D. Gallagher, D. E. Kelley, J. E. Yim, N. Spence, J. Albu et al., Adipose tissue distribution is different in type 2 diabetes, Am J Clin Nutr, vol.89, pp.807-814, 2009.

T. N. Hilton, L. J. Tuttle, K. L. Bohnert, M. J. Mueller, and D. R. Sinacore, Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function, Phys Ther, vol.88, pp.1336-1344, 2008.

R. L. Marcus, O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo, Skeletal muscle fat infiltration: impact of age, inactivity, and exercise, J Nutr Health Aging, vol.14, pp.362-366, 2010.

M. Boettcher, J. Machann, N. Stefan, C. Thamer, H. U. Haring et al., Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity, J Magn Reson Imaging, vol.29, pp.1340-1345, 2009.

I. Miljkovic and J. M. Zmuda, Epidemiology of myosteatosis, Curr Opin Clin Nutr Metab Care, vol.13, pp.260-264, 2010.

O. Addison, R. L. Marcus, P. C. Lastayo, and A. S. Ryan, Intermuscular fat: a review of the consequences and causes, Int J Endocrinol, p.309570, 2014.

P. S. Zammit, T. A. Partridge, and Z. Yablonka-reuveni, The skeletal muscle satellite cell: the stem cell that came in from the cold, J Histochem Cytochem, vol.54, pp.1177-1191, 2006.

R. Vettor, G. Milan, C. Franzin, M. Sanna, D. Coppi et al., The origin of intermuscular adipose tissue and its pathophysiological implications, Am J Physiol Endocrinol Metab, vol.297, pp.987-998, 2009.

S. Lecourt, J. P. Marolleau, O. Fromigue, K. Vauchez, R. Andriamanalijaona et al., Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro, Exp Cell Res, vol.316, pp.2513-2526, 2010.

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle, Nat Cell Biol, vol.12, pp.143-152, 2010.

H. M. Blau and C. Webster, Isolation and characterization of human muscle cells, Proc Natl Acad Sci, vol.78, pp.5623-5627, 1981.

D. F. Pisani, N. Clement, A. Loubat, M. Plaisant, S. Sacconi et al., Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle, Stem Cells, vol.28, pp.2182-2194, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533750

K. Vauchez, J. P. Marolleau, M. Schmid, P. Khattar, A. Chapel et al., Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities, Mol Ther, vol.17, pp.1948-1958, 2009.

C. C. Agley, A. M. Rowlerson, C. P. Velloso, N. R. Lazarus, and S. D. Harridge, Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation, J Cell Sci, vol.126, pp.5610-5625, 2013.

P. M. Badin, C. Loubiere, M. Coonen, K. Louche, G. Tavernier et al., Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58, J Lipid Res, vol.53, pp.839-848, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726508

P. M. Badin, K. Louche, A. Mairal, G. Liebisch, G. Schmitz et al., Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, pp.1734-1742, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00726449

V. Bourlier, C. Saint-laurent, K. Louche, P. M. Badin, C. Thalamas et al., Enhanced glucose metabolism is preserved in cultured primary myotubes from obese donors in response to exercise training, J Clin Endocrinol Metab, vol.98, pp.3739-3747, 2013.

M. W. Hulver, J. R. Berggren, M. J. Carper, M. Miyazaki, J. M. Ntambi et al., Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans, Cell Metab, vol.2, pp.251-261, 2005.

L. Boldrin, F. Muntoni, and J. E. Morgan, Are human and mouse satellite cells really the same?, J Histochem Cytochem, vol.58, pp.941-955, 2010.

M. Crisan, L. Casteilla, L. Lehr, M. Carmona, A. Paoloni-giacobino et al., A reservoir of brown adipocyte progenitors in human skeletal muscle, Stem Cells, vol.26, pp.2425-2433, 2008.

J. Wu, P. Bostrom, L. M. Sparks, L. Ye, J. H. Choi et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human, Cell, vol.150, pp.366-376, 2012.

, Macmillan Publishers Limited International Journal of Obesity, pp.497-506, 2016.

D. Langin, A. Dicker, G. Tavernier, J. Hoffstedt, A. Mairal et al., Adipocyte lipases and defect of lipolysis in human obesity, Diabetes, vol.54, pp.3190-3197, 2005.

V. Bezaire, A. Mairal, C. Ribet, C. Lefort, A. Girousse et al., Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes, J Biol Chem, vol.284, pp.18282-18291, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00409959

V. Aas, S. S. Bakke, Y. Z. Feng, E. T. Kase, J. Jensen et al., Are cultured human myotubes far from home?, Cell Tissue Res, vol.354, pp.671-682, 2013.

B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus, Am J Clin Nutr, vol.71, pp.885-892, 2000.

C. A. Rossi, M. Pozzobon, A. Ditadi, K. Archacka, A. Gastaldello et al., Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity, PLoS One, vol.5, p.8523, 2010.

G. Shefer, M. Wleklinski-lee, and Z. Yablonka-reuveni, Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway, J Cell Sci, vol.117, pp.5393-5404, 2004.

T. Akimoto, T. Ushida, S. Miyaki, H. Akaogi, K. Tsuchiya et al., Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling, Biochem Biophys Res Commun, vol.329, pp.381-385, 2005.

K. Yeow, B. Phillips, C. Dani, C. Cabane, E. Z. Amri et al., Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line, FEBS Lett, vol.506, pp.157-162, 2001.

A. S. Brack, M. J. Conboy, S. Roy, M. Lee, C. J. Kuo et al., Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis, Science, vol.317, pp.807-810, 2007.

T. Mcgehee, R. E. Rando, T. A. Lecka-czernik, B. Lipschitz, D. A. Peterson et al., Activation of an adipogenic program in adult myoblasts with age, Mech Ageing Dev, vol.123, pp.649-661, 2002.

P. De-coppi, G. Milan, A. Scarda, L. Boldrin, C. Centobene et al., Rosiglitazone modifies the adipogenic potential of human muscle satellite cells, Diabetologia, vol.49, pp.1962-1973, 2006.

A. W. Joe, L. Yi, A. Natarajan, L. Grand, F. So et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nat Cell Biol, vol.12, pp.153-163, 2010.

W. Liu, Y. Liu, X. Lai, and S. Kuang, Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles, Dev Biol, vol.361, pp.27-38, 2012.

J. D. Starkey, M. Yamamoto, S. Yamamoto, and D. J. Goldhamer, Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates, J Histochem Cytochem, vol.59, pp.33-46, 2011.

P. A. Hall, D. 'ardenne, and A. J. , Value of CD15 immunostaining in diagnosing Hodgkin's disease: a review of published literature, J Clin Pathol, vol.40, pp.1298-1304, 1987.

B. Ukropcova, M. Mcneil, O. Sereda, L. De-jonge, H. Xie et al., Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor, J Clin Invest, vol.115, pp.1934-1941, 2005.

D. Gardan, F. Gondret, and I. Louveau, Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes, Am J Physiol Endocrinol Metab, vol.291, pp.372-380, 2006.

F. Gondret, N. Guitton, C. Guillerm-regost, and I. Louveau, Regional differences in porcine adipocytes isolated from skeletal muscle and adipose tissues as identified by a proteomic approach, J Anim Sci, vol.86, pp.2115-2125, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00653325

N. Arrighi, C. Moratal, N. Clement, S. Giorgetti-peraldi, P. Peraldi et al., Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle, Cell Death Dis, vol.6, p.1733, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837592

L. E. Beasley, A. Koster, A. B. Newman, M. K. Javaid, L. Ferrucci et al., Inflammation and race and gender differences in computerized tomographymeasured adipose depots, Obesity (Silver Spring), vol.17, pp.1062-1069, 2009.
DOI : 10.1038/oby.2008.627

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1038/oby.2008.627

K. Eckardt, H. Sell, and J. Eckel, Novel aspects of adipocyte-induced skeletal muscle insulin resistance, Arch Physiol Biochem, vol.114, pp.287-298, 2008.
DOI : 10.1080/13813450802404761

D. Dietze, M. Koenen, K. Rohrig, H. Horikoshi, H. Hauner et al., Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes, Diabetes, vol.51, pp.2369-2376, 2002.

