J. Conti, P. Holtberg, J. Diefenderfer, A. Larose, L. James-t-turnure et al., International energy outlook 2016 with projections to 2040, USDOE Energy Information Administration (EIA), 2016.

F. Birol, Key world energy statistics, IEA Publications, International Energy Agency, rue de la Federation, 2017.

C. De-la-vaissière, Y. Laberrigue, . Sacquin, J. Audi, J. Dran et al., , 2017.

D. Westlén, Reducing radiotoxicity in the long run, Progress in Nuclear Energy, vol.49, issue.8, pp.597-605, 2007.

H. Mckay, The purex process. In Science and technology of tribuytl phosphate, 1990.

F. Baumgärtner, The modern purex process and its analytical requirements, Journal of Radioanalytical and Nuclear Chemistry, vol.58, issue.1-2, pp.11-28, 1980.

R. Guillaumont, Radioactive wastes: management by separation-transmutation, pp.3663-3664, 2010.

E. Jardinier, Co-intégration de fonctions optiques et microfluidiques sur substrat de verre pour l'analyse en milieu hostile, 2013.

J. Wagner and A. Vian, Analyse de l'uranium et des éléments transuraniens. Techniques de l'ingénieur, Analyse et caractérisation, vol.5, issue.P3720, pp.3720-3721, 1999.

G. Janssens-maenhout, J. Buyst, and P. Peerani, Reducing the radioactive doses of liquid samples taken from reprocessing plant vessels by volume reduction, Nuclear Engineering and Design, vol.237, issue.8, pp.880-886, 2007.

G. Maenhout, The benefits of applying microsystems in radiochemistry, Nanotechnology Perceptions, vol.3, pp.183-192, 2007.

P. Gy and . Echantillonnage, , 1998.

N. Nguyen and Z. Wu, Journal of micromechanics and microengineering, vol.15, p.1, 2004.

B. He and F. Regnier, Microfabricated liquid chromatography columns based on collocated monolith support structures, Journal of Pharmaceutical and Biomedical Analysis, vol.17, issue.6-7, pp.925-932, 1998.

A. Bruchet, Miniaturisation de la séparation Uranium/Plutonium/Produits de Fission: conception d'un microsystème «Lab-on-cd» et application, 2012.

G. Hellé, C. Mariet, and G. Cote, Microfluidic tools for the liquid-liquid extraction of radionuclides in analytical procedures, Procedia Chemistry, vol.7, pp.679-684, 2012.

J. Néri-quiroz, V. Canto, . Dugas, . Magnaldo, L. Couston et al., Free acidity determination in U (VI) solutions: A modern approach through sequential injection analysis, Atalante 2016-Nuclear Chemistry for Sustainable Fuel Cycles, 2016.

K. Uchiyama, H. Nakajima, and T. Hobo, Detection method for microchip separations, Analytical and bioanalytical chemistry, vol.379, issue.3, pp.375-382, 2004.

A. Maria, P. Schwarz, and . Hauser, Recent developments in detection methods for microfabricated analytical devices, Lab on a Chip, vol.1, issue.1, pp.1-6, 2001.

C. Joseph, C. Fanguy, and . Henry, The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection, Electrophoresis, vol.23, issue.5, pp.767-773, 2002.

G. Pearson and G. Greenway, A highly efficient sample introduction system for interfacing microfluidic chips with ICP-MS, Journal of Analytical Atomic Spectrometry, vol.22, issue.6, pp.657-662, 2007.

X. Sun, T. Ryan, K. Kelly, R. Tang, and . Smith, Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly (dimethylsiloxane) microchips with monolithically integrated emitters, Analyst, vol.135, issue.9, pp.2296-2302, 2010.

H. Cheng, Z. Xu, J. Liu, X. Wang, and X. Yin, A microfluidic system for introduction of nanolitre sample in inductively coupled plasma mass spectrometry using electrokinetic flow combined with hydrodynamic flow, Journal of Analytical Atomic Spectrometry, vol.27, issue.2, pp.346-353, 2012.

. Dps-rathore, Advances in technologies for the measurement of uranium in diverse matrices, Talanta, vol.77, issue.1, pp.9-20, 2008.

C. Moulin, . Briand, . Decambox, . Fleurot, . Lacour et al., Techniques d'analyses d'actinides et de radioéléments d'intérêt par spectroscopie laser, Radioprotection, vol.29, issue.4, pp.517-538, 1994.

