A. D. Turner, J. Am. Chem. Soc, vol.109, p.1274, 1987.

N. Gagey, J. Am. Chem. Soc, p.9986, 2007.

J. Speed and T. , J. Chem. Educ, vol.81, p.1355, 2004.

J. F. Dippy and R. M. Evans, J. Org. Chem, p.451, 1950.

J. K. Augustine, Tetrahedron Lett, p.3503, 2014.

O. Hideshi, , pp.909751-909752, 1997.

A. Mobinikhaledi, Metal-Organic and nano Metal Chemistry, vol.38, p.428, 2008.

K. E. Kolb, J. Chem. Educ, vol.67, p.304, 1990.

C. I. Chiriac, Tetrahedron Lett, vol.44, pp.3579-3580, 2003.

M. Hajek, US Patent 4806681A, 1989.

J. Weng, Green Chem, vol.8, p.96, 2006.

L. Iversen, Eur. J. Pharmacol, vol.700, p.147, 2012.

A. Radadiya and A. Shah, Eur. J. Med. Chem, p.356, 2015.

B. E. Love, Eur. J. Med. Chem, p.377, 2015.

K. M. Dawood, Expert Opin. Ther. Targets, vol.23, p.1133, 2013.

A. Blanc, Org. Biomol. Chem, p.9184, 2016.

H. Miyabe, Molecules, vol.20, p.12558, 2015.

. Abu-hashem, Comm, vol.44, p.2285, 2014.

A. K. Shaikh, , vol.5, p.14892, 2015.

S. Pursor, Chem. Soc. Rev, vol.37, p.320, 2008.

K. Müller, Science, p.1881, 2007.

J. Bégué and D. Bonnet-delpon, Bioorganic and Medicinal Chemistry of Fluorine, 2008.

T. Hiyama, Organofluorine Compounds-Chemistry and Applications, 2000.

W. K. Hagmann, J. Med. Chem, p.4359, 2008.

I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology

. Wiley-blackwell, , 2009.

N. Okamura, Eur. J. Nucl. Med. Mol. Imaging, p.934, 2010.

Y. Zhou, Chem. Rev, vol.116, p.422, 2016.

J. Wang, Chem. Rev, vol.114, p.2432, 2014.

A. Abdouabdellah, Synlett, p.399, 1996.

. W. Van-henegouwen, J. Org. Chem, vol.62, p.8862, 1997.

I. Ojima, Bioorg. Med. Chem. Lett, vol.7, p.133, 1997.

S. Barrata-vallejo, Chem. Eur. J, vol.20, p.16806, 2014.

Y. Macé, Eur. J. Org. Chem, p.2479, 2012.

, CF 3 CO 2 Na, ?) ou encore du radical CF 3 (NaSO 2 CF 3 ? ), vol.212, p.213

G. K. Prakash, J. Am. Chem. Soc, p.393, 1989.

J. Rusell and N. Roques, Tetrahedron, vol.54, p.13771, 1998.

T. Kitazume and N. Ishikawa, J. Am. Chem. Soc, p.5186, 1985.

L. Jablonski, Tetrahedron Lett, vol.44, p.1055, 2003.

Y. Chang and C. Cai, Tetrahedron Lett, vol.46, p.3161, 2005.

B. R. Langlois, Tetrahedron Lett, p.7525, 1991.

T. Umemoto and S. Ishihara, Tetrahedron Lett, p.3579, 1990.

T. Umemoto and S. Ishihara, J. Am. Chem. Soc, vol.115, p.2156, 1993.

P. Eisenberg, Chem. Eur. J, vol.12, p.2579, 2006.

I. Kieltsch, Angew. Chem. Int. Ed, vol.46, p.754, 2007.

. Kuhn, J. Org. Chem, p.9023, 2002.

. Borden, Acc. Chem. Res, vol.33, p.765, 2000.

N. P. Gritsan and M. S. Platz, Adv. Phys. Org. Chem, p.255, 2001.

A. K. Schrock and G. B. Schuster, J. Am. Chem. Soc, vol.106, p.5228, 1984.

B. A. Degraff, J. Am. Chem. Soc, p.7491, 1974.

R. A. Mcclelland, J. Am. Chem. Soc, vol.118, p.4794, 1996.

G. B. Anderson and D. E. Falvey, J. Am. Chem. Soc, vol.115, p.9870, 1993.

P. A. Davidse, J. Am. Chem. Soc, vol.116, p.4513, 1994.

J. Wang, J. Org. Chem, p.7581, 2007.

J. Wang, Org. Lett, p.3973, 2007.

K. Yakushijin, Chem. Pharm. Bull, vol.30, p.140, 1982.

S. A. Foster, Chem. Commun, 1973.

H. Nakayama, Chem. Pharm. Bull, 1979.

H. Takeuchi and K. Koyama, Chem. Commun, p.202, 1981.

C. Carra, J. Am. Chem. Soc, vol.127, p.5552, 2005.

V. Voskresenska, J. Am. Chem. Soc, p.11535, 2009.

R. Purvis, J. Chem. Soc., Perkin Trans. 1, p.191, 1978.

H. Takeuchi and K. J. Koyama, Chem. Soc., Perkin Trans. 1, p.1269, 1982.

M. Warrier, Photochem. Photobiol. Sci, vol.3, p.859, 2004.

S. Lord, J. Am. Chem. Soc, vol.130, p.9204, 2008.

G. Bucher, J. Am. Chem. Soc, vol.127, p.6883, 2005.

Y. Chen, Nat. Chem, pp.3-146, 2011.

. Popova, Photochem. Photobiol, p.19, 2010.

A. P. Scott, J. Am. Chem. Soc, vol.123, p.6069, 2001.

P. J. Weber and A. G. Beck-sickinger, J. Peptide Res, vol.49, p.375, 1997.

S. J. Lord, J. Phys. Chem. B, vol.114, 2010.

P. A. Kroon and G. Williamson, Hydroxycinnamates in plants and food: current and future perspectives, J. Sci. Food Agric, vol.79, pp.355-361, 1999.

M. Sova, Antioxidant and antimicrobial activities of cinnamic acid derivatives, Mini Rev. Med. Chem, vol.12, pp.749-767, 2012.

J. D. Guzman, Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity, Molecules, vol.19, pp.19292-19349, 2014.

P. De, D. Veau, F. Bedos-belval, S. Chassaing, and M. Baltas, Cinnamic derivatives in tuberculosis. In understanding tuberculosis-new approaches to fighting against drug resistance, vol.15, pp.337-363, 2012.

P. De, M. Baltas, and F. Bedos-belval, Cinnamic acid derivatives as anticancer agents-a review, Curr. Med. Chem, vol.18, pp.1672-1703, 2011.

J. Wiesner, A. Mitsch, P. Wißner, H. Jomaa, and M. Schlitzer, Structure-activity relationships of novel anti-malarial agents. Part 2: cinnamic acid derivatives, Bioorg. Med. Chem. Lett, vol.11, pp.423-424, 2001.

S. Tawata, S. Taira, N. Kobamoto, J. Zhu, M. Ishihara et al., Synthesis and antifungal activity of cinnamic acid esters, Biosci. Biotechnol. Biochem, vol.60, pp.909-910, 1996.

C. Lapeyre, M. Delomenède, F. Bedos-belval, H. Duran, A. Nègre-salvayre et al., Design, synthesis, and evaluation of pharmacological properties of cinnamic derivatives as antiatherogenic agents, J. Med. Chem, vol.48, pp.8115-8124, 2005.

Y. D. Zhang, R. D. Hreha, G. E. Jabbour, B. Kippelen, N. Peyghambarian et al., Photo-crosslinkable polymers as hole-transport materials for organic light-emit polymers as hole-transport materials for organic light-emitting diodes, J. Mater. Chem, vol.12, pp.1703-1708, 2002.

A. Lendlein, H. Jiang, O. Junger, and R. Langer, Light induced shape-memory polymers, Nature, vol.434, pp.879-882, 2005.
DOI : 10.1038/nature03496

C. A. Zuniga, S. Barlow, and S. R. Marder, Approaches to solution-processed multilayer organic light-emitting diodes based on cross-linking, Chem. Mater, vol.23, pp.658-681, 2011.
DOI : 10.1021/cm102401k

M. Promkatkaew, S. Suramitr, T. Karpkird, S. Wanichwecharungruang, M. Ehara et al., Photophysical properties and photochemistry of substituted cinnamates and cinnamic acids for UVB blocking: effect of hydroxy, nitro, and fluoro substitutions at ortho, meta, and para positions, Photochem. Photobiol. Sci, vol.13, pp.583-594, 2014.

N. Serpone, D. Dondi, and A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta, vol.360, pp.794-802, 2007.
DOI : 10.1016/j.ica.2005.12.057

S. P. Huong, V. Andrieu, J. P. Reynier, E. Rocher, and J. D. Fourneron, The photoisomerization of the sunscreen ethylhexyl p-methoxy cinnamate and its influence on the sun protection factor, J. Photochem. Photobiol. A, vol.186, pp.65-70, 2007.

N. Mulinacci, D. Prucher, M. Peruzzi, A. Romani, P. Pinelli et al., Commercial and laboratory extracts from artichoke leaves: estimation of caffeoyl esters and flavonoidic compounds content, Pharm. Biomed. Anal, vol.34, pp.349-357, 2004.
DOI : 10.1016/s0731-7085(03)00552-1

URL : https://flore.unifi.it/bitstream/2158/8063/1/Mulinacci%202004.pdf

M. Petersen and M. S. Simmonds, Molecules of interest-rosmarinic acid, Phytochemistry, vol.62, pp.121-125, 2003.

M. Petersen, Cinnamic acid 4-hydroxylase from cell cultures of the hornwort Anthoceros agrestis, Planta, vol.217, issue.1, pp.96-101, 2003.

M. J. Chung, P. A. Walker, and C. Hogstrand, Dietary phenolic antioxydants, cafeic acid and Trolox, protect rainbow trout grill cells from nitric oxide-induced apoptosis, Aquat. Toxicol, vol.80, pp.321-328, 2006.
DOI : 10.1016/j.aquatox.2006.09.009

C. C. Barnes, M. K. Smalley, K. P. Manfredi, K. Kindscher, H. Loring et al., Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla, J. Nat. Prod, vol.66, issue.11, pp.1457-1462, 2003.

A. M. Lamidey, L. Fernon, L. Pouységu, C. Delattre, P. Pardon et al., A convenient synthesis of the Echinacea-derived immunostimulator and HIV-1 integrase inhibitor (-)-(2R,3R)-chicoric acid, Helv. Chim. Acta, vol.85, pp.2328-2334, 2002.

K. Iwai, N. Kishimoto, Y. Kakino, K. Mochida, and T. Fujita, In vitro antioxidative effects and Tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans, J. Agric. Food Chem, vol.52, pp.4893-4898, 2004.

S. Quideau, D. Deffieux, C. Douat-casassus, and L. Pouységu, Plant polyphenols: chemical properties, biological activities, and synthesis, Angew. Chem. Int. Ed, vol.50, pp.586-621, 2011.
DOI : 10.1002/anie.201000044

T. Okuda, T. Yoshida, and T. Hatano, economic and medicinal plant research, vol.5, pp.129-164, 1991.

T. Okuda, T. Yoshida, and T. Hatano, plant polyphenols-synthesis properties, significance, pp.539-569, 1992.

S. J. Bloor, Deep blue anthocyanins from blue Dianella Berries, Phytochemistry, vol.58, pp.923-927, 2001.
DOI : 10.1016/s0031-9422(01)00343-0

E. Gonzalez, A. Fougerousse, and R. Bouillard, Two diacylated malvidin glycosides from Petunia hybrida flowers, Phytochemistry, vol.58, pp.1257-1262, 2001.
DOI : 10.1016/s0031-9422(01)00280-1

R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, Lignin biosynthesis and structure, Plant Physiol, vol.153, pp.895-905, 2010.
DOI : 10.1104/pp.110.155119

URL : http://www.plantphysiol.org/content/153/3/895.full.pdf

P. Sharma, Cinnamic acid derivatives: a new chapter of various pharmacological activities, J. Chem. Pharm. Res, vol.2011, issue.2, pp.403-423

J. Clayden, N. Greeves, S. Warren, and . Wothers, Chimie organique, 2013.

A. D. Turner, S. V. Pizzo, G. W. Rozakis, and N. A. Porter, Photochemical activation of acylated ?-thrombin, J. Am. Chem. Soc, vol.109, pp.1274-1275, 1987.

N. Gagey, P. Neveu, C. Benbrahim, B. Goetz, I. Aujard et al., Twophoton uncaging with fluorescence reporting: evaluation of the o-hydroxycinnamic platform, J. Am. Chem. Soc, vol.129, pp.9986-9998, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00177307

J. Speed, T. Mcintyre, J. Thamattoor, and D. M. , Wittig reaction using a stabilized phosphorus ylid. An efficient and stereoselective synthesis of ethyl trans-cinnamate, J. Chem. Educ, vol.81, issue.9, pp.1355-1356, 2004.

J. F. Dippy and R. M. Evans, The nature of the catalyst in the Perkin condensation, J. Org. Chem, vol.15, issue.3, pp.451-456, 1950.

J. K. Augustine, C. Boodappa, S. Venkatachaliah, and A. Mariappan, TiCl 4-mediated olefination of aldehydes with acetic acid and alkyl acetates: a stereoselective approach to (E)-?,?-unsaturated carboxylic acids and esters, Tetrahedron Lett, vol.55, pp.3503-3506, 2014.

O. Hideshi, T. Yoshihisa, and M. Shigeru, A process for the preparation of cinnamic acid esters, 1997.

A. Mobinikhaledi, N. Foroughifar, and J. H. Fathinejad, Microwave-assisted synthesis of cinnamic acid derivatives in the presence of PPE and under solvent-free condition, vol.38, pp.428-430, 2008.