D. E. Lee, S. Kehlenbrink, H. Lee, M. Hawkins, and J. S. Yudkin, Getting the message across: mechanisms of physiological cross talk by adipose tissue, Am J Physiol Endocrinol Metab, vol.296, pp.1210-1229, 2009.

H. Sell, D. Dietze-schroeder, and J. Eckel, The adipocyte-myocyte axis in insulin resistance, Trends Endocrinol Metab, vol.17, pp.416-422, 2006.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.
DOI : 10.1016/j.cell.2012.02.017

URL : https://doi.org/10.1016/j.cell.2012.02.017

J. P. Kovalik, D. Slentz, R. D. Stevens, W. E. Kraus, J. A. Houmard et al., Metabolic remodeling of human skeletal myocytes by cocultured adipocytes depends on the lipolytic state of the system, Diabetes, vol.60, pp.1882-1893, 2011.

M. Krssak, K. Falk-petersen, A. Dresner, L. Dipietro, S. M. Vogel et al., Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study, Diabetologia, vol.42, pp.113-116, 1999.
DOI : 10.1007/s001250051123

URL : https://link.springer.com/content/pdf/10.1007%2Fs001250051123.pdf

C. Moro, J. E. Galgani, L. Luu, M. Pasarica, A. Mairal et al., Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals, J Clin Endocrinol Metab, vol.94, pp.3440-3447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410118

D. A. Pan, S. Lillioja, A. D. Kriketos, M. R. Milner, L. A. Baur et al., Skeletal muscle triglyceride levels are inversely related to insulin action, Diabetes, vol.46, pp.983-988, 1997.
DOI : 10.2337/diabetes.46.6.983

M. A. Abdul-ghani and R. A. Defronzo, Pathogenesis of insulin resistance in skeletal muscle, J Biomed Biotechnol, p.476279, 2010.

T. R. Koves, J. R. Ussher, R. C. Noland, D. Slentz, M. Mosedale et al., Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance, Cell Metab, vol.7, pp.45-56, 2008.
DOI : 10.1016/j.cmet.2007.10.013

URL : https://doi.org/10.1016/j.cmet.2007.10.013

, ijo) Intramuscular adipocytes and insulin resistance C Laurens et al REFERENCES, International Journal of Obesity website

J. Arnlov, E. Ingelsson, J. Sundstrom, and L. Lind, Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men, Circulation, vol.121, pp.230-236, 2010.

T. Fujimoto and R. G. Parton, Not just fat: the structure and function of the lipid droplet, Cold Spring Harbor perspectives in biology, vol.3, 2011.

S. O. Olofsson, Lipid droplets as dynamic organelles connecting storage and efflux of lipids, Biochimica et biophysica acta, vol.1791, pp.448-458, 2009.
DOI : 10.1016/j.bbalip.2008.08.001

T. Fujimoto and Y. Ohsaki, Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform, Annals of the New York Academy of Sciences, vol.1086, pp.104-115, 2006.

Q. Gao and J. M. Goodman, The lipid droplet-a well-connected organelle, Frontiers in cell and developmental biology, vol.3, p.49, 2015.
DOI : 10.3389/fcell.2015.00049

URL : https://www.frontiersin.org/articles/10.3389/fcell.2015.00049/pdf

P. M. Badin, Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, pp.1734-1742, 2011.
DOI : 10.2337/db10-1364

URL : https://hal.archives-ouvertes.fr/inserm-00726449

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.
DOI : 10.1016/j.cell.2012.02.017

URL : https://doi.org/10.1016/j.cell.2012.02.017

L. J. Van-loon and B. Goodpaster, Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state, Pflugers Arch, vol.451, pp.606-616, 2006.

R. A. Defronzo and D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes, Diabetes care, vol.32, issue.2, pp.157-163, 2009.

N. E. Wolins, OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization, Diabetes, vol.55, pp.3418-3428, 2006.
DOI : 10.2337/db06-0399

URL : http://diabetes.diabetesjournals.org/content/55/12/3418.full.pdf

K. T. Dalen, LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues, Biochimica et biophysica acta, vol.1771, pp.210-227, 2007.

M. Bosma, Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity, Biochimica et biophysica acta, vol.1831, pp.844-852, 2013.

N. M. Pollak, Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier, Journal of lipid research, vol.54, pp.1092-1102, 2013.

C. Wang, Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis, Hepatology, vol.61, pp.870-882, 2015.
DOI : 10.1002/hep.27409

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

M. Beller, D. Riedel, L. Jansch, G. Dieterich, J. Wehland et al., Characterization of the Drosophila lipid droplet subproteome, 2006.

, Molecular & cellular proteomics : MCP, vol.5, pp.1082-1094

M. W. Berchtold, H. Brinkmeier, and M. Muntener, Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease, Physiological reviews, vol.80, pp.1215-1265, 2000.

B. C. Bergman, D. M. Hunerdosse, A. Kerege, M. C. Playdon, and L. Perreault,

V. Bezaire, A. Mairal, C. Ribet, C. Lefort, A. Girousse et al.,

P. Arner and D. Langin, , 2009.

P. E. Bickel, J. T. Tansey, and M. A. Welte, , 2009.

C. Bindesboll, O. Berg, B. Arntsen, H. I. Nebb, and K. T. Dalen, , 2013.

E. E. Blaak, A. J. Wagenmakers, J. F. Glatz, B. H. Wolffenbuttel, and G. J. Kemerink,

C. J. Langenberg, G. A. Heidendal, and W. H. Saris, , 2000.

, American journal of physiology. Endocrinology and metabolism, vol.279, pp.146-154

A. Blachnio-zabielska, M. Baranowski, P. Zabielski, G. , and J. , , 2010.

G. Boden, Endoplasmic reticulum stress: another link between obesity and insulin resistance/inflammation?, Diabetes, vol.58, pp.518-519, 2009.
DOI : 10.2337/db08-1746

URL : http://diabetes.diabetesjournals.org/content/58/3/518.full.pdf

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

M. Boettcher, J. Machann, N. Stefan, C. Thamer, H. U. Haring et al., Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity, Journal of magnetic resonance imaging : JMRI, vol.29, pp.1340-1345, 2009.
DOI : 10.1002/jmri.21754

A. Bonen, X. X. Han, D. D. Habets, M. Febbraio, J. F. Glatz et al., , vol.292, pp.1740-1749, 2007.

A. Bonen, M. L. Parolin, G. R. Steinberg, J. Calles-escandon, N. N. Tandon et al., , 2004.

C. Bonnard, A. Durand, S. Peyrol, E. Chanseaume, M. A. Chauvin et al.,

H. Vidal, R. , and J. , , 2008.

E. Borsheim and R. Bahr, Effect of exercise intensity, duration and mode on post-exercise oxygen consumption, Sports Med, vol.33, pp.1037-1060, 2003.

M. Bosma, Lipid droplet dynamics in skeletal muscle, Experimental cell research, vol.340, pp.180-186, 2016.
DOI : 10.1016/j.yexcr.2015.10.023

M. Bosma, R. Minnaard, L. M. Sparks, G. Schaart, M. Losen et al.,

H. Duimel, S. Kersten, P. E. Bickel, P. Schrauwen, and M. K. Hesselink, The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria, Histochemistry and cell biology, vol.137, pp.205-216, 2012.

M. Bosma, L. M. Sparks, G. J. Hooiveld, J. A. Jorgensen, S. M. Houten et al., sensitivity. Biochimica et biophysica acta 1831, pp.844-852, 2013.

B. I-b-l-i-o-g-r-a-p-h-i-e-|, , p.105

M. Flamment, E. Hajduch, P. Ferre, F. , and F. , New insights into ER stress-induced insulin resistance, Trends in endocrinology and metabolism: TEM, vol.23, pp.381-390, 2012.
DOI : 10.1016/j.tem.2012.06.003

S. V. Forcales, Potential of adipose-derived stem cells in muscular regenerative therapies, Frontiers in aging neuroscience 7, p.123, 2015.

G. Frangioudakis, J. Garrard, K. Raddatz, J. L. Nadler, T. W. Mitchell et al.,

C. Peiffer, Saturated-and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors, Endocrinology, vol.151, pp.4187-4196, 2010.

