J. Besag, Statistical analysis of non-lattice data, Journal of the Royal Statistical Society. Series D (The Statistician), vol.24, issue.3, pp.179-195, 1975.

M. Biba, S. Ferilli, and F. Esposito, Discriminative structure learning of Markov Logic Networks, ILP, ILP '08, vol.46, pp.59-76, 2008.

M. Biba, S. Ferilli, and F. Esposito, Structure learning of Markov Logic Networks through iterated local search, 18th European Conference on Artificial Intelligence ECAI2008, vol.44, pp.361-365, 2008.

C. Bishop, Pattern Recognition and Machine Learning, vol.4, 2006.

C. Borgelt and R. Kruse, Graphical models-methods for data analysis and mining, p.22, 2002.

E. A. Brewer, Towards robust distributed systems (abstract), Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC '00, vol.54, p.55, 2000.

W. Buntine, Theory refinement in Bayesian networks, Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, p.22, 1991.

R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Rec, vol.39, pp.12-27, 2011.

D. M. Chickering, Optimal structure identification with greedy search, J. Mach. Learn. Res, vol.3, p.22, 2003.

D. M. Chickering, D. Geiger, and D. Heckerman, Learning Bayesian networks: Search methods and experimental results, Preliminary papers of the 5th International Workshop on Artificial Intelligence and Statistics, vol.22, pp.112-128, 1995.

S. Choudhury, L. B. Holder, G. Jr, P. Mackey, K. Agarwal et al., Query optimization for dynamic graphs, vol.3745, pp.1-13, 2014.

C. J. Chow and C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. on Information Theory, vol.14, issue.3, p.26, 1968.

R. Chulyadyo, A new horizon for the recommendation: Integration of spatial dimensions to aid decision making, vol.110, p.117, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01422348

R. Chulyadyo and P. Leray, Using probabilistic relational models to generate synthetic spatial or non-spatial databases, Proceedings of IEEE 12th International Conference on Research Challenges in Information Science (IEEE RCIS'2018), vol.78, p.80, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761901

E. F. Codd, A relational model of data for large shared data banks, Commun. ACM, vol.13, issue.6, pp.377-387, 1970.

M. Collins, Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms, Proceedings of the ACL-02 conference on Empirical methods in natural language processing, vol.10, p.26, 2002.

G. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence, vol.42, issue.2-3, pp.393-405, 1992.

G. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Machine Learning, vol.9, pp.309-347, 1992.

A. Coutant, Probabilistic Relational Models and Reference Uncertainty, p.117, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01254524

I. F. Cruz, A. O. Mendelzon, and P. T. Wood, A graphical query language supporting recursion, SIGMOD Conference, vol.56, p.57, 1987.

P. Dan, BASE: An ACID alternative. Queue, vol.6, p.54, 2008.

A. Darwiche, A differential approach to inference in Bayesian networks, 2013.

M. Das, Y. Wu, T. Khot, K. Kersting, and S. Natarajan, Graph-based approximate counting for relational probabilistic models, Working Notes of the 5th International Workshop on Statistical Relational AI (StarAI@UAI), vol.47, p.62, 2015.

S. Dasgupta, Learning polytrees, UAI, p.26, 1999.

D. Dash and M. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data, UAI, p.23, 1999.

C. Date, An Introduction to Database Systems, p.32, 2003.

C. J. Date, The Relational Database Dictionary, p.32, 2008.

R. De-salvo-braz, E. Amir, R. , and D. , Lifted First Order Probabilistic Inference, IJCAI, vol.48, pp.1319-1325, 2005.

R. De-salvo-braz, E. Amir, R. , and D. , MPE and partial inversion in lifted probabilistic variable elimination, Proceedings of the 21sth National Conference on Artificial Intelligence (AAAI), pp.1-8, 2006.

R. De-salvo-braz, S. Natarajan, H. Bui, J. Shavlik, R. et al., Anytime lifted belief propagation, vol.46, pp.10-13, 2009.

R. De-virgilio, A. Maccioni, T. , and R. , Model-Driven Design of Graph Databases, vol.63, p.70, 2014.

R. Diestel, Graph Theory, p.12, 2005.

Q. T. Dinh, Statistical relational learning : Structure learning for Markov logic networks. (Apprentissage statistique relationnel : apprentissage de structures de réseaux de Markov logiques), vol.32, p.94, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00659738

P. Domingos and D. Lowd, Markov Logic: An Interface Layer for AI, p.46, 2009.

P. Domingos and M. Richardson, Markov logic: A unifying framework for statistical relational learning, Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and its Connections to Other Fields, vol.92, pp.49-54, 2004.

