

−−→ 0,

as n −→ ∞.

In addition, there results

αN1 6 αN2 , ∀N1 < N2,(5.45)

0 < ρ 6 αN 6 sup
MN

L < +∞, ∀N ∈ N.

Proof. The existence of a Palais-Smale sequence for L at level αN follows by standard

deformation arguments, and then we only sketch the proof (see [102, 114] for details).

Suppose, by contradiction, that there is no Palais-Smale sequence at level αN . Then,

since L ∈ C1, there exist δ, ε > 0 such that

(5.46) ‖dL(ψ)‖ > δ, ∀ψ ∈ {αN − 2ε < L < αN + 2ε}.

In addition, from (5.43) there exists Xε ∈ FN such that

sup
ψ∈Xε

L(ψ) < αN + ε,

and hence, combining with (5.46), we can see that there exists T > 0 such that

L (h−T (Xε)) ⊆ {L < αN − ε}.

As a consequence, if one shows that h−T (Xε) ∈ FN , then obtains a contradiction. Note,

also, that h−T (Xε) ∈ A as hs is odd, so that it suffices to prove that

γ
[
ht
(
S+
R

)
∩ h−T (Xε)

]
> N.
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First, observe that

ht
(
S+
r

)
∩ h−T (Xε) = h−T

(
ht+T

(
S+
r

)
∩Xε

)
,

and then the monotonicity of the genus gives

γ
[
ht
(
S+
r

)
∩ h−T (Xε)

]
> γ

[
ht+T

(
S+
r

)
∩Xε

]
> N.

Therefore, h−T (Xε) ∈ FN and this entails that

αN 6 sup
ψ∈h−T (Xε)

L(ψ) < αN − ε,

which is a contradiction.

Finally, the first line of (5.45) follows again by monotonicity of the genus, whereas the

second one is a consequence of Lemma 5.12 and of the fact that L maps bounded sets onto

bounded sets.

Remark 5.15. It is easy to see that there are no non-trivial critical points for the action

functional L at levels α 6 0. Indeed, let ψ ∈ Y be such that dL(ψ) = 0 and L(ψ) = α. A

simple computation gives (
1

2
− 1

p

)∫

K
|ψ|p = α.

This immediately implies that α > 0. Suppose that α = 0, then ψ must vanish on the

compact core K. By (2.49) it follows that ψ1
e(v) = 0,∀v ∈ K,∀e ∈ E and thus the first

equation in (5.26) implies that ψ1 ≡ 0 on G. As a consequence, since ψ satisfies a linear

Dirac equation on halflines, rewriting the equation in terms of spinor components (as in

(5.68),(5.69)) one sees that the second component ψ2 must be constant and then zero, as

the solution ψ is square integrable.

Now, before giving the proof of Theorem 5.6, we discuss the compactness properties

of Palais-Smale sequences.

Proposition. For every α > 0, Palais-Smale sequences at level α are bounded in Y .

Proof. Let (ψn) be a Palais-Smale sequence at level α > 0 and assume by contradiction

that, up to subsequences,

‖ψn‖ω −→ ∞, as n → ∞.
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Simple computations show that, for n large,

(
1

2
− 1

p

)∫

K
|ψn|p dx = L(ψn) − 1

2
〈dL(ψn)|ψn〉 6 C + ‖ψn‖ω.

and (recalling the definition of P±
ω given by (5.39))

∣∣∣〈dL(ψn)|P+
ω ψn〉

∣∣∣ =

∣∣∣∣
∫

G
〈P+

ω ψn, (D − ω)ψn〉 dx−
∫

K
|ψn|p−2〈ψn, P+

ω ψn〉 dx
∣∣∣∣ 6 ‖ψn‖ω.

As a consequence, using the Hölder inequality and (5.7), we get

∣∣∣∣
∫

G
〈P+

ω ψn, (D − ω)ψn〉 dx
∣∣∣∣ 6 ‖ψn‖ω +

∫

K
|ψn|p−1|P+

ω ψn| dx

6 ‖ψn‖ω +

(∫

K
|ψn|p dx

) p−1
p
(∫

K
|P+
ω ψn|p dx

) 1
p

6 C (1 + ‖ψn‖ω)
1− 1

p ‖ψn‖ω.

(5.47)

On the other hand, by the definition of P±
ω , one sees that

‖P+
ω ψn‖2

ω =

∫

G
〈P+

ω ψn, (D − ω)P+
ω ψn〉 dx =

∫

G
〈P+

ω ψn, (D − ω)ψn〉 dx

and, combining with (5.47),

‖P+
ω ψn‖2

ω 6 C (1 + ‖ψn‖ω)
1− 1

p ‖ψn‖ω.