P. T. Fueger, experimental pharmacology & physiology, vol.32, pp.314-318, 2005.

T. Fujimoto and Y. Ohsaki, , 2006.

M. Gaeta, S. Messina, A. Mileto, G. L. Vita, G. Ascenti et al., , 2012.

G. C. Gaitanos, C. Williams, L. H. Boobis, and S. Brooks, Human muscle metabolism during intermittent maximal exercise, J Appl Physiol, vol.75, pp.712-719, 1985.
DOI : 10.1152/jappl.1993.75.2.712

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/7149/185/Thesis-1990-Gaitanos.pdf

D. Gallagher, D. E. Kelley, J. E. Yim, N. Spence, J. Albu et al., , 2009.

Q. Gao and J. M. Goodman, The lipid droplet-a well-connected organelle, Frontiers in cell and developmental biology, vol.3, p.49, 2015.
DOI : 10.3389/fcell.2015.00049

URL : https://www.frontiersin.org/articles/10.3389/fcell.2015.00049/pdf

D. Gardan, F. Gondret, and I. Louveau, Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes, American journal of physiology. Endocrinology and metabolism, vol.291, pp.372-380, 2006.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-106,

M. J. Gibala and J. P. Little, Just HIT it! A time-efficient exercise strategy to improve muscle insulin sensitivity, The Journal of physiology, vol.588, pp.3341-3342, 2010.
DOI : 10.1113/jphysiol.2010.196303

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988497

M. J. Gibala, J. P. Little, M. Van-essen, G. P. Wilkin, K. A. Burgomaster et al.,

S. Raha and M. A. Tarnopolsky, Journal of physiology, vol.575, pp.901-911, 2006.

M. Gil-ortega, L. Garidou, C. Barreau, M. Maumus, L. Breasson et al.,

C. F. Garcia-prieto, A. Bouloumie, L. Casteilla, and C. Sengenes, , 2013.

J. B. Gillen, B. J. Martin, M. J. Macinnis, L. E. Skelly, M. A. Tarnopolsky et al.,

M. J. , Twelve Weeks of Sprint Interval Training Improves Indices of, 2016.

, Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment, PloS one, vol.11, 154075.

A. Girousse and D. Langin, Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models, Int J Obes (Lond), vol.36, pp.581-594, 2012.
DOI : 10.1038/ijo.2011.113

URL : https://hal.archives-ouvertes.fr/inserm-00819199

A. Girousse, G. Tavernier, C. Valle, C. Moro, N. Mejhert et al.,

B. Roussel, A. Besse-patin, M. Combes, L. Mir, L. Monbrun et al.,

A. Mairal, M. L. Renoud, J. Galitzky, C. Holm, E. Mouisel et al., , 2013.

I. M. Gjelstad, F. Haugen, H. L. Gulseth, F. Norheim, A. Jans et al., , vol.118, pp.22-30, 2012.

A. Golay, A. L. Swislocki, Y. D. Chen, J. B. Jaspan, and G. M. Reaven, Effect of obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone, and glucagon concentrations, The Journal of clinical endocrinology and metabolism, vol.63, pp.481-484, 1986.

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

P. D. Gollnick, R. B. Armstrong, B. Saltin, C. W. Saubert, W. L. Sembrowich et al., Effect of training on enzyme activity and fiber composition of human skeletal muscle, Journal of applied physiology, vol.34, pp.107-111, 1973.

F. Gondret, N. Guitton, C. Guillerm-regost, and I. Louveau, )proteomic approach, Journal of animal science, vol.86, pp.2115-2125, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00653325

B. H. Goodpaster, Mitochondrial deficiency is associated with insulin resistance, Diabetes, vol.62, pp.1032-1035, 2013.
DOI : 10.2337/db12-1612

URL : http://diabetes.diabetesjournals.org/content/62/4/1032.full.pdf

B. H. Goodpaster, P. Chomentowski, B. K. Ward, A. Rossi, N. W. Glynn et al., , 2008.

, Appl Physiol, vol.105, pp.1498-1503, 1985.

B. H. Goodpaster, J. He, S. Watkins, K. , and D. E. , , 2001.

, The Journal of clinical endocrinology and metabolism, vol.86, pp.5755-5761

B. H. Goodpaster, S. Krishnaswami, H. Resnick, D. E. Kelley, C. Haggerty et al., Diabetes care, vol.26, pp.372-379, 2003.

B. H. Goodpaster, F. L. Thaete, K. , and D. E. , American journal of clinical nutrition, vol.71, pp.885-892, 2000.

B. H. Goodpaster, F. L. Thaete, J. A. Simoneau, K. , and D. E. , , 1997.

, Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat, Diabetes, vol.46, pp.1579-1585

A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle, Physiological reviews, vol.80, pp.853-924, 2000.

J. R. Goudriaan, V. E. Dahlmans, B. Teusink, D. M. Ouwens, M. Febbraio et al., CD36 mice, Journal of lipid research, vol.44, pp.2270-2277, 2003.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-108,

J. G. Granneman, H. P. Moore, R. Krishnamoorthy, R. , and M. , , 2009.

J. G. Granneman, H. P. Moore, E. P. Mottillo, Z. Zhu, and L. Zhou, , 2011.

P. P. Grassé, F. K. Jouffroy, M. Gaspard, J. Lessertisseur, and R. Saban, , 1968.

. Traité-de-zoologie, Anatomie, Systématique, Biologie. Mammifères, musculature (Paris)

M. E. Griffin, M. J. Marcucci, G. W. Cline, K. Bell, N. Barucci et al., Diabetes, vol.48, pp.1270-1274, 1999.

P. Gual, L. Marchand-brustel, Y. Tanti, and J. F. , Positive and negative regulation of insulin signaling through IRS-1 phosphorylation, Biochimie, vol.87, pp.99-109, 2005.

Z. Guo, B. Burguera, and M. D. Jensen, Kinetics of intramuscular triglyceride fatty acids in exercising humans, J Appl Physiol, vol.89, pp.2057-2064, 1985.

G. Haemmerle, A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer et al.,

M. Klingenspor, G. Hoefler, and R. Zechner, Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science, vol.312, pp.734-737, 2006.

G. Haemmerle, R. Zimmermann, M. Hayn, C. Theussl, G. Waeg et al.,

W. Sattler, T. M. Magin, E. F. Wagner, and R. Zechner, The Journal of biological chemistry, vol.277, pp.4806-4815, 2002.

C. E. Hafer-macko, S. Yu, A. S. Ryan, F. M. Ivey, and R. F. Macko, , 2005.

R. Hage-hassan, A. C. Pacheco-de-sousa, R. Mahfouz, I. Hainault, A. Blachniozabielska et al.,

E. Hajduch, Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE, The Journal of biological chemistry, vol.291, pp.3019-3029, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01340226

T. Hajri, X. X. Han, A. Bonen, A. , and N. A. , , 2002.

, The Journal of clinical investigation, vol.109, pp.1381-1389

C. R. Hancock, D. H. Han, M. Chen, S. Terada, T. Yasuda et al.,

J. O. Holloszy, America, vol.105, pp.7815-7820, 2008.

C. Handschin, C. S. Choi, S. Chin, S. Kim, D. Kawamori et al., , 2007.

J. A. Hawley, M. Hargreaves, M. J. Joyner, and J. R. Zierath, Integrative biology of exercise, Cell, vol.159, pp.738-749, 2014.

J. He, S. Watkins, K. , and D. E. , , 2001.

B. L. Heckmann, X. Zhang, X. Xie, and J. Liu, The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond, Biochimica et biophysica acta, vol.1831, pp.276-281, 2013.

B. L. Heckmann, X. Zhang, X. Xie, A. Saarinen, X. Lu et al., , 2014.

B. D. Hegarty, G. J. Cooney, E. W. Kraegen, and S. M. Furler, fed insulin-resistant rats, vol.51, pp.1477-1484, 2002.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-110,

J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo et al., , vol.153, pp.376-388, 2013.