K. E. Kolb, K. W. Field, and P. F. Schatz, A one-step synthesis of cinnamic acids using malonic acid: The Verley-Doebner modification of the Knoevenagel condensation, J. Chem. Educ, vol.67, issue.12, p.304, 1990.

C. I. Chiriac, F. Tanasa, and M. Onciu, A new direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of sodium borohydride, Tetrahedron Lett, vol.44, pp.3579-3580, 2003.

M. Hajek and P. Silhavy, Process for producing cinnamic acid from 1,1,1,3-tetrachloro-3phenylpropane. US Patent 4806681A, 1989.

J. Weng, W. ;-congmin, H. Li, and Y. Wang, Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction, Green Chem, vol.8, pp.96-99, 2006.

R. F. Heck and .. J. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem, issue.14, pp.2320-2322, 1972.

M. Oestreich, The Mizoroki-Reaction, 2009.

V. Ambulgekar, B. M. Bhanage, and S. D. Samant, Low temperature recyclable catalyst for Heck reactions using ultrasound, Tetrahedron Lett, vol.46, pp.2483-2485, 2005.

Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou et al., Catalysis and regioselectivity of the aqueous Heck reaction by Pd(0) nanoparticles under ultrasonic irradiation, J. Org. Chem, vol.71, pp.4339-4342, 2006.

Z. Zhang and Z. Wang, Diatomite-supported Pd nanoparticles : an efficient catalyst for Heck and Suzuki reactions, J. Org. Chem, vol.71, pp.7485-7487, 2006.

A. Ohtaka, T. Yamaguchi, T. Teratani, O. Shimomura, and R. Nomura, Linear polystyrenestabilized PdO nanoparticle-catalyzed Mizoroki-Heck reactions in water, Molecules, vol.16, pp.9067-9076, 2011.

P. Sun, Y. Zhu, H. Yang, H. Yan, L. Lu et al., The ligand and base-free Pd-catalyzed oxidative Heck reaction of arylboronic acids and olefins, Org. Biomol. Chem, vol.10, pp.4512-4515, 2012.

H. Hoberg and Y. Peres, Milchereit, A. C->C verknüpfund von alkenen mit CO 2 an nickel

, herstellung von zimtsaüre aus styrol, J. Org. Met. Chem, vol.307, issue.2, pp.38-40, 1986.

N. Huguet, I. Jevtovikj, A. Gordillo, M. L. Lejkowski, R. Lindner et al., Nickel-catalysed direct carboxylation of olefins with CO 2 : one-pot synthesis of ?,?-unsaturated carboxylic acid salts, Eur. J. Org. Chem, issue.51, pp.16858-16862, 2014.

C. Bianchini, A. Meli, W. Oberhauser, S. Parisel, O. V. Gusev et al., Methoxycarbonylation of styrene to methyl arylpropanoates catalyzed by palladium (II) precursors with 1,1'-bis(diphenylphosphino)metallocenes, J. Mol. Catal. A, vol.224, pp.35-49, 2004.

C. Wuensch, S. M. Glueck, J. Gross, D. Koszelewski, M. Shober et al., Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives, Org. Lett, vol.14, pp.1974-1977, 2012.
DOI : 10.1021/ol300385k

URL : https://doi.org/10.1021/ol300385k

C. Wuensch, T. Pavkov-keller, G. Steinkellner, J. Gross, M. Fuschs et al., Regioselective enzymatic ?carboxylation of para-hydroxy-styrene derivatives catalyzed by phenolic acid decarboxylases, Adv. Synth. Cat, vol.357, pp.1909-1918, 2015.

A. D. Turner, S. V. Pizzo, G. Rozakis, and N. A. Porter, Photoreactivation of irreversibly inhibited serine proteinases, J. Am. Chem. Soc, vol.110, pp.244-255, 1988.
DOI : 10.1021/ja00209a040

N. Gagey, P. Neveu, and L. Jullien, Two-photon uncaging with the efficient 3,5-dibromo-2,4dihydroxycinnamic caging group, Angew. Chem. Int. Ed, vol.46, pp.2467-2469, 2007.
DOI : 10.1002/ange.200604598

URL : https://hal.archives-ouvertes.fr/hal-00177305

N. Gagey, M. Emond, P. Neveu, C. Benbrahim, B. Goetz et al., Alcohol uncaging with fluorescence reporting: evaluation of o-acetoxyphenyl methyloxazolone precursors, Org. Lett, vol.10, pp.2341-2344, 2008.

H. Li, J. Yang, and N. A. Porter, Preparation and photochemistry of o-aminocinnamates, J. Photochem. Photobiol, vol.169, pp.289-297, 2005.
DOI : 10.1016/j.jphotochem.2004.06.021

T. Horaguchi and N. Hosokawa, Synthesis of 2quinolone, quinoline and coumarin derivatives using trans-cis isomerization by photoreaction, J. Heterocyclic. Chem, vol.39, pp.61-67, 2002.

H. J. Gorz and F. A. Haskins, Kleinhofs, A. trans-o-hydroxycinnamic acid glucosylation in cellfree extracts of Melilotus alba, Phytochermistry, vol.6, pp.1313-1318, 1967.

O. Hofer, G. Szabo, and H. Greger, 2-hydroxy-4-methoxy-trans-cinnamic acid as a precursor of Herniarin in Artemisia dracunculus, Monatsh. Chem, vol.117, pp.1219-1222, 1986.

J. D. Guzman, P. N. Mortazavi, T. Munshi, D. Evangelopoulos, T. D. Mchugh et al., 2-hydroxy-substituted cinnamic acids and acetanilides are selective growth inhibitors of Mycobacterium tuberculosis, Med. Chem. Commun, vol.5, pp.47-50, 2014.

R. S. Gairns, C. Moody, and C. Rees, Photochemical conversion of 3-azido-2vinylthiophenes into thienopyrroles and of 2-azidostyrenes into indoles. High migratory aptitude of sulphur substituents, J. Chem. Soc., Perkin. Trans. 1, pp.501-506, 1986.

F. F. Zhao, Y. M. Yan, R. Zhang, and M. W. Ding, Efficient one-pot synthesis of 1Hpyrazolo[1,5-b]indazoles by a domino Staudinger-aza-Wittig cyclization, Synlett, vol.23, pp.2850-2852, 2012.

M. P. Hutt and F. A. Mackellar, Identification of quinoline nitration products by NOE, J. Heterocyclic Chem, vol.21, issue.2, pp.349-352, 1984.

J. C. Jung, Y. J. Jung, and O. S. Park, Synthesis of 4-hydroxyquinolin-2(1H)-one analogues and 2-substituted quinolone derivatives, J. Heterocyclic Chem, vol.38, issue.1, pp.61-67, 2001.

L. Iversen, S. Gibbons, R. Treble, V. Setola, X. P. Huang et al., Neurochemical profiles of some novel psychoactive substances, Eur. J. Pharmacol, vol.700, pp.147-151, 2012.

A. Radadiya and A. Shah, Bioactive benzofuran derivatives: an insight on lead developments, radioligands and advances of the last decade, Eur. J. Med. Chem, vol.97, pp.356-376, 2015.

B. E. Love, Isolation and synthesis of polyoxygenated dibenzofurans possessing biological activity, Eur. J. Med. Chem, vol.97, pp.377-387, 2015.

K. M. Dawood, Benzofuran derivatives: a patent review, Expert Opin. Ther. Targets, vol.23, p.1133, 2013.

A. Blanc, V. Bénéteau, J. Weibel, and P. Pale, Silver & gold-catalyzed routes to furans and benzofurans, Org. Biomol. Chem, vol.14, pp.9184-9205, 2016.

H. Miyabe, Synthesis of oxygen heterocycles via aromatic C-O bond formation using arynes, Molecules, vol.20, pp.12558-12575, 2015.

A. A. Abu-hashem, H. A. Hussein, A. S. Aly, and M. A. Gouda, Synthesis of benzofuran derivatives via different methods, Synth. Comm, vol.44, pp.2285-2312, 2014.

A. K. Shaikh and G. Varvounis, One-pot cascade synthesis of 2,3-disubstituted 2,3dihydrobenzofurans via ortho-quinone methide intermediates generated in situ, RSC Adv, vol.5, pp.14892-14896, 2015.

H. S. Li and G. Liu, Copper/silver-mediated cascade reactions for the construction of 2sulfonylbenzo[b]furans from trans-2-hydroxycinnamic acids and sodium sulfinates, J. Org. Chem, vol.79, pp.509-516, 2014.

C. F. Koelsch, Experiments on the synthesis of compounds related to morphine. I. The internal Michael reaction, J. Am. Chem. Soc, vol.67, issue.4, pp.569-574, 1945.

C. F. Koelsch and C. R. Stephens, The internal Michael reaction. 11. Formation of arylated coumarans, of ani, a dihydrothionaphthene and a hydrocarbostyril, J. Am. Chem. Soc, vol.72, pp.2208-2212, 1950.

Y. Duan, Y. Wang, and D. Li, A Facile approach for synthesis of benzofuro[2,3-c]pyridines via intramolecular cascade annulations, Chin. J. Chem, vol.32, pp.1103-1106, 2014.

J. Hu, Z. Deng, X. Zhang, F. Zhang, and H. Zheng, Synthesis of benzofuro[2,3-c]pyridines via a one-pot three-component reaction, Org. Biomol. Chem, vol.12, pp.4885-4889, 2014.

Y. Rao, Z. Li, and G. Yin, Clean and efficient assembly of functionalized benzofuro[2,3c]pyridines via metal-free one-pot domino reactions, Green Chem, vol.16, pp.2213-2218, 2014.

K. Brachwitz and A. Hilgeroth, Synthesis and first biological evaluation of 1-aza-9oxafluorenes as novel lead structures for the development of small-sized cytostatics, Bioorg. Med. Chem. Lett, vol.12, pp.411-413, 2002.

Y. T. Lee, Y. J. Jang, S. E. Syu, S. C. Chou, C. J. Lee et al., Preparation of functional benzofurans and indoles via chemoselective intramolecular Wittig reactions, Chem. Commun, vol.48, pp.8135-8137, 2012.

M. Black, J. I. Cadogan, H. Mcnab, A. D. Macpherson, V. P. Roddam et al., Synthesis of fused furans by gas-phase pyrolysis of 2-allyloxyarylpropenoic esters, J. Chem. Soc., Perkin Trans. 1, pp.2483-2493, 1997.

E. Fischer and F. Jourdan, Ueber die hydrazine der brenztraubensäure, Ber. Dtsch. Chem. Ges, vol.1883, issue.2, pp.2241-2245

E. Fischer and O. Hess, Synthese von indolderivaten. Ber. Dtsch. Chem. Ges, vol.1884, issue.1, pp.559-568

G. W. Gribble, Recent developments in indole ring synthesis-methodology and applications, J. Chem. Soc., Perkin Trans. 1, pp.1045-1075, 2000.

G. R. Humphrey and J. T. Kuethe, Practical methodologies for the synthesis of indoles, Chem. Rev, vol.106, pp.2875-2911, 2006.

T. Opatz and D. Ferenc, Preparation of indoles from ?-aminonitriles: a short synthesis of FGIN-1-27, Org. Lett, vol.8, issue.20, pp.4473-4475, 2006.

K. Nakao, Y. Murata, H. Koike, C. Uchida, K. Kawamura et al., Synthesis of 2-acylindole-3-acetic acids: a novel base-mediated indole synthesis, Tetrahedron, vol.44, pp.7269-7271, 2003.

Y. Liu, G. Q. Chen, C. W. Tse, X. Guan, Z. J. Xu et al., Fe(F 20 TPP)Cl]-catalyzed amination with arylamines and {[Fe(F 20 TPP)(NAr)](PhI=NAr)} + intermediate assessed by high-resolution ESI-MS and DFT calculations, Chem. Asian J, vol.10, pp.100-105, 2015.

Y. Liu, J. Wei, and C. M. Che, Fe(F 20 TPP)Cl] catalyzed intramolecular C-N bond formation for alkaloid synthesis using aryl azides as nitrogen source, Chem. Commun, vol.46, pp.6926-6928, 2010.

X. Xiao, T. Q. Chen, J. Ren, W. D. Chen, and B. B. Zeng, CuI-catalyzed intramolecular cyclization of 3-(2-aminophenyl)-2-bromoacrylate: synthesis of 2-carboxyindoles, Tetrahedon Lett, issue.13, pp.2056-2060, 2014.

X. D. Xia, J. Xuan, Q. Wang, L. Q. Lu, J. R. Chen et al., Synthesis of 2substituted indoles through visible light-induced photocatalytic cyclizations of styryl azides, Adv. Synth. Catal, vol.356, pp.2807-2812, 2014.

M. De-carvalho, A. E. Sorrilha, and J. A. Rodrigues, Reaction of aromatic azides with strong acids: formation of fused nitrogen heterocycles and arylamines, J. Brazil. Chem. Soc, vol.10, issue.5, pp.415-420, 1999.

Y. Goriya and C. V. Ramana, 2-aroylindoles from o bromochalcones via Cu(I)-catalyzed S N Ar with an azide and intramolecular nitrene C-H insertion, Chem. Commun, vol.50, pp.7790-7792, 2014.

B. Zhang and A. Studer, 2-trifluoromethylated indoles via radical trifluoromethylation of isonitriles, Org. Lett, vol.16, pp.1216-1219, 2014.

V. Matou?ek, E. Pietrasiak, R. Schwenk, and A. Togni, One-pot synthesis of hypervalent iodine reagents for electrophilic trifluoromethylation, J. Org. Chem, vol.78, pp.6763-6768, 2013.