Arguing as before, one also finds that

‖P−
ω ψn‖2

ω 6 C (1 + ‖ψn‖ω)
1− 1

p ‖ψn‖ω

and hence

‖ψn‖2
ω 6 (C + ‖ψn‖ω)

1− 1
p ‖ψn‖ω,

which is a contradiction if ‖ψn‖ω → ∞, since 1 − 1
p ∈ (1

2 ,1) as p > 2.

Lemma 5.16. For every α > 0, Palais-Smale sequences at level α are pre-compact in Y .

Proof. Let (ψn) be a Palais-Smale sequence at level α > 0. From Proposition 5.3.2, it is

bounded and then, up to subsequences,

(5.48)
ψn ⇁ ψ, in Y,

ψn −→ ψ, in Lp(K,C2).
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On the other hand, by definition

o(1) = 〈dL(ψn)|P+
ω (ψn − ψ)〉

=

∫

G
〈P+

ω (ψn − ψ), (D − ω)ψn〉 dx−
∫

K
|ψn|p−2〈ψn, P+

ω (ψn − ψ)〉 dx,
(5.49)

and (again) by Hölder inequality and (5.48)

∣∣∣∣
∫

K
|ψn|p−2〈ψn, P+

ω (ψn − ψ)〉 dx
∣∣∣∣ 6

∫

K
|ψn|p−1|P+

ω ψn − ψ)| dx

6 ‖ψn‖p−1
Lp(K,C2)‖P

+
ω (ψn − ψ)‖Lp(K,C2) = o(1).

As a consequence, combining with (5.49),

(5.50)

∫

G
〈P+

ω (ψn − ψ), (D − ω)ψn〉 dx = o(1).

In addition, since (ψn − ψ) ⇁ 0 in Y , we get

∫

G
〈P+

ω (ψn − ψ), (D − ω)ψ〉 dx = o(1)

and, summing with (5.50), there results

‖P+
ω (ψn − ψ)‖2

ω =

∫

G
〈(D − ω)P+

ω (ψn − ψ), P+
ω (ψn − ψ)〉 dx = o(1).

Since, analogously, one can prove that

‖P−
ω (ψn − ψ)‖2

ω =

∫

G
〈(D − ω)P−

ω (ψn − ψ), P−
ω (ψn − ψ)〉 dx = o(1),

we obtain

‖ψn − ψ‖2
ω = o(1),

which concludes the proof.

Finally, we have all the ingredients in order to prove Theorem 5.6.

Proof of Theorem 5.6. By Corollary 5.14, for every N ∈ N, there exists at least a Palais-

Smale sequence at level αN > 0 (defined by (5.43)) and, by Proposition 5.16, it converges

to a critical point of L, which is via Proposition 5.3.1 a bound state of the NLDE.

Now, if the inequalities in (5.45) are strict, then one immediately obtains the claim.

However, if αj = αj+1 = · · · = αj+q, for some q > 1, then the claim follows by [13,
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Proposition 10.8] as the properties of the genus imply the existence of infinitely many

critical points at level αj .

5.4 Nonrelativistic limit of solutions

This section is devoted to the proof of Theorem 5.7. We prove that there exists a wide

class of sequences (cn), (ωn) for which the nonrelativistic limit holds. More precisely, we

show that with such a choice of parameters the stationary solutions of NLDE converge,

as cn → +∞, to the stationary solutions of a Schrödinger equation with the same type

of nonlinearity. The strategy that we use is the one developed by M.J. Esteban and

E. Séré in [50] for the case of Dirac-Fock equations. However, the differences between

both the equations and the frameworks discussed call for some major modifications. In

particular, while in [50] one of the main point is the estimate of the sequence of the

Lagrange multipliers of bound states with fixed L2-norm, here the major point (since

there is no constraint) is to prove that the limit is non-trivial. Moreover, we also have to

distinguish different cases according to the exponent p ∈ (2,6) in the nonlinearity.

Notice that since in this section the role of the (sequence of the) speed of light is crucial,

we cannot set any more c = 1. As a consequence, all the previous results has to be meant

with m replaced by mc2
n (and ω replaced by ωn). In addition, we denote by Dn the Dirac

operator with c = cn and with Ln the action functional with D = Dn and ω = ωn. There

are clearly many other quantities which depend on the index n (such as, for instance, the

form domain Y , ZN , . . . ), but since such a dependence is not crucial we omit it for the

sake of simplicity. In the following we will always make the assumptions (5.19),(5.20) and

(5.21) on the parameters (cn), (ωn). In particular, those assumptions immediately imply

that

(5.51) 0 < C1 6 mc2
n − ωn 6 C2.