T. N. Hilton, L. J. Tuttle, K. L. Bohnert, M. J. Mueller, and D. R. Sinacore, , 2008.

, Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function, Physical therapy, vol.88, pp.1336-1344

W. L. Holland, J. T. Brozinick, L. P. Wang, E. D. Hawkins, K. M. Sargent et al.,

G. K. Fontenot, M. J. Birnbaum, and S. A. Summers, Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance, Cell metabolism, vol.5, pp.167-179, 2007.

J. O. Holloszy, , 2013.

G. P. Holloway, C. R. Benton, K. L. Mullen, Y. Yoshida, L. A. Snook et al.,

J. F. Glatz, J. J. Luiken, J. Lally, D. J. Dyck, and A. Bonen, , vol.296, pp.738-747, 2009.

G. P. Holloway, X. X. Han, S. S. Jain, A. Bonen, C. et al., , 2014.

C. Holm, P. Belfrage, F. , and G. , biophysical research communications, vol.148, pp.99-105, 1987.

J. F. Horowitz and S. Klein, Lipid metabolism during endurance exercise, 2000.

, The American journal of clinical nutrition, vol.72, pp.558-563

G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.444, p.860, 2006.

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

G. S. Hotamisligil, Endoplasmic reticulum stress and the inflammatory basis of metabolic disease, Cell, vol.140, pp.900-917, 2010.

A. J. Hoy, C. R. Bruce, S. M. Turpin, A. J. Morris, M. A. Febbraio et al.,

E. Hu, P. Tontonoz, and B. M. Spiegelman, , 1995.

E. Huijsman, C. Van-de-par, C. Economou, C. Van-der-poel, G. S. Lynch et al., , 2009.

M. W. Hulver, J. R. Berggren, R. N. Cortright, R. W. Dudek, R. P. Thompson et al., Skeletal muscle lipid metabolism with obesity, American journal of physiology. Endocrinology and metabolism, vol.284, pp.741-747, 2003.

C. L. Hwang, Y. T. Wu, and C. H. Chou, Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis, J Cardiopulm Rehabil Prev, vol.31, pp.378-385, 2011.

S. I. Itani, N. B. Ruderman, F. Schmieder, and G. Boden, C, and IkappaB-alpha, Diabetes, vol.51, 2002.

S. Jacob, J. Machann, K. Rett, K. Brechtel, A. Volk et al.,

S. Matthaei, F. Schick, C. D. Claussen, and H. U. Haring, , pp.1113-1119, 199948.

A. Z. Jamurtas, Y. Koutedakis, V. Paschalis, T. Tofas, C. Yfanti et al., , 2004.

E. Jansson and L. Kaijser, Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men, J Appl Physiol, vol.62, pp.999-1005, 1985.

C. M. Jenkins, D. J. Mancuso, W. Yan, H. F. Sims, B. Gibson et al., Identification, cloning, expression, and purification of three novel human, 2004.

M. D. Jensen, M. W. Haymond, R. A. Rizza, P. E. Cryer, and J. M. Miles, , vol.83, pp.1168-1173, 1989.

J. W. Jocken, C. Moro, G. H. Goossens, D. Hansen, A. Mairal et al., , 2010.

J. W. Jocken, C. Roepstorff, G. H. Goossens, P. Van-der-baan, M. Van-baak et al., Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: effect of beta-adrenergic stimulation, Diabetes, vol.57, pp.1834-1841, 2008.

J. W. Jocken, E. Smit, G. H. Goossens, Y. P. Essers, M. A. Van-baak et al., , 2008.

A. W. Joe, L. Yi, A. Natarajan, F. Le-grand, L. So et al.,

F. M. Rossi, Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nature cell biology, vol.12, pp.153-163, 2010.

K. Jong-yeon, R. C. Hickner, G. L. Dohm, and J. A. Houmard, Long-and medium-chain fatty acid oxidation is increased in exercise-trained human skeletal muscle, Metabolism: clinical and experimental, vol.51, pp.460-464, 2002.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-113,

A. B. Jordy and B. Kiens, Regulation of exercise-induced lipid metabolism in skeletal muscle, Experimental physiology, vol.99, pp.1586-1592, 2014.

J. A. Kanaley, S. Shadid, M. T. Sheehan, Z. Guo, and M. D. Jensen, , 2009.

, Relationship between plasma free fatty acid, intramyocellular triglycerides and longchain acylcarnitines in resting humans, The Journal of physiology, vol.587, pp.5939-5950

R. Kannan and N. Baker, Net changes in intermuscular fat before and during rapid lipogenic activation in mice, Biochimica et biophysica acta, vol.431, pp.233-240, 1976.

R. Kannan, D. L. Palmquist, and N. Baker, , 1976.

M. Karlsson, J. A. Contreras, U. Hellman, H. Tornqvist, and C. Holm, cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases, The Journal of biological chemistry, vol.272, pp.27218-27223, 1997.

D. E. Kelley, B. Goodpaster, R. R. Wing, and J. A. Simoneau, Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss, The American journal of physiology, vol.277, pp.1130-1141, 1999.
DOI : 10.1152/ajpendo.1999.277.6.e1130

D. E. Kelley, J. He, E. V. Menshikova, and V. B. Ritov, , pp.2944-2950, 200251.

J. C. Khoo, A. A. Aquino, and D. Steinberg, , 1974.

C. L. Kien, K. I. Everingham, R. , D. S. Fukagawa, N. K. Muoio et al., , 2011.

, Short-term effects of dietary fatty acids on muscle lipid composition and serum acylcarnitine profile in human subjects, Obesity (Silver Spring), vol.19, pp.305-311

B. Kiens, Skeletal muscle lipid metabolism in exercise and insulin resistance, Physiological reviews, vol.86, pp.205-243, 2006.
DOI : 10.1152/physrev.00023.2004

J. K. Kim, R. E. Gimeno, T. Higashimori, H. J. Kim, H. Choi et al.,

G. Cline, A. Stahl, H. F. Lodish, and G. I. Shulman, , 2004.

S. J. Kim, T. Tang, M. Abbott, J. A. Viscarra, Y. Wang et al., , 2016.

, Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue, Molecular and cellular biology, vol.36, pp.1961-1976

M. Kjaer, K. Howlett, J. Langfort, T. Zimmerman-belsing, J. Lorentsen et al., Adrenaline and glycogenolysis in skeletal muscle during exercise: a study in adrenalectomised humans, The Journal of physiology 528 Pt, vol.2, pp.371-378, 2000.

A. Klip and A. Marette, Acute and chronic signals controlling glucose transport in skeletal muscle, J Cell Biochem, vol.48, pp.51-60, 1992.
DOI : 10.1002/jcb.240480109

S. Kokabu, J. W. Lowery, J. , and E. , Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells, Stem cells international, p.3753581, 2016.

R. Koopman, R. J. Manders, R. A. Jonkers, G. B. Hul, H. Kuipers et al., , 2006.

J. P. Kovalik, D. Slentz, R. D. Stevens, W. E. Kraus, J. A. Houmard et al., of the system, Diabetes, vol.60, pp.1882-1893, 2011.

T. R. Koves, P. Li, J. An, T. Akimoto, D. Slentz et al., , vol.280, pp.33588-33598, 2005.

T. R. Koves, J. R. Ussher, R. C. Noland, D. Slentz, M. Mosedale et al.,

B. I-b-l-i-o-g-r-a-p-h-i-e-|-115,

C. Krintel, P. Osmark, M. R. Larsen, S. Resjo, D. T. Logan et al., , 2008.

M. Krssak, K. Falk-petersen, A. Dresner, L. Dipietro, S. M. Vogel et al., , 1999.

, Diabetologia, vol.42, pp.113-116

W. Kühnel, Atlas de Poche d'Histologie, 2003.

C. C. Kuo, J. A. Fattor, G. C. Henderson, and G. A. Brooks, , 2005.

J. Langfort, M. Donsmark, T. Ploug, C. Holm, and H. Galbo, Hormonesensitive lipase in skeletal muscle: regulatory mechanisms, Acta physiologica Scandinavica, vol.178, pp.397-403, 2003.

J. Langfort, T. Ploug, J. Ihlemann, L. H. Enevoldsen, B. Stallknecht et al., Hormone-sensitive lipase (HSL), 1998.

A. Lass, R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl et al., Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome, Cell metabolism, vol.3, pp.309-319, 2006.

