, Meso-Structured Organic-inorganic Perovskite Solar Cells, J. Mater. Chem. A, vol.4, pp.15788-15822, 2016.

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Z. Song et al., Pathways toward HighPerformance Perovskite Solar Cells: Review of Recent Advances in Organo-Metal Halide Perovskites for Photovoltaic Applications, In Low-cost Nanomaterials, vol.131, issue.37, pp.1170-1181, 2009.

J. Preat, D. Jacquemin, and E. A. Perpète, Towards New Efficient Dye-Sensitised Solar Cells, Energy Environ. Sci, vol.3, pp.891-904, 2010.

F. Hao, X. Jiao, J. Li, and H. Lin, Solvent Dipole Modulation of Conduction Band Edge Shift and Charge Recombination in Robust Dye-Sensitized Solar Cells, Nanoscale, vol.5, pp.726-733, 2012.
DOI : 10.1039/c2nr32946h

M. Godfroy, C. Aumaitre, F. Caffy, Y. Kervella, L. Cabau et al., Dithienylpyrazine-Based Photosensitizers: Effect of Swapping a Connecting Unit on Optoelectronic Properties and Photovoltaic Performances. Dyes Pigments, Acc. Chem. Res, vol.146, issue.50, pp.632-643, 2005.
DOI : 10.1016/j.dyepig.2017.07.022

M. Aleksandrova, N. Kurtev, V. Videkov, S. Tzanova, and S. Schintke, Material Alternative to ITO for Transparent Conductive Electrode in Flexible Display and Photovoltaic Devices, Microelectron. Eng, vol.145, pp.112-116, 2015.

W. Cao, J. Li, H. Chen, J. Xue, T. Kawashima et al., Transparent Electrodes for Organic Optoelectronic Devices: A Review, Tanabe, N. New Transparent Conductive Films: FTO Coated ITO, vol.4, pp.241-244, 2003.

I. Chapitre, B. Li, F. Huang, J. Zhong, J. Xie et al., LowTemperature Fabrication of Dye-Sensitized Solar Cells by Transfer of Composite Porous Layers, Contextualisation et présentation des cellules solaires à colorants (55), vol.4, pp.607-611, 2005.

K. Yoo, J. Kim, J. A. Lee, J. S. Kim, D. Lee et al., Completely Transparent Conducting Oxide-Free and Flexible DyeSensitized Solar Cells Fabricated on Plastic Substrates, ACS Nano, vol.9, pp.3760-3771, 2015.

T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, Highly Efficient PlasticSubstrate Dye-Sensitized Solar Cells with Validated Conversion Efficiency of 7.6%, Sol. Energy Mater. Sol. Cells, vol.94, pp.812-816, 2010.

H. C. Weerasinghe, F. Huang, and Y. Cheng, Fabrication of Flexible Dye Sensitized Solar Cells on Plastic Substrates, Nano Energy, issue.2, pp.174-189, 2013.

, Flexible Solar Cells | Flexible Dye-Sensitized Solar Cells | GCell, 2017.

J. Gong, K. Sumathy, Q. Qiao, and . Zhou, Advanced Techniques and Research Trends, vol.68, pp.234-246, 2017.

T. P. Brennan, J. R. Bakke, I. Ding, B. E. Hardin, W. H. Nguyen et al., The Importance of Dye Chemistry and TiCl4 Surface Treatment in the Behavior of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys, p.12130, 2012.

S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy et al., Control of Dark Current in Photoelectrochemical (TiO2/I?-I3?) and Dye-Sensitized Solar Cells, Chem. Commun, pp.4351-4353, 2005.

R. Kumar, A. Umar, G. Kumar, H. S. Nalwa, A. Kumar et al., Zinc Oxide Nanostructure-Based Dye-Sensitized Solar Cells, J. Mater. Sci, vol.52, pp.4743-4795, 2017.

R. Vittal and K. Ho, Zinc Oxide Based Dye-Sensitized Solar Cells: A Review, Renew. Sustain. Energy Rev, vol.70, pp.920-935, 2017.

H. Guo, X. He, C. Hu, Y. Tian, Y. Xi et al., Effect of Particle Size in Aggregates of ZnO-Aggregate-Based Dye-Sensitized Solar Cells, Electrochimica Acta, vol.120, pp.23-29, 2014.

X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, R. Kozhummal et al., Homoepitaxial Branching: An Unusual Polymorph of Zinc Oxide Derived from Seeded Solution Growth, ACS Nano, vol.303, issue.68, pp.7133-7141, 2004.

J. Qu, Y. Yang, Q. Wu, P. R. Coxon, Y. Liu et al., Hedgehoglike Hierarchical ZnO Needle-Clusters with Superior Electron Transfer Kinetics for DyeSensitized Solar Cells, vol.4, pp.11430-11437, 2014.

S. Ameen, M. S. Akhtar, Y. S. Kim, O. Yang, and H. Shin, Influence of Seed Layer Treatment on Low Temperature Grown ZnO Nanotubes: Performances in Dye Sensitized Solar Cells, Electrochimica Acta, vol.56, pp.1111-1116, 2011.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, N. Memarian et al., Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed, vol.50, issue.72, pp.12321-12325, 2007.

Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim et al., Significant Light Absorption Enhancement by a Single Heterocyclic Unit Change in the ?-Bridge Moiety from, J. Mater. Chem. A, vol.5, pp.2297-2308, 2017.

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu et al., Quintuple-Shelled SnO 2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells, Adv. Mater, vol.26, pp.905-909, 2014.

K. Keis, J. Lindgren, S. Lindquist, and A. Hagfeldt, Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes, Langmuir, vol.16, pp.4688-4694, 2000.

A. Lamberti, R. Gazia, A. Sacco, S. Bianco, M. Quaglio et al., Coral-Shaped ZnO Nanostructures for Dye-Sensitized Solar Cell Photoanodes, Prog. Photovolt. Res. Appl, vol.22, pp.189-197, 2014.

J. Idígoras, M. Godfroy, D. Joly, A. Todinova, P. Maldivi et al., Organic Dyes for the Sensitization of Nanostructured ZnO Photoanodes: Effect of the Anchoring Functions, RSC Adv, vol.5, pp.68929-68938, 2015.

P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, and L. M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO 2 , and TiO 2 Films Used in DyeSensitized Solar Cells, ACS Nano, vol.5, pp.5158-5166, 2011.

D. Stockwell, Y. Yang, J. Huang, C. Anfuso, Z. Huang et al., Comparison of ElectronTransfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs, J. Phys. Chem. C, vol.114, pp.6560-6566, 2010.

J. A. Anta, E. Guillén, R. Tena-zaera, I. Bedja, S. Hotchandani et al., Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis (2, 2'-Bipyridine)(2, 2'-Bipyridine-4, 4'-Dicarboxylic Acid) Ruthenium (II) Complex, J. Phys. Chem. C, vol.116, issue.81, pp.4133-4140, 1994.

S. Ferrere, A. Zaban, B. A. Gregg, A. N. Green, E. Palomares et al., Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO 2 and SnO 2 Films, J. Phys. Chem. B, vol.101, issue.83, pp.12525-12533, 1997.

H. J. Snaith and C. Ducati, SnO 2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency, Nano Lett, vol.10, pp.1259-1265, 2010.

P. Docampo, P. Tiwana, N. Sakai, H. Miura, L. Herz et al., Surface Modification of SnO 2 Photoelectrodes in DyeSensitized Solar Cells: Significant Improvements in Photovoltage via Al 2 O 3 Atomic Layer Deposition, J. Phys. Chem. Lett, vol.1, issue.88, pp.4246-4253, 2004.

K. Li, Y. Wang, Y. Xu, H. Chen, C. Su et al., Macroporous SnO 2 Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.5, pp.5105-5111, 2013.

D. Son, C. Lee, H. Shin, I. Jang, H. S. Jung et al., Understanding the Role of the Dye/Oxide Interface via SnO 2-Based MK-2 DyeSensitized Solar Cells, Phys Chem Chem Phys, vol.17, pp.15193-15200, 2015.

J. J. Teh, S. L. Ting, K. C. Leong, J. Li, and P. Chen, Gallium-Doped Tin Oxide Nano-Cuboids for Improved Dye Sensitized Solar Cell, ACS Appl. Mater. Interfaces, vol.5, pp.11377-11382, 2013.

H. Pang, H. Yang, C. X. Guo, and C. M. Li, Functionalization of SnO 2 Photoanode through Mg-Doping and TiO 2-Coating to Synergically Boost Dye-Sensitized Solar Cell Performance, ACS Appl. Mater. Interfaces, vol.4, pp.6261-6265, 2012.

X. Li, Q. Yu, C. Yu, Y. Huang, R. Li et al., ZincDoped SnO 2 Nanocrystals as Photoanode Materials for Highly Efficient Dye-Sensitized Solar Cells, J Mater Chem A, vol.3, pp.8076-8082, 2015.

S. Das, V. Jayaraman, and . Sno2, A Comprehensive Review on Structures and Gas Sensors, vol.66, pp.112-255, 2014.

H. Wang and A. L. Rogach, Hierarchical SnO 2 Nanostructures: Recent Advances in Design, Synthesis, and Applications, Chem. Mater, vol.26, pp.123-133, 2014.

Q. Wali, A. Fakharuddin, and R. Jose, Tin Oxide as a Photoanode for Dye-Sensitised Solar Cells: Current Progress and Future Challenges, J. Power Sources, vol.293, pp.1039-1052, 2015.

M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Acc. Chem. Res, vol.42, pp.1788-1798, 2009.

A. Y. Anderson, P. R. Barnes, J. R. Durrant, and B. C. O'regan, Quantifying Regeneration in Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.115, issue.99, pp.2439-2447, 2009.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, T. Meyer et al., Metal-Free Organic Sensitizers with Narrow Absorption in the Visible for Solar Cells Exceeding 10% Efficiency, Energy Env. Sci, vol.8, pp.2010-2018, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731488

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Mueller et al., Conversion of Light to Electricity by Cis-X2bis(2,2'Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes, J. Am. Chem. Soc, vol.115, pp.6382-6390, 1993.

M. K. Nazeeruddin, F. De-angelis, S. Fantacci, A. Selloni, G. Viscardi et al., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J. Am. Chem. Soc, vol.127, pp.16835-16847, 2005.

M. K. Chapitre-i-;-nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-baker et al., Highly Efficient DyeSensitized Solar Cells Based on a Ruthenium Sensitizer Bearing a Hexylthiophene Modified Terpyridine Ligand, Contextualisation et présentation des cellules solaires à colorants (103), vol.123, pp.1762-1770, 2001.

R. E. Yasbin, C. R. Matthews, and M. J. Clarke, Mutagenic and Toxic Effects of Ruthenium, Chem. Biol. Interact, vol.31, pp.355-365, 1980.

Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer et al., Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films, J. Phys. Chem. B, vol.109, pp.15397-15409, 2005.

T. Bessho, S. M. Zakeeruddin, C. Yeh, E. W. Diau, and M. Grätzel, Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins, Angew. Chem. Int. Ed, vol.49, pp.6646-6649, 2010.

T. Higashino and H. Imahori, Porphyrins as Excellent Dyes for Dye-Sensitized Solar Cells: Recent Developments and Insights, Dalton Trans, vol.44, pp.448-463, 2015.

S. Mathew, A. Yella, P. Gao, R. Humphry-baker, B. F. Curchod et al., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Nat. Chem, vol.6, pp.242-247, 2014.

M. Liang and J. Chen, Arylamine Organic Dyes for Dye-Sensitized Solar Cells, Chem. Soc. Rev, vol.42, p.3453, 2013.

X. Li, X. Zhang, J. Hua, and H. Tian, Molecular Engineering of Organic Sensitizers with o,pDialkoxyphenyl-Based Bulky Donors for Highly Efficient Dye-Sensitized Solar Cells, Mol. Syst. Des. Eng, 2017.

D. Joly, M. Godfroy, L. Pellejà, Y. Kervella, P. Maldivi et al., Side Chain Engineering of Organic Sensitizers for DyeSensitized Solar Cells: A Strategy to Improve Performances and Stability, J. Mater. Chem. A, vol.5, pp.6122-6130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02016677

L. Zhang and J. M. Cole, Anchoring Groups for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.7, pp.3427-3455, 2015.

Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang et al., Dithienopicenocarbazole as the Kernel Module of Low-Energy-Gap Organic Dyes for Efficient Conversion of Sunlight to Electricity, Energy Environ. Sci, vol.8, pp.3192-3197, 2015.

K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa et al., Highly-Efficient DyeSensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and CarboxyAnchor Dyes, Chem Commun, vol.51, pp.15894-15897, 2015.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang et al., HighEfficiency Dye-Sensitized Solar Cells with Ferrocene-Based Electrolytes, Chem. Rev, vol.115, issue.117, pp.211-215, 2011.

J. Cong, X. Yang, L. Kloo, and L. Sun, Iodine/Iodide-Free Redox Shuttles for Liquid Electrolyte-Based Dye-Sensitized Solar Cells, Energy Environ. Sci, vol.5, pp.9180-9194, 2012.

I. Chapitre, Contextualisation et présentation des cellules solaires à colorants

K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya, Fabrication of a DyeSensitized Solar Cell Containing a Mg-Doped TiO2 Electrode and a Br3?/Br? Redox Mediator with a High Open-Circuit Photovoltage of 1.21 V, Chem. Commun, vol.49, pp.179-180, 2012.

M. Wang, N. Chamberland, L. Breau, J. Moser, R. Humphry-baker et al., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy, J. Phys. Chem. B, vol.2, issue.121, pp.8141-8155, 1997.

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, J. Phys. Chem. B, vol.101, pp.2576-2582, 1997.

Y. Wang, J. Lu, J. Yin, G. Lü, Y. Cui et al., Influence of 4-Tert-Butylpyridine/Guanidinium Thiocyanate Co-Additives on Band Edge Shift and Recombination of Dye-Sensitized Solar Cells: Experimental and Theoretical Aspects, Electrochimica Acta, vol.185, pp.69-75, 2015.