From Theorem 5.6, for every fixed N ∈ N, there exist at least a pair of bound states of

frequency ωn and at level αnN of the NLDE at speed of light cn. Hence, in what follows by

(ψn) we denote a sequence of bound states corresponding to those values of parameters.

Since all the following results hold for every fixed N ∈ N, the dependence on N is

understood throughout (unless stated otherwise).

5.4.1 H
1-boundedness of the sequence of the bound states

The first step is to prove that the sequence (ψn) defined above is bounded in Lp(K,C2).
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Lemma 5.17. Under the assumptions (5.19), (5.20) and (5.21), the sequence (ψn) is

bounded in Lp(K,C2) (uniformly with respect to n), as well as the associated minimax

levels (αnN ).

Proof. First, recalling (5.44) and following the notation of the proof of Lemma 5.11, one

sees that

αnN = inf
X∈FN

sup
ψ∈X

Ln(ψ) 6 sup
Y −⊕ZN

Ln.

From, the proof of Lemma 5.11, given an orthonormal basis η+
j , j = 1, ..., N , of ZN , every

spinor ψ ∈ Y − ⊕ ZN can be decomposed as

ψ = ϕ⊥ +
N∑

j=1

λjηj , λ1, . . . , λN ∈ C,

with ϕ⊥ ∈ Y − orthogonal to ζ :=
∑N
j=1 λjηj ∈ V . Arguing as in (5.31)–(5.35) we get

(5.52) Ln(ψ) 6
1

2

∫

G
〈ζ, (Dn − ωn)ζ〉 dx− C

(∫

G
|ζ|2 dx

) p
2

.

On the other hand, exploiting (5.30) and (5.51), there results

(5.53)

∫

G
〈ζ, (Dn − ωn)ζ〉 dx = (mc2

n − ωn)

∫

G
|ζ|2 dx 6 C

∫

G
|ζ|2 dx.

Hence, combining (5.52) and (5.53),

Ln(ψ) 6 C

∫

G
|ζ|2 dx


1 −

(∫

G
|ζ|2 dx

) p−2
2




and thus, since V does not depend on n and since p > 2

αnN 6 max
Y −⊕ZN

Ln 6 C < +∞, ∀n ∈ N.

Finally, as ψn is a critical point of the action functional,

αnN = Ln(ψn) − 1

2
〈dLn(ψn), ψn〉 =

(
1

2
− 1

p

)∫

K
|ψn|p,

which concludes the proof.

We can now prove that boundedness on Lp(K,C2) entails boundedness on L2(G,C2).
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Lemma 5.18. Under the assumptions (5.19), (5.20) and (5.21), the sequence (ψn) is

bounded in L2(G,C2) (uniformly with respect to n).

Proof. For the sake of simplicity, denote by ψ± the projections of the spinor ψ ∈ Y given

by (5.39) (with ω = ωn). As the spectrum of the operator Dn − ωn is

(5.54) σ(Dn − ωn) = (−∞,−mc2
n − ωn] ∪ [mc2

n − ωn,+∞)

and ψn satisfies (5.15) (with c = cn and ω = ωn), Hölder inequality yields

0 6

∫

G
〈ψ+

n , (Dn − ωn)ψ+
n 〉 dx =

∫

G
〈ψ+

n , (Dn − ωn)ψn〉 dx 6

∫

K
|ψn|p−1|ψ+

n | dx

6

(∫

K
|ψn|p dx

) p−1
p
(∫

K
|ψ+
n |p dx

) 1
p

6 C

∫

K
|ψn|p dx

for some C > 0, where in the last inequality we used the fact that the decomposition

Y = Y +
ωn

⊕ Y −
ωn

induces an analogous decomposition on Lp(K), that is

‖ψ±‖Lp(K,C2) 6 Cp‖ψ‖Lp(K,C2), ∀ψ ∈ Y

(see [43]). Moreover, using (5.54) one can prove that

∫

G
〈ψ+

n , (Dn − ωn)ψ+
n 〉 dx > (mc2

n − ωn)

∫

G
|ψ+
n |2 dx.

Then, combining the above observations with Lemma 5.17 and (5.51), there results

‖ψ+
n ‖2

L2(G,C2) 6M < ∞.

An analogous argument gives

(mc2
n + ωn)‖ψ−

n ‖2
L2(G,C2) 6M < ∞

and then

‖ψ−
n ‖L2(G,C2) = O

(
1

cn

)
, as n → +∞,

which concludes the proof.

129



5 – Nonlinear Dirac equations on quantum graphs with localized nonlinearities

Finally, we can deduce boundedness inH1(G,C2). Preliminarily, we recall two Gagliardo-

Nirenberg inequalities for spinors that can be easily deduced from those on functions (see

e.g. [112, Proposition 2.6]). For every p > 2, there exists Cp > 0 such that

(5.55) ‖ψ‖pLp(G,C2) 6 Cp‖ψ‖
p
2

+1

L2(G,C2)‖ψ
′‖

p
2

−1

L2(G,C2), ∀ψ ∈ H1(G,C2).

