M. G. , These epitopes candidates have the potential to contribute to the design of multi-epitopes-based vaccines of highly-risk pathogens, REFERENCES 1. Netea, vol.352, p.1098, 2016.

J. Klein, Seeds of time: fifty years ago Peter A. Gorer discovered the H-2 complex, Immunogenetics, vol.24, issue.6, pp.331-339, 1986.

G. D. Snell and G. F. Higgins, Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation, Genetics, vol.36, issue.3, pp.306-316, 1951.

W. Galbraith, Imaging cytometry by multiparameter fluorescence, Cytometry, vol.12, issue.7, pp.579-96, 1991.

J. Kelley, L. Walter, and J. Trowsdale, Comparative genomics of major histocompatibility complexes, Immunogenetics, vol.56, issue.10, pp.683-95, 2005.

S. Pascolo, HLA class I transgenic mice: development, utilisation and improvement, Expert Opin Biol Ther, vol.5, issue.7, pp.919-957, 2005.

W. Kuon, Identification of novel human aggrecan T cell epitopes in HLA-B27 transgenic mice associated with spondyloarthropathy, J Immunol, vol.173, issue.8, pp.4859-66, 2004.

V. Taneja, New humanized HLA-DR4-transgenic mice that mimic the sex bias of rheumatoid arthritis, Arthritis Rheum, vol.56, issue.1, pp.69-78, 2007.

V. Vasilca, HLA-A and-B phenotypes associated with tuberculosis in population from north-eastern Romania, Roum Arch Microbiol Immunol, vol.63, pp.209-230, 2004.

E. Traggiai, Development of a human adaptive immune system in cord blood cell-transplanted mice, Science, vol.304, issue.5667, pp.104-111, 2004.

G. C. Bosma, R. P. Custer, and M. J. Bosma, A severe combined immunodeficiency mutation in the mouse, Nature, vol.301, issue.5900, pp.527-557, 1983.

P. Mombaerts, RAG-1-deficient mice have no mature B and T lymphocytes, Cell, vol.68, issue.5, pp.869-77, 1992.

Y. Shinkai, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell, vol.68, issue.5, pp.855-67, 1992.

L. D. Shultz, Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice, J Immunol, vol.154, issue.1, pp.180-91, 1995.

M. Ito, NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells, Blood, vol.100, issue.9, pp.3175-82, 2002.

L. D. Shultz, Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells, J Immunol, vol.174, issue.10, pp.6477-89, 2005.

K. N. Cosgun, Kit regulates HSC engraftment across the humanmouse species barrier, Cell Stem Cell, vol.15, issue.2, pp.227-265, 2014.

Y. Zeng, Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLA-matched human cells, PLoS One, vol.12, issue.4, p.173754, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527175

S. Doulatov, Hematopoiesis: a human perspective, Cell Stem Cell, vol.10, issue.2, pp.120-156, 2012.

D. E. Mosier, Transfer of a functional human immune system to mice with severe combined immunodeficiency, Nature, vol.335, issue.6187, pp.256-265, 1988.

J. M. Mccune, The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function, Science, issue.4873, pp.1632-1641, 1988.

T. Lapidot, Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice, Science, vol.255, issue.5048, pp.1137-1178, 1992.

R. Namikawa, Infection of the SCID-hu mouse by HIV-1. Science, vol.242, pp.1684-1690, 1988.

S. Kamel-reid and J. E. Dick, Engraftment of immune-deficient mice with human hematopoietic stem cells, Science, vol.242, issue.4886, pp.1706-1715, 1988.

R. M. Hesselton, High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice, J Infect Dis, vol.172, issue.4, pp.974-82, 1995.

G. Cudkowicz and P. S. Hochman, Do natural killer cells engage in regulated reactions against self to ensure homeostasis?, Immunol Rev, vol.44, pp.13-41, 1979.

P. Lan, Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation, Blood, vol.108, issue.2, pp.487-92, 2006.

P. W. Denton and J. V. Garcia, Novel humanized murine models for HIV research, Curr HIV/AIDS Rep, vol.6, issue.1, pp.13-22, 2009.

N. Tonomura, Antigen-specific human T-cell responses and T celldependent production of human antibodies in a humanized mouse model

, Blood, vol.111, issue.8, pp.4293-4299, 2008.

P. W. Denton and J. V. Garcia, Humanized mouse models of HIV infection, AIDS Rev, vol.13, issue.3, pp.135-183, 2011.

M. Feuring-buske, Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors

, Leukemia, vol.17, issue.4, pp.760-763, 2003.