A. Lass, R. Zimmermann, M. Oberer, and R. Zechner, , 2011.

S. Lecourt, J. P. Marolleau, O. Fromigue, K. Vauchez, R. Andriamanalijaona et al., , vol.316, pp.2513-2526, 2010.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-116,

D. E. Lee, S. Kehlenbrink, H. Lee, M. Hawkins, Y. et al., Getting the message across: mechanisms of physiological cross talk by adipose tissue, 2009.

, American journal of physiology. Endocrinology and metabolism, vol.296, pp.1210-1229

M. J. Lee, Y. Wu, and S. K. Fried, Adipose tissue heterogeneity: implication, 2013.

C. Lefevre, F. Jobard, F. Caux, B. Bouadjar, A. Karaduman et al., Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome, American journal of human genetics, vol.69, pp.1002-1012, 2001.

M. I. Lefterova, A. K. Haakonsson, M. A. Lazar, and S. Mandrup, , 2014.

, PPARgamma and the global map of adipogenesis and beyond, Trends in endocrinology and metabolism: TEM, vol.25, pp.293-302

P. W. Lemon and J. P. Mullin, , 1980.

P. W. Lemon and F. J. Nagle, Effects of exercise on protein and amino acid metabolism, Med Sci Sports Exerc, vol.13, pp.141-149, 1981.

T. Leskinen, S. Sipila, M. Alen, S. Cheng, K. H. Pietilainen et al., , 2009.

, Leisure-time physical activity and high-risk fat: a longitudinal population-based twin study, Int J Obes (Lond), vol.33, pp.1211-1218

A. Lettner and M. Roden, Ectopic fat and insulin resistance, Current diabetes reports, vol.8, pp.185-191, 2008.

M. C. Levin, M. Monetti, M. J. Watt, M. P. Sajan, R. D. Stevens et al., journal of physiology. Endocrinology and metabolism, vol.293, p.1772, 2007.

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

Y. Li, T. J. Soos, X. Li, J. Wu, M. Degennaro et al., Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101), The Journal of biological chemistry, vol.279, pp.45304-45307, 2004.
DOI : 10.1074/jbc.c400186200

URL : http://www.jbc.org/content/279/44/45304.full.pdf

J. P. Little, J. B. Gillen, M. E. Percival, A. Safdar, M. A. Tarnopolsky et al.,

M. E. Jung and M. J. Gibala, , 2011.

, Appl Physiol, vol.111, pp.1554-1560, 1985.

L. Liu, Y. Zhang, N. Chen, X. Shi, B. Tsang et al., , 2007.

W. Liu, Y. Liu, X. Lai, and S. Kuang, , 2012.

Y. Liu, X. Yan, Z. Sun, B. Chen, Q. Han et al., Flk-1+, 2007.

K. Louche, P. M. Badin, E. Montastier, C. Laurens, V. Bourlier et al., , 2013.

B. B. Lowell and G. I. Shulman, Mitochondrial dysfunction and type 2 diabetes, Science, vol.307, pp.384-387, 2005.

X. Lu, X. Yang, and J. Liu, Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2, Cell Cycle, vol.9, pp.2719-2725, 2010.
DOI : 10.4161/cc.9.14.12181

URL : https://www.tandfonline.com/doi/pdf/10.4161/cc.9.14.12181?needAccess=true

J. J. Luiken, Y. Arumugam, D. J. Dyck, R. C. Bell, M. M. Pelsers et al., , 2001.

R. E. Macpherson, S. V. Ramos, R. Vandenboom, B. D. Roy, and S. J. Peters, Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction, American journal of physiology. Regulatory, integrative and comparative physiology, vol.304, pp.644-650, 2013.

R. Mahfouz, R. Khoury, A. Blachnio-zabielska, S. Turban, N. Loiseau et al.,

R. L. Marcus, O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo, , 2010.

, Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. The journal of nutrition, health & aging, vol.14, pp.362-366

R. Marion-letellier, G. Savoye, G. , and S. , Fatty acids, eicosanoids and PPAR gamma, European journal of pharmacology, 2015.
DOI : 10.1016/j.ejphar.2015.11.004

J. A. Martinez, Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance, Journal of physiology and biochemistry, vol.62, pp.303-306, 2006.

R. R. Mason, R. C. Meex, R. Lee-young, B. J. Canny, and M. J. Watt, , vol.303, pp.534-541, 2012.

R. R. Mason, R. Mokhtar, M. Matzaris, A. Selathurai, G. M. Kowalski et al.,

P. J. Meikle, C. R. Bruce, and M. J. Watt, , 2014.

R. R. Mason and M. J. Watt, Unraveling the roles of PLIN5: linking cell biology to physiology, Trends in endocrinology and metabolism: TEM, vol.26, pp.144-152, 2015.

A. Mauro, , 1961.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-119,

C. S. Mccoin, T. A. Knotts, A. , and S. H. , , 2015.

J. D. Mcgarry, Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes, vol.51, pp.7-18, 2002.

E. Mercuri, A. Pichiecchio, J. Allsop, S. Messina, M. Pane et al.,

, Muscle MRI in inherited neuromuscular disorders: past, present, and future, Journal of magnetic resonance imaging : JMRI, vol.25, pp.433-440

S. K. Mistry, P. , and S. , Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: a systematic review of the evidence, Public health, vol.129, pp.200-209, 2015.

T. Miura, K. Hakamada, T. Ohata, S. Narumi, Y. Toyoki et al.,

M. Ohashi, H. Akasaka, H. Jin, N. Kubo, S. Ono et al.,

H. Mizuno, The potential for treatment of skeletal muscle disorders with adipose-derived stem cells, Current stem cell research & therapy, vol.5, pp.133-136, 2010.

H. Monod and R. Flandrois, , 1990.

M. K. Montgomery, T. , and N. , Mitochondrial dysfunction and insulin resistance: an update, Endocrine connections, vol.4, pp.1-15, 2015.

V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag et al.,

N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman et al., , 2003.

K. Morino, K. F. Petersen, S. Dufour, D. Befroy, J. Frattini et al., , 2005.

C. Moro, S. Bajpeyi, and S. R. Smith, Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity, American journal of physiology. Endocrinology and metabolism, vol.294, pp.203-213, 2008.

C. Moro, J. E. Galgani, L. Luu, M. Pasarica, A. Mairal et al., Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals, The Journal of clinical endocrinology and metabolism, vol.94, pp.3440-3447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410118

A. R. Muir, A. H. Kanji, A. , and D. , , 1965.

H. Mulder, M. Sorhede-winzell, J. A. Contreras, M. Fex, K. Strom et al., , 2003.

D. M. Muoio and C. B. Newgard, Mechanisms of disease:Molecular and, 2008.

J. C. Murphy, J. L. Mcdaniel, K. Mora, D. T. Villareal, L. Fontana et al.,

C. A. Nagle, J. An, M. Shiota, T. P. Torres, G. W. Cline et al., Journal of biological chemistry, vol.282, pp.14807-14815, 2007.

T. Nakamura, M. Furuhashi, P. Li, H. Cao, G. Tuncman et al., Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis, Cell, vol.140, pp.338-348, 2010.

B. I-b-l-i-o-g-r-a-p-h-i-e-|, , p.121

S. Neschen, K. Morino, L. E. Hammond, D. Zhang, Z. X. Liu et al.,

Y. Nishizuka, Protein kinase C and lipid signaling for sustained cellular responses, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.9, pp.484-496, 1995.

N. D. Oakes, G. J. Cooney, S. Camilleri, D. J. Chisholm, and E. W. Kraegen, , 1997.

N. D. Oakes, A. Kjellstedt, P. Thalen, B. Ljung, T. et al., , 2013.

H. Okazaki, J. Osuga, Y. Tamura, N. Yahagi, S. Tomita et al.,

K. Ohashi, K. Harada, S. Kimura, T. Gotoda, H. Shimano et al.,

S. Ishibashi, Lipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases, Diabetes, vol.51, pp.3368-3375, 2002.

S. O. Olofsson, P. Bostrom, L. Andersson, M. Rutberg, J. Perman et al., Lipid droplets as dynamic organelles connecting storage and efflux of lipids, 2009.