Moreover, there exists C∞ > 0 such that

(5.56) ‖ψ‖L∞(G,C2) 6 C∞‖ψ‖
1
2

L2(G,C2)‖ψ
′‖

1
2

L2(G,C2), ∀ψ ∈ H1(G,C2).

Lemma 5.19. Let p ∈ (2,6). Under the assumptions (5.19), (5.20) and (5.21), the se-

quence (ψn) is bounded in H1(G,C2) (uniformly with respect to n).

Proof. First, recall that, since ψn are bound states they satisfy (edge by edge)

(5.57) Dnψn = ωnψn + χ
K

|ψn|p−2ψn.

The L2(G,C2)-norm squared of the right-hand side of (5.57) reads

(5.58) ‖ωnψn+κ|ψn|p−2ψn‖2
L2(G,C2) = ω2

n‖ψn‖2
L2(G,C2)+

∫

K
|ψn|2(p−1) dx+2ωn

∫

K
|ψn|p dx.

Let us estimate the last two integrals. Using (5.56), Lemma 5.17 and Lemma 5.18, we get

∫

K
|ψn|2(p−1) =

∫

K
|ψn|p+(p−2) dx 6 ‖ψn‖p−2

L∞(G,C2)

∫

K
|ψn|p dx

6 Cp−2
∞ ‖ψn‖

p
2

+1

L2(G,C2)‖ψ
′
n‖

p
2

−1

L2(G,C2) 6 C‖ψ′
n‖

p
2

−1

L2(G,C2).

(5.59)

On the other hand, by (5.55) and Lemma 5.18

(5.60)

∫

K
|ψn|p dx 6

∫

G
|ψn|p dx 6 Cp‖ψn‖

p
2

+1

L2(G,C2)‖ψ
′
n‖

p
2

−1

L2(G,C2) 6 C‖ψ′
n‖

p
2

−1

L2(G,C2).

Since an easy computation shows that

(5.61) ‖Dnψn‖2
L2(G,C2) = c2

n‖ψ′
n‖2

L2(G,C2) +m2c4
n‖ψn‖2

L2(G,C2),

combining (5.61), (5.58), (5.59) and (5.60), we obtain that

c2
n‖ψ′

n‖2
L2(G,C2) +m2c4

n‖ψn‖2
L2(G,C2) 6 ω2

n‖ψn‖2
L2(G,C2) + C(1 + ωn)‖ψ′

n‖
p
2

−1

L2(G,C2),
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so that, from a repeated use of (5.19) and (5.20),

‖ψ′
n‖

6−p
2

L2(G,C2) 6 Cm.

Hence, the claim follows by the assumption p < 6.

Remark 5.20. The above results also hold if (5.21) is replaced by the weaker assumption

(5.51).

5.4.2 Passage to the limit

The last step consists in proving that the first components of the sequence of bound states

(ψn) converges to a bound state of the NLSE, while the second component converges to

zero.

For the sake of simplicity we assume throughout that the parameters p and λ are fixed

and fulfill

p ∈ (2,6) and λ < 0.

In addition, we set

(5.62) un := ψ1
n and vn := ψ2

n, ∀n ∈ N,

and, given the two sequences (cn) and (ωn) introduced in the previous section (which

satisfy (5.19), (5.20),(5.21) and (5.51)), we define

(5.63) an := (mc2
n − ωn)bn and bn :=

mc2
n + ωn
c2
n

, ∀n ∈ N.

Clearly, (5.51) implies that

(5.64) bn −→ 2m, as n → ∞

while (5.21) gives

(5.65) an −→ −λ, as n → ∞.

We also recall that a function w : G → C is a bound state of the NLSE with fixed

frequency λ and α = 2m if and only if it is a critical point of the C2 functional J : H → R

defined by

J(w) :=
1

2

∫

G
|w′|2 dx− 2m

p

∫

K
|w|p dx− λ

2

∫

G
|w|2 dx,
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where

H := {w ∈ H1(G) : (5.16) holds}

with the norm induced by H1(G) (this can be easily proved arguing as in [3, Proposition

3.3]). It is also worth mentioning that a Palais-Smale sequence for J is a sequence (wn) ⊂
H such that dJ(wn) → 0 in H∗, namely

sup
‖φ‖H61

〈dJ(wn)|φ〉 → 0, as n → ∞.

Furthermore, the following property holds

Lemma 5.21. Let (wn) be a bounded sequence in H and, for every n, define the linear

functional An(wn) : H → R

〈An(wn)|φ〉 :=

∫

G
w′
nφ

′
dx− bn

∫

K
|wn|p−2wnφdx+ an

∫

G
wnφdx.