F. E. Nicolini, NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration, Leukemia, vol.18, issue.2, pp.341-348, 2004.

K. Sugamura, The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID

, Annu Rev Immunol, vol.14, pp.179-205, 1996.

X. Cao, Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain, Immunity, vol.2, issue.3, pp.223-261, 1995.

J. P. Disanto, Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain, Proc Natl Acad Sci, vol.92, issue.2, pp.377-81, 1995.

K. Ohbo, Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain, Blood, vol.87, issue.3, pp.956-67, 1996.

F. Notta, S. Doulatov, and J. E. Dick, Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients, Blood, vol.115, issue.18, pp.3704-3711, 2010.

M. A. Brehm, Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation, Clin Immunol, vol.135, issue.1, pp.84-98, 2010.

M. Wunderlich, AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GMCSF and IL-3. Leukemia, vol.24, pp.1785-1793, 2010.

H. Medyouf, Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit, Cell Stem Cell, vol.14, issue.6, pp.824-861, 2014.

A. Rongvaux, Development and function of human innate immune cells in a humanized mouse model, Nat Biotechnol, vol.32, issue.4, pp.364-72, 2014.

C. Waskow, Hematopoietic stem cell transplantation without irradiation, Nat Methods, vol.6, issue.4, pp.267-276, 2009.

B. E. Mcintosh, Nonirradiated NOD,B6.SCID Il2rgamma

, NBSGW) mice support multilineage engraftment of human hematopoietic cells, Stem Cell Reports, vol.4, issue.2, pp.171-80, 2015.

K. Yong, Cord blood progenitor cells have greater transendothelial migratory activity and increased responses to SDF-1 and MIP-3beta compared with mobilized adult progenitor cells, Br J Haematol, vol.107, issue.2, pp.441-450, 1999.

C. Voermans, Increased migration of cord blood-derived CD34+ cells, as compared to bone marrow and mobilized peripheral blood CD34+ cells across uncoated or fibronectin-coated filters, Exp Hematol, vol.27, issue.12, pp.1806-1820, 1999.

Y. Zheng, Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential, Exp Hematol, vol.31, issue.12, pp.1237-1283, 2003.

D. S. Krause, CD34: structure, biology, and clinical utility, Blood, vol.87, issue.1, pp.1-13, 1996.

J. E. Dick, Stem cell concepts renew cancer research, Blood, vol.112, issue.13, pp.4793-807, 2008.

F. Notta, Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration, Science, vol.333, issue.6039, pp.1136-1183, 2009.

J. Hoggatt, Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation, Blood, vol.113, issue.22, pp.5444-55, 2009.

W. Goessling, Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models, Cell Stem Cell, vol.8, issue.4, pp.445-58, 2011.

A. E. Boitano, Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells, Science, vol.329, issue.5997, pp.1345-1353, 2010.

I. Fares, Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal, Science, vol.345, issue.6203, pp.1509-1521, 2014.

M. Milhem, Modification of hematopoietic stem cell fate by 5aza 2'deoxycytidine and trichostatin A. Blood, vol.103, pp.4102-4112, 2004.

G. Bug, Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells, Cancer Res, vol.65, issue.7, pp.2537-2578, 2005.

L. Hu, Antioxidant N-acetyl-L-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice, Blood, vol.124, pp.45-53, 1920.

C. J. Melief, Therapeutic cancer vaccines, J Clin Invest, vol.125, issue.9, pp.3401-3413, 2015.

J. Yang, Composite peptide-based vaccines for cancer immunotherapy (Review), Int J Mol Med, vol.35, issue.1, pp.17-23, 2015.

B. Forsstrom, Dissecting antibodies with regards to linear and conformational epitopes, PLoS One, vol.10, issue.3, p.121673, 2015.

U. Sahin and O. Tureci, Personalized vaccines for cancer immunotherapy, Science, vol.359, issue.6382, pp.1355-1360, 2018.
DOI : 10.1126/science.aar7112

M. L. Capitano, Mild Heat Treatment Primes Human CD34(+) Cord Blood Cells for Migration Toward SDF-1alpha and Enhances Engraftment in an NSG Mouse Model, Stem Cells, vol.33, issue.6, pp.1975-84, 2015.
DOI : 10.1002/stem.1988

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/stem.1988

S. Spranger, B. Frankenberger, and D. J. Schendel, NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo, J Transl Med, vol.10, p.30, 2012.
DOI : 10.1186/1479-5876-10-30

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-10-30

J. Lang, Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2null Il2rgammanull mouse model: a multivariable optimization approach, Clin Immunol, vol.140, issue.1, pp.102-118, 2011.