H. J. Gim, H. Li, E. Lee, J. H. Ryu, and R. Jeon, Design and synthesis of alkoxyindolyl-3acetic acid analogs as peroxisome proliferator-activated receptor-?/? agonists, Bioorg. Med. Chem. Lett, vol.23, pp.513-517, 2013.

J. D. Rodgers, B. L. Johnson, H. Wang, R. A. Greenberg, S. Erickson-viitanen et al., Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2? groups, Bioorg. Med. Chem. Lett, vol.6, pp.2919-2924, 1996.

T. Yakaiah, B. P. Lingaiah, B. Narsaiah, B. Shireesha, B. A. Kumar et al., Synthesis and structure-activity relationships of novel pyrimido[1,2-b]indazoles as potential anticancer agents against A-549 cell lines, Bioorg. Med. Chem. Lett, vol.17, pp.3445-3453, 2007.

M. Minu, A. Thangadurai, S. R. Wakode, S. S. Agrawal, and B. Narasimhan, Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2Hindazoles, Bioorg. Med. Chem. Lett, vol.19, pp.2960-2964, 2009.

C. Ainsworth, The indazole analog of serotonin, J. Am. Chem. Soc, vol.79, pp.5245-5247, 1957.

C. Ainsworth, Reinvestigation of the Fisher indazole synthesis, J. Am. Chem. Soc, vol.80, pp.967-970, 1958.

P. Molina, C. Conesa, A. Alías, A. Arques, and M. Velasco, Preparation and synthetic applications of iminophosphoranes derived from o-substituted arylazides: preparation of pyrazolo[1,2-b]indazole, 4H-3,1-benzoxazine and quinoline derivatives. Crystal structure of 2-[2-(4-methoxybenzoylamino)phenyl]-4-methylquinoline, Tetrahedron, vol.49, pp.7599-7612, 1993.

S. S. Hecht, P. M. Kenney, M. Y. Wang, N. Trushin, S. Agarwal et al., Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3pyridil)-1-butanone-induced lung tumorigenisis in A/J mice, Cancer Lett, vol.137, pp.123-130, 1999.

C. J. Wang, Y. J. Hsieh, C. Y. Chu, Y. L. Lin, and T. H. Tseng, Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin, Cancer Lett, vol.183, pp.163-168, 2002.

A. Kucherenko, M. T. Flavin, W. A. Boulanger, A. Khilevich, R. L. Shone et al., Novel approach for synthesis of (±)-calanolide A and its anti-HIV activity, Tetrahedron Lett, issue.31, pp.5475-5478, 1995.

C. J. Palmer and J. L. Josephs, Synthesis of the Calophyllum coumarins, Part 2, J. Chem. Soc., Perkin Trans. 1, pp.3135-3152, 1995.

J. Andres and A. S. Chauvin, Energy transfer in coumarin-sensitised lanthanide luminescence: investigation of the nature of the sensitiser and its distance to the lanthanide ion, Phys. Chem. Chem. Phys, vol.15, pp.15981-15994, 2013.

Y. R. Zhao, Q. Zheng, K. Dakin, K. Xu, M. L. Martinez et al., New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications, J. Am. Chem. Soc, vol.126, pp.4653-4663, 2004.

S. Y. Cho, Y. K. Song, J. G. Kim, S. Y. Oh, and C. M. Chung, Photoconversion of ohydroxycinnamates to coumarins and its application to fluorescence imaging, Tetrahedron Lett, vol.50, pp.4769-4772, 2009.

X. Y. Duan, B. C. Zhai, and Q. H. Song, Water-soluble o-hydroxycinnamate as an efficient photoremovable protecting group of alcohols with fluorescence reporting, Photochem. Photobiol. Sci, vol.11, pp.593-598, 2012.

R. Hershfield and G. L. Schmir, The lactonization of ring-substituted coumarinic acids. Structural effects on the partitioning of tetrahedral intermediates in esterification, J. Am. Chem. Soc, vol.95, pp.7359-7368, 1973.

R. Hershfield and G. L. Schmir, Lactonization of coumarinic acids. Kinetic evidence for three species of the tetrahedral intermediate, J. Am. Chem. Soc, vol.95, pp.8032-8040, 1973.

R. A. Mcclelland, R. Somani, and J. Kresg, The hydrolysis of coumarin diethyl acetal and the lactonization of coumarinic acid ethyl ester. The partitioning of tetrahedral intermediates generated from independent sources, Can. J. Chem, vol.57, pp.2260-2267, 1979.

P. Klàn, T. ?olomek, C. G. Bochet, A. Blanc, R. Givens et al., Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy, Chem. Rev, vol.113, pp.119-191, 2013.

B. Wang, H. Zhang, and W. Wang, Chemical Feasibility studies of a potential coumarinbased prodrug system, Bioorg. Med. Chem. Lett, vol.6, pp.945-950, 1996.

B. Wang and A. Zheng, A photo-sensitive protecting group for amines based on coumarin chemistry, Chem. Pharm. Bull, vol.45, pp.715-718, 1997.

T. Furuta, S. S. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee et al., Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis, Proc. Natl. Acad. Sci, vol.96, pp.1193-1200, 1999.
DOI : 10.1073/pnas.96.4.1193

URL : http://europepmc.org/articles/pmc15439?pdf=render

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol, vol.21, pp.1369-1377, 2003.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Two-photon absorption and the design of two-photon dyes, Angew. Chem. Int. Ed, vol.48, issue.18, pp.3244-3266, 2009.

N. A. Porter and J. D. Bruhn, Photocoagulation of human plasma: acyl serine proteinase photochemistry, Photochem. Photobiol, vol.51, pp.37-43, 1990.
DOI : 10.1111/j.1751-1097.1990.tb01681.x

N. A. Porter, J. W. Thuring, and H. Li, Selective inhibition, separation, and purification of serine proteases: a strategy based on a photoremovable inhibitor, J. Am. Chem. Soc, vol.121, pp.7716-7717, 1999.

N. A. Porter, K. A. Bush, and K. S. Kinter, Photo-reversible binding of thrombin to avidin by means of a photolabile inhibitor, J. Photochem. Photobiol, vol.38, pp.61-69, 1997.

P. M. Koenigs, B. C. Faustf, and N. A. Porter, Photochemistry of enzyme-bound cinnamoyl derivatives, J. Am. Chem. Soc, vol.115, pp.9371-9379, 1993.
DOI : 10.1021/ja00074a002

J. W. Thuring, H. Li, and N. A. Porter, Comparative study of the active site caging of serine proteases: thrombin and factor Xa, Biochemistry, vol.41, pp.2002-2013, 2002.

N. A. Porter and J. D. Bruhnke, Acyl thrombin photochemistry: kinetics for deacylation of enzyme cinnamate geometric isomers, J. Am. Chem. Soc, vol.111, pp.7616-7618, 1989.
DOI : 10.1021/ja00201a054

B. L. Stoddard, J. Bruhnke, P. Koenigs, N. A. Porter, D. Ringe et al., Photolysis and deacylation of inhibited chymotrypsin, Biochemistry, vol.29, pp.8042-805, 1990.

T. Suzuki, T. Okamura, T. Tomohiro, Y. Iwabuchi, and N. Kanoh, Third generation photocross-linked small-molecule affinity matrix: a photoactivatable and photocleavable system enabling quantitative analysis of the photo-cross-linked small molecules and their target purification, Bioconj. Chem, vol.26, pp.389-395, 2015.

T. Tomohiro, K. Kato, S. Masuda, H. Kishi, and Y. Hatanaka, Photochemical construction of coumarin fluorophore on affinity-anchored protein, Bioconj. Chem, vol.22, issue.3, pp.315-318, 2011.

D. Audisio, S. Messaoudi, J. D. Brion, and M. Alami, A simple synthesis of functionalized 3bromocoumarins by a one-pot three-component reaction, Eur. J. Org. Chem, pp.1046-1051, 2010.

A. G. Cartwright and H. Mcnab, Synthesis of coumarins by flash vacuum pyrolysis of 3-(2hydroxyaryl)propenoic esters, J. Chem. Research (S), pp.296-297, 1997.

G. Coudert, Synthèse de dioxinocoumarines angulaires, J. Heterocyclic. Chem, vol.26, pp.193-197, 1989.

G. Guillaumet, M. Hretani, G. Coudert, D. Averbeck, and S. Averbeck, Synthèse et propriétés biologiques photoinduites de dioxinnocoumarines linéaires, Eur. J. Med. Chem, vol.25, pp.45-51, 1990.
DOI : 10.1016/0223-5234(90)90163-w

E. Zubia, F. Luis, G. M. Massanet, and I. G. Collado, An efficient synthesis of furanocoumarins, Tetrahedron, vol.48, issue.20, pp.4239-4246, 1992.

D. A. Barancelli, A. G. Salles, J. G. Taylor, and C. R. Correia, Coumarins from free ortho-hydroxy cinnamates by Heck-Matsuda arylations: a scalable total synthesis of (R)tolterodine, Org. Lett, vol.14, pp.6036-6039, 2012.

G. Battistuzzi, S. Cacchi, I. De-salve, G. Fabrizi, and L. M. Parisi, Synthesis of coumarins in a molten n-Bu 4 NOAc/n-Bu 4 NBr mixture through a domino Heck reaction / cyclization process, Adv. Synth. Catal, vol.347, pp.308-312, 2005.

Y. Yang, J. Han, X. Wu, S. Xu, and L. Wang, Synthesis of 4-arylcoumarins via palladiumcatalyzed arylation/cyclization of ortho-hydroxylcinnamates with diaryliodonium salts, Tetrahedron Lett, vol.56, pp.3809-3812, 2015.

D. Alberico and M. E. Scott, Lautens M. Aryl?aryl bond formation by transition-metalcatalyzed direct arylation, Chem. Rev, vol.107, issue.1, pp.174-238, 2007.

J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, and M. Lemaire, Aryl?aryl bond formation one century after the discovery of the Ullmann reaction, Chem. Rev, vol.102, issue.5, pp.1359-1470, 2002.

G. A. Freeman, C. W. Andrews, A. L. Hopkins, G. S. Lowell, L. T. Schaller et al., Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties, J. Med. Chem, vol.47, pp.5923-5936, 2004.

M. Venet, D. End, and P. Angibaud, Farnesyl protein transferase inhibitor ZARNESTRA R115777-history of a discovery, Curr. Top. Med. Chem, vol.3, pp.1095-1102, 2003.

Q. Li, K. W. Woods, W. Wang, N. H. Lin, A. Claiborne et al., Design, synthesis, and activity of achiral analogs of 2-quinolones and indoles as non-thiol farnesyltransferase inhibitors, Bioorg. Med. Chem. Lett, vol.15, pp.2033-2039, 2005.

M. Anzini, A. Cappelli, and S. Vomero, Synthesis of 6-(4-methyl-1-piperazinyl)-7Hindeno[2,1-c]-quinoline derivatives as potential 5-HT receptor ligands, J. Heterocycl. Chem, vol.28, pp.1809-1812, 1991.

S. Cacchi, A. Carangio, G. Fabrizi, L. Moro, and P. A. Pace, Convenient synthesis of nitrogen-containing heterocycles bearing amino substituents from heteroaryl triflates, Synlett, pp.1400-1402, 1997.

C. Crotti, S. Cenini, B. Rindone, S. Tollari, and F. Demartin, Deoxygenation reactions of ortho-nitrostyrenes with carbon monoxide catalysed by metal carbonyls: a new route to indoles, Chem. Commun, vol.10, pp.784-786, 1986.

J. C. Jung, S. Oh, W. K. Kim, W. K. Park, J. Y. Kong et al., Synthesis and biological properties of 4-substituted quinolin-2(1H)-one analogues, J. Heterocyclic Chem, vol.40, issue.4, pp.617-623, 2003.

J. Shi, Z. Xiao, M. A. Ihnat, C. Kamat, B. Pandit et al., Structure-activity relationships studies of the anti-angiogenic activities of linomide, Bioorg. Med. Chem. Lett, vol.13, issue.6, pp.1187-1189, 2003.

K. Yoshikawa, S. Kobayashi, Y. Nakamoto, N. Haginoya, S. Komoriya et al., Design, synthesis, and SAR of cis-1,2-diaminocyclohexane derivatives as potent factor Xa inhibitors. Part II: exploration of 6-6 fused rings as alternative S1 moieties, Bioorg. Med. Chem, issue.24, pp.8221-8233, 2009.

C. T. Alabaster, A. S. Bell, S. F. Campbell, P. Ellis, C. G. Henderson et al., 2-(1H)-quinolinones with cardiac stimulant activity. 2. Synthesis and biological activities of 6-(N-linked, five-membered heteroaryl) derivatives, J. Med. Chem, vol.32, issue.3, pp.575-585, 1989.

J. M. Fourquez, A. Godard, F. Marsais, and G. Quéguinier, Regioselectivity of the metalation of polymethoxylated pivaloyl-aminobenzenes. Synthesis of methoxy-2(1H)quinolones precursors of 2-substituted-5,8-quinolinediones, J. Heterocyclic Chem, vol.32, issue.4, pp.1165-1170, 1995.

F. Leroux, O. Lefebvre, M. Schlosser, and . The, Off-shore" construction of optionally substituted 4-trifluoromethyl-2-quinolinones, Eur. J. Org. Chem, vol.14, pp.3147-3151, 2006.

R. L. Knight, D. R. Allen, H. L. Birch, G. A. Chapman, F. C. Galvin et al., Development of CXCR3 antagonists

, Bioorg. Med. Chem, vol.18, issue.2, pp.629-633, 2008.

A. Detsi, V. Bardakos, J. Markopoulos, and O. Igglessi-markopoulou, Reactions of 2methyl-3,1-benzoxazin-4-one with active methylene compounds: a new route to 3-substituted 4-hydroxyquinolin-2(1H)-ones, J. Chem. Soc., Perkin Trans. 1, pp.2909-2913, 1996.