Then, (wn) is a Palais-Smale sequence for J if and only if

(5.66) sup
‖φ‖H61

〈An(wn)|φ〉 → 0, as n → ∞.

Proof. The proof is trivial noting that

〈An(wn) − dJ(wn)|φ〉 = −(bn −m)

∫

K
|wn|p−2wnφdx+ (an + λ)

∫

G
wnφdx

and exploiting (5.64), (5.65) and the fact that (wn) is bounded in H.

The strategy to prove Theorem 5.7 is the following:

(i) prove that the sequence (vn) converges to 0 in H1(G);

(ii) prove that the sequence (un) is bounded away from zero in H1(G);

(iii) prove that the sequence (un) satisfies (5.66), as by Lemmas 5.19 and 5.21, this entails

that it is a Palais-Smale sequence for J ;

(iv) prove that the sequence (un) converges (up to subsequences) in H to a function u,

which is then a bound state of the NLSE with frequency λ < 0.

We observe that we always tacitly use in the following the fact that, since each ψn is

a bound state of the NLDE, then un ∈ H, whereas vn /∈ H. In addition, we highlight

that, in the sequel, we often use a “formal” commutation between the differential operator
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(·)′ and χ
K

. Clearly, this is just a compact notation (which avoids edious edge by edge

computations) that recalls the different form of the NLDE on the bounded edges due to

the presence of the localized nonlinearity.

As a first step, we prove item (i). As a byproduct of the proof, we also find an estimate

of the speed of convergence of (vn).

Lemma 5.22. The sequence (vn) converges to 0 in H1(G) as n → ∞. More precisely,

there holds

(5.67) ‖vn‖H1(G) = O
(

1

cn

)
, as n → ∞.

Proof. As (ψn) is a bound state of the NLDE, rewriting the equation in terms of its

components (5.62)

−ıcnv′
n + (mc2

n − ωn)un = χ
K

(|un|2 + |vn|2)
p−2

2 un,(5.68)

−ıcnu′
n − (mc2

n + ωn)vn = χ
K

(|un|2 + |vn|2)
p−2

2 vn.(5.69)

Dividing (5.68) by cn and using (5.51) and Lemma 5.19, we have

(5.70) ‖v′
n‖L2(G) = O

(
1

cn

)
.

On the other hand, dividing (5.69) by c2
n and using again Lemma 5.19, there results

∥∥∥∥∥−
ı

cn
u′
n − (mc2

n + ωn)

c2
n

vn

∥∥∥∥∥
L2(G)

= O
(

1

c2
n

)

and hence

(mc2
n + ωn)

c2
n

‖vn‖L2(G) 6

∥∥∥∥∥−
ı

cn
u′
n − (mc2

n + ωn)

c2
n

vn

∥∥∥∥∥
L2(G)

+
1

cn

∥∥u′
n

∥∥
L2(G) = O

(
1

cn

)
.

Finally, combining with (5.70), one obtains (5.67).

Item (ii) requires some further effort.

Lemma 5.23. There exists µ > 0 such that

(5.71) inf
n∈N

‖un‖H1(G) > µ > 0.

133



5 – Nonlinear Dirac equations on quantum graphs with localized nonlinearities

Proof. Assume, by contradiction, that (5.71) does not hold, namely that, up to subse-

quences,

(5.72) lim
n→∞ ‖un‖H1(G) = 0.

Dividing by cn and rearranging terms, (5.68) yields

(5.73) − ıv′
n =

1

cn

[
χ

K

(
|un|2 + |vn|2

) p−2
2 + (ωn −mc2

n)

]
un,

and then, using (5.51), we find

(5.74)

∫

G
|v′
n|2 dx .

1

c2
n

∫

G
|un|2 dx.

Moreover, (5.69) can be rewritten as

(5.75) vn


1 + χ

K

(|un|2 + |vn|2)
p−2

2

mc2
n + ωn


 = − ıcn

mc2
n + ωn

u′
n

and, since (again by (5.51)) (mc2
n + ωn) ∼ c2

n, there results

∫

G
|vn|2 dx .

1

c2
n

∫

G
|u′
n|2 dx,

so that, combining with (5.74),

(5.76) ‖vn‖H1(G) .
1

cn
‖un‖H1(G).

Note that (5.75) also shows that un is of class C1 on each edge.

Now, plugging (5.75) into (5.73), one obtains

(5.77) − u′′
n + anun = − ıχ

K

cn

[(
|un|2 + |vn|2

) p−2
2 vn

]′
+ χ

K
bn

[(
|un|2 + |vn|2

) p−2
2 un

]
.