L. D. Shultz, Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice, Proc Natl Acad Sci, vol.107, issue.29, pp.13022-13029, 2010.

F. A. Scheeren, T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells, J Exp Med, vol.205, issue.9, pp.2033-2075, 2008.
DOI : 10.1084/jem.20070447

URL : http://jem.rupress.org/content/jem/205/9/2033.full.pdf

R. Gimeno, Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/gammac-/-mice: functional inactivation of p53 in developing T cells, Blood, vol.104, issue.13, pp.3886-93, 2004.

M. G. Manz, Human-hemato-lymphoid-system mice: opportunities and challenges, Immunity, vol.26, issue.5, pp.537-578, 2007.
DOI : 10.1016/j.immuni.2007.05.001

URL : https://doi.org/10.1016/j.immuni.2007.05.001

J. Mestas and C. C. Hughes, Of mice and not men: differences between mouse and human immunology, J Immunol, vol.172, issue.5, pp.2731-2739, 2004.
DOI : 10.4049/jimmunol.172.5.2731

URL : http://www.jimmunol.org/content/jimmunol/172/5/2731.full.pdf

N. Ali, Xenogeneic graft-versus-host-disease in NOD-scid IL2Rgammanull mice display a T-effector memory phenotype, PLoS One, vol.7, issue.8, p.44219, 2012.

P. D. Becker, Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice, PLoS One, issue.5, 2010.

R. Van-duyne, The utilization of humanized mouse models for the study of human retroviral infections, Retrovirology, vol.6, p.76, 2009.

R. Akkina, New generation humanized mice for virus research: comparative aspects and future prospects, Virology, vol.435, issue.1, pp.14-28, 2013.

L. Gonzalez, N. Strbo, and E. R. Podack, Humanized mice: novel model for studying mechanisms of human immune-based therapies, Immunol Res, vol.57, issue.1-3, pp.326-360, 2013.

A. V. Misharin, Innate immune 'self' recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation, Clin Exp Immunol, vol.154, issue.2, pp.203-209, 2008.

K. Takenaka, Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells, Nat Immunol, vol.8, issue.12, pp.1313-1336, 2007.

H. Rozemuller, Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes, Exp Hematol, vol.32, issue.11, pp.1118-1143, 2004.

B. Nervi, Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnull mice, Exp Hematol, vol.35, issue.12, pp.1823-1861, 2007.

S. W. Christianson, Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice, J Immunol, vol.158, issue.8, pp.3578-86, 1997.

C. Viret and C. A. Janeway, MHC and T cell development, Rev Immunogenet, vol.1, issue.1, pp.91-104, 1999.

J. Sprent, E. K. Gao, and S. R. Webb, T cell reactivity to MHC molecules: immunity versus tolerance. Science, vol.248, pp.1357-63, 1990.

A. Sette and J. Fikes, Epitope-based vaccines: an update on epitope identification, vaccine design and delivery, Curr Opin Immunol, vol.15, issue.4, pp.461-70, 2003.

A. Sette, The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation, Biologicals, vol.29, pp.271-277, 2001.

J. D. Comber and R. Philip, MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines, vol.2, pp.77-89, 2014.

B. Pulendran and R. Ahmed, Immunological mechanisms of vaccination

, Nat Immunol, vol.12, issue.6, pp.509-526, 2011.

S. L. Demento, Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines, Trends Biotechnol, vol.29, issue.6, pp.294-306, 2011.

P. Oyarzun, A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine, vol.33, pp.1267-73, 2015.

N. Himoudi, Comparative vaccine studies in HLA-A2.1-transgenic mice reveal a clustered organization of epitopes presented in hepatitis C virus natural infection, J Virol, vol.76, issue.24, pp.12735-12781, 2002.

G. D. Healey, Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection, Infect Immun, vol.73, issue.9, pp.5945-51, 2005.

S. H. Raffegerst, Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice, PLoS One, vol.4, issue.12, p.8539, 2009.

A. Boesen, K. Sundar, and R. Coico, Lassa fever virus peptides predicted by computational analysis induce epitope-specific cytotoxic-T-lymphocyte responses in HLA-A2.1 transgenic mice, Clin Diagn Lab Immunol, vol.12, issue.10, pp.1223-1253, 2005.

G. Y. Ishioka, Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes, J Immunol, vol.162, issue.7, pp.3915-3940, 1999.

A. Pajot, Identification of novel HLA-DR1-restricted epitopes from the hepatitis B virus envelope protein in mice expressing HLA-DR1 and vaccinated human subjects, Microbes Infect, vol.8, pp.2783-90, 2006.