P. Domingos and A. Webb, A tractable first-order probabilistic logic, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI'12, vol.32, p.35, 2012.

J. Domke, A. Karapurkar, A. , and J. , Who killed the directed model?, Computer Vision and Pattern Recognition, p.28, 2008.

R. Durrett, Probability: Theory and Examples, 2009.

S. Edlich, NoSQL: Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken, 2011.

M. El-abri, P. Leray, and N. Essoussi, Daper learning from (partially structured) graph database, 14th ACS/IEEE International Conferenceon Computer Systems and Applications AICCSA, p.68, 2017.

H. Khosravi, O. Schulte, T. Man, X. Xu, and B. Bina, Structure learning for Markov Logic Networks with many descriptive attributes, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, p.44, 2010.

J. H. Kim and J. Pearl, A computational model for combined causal and diagnostic reasoning in inference systems, Proceedings of the Eighth International Joint Conferences on Artificial Intelligence (IJCAI-1983), p.27, 1983.

R. Kinderman and S. Snell, Markov random fields and their applications. American mathematical society, p.26, 1980.

S. Kok and P. Domingos, Learning structure of Markov Logic Networks, Proceedings of the 22Nd International Conference on Machine Learning, ICML '05, vol.40, p.98, 2005.
DOI : 10.1145/1102351.1102407

S. Kok and P. Domingos, Learning Markov Logic Networks structure via hypergraph lifting, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, p.44, 2009.
DOI : 10.1145/1553374.1553440

S. Kok and P. Domingos, Learning Markov Logic Networks using structural motifs, Proceedings of the 27th International Conference on Machine Learning (ICML-10), vol.44, pp.551-558, 2010.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and TechniquesAdaptive Computation and Machine Learning, vol.4, p.28, 2009.

D. Koller and A. Pfeffer, Probabilistic frame-based systems, AAAI/IAAI, vol.5, p.32, 1998.

D. Koller and A. Pfeffer, Semantics and inference for recursive probability models, Proc. 17th National Conference on Artificial Intelligence (AAAI-00), vol.48, pp.538-544, 2000.

S. Lauritzen and D. Spiegelhalter, Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems, Journal of the Royal Statistical Society, Series B, vol.50, issue.2, pp.157-224, 1988.

A. Leonid and W. Toby, Finding multi-criteria optimal paths in multi-modal public transportation networks using the transit algorithm, p.61, 2012.

L. Liu and M. T. Özsu, ACID transaction, Encyclopedia of Database Systems, p.35, 2009.

Y. Liu, N. Shah, and D. Koutra, An empirical comparison of the summarization power of graph clustering methods, 2015.

D. Lowd and J. Davis, Improving Markov network structure learning using decision trees, Journal of Machine Learning Research, vol.15, issue.1, pp.501-532, 2014.
DOI : 10.1109/icdm.2010.128

URL : http://ix.cs.uoregon.edu/%7Elowd/icdm10lowd.pdf

D. Lowd and P. Domingos, Efficient weight learning for Markov Logic Networks, Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2007, vol.44, pp.200-211, 2007.
DOI : 10.1007/978-3-540-74976-9_21

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-540-74976-9_21.pdf

M. Maier, K. Marazopoulou, D. Arbour, J. , and D. , A sound and complete algorithm for learning causal models from relational data, vol.80, p.97, 2013.

M. Maier, K. Marazopoulou, J. , and D. , Reasoning about independence in probabilistic models of relational data, 2013.

M. Maier, B. Taylor, O. Huseyin, J. , and D. , Learning causal models of relational domains, Proceedings of the Twenty-fourth National Conference on Artificial Intelligence, p.39, 2010.

D. Margaritis, Learning Bayesian Network Model Structure From Data, vol.19, p.20, 2003.

A. Mccallum, Efficiently inducing features of conditional random fields, Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI03), p.27, 2003.

P. T. Wood, Query languages for graph databases, SIGMOD Rec, vol.41, issue.1, 2012.

Y. Xiang, Modeling and reasoning with Bayesian networks, Artif. Intell, vol.174, issue.2, pp.147-151, 2010.

S. Yang, X. Yan, B. Zong, A. Khan, K. S. Candan et al., Towards effective partition management for large graphs, SIGMOD Conference, p.63, 2012.

A. Yasin, Incremental Bayesian network structure learning from data streams, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01284332

J. Yedidia, W. Freeman, and Y. Weiss, Generalized belief propagation, Advances in Neural Information Processing Systems (NIPS), vol.13, p.28, 2000.

N. Zhang and D. Poole, Exploiting causal independence in Bayesian network inference, JAIR, vol.5, p.48, 1996.