Clearly, (5.77) is to be meant in a distributional sense. However, observing that it can be

written as

−
[
u′
n − ıχ

K

cn

(
|un|2 + |vn|2

) p−2
2 vn

]′
= −anun + χ

K
bn

[(
|un|2 + |vn|2

) p−2
2 un

]
,

134



5 – Nonlinear Dirac equations on quantum graphs with localized nonlinearities

and that consequently the l.h.s. belongs to L2(G) and is continuous edge by edge (re-

calling also that un is of class C1 edge by edge), the following multiplications by un and

integrations (by parts) can be proved to be rigorous in the Lebesgue sense.

Therefore, multiplying (5.77) by un and integrating (by parts) over G, at the l.h.s. we

obtain ∫

G
|u′
n|2 dx+

∑

v∈K

(
∑

e≻v

un,e(v)
dun,e
dxe

(v)

)

︸ ︷︷ ︸
boundary terms

+an

∫

G
|un|2 dx

where we denote by un,e (and vn,e) the restriction of un (and vn) to the edge (represented

by) Ie, and d
dxe

are to be meant as in Definition 5.2.1. Using (5.69) and the fact that un

is of class C1 (edge by edge), we find that

∑

e≻v

un,e(v)
dun,e
dxe

(v) =

= − ı

cn

∑

e≻v

un,e(v)

(
(mc2

n + ωn)vn,e(v)± +
(
|un,e(v)|2 + |vn,e(v)|2

) p−2
2 vn,e(v)±

)

= − ı

cn

∑

e≻v

un,e(v)(mc2
n + ωn)vn,e(v)±

︸ ︷︷ ︸
=:A

− ı

cn

∑

e≻v

un,e(v)vn,e(v)±
(
|un,e(v)|2 + |vn,e(v)|2

) p−2
2

(vn,e(v)± meant as in Definition 2.3.2). Moreover, as un and vn satisfy the vertex conditions

(2.49) and (2.50) (respectively), one has

A = − ı(mc2
n + ωn)

cn
un(v)

∑

e≻v

vn,e(v)± = 0,

while, for any v ∈ K and e ≻ v, there results

∣∣∣∣∣un,e(v)vn,e(v)±
(
|un,e(v)|2 + |vn,e(v)|2

) p−2
2

∣∣∣∣∣ 6 ‖|un|2 + |vn|2‖
p−2

2

L∞(G)‖un‖L∞(G)‖vn‖L∞(G)

. ‖un‖H1(G)‖vn‖H1(G) = o
(
‖un‖2

H1(G)

)

(where we used Lemma 5.19, (5.76) and Sobolev embeddings). As a consequence (since

the number of the edges and the vertices is finite)

∑

v∈K

(
∑

e≻v

un,e(v)
dun,e
dxe

(v)

)
= o

(
‖un‖2

H1(G)

)
,
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so that (recalling (5.65))

(5.78)

∫

G
|u′
n|2 dx+ an

∫

G
|un|2 dx & ‖un‖2

H1(G).

Let us focus on the r.h.s. of (5.77). After multiplication times un and integration over

G we have

− ı

cn

∫

K
un

[(
|un|2 + |vn|2

) p−2
2 vn

]′
dx+ bn

∫

K

(
|un|2 + |vn|2

) p−2
2 |un|2 dx.

The latter term can be easily estimated using the Hölder inequality and (5.64), (5.72) and

(5.76), i.e.

bn

∫

K

(
|un|2 + |vn|2

) p−2
2 |un|2 dx .

(
‖un‖p−2

L∞(G) + ‖vn‖p−2
L∞(G)

) ∫

G
|un|2 dx

.
(
‖un‖p−2

H1(G) + ‖vn‖p−2
H1(G)

)
‖un‖2

H1(G) = o
(
‖un‖2

H1

)
.

On the contrary, the former one requires some further efforts. Clearly,

1

cn

∫

K
un

[(
|un|2 + |vn|2

) p−2
2 vn

]′
dx =

1

cn

∫

K
v′
nun

(
|un|2 + |vn|2

) p−2
2 dx

︸ ︷︷ ︸
=:I1

+

+
1

cn

∫

K
unvn

(
|un|2 + |vn|2

) p−4
2 (

unu
′
n + vnv

′
n

)
dx

︸ ︷︷ ︸
I2

.(5.79)

Using (5.73) and again Lemma 5.19, we immediately find that

|I1| . 1

c2
n

‖un‖2
H1(G) = o

(
‖un‖2

H1(G)

)
.

It is, then, left to estimate I2. We distinguish two cases.

Estimate for I2, case p ∈ (2,4): as p− 4 < 0 there holds

(
|un|2 + |vn|2

) p−4
2

6 2
p−4

2 (|un||vn|)
p−4

2 .