, Biochimica et biophysica acta, vol.1791, pp.448-458

L. H. Opie and P. G. Walfish, Plasma free fatty acid concentrations in obesity, 1963.

, The New England journal of medicine, vol.268, pp.757-760

U. Ozcan, Q. Cao, E. Yilmaz, A. H. Lee, N. N. Iwakoshi et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science, vol.306, pp.457-461, 2004.

A. F. Pagano, R. Demangel, T. Brioche, E. Jublanc, C. Bertrand-gaday et al., Muscle Regeneration with Intermuscular Adipose Tissue (IMAT) Accumulation Is Modulated by Mechanical Constraints, PloS one, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837631

B. I-b-l-i-o-g-r-a-p-h-i-e-|-122,

J. Pagnon, M. Matzaris, R. Stark, R. C. Meex, S. L. Macaulay et al., Identification and functional characterization of protein kinase A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase, Endocrinology, vol.153, pp.4278-4289, 2012.

D. A. Pan, S. Lillioja, A. D. Kriketos, M. R. Milner, L. A. Baur et al., Skeletal muscle triglyceride levels are inversely related to insulin action, Diabetes, vol.46, pp.983-988, 1997.
DOI : 10.2337/diabetes.46.6.983

URL : https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1302&context=medpapers

S. Y. Park, H. J. Kim, S. Wang, T. Higashimori, J. Dong et al., , 2005.

, American journal of physiology. Endocrinology and metabolism, vol.289, pp.30-39

M. L. Parolin, A. Chesley, M. P. Matsos, L. L. Spriet, N. L. Jones et al.,

G. J. , Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise, The American journal of physiology, vol.277, pp.890-900, 1999.

B. K. Pedersen and M. A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nature reviews. Endocrinology, vol.8, pp.457-465, 2012.
DOI : 10.1038/nrendo.2012.49

K. F. Petersen, S. Dufour, D. Befroy, R. Garcia, and G. I. Shulman, , 2004.

, The New England journal of medicine, vol.350, pp.664-671

X. Pi-sunyer, The medical risks of obesity, Postgraduate medicine, vol.121, p.21, 2009.
DOI : 10.1007/bf03342140

F. Pillard, V. Van-wymelbeke, E. Garrigue, C. Moro, F. Crampes et al., Lipid oxidation in overweight men after exercise and food intake, Metabolism: clinical and experimental, vol.59, pp.267-274, 2010.
DOI : 10.1016/j.metabol.2009.07.023

URL : https://hal.archives-ouvertes.fr/hal-00680938

S. Pillarisetti and U. Saxena, , 2004.

B. I-b-l-i-o-g-r-a-p-h-i-e-|,

D. F. Pisani, C. D. Bottema, C. Butori, C. Dani, and C. A. Dechesne, Mouse model of skeletal muscle adiposity: a glycerol treatment approach, Biochemical and biophysical research communications, vol.396, pp.767-773, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497171

D. F. Pisani, N. Clement, A. Loubat, M. Plaisant, S. Sacconi et al.,

C. Desnuelle, C. Dani, and C. A. Dechesne, Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle, Stem Cells, vol.28, pp.2182-2194, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533750

N. M. Pollak, D. Jaeger, S. Kolleritsch, R. Zimmermann, R. Zechner et al.,

G. Haemmerle, The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis, The Journal of biological chemistry, vol.290, pp.1295-1306, 2015.

N. M. Pollak, M. Schweiger, D. Jaeger, D. Kolb, M. Kumari et al.,

R. Zimmermann, A. Lass, R. Zechner, and G. Haemmerle, Journal of lipid research, vol.54, pp.1092-1102, 2013.

D. J. Powell, E. Hajduch, G. Kular, and H. S. Hundal, PKCzeta-dependent mechanism, Molecular and cellular biology, vol.23, pp.7794-7808, 2003.

D. J. Powell, S. Turban, A. Gray, E. Hajduch, and H. S. Hundal, , 2004.

C. Prats, M. Donsmark, K. Qvortrup, C. Londos, C. Sztalryd et al., Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine, Journal of lipid research, vol.47, pp.2392-2399, 2006.

S. J. Prior, L. J. Joseph, J. Brandauer, L. I. Katzel, J. M. Hagberg et al.,

B. I-b-l-i-o-g-r-a-p-h-i-e-|-124,

P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, , 1963.

P. J. Randle, P. B. Garland, E. A. Newsholme, and C. N. Hales, , 1965.

L. V. Ravichandran, D. L. Esposito, J. Chen, and M. J. Quon, , 2001.

M. J. Rennie, J. Bohe, K. Smith, H. Wackerhage, G. et al., , 2006.

, Branched-chain amino acids as fuels and anabolic signals in human muscle, J Nutr, vol.136, pp.264-268

M. J. Rennie and K. D. Tipton, Protein and amino acid metabolism during and after exercise and the effects of nutrition, Annual review of nutrition, vol.20, pp.457-483, 2000.

R. A. Robergs, F. Ghiasvand, P. , and D. , Biochemistry of exerciseinduced metabolic acidosis, American journal of physiology. Regulatory, integrative and comparative physiology, vol.287, pp.502-516, 2004.

C. Roepstorff, C. H. Steffensen, M. Madsen, B. Stallknecht, I. L. Kanstrup et al., , vol.282, pp.435-447, 2002.

J. A. Romijn, E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz et al., Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration, The American journal of physiology, vol.265, pp.380-391, 1993.

J. A. Romijn, E. F. Coyle, L. S. Sidossis, J. Rosenblatt, and R. R. Wolfe, Appl Physiol, vol.88, pp.1707-1714, 1985.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-125,

A. P. Russell, Lipotoxicity: the obese and endurance-trained paradox, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, vol.28, pp.66-71, 2004.

L. Russell and D. R. Forsdyke, )and cell biology, vol.10, pp.581-591, 1991.

A. S. Ryan, A. Buscemi, L. Forrester, C. E. Hafer-macko, and F. M. Ivey, , 2011.

, Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors, Neurorehabilitation and neural repair, vol.25, pp.865-872

A. S. Ryan and B. J. Nicklas, Age-related changes in fat deposition in midthigh muscle in women: relationships with metabolic cardiovascular disease risk factors, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, vol.23, pp.126-132, 1999.

M. Sacchetti, B. Saltin, D. B. Olsen, and G. Van-hall, , vol.561, pp.883-891, 2004.

A. Sahu-osen, G. Montero-moran, M. Schittmayer, K. Fritz, A. Dinh et al.,

D. Mcmahon, A. Boeszoermenyi, I. Cornaciu, D. Russell, M. Oberer et al., , 2015.

T. Salehzada, L. Cambier, N. Vu-thi, L. Manchon, L. Regnier et al.,

L. Endoribonuclease, RNase L) regulates the myogenic and adipogenic potential of myogenic cells, PloS one, vol.4, p.7563

A. R. Saltiel and J. E. Pessin, , 2002.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.

A. Sandow, Excitation-contraction coupling in skeletal muscle, Pharmacological reviews, vol.17, pp.265-320, 1965.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-126,

F. M. Schmidt, J. Weschenfelder, C. Sander, J. Minkwitz, J. Thormann et al.,

R. Mergl, K. C. Kirkby, M. Fasshauer, M. Stumvoll, L. M. Holdt et al.,

U. Hegerl and H. Himmerich, Inflammatory cytokines in general and central obesity and modulating effects of physical activity, PloS one, vol.10, 2015.

G. Schoiswohl, M. Schweiger, R. Schreiber, G. Gorkiewicz, K. Preiss-landl et al.,

R. Zimmermann, with fatty acids, Journal of lipid research, vol.51, pp.490-499, 2010.

V. B. Schrauwen-hinderling, P. Schrauwen, M. K. Hesselink, J. M. Van-engelshoven, K. Nicolay et al., , vol.88, pp.1610-1616, 2003.

M. Schweiger, M. Paar, C. Eder, J. Brandis, E. Moser et al., , pp.2307-2317, 2012.

C. Sciorati, E. Clementi, A. A. Manfredi, R. , and P. , Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cellular and molecular life sciences : CMLS 72, pp.2135-2156, 2015.