B. Kuswandi, J. Huskens, and W. Verboom, Optical sensing systems for microfluidic devices: a review, Analytica chimica acta, vol.601, issue.2, pp.141-155, 2007.

C. Moulin, S. Rougeault, D. Hamon, and P. Mauchien, Uranium determination by remote time-resolved laser-induced fluorescence, Applied spectroscopy, vol.47, issue.12, pp.2007-2012, 1993.

F. Canto, Modélisation du front d'onde d'un faisceau laser perturbé par une lentille thermique et étude des performances analytiques pour des mesures en lignes, 2009.

A. Schimpf, Réalisation d'un capteur intégré optique et microfluidique pour la mesure de concentration par effet photothermique, 2011.

L. Howard, R. Fang, and . Swofford, The thermal lens in absorption spectroscopy. Ultrasensitive laser spectroscopy, pp.175-232, 1983.

K. Mori, T. Imasaka, and N. Ishibashi, Thermal lens spectrophotometry based on pulsed laser excitation, Analytical Chemistry, vol.54, issue.12, pp.2034-2038, 1982.

T. Berthoud and N. Delorme, Differential dual-beam thermal lensing spectrometry: determination of lanthanides, Applied spectroscopy, vol.41, issue.1, pp.15-19, 1987.

M. John, D. E. Berg, . Morris, C. D. Clark, . Tait et al., Pulsed photothermal spectroscopy applied to lanthanide and actinide speciation, 1991.

. Schott-borofloat-33, , 2018.

A. Brandenburg and R. Henninger, Integrated optical young interferometer, Applied optics, vol.33, issue.25, pp.5941-5947, 1994.

A. Ymeti, S. Johannes, J. Kanger, . Greve, V. Paul et al., Realization of a multichannel integrated young interferometer chemical sensor, Applied optics, vol.42, issue.28, pp.5649-5660, 2003.

A. Schimpf, . Canto, . Bucci, . Magnaldo, J. Couston et al., Microfluidics and integrated optics glass sensor for in-line microprobing of nuclear samples, Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), pp.1-7, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01973040

A. Schimpf, M. Bucci, . Nannini, . Magnaldo, J. Couston et al., Photothermal microfluidic sensor based on an integrated young interferometer made by ion exchange in glass, Sensors and Actuators B: Chemical, vol.163, issue.1, pp.29-37, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00977018

D. Benedetto and P. Breuil, Spectrophotométire d'absorption dans l'ultraviolet et le visible, p.1, 2007.

. Bf-rider, M. G. St-john, and . Mellon, The alkaline peroxide colorimetric determination of uranium, 1946.

W. H. Davenport and P. F. Thomason, Determination of uranium (vi) in presence of anions, Analytical Chemistry, vol.21, issue.9, pp.1093-1095, 1949.

E. Carl and C. Crouthamel, Spectrophotometric determination of uranium by thiocyanate method in acetone medium, Analytical Chemistry, vol.24, issue.11, pp.1780-1783, 1952.

. Ko-hill, J. G. Watanabe, and . Chambers, Evanescent-wave interactions in an optical wave-guiding structure, Applied optics, vol.11, issue.9, pp.1952-1959, 1972.

G. Pandraud, C. Koster, M. Gui, A. Dijkstra, . Van-den et al., Evanescent wave sensing: new features for detection in small volumes, Sensors and Actuators A: Physical, vol.85, issue.1-3, pp.158-162, 2000.

E. Jardinier, L. Bucci, . Couston, . Canto, J. E. Magnaldo et al., Glass integrated nanochannel waveguide for concentration measurements, Proc. SPIE OPTO, Integrated Optics: Devices, Materials, and Technologies XVII, p.86270, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01972378

D. Darwin-r-reyes, P. Iossifidis, A. Auroux, and . Manz, Micro total analysis systems. 1. introduction, theory, and technology, Analytical chemistry, vol.74, issue.12, pp.2623-2636, 2002.

K. Petra-s-dittrich, A. Tachikawa, and . Manz, Micro total analysis systems. latest advancements and trends, Analytical chemistry, vol.78, issue.12, pp.3887-3908, 2006.

J. West, M. Becker, S. Tombrink, and A. Manz, Micro total analysis systems: latest achievements, Analytical chemistry, vol.80, issue.12, pp.4403-4419, 2008.

A. Arora, G. Simone, G. B. Salieb-beugelaar, J. T. Kim, and A. Manz, Latest developments in micro total analysis systems, Analytical chemistry, vol.82, issue.12, pp.4830-4847, 2010.