S. E. Koops, B. C. O'regan, P. R. Barnes, and J. R. Durrant, Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.131, pp.4808-4818, 2009.

S. Mozaffari, M. R. Nateghi, and M. B. Zarandi, An Overview of the Challenges in the Commercialization of Dye Sensitized Solar Cells, Renew. Sustain. Energy Rev, vol.71, pp.675-686, 2017.

A. T. Hubbard, R. A. Osteryoung, and F. C. Anson, Further Study of the Iodide-Iodine Couple at Platinum Electrodes by Thin Layer Electrochemistry, Anal. Chem, vol.38, pp.692-697, 1966.

F. Hao, P. Dong, Q. Luo, J. Li, J. Lou et al., Recent Advances in Alternative Cathode Materials for Iodine-Free Dye-Sensitized Solar Cells, Energy Environ. Sci, vol.6, 2013.

S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair et al., Highly Efficient Dye-Sensitized Solar Cells: Progress and Future Challenges, A Review on Counter Electrode Materials in Dye-Sensitized Solar Cells. J. Mater. Chem. A, vol.2, issue.129, pp.737-739, 1443.

C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann et al., Efficient Panchromatic Sensitization of Nanocrystalline TiO 2 Films by a Black Dye Based on a Trithiocyanato-ruthenium Complex, J. Am. Ceram. Soc, vol.80, issue.5, pp.1705-1706, 1997.

T. Kinoshita, J. T. Dy, S. Uchida, T. Kubo, and H. Segawa, Wideband Dye-Sensitized Solar Cells Employing a Phosphine-Coordinated Ruthenium Sensitizer, Nat. Photonics, vol.7, pp.535-539, 2013.

G. Li, A. Yella, D. G. Brown, S. I. Gorelsky, M. K. Nazeeruddin et al., Near-IR Photoresponse of Ruthenium Dipyrrinate Terpyridine Sensitizers in the Dye-Sensitized Solar Cells, Inorg. Chem, vol.53, pp.5417-5419, 2014.

B. Chen, K. Chen, Y. Hong, W. Liu, T. Li et al., Molecular Level Photovoltaics: The Electrooptical Properties of Metal Cyanide Complexes Anchored to Titanium Dioxide, J. Phys. Chem, vol.5844, issue.9, pp.11987-11994, 1993.

G. Sauvé, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann et al., Preparation and Photoelectrochemical Characterization of a Red Sensitive Osmium Complex Containing 4,4?,4??-Tricarboxy-2,2?:6?,2??-Terpyridine and Cyanide Ligands, J. Photochem. Photobiol. Chem, vol.104, issue.11, pp.15-21, 2000.

D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, and N. S. Lewis, Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes, J. Phys. Chem. B, vol.105, pp.392-403, 2001.

M. Alebbi, C. A. Bignozzi, T. A. Heimer, G. M. Hasselmann, and G. J. Meyer, The Limiting Role of Iodide Oxidation in Cis-Os(Dcb)2(CN)2/TiO2 Photoelectrochemical Cells, J. Phys. Chem. B, vol.102, pp.7577-7581, 1998.

S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. Da-fré et al., Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes, J. Am. Chem. Soc, vol.127, pp.15342-15343, 2005.

T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo et al., Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition, J. Phys. Chem. Lett, vol.3, pp.394-398, 2012.

D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser et al., High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.128, pp.4146-4154, 2006.

K. Wu, S. Ho, C. Chou, Y. Chang, H. Pan et al., Engineering of Osmium(II)-Based Light Absorbers for Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed, vol.51, pp.5642-5646, 2012.

S. Verma, P. Kar, A. Das, D. K. Palit, and H. N. Ghosh, The Effect of Heavy Atoms on Photoinduced Electron Injection from Nonthermalized and Thermalized Donor States of MII-Polypyridyl (M=Ru/Os) Complexes to Nanoparticulate TiO2 Surfaces: An Ultrafast Time-Resolved Absorption Study, Chem.-Eur. J, vol.16, pp.611-619, 2010.

T. Kinoshita, K. Nonomura, N. Joong-jeon, F. Giordano, A. Abate et al., Spectral Splitting Photovoltaics Using Perovskite and Wideband Dye-Sensitized Solar Cells, J. Chem. Phys, vol.6, issue.20, pp.4590-4593, 1967.

H. Imahori, T. Umeyama, and S. Ito, Large ?-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells, Acc. Chem. Res, vol.42, pp.1809-1818, 2009.

F. Odobel, E. Blart, M. Lagrée, M. Villieras, H. Boujtita et al., Porphyrin Dyes for TiO2 Sensitization, J. Mater. Chem, vol.13, pp.502-510, 2003.

S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama et al., Effects of ?-Elongation and the Fused Position of Quinoxaline-Fused Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties, J. Phys. Chem. C, vol.112, issue.24, pp.79-82, 2001.

P. J. Angiolillo, V. S. Lin, J. M. Vanderkooi, and M. J. Therien, EPR Spectroscopy and Photophysics of the Lowest Photoactivated Triplet State of a Series of Highly Conjugated (Porphinato)Zn Arrays, J. Am. Chem. Soc, vol.117, pp.12514-12527, 1995.

C. Mai, W. Huang, H. Lu, C. Lee, C. Chiu et al., Synthesis and Characterization of Diporphyrin Sensitizers for Dye-Sensitized Solar Cells, Chem. Commun, vol.46, pp.809-811, 2010.

Y. Liu, H. Lin, J. T. Dy, K. Tamaki, J. Nakazaki et al., N-Fused Carbazole-zinc Porphyrin-free-Base Porphyrin Triad for Efficient near-IR Dye-Sensitized Solar Cells, Chem. Commun, p.4010, 2011.

M. J. Calvete, L. D. Dias, C. A. Henriques, S. M. Pinto, R. M. Carrilho et al., A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst, vol.22, p.741, 2017.

G. Löbbert and . Phthalocyanines, In Ullmann's Encyclopedia of Industrial Chemistry, 2000.

C. G. Claessens, U. Hahn, T. Torres, Y. Shen, L. Wang et al., Fabrication, Characterization and Photovoltaic Study of a TiO2 Microporous Electrode, Thin Solid Films, vol.8, issue.32, pp.144-146, 1995.

H. Yanagi, S. Chen, P. A. Lee, K. W. Nebesny, N. R. Armstrong et al., DyeSensitizing Effect of TiOPc Thin Film on n-TiO2 (001) Surface, J. Phys. Chem, vol.100, pp.5447-5451, 1996.

H. Deng, Z. Lu, H. Mao, and H. Xu, The Liquid Junction Cell Based on the Nanostructured TiO2 Electrode Sensitized with Zinc Tetrasulfonated Phthalocyanine, Chem. Phys, vol.221, pp.323-331, 1997.

J. Fang, J. Wu, X. Lu, Y. Shen, and Z. Lu, Sensitization of Nanocrystalline TiO2 Electrode with Quantum Sized CdSe and ZnTCPc Molecules, Chem. Phys. Lett, vol.270, pp.145-151, 1997.

J. He, A. Hagfeldt, S. Lindquist, H. Grennberg, F. Korodi et al., Phthalocyanine-Sensitized Nanostructured TiO2 Electrodes Prepared by a Novel Anchoring Method, Langmuir, vol.17, pp.2743-2747, 2001.

S. Eu, T. Katoh, T. Umeyama, Y. Matano, and H. Imahori, Synthesis of Sterically Hindered Phthalocyanines and Their Applications to Dye-Sensitized Solar Cells, Dalton Trans, pp.5476-5483, 2008.

J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth et al., Efficient Near-IR Sensitization of Nanocrystalline TiO2 Films by Zinc and Aluminum Phthalocyanines, J. Porphyr. Phthalocyanines, vol.124, pp.230-237, 1999.

P. Y. Reddy, L. Giribabu, C. Lyness, H. J. Snaith, C. Vijaykumar et al., Low-Symmetry ?Shaped Zinc Phthalocyanine Sensitizers with Panchromatic Light-Harvesting Properties for Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed, vol.46, issue.41, pp.18760-18768, 2007.

M. Kimura, H. Nomoto, H. Suzuki, T. Ikeuchi, H. Matsuzaki et al., Molecular Design Rule of Phthalocyanine Dyes for Highly Efficient Near-IR Performance in Dye-Sensitized Solar Cells, Chem.-Eur. J, vol.19, pp.7496-7502, 2013.

S. Mori, M. Nagata, Y. Nakahata, K. Yasuta, R. Goto et al., Enhancement of Incident Photon-to-Current Conversion Efficiency for PhthalocyanineSensitized Solar Cells by 3D Molecular Structuralization, J. Am. Chem. Soc, vol.132, issue.44, pp.4891-4932, 2007.

H. Lu, J. Mack, Y. Yang, and Z. Shen, Structural Modification Strategies for the Rational Design of Red/NIR Region BODIPYs, Chem. Soc. Rev, vol.43, p.4778, 2014.

S. Hattori, K. Ohkubo, Y. Urano, H. Sunahara, T. Nagano et al., Charge Separation in a Nonfluorescent Donor?Acceptor Dyad Derived from Boron Dipyrromethene Dye, Leading to Photocurrent Generation, J. Phys. Chem. B, vol.109, pp.15368-15375, 2005.

S. Erten-ela, M. D. Yilmaz, B. Icli, Y. Dede, S. Icli et al., A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells, Org. Lett, vol.10, pp.3299-3302, 2008.

K. Gräf, T. Körzdörfer, S. Kümmel, and M. Thelakkat, Synthesis of Donor-Substituted Meso-Phenyl and Meso-Ethynylphenyl BODIPYs with Broad Absorption, New J. Chem, p.1417, 2013.

T. Daeneke, K. Gräf, S. E. Watkins, M. Thelakkat, and U. Bach, Infrared Sensitizers in Titania-Based Dye-Sensitized Solar Cells Using a Dimethylferrocene Electrolyte, ChemSusChem, vol.6, pp.2056-2060, 2013.

S. Kolemen, Y. Cakmak, S. Erten-ela, Y. Altay, J. Brendel et al., Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers, Org. Lett, vol.12, pp.3812-3815, 2010.

S. Kolemen, O. A. Bozdemir, Y. Cakmak, G. Barin, S. Erten-ela et al., Erten-Ela, S. Synthesis and Dye Sensitized Solar Cell Applications of Bodipy Derivatives with Bis-Dimethylfluorenyl Amine Donor Groups, New J. Chem, vol.2, issue.52, pp.4086-4092, 2011.

Y. Kubo, D. Eguchi, A. Matsumoto, R. Nishiyabu, H. Yakushiji et al., Boron-dibenzopyrromethene-Based Organic Dyes for Application in DyeSensitized Solar Cells, J. Mater. Chem. A, issue.2, p.5204, 2014.

Y. Kubo, K. Watanabe, R. Nishiyabu, R. Hata, A. Murakami et al., NearInfrared Absorbing Boron-Dibenzopyrromethenes That Serve As Light-Harvesting Sensitizers for Polymeric Solar Cells, Org. Lett, vol.13, pp.4574-4577, 2011.

R. E. Yasbin, C. R. Matthews, and M. J. Clarke, Mutagenic and Toxic Effects of Ruthenium, Chem. Biol. Interact, vol.31, pp.355-365, 1980.

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Cyanines during the 1990s: A Review, Chem. Rev, vol.100, pp.1973-2012, 2000.

L. D. Patsenker, A. L. Tatarets, and E. A. Terpetschnig, Long-Wavelength Probes and Labels Based on Cyanines and Squaraines, Advanced Fluorescence Reporters in Chemistry and Biology I; Demchenko, A. P

H. Springer-berlin, , pp.65-104, 2010.

L. Hu, Z. Yan, H. Xu, G. Chen, H. Sasabe et al., Advances in Synthesis and Application of Near-Infrared Absorbing Squaraine Dyes, J. Mater. Chem. A, vol.3, issue.59, pp.14517-14534, 2013.

J. Jiang, C. Sun, Z. Shi, and H. Zhang, Squaraines as Light-Capturing Materials in Photovoltaic Cells, RSC Adv, 2014.
DOI : 10.1039/c4ra03972f

M. Guo, P. Diao, Y. Ren, F. Meng, H. Tian et al., Photoelectrochemical Studies of Nanocrystalline TiO2 Co-Sensitized by Novel Cyanine Dyes, Sol. Energy Mater. Sol. Cells, vol.88, pp.23-35, 2005.
DOI : 10.1016/j.solmat.2004.10.003

M. Matsui, Y. Hashimoto, K. Funabiki, J. Jin, T. Yoshida et al., Application of Near-Infrared Absorbing Heptamethine Cyanine Dyes as Sensitizers for Zinc Oxide Solar Cell, Synth. Met, vol.148, pp.147-153, 2005.

K. Funabiki, H. Mase, A. Hibino, N. Tanaka, N. Mizuhata et al., Synthesis of a Novel Heptamethine-cyanine Dye for Use in Near-Infrared Active Dye-Sensitized Solar Cells with Porous Zinc Oxide Prepared at Low Temperature, Energy Environ. Sci, vol.4, pp.2186-2192, 2011.

F. Song, X. Peng, E. Lu, R. Zhang, X. Chen et al., Syntheses, Spectral Properties and Photostabilities of Novel Water-Soluble near-Infrared Cyanine Dyes, J. Photochem. Photobiol. Chem, vol.168, pp.53-57, 2004.

X. Chen, X. Peng, A. Cui, B. Wang, L. Wang et al., Photostabilities of Novel Heptamethine 3H-Indolenine Cyanine Dyes with Different N-Substituents, J. Photochem. Photobiol. Chem, vol.181, pp.79-85, 2006.

A. H. Herz, L. I. Markova, E. A. Terpetschnig, and L. D. Patsenker, Comparison of a Series of Hydrophilic Squaraine and Cyanine Dyes for Use as Biological Labels. Dyes Pigments, Adv. Colloid Interface Sci, vol.8, issue.67, pp.561-570, 1977.