L. Benmohamed, Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response, Hum Immunol, vol.61, issue.8, pp.764-79, 2000.

T. J. Wasik, Association between HIV-specific T helper responses and CTL activities in pediatric AIDS, Eur J Immunol, vol.30, issue.1, pp.117-144, 2000.

S. Dion, Adeno-associated virus-mediated gene transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 molecules, J Virol, vol.87, issue.10, pp.5554-63, 2013.

M. Reiser, The immunodominant CD8 T cell response to the human cytomegalovirus tegument phosphoprotein pp65(495-503) epitope critically depends on CD4 T cell help in vaccinated HLA-A*0201 transgenic mice, J Immunol, vol.187, issue.5, pp.2172-80, 2011.

H. A. Smith and D. G. Mcneel, Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells, J Immunother, vol.34, issue.8, pp.569-80, 2011.

H. A. Smith, Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer, Cancer Res, vol.71, issue.21, pp.6785-95, 2011.

T. D. Lee, The polymorphism of HLA antigens in the Chinese, Tissue Antigens, vol.32, issue.4, pp.188-208, 1988.

J. Alexander, Derivation of HLA-A11/Kb transgenic mice: functional CTL repertoire and recognition of human A11-restricted CTL epitopes, J Immunol, vol.159, issue.10, pp.4753-61, 1997.

!. Citation-!!!,

A. Ureta-vidal, Phenotypical and functional characterization of the CD8+ T cell repertoire of HLA-A2.1 transgenic, H-2KbnullDbnull double knockout mice, J Immunol, vol.163, issue.5, pp.2555-60, 1999.

H. Firat, Comparative analysis of the CD8(+) T cell repertoires of H-2 class I wild-type/HLA-A2.1 and H-2 class I knockout/HLA-A2.1 transgenic mice, Int Immunol, vol.14, issue.8, pp.925-959, 2002.

S. Pascolo, HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice, J Exp Med, vol.185, issue.12, pp.2043-51, 1997.

Y. Liu, Three CpG oligodeoxynucleotide classes differentially enhance antigen-specific humoral and cellular immune responses in mice. Vaccine, vol.29, pp.5778-84, 2011.

Y. Yang, In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations, Hum Vaccin Immunother, vol.11, issue.3, pp.795-805, 2015.

A. S. De-groot, Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach, Vaccine, vol.21, pp.4486-504, 2003.

C. Yang, CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus

, Vaccine, vol.27, issue.47, pp.6558-63, 2009.

L. Zhao, M. Zhang, and H. Cong, Advances in the study of HLA-restricted epitope vaccines, Hum Vaccin Immunother, issue.9, pp.2566-77, 2013.

H. W. Chen, Identification of HLA-A11-restricted CTL epitopes derived from HPV type 18 using DNA immunization, Cancer Biol Ther, vol.8, issue.21, pp.2025-2057, 2009.

R. Gavioli, Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4, J Virol, vol.67, issue.3, pp.1572-1580, 1993.

Q. Deng, Hepatitis B virus as a gene delivery vector activating foreign antigenic T cell response that abrogates viral expression in mouse models, Hepatology, vol.50, issue.5, pp.1380-91, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00425299

R. Boucherma, HLA-B*08:01, HLAB*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses, J Immunol, vol.191, issue.2, pp.583-93, 2013.

A. Pajot, The Th1 immune response against HIV-1 Gag p24-derived peptides in mice expressing HLA-A02.01 and HLA-DR1, Eur J Immunol, vol.37, issue.9, pp.2635-2679, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00167809

J. M. Ramage, Comparison of the immune response to a self antigen after DNA immunisation of HLA*A201/H-2Kb and HHD transgenic mice

, Vaccine, vol.22, pp.1728-1759, 2004.

S. P. Flanagan, Nude', a new hairless gene with pleiotropic effects in the mouse, Genet Res, vol.8, issue.3, pp.295-309, 1966.

J. Rygaard and C. W. Friis, The husbandry of mice with congenital absence of the thymus (nude mice), Z Versuchstierkd, vol.16, issue.1, pp.1-10, 1974.

I. Scher, X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect, J Exp Med, vol.142, issue.3, pp.637-50, 1975.

Y. Watanabe, The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice), Int Immunol, vol.21, issue.7, pp.843-58, 2009.

D. G. Schatz and Y. Ji, Recombination centres and the orchestration of V(D)J recombination, Nat Rev Immunol, vol.11, issue.4, pp.251-63, 2011.