A. Manz, H. M. Graber, and . Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensors and actuators B: Chemical, pp.244-248, 1990.

R. Bernini, S. Campopiano, L. Zeni, and P. Sarro, Arrow optical waveguides based sensors, Sensors and Actuators B: Chemical, vol.100, issue.1, pp.143-146, 2004.

J. Rossier, F. Reymond, and P. E. Michel, Polymer microfluidic chips for electrochemical and biochemical analyses, Electrophoresis, vol.23, issue.6, pp.858-867, 2002.

M. Heckele and . Schomburg, Review on micro molding of thermoplastic polymers, Journal of Micromechanics and Microengineering, vol.14, issue.3, p.1, 2003.

P. Abgrall, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review, Journal of Micromechanics and Microengineering, vol.17, issue.5, p.15, 2007.

S. Balslev, . Jorgensen, K. B. Bilenberg, D. Mogensen, O. Snakenborg et al., Lab-on-a-chip with integrated optical transducers, Lab on a Chip, vol.6, issue.2, pp.213-217, 2006.

M. Schelb, C. Vannahme, A. Welle, S. Lenhert, B. Ross et al., Fluorescence excitation on monolithically integrated allpolymer chips, Journal of biomedical optics, vol.15, issue.4, pp.41517-041517, 2010.

G. Janssens, -. , and S. Nucifora, Feasibility study of a microsystem to analyse radioactive solutions, Nuclear engineering and design, vol.237, issue.11, pp.1209-1219, 2007.

R. Mazurczyk and C. D. Mansfield, Introduction to glass microstructuring techniques, Microfluidic Diagnostics: Methods and Protocols, pp.125-140, 2013.

S. Ronggui and G. C. Righini, Characterization of reactive ion etching of glass and its applications in integrated optics, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.5, pp.2709-2712, 1991.

E. Metwalli and C. G. Pantano, Reactive ion etching of glasses: Composition dependence, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.207, pp.21-27, 2003.

L. Li, T. Abe, and M. Esashi, Smooth surface glass etching by deep reactive ion etching with sf 6 and xe gases, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.21, issue.6, pp.2545-2549, 2003.

S. Queste, R. Salut, S. Clatot, J. Rauch, and C. Malek, Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsystem Technologies, vol.16, pp.1485-1493, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00949364

Y. Tang, A. Sandoughsaz, and K. Najafi, Ultra high aspect-ratio and thick deep silicon etching (udrie), Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on, pp.700-703, 2017.

K. Kolari, V. Saarela, and S. Franssila, Deep plasma etching of glass for fluidic devices with different mask materials, Journal of Micromechanics and Microengineering, vol.18, issue.6, p.64010, 2008.

R. Dussart and T. Tillocher, Plasma cryogenic etching of silicon: from the early days to today's advanced technologies, Philippe Lefaucheux, and Mohamed Boufnichel, vol.47, p.123001, 2014.

J. Parasuraman, A. Summanwar, F. Marty, P. Basset, D. E. Angelescu et al., Deep reactive ion etching of sub-micrometer trenches with ultra high aspect ratio, Microelectronic Engineering, vol.113, pp.35-39, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01767970

X. Li, T. Abe, and M. Esashi, Deep reactive ion etching of pyrex glass, Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, pp.271-276, 2000.

C. Iliescu, E. H. Francis, J. Tay, and . Miao, Strategies in deep wet etching of pyrex glass, Sensors and Actuators A: Physical, vol.133, issue.2, pp.395-400, 2007.

C. Iliescu, J. Jing, E. H. Francis, J. Tay, T. Miao et al., Characterization of masking layers for deep wet etching of glass in an improved hf/hcl solution, Surface and Coatings Technology, vol.198, issue.1, pp.314-318, 2005.

M. Bu, T. Melvin, J. Graham, J. S. Ensell, A. Wilkinson et al., A new masking technology for deep glass etching and its microfluidic application, Sensors and Actuators A: Physical, vol.115, issue.2, pp.476-482, 2004.

. Dcs-bien, . Rainey, M. Sjn, and H. S. Gamble, Characterization of masking materials for deep glass micromachining, Journal of Micromechanics and Microengineering, vol.13, issue.4, p.34, 2003.

T. Plach, . Hingerl, . Tollabimazraehno, . Hesser, M. Dragoi et al., Mechanisms for room temperature direct wafer bonding, Journal of Applied Physics, vol.113, issue.9, p.94905, 2013.