S. Paek, H. Choi, C. Kim, N. Cho, S. So et al., Efficient and Stable Panchromatic Squaraine Dyes for Dye-Sensitized Solar Cells, Chem. Commun, 2011.

T. Geiger, S. Kuster, J. Yum, S. Moon, M. K. Nazeeruddin et al., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO 2 Nanocrystalline Films, Adv. Funct. Mater, vol.19, pp.2720-2727, 2009.

S. Kuster, F. Sauvage, M. K. Nazeeruddin, M. Grätzel, F. A. Nüesch et al., Unsymmetrical Squaraine Dimer with an Extended ?-Electron Framework: An Approach in Harvesting near Infra-Red Photons for Energy Conversion. Dyes Pigments, vol.87, pp.30-38, 2010.

T. Maeda, S. Arikawa, H. Nakao, S. Yagi, and H. Nakazumi, Linearly ?-Extended Squaraine Dyes Enable the Spectral Response of Dye-Sensitized Solar Cells in the NIR Region over 800 Nm, New J Chem, vol.37, pp.701-708, 2013.

D. Joly, M. Godfroy, L. Pellejà, Y. Kervella, P. Maldivi et al., Side Chain Engineering of Organic Sensitizers for DyeSensitized Solar Cells: A Strategy to Improve Performances and Stability, J. Mater. Chem. A, vol.5, pp.6122-6130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02016677

X. Li, X. Zhang, J. Hua, and H. Tian, Molecular Engineering of Organic Sensitizers with o,pDialkoxyphenyl-Based Bulky Donors for Highly Efficient Dye-Sensitized Solar Cells, Mol. Syst. Des. Eng, 2017.

J. E. Kroeze, N. Hirata, S. Koops, M. K. Nazeeruddin, L. Schmidt-mende et al., Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.128, pp.16376-16383, 2006.

S. S. Pandey, T. Inoue, N. Fujikawa, Y. Yamaguchi, and S. Hayase, Substituent Effect in Direct Ring Functionalized Squaraine Dyes on near Infra-Red Sensitization of Nanocrystalline TiO2 for Molecular Photovoltaics, J. Photochem. Photobiol. Chem, vol.214, pp.269-275, 2010.

, Chapitre 2-Etat de l'art des matériaux absorbeurs proche infrarouge pour les cellules solaires à colorants et stratégies d'ingénierie moléculaire

A. Burke, L. Schmidt-mende, S. Ito, and M. Grätzel, A Novel Blue Dye for Near-IR 'DyeSensitised' Solar Cell Applications, Chem Commun, pp.234-236, 2007.

F. M. Jradi, X. ;. Kang, D. O'neil, G. Pajares, Y. A. Getmanenko et al., Near-Infrared Asymmetrical Squaraine Sensitizers for Highly Efficient Dye Sensitized Solar Cells: The Effect of ?-Bridges and Anchoring Groups on Solar Cell Performance, Chem. Mater, vol.27, pp.2480-2487, 2015.

C. Qin, Y. Numata, S. Zhang, X. Yang, A. Islam et al., Novel Near-Infrared Squaraine Sensitizers for Stable and Efficient Dye-Sensitized Solar Cells, Adv. Funct. Mater, vol.24, pp.3059-3066, 2014.

R. ;. Bisht, M. F. Singh, A. K. Nithyanandhan, and J. , Panchromatic Sensitizer for DyeSensitized Solar Cells: Unsymmetrical Squaraine Dyes Incorporating Benzodithiophene ?-Spacer with Alkyl Chains to Extend Conjugation, Control the Dye Assembly on TiO2, and Retard Charge Recombination, J. Org. Chem, vol.82, 1920.

L. Beverina, R. Ruffo, C. M. Mari, G. A. Pagani, M. Sassi et al., Novel Squaraine Cosensitization System of Panchromatic Light-Harvesting with Synergistic Effect for Highly Efficient Solar Cells, ACS Sustain. Chem. Eng, vol.2, issue.81, pp.3567-3574, 2009.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability

Y. Hao, X. Yang, J. Cong, H. Tian, A. Hagfeldt et al., Efficient near Infrared D-?-A Sensitizers with Lateral Anchoring Group for Dye-Sensitized Solar Cells, Black Dye" for Panchromatic Dye-Sensitized Solar Cells. Energy Environ. Sci, vol.2, issue.84, p.674, 2009.

A. Mishra, M. K. Fischer, and P. Bäuerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angew. Chem. Int. Ed, vol.48, pp.2474-2499, 2009.

W. Zhu, Y. Wu, S. Wang, W. Li, X. Li et al., Organic D-A-?-A Solar Cell Sensitizers with Improved Stability and Spectral Response, Adv. Funct. Mater, vol.21, pp.756-763, 2011.

N. P. Liyanage, A. Yella, M. Nazeeruddin, M. Grätzel, J. H. Delcamp et al., Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics, Pyrazine as an Electron Deficient ?-Bridge in D-A??-A DSCs, vol.3, pp.11394-11410, 2011.

X. Lu, G. Zhou, H. Wang, Q. Feng, and Z. Wang, Near Infrared Thieno[3,4-b]Pyrazine Sensitizers for Efficient Quasi-Solid-State Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys, p.4802, 2012.

T. Lan, X. Lu, L. Zhang, Y. Chen, G. Zhou et al., Enhanced Performance of Quasi-Solid-State Dye-Sensitized Solar Cells by Tuning the Building Blocks in D-(?)-A??-A Featured Organic Dyes, J. Mater. Chem. A, vol.3, pp.9869-9881, 2015.

L. Zhang, K. Jiang, G. Li, Q. Zhang, L. Yang et al., A Stable Panchromatic Green Dual Acceptor, Dual Donor Organic Dye for Dye-Sensitized Solar Cells, J. Mater. Chem. A, vol.2, pp.8770-8780, 2014.

M. Godfroy, C. Aumaitre, F. Caffy, Y. Kervella, L. Cabau et al., Dithienylpyrazine-Based Photosensitizers: Effect of Swapping a Connecting Unit on Optoelectronic Properties and Photovoltaic Performances
URL : https://hal.archives-ouvertes.fr/hal-02200580

S. Li, K. Jiang, J. Huang, L. Yang, and Y. Song, Molecular Engineering of Panchromatic Isoindigo Sensitizers for Dye-Sensitized Solar Cell Applications, Chem. Commun, vol.50, p.4309, 2014.

Y. Hao, Y. Saygili, J. Cong, A. Eriksson, W. Yang et al., Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by CoSensitization, Advanced Techniques and Research Trends, vol.8, pp.234-246, 2016.

M. Liang and J. Chen, Arylamine Organic Dyes for Dye-Sensitized Solar Cells, Chem. Soc. Rev, vol.42, p.3453, 2013.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, ) Sauvage, F. A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells, Chem. Rev, vol.110, issue.102, pp.1-23, 2010.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, T. Meyer et al., Metal-Free Organic Sensitizers with Narrow Absorption in the Visible for Solar Cells Exceeding 10% Efficiency, Energy Env. Sci, vol.8, pp.2010-2018, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731488

F. Caffy, N. Delbosc, P. Chávez, P. Lévêque, J. Faure-vincent et al., Optoelectronic Properties and Photovoltaic Performances of Wide Band-Gap Copolymers Based on Dibenzosilole and Quinoxaline Units, Rivals to P3HT, Polym. Chem, vol.7, pp.4160-4175, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01979904

H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu et al., Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency, Angew. Chem. Int. Ed, vol.50, pp.2995-2998, 2011.

L. Dou, C. Chen, K. Yoshimura, K. Ohya, W. Chang et al., Pyran as an Electron-Rich Building Block for Donor-Acceptor Type Low-Bandgap Polymers, Macromolecules, vol.46, pp.3384-3390, 2013.

R. Mondal, N. Miyaki, H. A. Becerril, J. E. Norton, J. Parmer et al., Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications, Chem. Mater, vol.21, pp.3618-3628, 2009.

A. P. Zoombelt, M. Fonrodona, M. G. Turbiez, M. M. Wienk, and R. A. Janssen, Synthesis and Photovoltaic Performance of a Series of Small Band Gap Polymers, J. Mater. Chem, p.5336, 2009.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure, Nat. Photonics, vol.6, pp.593-597, 2012.

C. Liu, K. Wang, X. Gong, and A. J. Heeger, Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics, Chem. Soc. Rev, vol.45, pp.4825-4846, 2016.

S. Mathew, A. Yella, P. Gao, R. Humphry-baker, B. F. Curchod et al., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Nat. Chem, vol.6, pp.242-247, 2014.

B. A. Neto, A. A. Lapis, E. N. Da-silva-júnior, and J. Dupont, 1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules: 2,1,3-Benzothiadiazole and Derivatives, Eur. J. Org. Chem, vol.2, pp.228-255, 2013.

I. Osaka, M. Shimawaki, H. Mori, I. Doi, E. Miyazaki et al., Synthesis, Characterization, and Transistor and Solar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer, J. Am. Chem. Soc, vol.134, pp.3498-3507, 2012.

K. Kawashima, I. Osaka, and K. Takimiya, Effect of Chalcogen Atom on the Properties of Naphthobischalcogenadiazole-Based ?-Conjugated Polymers, Chem. Mater, vol.27, pp.6558-6570, 2015.

K. Kawashima, T. Fukuhara, Y. Suda, Y. Suzuki, T. Koganezawa et al., Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers, J. Am. Chem. Soc, vol.138, issue.116, pp.9638-9641, 2011.

M. Wang, X. Hu, L. Liu, C. Duan, P. Liu et al., Design and Synthesis of Copolymers of Indacenodithiophene and Naphtho[1,2-c:5,6-c]Bis(1,2,5Thiadiazole) for Polymer Solar Cells, Macromolecules, vol.46, pp.3950-3958, 2013.

I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, and K. Takimiya, NaphthodithiopheneNaphthobisthiadiazole Copolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and Promotes Efficiency, J. Am. Chem. Soc, vol.135, pp.8834-8837, 2013.

T. Yang, M. Wang, C. Duan, X. Hu, L. Huang et al., New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-Thiadiazole) and Thiophenes, Energy Environ. Sci, vol.5, issue.120, pp.6791-6792, 1995.

T. T. Steckler, K. A. Abboud, M. Craps, A. G. Rinzler, and J. R. Reynolds, Low Band Gap EDOT-benzobis(Thiadiazole) Hybrid Polymer Characterized on near-IR Transmissive Single Walled Carbon Nanotube Electrodes, Chem. Commun, p.4904, 2007.
DOI : 10.1039/b709672k

Y. Yang, R. T. Farley, T. T. Steckler, S. Eom, J. R. Reynolds et al., Large-Area Photovoltaics Based on Low Band Gap Copolymers of Thiophene and Benzothiadiazole or Benzo-Bis(Thiadiazole), Sol. Energy Mater. Sol. Cells, vol.106, issue.123, pp.1019-1025, 2007.

J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, Y. K. Vijay, and G. D. Sharma, Low Band Gap Conjugated Small Molecules Containing Benzobisthiadiazole and Thienothiadiazole Central Units: Synthesis and Application for Bulk Heterojunction Solar Cells, J. Mater. Chem, 2011.

T. L. Tam, T. Salim, H. Li, F. Zhou, S. G. Mhaisalkar et al., Thiadiazoloquinoxaline to Pyrazinoquinoxaline Based Polymers: Effects of Aromatic Substituents on the Performance of Organic Photovoltaics, J. Mater. Chem, vol.22, pp.18528-18534, 2012.

M. G. Murali, A. D. Rao, and P. Ramamurthy, Thiadiazole Based Conjugated Polymers for Organic Photovoltaics, vol.4, pp.44902-44910, 2014.

S. Huang, R. K. Kannadorai, Y. Chen, Q. Liu, and M. Wang, A Narrow-Bandgap Benzobisthiadiazole Derivative with High near-Infrared Photothermal Conversion Efficiency and Robust Photostability for Cancer Therapy, Chem Commun, vol.51, pp.4223-4226, 2015.

S. Huang, P. K. Upputuri, H. Liu, M. Pramanik, and M. Wang, A Dual-Functional Benzobisthiadiazole Derivative as an Effective Theranostic Agent for near-Infrared Photoacoustic Imaging and Photothermal Therapy, J. Mater. Chem. B, vol.4, pp.1696-1703, 2016.

J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid et al., High Performance Weak Donor-Acceptor Polymers in Thin Film Transistors: Effect of the Acceptor on Electronic Properties, Ambipolar Conductivity, Mobility, and Thermal Stability, Adv. Funct. Mater, vol.133, issue.130, pp.1196-1207, 2011.

Y. Wang, M. Nakano, T. Michinobu, Y. Kiyota, T. Mori et al., Based Polymers: Versatile n-Type Materials for Field-Effect Transistors and Thermoelectric Devices, vol.50, pp.857-864, 2017.

J. D. Bower and R. H. Schlessinger, Synthesis of Two Nonclassical Thienothiadiazoles, J. Am. Chem. Soc, vol.91, pp.6891-6892, 1969.

J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, Y. K. Vijay, and G. D. Sharma, Low Band Gap Conjugated Small Molecules Containing Benzobisthiadiazole and Thienothiadiazole Central Units: Synthesis and Application for Bulk Heterojunction Solar Cells, J. Mater. Chem, 2011.

I. Bulut, P. Lévêque, B. Heinrich, T. Heiser, R. Bechara et al., LUMO's Modulation by Electron Withdrawing Unit Modification in Amorphous TAT Dumbbell-Shaped Molecules, J Mater Chem A, vol.3, pp.6620-6628, 2015.

Y. Zhang, S. A. Autry, L. E. Mcnamara, S. T. Nguyen, N. Le et al., Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability, J. Org. Chem, vol.82, pp.5597-5606, 2017.