M. Girardi, Regulation of cutaneous malignancy by gammadelta T cells, Science, vol.294, issue.5542, pp.605-614, 2001.

M. King, A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene, Clin Immunol, vol.126, issue.3, pp.303-317, 2008.

W. Liao, J. X. Lin, and W. J. Leonard, IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation, Curr Opin Immunol, vol.23, issue.5, pp.598-604, 2011.

L. Zhang and L. Su, HIV-1 immunopathogenesis in humanized mouse models, Cell Mol Immunol, vol.9, issue.3, pp.237-281, 2012.

G. C. Koo, A. Hasan, and R. J. O'reilly, Use of humanized severe combined immunodeficient mice for human vaccine development, Expert Rev Vaccines, vol.8, issue.1, pp.113-133, 2009.

S. Thomas, Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice, PLoS Pathog, vol.11, issue.7, p.1005049, 2015.

Y. Najima, Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice, vol.127, pp.722-756, 2016.

F. Li, Efficient genetic manipulation of the NOD-Rag1

, IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology, Sci Rep, vol.4, p.5290, 2014.

S. L. Swain, CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenza, Immunol Rev, vol.211, pp.8-22, 2006.

A. Penna, Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen, J Exp Med, vol.174, issue.6, pp.1565-70, 1991.

M. Carrington and S. J. O'brien, The influence of HLA genotype on AIDS, Annu Rev Med, vol.54, pp.535-51, 2003.

V. Pasquetto, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products, J Immunol, vol.175, issue.8, pp.5504-5519, 2005.

S. Tourdot, A general strategy to enhance immunogenicity of lowaffinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes, Eur J Immunol, vol.30, issue.12, pp.3411-3432, 2000.

P. J. Goulder and B. D. Walker, HIV and HLA class I: an evolving relationship, Immunity, vol.37, issue.3, pp.426-466, 2012.

P. J. Goulder and D. I. Watkins, HIV and SIV CTL escape: implications for vaccine design, Nat Rev Immunol, vol.4, issue.8, pp.630-670, 2004.

F. Kievits, HLA-restricted recognition of viral antigens in HLA transgenic mice, Nature, vol.329, issue.6138, pp.447-456, 1987.

J. W. Chamberlain, Cell surface expression and alloantigenic function of a human class I MHC heavy chain gene (HLA-B7) in transgenic mice, J Immunol, vol.140, issue.4, pp.1285-92, 1988.

E. J. Bernhard, Cytotoxic T lymphocytes from HLA-A2 transgenic mice specific for HLA-A2 expressed on human cells, J Exp Med, vol.168, issue.3, pp.1157-62, 1988.

O. Dill, Immunological function of HLA-C antigens in HLA-Cw3 transgenic mice, Proc Natl Acad Sci, vol.85, issue.15, pp.5664-5672, 1988.

J. M. Connolly, The Lyt-2 molecule recognizes residues in the class I alpha 3 domain in allogeneic cytotoxic T cell responses, J Exp Med, vol.168, issue.1, pp.325-366, 1988.

V. H. Engelhard, E. Lacy, and J. P. Ridge, Influenza A-specific, HLA-A2.1restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein, J Immunol, vol.146, issue.4, pp.1226-1258, 1991.

M. J. Irwin, W. R. Heath, and L. A. Sherman, Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response, J Exp Med, vol.170, issue.4, pp.1091-101, 1989.

C. Barra, Abrogation of H-2-restricted CTL responses and efficient recognition of HLA-A3 molecules in DBA/2 HLA/A24 responder mice, J Immunol, vol.150, issue.9, pp.3681-3690, 1993.

D. M. Laface, Human CD8 transgene regulation of HLA recognition by murine T cells, J Exp Med, vol.182, issue.5, pp.1315-1340, 1995.

T. Korn, IL-17 and Th17 Cells, Annu Rev Immunol, vol.27, pp.485-517, 2009.

P. Miossec, T. Korn, and V. K. Kuchroo, Interleukin-17 and type 17 helper T cells, N Engl J Med, vol.361, issue.9, pp.888-98, 2009.

F. Momburg and P. Tan, Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum, Mol Immunol, vol.39, issue.3-4, pp.217-250, 2002.

M. J. Walport, Complement. First of two parts, N Engl J Med, vol.344, issue.14, pp.1058-66, 2001.

H. Yan, Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus, Elife, issue.3, 2012.

Y. Jiang, Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV, Emerg Microbes Infect, vol.7, issue.1, 2018.

, Signalisations et Ré seaux inté gratifs en Biologie (Biosigne)