S. Huang, R. M. Garbaccio, M. E. Fraley, J. Steen, C. Kreatsoulas et al., Development of 6substituted indolylquinolinones as potent chek 1 kinase inhibitors, Bioorg. Med. Chem, issue.22, pp.5907-5912, 2006.

G. Battistuzzi, R. Bernini, S. Cacchi, I. De-salve, and G. Fabrizi, 4-aryl-2-quinolones through a pseudo-domino Heck / Buchwald-Hartwig reaction in a molten tetrabutylammonium acetate/ tetrabutylammonium bromide mixture, Adv_Synth. Cat, vol.349, pp.297-302, 2007.

S. Gupta, B. Ganguly, and S. Das, A straight forward synthesis of 4-aryl substituted 2quinolones via Heck reaction, vol.4, pp.41148-41151, 2014.

A. S. Guram, R. A. Rennels, and S. L. Buchwald, A Simple catalytic method for the conversion of aryl bromides to arylamines, Angew. Chem. Int. Ed. Engl, vol.34, pp.1348-1350, 1995.

H. Amii, Y. Kishikawa, and K. Uneyama, Rh(I)-catalyzed coupling cyclization of N-aryl trifluoroacetimidoyl chlorides with alkynes: one-pot synthesis of fluorinated quinolines, Org. Lett, vol.3, issue.8, pp.1109-1112, 2001.

J. P. Michaël and . Quinoline, Nat. Prod. Rep, vol.19, pp.742-760, 2002.

E. Baston, A. Palusczak, and R. W. Hartmann, 6-substituted 1H-quinolin-2-ones and 2methoxy-quinolines: synthesis and evaluation as inhibitors of steroid 5alpha reductases types 1 and 2, Eur. J. Med. Chem, vol.35, pp.931-940, 2000.

R. S. Upadhayaya, J. K. Vandavasi, N. R. Vasireddy, V. Sharma, S. S. Dixit et al., Design, synthesis, biological evaluation and molecular modeling studies of novel quinoline derivatives against Mycobacterium tuberculosis, J. Bioorg Med Chem, vol.17, pp.2830-2841, 2009.

J. R. Pfister, Isolation and bioactivity of 2-aminoquinoline from Leucopaxillus albissimus, J. Nat. Prod, vol.51, issue.5, pp.969-970, 1988.
DOI : 10.1021/np50059a027

Y. Hsiao, N. R. Rivera, N. Yasuda, D. L. Hughes, and P. J. Reider, Highly regioselective friedländer reaction, Org. Lett, vol.3, issue.8, pp.1101-1103, 2001.
DOI : 10.1021/ol020048c

URL : https://pubs.acs.org/doi/pdf/10.1021/ol020048c

S. A. Foster, L. J. Leyshon, and D. G. Saunders, Reductive cyclisation of 2-azidocinnamates to 2-substituted quinolines, Chem. Commun, pp.29-30, 1973.

V. F. Batista, D. C. Pinto, and A. M. Silva, Synthesis of quinolines, ACS Sustainable Chem. Eng, vol.2016, issue.8, pp.4064-4078

R. I. Khusnutdinov, A. R. Bayguzina, and U. M. Dzhemilev, Metal complex catalysis in the synthesis of quinolines, J. Organomet. Chem, vol.768, pp.75-114, 2014.

S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal, and H. D. Patel, Recent advances in the synthesis of quinolines: a review, RSC Adv, vol.4, pp.24463-24476, 2014.

V. V. Kouznetsov, L. Y. Mendez, and C. M. Gomez, Recent progress in the synthesis of quinolines, Curr. Org. Chem, vol.9, pp.141-161, 2005.

K. Okuma, J. I. Seto, N. Nagahora, and K. Shioji, Chemoselective synthesis of quinoline Noxides from 3-(2-nitrophenyl)-3-hydroxypropanones, J. Heterocyclic Chem, issue.6, pp.1372-1378, 2010.

A. I. Barrosa and A. M. Silva, One-pot synthesis of 2-(2-hydroxyaryl)quinolines: reductive coupling reactions of 2-hydroxy-2-nitrochalcones, Tetrahedron Lett, vol.44, pp.5893-5896, 2003.

D. Shi, L. Rong, J. Wang, Q. Zhuang, X. Wang et al., A novel reductive cyclisation of o-nitrochalcones promoted by low-valent titanium: an access to 2-arylquinolines and 5,6-dihydrobenz[c]acridines, J. Chem. Res. (S), pp.342-343, 2003.

L. Zhou and Y. Zhang, Samarium(II) iodide induced reductive coupling of nitriles with nitro compounds, J. Chem. Soc., Perkin Trans. 1, pp.2899-2902, 1998.
DOI : 10.1039/a803077d

R. Umeda, H. Kouno, T. Kitagawa, T. Okamoto, K. Kawashima et al., Selective synthesis of quinolines and indoles: sulfur-assisted or seleniumcatalyzed reaction of ?-(2-Nitrophenyl)-?,?-unsaturated ketones with carbon monoxide, Heteroatom Chem, issue.6, pp.698-703, 2014.

W. Baik, D. I. Kim, H. J. Lee, W. J. Chung, B. H. Kim et al., Baker's yeast reduction of nitroarenes in NaOH media 5

, Tetrahedron Lett, vol.38, issue.26, pp.4579-4580, 1997.

T. Maejima, Y. Shimoda, K. Nozaki, S. Mori, Y. Sawama et al., Onepot aromatic amination based on carbonenitrogen coupling reaction between aryl halides and azido compounds, Tetrahedron, vol.68, pp.1712-1722, 2012.

H. J. Kim, E. M. Jeong, and K. J. Lee, Using Morita-Baylis-Hillman acetates of 2azidobenzaldehydes for the synthesis of 2-alkoxy-3-cyanomethylquinolines and alkyl quinoline-3-carboxylates, J. Heterocyclic Chem, vol.48, issue.4, pp.965-972, 2011.

E. G. Han, H. J. Kim, and K. J. Lee, Quinolines from Morita-Baylis-Hillman acetates of 2azidobenzaldehydes, Tetrahedron, vol.65, pp.9616-9625, 2009.

N. M. Gawad, H. H. Georgey, R. M. Youssef, and N. A. El-sayed, Synthesis and antitumor activity of some 2, 3-disubstituted quinazolin-4(3H)-ones and 4, 6-disubstituted-1, 2, 3, 4-tetrahydroquinazolin-2H-ones, Eur. J. Med. Chem, vol.45, pp.6058-6067, 2010.

I. M. Abdou and S. S. Al-neyadi, Synthesis of quinazolines and quinazolinones via palladium mediated approach, Heterocyclic Commun, vol.21, pp.115-132, 2015.

V. G. Ugale and S. B. Bari, Quinazolines: new horizons in anticonvulsant therapy, Eur. J. Med. Chem, vol.80, pp.447-501, 2014.

P. Molina, E. Aller, and A. Lorenzo, Tetrabutylammonium fluoride promoted intramolecular nucleophilic attack of a carbodiimide group on an ?,?-unsaturated ester group, Synthesis, pp.283-287, 1998.

Z. Xin, Z. Pei, T. V. Geldem, and M. Jirousek, A practical and efficient intramolecular Michael addition of ureas to ?,?-unsaturated esters, Tetrahedron Lett, vol.41, pp.1147-1150, 2000.

R. K. Saunthwal, M. Patel, R. K. Tiwari, K. Parang, and A. K. Verma, On water: catalyst-free chemoselective synthesis of highly functionalized tetrahydroquinazolines from 2aminophenylacrylate, Green Chem, vol.17, pp.1434-1441, 2015.

T. Saito, K. Tsuda, and Y. Saito, A facile and efficient carbodiimide-mediated synthesis of dihydroquinazolines via a tandem nucleophilic addition-intramolecular hetero conjugate addition annulation strategy, Tetrahedron Lett, vol.37, pp.209-212, 1996.

A. Hari and B. L. Miller, Rapid and efficient synthesis of 2-amino-4H-benzothiazines, Org. Lett, vol.2, issue.23, pp.3667-3670, 2000.

A. Tarraga, P. Molina, and J. L. Lopez, Intramolecular heteroconjugate addition of heterocumulenes to ?,?-unsaturated carbonyl compounds promoted by the CS2/TBAF system, Tetrahedron Lett, vol.41, pp.4895-4899, 2000.

J. Huang, Y. Yu, L. Hua, Z. Yao, F. Xu et al., Tandem addition-cyclization reaction catalyzed by ytterbium chloride: an efficient one-step synthesis of 2-amino-4H-3,1benzothiazine, Chin. Sci. Bull, vol.58, issue.7, pp.717-723, 2013.

S. Pursor, P. R. Moore, S. Swallow, and V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev, vol.37, pp.320-330, 2008.

K. Müller, C. Faeh, and F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science, vol.317, pp.1881-1886, 2007.

J. Bégué and D. Bonnet-delpon, Bioorganic and medicinal chemistry of fluorine, 2008.

T. Hiyama, Organo fluorine compounds-chemistry and applications, 2000.

W. K. Hagmann, The many roles for fluorine in medicinal chemistry, J. Med. Chem, vol.51, pp.4359-4369, 2008.

I. Ojima, Fluorine in medicinal chemistry and chemical biology, 2009.

N. Okamura, Y. Shiga, S. Furumoto, M. Tashiro, Y. Tsuboi et al., Doh-ura, K. In vivo detection of prion amyloid plaques using [(11)C]BF-227 PET, Eur. J. Nucl. Med. Mol. Imaging, vol.37, pp.934-941, 2010.

Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu et al., Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas, Chem. Rev, vol.116, issue.2, pp.422-518, 2016.

J. Wang, M. Sanchez-rosello, J. L. Acena, C. Del-pozo, A. E. Sorochinsky et al., Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade, Chem. Rev, vol.114, issue.4, pp.2432-2506, 2001.

A. Abouabdellah and J. Begué, Bonnet-Delphon, D. First synthesis of methyl syn-CF 3isoserinate, Synlett, pp.399-400, 1996.

W. G. Van-henegouwen and H. Hiemstra, Studies toward the total synthesis of the oxindole alkaloid: an efficient allene-terminated N-acyliminium ion cyclization, J. Org. Chem, vol.62, pp.8862-8867, 1997.

I. Ojima, J. C. Slater, P. Pera, J. M. Veith, A. Abouabdellah et al., Synthesis and biological activity of novel 3'-trifluoromethyl taxoids, Bioorg. Med. Chem. Lett, vol.7, issue.2, pp.133-138, 1997.
DOI : 10.1016/s0960-894x(96)00595-1

S. Barata-vallejo, B. Lantano, and A. Postigo, Recent advances in trifluoromethylation reactions with electrophilic trifluoromethylating reagents, Chem. Eur. J, vol.20, pp.16806-16829, 2014.

Y. Macé and E. Magnier, The new age of electrophilic perfluoroalkylation reactions, Eur. J. Org. Chem, pp.2479-2494, 2012.

G. K. Prakash, R. Krishnamurti, and G. A. Olah, Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF 3 ). A trifluoromethide equivalent, J. Am. Chem. Soc, vol.141, pp.393-395, 1989.

J. Rusell and N. Roques, Effective nucleophilic trifluoromethylation with fluoroform and common base, Tetrahedron, vol.54, pp.13771-13782, 1998.

T. Kitazume and N. Ishikawa, Ultrasound-promoted selective perfluoroalkylation on the desired position of organic molecules, J. Am. Chem. Soc, vol.107, pp.5186-5191, 1985.

L. Jablonski, T. Billard, and B. R. Langlois, Trifluoroacetophenone as nucleophilic trifluoromethylating reagent, Tetrahedron Lett, vol.44, pp.1055-1057, 2003.
DOI : 10.1016/s0040-4039(02)02718-1

Y. Chang and C. Cai, Sodium trifluoroacetate: an efficient precursor for the trifluoromethylation of aldehydes, Tetrahedron Lett, vol.46, pp.3161-3164, 2005.

B. R. Langlois, E. Laurent, and N. Roidot, Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions, Tetrahedron Lett, vol.32, pp.7525-7528, 1991.
DOI : 10.1016/0040-4039(91)80524-a

T. Umemoto and S. Ishihara, Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio-and-selenophenium salt system, Tetrahedron Lett, vol.31, pp.3579-3582, 1990.

T. Umemoto and S. Ishihara, Power-variable trifluoromethylating agents. S-, and Tetrifluoromethylated dibenzothio-seleno-and-tellurophenium salt system, J. Am. Chem. Soc, vol.115, issue.6, pp.2156-2164, 1993.

P. Eisenberg, S. Gischig, and A. Togni, Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation, Chem. Eur. J, vol.12, pp.2579-2586, 2006.

I. Kieltsch, P. Eisenberg, and A. Togni, Mild electrophilic trifluoromethylation of carbon-and sulfur-centered nucleophiles by hypervalent iodine (III)-CF 3 reagent, Angew. Chem. Int. Ed, vol.46, pp.754-757, 2007.
DOI : 10.1002/ange.200603497

P. Eisenberg, I. Kieltsch, M. Armanino, and A. Togni, Mild electrophilic trifluoromethylation of secondary and primary aryl-and alkylphosphines using iodine(III)-CF 3 reagent, Chem. Commun, pp.1575-1577, 2008.

J. Charpentier, N. Fruh, and A. Togni, Electophilic trifluoromethylation by use of hypervalent iodine reagents, Chem. Rev, vol.115, pp.650-682, 2015.
DOI : 10.1021/cr500223h

URL : https://doi.org/10.1021/cr500223h

L. Ling, K. Liu, X. Li, and Y. Li, General reaction mode of hypervalent iodine trifluoromethylation reagent: a density functional theory study, ACS Catalysis, vol.5, pp.2458-2468, 2015.