As a consequence

|I2| . 1

cn

∫

K
|un| p

2 |vn| p−2
2 |u′

n| dx+
1

cn

∫

K
|un| p−2

2 |vn| p
2 |v′

n| dx =: I2,1 + I2,2.
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Moreover,

I2,1 .
1

cn
‖vn‖

p−2
2

L∞(G)

∫

K
|un| p

2 |u′
n| dx

6
1

cn
‖vn‖

p−2
2

L∞(G)‖un‖
p
2

Lp(G)‖u′
n‖L2(G) .

1

cn
‖vn‖

p−2
2

L∞(G)‖un‖
p
2

+1

H1(G),

whereas

I2,2 .
1

cn
‖un‖

p−2
2

L∞ ‖vn‖
p
2

+1

H1(G) .
1

cn
‖un‖

p−2
2

L∞ ‖un‖
p
2

+1

H1(G),

so that (since p > 2)

|I2| = o
(
‖un‖2

H1(G)

)
.

Estimate for I2, case p ∈ [4,6): as p− 4 > 0, there holds

∥∥∥(|un|2 + |vn|2)
p−4

2

∥∥∥
L∞(G)

6 C.

and then arguing as before one can easily find (as well) that

|I2| = o
(
‖un‖2

H1(G)

)
.

Summing up, we proved that for all p ∈ (2,6),there results

|I1| + |I2| = o
(
‖un‖2

H1(G)

)

and hence, combining with (5.77), (5.78) and (5.79), we obtain that

‖un‖2
H1(G) = o

(
‖un‖2

H1(G)

)
,

which is the contradiction that concludes the proof.

We now prove item (iii).

Lemma 5.24. The sequence (un) is a Palais-Smale sequence for J .

Proof. By Lemma 5.21 it is sufficient to prove (5.66). Take, then, ϕ ∈ H with ‖ϕ‖H1(G) 6

1. Multiplying (5.77) by ϕ and integrating over G (which is rigorous as we showed in the
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proof of Lemma 5.23) one gets

(5.80) −
∫

G
ϕu′′

n dx+ an

∫

G
ϕun dx =

= − i

cn

∫

K
ϕ
[
(|un|2 + |vn|2)

p−2
2 vn

]′
dx+ bn

∫

K
(|un|2 + |vn|2)

p−2
2 unϕdx.

Arguing as in the proof of Lemma 5.23 and using Lemma 5.22, one can check that

(5.81) −
∫

G
ϕu′′

n dx =

∫

G
ϕ′
nu

′
n dx+

∑

v∈K

(
∑

e≻v

ϕ(v)
d

dx
un,e(v)

)
=

∫

G
ϕ′
nu

′
n dx+ o(1)

(where throughout we mean that o(1) is independent of φ). Now, the first integral at the

r.h.s. of (5.80) reads

∫

K
ϕ
[
(|un|2 + |vn|2)

p−2
2 vn

]′
dx = −

∫

K
ϕ′
[
(|un|2 + |vn|2)

p−2
2 vn

]
dx

+
∑

v∈K

(
∑

e≻v

ϕ(v)(|un,e(v)|2 + |vn,e(v)|2)
p−2

2 vn,e(v)±

)
,

(5.82)

where the former term is estimated by

(5.83)

∫

K
(|un|2 + |vn|2)

p−2
2 |vn||ϕ′| dx .

∫

K
|vn||ϕ′| dx . ‖vn‖L2(K)‖ϕ′‖L2(G) = o(1),

whereas the latter is estimated by

(5.84)
∑

v∈K

(
∑

e≻v

|ϕ(v)|(|un,e(v)|2 + |vn,e(v)|2)
p−2

2 |vn,e(v)|
)

. ‖ϕ‖L∞(G)‖vn‖L∞(G) = o(1),

(exploiting Lemmas 5.19 and 5.22). It is, then, left to discuss the last term at the r.h.s.

of (5.80). First note that

∫

K

(
|un|2 + |vn|2

) p−2
2 unφdx =

∫

K
|un|p−2unφdx+

∫

K

[ (|un|2 + |vn|2
) p−2

2 − |un|p−2]unφdx
︸ ︷︷ ︸

=:R

and that
(|un|2 + |vn|2)

p−2
2 − |un|p−2 > 0.

Let us distinguish two cases (as in the proof of Lemma 5.23). Assume first that
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p ∈ (2,4). Therefore 0 < p−2
2 < 1, and this implies that

|R| 6
∫

K

[
(|un|2 + |vn|2)

p−2
2 − |un|p−2]|un||ϕ| dx 6

∫

K
|vn|p−2|un||ϕ| dx

6 ‖un‖L∞(G)‖vn‖p−2
L∞(G)‖ϕ‖L2(G) = o(1).