W. Xu, B. Peng, J. Chen, M. Liang, and F. Cai, New Triphenylamine-Based Dyes for DyeSensitized Solar Cells, J. Phys. Chem. C, vol.112, pp.874-880, 2008.

T. Kwon, V. Armel, A. Nattestad, D. R. Macfarlane, U. Bach et al., Dithienothiophene (DTT)-Based Dyes for DyeSensitized Solar Cells: Synthesis of 2,6-Dibromo-DTT, J. Org. Chem, vol.76, pp.4088-4093, 2011.

K. Lim, C. Kim, J. Song, T. Yu, W. Lim et al., Enhancing the Performance of Organic Dye-Sensitized Solar Cells via a Slight Structure Modification, J. Phys. Chem. C, vol.115, pp.22640-22646, 2011.

X. Lu, Q. Feng, T. Lan, G. Zhou, Z. ;. Wang et al., Molecular Engineering of QuinoxalineBased Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells, Based Photosensitizers: Effect of Swapping a Connecting Unit on Optoelectronic Properties and Photovoltaic Performances. Dyes Pigments, vol.24, pp.352-360, 1967.

A. P. Zoombelt, J. Gilot, M. M. Wienk, R. A. Janssen, W. Mammo et al., ) Agarwala, P.; Kabra, D. A Review on Triphenylamine (TPA) Based Organic Hole Transport Materials (HTMs) for Dye Sensitized Solar Cells (DSSCs) and Perovskite Solar Cells (PSCs): Evolution and Molecular Engineering, Sol. Energy Mater. Sol. Cells, vol.21, issue.24, pp.1348-1373, 2007.

D. Joly, M. Godfroy, L. Pellejà, Y. Kervella, P. Maldivi et al., Side Chain Engineering of Organic Sensitizers for DyeSensitized Solar Cells: A Strategy to Improve Performances and Stability, J. Mater. Chem. A, vol.5, pp.6122-6130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02016677

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability
URL : https://hal.archives-ouvertes.fr/hal-02265033

J. Wang, H. Wu, L. Jin, J. Zhang, Y. Yuan et al., A Perylene-Based Polycyclic Aromatic Hydrocarbon Electron Donor for a Highly Efficient Solar Cell Dye, vol.10, pp.2962-2967, 2017.

M. Liang and J. Chen, 3453. (30) Ning, Z.; Tian, H. Triarylamine: A Promising Core Unit for Efficient Photovoltaic Materials, Chem. Soc. Rev, vol.42, pp.5483-5495, 2009.

B. Lim, Y. Nah, J. Hwang, J. Ghim, D. Vak et al., Synthesis of Novel Arylamine Containing Perfluorocyclobutane and Its Electrochromic Properties, J. Mater. Chem, vol.19, pp.2380-2385, 2009.

M. Thelakkat and . Star-shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications, Macromol. Mater. Eng, vol.287, pp.442-461, 2002.

J. Ni, W. Kao, H. Chou, and J. T. Lin, Organic Dyes Incorporating the Dithieno[3,2f :2?,3?-h ]Quinoxaline Moiety for Dye-Sensitized Solar Cells, ChemSusChem, vol.8, pp.2932-2939, 2015.

W. H. Nguyen, C. D. Bailie, J. Burschka, T. Moehl, M. Grätzel et al., Molecular Engineering of Organic Dyes for Improved Recombination Lifetime in Solid-State Dye-Sensitized Solar Cells, Chem. Mater, vol.25, pp.1519-1525, 2013.

Q. Chai, W. Li, Y. Wu, K. Pei, J. Liu et al., Effect of a Long Alkyl Group on Cyclopentadithiophene as a Conjugated Bridge for D-A??-A Organic Sensitizers: IPCE, Electron Diffusion Length, and Charge Recombination, ACS Appl. Mater. Interfaces, vol.6, pp.14621-14630, 2014.

J. E. Kroeze, N. Hirata, S. Koops, M. K. Nazeeruddin, L. Schmidt-mende et al., Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.128, pp.16376-16383, 2006.

X. Jiang, T. Marinado, E. Gabrielsson, D. P. Hagberg, L. Sun et al., Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.2799-2805, 2010.

M. Xu, R. Li, N. Pootrakulchote, D. Shi, J. Guo et al., Energy-Level and Molecular Engineering of Organic D-?-A Sensitizers in DyeSensitized Solar Cells, J. Phys. Chem. C, vol.112, pp.19770-19776, 2008.

K. C. Robson, K. Hu, G. J. Meyer, and C. P. Berlinguette, Atomic Level Resolution of Dye Regeneration in the Dye-Sensitized Solar Cell, J. Am. Chem. Soc, vol.135, pp.1961-1971, 2013.

K. Lim, M. J. Ju, J. Song, I. T. Choi, K. Do et al., Organic Sensitizers Featuring a Planar Indeno[1,2-b]-Thiophene for Efficient Dye-Sensitized Solar Cells, ChemSusChem, vol.6, pp.1425-1431, 2013.
DOI : 10.1002/cssc.201300281

Z. Shen, J. Chen, X. Li, X. Li, Y. Zhou et al., Synthesis and Photovoltaic Properties of Powerful Electron-Donating Indeno[1, 2-b]ThiopheneBased Green D-A??-A Sensitizers for Dye-Sensitized Solar Cells, ACS Sustain. Chem. Eng, vol.4, pp.3518-3525, 2016.

K. T. Kamtekar, K. Dahms, A. S. Batsanov, V. Jankus, H. L. Vaughan et al., Synthesis and Characterization of Fluorene-Based Oligomers and Polymers Incorporating N-Arylphenothiazine-S,S-Dioxide Units, J. Polym. Sci. Part Polym. Chem, vol.49, pp.1129-1137, 2011.
DOI : 10.1002/pola.24527

J. F. Hartwig, S. Richards, D. Barañano, and F. Paul, Influences on the Relative Rates for C?N Bond-Forming Reductive Elimination and ?-Hydrogen Elimination of Amides

, Chapitre 3-Synthèse et étude de colorants dérivés du benzothiadiazole Benzothiadiazole and Quinoxaline-Based Electron Acceptors, J. Org. Chem, vol.81, pp.360-370, 2016.

L. G. Mercier and M. Leclerc, Direct (Hetero)Arylation: A New Tool for Polymer Chemists, Acc. Chem. Res, vol.46, pp.1597-1605, 2013.
DOI : 10.1021/ar3003305

N. I. Abdo, A. A. El-shehawy, A. A. El-barbary, and J. Lee, Palladium-Catalyzed Direct CH Arylation of Thieno[3,4-b ]Pyrazines: Synthesis of Advanced Oligomeric and Polymeric Materials, Eur. J. Org. Chem, pp.5540-5551, 2012.

J. Shao, G. Wang, K. Wang, C. Yang, and M. Wang, Direct Arylation Polycondensation for Efficient Synthesis of Narrow-Bandgap Alternating D-A Copolymers Consisting of Naphthalene Diimide as an Acceptor, Polym Chem, vol.6, pp.6836-6844, 2015.

H. Bohra, S. Y. Tan, J. Shao, C. Yang, A. Efrem et al., Narrow Bandgap Thienothiadiazole-Based Conjugated Porous Polymers: From Facile Direct Arylation Polymerization to Tunable Porosities and Optoelectronic Properties, Polym. Chem, vol.7, pp.6413-6421, 2016.
DOI : 10.1039/c6py01453d

URL : https://pubs.rsc.org/en/content/articlepdf/2016/py/c6py01453d

T. Edvinsson, C. Li, N. Pschirer, J. Schöneboom, F. Eickemeyer et al., Intramolecular Charge-Transfer Tuning of Perylenes: Spectroscopic Features and Performance in Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.111, pp.15137-15140, 2007.

J. Casado, T. M. Pappenfus, L. L. Miller, K. R. Mann, E. Ortí et al., Nitro-Functionalized Oligothiophenes as a Novel Type of Electroactive Molecular Material: Spectroscopic, Electrochemical, and Computational Study, J. Am. Chem. Soc, vol.125, pp.2524-2534, 2003.

V. Luke?, M. Matis, D. Végh, M. ?tefko, P. Hrdlovi? et al., Electronic and Optical Characterization of Oligothiophenes Terminated with (9H-Fluoren-9Ylidene)Methyl Chromophores, Synth. Met, vol.157, pp.770-778, 2007.

J. Casado, M. Z. Zgierski, P. C. Ewbank, M. W. Burand, D. E. Janzen et al., Quinoidal Oligothiophenes with (Acyl)Cyanomethylene Termini: Synthesis, Characterization, Properties, and Solution Processed n-Channel Organic Field-Effect Transistors, J. Am. Chem. Soc, vol.128, pp.795-804, 2006.

M. Su, J. Huang, L. Zhang, Q. Zhang, C. Zhan et al., Small Molecular Thienoquinoidal Dyes as Electron Donors for Solution Processable Organic Photovoltaic Cells, RSC Adv, vol.5, pp.76666-76669, 2015.
DOI : 10.1039/c5ra15956c

Z. Zeng, X. Shi, C. Chi, J. T. Navarrete, J. Casado et al., Pro-Aromatic and AntiAromatic ?-Conjugated Molecules: An Irresistible Wish to Be Diradicals, Eur. J. Org. Chem, vol.44, issue.70, pp.2903-2934, 2009.

K. Burke and L. O. Wagner, DFT in a Nutshell, Int. J. Quantum Chem, vol.113, pp.96-101, 2013.

A. , S. Santhosh, U. Das, and S. , Dye Sensitization of Nanocrystalline TiO2: Enhanced Efficiency of Unsymmetrical versus Symmetrical Squaraine Dyes, J. Photochem. Photobiol. Chem, vol.172, pp.63-71, 2005.

P. R. Surján and K. Németh, Quinoid-Aromatic Competition as a Tool for Band Structure Design for Conjugated Polymers, Synth. Met, vol.57, pp.4260-4265, 1993.

G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall et al., DiindenoFusion of an Anthracene as a Design Strategy for Stable Organic Biradicals, Nat. Chem, vol.8, pp.753-759, 2016.

J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler et al., Efficient Two Layer Leds on a Polymer Blend Basis, Adv. Mater, vol.7, pp.551-554, 1995.

M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Acc. Chem. Res, vol.42, pp.1788-1798, 2009.

A. Y. Anderson, P. R. Barnes, J. R. Durrant, and B. C. O'regan, Quantifying Regeneration in Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.115, pp.2439-2447, 2011.

J. H. Yum, S. J. Moon, R. Humphry-baker, P. Walter, T. Geiger et al., Effect of Coadsorbent on the Photovoltaic Performance of Squaraine Sensitized Nanocrystalline Solar Cells, J. Am. Chem. Soc, vol.19, issue.79, pp.5420-5431, 1996.

K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga et al., Efficient Sensitization of Nanocrystalline TiO2 Films with Cyanine and Merocyanine Organic Dyes, Sol. Energy Mater. Sol. Cells, vol.80, pp.47-71, 2003.

F. Holzmüller, N. Gräßler, M. Sedighi, E. Müller, M. Knupfer et al., H-Aggregated Small Molecular Nanowires as near Infrared Absorbers for Organic Solar Cells, Org. Electron, vol.45, pp.198-202, 2017.

S. Sakaguchi, S. S. Pandey, K. Okada, Y. Yamaguchi, and S. Hayase, Probing TiO2/Dye Interface in Dye Sensitized Solar Cells Using Surface Potential Measurement, Appl. Phys. Express, 2008.

N. R. Neale, N. Kopidakis, J. Van-de-lagemaat, M. Grätzel, and A. J. Frank, Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shielding versus Band-Edge Movement, J. Phys. Chem. B, vol.109, pp.23183-23189, 2005.

M. Gorlov and L. Kloo, Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells, Dalton Trans, 2008.

S. E. Koops, B. C. O'regan, P. R. Barnes, and J. R. Durrant, Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.131, pp.4808-4818, 2009.

Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang et al., High-Efficiency DyeSensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, vol.4, pp.6032-6038, 2010.

Y. Wang, J. Lu, J. Yin, G. Lü, Y. Cui et al., Influence of 4-Tert-Butylpyridine/Guanidinium Thiocyanate Co-Additives on Band Edge Shift and Recombination of Dye-Sensitized Solar Cells: Experimental and Theoretical Aspects, Electrochimica Acta, vol.185, pp.69-75, 2015.

X. A. Jeanbourquin, X. Li, C. Law, P. R. Barnes, R. Humphry-baker et al., Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface, J. Am. Chem. Soc, vol.136, pp.7286-7294, 2014.

G. Boschloo, L. Häggman, and A. Hagfeldt, Quantification of the Effect of 4-TertButylpyridine Addition to I-/I3-Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells, J. Phys. Chem. B, vol.110, issue.89, pp.13144-13150, 2006.

S. Huang, R. K. Kannadorai, Y. Chen, Q. Liu, and M. Wang, A Narrow-Bandgap Benzobisthiadiazole Derivative with High near-Infrared Photothermal Conversion Efficiency and Robust Photostability for Cancer Therapy, Chem Commun, vol.51, pp.4223-4226, 2015.

S. Huang, P. K. Upputuri, H. Liu, M. Pramanik, M. Wang et al., A Dual-Functional Benzobisthiadiazole Derivative as an Effective Theranostic Agent for near-Infrared Photoacoustic Imaging and Photothermal Therapy, J. Mater. Chem. B, vol.4, issue.1, pp.660-663, 2010.

W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu et al., Series of New D-A-?-A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.4, pp.4215-4224, 2012.

S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher et al., Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in ?-Conjugated Donor-Acceptor Dyes, Adv. Funct. Mater, vol.22, pp.1291-1302, 2012.

S. Li, K. Jiang, J. Huang, L. Yang, Y. Song et al., Molecular Engineering of Panchromatic Isoindigo Sensitizers for Dye-Sensitized Solar Cell Applications, ACS Appl. Mater. Interfaces, vol.50, issue.6, pp.8715-8722, 2014.