H. Sell, D. Dietze-schroeder, and J. Eckel, The adipocyte-myocyte axis in insulin resistance, Trends in endocrinology and metabolism: TEM, vol.17, pp.416-422, 2006.

L. T. Sener, A. , and I. , Challenge of Mesenchymal Stem Cells Against Diabetic Foot Ulcer, Current stem cell research & therapy, vol.10, pp.530-534, 2015.
DOI : 10.2174/1574888x10666150519092931

B. Seyoum, A. Fite, and A. B. Abou-samra, biophysical research communications, vol.410, pp.13-18, 2011.

G. Shefer, M. Wleklinski-lee, and Z. Yablonka-reuveni, , 2004.

C. Wang, Y. Zhao, X. Gao, L. Li, Y. Yuan et al.,

X. Zhang, Y. Gu, Y. Xu, Z. Wang, Z. Li et al., Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis, vol.61, pp.870-882, 2015.

H. Wang, U. Sreenivasan, H. Hu, A. Saladino, B. M. Polster et al., Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria, Journal of lipid research, vol.52, pp.2159-2168, 2011.
DOI : 10.1194/jlr.m017939

URL : http://www.jlr.org/content/52/12/2159.full.pdf

H. Wang and C. Sztalryd, Oxidative tissue: perilipin 5 links storage with the furnace, Trends in endocrinology and metabolism: TEM, vol.22, pp.197-203, 2011.
DOI : 10.1016/j.tem.2011.03.008

URL : http://europepmc.org/articles/pmc3122074?pdf=render

Y. Wang, Y. Zhang, H. Qian, J. Lu, Z. Zhang et al., , 2013.

M. J. Watt, G. J. Heigenhauser, and L. L. Spriet, , 2003.

B. I-b-l-i-o-g-r-a-p-h-i-e-|-132,

M. J. Watt and A. J. Hoy, Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function, American journal of physiology. Endocrinology and metabolism, vol.302, pp.1315-1328, 2012.

M. J. Watt and L. L. Spriet, , 2004.

M. J. Watt, T. Stellingwerff, G. J. Heigenhauser, and L. L. Spriet, Journal of physiology, vol.550, pp.325-332, 2003.

M. P. Wattjes, R. A. Kley, and D. Fischer, Neuromuscular imaging in inherited muscle diseases, European radiology, vol.20, pp.2447-2460, 2010.
DOI : 10.1007/s00330-010-1799-2

URL : https://link.springer.com/content/pdf/10.1007%2Fs00330-010-1799-2.pdf

Y. Wei, D. Wang, F. Topczewski, and M. J. Pagliassotti, , 2006.

M. F. White, Regulating insulin signaling and beta-cell function through IRS proteins, Canadian journal of physiology and pharmacology, vol.84, pp.725-737, 2006.

F. Wilfling, A. R. Thiam, M. J. Olarte, J. Wang, R. Beck et al., , 2014.

J. H. Wilmore and D. L. Costill, , 2002.

, Adaptations Physiologiques à l'Exercice Physique

N. E. Wolins, D. L. Brasaemle, and P. E. Bickel, A proposed model of fat packaging by exchangeable lipid droplet proteins, FEBS letters, vol.580, pp.5484-5491, 2006.

N. E. Wolins, B. K. Quaynor, J. R. Skinner, A. Tzekov, M. A. Croce et al., OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization, Diabetes, vol.55, pp.3418-3428, 2006.
DOI : 10.2337/db06-0399

URL : http://diabetes.diabetesjournals.org/content/55/12/3418.full.pdf

B. I-b-l-i-o-g-r-a-p-h-i-e-|, , p.133

N. E. Wolins, J. R. Skinner, M. J. Schoenfish, A. Tzekov, K. G. Bensch et al., Adipocyte protein S3-12 coats nascent lipid droplets, The Journal of biological chemistry, vol.278, pp.37713-37721, 2003.
DOI : 10.1074/jbc.m304025200

URL : http://www.jbc.org/content/278/39/37713.full.pdf

A. P. Wroblewski, F. Amati, M. A. Smiley, B. Goodpaster, W. et al., , 2011.

T. Yamaguchi, N. Omatsu, S. Matsushita, and T. Osumi, , 2004.

X. Yang, X. Lu, M. Lombes, G. B. Rha, Y. I. Chi et al., The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase, Cell metabolism, vol.11, pp.194-205, 2010.
DOI : 10.1016/j.cmet.2010.02.003

URL : https://doi.org/10.1016/j.cmet.2010.02.003

J. E. Yim, S. Heshka, J. Albu, S. Heymsfield, P. Kuznia et al., Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk, Int J Obes, vol.31, pp.1400-1405, 2007.
DOI : 10.1038/sj.ijo.0803621

URL : https://www.nature.com/articles/0803621.pdf

C. Yu, Y. Chen, G. W. Cline, D. Zhang, H. Zong et al., Journal of biological chemistry, vol.277, pp.50230-50236, 2002.

F. Zandbergen, S. Mandard, P. Escher, N. S. Tan, D. Patsouris et al., , 2005.

, G0/G1 switch gene 2 is a novel PPAR target gene, The Biochemical journal, vol.392, pp.313-324

X. Zhang, X. Xie, B. L. Heckmann, A. M. Saarinen, T. A. Czyzyk et al., , 2014.

, Targeted disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and alleviates high-fat diet-induced liver steatosis, Diabetes, vol.63, pp.934-946

S. Zhao, Y. Mugabo, J. Iglesias, L. Xie, V. Delghingaro-augusto et al., , p.134

H. Madiraju, S. R. Prentki, and M. , , 2014.

J. R. Zierath, The path to insulin resistance: paved with ceramides?, Cell metabolism, vol.5, pp.161-163, 2007.
DOI : 10.1016/j.cmet.2007.02.005

URL : https://doi.org/10.1016/j.cmet.2007.02.005

R. Zimmermann, J. G. Strauss, G. Haemmerle, G. Schoiswohl, and . Birner,

R. Gruenberger, M. Riederer, A. Lass, G. Neuberger, F. Eisenhaber et al., , 2004.

A. H. Kissebah and G. R. Krakower, Regional adiposity and morbidity, Physiol Rev, vol.74, pp.761-811, 1994.
DOI : 10.1152/physrev.1994.74.4.761

R. A. Defronzo, D. Simonson, E. Ferrannini, and E. Barrett, Insulin resistance: a universal finding in diabetic states, Bull Schweiz Akad Med Wiss, pp.223-261, 1981.

R. A. Defronzo, R. Hendler, and D. Simonson, Insulin resistance is a prominent feature of insulin-dependent diabetes, Diabetes, vol.31, pp.795-801, 1982.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-71, 2012.

D. Samocha-bonet, V. D. Dixit, C. R. Kahn, R. L. Leibel, X. Lin et al.,

, Stock Conference report, Obes Rev, vol.15, pp.697-708, 2014.

W. El-assaad, J. Buteau, M. L. Peyot, C. Nolan, R. Roduit et al., Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death, Endocrinology, vol.144, pp.4154-63, 2003.

M. Laurens, Skeletal muscle lipids and insulin resistance

M. Krssak, A. Brehm, E. Bernroider, C. Anderwald, P. Nowotny et al., Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes, Diabetes, vol.53, pp.3048-56, 2004.

K. F. Petersen, S. Dufour, D. Befroy, M. Lehrke, R. E. Hendler et al., Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes, Diabetes, vol.54, pp.603-611, 2005.

P. M. Coen, K. C. Hames, E. M. Leachman, J. P. Delany, V. B. Ritov et al., Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity, Obesity (Silver Spring), vol.21, pp.2362-71, 2013.

C. Moro, J. E. Galgani, L. Luu, M. Pasarica, A. Mairal et al., Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals, J Clin Endocrinol Metab, vol.94, pp.3440-3447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410118

G. Perseghin, P. Scifo, D. Cobelli, F. Pagliato, E. Battezzati et al., Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents, Diabetes, vol.48, pp.1600-1606, 1999.

P. M. Coen, J. J. Dube, F. Amati, M. Stefanovic-racic, R. E. Ferrell et al., Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content, Diabetes, vol.59, pp.80-88, 2010.