(where we used again Lemmas 5.19 and 5.22).

On the other hand, assume that p ∈ (4,6) (the case p = 4 is analogous). In this case

we exploit the elementary inequality

(a+ b)t − at 6 ct b (at−1 + bt−1), ∀a, b > 0,

with t > 1 and ct > 0. Then, setting t = p−2
2 > 1, a = |un|2 and b = |vn|2, we have that

∫

K

[ (|un|2 + |vn|2
) p−2

2 −|un|p−2]|un||ϕ| dx .

∫

K

(
|un| p−4

2 + |vn| p−4
2

)
|vn|2|un||φ| dx = o(1).

Summing up, we proved that for all p ∈ (2,6) there holds

∫

K

(
|un|2 + |vn|2

) p−2
2 unϕdx =

∫

K
|un|p−2unϕdx+ o(1)

and, combining with (5.80), (5.81), (5.82), (5.83) and (5.84), one gets (5.66), which con-

cludes the proof.

Finally, we have all the ingredients to prove point (iv) and thus Theorem 5.7.

Proof of Theorem 5.7. From Lemma 5.24 the sequence (un) is a Palais-Smale sequence for

J . In addition, from Lemma 5.19 it is bounded in H so that (up to subsequences)

(5.85)




un ⇁ u in H1(G),

un → u in Lp(K).

Now, following [111], define the linear functional B(u) : H1(G) → R

B(u)v :=

∫

G
u′v′ dx− λ

∫

G
uv dx.
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From Lemma 5.24, (5.64), (5.65) and (5.85),

o(1) = 〈An(un) −B(u)|un − u〉

=

∫

G
|u′
n − u′|2 dx− bn

∫

K
|un|p−2un(un − u) dx+ an

∫

G
un(un − u) dx+ λ

∫

G
u(un − u) dx =

=

∫

G
|u′
n − u′|2 dx− λ

∫

G
|un − u|2 dx+ o(1),

and, since λ < 0, this entails that un → u in H1(G). Since by Lemma 5.23 u /= 0 (recalling

also Lemma 5.22), the claim of the theorem is proved.
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patience, I should add..) during my PhD studies. I profited very much from our conver-

sations and from his advices. His combination of rigor and scientific enthusiasm has been

a great source of motivation. Merci, Éric!
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Résumé

Ces dernières années, de nou-

veaux matériaux bidimensionnels

aux propriétés surprenantes ont été

découverts, le plus connu étant le

graphène. Dans ces matériaux, les

électrons du niveau de Fermi ont une

masse apparente nulle, et peuvent

être décrits par l’équation de Dirac

sans masse. Un tel phénomène

apparaı̂t dans des situations très

générales, pour les matériaux bidi-

mensionnels ayant une structure

périodique en ”nid d’abeille”. La

prise en compte d’interactions mène

à des équations non linéaires, qui

apparaissent également dans l’étude

des paquets d’ondes lumineuses

dans certaines fibres optiques.

Le but de cette thèse est d’étudier

l’existence et la multiplicité de solu-

tions stationnaires de ces équations

avec termes non linéaires sous-

critiques et critiques. Du point de

vue mathématique, on doit résoudre

les équations d’Euler-Lagrange

de fonctionnelles d’énergie forte-

ment indéfinies faisant intervenir

l’opérateur de Dirac. Il s’agit en

particulier d’étudier le cas des non-

linéarités avec exposant critique,

encore mal comprises pour ce type

de fonctionnelle, et qui apparais-

sent naturellement en optique non

linéaire.

Mots Clés

graphène, équation de Dirac non

linéaire, méthodes variationnelles,

solutions stationnaires, graphes

quantiques, cones de Dirac.

Abstract

Recently new two dimensional mate-

rial possessing surprising properties

have been discovered, the most fa-

mous being graphene. In this materi-

als, electrons at the Fermi level can

be described by a massless Dirac

equations. This holds true, more

generally, for two dimensional honey-

comb structures, under fairly general

hypothesis. Taking into account in-

teractions naturally leads to nonlinear

Dirac equations, which also appear in

the description of the propagation of

light pulses in optical fibers.

The aim of this thesis is to investi-

gate existence and multiplicity prop-

erties of stationary solutions to sub-

critical and critical Dirac equations,

which arise as Euler-Lagrange equa-

tions of strongly indefinite functionals

involving the Dirac operator. We have

to deal with the case of critical non-

linearities, still poorly understood (at

least in the low dimensional case),

and which appear naturally in nonlin-

ear optics.

Keywords

graphene, nonlinear Dirac equations,

variational methods, stationary solu-

tions, quantum graphs, Dirac materi-

als.
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