D. Ameline, S. Diring, Y. Farre, Y. Pellegrin, G. Naponiello et al., Isoindigo Derivatives for Application in P-Type Dye Sensitized Solar Cells, RSC Adv, vol.5, pp.85530-85539, 2015.

L. A. Estrada, R. Stalder, K. A. Abboud, C. Risko, J. Brédas et al., Understanding the Electronic Structure of Isoindigo in Conjugated Systems: A Combined Theoretical and Experimental Approach, Energy Environ. Sci, vol.46, issue.9, p.542, 2009.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, J. Chiron et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability

Z. Shen, J. Chen, X. Li, X. Li, Y. Zhou et al., Synthesis and Photovoltaic Properties of Powerful Electron-Donating Indeno[1, 2-b]ThiopheneBased Green D-A??-A Sensitizers for Dye-Sensitized Solar Cells, ACS Sustain. Chem. Eng, vol.4, pp.3518-3525, 2016.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, T. Meyer et al., Metal-Free Organic Sensitizers with Narrow Absorption in the Visible for Solar Cells Exceeding 10% Efficiency, Energy Env. Sci, vol.8, pp.2010-2018, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731488

M. S. Chen, J. R. Niskala, D. A. Unruh, C. K. Chu, O. P. Lee et al., Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity, Chem. Mater, vol.25, pp.4088-4096, 2013.

T. Odajima, M. Ashizawa, Y. Konosu, H. Matsumoto, and T. Mori, The Impact of Molecular Planarity on Electronic Devices in Thienoisoindigo-Based Organic Semiconductors, Chapitre 4-Synthèse et étude de colorants dérivés du motif isoindigo, vol.2, pp.10455-10467, 2014.

S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu et al., A Novel D-A-?-A Organic Sensitizer Containing a Diketopyrrolopyrrole Unit with a Branched Alkyl Chain for Highly Efficient and Stable Dye-Sensitized Solar Cells, Chem. Commun, vol.48, p.6972, 2012.

G. W. Van-pruissen, F. Gholamrezaie, M. M. Wienk, R. A. Janssen, Z. Wang et al., Synthesis of Substituted Oxindoles from ?Chloroacetanilides via Palladium-Catalyzed C?H Functionalization, J. Am. Chem. Soc, vol.125, issue.17, pp.12084-12085, 2003.

R. S. Ashraf, A. J. Kronemeijer, D. I. James, H. Sirringhaus, and I. Mcculloch, A New Thiophene Substituted Isoindigo Based Copolymer for High Performance Ambipolar Transistors, Chem. Commun, vol.48, p.3939, 2012.

C. Liu, Q. Ni, and J. Qiu, Very Fast, Ligand-Free and Aerobic Protocol for the Synthesis of 4-Aryl-Substituted Triphenylamine Derivatives, Eur. J. Org. Chem, pp.3009-3015, 2011.

K. Lim, M. J. Ju, J. Song, I. T. Choi, K. Do et al., Organic Sensitizers Featuring a Planar Indeno[1,2-b]-Thiophene for Efficient Dye-Sensitized Solar Cells, ChemSusChem, vol.6, pp.1425-1431, 2013.

K. Lim, C. Kim, J. Song, T. Yu, W. Lim et al., Enhancing the Performance of Organic Dye-Sensitized Solar Cells via a Slight Structure Modification, J. Phys. Chem. C, vol.115, pp.22640-22646, 2011.

J. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim et al., Influence of the Donor Size in D??-A Organic Dyes for Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.136, pp.5722-5730, 2014.

M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-baker et al., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc, vol.123, pp.1613-1624, 2001.

Z. Wang, H. Sugihara, Z. Wang, Y. Cui, Y. Dan-oh et al., ThiopheneFunctionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid, J. Phys. Chem. C, vol.22, issue.26, pp.7224-7230, 2006.

Z. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi et al., Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification, A Primer in Density Functional Theory, vol.20, pp.3993-4003, 2008.

H. Springer-berlin, , pp.144-184, 2003.

F. Nogueira, A. Castro, and M. A. Marques, A Tutorial on Density Functional Theory, A Primer in Density Functional Theory; Fiolhais

H. Springer-berlin, , pp.218-256, 2003.

K. Burke and L. O. Wagner, DFT in a Nutshell, 31) Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells, vol.113, pp.1788-1798, 2009.

T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete et al., Dye Regeneration Kinetics in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.134, pp.16925-16928, 2012.

F. Li, J. R. Jennings, and Q. Wang, Determination of Sensitizer Regeneration Efficiency in Dye-Sensitized Solar Cells, ACS Nano, vol.7, pp.8233-8242, 2013.

M. C. Ruiz-delgado, V. Hernández, J. T. López-navarrete, S. Tanaka, and Y. Yamashita, Combined Spectroscopic and Theoretical Study of Narrow Band Gap Heterocyclic CoOligomers Containing Alternating Aromatic Donor and o-Quinoid Acceptor Units, J. Phys. Chem. B, vol.108, pp.2516-2526, 2004.

J. Casado, M. Z. Zgierski, P. C. Ewbank, M. W. Burand, D. E. Janzen et al., Exploration of Ground and Excited Electronic States of Aromatic and Quinoid S,S-Dioxide Terthiophenes. Complementary Systems for Enhanced Electronic Organic Materials, J. Am. Chem. Soc, vol.128, pp.10134-10144, 2006.

J. Casado, T. M. Pappenfus, L. L. Miller, K. R. Mann, E. Ortí et al., Nitro-Functionalized Oligothiophenes as a Novel Type of Electroactive Molecular Material: Spectroscopic, Electrochemical, and Computational Study, J. Am. Chem. Soc, vol.125, pp.2524-2534, 2003.

Z. Zeng, X. Shi, C. Chi, J. T. Navarrete, J. Casado et al., Pro-Aromatic and AntiAromatic ?-Conjugated Molecules: An Irresistible Wish to Be Diradicals, Chem. Soc. Rev, vol.44, pp.6578-6596, 2015.

P. R. Surján and K. Németh, Quinoid-Aromatic Competition as a Tool for Band Structure Design for Conjugated Polymers, Synth. Met, vol.57, pp.4260-4265, 1993.

G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall et al., DiindenoFusion of an Anthracene as a Design Strategy for Stable Organic Biradicals, Nat. Chem, vol.8, pp.753-759, 2016.

S. P. Singh and G. D. Sharma, Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dye-Sensitized Solar Cells: Near-IR Organic Semiconducting Materials for Solar Cells, Chem. Rec, vol.14, pp.419-481, 2014.

D. Joly, M. Godfroy, L. Pellejà, Y. Kervella, P. Maldivi et al., Side Chain Engineering of Organic Sensitizers for DyeSensitized Solar Cells: A Strategy to Improve Performances and Stability, J. Mater. Chem. A, vol.5, pp.6122-6130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02016677

J. Preat, D. Jacquemin, and E. A. Perpète, Towards New Efficient Dye-Sensitised Solar Cells, Energy Environ. Sci, vol.3, pp.891-904, 2010.

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev, vol.110, pp.6595-6663, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142488

D. Wang, W. Ying, X. Zhang, Y. Hu, W. Wu et al., Near-Infrared Absorbing Isoindigo Sensitizers: Synthesis and Performance for Dye-Sensitized Solar Cells. Dyes Pigments, vol.112, pp.327-334, 2015.

G. Boschloo, L. Häggman, and A. Hagfeldt, Quantification of the Effect of 4-TertButylpyridine Addition to I-/I3-Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells, Chapitre 4-Synthèse et étude de colorants dérivés du motif isoindigo, vol.110, pp.13144-13150, 2006.

S. Hore, E. Palomares, H. Smit, N. J. Bakker, P. Comte et al., Acid versus Base Peptization of Mesoporous Nanocrystalline TiO2 Films: Functional Studies in Dye Sensitized Solar Cells, J. Mater. Chem, vol.15, pp.412-418, 2005.

S. E. Koops, B. C. O'regan, P. R. Barnes, and J. R. Durrant, Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.131, pp.4808-4818, 2009.

A. Kumar, S. Sista, and Y. Yang, Dipole Induced Anomalous S-Shape I-V Curves in Polymer Solar Cells, J. Appl. Phys, p.94512, 2009.

B. Lechêne, J. Leroy, O. Tosoni, R. De-bettignies, and G. Perrier, Origin of the S-Shape upon Aging in Standard Organic Solar Cells with Zinc Oxide as Transport Layer, J. Phys. Chem. C, vol.118, pp.20132-20136, 2014.

W. Tress, S. Corvers, K. Leo, and M. Riede, Investigation of Driving Forces for Charge Extraction in Organic Solar Cells: Transient Photocurrent Measurements on Solar Cells Showing S-Shaped Current-Voltage Characteristics, Adv. Energy Mater, vol.3, pp.873-880, 2013.

J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, and P. K. Chan, Charge Accumulation Induced S-Shape J-V Curves in Bilayer Heterojunction Organic Solar Cells, Org. Electron, vol.12, pp.880-885, 2011.

M. Pastore, E. Mosconi, and F. De-angelis, Computational Investigation of Dye-Iodine Interactions in Organic Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.116, pp.5965-5973, 2012.

M. Planells, L. Pellejà, J. N. Clifford, M. Pastore, F. De-angelis et al., Energy Levels, Charge Injection, Charge Recombination and Dye Regeneration Dynamics for Donor-acceptor ?-Conjugated Organic Dyes in Mesoscopic TiO2 Sensitized Solar Cells, Energy Environ. Sci, 1820.

S. Rühle, M. Greenshtein, S. Chen, A. Merson, H. Pizem et al., Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the Influence of Film Nanomorphology, Characterization Techniques for Dye-Sensitized Solar Cells. Energy Environ. Sci, vol.109, issue.55, pp.672-709, 2005.

M. Godfroy, C. Aumaitre, F. Caffy, Y. Kervella, L. Cabau et al., Dithienylpyrazine-Based Photosensitizers: Effect of Swapping a Connecting Unit on Optoelectronic Properties and Photovoltaic Performances. Dyes Pigments, vol.146, pp.352-360, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02200580

J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, and J. R. Durrant, Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate, J. Phys. Chem. C, vol.111, pp.6561-6567, 2007.

M. G. Lobello, S. Fantacci, F. De-angelis, T. Privalov, G. Boschloo et al., Computational Spectroscopy Characterization of the Species Involved in Dye Oxidation and Regeneration Processes in Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.115, issue.60, pp.12525-12533, 2005.

B. C. O'regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar et al., Structure/Function Relationships in Dyes for Solar Energy Conversion: A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage, J. Am. Chem. Soc, vol.131, pp.3541-3548, 2009.

T. Lan, X. Lu, L. Zhang, Y. Chen, G. Zhou et al., Enhanced Performance of Quasi-Solid-State Dye-Sensitized Solar Cells by Tuning the Building Blocks in D-(?)-A??-A Featured Organic Dyes, J. Mater. Chem. A, vol.3, pp.9869-9881, 2015.

N. P. Liyanage, A. Yella, M. Nazeeruddin, M. Grätzel, J. H. Delcamp et al., Pyrazine as an Electron Deficient ?-Bridge in D-A??-A DSCs, ACS Appl. Mater. Interfaces, vol.8, pp.5376-5384, 2016.

X. Lu, G. Zhou, H. Wang, Q. Feng, and Z. Wang, Near Infrared Thieno[3,4-b]Pyrazine Sensitizers for Efficient Quasi-Solid-State Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys, p.4802, 2012.

W. H. Nguyen, C. D. Bailie, J. Burschka, T. Moehl, M. Grätzel et al., Molecular Engineering of Organic Dyes for Improved Recombination Lifetime in Solid-State Dye-Sensitized Solar Cells, Chem. Mater, vol.25, pp.1519-1525, 2013.

Q. Chai, W. Li, Y. Wu, K. Pei, J. Liu et al., Effect of a Long Alkyl Group on Cyclopentadithiophene as a Conjugated Bridge for D-A??-A Organic Sensitizers: IPCE, Electron Diffusion Length, and Charge Recombination, ACS Appl. Mater. Interfaces, vol.6, pp.14621-14630, 2014.

J. E. Kroeze, N. Hirata, S. Koops, M. K. Nazeeruddin, L. Schmidt-mende et al., Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.128, pp.16376-16383, 2006.

X. Jiang, T. Marinado, E. Gabrielsson, D. P. Hagberg, L. Sun et al., Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.2799-2805, 2010.

M. Xu, R. Li, N. Pootrakulchote, D. Shi, J. Guo et al., Energy-Level and Molecular Engineering of Organic D-?-A Sensitizers in DyeSensitized Solar Cells, J. Phys. Chem. C, vol.112, pp.19770-19776, 2008.

K. C. Robson, K. Hu, G. J. Meyer, and C. P. Berlinguette, Atomic Level Resolution of Dye Regeneration in the Dye-Sensitized Solar Cell, J. Am. Chem. Soc, vol.135, pp.1961-1971, 2013.

M. Freitag, F. Giordano, W. Yang, M. Pazoki, Y. Hao et al., Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.120, issue.8, pp.372-378, 2016.

T. W. Hamann, The End of Iodide? Cobalt Complex Redox Shuttles in DSSCs, Dalton Trans, p.3111, 2012.

Z. Shen, J. Chen, X. Li, X. Li, Y. Zhou et al., Synthesis and Photovoltaic Properties of Powerful Electron-Donating Indeno[1, 2-b]ThiopheneBased Green D-A??-A Sensitizers for Dye-Sensitized Solar Cells, ACS Sustain. Chem. Eng, vol.4, pp.3518-3525, 2016.

J. Cong, X. Yang, L. Kloo, and L. Sun, Iodine/Iodide-Free Redox Shuttles for Liquid Electrolyte-Based Dye-Sensitized Solar Cells, Energy Environ. Sci, vol.5, pp.9180-9194, 2012.

H. Tian, X. Jiang, Z. Yu, L. Kloo, A. Hagfeldt et al., Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte, Angew. Chem. Int. Ed, vol.49, pp.7328-7331, 2010.