Q. Tong, G. Cha, R. Gafiteanu, and U. Gosele, Low temperature wafer direct bonding, Journal of microelectromechanical systems, vol.3, issue.1, pp.29-35, 1994.

M. Howlader, S. Suehara, and T. Suga, Room temperature wafer level glass/glass bonding, Sensors and Actuators A: Physical, vol.127, issue.1, pp.31-36, 2006.

W. P. Maszara, G. Goetz, J. B. Caviglia, and . Mckitterick, Bonding of silicon wafers for silicon-on-insulator, Journal of Applied Physics, vol.64, issue.10, pp.4943-4950, 1988.

Q. Tong, T. Kim, U. Lee, and . Gösele, Low vacuum wafer bonding. Electrochemical and solid-state letters, vol.1, pp.52-53, 1998.

A. Arif-ul, Surface analysis of materials for direct wafer bonding, 2014.

A. Weinert, P. Amirfeiz, and S. Bengtsson, Plasma assisted room temperature bonding for mst, Sensors and Actuators A: Physical, vol.92, issue.1, pp.214-222, 2001.

Y. Xu, C. Wang, Y. Dong, L. Li, K. Jang et al., Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process, Analytical and bioanalytical chemistry, vol.402, issue.3, pp.1011-1018, 2012.

Y. Xu, C. Wang, L. Li, N. Matsumoto, K. Jang et al., Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an o 2/cf 4 plasma treatment, vol.13, pp.1048-1052, 2013.

. Au-alam, M. J. Howlader, and . Deen, Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding, ECS Journal of Solid State Science and Technology, vol.2, issue.12, pp.515-523, 2013.

. Au-alam, M. J. Howlader, and . Deen, The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass, Journal of Micromechanics and Microengineering, vol.24, issue.3, p.35010, 2014.

. Pk-v-tien, Light waves in thin films and integrated optics, Applied optics, vol.10, issue.11, pp.2395-2413, 1971.

L. Maurice and . Huggins, The refractive index of silicate glasses as a function of composition, JOSA, vol.30, issue.10, pp.495-504, 1940.

A. Bunde, K. Funke, and M. Ingram, Ionic glasses: History and challenges, Solid State Ionics, vol.105, issue.1, pp.1-13, 1998.

J. Phalippou, Verres: Aspects théoriques. Techniques de l'ingénieur, Sciences fondamentales, vol.7, issue.AF3600, pp.3600-3601, 2001.

E. Stewart and . Miller, Integrated optics: An introduction, Bell Labs Technical Journal, vol.48, issue.7, pp.2059-2069, 1969.

T. Izawa and H. Nakagome, Optical waveguide formed by electrically induced migration of ions in glass plates, Applied Physics Letters, vol.21, issue.12, pp.584-586, 1972.

A. Tervonen, R. Brian, S. West, and . Honkanen, Ion-exchanged glass waveguide technology: a review, Optical Engineering, vol.50, issue.7, pp.71107-071107, 2011.

J. Broquin, Glass integrated optics: state of the art and position toward other technologies, Proc. SPIE, vol.6475, p.647507, 2007.

J. E. Kelly, M. Cordaro, and . Tomozawa, Correlation effects on alkali ion diffusion in binary alkali oxide glasses, Journal of Non-Crystalline Solids, vol.41, issue.1, pp.47-55, 1980.

A. P. Alexandru-i-lupascu, T. Kevorkian, F. Boudet, D. Saintandre, M. Persegol et al., Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities, Optical Engineering, vol.35, issue.6, pp.1603-1611, 1996.

J. Crank, The mathematics of diffusion, 1979.

J. Broquin, Étude de guides d'onde dopes terres rares en optique integree sur verre en vue de realiser un amplificateur optique, INP GRENOBLE, 1997.

R. Ramaswamy and S. Najafi, Planar, buried, ion-exchanged glass waveguides: diffusion characteristics, IEEE journal of quantum electronics, vol.22, issue.6, pp.883-891, 1986.

E. Jordan, Dimensionnement et réalisation d'un rotateur de polarisation à évolution de mode en optique intégrée sur verre, 2016.

F. Henry, A. Taylor, and . Yariv, Guided wave optics, Proceedings of the IEEE, vol.62, issue.8, pp.1044-1060, 1974.

G. B. Hocker, . William, and . Burns, Mode dispersion in diffused channel waveguides by the effective index method, Applied optics, vol.16, issue.1, pp.113-118, 1977.