Y. P. Xiong, M. Y. Wu, X. Y. Zhang, C. L. Ma, L. Huang et al., Direct access to ?-trifluoromethyl enones via efficient copper-catalyzed trifluoromethylation of Meyer-Schuster rearrangement, Org. Lett, vol.16, pp.1000-1003, 2014.
DOI : 10.1021/ol403741m

X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu et al., Copper-catalyzed C(sp 3 )-C(sp 3 ) bond formation using a hypervalent iodine reagent: an efficient allylic trifluoromethylation, J. Am. Chem. Soc, vol.133, pp.16410-16413, 2011.
DOI : 10.1021/ja207775a

Z. Fang, Y. Ning, P. Mi, P. Liao, and X. Bi, Catalytic C-H ?-trifluoromethylation of ?,?unsaturated carbonyl compounds, Org. Lett, vol.16, pp.1522-1525, 2014.

D. S. Bose, A. P. Rudradas, and M. Babu, The indium(III) chloride-catalyzed von Pechmann reaction: a simple and effective procedure for the synthesis of 4-substituted coumarins, Tetrahedron Lett, vol.43, pp.9195-9197, 2002.

T. Nishiwaki and H. Kikukawa, Heterocyclization to 3-aryl-4-trifluoromethyl-2H-1benzopyran-2-ones under Hoesch reaction conditions, J. Heterocyclic Chem, vol.31, pp.889-892, 1994.
DOI : 10.1002/jhet.5570310433

E. R. Bissel, D. K. Larson, and M. Croudace, Some 7-substituted-4(trifluoromethyl)coumarins, Chem. Eng. Data, vol.26, pp.348-350, 1981.

E. R. Bissel, A. R. Mitchell, and R. E. Smith, Synthesis and chemistry of 7-amino-4(trifluoromethyl)coumarin and its amino acid and peptide derivatives, J. Org. Chem, vol.45, pp.2283-2287, 1980.

A. S. Zambare, F. A. Khan, S. P. Zambare, S. D. Shinde, and J. N. Sangshatti, Recent advances in the synthesis of coumarin derivatives via Pechmann condensation, Curr. Org. Chem, vol.20, pp.798-828, 2016.

W. Dmowski and K. Piasecka-maciejewska, Preparation of 3-(trifluoromethyl)coumarins, Org. Prep. Proced. Int, vol.34, pp.514-517, 0190.

X. H. Cao, X. Pan, P. J. Zhou, J. P. Zou, and O. T. Asekun, Manganese(III)-mediated direct C sp2-H radical trifluoromethylation of coumarins with sodium trifluoromethanesulfinate, Chem. Commun, vol.50, pp.3359-3362, 2014.
DOI : 10.1039/c3cc49689a

X. Zhang, P. Huang, Y. Li, and C. Duan, A mild and fast continuous-flow trifluoromethylation of coumarins with the CF 3 radical derived from CF 3 SO 2 and TBHP, Org. Biomol. Chem, vol.13, pp.10917-10922, 2015.

R. Sakamoto, H. Kashiwagi, S. Selvakumar, S. A. Moteki, and K. Maruoka, Efficient generation of perfluoroalkyl radicals from sodium perfluoroalkanesulfinates and a hypervalent iodine(III) reagent: mild, metal-free synthesis of perfluoroalkylated organic molecules, Org. Biomol. Chem, vol.14, pp.6417-6421, 2016.

J. K. Augustine, A. Bombrun, B. Ramappa, and C. Boodappa, An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation, Tetrahedron Lett, vol.53, pp.4422-4425, 2012.

Y. Li, Y. Lu, G. Qiu, and Q. Ding, Copper-catalyzed direct trifluoromethylation of propiolates: construction of trifluoromethylated coumarins, Org. Lett, vol.16, pp.4240-4243, 2014.

S. Chaabouni, F. Simonet, A. François, S. Abid, C. Galaup et al., 3trifluoromethylated coumarins and carbostyrils via radical trifluoromethylation of orthofonctionalized cinnamic esters, Eur. J. Org. Chem, issue.2, pp.271-277, 2017.
DOI : 10.1002/ejoc.201601181

D. Berthomieu and G. Delahay, Recent advances in Cu I/II : experiments and modeling, Catal. Rev, vol.48, pp.269-313, 2006.

S. Chassaing, M. Kumarraja, A. S. Sido, P. Pale, and J. Sommer, Click chemistry in Cu Izeolites: the Huisgen [3 + 2]-cycloaddition, Org. Lett, vol.9, pp.883-886, 2007.
DOI : 10.1002/chin.200729119

S. Chassaing, A. Alix, A. Olmos, M. Keller, J. Sommer et al., Copper(I)-zeolites as new heterogeneous and green catalysts for organic synthesis, Synthesis, pp.1557-1567, 2010.

V. Magné, T. Garnier, M. Danel, P. Pale, and S. Chassaing, Cu I-USY as a ligand-free and recyclable catalytic system for the Ullmann-type diaryl ether synthesis, Org. Lett, vol.17, pp.4494-4497, 2015.

S. Chassaing, V. Bénéteau, and P. Pale, When CuAAC 'click chemistry' goes heterogeneous, Catal. Sci. Technol, vol.6, pp.923-957, 2016.
DOI : 10.1039/c5cy01847a

K. Stanek, R. Koller, and A. Togni, Reactivity of a 10-I-3 Hypervalent iodine trifluoromethylation reagent with phenols, J. Org. Chem, vol.73, pp.7678-7685, 2008.

N. P. Gristan, M. S. Platz, and . Kinetics, spectroscopy, and computational chemistry of arylnitrenes, Chem. Rev, vol.106, pp.3844-3867, 2006.

G. Burdzinski, J. C. Hackett, J. Wang, T. L. Gustafson, C. M. Hadad et al., Early events in the photochemistry of aryl azides from femtosecond UV/Vis spectroscopy and quantum chemical calculations, J. Am. Chem. Soc, vol.128, pp.13402-13411, 2006.

A. Kuhn, M. Vosswinkel, and C. Wentrup, Carbene and nitrene rearrangements: a theorical stydy of cyclic allenes and carbenes, carbodiimides, and azirines, J. Org. Chem, vol.67, pp.9023-9030, 2002.

W. T. Borden, N. P. Gristan, C. M. Haddad, W. L. Karney, C. R. Kemnitz et al., The interplay of theory and experiment in the study of phenylnitrene, Acc. Chem. Res, vol.33, pp.765-771, 2000.

N. P. Gristan and M. S. Platz, Kinetics and spectroscopy of substituted phenylnitrenes, Adv. Phys. Org. Chem, vol.36, pp.255-304, 2001.

A. K. Schrock and G. B. Schuster, Photochemistry of phenyl azide: chemical properties of the transient intermediates, J. Am. Chem. Soc, vol.106, pp.5228-5234, 1984.

B. A. Degraff, D. W. Gillepsie, and R. J. Sundberg, Phenyl nitrene. Flash photolytic investigation of the reaction with secondary amines

, J. Am. Chem. Soc, vol.96, pp.7491-7496, 1974.

R. A. Mcclelland, M. J. Kahley, P. A. Davidse, and G. Hadzialic, Acide-base properties of arylnitrenium ions, J. Am. Chem. Soc, vol.118, pp.4794-4803, 1996.

G. B. Anderson and D. E. Falvey, Photogenerated arylnitrenium ions: absorption spectra and absolute rate constants for tert-butyl(4-halo-2-acetylphenyl)nitrenium ions measured by timeresolved laser spectroscopy, J. Am. Chem. Soc, vol.115, pp.9870-9871, 1993.

P. A. Davidse, M. J. Kahley, R. A. Mcclelland, and M. Novak, Flash photolysis observation and lifetimes of 2-fluorenyl-and 4-biphenylylacetylnitrenium ions in aqueous solution, J. Am. Chem. Soc, vol.116, pp.4513-4514, 1994.

J. Wang, J. Kubicki, G. Burdzinski, J. C. Hackett, T. L. Gustafson et al., Early events in the photochemistry of 2-naphtyl azide from femtosecond UV/Vis spectroscopy and quantum chemical calculations: direct observation of a very short lived singlet nitrene, J. Org. Chem, vol.72, pp.7581-7586, 2007.

J. Wang, J. Kubicki, and M. S. Platz, An ultrafast study of phenyl azide: the direct observation of phenylnitrenium ion, Org. Lett, vol.9, pp.3973-3976, 2007.

K. Yakushijin, T. Tsuruta, and H. Furukawa, Intramolecular ring formation of phenyl azide and furan moieties, Chem. Pharm. Bull, vol.30, pp.140-151, 1982.

H. Nakayama, M. Nozawa, and Y. Kanaoka, Photoaffinity labeling. II. Photolysis of amido derivatives of nitrophenylazides, Chem. Pharm. Bull, vol.27, issue.11, pp.2775-2780, 1979.

S. A. Foster, J. Leyshon, and D. G. Saunders, Reductive cyclisation of 2-azidocinnamates to 2-substituted quinolines, Chem. Commun, vol.2, pp.29-30, 1973.

H. Takeuchi and K. Koyama, Photolysis and thermolysis of phenylazide in acetic acid, Chem. Commun, pp.202-204, 1981.

C. Carra, T. Bally, and A. Albini, Role of conformation and electronic structure in the chemistry of ground and excited state of o-pyrazoylphenylnitrenes, J. Am. Chem. Soc, vol.127, pp.5552-5562, 2005.

V. Voskresenska, R. M. Wilson, M. Panov, A. N. Tarnovsky, J. A. Krause et al., Photoaffinity labeling via nitrenium ion chemistry: protonation of the nitrene derived from 4-amino-3-nitrophenyl azide to afford reactive nitrenium ion pairs, J. Am. Chem. Soc, vol.131, pp.11535-11547, 2009.

R. Purvis, R. K. Smalley, W. A. Strachan, and H. Suschitzky, The photolysis of oazidobenzoic acid derivatives: a practicable synthesis of 2-alkoxy-3-alkoxycarbonyl-3Hazepines, J. Chem. Soc., Perkin Trans. 1, pp.191-195, 1978.

H. Takeuchi and K. Koyama, Photolysis and thermolysis of phenylazide in acetic acid. Trapping of 1-aza-cyclohepta-1,2,4,6-tetraene and nucleophilic aromatic substitution, J. Chem. Soc., Perkin Trans. 1, pp.1269-1273, 1982.

M. Warrier, M. K. Lo, H. Monbouquette, and M. Garcia-garibay, Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles, Photochem. Photobiol. Sci, vol.3, pp.859-863, 2004.

S. Lord, N. R. Conley, H. D. Li, R. Samuel, N. Liu et al., A photoactivatable Push-Pull fluorophore for single-molecule imaging in live cells, J. Am. Chem. Soc, vol.130, pp.9204-9205, 2008.

G. Bucher, C. Tonshoff, and A. Nicolaides, Photochemistry of an azido-functionalized cryptand: controlling the reactivity of an extremely long-lived singlet aryl nitrene by complexation to alkali cations, J. Am. Chem. Soc, vol.127, pp.6883-6892, 2005.

Y. Chen, A. S. Kamlet, J. B. Steinman, and D. R. Liu, A biomolecule-compatible visible-lightinduced azide reduction from a DNA-encoded reaction-discovery system, Nat. Chem, vol.3, pp.146-153, 2011.

T. V. Popova, J. Reinbolt, B. Ehresmann, M. M. Shakirov, M. V. Serebriakova et al., Why do p-nitro-substituted aryl azides provide unintended dark reactions with proteins, Photochem. Photobiol. B, vol.100, pp.19-29, 2010.

A. P. Scott, M. S. Platz, and L. Radom, Singlet-triplet splittings and barriers to Wolff rearrangement for carbonyl carbenes, J. Am. Chem. Soc, vol.123, pp.6069-6076, 2001.

P. J. Weber and A. G. Beck-sickinger, Comparaison of the photochemical behaviour of four different photoactivatable probes, J. Peptide Res, vol.49, pp.375-383, 1997.

S. J. Lord, H. D. Lee, R. Samuel, R. Weber, N. Liu et al., Azido Push-Pull fluorogens photoactvate to produce bright fluorescent labels, J. Phys. Chem. B, vol.114, pp.14157-14167, 2010.

Z. Shi, Y. Ren, B. Li, S. Lu, and . W. Zhang, CuI-catalysed photochemical or thermal reactions of 3-(2-azidobenzylidene)-lactams. Application to the synthesis of fused indoles, Chem. Commun, vol.46, pp.3973-3975, 2010.

Y. Goriya and C. V. Ramana, Synthesis of pseudo-indoxyl derivatives via sequential Cucatalyzed S N Ar and Smalley cyclisation, Chem. Commun, vol.49, pp.6376-6378, 2013.

B. J. Stokes, S. Liu, and T. G. Driver, Rh 2 (II)-Catalyzed nitro-group migration reactions: selective synthesis of 3-nitroindoles from ?-nitro styryl azides, J. Am. Chem. Soc, vol.133, pp.4702-4705, 2011.

Z. Li, W. Wang, X. Zhang, C. Hu, and W. Zhang, One-pot synthesis of indolo[2,3-c]quinolin6-ones by sequential photocyclizations of 3-(2-azidophenyl)-N-phenylacrylamides, Synlett, vol.24, pp.73-78, 2013.

B. Valeur, Invitation à la fluorescence moléculaire, 2004.

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, purification and properties of Aequorin, a bioluminescent protein from the Luminos Hydromedusan Aequorea, Nobelprize.org. Nobel media A B, vol.59, pp.223-239, 1962.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues, Physiol. Rev, vol.90, pp.1103-1163, 2010.

U. Resch-genger, M. Grabolle, S. Cavaliere-jaricot, R. Nitschke, and T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature, vol.5, pp.763-775, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00798911

, The molecular probes handbook: a guide to fluorescent probes and labeling technologies, p.11

. Ed, , pp.11-96, 2010.