D. Bialas, S. Suraru, R. Schmidt, and F. Würthner, Thiophene-Functionalized Isoindigo Dyes Bearing Electron Donor Substituents with Absorptions Approaching the near Infrared Region, Org. Biomol. Chem, vol.9, p.6127, 2011.

K. Burke, L. O. Wagner, A. Hagfeldt, G. Boschloo, L. Sun et al., DFT in a Nutshell, Int. J. Quantum Chem, vol.113, issue.15, pp.6595-6663, 2010.

D. Joly, L. Pellejà, S. Narbey, F. Oswald, T. Meyer et al., Metal-Free Organic Sensitizers with Narrow Absorption in the Visible for Solar Cells Exceeding 10% Efficiency, Energy Env. Sci, vol.8, pp.2010-2018, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731488

H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt et al., Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes, J. Phys. Chem. C, vol.112, pp.11023-11033, 2008.

J. Bouclé and J. Ackermann, Solid-State Dye-Sensitized and Bulk Heterojunction Solar Cells Using TiO2 and ZnO Nanostructures: Recent Progress and New Concepts at the Borderline, Polym. Int, vol.61, pp.355-373, 2012.

N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero et al., Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed, vol.50, pp.12321-12325, 2011.
DOI : 10.1002/anie.201104605

K. Keis, J. Lindgren, S. Lindquist, and A. Hagfeldt, Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes, Langmuir, vol.16, pp.4688-4694, 2000.

A. Lamberti, R. Gazia, A. Sacco, S. Bianco, M. Quaglio et al., Coral-Shaped ZnO Nanostructures for Dye-Sensitized Solar Cell Photoanodes, Prog. Photovolt. Res. Appl, vol.22, pp.189-197, 2014.
DOI : 10.1002/pip.2251

J. Idígoras, M. Godfroy, D. Joly, A. Todinova, P. Maldivi et al., Organic Dyes for the Sensitization of Nanostructured ZnO Photoanodes: Effect of the Anchoring Functions, RSC Adv, vol.5, pp.68929-68938, 2015.

S. Ferrere, A. Zaban, B. A. Gregg, S. Das, and V. Jayaraman, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, SnO2: A Comprehensive Review on Structures and Gas Sensors, vol.101, pp.112-255, 1997.
DOI : 10.1021/jp970683d

H. Wang and A. L. Rogach, Hierarchical SnO 2 Nanostructures: Recent Advances in Design, Synthesis, and Applications, Chem. Mater, vol.26, pp.123-133, 2014.
DOI : 10.1021/cm4018248

Q. Wali, A. Fakharuddin, and R. Jose, Tin Oxide as a Photoanode for Dye-Sensitised Solar Cells: Current Progress and Future Challenges, J. Power Sources, vol.293, pp.1039-1052, 2015.
DOI : 10.1016/j.jpowsour.2015.06.037

URL : http://umpir.ump.edu.my/id/eprint/9392/1/fist-2015-rajan-Tin%20oxide%20as%20a%20photoanode.pdf

Z. Dong, H. Ren, C. M. Hessel, J. Wang, R. Yu et al., Quintuple-Shelled SnO 2 Hollow Microspheres with Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells, Adv. Mater, vol.26, pp.905-909, 2014.
DOI : 10.1002/adma.201304010

J. J. Teh, S. L. Ting, K. C. Leong, J. Li, and P. Chen, Gallium-Doped Tin Oxide Nano-Cuboids for Improved Dye Sensitized Solar Cell, ACS Appl. Mater. Interfaces, vol.5, pp.11377-11382, 2013.
DOI : 10.1021/am403640s

H. Pang, H. Yang, C. X. Guo, and C. M. Li, Functionalization of SnO 2 Photoanode through Mg-Doping and TiO 2-Coating to Synergically Boost Dye-Sensitized Solar Cell Performance, ACS Appl. Mater. Interfaces, vol.4, pp.6261-6265, 2012.

X. Li, Q. Yu, C. Yu, Y. Huang, R. Li et al., ZincDoped SnO 2 Nanocrystals as Photoanode Materials for Highly Efficient Dye-Sensitized Solar Cells, J Mater Chem A, vol.3, pp.8076-8082, 2015.

A. G. Vega-poot, M. Macías-montero, J. Idígoras, A. Borrás, A. Barranco et al., Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dye-Sensitized Solar Cells, ChemPhysChem, vol.15, pp.1088-1097, 2014.

S. Cavaliere, S. Subianto, I. Savych, M. Tillard, D. J. Jones et al., Dopant-Driven Nanostructured Loose-Tube SnO 2 Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells, J. Phys. Chem. C, vol.117, pp.18298-18307, 2013.
DOI : 10.1021/jp404570d

URL : https://hal.archives-ouvertes.fr/hal-00903703

I. Savych, S. Subianto, Y. Nabil, S. Cavaliere, D. Jones et al., Negligible Degradation upon in Situ Voltage Cycling of a PEMFC Using an Electrospun NiobiumDoped Tin Oxide Supported Pt Cathode, Phys Chem Chem Phys, vol.17, pp.16970-16976, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168909

Q. Wali, A. Fakharuddin, I. Ahmed, M. H. Ab-rahim, J. Ismail et al., Multiporous Nanofibers of SnO 2 by Electrospinning for High Efficiency Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. Engl, vol.2, issue.35, pp.672-709, 1963.
DOI : 10.1039/c4ta03056g

S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska et al., Fabrication of Screen-Printing Pastes from TiO2 Powders for Dye-Sensitised Solar Cells, Prog. Photovolt. Res. Appl, vol.15, pp.603-612, 2007.
DOI : 10.1002/pip.768

K. Basu, D. Benetti, H. Zhao, L. Jin, F. Vetrone et al., Enhanced Photovoltaic Properties in Dye Sensitized Solar Cells by Surface Treatment of SnO2 Photoanodes, Sci. Rep, 2016.

A. Kay and M. Grätzel, Dye-Sensitized Core?Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide, Chem. Mater, vol.14, pp.2930-2935, 2002.

J. Sabate, M. A. Anderson, H. Kikkawa, Q. Xu, S. Cervera-march et al., Nature and Properties of Pure and Nb-Doped Ti02 Ceramic Membranes Affecting the Photocatalytic Degradation of 3-Chlorosalicylic Acid as a Model of Halogenated Organic Compounds, J. Catal, vol.134, pp.36-46, 1992.

X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang et al., Examination of Reactivity of Protonated and Deprotonated 2,5-Dimercapto-1,3,4-Thiadiazole and Its Derivatives by Electrochemical Experiment and Semiempirical MO Calculation, J. Electroanal. Chem, vol.20, issue.43, pp.2239-2247, 1996.

T. Tatsuma, H. Matsui, E. Shouji, and N. Oyama, Reversible Electron Transfer Reaction between Polyaniline and Thiol/Disulfide Couples, J. Phys. Chem, vol.100, pp.14016-14021, 1996.
DOI : 10.1021/jp960774v

H. Tian, E. Gabrielsson, Z. Yu, A. Hagfeldt, L. Kloo et al., A Thiolate/Disulfide Ionic Liquid Electrolyte for Organic Dye-Sensitized Solar Cells Based on Pt-Free Counter Electrodes, Chem Commun, vol.47, pp.10124-10126, 2011.
DOI : 10.1039/c1cc13723a

H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, and L. Sun, Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.133, pp.9413-9422, 2011.

H. Tian and L. Sun, Iodine-Free Redox Couples for Dye-Sensitized Solar Cells, J. Mater. Chem, 2011.
DOI : 10.1039/c1jm10598a

J. P. Danehy, B. T. Doherty, C. P. Egan, J. Burschka, V. Brault et al., Oxidation of Organic Divalent Sulfur by Iodine. II. Equilibrating Thiol-Iodine-Disulfide-Hydrogen Iodide System in Acetic Acid and Evidence for Sulfenyl Iodide Intermediates, Thiolate Redox Electrolyte. Energy Env. Sci, vol.36, issue.50, pp.6089-6097, 1971.
DOI : 10.1021/jo01280a041

X. Xu, K. Cao, D. Huang, Y. Shen, and M. Wang, Disulfide/Thiolate Based Redox Shuttle for Dye-Sensitized Solar Cells: An Impedance Spectroscopy Study, J. Phys. Chem. C, vol.116, pp.25233-25241, 2012.
DOI : 10.1021/jp308109t

J. Theerthagiri, A. R. Senthil, J. Madhavan, and T. Maiyalagan, Recent Progress in NonPlatinum Counter Electrode Materials for Dye-Sensitized Solar Cells, vol.2, pp.928-945, 2015.

J. Gong, K. Sumathy, Q. Qiao, and . Zhou, Advanced Techniques and Research Trends, vol.68, pp.234-246, 2017.

R. Kumar, A. Umar, G. Kumar, H. S. Nalwa, A. Kumar et al., Zinc Oxide Nanostructure-Based Dye-Sensitized Solar Cells, J. Mater. Sci, vol.52, pp.4743-4795, 2017.

D. Joly, J. Jung, I. Kim, R. Demadrille, A. N. Green et al., Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO 2 and SnO 2 Films, J. Mater. Chem. C, vol.4, issue.56, pp.12525-12533, 2005.

J. A. Anta, E. Guillén, and R. Tena-zaera, ZnO-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.116, pp.11413-11425, 2012.

D. Son, C. Lee, H. Shin, I. Jang, H. S. Jung et al., Understanding the Role of the Dye/Oxide Interface via SnO 2-Based MK-2 DyeSensitized Solar Cells, Phys Chem Chem Phys, vol.17, pp.15193-15200, 2015.

I. Bulut, P. Lévêque, B. Heinrich, T. Heiser, R. Bechara et al., LUMO's Modulation by Electron Withdrawing Unit Modification in Amorphous TAT Dumbbell-Shaped Molecules, Chimiste organicien de formation, ces travaux de thèse m'ont permis d'élargir considérablement mes connaissances sur les concepts physiques parfois complexes de ces cellules et sur le fonctionnement des cellules solaires à colorant, vol.3, pp.6620-6628, 2015.
DOI : 10.1039/c5ta00624d

Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim et al., Significant Light Absorption Enhancement by a Single Heterocyclic Unit Change in the ?-Bridge Moiety from, J. Mater. Chem. A, vol.5, pp.2297-2308, 2017.

, hexylphenyl)-N,N-diphenyl-4H-indeno[1,2-b]thiophen-6-amine : Under argon, Pd2dba3 (4 mg, 4.37 ?mol) and tri-tertbutylphosphine tetrafluoroborate (2.54 mg, 8.75 ?mol) were dissolved with anhydrous toluene (5 mL), HRMS (ESI): [M+H] +. = Synthesis of 4,4-bis, vol.437

, Before refluxed for 48h, we added potassium tert-butoxide (161.94 mg, 1.44 mmol, 3.3 eq) and the resulting mixture was stirred for 30min at room temperature. The melt was filtered through celite and poured into HCl (2M). The organic phase was extracted with DCM, ?mol) and diphenylamine (81.4 mg, 481.0 ?mol) in anhydrous toluene (10 mL) was added

H. Nmr, CDCl3, 400 MHz): ? = 7.28 (d, 1H, J=8.2Hz, Har), 7.22 (d, 1H, J=8.2Hz, Har), 7.22 (s, 1H, Har), 7.18 (m, 4H, Har), 7.04 (m, 7H, Har), 6.98 (m, 7H, Har), 6.95(m, 1H, Har), 6.93 (d, 1H, J=2.1Hz, Har), 2.53 (t, 4H, CH2) 1.55 (m, 4H, CH2), 1.28 (m, 12H, CH2), 0.87

, HRMS

H. Nmr, CDCl3, 200 MHz): ? =7.54 (d, 1H, J1=4Hz), 7.42 (m, 2H), 7.31 (d, 1H, J1=4Hz), 7.22 (d, 1H, J1=4Hz), 7.16 (d, 1H, J1=4Hz), 7.07 (m, 4H), 6.92 (m, 2H), 6.87 (m, 4H), 3.97 (t, 4H, J1=6.5Hz), 1.81 (m, 4H), 1.49 (m, 4H), 1.39-1.35 (m, 8H), 0.94 (m, 6H). 13 C NMR (CDCl3, 50 MHz): ?