D. R. Heatley, A. Vitrant, and . Kevorkian, Simple finite-difference algorithm for calculating waveguide modes. Optical and quantum electronics, vol.26, pp.151-163, 1994.
DOI : 10.1007/bf00384669

R. Hadley and R. E. Smith, Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions, Journal of Lightwave Technology, vol.13, issue.3, pp.465-469, 1995.

D. Bucci, B. Martin, and A. Morand, Application of the threedimensional aperiodic fourier modal method using arc elements in curvilinear coordinates, JOSA A, vol.29, issue.3, pp.367-373, 2012.

L. Onestas, Intégration verticale d'une fonction dichroïque en optique intégrée sur verre: Application à un duplexeur pompe/signal pour amplificateur optique hybride, 2010.

7. Thorlabs, ? partnumber=780HP,organization={Thorlabs}, p.2018

W. Marcel, . Pruessner, H. Todd, W. Stievater, and . Rabinovich, Integrated waveguide fabry-perot microcavities with silicon/air Bragg mirrors, Optics letters, vol.32, issue.5, pp.533-535, 2007.

C. Fredrik-carlborg, K. Björgvin-gylfason, A. Ka?mierczak, F. Dortu, . Mj-banuls-polo et al., A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips, Lab on a Chip, vol.10, issue.3, pp.281-290, 2010.

D. S. Meek and . Walton, The use of Cornu spirals in drawing planar curves of controlled curvature, Journal of Computational and Applied Mathematics, vol.25, issue.1, pp.69-78, 1989.

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, Highdensity integrated planar lightwave circuits using sio 2-geo 2 waveguides with a high refractive index difference, Journal of lightwave technology, vol.12, issue.5, pp.790-796, 1994.

Y. Hida, H. Hibino, Y. Okazaki, and . Ohmori, 10 m long silica-based waveguide with a loss of 1.7 dB/m. In Integrated Photonics Research, page IThC6, 1995.

G. J. Veldhuis, Highly-sensitive passive integrated optical spiralshaped waveguide refractometer, Applied physics letters, vol.71, issue.20, pp.2895-2897, 1997.
DOI : 10.1063/1.120208

C. Lin, J. S. Jacobs, and . Rodgers, Spiral planar-waveguide Bragg gratings, Integrated Optics: Devices, Materials, and Technologies XIII, vol.7218, p.72180, 2009.
DOI : 10.1117/12.808341

. Jared-f-bauters, J. R. Martijn, . Heck, D. Demis, J. S. John et al., Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding, Optics express, vol.19, issue.24, pp.24090-24101, 2011.

E. Neumann, Curved dielectric optical waveguides with reduced transition losses, IEE Proceedings H-Microwaves, Optics and Antennas, vol.129, pp.278-280, 1982.
DOI : 10.1049/ip-h-1.1982.0056

F. Ladouceur and E. Labeye, A new general approach to optical waveguide path design, Journal of Lightwave Technology, vol.13, issue.3, pp.481-492, 1995.

E. Marcatili, Bends in optical dielectric guides, Bell Labs Technical Journal, vol.48, issue.7, pp.2103-2132, 1969.

D. Marcuse, Bending losses of the asymmetric slab waveguide, Bell Labs Technical Journal, vol.50, issue.8, pp.2551-2563, 1971.

L. Lewin, Radiation from curved dielectric slabs and fibers, IEEE transactions on microwave theory and techniques, vol.22, pp.718-727, 1974.
DOI : 10.1109/tmtt.1974.1128318

O. Bertoldi, J. Broquin, G. Vitrant, V. Collomb, M. Trouillon et al., Use of selectively buried ion-exchange waveguides for the realization of Bragg grating filters. In Integrated Optics and Photonic Integrated Circuits, International Society for Optics and Photonics, vol.5451, pp.182-191, 2004.

J. Grelin, E. Ghibaudo, and J. Broquin, Study of deeply buried waveguides: A way towards 3D integration, Materials Science and Engineering: B, vol.149, issue.2, pp.185-189, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00394088

L. Onestas, D. Bucci, E. Ghibaudo, and J. Broquin, Vertically integrated broadband duplexer for erbium-doped waveguide amplifiers made by ion exchange on glass, IEEE Photonics Technology Letters, vol.23, issue.10, pp.648-650, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00987679

F. Geoffray, Étude et réalisation par échange d'ions sur verre de guides d'onde à fort confinement pour des applications non-linéaires, 2015.