G. Weber, Rotational brownian motions and polarization of the fluorescence of solutions, Adv. Protein. Chem, vol.8, pp.415-459, 1953.

J. R. Lakowicz, Principles of fluorescence spectroscopy, vol.3, 2006.

R. P. Haugland, M. T. Spence, I. D. Johnson, and A. Basey, The handbook: a guide for fluorescent probes and labeling technologies, Molecular Probes, vol.10, 2005.

L. G. Lee, G. M. Berry, and C. H. Chen, Vita blue: a new 633-nm excitable fluorescent dye for cell analysis, Cytometry, vol.10, pp.151-164, 1989.

J. C. Mialocq, P. Hébert, X. Armand, R. Bonneau, and J. P. Morand, Photophysical and photochemical properties of rhodamine 6G in alcoholic and aqueous sodium dodecylsulfate micellar solutions, J. Photochem. Photobiol, vol.56, pp.323-328, 1991.

R. B. Mujumdar, I. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters, Bioconj. Chem, vol.4, pp.105-111, 1993.

W. Y. Leung, P. A. Trobridge, R. P. Haugland, and F. Mao, amino-4-methyl-6sulfocoumarin-3-acetic acid: a novel blue fluorescent dye for protein labeling, Bioorg. Med. Chem. Lett, vol.9, pp.2229-2232, 1999.

N. Panchuk-voloshina, R. P. Haugland, J. Bishop-stewart, M. K. Bhalgat, P. J. Millard et al., Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem, vol.47, pp.1179-1188, 1999.

G. Ulrich, R. Ziessel, and A. Harriman, The chemistry of fluorescent bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed, vol.47, issue.7, pp.1184-1201, 2008.

A. Loudet and K. Burgess, BODIPY dyes and their derivatives: synthesis and spectroscopic properties, Chem. Rev, vol.107, pp.4891-4932, 2007.

W. C. Sun, K. R. Gee, and R. P. Haugland, Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes, Bioorg. Med. Chem. Lett, vol.8, pp.3107-3110, 1998.

H. Schill, S. Nizamov, F. Bottanelli, J. Bierwagen, V. N. Belov et al., 4trifluoromethyl-substituted coumarins with large Stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy, Chem. Eur. J, vol.19, pp.16556-16565, 2013.

S. W. Hell, S. Nizamov, G. Donnert, K. Kolmakov, H. Schill et al., Willig K. Fluorescent dyes with phosphorylated hydroxymethyl groups and their use in light microscopy and imaging techniques. US20160047798, 2014.

M. T. Gonçalves, Fluorescent labeling of biomolecules with organic probes, Chem. Rev, vol.109, pp.190-212, 2009.

J. P. Rostron, G. Ulrich, P. Retailleau, A. Harriman, and R. Ziessel, Engineering of an electronically decoupled difluoroindacene-pyrene dyad possessing high affinity for DNA, New J. Chem, vol.29, pp.1241-1244, 2005.

X. Peng, J. Du, J. Fan, J. Wang, Y. Wu et al., A selective fluorescent sensor for imaging Cd 2+ in living cells, J. Am. Chem. Soc, vol.129, pp.1500-1501, 2007.

Q. Zheng, G. Xu, and P. Prasad, Conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes: highly fluorescent, multicolored probes for cellular imaging, Chem. Eur. J, vol.14, pp.5812-5819, 2008.
DOI : 10.1002/chem.200800309

O. A. Bozdemir, R. Guliyev, O. Buyukcakir, S. Selcuk, S. Kolemen et al., Selective manipulation of ICT and PET processes in styryl-BODIPY derivatives: applications in molecular logic and fluorescence sensing of metal ions, J. Am. Chem. Soc, issue.23, pp.8029-8036, 2010.

Q. Zheng, G. S. He, and P. N. Prasad, A novel near IR two-photon absorbing chromophore: optical limiting and stabilization performances at an optical communications wavelength, Chem. Phys. Lett, vol.475, pp.250-255, 2009.
DOI : 10.1016/j.cplett.2009.05.040

C. Giraudeau, A. Moussaron, A. Stallivieri, S. Mordon, and F. Frochot, Indocyanine green: photosensitizer or chromophore? Still a debate, Curr. Med. Chem, vol.21, issue.16, pp.1871-1897, 2014.
DOI : 10.2174/0929867321666131218095802

URL : https://hal.archives-ouvertes.fr/hal-01275616

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, Absorption and fluorescence spectroscopic investigation of indocyanine green, J. Photochem. Photobiol, vol.96, pp.137-148, 1996.

J. C. Bünzli, Lanthanide light for biology and medical diagnosis, J. Lumin, vol.170, pp.866-878, 2016.

J. C. Bünzli and S. V. Eliseeva, Photophysics of lanthanoid coordination compounds, Comprehensive inorganic chemistry II, vol.8, p.339, 2013.

J. C. Bünzli and C. Piquet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev, vol.34, pp.1048-1077, 2005.

S. Tobita, M. Arakawa, and I. Tanaka, The paramagnetic metal effect on the ligand localized S1 .apprx. .fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate, J. Phys. Chem, vol.89, pp.5649-5654, 1985.

D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys, vol.21, pp.836-850, 1953.

T. H. Förster, Transfer mechanisms of electronic excitation, vol.27, pp.7-17, 1959.

D. 'aléo, A. Picot, A. Baldeck, P. L. Andraud, C. Maury et al., Design of dipicolinic acid ligands for the two-photon sensitized luminescence of europium complexes with optimized cross-sections, Inorg. Chem, vol.47, pp.10269-10279, 2008.

D. 'aléo, A. Pointillart, F. Ouahab, L. Andraud, C. Maury et al., Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red, Coord. Chem. Rev, vol.256, pp.1604-1620, 2012.

M. Sy, A. Nonat, M. Hildebrant, and L. J. Charbonnière, Lanthanide-based luminescence biolabelling, Chem. Commun, vol.52, pp.5080-5095, 2016.
DOI : 10.1039/c6cc00922k

B. Alpha, J. M. Lehn, and G. Mathis, Energy transfer luminescence of europium(III) and terbium(III) cryptates of macrobicyclic polypyridine ligands, Angew. Chem. Int. Ed, vol.26, pp.266-267, 1987.

J. L. Toner, Polypyridine fluorescent labels for immunoassay, vol.4837169, 1989.

A. K. Saha, K. Kross, E. D. Kloszewski, D. A. Upson, J. L. Toner et al., Time-resolved fluorescence of a new europium-chelate complex: demonstration of highly sensitive detection of protein and DNA samples, J. Am. Chem. Soc, vol.115, pp.11032-1033, 1993.

J. Xu, T. M. Corneillie, E. G. Moore, G. L. Law, N. G. Butlin et al., Octadentate cages of Tb(III) 2-hydroxyisophthalamides: a new standard for luminescent lanthanide labels, J. Am. Chem. Soc, vol.133, 2011.

J. W. Walton, A. Bourdolle, S. J. Butler, M. Soulie, M. Delbianco et al., Very bright europium complexes that stain cellular mitochondria, Chem. Commun, vol.49, pp.1600-1602, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01245517

D. Parker and J. A. Williams, Modest effectiveness of carbostyrill24 as a sensitising chromophore in europium and terbium amide complexes based on 1,4,7,10tetraazacyclododecane, J. Chem. Soc, pp.1581-1586, 21996.

E. Brunet, M. T. Alonso, O. Juanes, O. Velasco, and J. C. Rodriguez-ubis, Novel polyaminocarboxylate chelates derived from 3-aroylcoumarins, Tetrahedron, vol.57, pp.3105-3115, 2001.

M. Xiao and P. R. Selvin, Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer, J. Am. Chem. Soc, vol.123, pp.7067-7073, 2001.

C. Féau, E. Klein, C. Dosche, P. Kerth, and L. Lebeau, Synthesis and characterization of coumarin-based europium complexes and luminescence measurements in aqueous media, Org. Biomol. Chem, vol.7, pp.5259-5270, 2009.

E. Pershagen, J. Nordholm, and K. E. Borbas, Luminescent lanthanide complexes with analyte-triggered antenna formation, J. Am. Chem. Soc, vol.134, pp.9832-9835, 2012.

C. Szíjjártó, E. Pershagen, and K. E. Borbas, Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition, Dalton Trans, vol.41, pp.7660-7669, 2012.

C. Szíjjártó, E. Pershagen, N. O. Ilchenko, and K. E. Borbas, A versatile long-wavelengthabsorbing scaffold for Eu-based responsive probes, Chem. Eur. J, vol.19, pp.3099-3109, 2013.

E. Pershagen and K. E. Borbas, Designing reactivity-based responsive lanthanide probes for multicolor detection in biological systems, Coord. Chem. Rev, pp.30-46, 2014.

J. Andres and K. E. Borbas, Expanding the versatility of dipicolinate-based luminescent lanthanide complexes: a fast method of antenna testing, Inorg. Chem, vol.54, pp.8174-8176, 2015.

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo et al., NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y 2 O 3 nanoparticles as fluorescent probes, Eur. J. Inorg. Chem, issue.18, pp.2673-2677, 2010.

E. Betzig, G. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, pp.1642-1645, 2006.

M. J. Rust, M. Bates, and X. Zhuang, Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit-image resolution, Nat. Methods, vol.3, pp.793-795, 2006.

D. Puliti, D. Warther, C. Orange, A. Specht, and M. Goeldner, Small photoactivatable molecules for controlled fluorescence activation in living cells, Bioorg. Med. Chem, vol.19, pp.1023-1029, 2011.

D. Silva, A. P. Gunaratne, H. Q. Gunnlaugsson, T. Huxley, A. J. Mccoy et al., Signaling recognition events with fluorescent sensors and switche, Chem. Rev, vol.97, pp.1515-1566, 1997.

C. G. Bochet and . Bochet, Photolabile protecting groups and linkers, J. Chem. Soc., Perkin Trans. 1, pp.125-142, 2002.

G. A. Krafft, W. R. Sutton, and R. T. Cymmings, Photoactivatable fluorophores. 3. Synthesis and photoactivation of fluorogenic difunctionalized fluoresceins, J. Am. Chem. Soc, vol.110, pp.301-303, 1988.

J. Ottl, D. Gabriel, and G. Marriott, Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents, Bioconj. Chem, vol.9, issue.2, pp.143-151, 1998.

T. J. Mitchison, K. E. Sawin, J. A. Theriot, K. Gee, and A. Mallavarapu, Caged fluorescent probes, Methods Enzymol, vol.291, pp.63-78, 1998.

D. Warther, F. Bolze, J. Léonard, S. Gug, A. Specht et al., Live-cell one-and twophoton emitting acridinone fluorophore, J. Am. Chem. Soc, issue.8, pp.2585-2590, 2010.
DOI : 10.1021/ja9074562

URL : https://hal.archives-ouvertes.fr/hal-00508259

Y. R. Zhao, Q. Zheng, K. Dakin, K. Xu, M. L. Martinez et al., New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications, J. Am. Chem. Soc, vol.126, issue.14, pp.4653-4663, 2004.
DOI : 10.1021/ja036958m

C. Orange, A. Specht, D. Puliti, E. Sakr, T. Furuta et al., Synthesis and photochemical properties of a light-activated fluorophore to label His-tagged proteins, Chem. Commun, pp.1217-1219, 2008.

G. Zheng, Y. M. Guo, and W. H. Li, Photoactivatable and water soluble FRET dyes with high uncaging cross section, J. Am. Chem. Soc, vol.129, issue.35, pp.10616-10617, 2007.
DOI : 10.1021/ja071427+

W. H. Li and G. Zheng, Photoactivatable fluorophores and techniques for biological imaging, Photochem. Photobiol. Sci, vol.11, pp.460-471, 2012.
DOI : 10.1039/c2pp05342j

URL : http://europepmc.org/articles/pmc3677749?pdf=render

E. J. Díaz, S. Picard, V. Chevasson, J. Daniel, V. Hugues et al., Cooperative dyads for two-photon uncaging, Org. Lett, vol.17, issue.1, pp.102-105, 2015.

K. Kolmakov, C. Wurm, M. V. Sednev, M. L. Bossi, V. N. Belov et al., Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group, Photochem. Photobiol. Sci, vol.11, pp.522-532, 2012.

V. Hagen, S. F. Priv-doz, J. B. Doz, D. Lorenz, B. Wiesner et al., Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable [bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells, Angew. Chem. Int. Ed, vol.41, pp.3625-3628, 2002.

H. Li, R. Lan, C. F. Chan, L. Jiang, L. Dai et al., Real-time in situ monitoring via europium emission of the photo-release of antitumor cisplatin from a Eu-Pt complex, Chem. Commun, vol.51, pp.14022-14025, 2015.

S. Chassaing, V. Lobjois, C. Lorenzo, and C. Galaup, Projet CitrON-Fluo, 2013.

M. Jaurequi, W. S. Perry, C. Allain, L. R. Vidler, M. C. Willis et al., Changing the local coordination environment in mono-and bi-nuclear lanthanide complexes through "click, chemistry. Dalton Trans, pp.6283-6285, 2009.

C. Piguet and C. F. Geraldes, In handbook on the physics and chemistry of rare earths, vol.33, pp.353-463, 2003.

R. Appel, Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage, Angew. Chem. Int. Ed, vol.14, issue.12, pp.801-811, 1975.
DOI : 10.1002/anie.197508011

P. Joao, A. Carlos, F. G. Geraldes, J. A. Martins, A. E. Merbach et al., Lanthanide(III) complexes of DOTAglycoconjugates: a potential new class of lectin-mediated medical imaging agents, Chem. Eur. J, vol.10, pp.5804-5816, 2004.

J. Laakso, G. A. Rosser, C. Szíjjarto, A. Beeby, and K. E. Borbas, Synthesis of chlorinsensitized near infrared-emitting lanthanide complexes, Inorg. Chem, vol.51, pp.10366-10374, 2012.