, '-diyl)bis(N,N-bis(4-(hexyloxy)phenyl) aniline) as a indesirable product : water. The organic phase was dried with sodium sulphate and evaporated. The crude product was purified by chromatography with 70:30 dichloromethane:hexane eluent to give, vol.5

H. Nmr, CDCl3, 200 MHz): ? = 9.86(s, 1H), 7.63 (dd, 1H, J1=3.7 Hz, J2=0.9Hz), 7.63(ABQ, 2H, J1=4.1Hz, ??AB= 39.76 Hz), 7.40 (dd, 1H, J1=5.1Hz, J2=0.9Hz), vol.7

C. Nmr-(cdcl3 and . Mhz,

, 16 (216 mg, 645.85 µmol, 1eq) was dissolved in chloroform (20 ml) at-10°C. A solution of N-bromosuccinimide (115 mg, 645.85 µmol, 1eq) in acetic acid/chloroform mixture (1:1 8 ml) was added dropwise. After 40 minutes the solution was quenched with water and extracted with chloroform. The organic phase was washed with water, vol.3

H. Nmr, C2D4Cl4, 200 MHz): ? = 9.89 (s, 1H), 7.69 (ABQ, 2H, J1=4.1Hz, ??AB= 32.15Hz), vol.7

, Anal. calcd for, vol.13, issue.5, pp.37-77

. Pd2dba3, 54 mg, 6.05 µmol, 0.05 eq) and P(2-furyl)3 (11, p.23

, The organic phase was extracted with chloroform, washed with water, dried over Na2SO4 and concentrated. The crude solid was chromatographed on silica using dichloromethane/nhexane : 5/5 as eluent to afford corresponding aldehyde greenish solid

H. Nmr, C2D4Cl4, 200 MHz, 50°C): ? = 9.87(s, 1H), 7.76 (d, 1H, J1=4.1Hz), 7.63 (m, 2H), 7.32 (m, 2H), 7.24 (d, 1H, J1=4.1Hz), 7.1 (m, 1H). 13 C NMR (C2D4Cl4, 50 MHz, 50°C): ? = 182, vol.23, p.53

, mmol) was dissolved in distilled THF (15 mL) then nBuLi (2.5M, 734 µL, 1.83 mmol, 1.2 eq) was added at-78 °C. The solution was stirred for an hour

, °C before adding tributyltin chloride (621 µL, vol.2, p.29

, eq) at-78 °C. The solution was allowed to reach room temperature and stirred for dried over Na2SO4 and concentrated. The crude solid was chromatographed on silica using dichloromethane/n-hexane : 4/6 as eluent to

H. Nmr, CDCl3, 400 MHz): ? =8.07 (s, 1H), 7,32 (s, 1H), 7.31 (d, 1H, J1= 8.3 Hz), 7.24-7.19 (m, 4H), 7.15 (d, 1H, J1=2Hz),7.06 (m, 2H)

, (diphenylamino)-4,4-bis(4-hexylphenyl)-4H-indeno[1,2-b]thiophen-2yl)-3,4-dinitrothiophen-2-yl)benzoate : Under argon, Synthesis, vol.4, issue.5

, mg, 240.36 µmol, 1 eq), ethyl 4-bromobenzoate (71.58 mg, 312.47 µmol, vol.1

, Ditert-butyl(methyl)phosphonium tetrafluoroborate (9.54 mg, 38.46 µmol, 0.16 eq), palladium acetate (4.32 mg, 19.23 µmol, 0.08 eq) and cesium carbonate (156.63 mg, 480.72 µmol, 2 eq) was dissolved in anhydrous toluene (20 mL) and refluxed overnight. The mixture was then poured into HCl (2M). The organic phase was extracted with chloroform

H. Nmr, CDCl3, 400 MHz): ? =8.36 (td, 2H, J1=8.5Hz, J2=1.8Hz), 7.76 (td, 2H, J1=8.5Hz, J2=1.8Hz), 7.74 (s, 1H), 7.57 (d, 1H, J1=8.3Hz), 7.48 (s, 2H), 7.46-7.43 (m, 4H), 7.39 (d, 1H, J1=2Hz), 7.29 (m, 2H), 7.287.22 (m, 10H), 7.18 (dd, 1H, J1=8.3Hz, J2=2Hz), 4.64 (q, 2H, J1=7.1Hz), 2.77 (t, 4H, J1=7.9Hz), 1.80 (m, 4H), 1.64 (t, 3H, J1=7.1Hz), 1.52 (m, 10H), 1.09 (m, 6H). 13 C NMR

, 2'-dione: ? Lawesson method : Lawesson's reagent (0.533 g, 1.32 mmol) was dissolved in dry Toluene (10 ml) and heated at 100°C. Then, a solution of 4-(2-hexyldecyl)-4H-thieno[3,2-b]pyrrole-5,6dione (0.700 g, 2.64 mmol) in dry toluene (20 ml) was added. The reaction was heated to 100°C and stirred 4 hours. After cooling, water was added and the product was extracted with diethyl ether, washed with brine and dried over Na2SO4. After removal of the solvent the crude product was subjected to silica column chromatography

?. Method,

, ethylhexyl)-4,6-dihydro-5H-thieno[3,2-b]pyrrol-5-one (384 mg, 1.53 mmol, 1.0 equiv.), 4-(2-ethylhexyl)-4H-thieno, A dry flask was charged with 4, vol.1, p.53

, The reaction mixture was allowed to stir at 110°C overnight. Upon cooling, the mixture was poured into water, extracted three times with chloroform, glacial acetic acid (20 mL)

H. Nmr, CDCl3, 400 MHz): ? = 7.52 (d, 2H, J1=5.2Hz), 6.79 (d, 2H, J1=5.2Hz), 3.69 (m, 4H), 1.85 (m, 2H), 1.42-1.28 (m, 16H), 0.93-0.86 (m, 12H). 13 C NMR (CDCl3, 100 MHz): ? =171

2. Hcl, dried over sodium sulphate and concentrated by rotary evaporation. The crude product was purified via silica gel chromatography (1:1 dichloromethane/hexane) to provide (Z)-4-(3-(2-bromo-4-(2-ethylhexyl)-5-oxo-4,5-dihydro-6H-thieno[3,2-b]pyrrol-6-ylidene)-1-(2ethylhexyl)-2-oxoindolin-6-yl

H. Nmr, CDCl3, 400 MHz): ? = 10.08 (s, 1H), vol.9, p.73

. Hz, 7.35 (dd, 1H, J1=8.2Hz, J2=1.8Hz), 7.06 (d, 1H, J1=1.8Hz), 6.79 (s, 1H), 3.77 (m, 2H), 3.62 (m, 2H), 1.91 (m, 2H), 1.80 (m, 2H), 1.46-1.25 (m, 16H), 0.89-0.95 (m, 12H). 13 C NMR (CDCl3, 100 MHz): ? = 191, vol.68

, Anal. calcd for, vol.37, issue.43, pp.65-77

, (diphenylamino)phenyl)-4-octylthiophen-2-yl)-1,1'-bis(2-ethylhexyl)2,2'-dioxo-[3,3'-biindolinylidene]-6-yl)benzaldehyde: Under argon, 4-(3-octylthiophen-2-yl)-N,Ndiphenylaniline (200 mg, 909.8 µmol) was dissolved in distilled THF (10 mL) then n-BuLi ( 2.5M, 218 µL, 545 µmol) was added at-78°C. The solution was stirred for an hour at-60°C before adding Bu3SnCl (185 µL, 682.3 µmol) at-78°C. diethyl ether, dried with Na2SO4, filtered and concentrated under reduced pressure. The resulting oil was engaged without any further purification in a Stille coupling reaction with (E)-4-(6'-bromo-1,1'-bis(2-ethylhexyl)-2,2'-dioxo-[3,3'-biindolinylidene]-6yl)benzaldehyde (200 mg, 298.6 µmol), Pd2dba3 (10.9 mg, 11.9 µmol) and P(o-tolyl)3 (7.27 mg, 23.9 µmol) dissolved in anhydrous toluene (15 mL) and refluxed for 24 hours, The organic phase was extracted with CHCl3, washed with HCl

, dried over Na2SO4 and concentrated under reduced pressure. The crude solid was purified by chromatography on silica gel using diethyl ether/n-hexane 3:7 as eluent to afford the desired product as a greenish solid

H. Nmr, CDCl3, 400 MHz): ? = 10.08 (s, 1H), 9.22 (ABQ, 2H, J1=8.3Hz, ??AB= 25.02 Hz), 7.89 (ABQ, 4H, J1=8.3Hz, ??AB= 77.14 Hz), 7.35-7.27 (m, 9H), 7.16 (m, 4H), 7.10 (m, 2H), 7.08-7.04 (m, 2H), 7.00 (dd, 2H, J1=9Hz, J2=1.6Hz), 3.75 (m, 4H), 2.70 (m, 2H), 1.91 (m, 2H), 1.71-1.60 (m, 5H), 1.48-1.26 (m, 23H), 0.99-0.86 (m, 15H). 13 C NMR (CDCl3, 100 MHz): ? = 191, vol.68

, diphenylamino)phenyl)-4-octylthiophen-2-yl)-1,1'-bis(2ethylhexyl)-2,2'-dioxo-[3,3'-biindolinylidene]-6-yl)phenyl)acrylic acid: Under argon, (E)-4-(6'-(5-(4-(diphenylamino)phenyl)4-octylthiophen-2-yl)-1,1'-bis(2-ethylhexyl)-2,2'the solid dissolved in chloroform, The organic phase was washed with HCl solution (2 M), dried on Na2SO4 and concentrated. The crude solid was purified by chromatography on silica gel using DCM, DCM/MeOH 98:2 and DCM/MeOH/Acetic acid 90:5:5 as eluent to afford (E)

H. Nmr, THF d8, 400 MHz): ? = 9.39 (dd, 2H, J1=8.5Hz, J2= 22.4 Hz), 8.29 (s, 1H), 8.03 (ABQ, 4H, J1=8.3Hz, ??AB= 101.95 Hz), 7.45 (s,1H), p.100

. Mhz,

, HRMS

, 2-b]pyrrol-6-ylidene)-1-(2-ethylhexyl)-2-oxoindolin-6yl)benzaldehyde : Under argon, 4-(3-octylthiophen-2-yl)-N,Ndiphenylaniline (200 mg, 909.8 µmol) was dissolved in distilled THF (10 mL) then n-BuLi ( 2.5M, 218 µL, 545 µmol) was added at-78°C. The solution was stirred for an hour at-60°C before adding Bu3SnCl (185 µL, 682.3 µmol) at and the organic phase was extracted with diethyl ether, dried with Na2SO4, filtered and concentrated under reduced pressure. The resulting oil was engaged without any further purification in a Stille coupling reaction with (Z)-4-(3-(2-bromo-4-(2ethylhexyl)-5-oxo-4,5-dihydro-6H-thieno[3,2-b]pyrrol-6-ylidene)-1-(2-ethylhexyl)-2oxoindolin-6-yl)benzaldehyde (200 mg, 296 µmol), Pd2dba3 (10.9 mg, 11.9 µmol) and P(otolyl)3 (7.27 mg, 23.9 µmol) dissolved in anhydrous toluene (15 mL) and refluxed for 24 hours, The organic phase was extracted with CHCl3, washed with HCl, vol.3

H. Nmr, CDCl3, 400 MHz): ? = 10.08 (s, 1H), vol.9, p.29

. Hz, (diphenylamino)phenyl)-4-octylthiophen-2-yl)-4-(2ethylhexyl)-5-oxo-4,5-dihydro-6H-thieno[3,2-b]pyrrol-6-ylidene)-1-(2-ethylhexyl)-2-oxoindolin6-yl)phenyl)acrylic acid: Under argon, 7.39-7.26 (m, 8H), 7.17-7.03 (m, 9H), 6.78 (s, 1H), 3.81 (m, 2H), 3.68 (m, 2H), 2.66 (t, 2H, J1=7.3Hz), 1.97 (m, 1H), 1.88 (m, 1H), 1.72-1.63 (m, 5H), 1.53-1.26 (m, 23H), 0.99-0.89 (m, 15H). 13 C NMR (CDCl3, 100 MHz): ? = 191, vol.73

H. Nmr-(thf-d, 400 MHz): ? = 9, p.31

. Hz, 7.44 (m, 2H), 7.36 (m, 2H), 7.30-7.26 (m, 5H), 7.13-7.02 (m, 8H), 7.00 (s, 1H), 3.84 (m, 2H), 3.72 (m, 2H), 2.71 (t, 2H, J1=7.3Hz), 2.02 (m, 1H), 1.93 (m, 1H), 1.50-1.26 (m, 28H), 0.99-0.87 (m, 15H). 13 C NMR

, HRMS

, ethylhexyl)-5,5'-dioxo-4,4',5,5'-tetrahydro-[6,6'-bithieno[3,2-b]pyrrolylidene]-2yl)phenyl)acrylic acid: Under argon, (E)-4-(2'-(5-(4(diphenylamino)phenyl)-4-octylthiophen-2yl)-4'-(2-ethylbutyl)-4-(2-ethylhexyl)-5,5'dioxo-4,4',5,5'-tetrahydro-[6,6'-with HCl solution (2 M), dried on Na2SO4 and concentrated, The crude solid was purified by chromatography on silica gel using DCM, DCM/MeOH 98:2 and DCM/MeOH/Acetic acid 90:5:5 as eluent to afford (E)

H. Nmr-(thf-d, 400 MHz): ? = 8.20 (s, 1H), 8.07 (m, 2H), 7.96-7.86 (m, 2H), 7.40-7.25 (m, 8H), 7.137.03 (m, 8H), 3.75 (m, 4H), 2.70 (t, 2H, J1=7.3Hz), 1.92 (m, 2H), 1.69 (m, 5H), 1.41-1.26 (m, 23H), 0.990.89 (m, 15H). 13 C NMR (THF-d, 100 MHz): ? = 153, vol.98

H. Esi,

, hexylphenyl)-4H-indeno[1,2-b]thiophen-2-yl)1,1'-bis(2-ethylhexyl)-2,2'-dioxo, p.467

, 537 µmol, 1.15 eq) was added at-78 °C. The solution was stirred for an hour at-60 °C before adding trimethyltin chloride solution (1M, 700 µL, 700 µmol, 1.5 eq) at-78 °C. The solution was allowed to reach room temperature and stirred for 2 hours. The reaction was quenched with a saturated solution of ammonium chloride and the organic phase was extracted with pentane, washed with water and dried on Na2SO4, filtered and concentrated under vacuum. The resulting oil was engaged without any further purification in a, µmol) was dissolved in distilled THF (20 mL) then n-BuLi (1.5M, 383 µL

, 66 µmol, 0.04 eq) in anhydrous toluene (20 ml) and refluxed overnight. The mixture was then poured into HCl (2M). The organic phase was extracted with chloroform, washed with water, dried over Na2SO4 and concentrated. The crude solid was chromatographed on silica using, eq) and P(o-tolyl)3 (5.68 mg, vol.18

H. Nmr, CDCl3, 400 MHz): ? = 10.08 (s, 1H), 9.21 (ABQ, 2H, J1=8.3Hz, ??AB= 26.83 Hz), 7.89 (ABQ, 4H, J1=8.3Hz, ??AB= 76.74 Hz), 7.33-7.27 (m, 4H), 7.23-7.18 (m, 5H), 7.11-6.95 (m, 17H)

, Anal. calcd for, vol.86, issue.93

, Synthesis of 2-cyano-3-(4-((E)-6'-(6-(diphenylamino)-4,4-bis(4-hexylphenyl)-4H-indeno[1,2b]thiophen-2-yl)-1,1'-bis(2-ethylhexyl)-2,2'-dioxo-[3,3'-biindolinylidene]-6-yl)phenyl)acrylic acid: Under argon, vol.4

, yl)benzaldehyde (230 mg, 184 µmol, p.1

, cyanoacetic acid (157 mg, vol.1, p.84

, HCl solution (2M), dried on Na2SO4 and concentrated. The crude solid was chromatographied on silica using DCM first then DCM/MeOH : 90/5 and then DCM/MeOH

H. Nmr, THF d8, 400 MHz): 8.03 (dd, 2H, J1=8.4Hz, J2=11.3Hz), 8.30 (s, 1H), 8.03 (ABQ, 4H, J1=8.4Hz, ??AB= 50.8 Hz), 7.59 (s,1H), 7.40-7.30 (m, 3H), 7.20-6.95 (m, 21H), 3.80 (m, 4H), 2.55 (m, 4H), 1.621.29 (m, 34H), 0.98-0.86 (m, 18H). 13 C NMR (THF d8, 100 MHz): ? = 169, vol.49

, HRMS

, hexylphenyl)-4H-indeno[1,2-b]thiophen-2-yl)4-(2-ethylhexyl)-5-oxo-4,5-dihydro-6H-thieno[3,2-b]pyrrol-6-ylidene)-1-(2-ethylhexyl)-2oxoindolin-6-yl)benzaldehyde: Under argon, 4,4-dioctyl, p.303

, 364 µmol, 1.2eq) was added at-78 °C. The solution was stirred for an hour at-60 °C before adding tributyltin chloride (123 µL, 455 µmol, 1.5 eq) at-78 °C. pentane, washed with water and dried on Na2SO4, filtered and concentrated under vacuum. The resulting oil was engaged without any further purification in a, µmol) was dissolved in distilled THF (10 mL) then n-BuLi (2.5M, 151 µL, vol.222

. Pd, 5% mol). The products were dissolved in anhydrous toluene (20mL) and refluxed overnight. The mixture was then poured into HCl (2M). The organic phase was extracted with chloroform, washed with water, dried over Na2SO4 and concentrated. The crude solid was, vol.11

H. Nmr-(cdcl3, 400 MHz): ? = 10.08 (s, 1H), vol.9, p.73

. Hz, 7.39 (s, 1H), 7.37 (dd, 1H, J1=8.2Hz, J2=1.8Hz), 7.28 (d, 1H, J1=8.2Hz), 7.24 (s, 1H), 7.21 (m, 2H), 7.20 (m, 2H), 7.09-7.01 (m, 15H), 6.95 (dd, 1H, J1=8.2Hz, J2=1.8Hz), 6.76 (s, 1H), 3.79 (m, 2H), 3.67 (d, 2H, J1=7.7Hz), 2.56 (t, 4H, J1=7.7Hz), 1.94 (m, 1H), 1.87 (m, 1H), 1.59(m, 4H), 1.48-1.26 (m, 28H), 0.89-0.95 (m, 18H). 13 C NMR (CDCl3, 100 MHz): ? = 191, vol.76

, Synthesis of (E)-2-cyano-3-(4-((Z)-3-(2-(6-(diphenylamino)-4,4-bis(4-hexylphenyl)-4Hindeno[1,2-b]thiophen-2-yl)-4-(2-ethylhexyl)-5-oxo-4,5-dihydro-6H-thieno[3,2-b]pyrrol-6ylidene)-1-(2-ethylhexyl)-2-oxoindolin-6-yl)phenyl)acrylic acid: Under argon

, ethylhexyl)-2oxoindolin-6-yl)benzaldehyde (138 mg, 109.98 µmol), cyanoacetic acid, vol.46, p.77

, A catalytic amount of piperidine was added and the solution was refluxed for 3 hours. Solvent was removed under reduced pressure and the solid redissolved in chloroform. The organic phase was washed with HCl solution (2M), dried on Na2SO4 and concentrated. The crude solid was chromatographed on silica using DCM, mg, 1mmol, 5eq), were dissolved in a mixture of acetonitrile (6mL) and chloroform (4mL), vol.98

H. Nmr, THF-d8, 400 MHz): ? = 9.31 (d, 1H, J1=8.3Hz), 8.29 (s, 1H), 8.14 (m, 2H), 7.89 (m, 2H), 7.53 (s, 1H), 7.43 (d, 1H, J1=8.3Hz), 7.35 (d, 1H, J1=8.3Hz), 7.27 (s, 1H), 7.22-7.18 (m, 4H), 7.16 (m, 1H), 7.137.10 (m, 4H), 7.06-7.04 (m, 9H), 6.99-6.93 (m, 3H), 3.83 (m, 2H), 3.72 (d, 2H, J1=7.7Hz), 2.56 (t, 4H, J1=7.7Hz), 2.01 (m, 1H), 1.94 (m, 1H), 1.59(m, 4H), 1.48-1.29 (m, 28H), 0.98-0.86 (m, 18H). 13 C NMR (THF-d8, 100 MHz): ? = 168

, HRMS

, 4H-indeno[1,2-b]thiophen-2-yl)4,4'-bis(2-ethylhexyl)-5,5'-dioxo-4,4',5,5'-tetrahydro, vol.263, p.12

, 19 µmol) at-78°C. The solution was allowed to reach room temperature and stirred for 2 hours. The reaction was quenched with a saturated solution of ammonium chloride and the organic phase was extracted with diethyl ether, dried with Na2SO4, filtered and concentrated under reduced pressure. The resulting oil was engaged without any further purification in a, µmol) was added at-78°C. The solution was stirred for an hour at-60°C before adding Bu3SnCl (74 µL, vol.343

, Pd2dba3 (4.2 mg, 4.58 µmol) and P(o-tolyl)3 (2.8 mg, 9.15 µmol) dissolved in anhydrous toluene (15 mL) and refluxed for 24 hours. The mixture was then poured into HCl (2 M). The organic phase was extracted with CHCl3, yl)benzaldehyde (125 mg, 183.04 µmol)

, dried over Na2SO4 and concentrated under reduced pressure. The crude solid was purified by chromatography on silica gel using DCM/n-hexane 2:8 as eluent to afford the desired product as a greenish solid

H. Nmr, (m, 14H), 6.98 (dd, 1H, J1=8.2Hz, J2=2Hz), 6.85 (s, 1H), 3.71-3.66 (m, 4H), 2.58 (t, 4H, CD2Cl2, 400 MHz): ? = 9.99 (s, 1H), 7.86 (m, 4H), 7.36 (s, 1H), 7.33 (d, 1H, J1=8.2Hz), 7.25 (m, 1H), 7.16 (d, 1H, J1=2Hz), 7.13 (s, 1H)

. Anal,

, Synthesis of (E)-2-cyano-3-(4-((E)-2'-(6-(diphenylamino)-4,4-bis(4-hexylphenyl)-4H-indeno[1,2b]thiophen-2-yl)-4,4'-bis(2-ethylhexyl)-5,5

, 2-yl)benzaldehyde (150 mg, 119 µmol), cyanoacetic acid (101 mg, 1.19 mmol), were dissolved in a mixture of acetonitrile (6mL) and chloroform (4mL)

, Solvent was removed under reduced pressure and the solid redissolved in chloroform. The organic phase was washed with HCl solution (2M), dried on Na2SO4 and concentrated, The crude solid was chromatographed on silica using DCM, DCM/MeOH 98:2 and then DCM/MeOH/Acetic acid 90:5:5 as

H. Nmr, THF-d8, 400 MHz):? = 8.17 (s, 1H), 7.94 (m, 2H), 7.69 (m, 2H), 7.43 (s, 1H), 7.28 (m, 1H), 7.20 (m, 5H), 7.14 (m, 5H), 7.06 (m, 8H), 6.99-6.92 (m, 4H), 3.71 (m, 4H), 2.58 (t, 4H, J=7.6Hz), 1.94 (m, 2H), 1.60 (m, 4H), 1.40-1.31 (m, 22H), 0.97-0.87 (m, 18H). 13 C NMR (THF-d8, 100 MHz): ? = 168, vol.65

H. Esi,

, Synthesis from Chapter

, 2-dioxaborolan2-yl)phenyl)aniline: A mixture of 4-bromo-N,N-bis(4-(hexyloxy)phenyl)aniline (2.00 g, 3.50 mmol, vol.4, pp.5-6

, 93 g,3.67 mmol)

. Pd, 105 mmol) in anhydrous dimethyl sulfoxide (25 crude product was extracted into ethyl acetate, washed with water, and dried over anhydrous sodium sulfate. After removing solvent under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether 2%) on silica gel to

H. Nmr, CDCl3, 400 MHz): ? = 7.44 (d, J=8.4 Hz, 2H), vol.1, pp.25-37

, 0.88 (t, J=6.8 Hz, 6H). 13 C NMR (CDCl3, 100 MHz): ?= 155, vol.67

, 3-octylthiophen-2-yl)phenyl)aniline : Under argon

, 2-bromo-3-octylthiophene (746 mg, 2.78 mmol

. Pd, 11 mmol) were dissolved in degassed toluene, aqueous solution of K2CO3 (4.16 mL, 8.32 mmol) was added and the mixture was heated at 100°C overnight before being poured into water. The organic phase was extracted with Et2O, dried on Na2SO4 and concentrated. The crude oil was chromatographed on silica using n-hexane/DCM 8:2 as eluent to afford pale yellow oil 6

H. Nmr, CDCl3, 400 MHz): ? = 7.10 (ABq, 4H, ??ab=114.0Hz, J=8.5Hz), 7.07 (ABq, 2H, ??ab=80.3Hz, J=5.0Hz), 6.99 (ABq, 8H, ??ab=98.4Hz, J=8.8Hz), 3.97 (t, 4H, J=6.5Hz), 2.67 (t, 2H, J=7.8Hz), 1.90-1.70 (m, 4H), 1.64-1.20 (m, 24H), 0.99-0.83 (m, 9H). 13 C NMR (CDCl3, 100 MHz

, (3and the organic phase was extracted with diethyl ether, dried with Na2SO4, filtered and concentrated under reduced pressure. The resulting oil was engaged without any further purification in a Stille coupling reaction with (E)-4-(6'-bromo-1,1'-bis(2ethylhexyl)-2,2'-dioxo-[3,3'-biindolinylidene]-6-yl)benzaldehyde (200 mg, 298.6 µmol), Pd2dba3 (10.9 mg, 11.9 µmol) and P(o-tolyl)3 (7.27 mg, 23.9 µmol) dissolved in anhydrous toluene (15 mL) and refluxed for 24 hours, The organic phase was extracted with CHCl3, washed with HCl

H. Nmr, 17 (d, 1H, J1=8.4Hz), 7.99 (m, 2H), 7.79 (m, 2H), 7.32 (dd, 1H, J1=8.4Hz, J2=1.7Hz),7.29 (s, 1H), 7.28 (dd, 1H, J1=8.4Hz, J2=1.7Hz), 7.27 (m, 1H), 7.25 (m, 1H), 7.10 (m, 4H), vol.9, p.24

C. Nmr-(cdcl3,

. Anal,

, (hexyloxy)phenyl)amino)phenyl)4-octylthiophen-2-yl)-1,1'-bis(2ethylhexyl)-2,2'-dioxo-[3,3'chloroform. The organic phase was washed with HCl solution (2 M), dried on Na2SO4 and concentrated, The crude solid was purified by chromatography on silica gel using DCM, DCM/MeOH 98:2 and DCM/MeOH/Acetic, vol.87

H. Nmr, (m, 21H). 13 C NMR (THF d8, 100 MHz): ? = 168, THF d8, 400 MHz): ? = 9.32 (m, 2H), 8.35 (m, 1H), 8.05 (m, 2H), 7.73 (m, 2H), 7.34 (s, 1H), 7.24-7.17 (m, 4H), 7.09-7.06 (m, 5H), 6.91 (m, 2H), 6.87 (m, 5H), 3.97 (t, 4H, J1=6.4Hz), 1.98-1.92 (m, 2H), 1.79 (m, 4H), 1.67 (m, 2H), 1.55-1.33 (m, 44H), vol.17

, HRMS

J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler et al., Adv. Mater, vol.7, pp.551-554, 1995.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet et al., Prog. Photovolt. Res. Appl, vol.14, pp.589-601, 2006.

K. T. Kamtekar, K. Dahms, A. S. Batsanov, V. Jankus, H. L. Vaughan et al., J. Polym. Sci. Part Polym. Chem, vol.49, pp.1129-1137, 2011.

J. Yum, D. P. Hagberg, S. Moon, K. M. Karlsson, T. Marinado et al., Angew. Chem. Int. Ed, vol.48, pp.1576-1580, 2008.

K. Lim, C. Kim, J. Song, T. Yu, W. Lim et al., J. Phys. Chem. C, vol.115, pp.22640-22646, 2011.

G. D. Sharma, J. A. Mikroyannidis, M. S. Roy, K. R. Thomas, R. J. Ball et al., , 2012.

Y. Lai, Y. Cheng, C. Chen, S. Cheng, F. Cao et al., Polym Chem, vol.4, pp.3333-3344, 2013.

A. Devasagayaraj and J. M. Tour, Macromolecules, vol.32, pp.6425-6430, 1999.

W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu et al., ACS Appl. Mater. Interfaces, vol.4, pp.4215-4224, 2012.

D. Wang, W. Ying, X. Zhang, Y. Hu, W. Wu et al., Dyes Pigments, vol.112, pp.327-334, 2015.

H. Kang, S. Y. An, B. Walker, S. Song, T. Kim et al., J Mater Chem A, vol.3, pp.9899-9908, 2015.

Y. Koizumi, M. Ide, A. Saeki, C. Vijayakumar, B. Balan et al., Polym Chem, vol.4, pp.484-494, 2013.

M. Karakawa, Y. Aso, and . Adv, , 2013.

H. Tian, X. Jiang, Z. Yu, L. Kloo, A. Hagfeldt et al., Angew. Chem. Int. Ed, vol.49, pp.7328-7331, 2010.