J. K. Molloy, O. Kotova, R. D. Peacock, and T. Gunnlaugsson, Synthesis of luminescent homo-dinuclear cationic lanthanide cyclen complexes bearing amide pendant arms through the use of copper catalysed (1,3-Huisgen, CuAAC) click chemistry, Org. Biomol. Chem, vol.10, pp.314-322, 2012.

A. Dadabhoy, S. Faulkner, and P. G. Sammes, Long wavelength sensitizers for europium(III) luminescence based on acridone derivatives, J. Chem. Soc, pp.348-357, 2002.

M. Regueiro-figueroa, K. Djanashvili, D. Esteban-gomez, T. Chauvin, E. Toth et al., Platas-Iglesias, C. Molecular recognition of sialic acid by lanthanide(III) complexes through cooperative two-site binding, Inorg. Chem, vol.49, pp.4212-4223, 2010.

K. Djanashvili, T. L. ;-ten-hagen, R. Blangé, D. Schipper, J. A. Peters et al., Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate, Bioorg. Med. Chem, vol.19, pp.1123-1130, 2011.

A. François, Elaboration de complexes hétérobinucléaires par approche chimie-click pour une application en imagerie bimodale, 2014.

Y. Dong, X. Liang, H. Yuan, S. Qi, F. Chen et al., Potential green fungicide: 16-oxo-1-oxa-4-azoniacyclohexadecan-4-ium tetrafluoroborate, Green Chem, vol.10, pp.990-994, 2008.

W. H. Pearson and W. K. Fang, Synthesis of benzo-fused 1-azabicyclo[m.n.0]alkanes via the Schmidt reaction: a formal synthesis of gephyrotoxin, J. Org. Chem, issue.21, pp.7158-7174, 2000.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed, vol.40, issue.11, pp.2004-2021, 2001.

B. T. Worrell, J. A. Malik, and V. V. Fokin, Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions, Science, vol.340, pp.457-460, 2013.

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes, Angew. Chem. Int. Ed, issue.14, pp.2596-2599, 2002.

C. W. Tornoe, C. Christensen, and M. Meldal, Peptidotriazoles on solid phase: [1,2,3]triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem, vol.67, issue.9, pp.3057-3064, 2002.

P. Wu and V. V. Fokin, Catalytic azide-alkyne cycloaddition: reactivity and applications, Aldrichimica Acta, vol.40, pp.7-17, 2007.

L. Jin, D. R. Tolentino, M. Melaimi, and G. Bertrand, Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction, Sci. Adv, vol.1, pp.1-5, 2015.

V. O. Rodionov, V. V. Fokin, and M. G. Finn, Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction, Angew. Chem. Int. Ed, vol.44, pp.2210-2215, 2005.

D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, and J. A. Howard, Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics, Chem. Rev, vol.102, 1977.

E. Pershagen and K. E. Borbas, Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes, Angew. Chem. Int. Ed, vol.54, pp.1787-1790, 2015.

, The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K, 2013.

D. D. Perrin, Dissociation constants of organic bases in aqueous solution, IUPAC Chem Data Ser, 1965.

W. M. Fabian, K. S. Niederreiter, G. Uray, and W. Stadlbauer, Substituent effects on absorption and fluorescence spectra of carbostyrils, J. Mol. Struc, vol.477, pp.209-220, 1999.

H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh, and K. Nozaki, Recent advances in instrumentation for absolute emission quantum yield measurements, Coord. Chem. Rev, vol.254, pp.2449-2458, 2010.

J. C. Bünzli and S. V. Eliseeva, Lanthanide luminescence: photophysical, analytical and biological aspects, Springer series on fluorescences, pp.1-45, 2010.

D. Parker and J. A. Williams, Getting excited about lanthanide complexation chemistry, Dalton Trans, pp.3613-3628, 1996.

S. Faulkner, S. J. Pope, and B. P. Burton-pye, Lanthanide complexes for luminescence imaging applications, Appl. Spectrosc. Rev, vol.40, pp.1-31, 2005.

A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker et al., Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, J. Chem. Soc, pp.493-503, 21999.

N. Sabbatini, M. Guardigli, and J. M. Lehn, Luminescent lanthanide complexes as photochemical supramolecular devices, Coord. Chem. Rev, vol.123, pp.201-228, 1993.

P. Dissanayake, Y. Mei, and M. J. Allen, Luminescence-decay as an easy-to-use tool for the study of lanthanide-containing catalystsin aqueous solutions, ACS Catal, vol.1, issue.10, pp.1203-1212, 2011.

M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodriguez-ubis et al., Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield, J. Lumin, vol.75, pp.149-169, 1997.

J. Yu, Y. Wang, P. Zhang, and J. Wu, Direct amination of phenols under metal-free conditions, Synlett, vol.24, pp.1448-1454, 2013.

W. E. Truce, E. M. Kreider, and W. W. Brand, The Smiles and related rearrangements of aromatic systems, Org. React, p.18, 1970.

J. K. Kochi, The mechanism of the Sandmeyer and Meerwein reactions, J. Am. Chem. Soc, vol.79, issue.11, pp.2942-2948, 1957.

, E)-ethyl 3-(5-bromo-2-hydroxyphenyl)acrylate (1e)

N. Cas, , pp.515877-70

, the expected product 1e (271 mg) was obtained in pure form as a yellowish solid from 5-bromo-2hydroxybenzaldehyde (250 mg, 1.24 mmol, 1 eq). Yield: 81%.-R f = 0.40 (PE / EtOAc 70:30).-IR (neat): 3350, 2985, 1685, 1625 cm-1 .-1 H NMR (300 MHz, Acetone-d 6 ) ? (ppm) = 9, p.1

, E)-ethyl 3-(2-hydroxy-5-nitrophenyl)acrylate (1f)

N. Cas, , pp.153136-77

, According to the general procedure B for Wittig reaction (page 198), the expected product 1f (146 mg) was obtained in pure form as a yellowish solid from 2-hydroxy-5-nitrobenzaldehyde

, Acetone-d 6 ) ? (ppm) = 10.54 (bs, 1H, OH), vol.8, p.0, 1615.

, trifluoromethyl)benzylidene)pentane-2,4-dione 7h (5 mg, 0.017 mmol, 1 eq) by the Lumos Lamp in CH 3 CN. Yield: 23%.-R f = 0.17 (cyclohexane / EtOAc 80:20).-IR

. Hz, 7.78 (m, 1H, H 7

. Hz, 81 (s, 3H, H 8 ), 2.71 (s, 3H, H 8' ), vol.2, p.75

. Mhz, , pp.125-131

. Hz, , p.270

, HRMS (DCIMS) m/z calcd

+. , , pp.121-124

, the expected product 8i was obtained in pure form as a yellow solid from the irradiation of 3-(2Azido-4-dimethylamino-phenyl)-acrylic acid ethyl ester 7i (5 mg, 0.019 mmol, 1 eq) by the Lumos Lamp in CH 3 CN. Yield: 27%.-R f = 0.49 (cyclohexane / EtOAc 70:30).-1 H NMR (300 MHz

. Hz,

, DCIMS m/z (%) 233 [M+H] + (100).-m p, pp.131-134

, 3-Diacetyl-6-dimethylamino-1H-indole (8j)

, the expected product 8j was obtained in pure form as an orange solid from the irradiation of 3-(2azido-4-(dimethylamino)benzylidene)pentane-2,4-dione 7j (5 mg, 0.018 mmol, 1 eq) by the Lumos Lamp in CH 3 CN. Yield: 33%.-R f = 0.4 (cyclohexane / EtOAc 70:30), p.300

. Mhz, CDCl 3 ) ? (ppm) = 9

. Hz,

, According to the general procedure H for photochemistry of azidocinnamates (page 201), the expected product 8k was obtained in pure form as a yellow solid from the irradiation of 2-(2Azido-4,5-dimethoxy-benzylidene)-malonic acid diethyl ester 7k (5 mg, 0.013 mmol, 1 eq) by the Lumos Lamp in CH 3 CN. Yield: 63%.-R f = 0.24 (cyclohexane / EtOAc 70:30), Dimethoxy-1H-indole-2,3-dicarboxylic acid diethyl ester (8k), p.300

. Mhz, 45 (s, 1H, H 4 ), 6.83 (s, 1H, CDCl 3 ) ? (ppm) = 9.49 (bs, 1H, NH), vol.7

. Hz, CDCl 3 ) ? (ppm) = 164.5, 160.9, pp.125-128

, Ethyl 2-methylquinoline-3-carboxylate (9a)

N. Cas,

, the expected product 9a was obtained in pure form as a yellow oil from the irradiation of 2-(2Azido-benzylidene)-3-oxo-butyric acid ethyl ester 7d (30 mg, 0.116 mmol, 1 eq) by the Tungsten Lamp in H 2 O / EtOH (1:1). Yield

, 00 (s, 3H, H 11 ), vol.3

, Azido-benzylidene)-malonic acid diethyl ester 7f (30 mg, 0.131 mmol, 1 eq) by the Tungsten

2. Hz-;-m and H. 7+5, , pp.7-59

, According to the general procedure H for photochemistry of azidocinnamates (page 201), the expected product 9c was obtained in pure form as a brown solid from the irradiation of 2-(2Azido-benzylidene)-malonic acid diethyl ester 7e (30 mg, 0.103 mmol, 1 eq) by the Tungsten

, Acetone-d 6 ) ? (ppm) = 11.39 (bs, 1H, NH), 8.44 (s, 1H, H 4 ), 7.80 (dd, 1H, 4 J 8-6 = 1.4 Hz, vol.1, pp.171-174, 1640.

, Methyl-7-(trifluoromethyl)quinolin-3-yl)ethanone (9d)

, According to the general procedure H for photochemistry of azidocinnamates (page 201), the expected product 9d was obtained in pure form as a yellow solid from the irradiation of 3-(2azido-4-(trifluoromethyl)benzylidene)pentane-2,4-dione 7h (30 mg, 0.101 mmol, 1 eq) by the Tungsten

, azido-4-(dimethylamino)benzylidene)pentane-2,4-dione 7j (30 mg, 0.110 mmol, 1 eq) by the Tungsten

, 23 (cyclohexane / EtOAc 70:30).-IR (neat): 2925, 1666, 1616, 1511, 1422 cm-1 .-1 H NMR (300 MHz

, 35 (s, 1H, H 4 ), 8.66 (d, 3 J 6-5 = 9, vol.8

6. and H. 11+11, 65 (s, 3H, H 10 ).-13 C NMR (75 MHz, vol.2, p.1347

+. , , pp.118-121

, Hydroxy-4-(prop-2-yn-1-yloxy)benzaldehyde (10)

N. Cas, , pp.67268-67302

, According to the general procedure A for O-alkylation, vol.10, p.47

, g, 14.5 mmol, 1 eq). Yield: 58%.-R f = 0.67 (PE / EtOAc 80:20).-IR (neat): 3459, 3241, 1639, 1224, 1124 cm-1 .-1 H NMR (300 MHz, CDCl 3 ) ? (ppm) = 11.4 (s, 1H, OH), vol.2, p.4

, hydroxy-4-(prop-2-yn-1-yloxy)phenyl)acrylate (Cinn1) According to the general procedure B for Wittig reaction, p.3

, Yield: 88%.-R f = 0.15 (PE / EtOAc 80:20).-IR (neat) 3330, 2125, 1685 cm-1 .-1 H NMR (300 MHz, Acetone-d 6 ) ? (ppm) = 9, Cinn1 (330 mg) was obtained in pure form as a white solid from 10 (400 mg, 2.27 mmol, 1 eq)

, Acetone-d 6 ) ? (ppm) = 168.4, EtOAc (3 x 30 mL), dried over Na 2 SO 4 , filtered and evaporated. Purification by column chromatography eluting with (PE / EtOAc 95:5) furnished the desired aldehyde 12a as an orange solid (85 mg), 3.13 (t, 1H, 4 J 3'-1' = 2.4 Hz, H 3' ), 1.27 (t, 3H, 3 J 11-10 = 7.1 Hz, H 11 ).-13 C NMR (75 MHz, pp.32-35

, 2-nitrophenyl)acrylate (12b) According to the general procedure B for Wittig reaction (page 198), the expected product 12b (112 mg) was obtained in pure form as a yellow solid from 12a (225 mg, 0.64 mmol, 1 eq). Yield: 80%, p.300

. Mhz, CDCl 3 ) ? (ppm) = 8.02 (d, 1H, 3 J 7-8 = 15.6 Hz

. Hz,

. Hz, , p.236

, HRMS (DClMS) m/z calcd

+. , , pp.41-44

, Ethyl (E)-3-(4-hydroxy-2-nitrophenyl)acrylate (12c)

, A mixture of 12b (400 mg, 1.42 mmol, 1 eq) and para-toluenesulfonic acid (49 mg, p.28

, After complete conversion, monitored by TLC, the solvent was removed under reduced pressure. Purification of the crud material by column chromatography on silica gel with PE / EtOAc (90:10), afford 12c as yellow powder (304 mg). Yield: 90%.-R f = 0.28 (PE / EtOAc 80:20).-IR (neat): 3297, 2925, 1685, 1195 cm-1 .-1 H NMR (300 MHz, eq) in anhydrous EtOH (25 mL) was heated at 80°C overnight

, Acetone, pp.1616-1617, 1722.

, Methyl-7-(prop-2-yn-1-yloxy)-2H-chromen-2-one (Cou2)

N. Cas, , pp.67268-53

, Evaporation of the solvent gave a pale yellow solid purified by chromatography on silica gel (PE / EtOAc 80:20) to obtain the desired compound as a white solid (37 mg). Yield: 89%.-R f = 0.43 (CH 2 Cl 2 ).-IR (neat, CH 3 CN (20 mL) was irradiated overnight with the tungsten lamp, p.1605, 1681.

. Hz, , vol.6

N. Cas, , pp.6093-71

, 0 g, 22 mmol, 1 eq) and diethyl malonate (4.2 g, 26 mmol, 1.1 eq) in anhydrous EtOH (30 mL) was added piperidine, vol.2, p.370

, The resulting precipitate was collected and washed with cold EtOH to afford after crystallization the expected coumarine 13 as a yellow solid (2.9 g). Yield: 58%.-R f = 0.4 (PE / EtOAc 60:40).-IR (neat): 3538, 1726, 1677 cm-1 .-1 H NMR (300 MHz, Acetone-d 6 ) ? (ppm) = 8.58 (s, 1H, After refluxing for 20 h, the reaction mixture was cooled in an ice bath and a precipitate was then formed

N. Cas, , pp.67268-51

, the expected product Cou3 (383 mg) was obtained in pure form as a yellow solid from 13 (500 mg, 2.10 mmol, 1 eq)

. Hz,

, Acetone-d 6 ) ? (ppm), p.273

, Prop-2-yn-1-yloxy)quinolin-2(1H)-one (Qui1)

, the expected product Qui1 (147 mg) was obtained in pure form as a white solid from 7-hydroxy-1H-quinolin-2-one (300 mg, 1.86 mmol, 1 eq)

. Hz,

H. , , vol.6, p.31

. Hz, Acetone-d 6 ) ? (ppm), HRMS (DCIMS) m/z calcd, pp.249-252

, 75 mmol, 1 eq) was added rapidly to a solution of sodium azide, p.37

, CDCl 3 ) ? (ppm) = 3.78 (dd, 2H, 3 J = 10.1 Hz, 3 J = 5.3 Hz, 1,4,7-Tris-(tert-butoxycarbonylmethyl)-10-(prop-2-ynyl)-1,4,7,10-tetraazacyclododecane (16) To a solution of DO3A-tBu (595 mg, 1 mmol, 1 eq) in dried CH 3 CN (12 mL) was added K 2 CO 3 (414 mg, 3 mmol, 3 eq), then propargyl bromide (295 mg, 2 mmol, 2 eq) dropwise. The reaction mixture was heated at 45°C and stirred for 72 h. The solvent was then evaporated and the pale brown residue was, pp.2102-2103, 2948.

, neat): 2975, 1670, 1218 cm-1 .-1 H NMR (300 MHz, MeOD) ? (ppm) = 3.48 (s, 2H, p.75

. Mhz, , p.497

, According to the general procedure I for the cleavage of t-Butyl esters (page 201), the expected product 16a (443 mg) was obtained as a white hygroscopic solid from 16 (200 mg, 0.36 mmol, 1 eq). Yield: quant.-IR (neat, p.3350, 1256.

J. Hz, ESIMS m/z (%), p.461

. Lanthanum, 10-(prop-2-ynyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (La2) According to the general procedure J for Ln 3+ complexation

, Yield: 66%.-IR (neat): 3430, 2974, 2860, 1629 cm-1 .-1 H NMR (300 MHz, D 2 O) ? (ppm) = 3.95-3.03 (m, 25H), signal of 1.2 eq triethylammonium salt at 1.28 ppm (t, 11H, La2 (124 mg) was obtained as a white solid from 16a (139 mg, 0.36 mmol, 1 eq), vol.3, p.20

, HRMS (ESIMS) m/z calcd for C 17 H, p.622

. Europium, prop-2-ynyl)-1,4,7,10-tetraazacyclododecane-1,4,7triyl)triacetate (Eu2) According to the general procedure J for Ln 3+ complexation

, ESIMS m/z (%) 533 (83), 535 [M+H] + (100).-HRMS (ESIMS) m/z calcd for C, vol.17, p.26, 2494.

, Azidoethoxy)-2-hydroxybenzaldehyde (17)

, m g, 1.81 mmol, 1 eq) and 1-azido-2-bromoethane 14b (336 mg, 2.26 mmol, 1.5 eq). Yield: 27%.-R f = 0.67 (CH 2 Cl 2 ).-IR (neat): 3421, 2116, 1631, 1190 cm-1 .-1 H NMR (300 MHz, CDCl 3 ) ? (ppm) = 11, the expected product 17 (105 mg) was obtained in pure form as a white solid from, vol.2, p.4

, HRMS (DCIMS) m/z calcd for C 9, pp.58-61

, azidoethoxy)-2-hydroxyphenyl)acrylate (Cinn1'), p.3

, the expected product Cinn1' (134 mg) was obtained in pure form as a white solid from 17 (223 mg, 0.64 mmol, 1 eq), pp.3-7

, = 16.0 Hz, H 7 ), 7.56 (d, 1H, 3 J 6-5 = 9.6 Hz, H 6 ), 6.55 (m, 2H, H 5+3 ), vol.6

. Hz, 66 (t, 2H, 3 J 2'-1' = 5.1 Hz, H 2' ), vol.3, p.75

. Mhz, , p.188

, La1-Cinn1 According to the general procedure K for CuAAC reaction

. La1-cinn1, mg) was obtained in pure form as a yellow hygroscopic solid from La1 (30 mg, 0.054 mmol, 1 eq) and Cinn1 (14.73 mg, 0.06 mmol, 1.1 eq). Yield: 44%.-R f = 0.32 (CH 3 CN / H 2 O 70:30).t R = 3.38 min

. Hz, 14 (t, 3H, 3 J 11-10 = 6.9 Hz, H 11 ).-ESIMS m/z (%) 798 [M+H] + (100).-HRMS (ESIMS) m/z calcd for C 30 H 41 LaN 7 O 10 798.1978, found 798.1993 [M+H] + .UV absorption in Tris buffer ? max = 327 nm (? = 7600 M-1 .cm-1 ).-Fluorescence ? em = 394, vol.1

, Eu1-Cinn1 According to the general procedure K for CuAAC reaction

. Eu1-cinn1, 25 mg) was obtained in pure form as a yellow hygroscopic solid from Eu1 (30 mg, 0.053 mmol, 1 eq) and Cinn1 (14.4 mg, 0.058 mmol, 1.1 eq)

, HRMS (ESIMS) m/z calcd for C, vol.30, p.41

, EuN, vol.7, issue.10

. Hz, , p.1065

, HRMS (ESIMS) m/z calcd for C 42 H 54 LaN 8 O 16 1065.2721, found 1065, p.2748

, UV absorption in Tris buffer ? max = 336 nm (? = 4400 M-1 .cm-1 )

, Eu1-Cinn3 According to the general procedure K for CuAAC reaction

. Eu1-cinn3, mg) was obtained in pure form as a yellow hygroscopic solid from Eu1 (50 mg, 0.088 mmol, 1 eq) and Cinn3 (50 mg

. Hz, (m, 22H).-ESIMS m/z (%) 752 [M+H] + (100).-HRMS (ESIMS) m/z calcd for C 28 H 35 LaN 7 O 9 752.1560, found 752.1576 [M+H] + .UV absorption in Tris buffer ? max = 322 nm (? = 7100 M-1 .cm-1 ) .-Fluorescence ? em = 394 nm (Tris

, Eu1-Cou1 According to the general procedure K for CuAAC reaction

. Eu1-cou1, 21 mg) was obtained in pure form as a yellow hygroscopic solid from Eu1 (30 mg, 0.053 mmol, 1 eq) and Cou1 (11.7 mg, 0.058 mmol, 1.1 eq). Yield: 51%.-R f = 0.17 (CH 3 CN / H 2 O 70:30).-t R = 2.88 min.-IR (neat, p.766, 1395.

, HRMS (ESIMS) m/z calcd for C, vol.28, p.35

M. , cm-1 ).-Fluorescence ? em = 392 nm (Tris, ? ex = 321 nm, ? F = 17%).-Time-resolved luminescence ? em = 590, 616, 698 nm (Tris, ? ex = 321 nm

, La1-Cou2 According to the general procedure K for CuAAC reaction

. La1-cou2, 5 mg) was obtained in pure form as a yellow hygroscopic solid from La1 (30 mg, 0.054 mmol, 1 eq) and Cou2 (13 mg, 0.06 mmol, 1.1 eq). Yield: 55%.-R f = 0.22 (CH 3 CN / H 2 O 70:30).-t R = 3.17 min, p.1163, 1384.

, DMSO-d 6 ) ? (ppm) = 8.33 (s, 1H

. Hz,

, HRMS (ESIMS) m/z calcd for C 29 H 37 LaN 7 O 9 766.1716, found 766.1723 [M+H] + .-UV absorption in Tris buffer ? max = 320 nm (? = 6200 M-1 .cm-1 ) .-Fluorescence ? em = 394 nm (Tris, ? ex = 322 nm, ? F = 39%)

, the expected product Yield: 33%.-R f = 0.22 (CH 3 CN / H 2 O 70:30).-t R = 3.15 min, p.3405, 1396.

, 1867 [M+H] + .-UV absorption in Tris buffer ? max = 319 nm (? = 5850 M-1 .cm-1 ).-Fluorescence ? em = 398 nm (Tris, ? ex = 320 nm, ? F = 33%).-Time-resolved luminescence ? em = 591, HRMS (ESIMS) calcd for C 29 H 37 EuN 7 O 9 778.1851, found 778, vol.615

, La1-Cou3 According to the general procedure K for CuAAC reaction

, 30 mg, 0.054 mmol, 1 eq) and Cou3 (16.29 mg, 0.059 mmol, 1.1 eq). Yield, La1-Cou3 (20 mg) was obtained in pure form as a yellow hygroscopic solid from La1

. Hz, 08 (dd, 1H, 3 J 6-5 = 8.7 Hz, 4 J 6-8 = 2.2 Hz, H 6 ), 5.33 (s, 2H, vol.7

, HRMS (ESIMS) m/z calcd for C 31 H 39 LaN 7 O 11 824.1771, found 824.1789 [M+H] + .-UV absorption in Tris buffer ? max = 347 nm (? = 4950 M-1 .cm-1 ).-Fluorescence ? em = 406 nm (Tris, ? ex = 346 nm, ? F = 40%)

, Eu1-Cou3 According to the general procedure K for CuAAC reaction

. Eu1-cou3, 14 mg) was obtained in pure form as a yellow hygroscopic solid from Eu1 ((30 mg, 0.051 mmol, 1 eq) and Cou3 (15.42 mg, 0.056 mmol, 1.1 eq)

, ESIMS m/z (%), p.836, 1608.

, Fluorescence ? em = 392 nm (Tris, ? ex = 327 nm, ? F = 3%)

. Eu2-cinn1, According to the general procedure K for CuAAC reaction

. Eu2-cinn1, 43 mg) was obtained in pure form as a yellow hygroscopic solid from Eu2 (45 mg, 0.084 mmol, 1 eq) and Cinn1' (23.3 mg, 0.084 mmol, 1 eq)

, HRMS (ESIMS) m/z calcd

, cm-1 ).-Fluorescence ? em = 392 nm (Tris, ? ex = 326 nm, ? F = 8.3%).-Time-resolved luminescence ? em = 590, UV absorption in Tris buffer ? max = 326 nm (Tris, ? = 12000 M-1, vol.616

. La2-cou1, According to the general procedure K for CuAAC reaction

. La2-cou1, mg) was obtained in pure form as a yellow hygroscopic solid from La2 (36 mg, 0.069 mmol, 1 eq) and Cou1' (16 mg, 0.069 mmol, 1 eq). Yield

, DMSO-d 6 + D 2 O) ? (ppm) = 8.26 (s, 1H, H 11 )

. Hz, 4.46 (bs, 2H, H 10 ), 3.70-1.93 (m, 24H

, nm (Tris, ? = 2450 M-1 .cm-1 ).-Fluorescence ? em = 394 nm (Tris, ? ex = 320 nm, ? F = 8.5%)

. Eu2-cou1, According to the general procedure K for CuAAC reaction

, 037 mmol, 1 eq) and Cou1' (8.6 mg, 0.037 mmol, 1 eq). Yield: 27%.-R f = 0.20 (CH 3 CN / H 2 O 70:30).-t R = 2.68 min.-IR (neat): 3426, Eu2-Cou1' (7.5 mg) was obtained in pure form as a yellow hygroscopic solid from Eu2 (20 mg, 0, pp.1391-1392, 1605.

, 1695, found 764.1714 [M+H] + .-UV absorption in Tris buffer ? max = 321 nm (Tris, ? = 3950 M-1 .cm-1 ).-Fluorescence ? em = 392 nm (Tris, ? ex = 321 nm, ? F = 8.3%).-Time-resolved luminescence ? em = 590, HRMS (ESIMS) m/z calcd for C 28 H 35 LaN 7 O 9, vol.616

, La2-Cou1a According to the general procedure K for CuAAC reaction

. La2-cou1a, mg) was obtained in pure form as a yellow hygroscopic solid from La2 (45 mg, 0.086 mmol, 1 eq) and Cou1a (19.5 mg, 0.1 mmol, 1.2 eq). Yield

, DMSO-d 6 ) ? (ppm) = 9, IR (neat): 2984, 1734, 1590, 1085 cm-1 .-1 H NMR (300 MHz, vol.8

, UV absorption in Tris buffer ? max = 287, 316 nm (Tris, ? = 7000, 5500 M-1 .cm-1 ).-Fluorescence ? em = 398

, HRMS (ESIMS) m/z calcd for C 26 H 31 EuN 7 O 8 722.1433, found 722.1447 [M+H] + .UV absorption in Tris buffer ? max = 287 nm (Tris, ? = 9850 M-1 .cm-1 ).-Fluorescence ? em = 384 nm (Tris, ? ex = 287 nm, ? F = 0.2%).-Time-resolved luminescence ? em = 592, vol.616, pp.1398-1399, 1612.