A. Virkamaki, E. Korsheninnikova, A. Seppala-lindroos, S. Vehkavaara, T. Goto et al., Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle, Diabetes, vol.50, pp.2337-2380, 2001.

R. A. Defronzo and D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes, Diabetes Care, vol.32, issue.2, pp.157-63, 2009.

E. Ferrannini, D. C. Simonson, L. D. Katz, G. Reichard, J. Bevilacqua et al., The disposal of an oral glucose load in patients with non-insulin-dependent diabetes, Metabolism, vol.37, pp.79-85, 1988.

R. Vettor, G. Milan, C. Franzin, M. Sanna, D. Coppi et al., The origin of intermuscular adipose tissue and its pathophysiological implications, Am J Physiol Endocrinol Metab, vol.297, pp.987-98, 2009.

F. Amati, J. J. Dube, E. Alvarez-carnero, M. M. Edreira, P. Chomentowski et al., Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes?, Diabetes, vol.60, pp.2588-97, 2011.

B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus, Am J Clin Nutr, vol.71, pp.885-92, 2000.

J. E. Yim, S. Heshka, J. Albu, S. Heymsfield, P. Kuznia et al., Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk, Int J Obes (Lond), vol.31, pp.1400-1405, 2007.

M. Boettcher, J. Machann, N. Stefan, C. Thamer, H. U. Haring et al., Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women, J Magn Reson Imaging, vol.29, pp.372-381, 2003.

N. Arrighi, C. Moratal, N. Clement, S. Giorgetti-peraldi, P. Peraldi et al., Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle, Cell Death Dis, vol.6, p.1733, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837592

L. J. Van-loon, Use of intramuscular triacylglycerol as a substrate source during exercise in humans, J Appl Physiol, vol.97, pp.1170-87, 1985.

B. Kiens, Skeletal muscle lipid metabolism in exercise and insulin resistance, Physiol Rev, vol.86, pp.205-248, 2006.

G. R. Dagenais, R. G. Tancredi, and K. L. Zierler, Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm, J Clin Invest, vol.58, pp.421-452, 1976.

J. A. Kanaley, S. Shadid, M. T. Sheehan, Z. Guo, and M. D. Jensen, Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans, J Physiol, vol.587, pp.5939-50, 2009.

Z. Guo, B. Burguera, and M. D. Jensen, Kinetics of intramuscular triglyceride fatty acids in exercising humans, J Appl Physiol, vol.89, pp.2057-64, 1985.

C. Roepstorff, C. H. Steffensen, M. Madsen, B. Stallknecht, I. L. Kanstrup et al., Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects, Am J Physiol Endocrinol Metab, vol.282, pp.435-482, 2002.

M. Krssak, K. Falk-petersen, A. Dresner, L. Dipietro, S. M. Vogel et al., Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study, Diabetologia, vol.42, pp.113-119, 1999.

J. D. Mcgarry, Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes, vol.51, pp.7-18, 2002.

B. H. Goodpaster, J. He, S. Watkins, and D. E. Kelley, Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes, J Clin Endocrinol Metab, vol.86, pp.5755-61, 2001.

M. A. Tarnopolsky, C. D. Rennie, H. A. Robertshaw, S. N. Fedak-tarnopolsky, M. C. Devries et al., Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity, Am J Physiol Regul Integr Comp Physiol, vol.292, pp.1271-78, 2007.

E. Jansson and L. Kaijser, Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men, J Appl Physiol, vol.62, pp.999-1005, 1985.

K. Jong-yeon, R. C. Hickner, G. L. Dohm, and J. A. Houmard, Long-and medium-chain fatty acid oxidation is increased in exercisetrained human skeletal muscle, Metabolism, vol.51, pp.460-464, 2002.

C. Moro, S. Bajpeyi, and S. R. Smith, Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity, Am J Physiol Endocrinol Metab, vol.294, pp.203-216, 2008.

M. Sacchetti, B. Saltin, D. B. Olsen, and G. Van-hall, High triacylglycerol turnover rate in human skeletal muscle, J Physiol, vol.561, pp.883-91, 2004.

L. J. Van-loon and B. H. Goodpaster, Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state, Pflugers Arch, vol.451, pp.606-622, 2006.

L. J. Van-loon, R. Koopman, R. Manders, W. Van-der-weegen, G. P. Van-kranenburg et al.,

M. Laurens, Skeletal muscle lipids and insulin resistance 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes, Am J Physiol Endocrinol Metab, vol.287, pp.558-65, 2004.

P. M. Badin, C. Loubiere, M. Coonen, K. Louche, G. Tavernier et al., Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58, J Lipid Res, vol.53, pp.839-887, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726508

C. Yu, Y. Chen, G. W. Cline, D. Zhang, H. Zong et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J Biol Chem, vol.277, pp.50230-50236, 2002.

N. Fillmore, W. Keung, S. E. Kelly, S. D. Proctor, G. D. Lopaschuk et al., Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat, Exp Physiol, vol.100, pp.730-771, 2015.

G. P. Holloway, X. X. Han, S. S. Jain, A. Bonen, and A. Chabowski, Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats, Diabetologia, vol.57, pp.832-872, 2014.
DOI : 10.1007/s00125-014-3169-0

J. Szendroedi, T. Yoshimura, E. Phielix, C. Koliaki, M. Marcucci et al., Role of diacylglycerol activation of PKCtheta in lipidinduced muscle insulin resistance in humans, Proc Natl Acad Sci, vol.111, pp.9597-602, 2014.

M. Straczkowski, I. Kowalska, A. Nikolajuk, S. Dzienis-straczkowska, I. Kinalska et al., Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle, Diabetes, vol.53, pp.1215-1236, 2004.
DOI : 10.2337/diabetes.53.5.1215

URL : http://diabetes.diabetesjournals.org/content/53/5/1215.full.pdf

J. J. Dube, F. Amati, F. G. Toledo, M. Stefanovic-racic, A. Rossi et al., Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide, Diabetologia, vol.54, pp.1147-56, 2011.

J. W. Helge, A. Dobrzyn, B. Saltin, and J. Gorski, Exercise and training effects on ceramide metabolism in human skeletal muscle, Exp Physiol, vol.89, pp.119-146, 2004.
DOI : 10.1113/expphysiol.2003.002605

S. I. Itani, N. B. Ruderman, F. Schmieder, and G. Boden, Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha, Diabetes, vol.51, pp.2005-2016, 2002.
DOI : 10.2337/diabetes.51.7.2005

URL : http://diabetes.diabetesjournals.org/content/51/7/2005.full.pdf

S. J. Lessard, L. Giudice, S. L. Lau, W. Reid, J. J. Turner et al., Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle, Endocrinology, vol.145, pp.5665-70, 2004.

S. Timmers, M. Nabben, M. Bosma, B. Van-bree, E. Lenaers et al., Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity, Proc Natl Acad Sci, vol.109, pp.11711-11717, 2012.
DOI : 10.1073/pnas.1206868109

URL : http://www.pnas.org/content/109/29/11711.full.pdf

B. C. Bergman, D. M. Hunerdosse, A. Kerege, M. C. Playdon, and L. Perreault, Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans, Diabetologia, vol.55, pp.1140-50, 2012.

A. Dresner, D. Laurent, M. Marcucci, M. E. Griffin, S. Dufour et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity, J Clin Invest, vol.103, pp.253-262, 1999.

Y. Li, T. J. Soos, X. Li, J. Wu, M. Degennaro et al., Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101), J Biol Chem, vol.279, pp.45304-45311, 2004.
DOI : 10.1074/jbc.c400186200

URL : http://www.jbc.org/content/279/44/45304.full.pdf

P. M. Badin, I. K. Vila, K. Louche, A. Mairal, M. A. Marques et al., High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle, Endocrinology, vol.154, pp.1444-53, 2013.
DOI : 10.1210/en.2012-2029

URL : https://hal.archives-ouvertes.fr/inserm-00841051

J. R. Ussher, T. R. Koves, V. J. Cadete, L. Zhang, J. S. Jaswal et al., Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption, Diabetes, vol.59, pp.2453-64, 2010.
DOI : 10.2337/db09-1293

URL : http://europepmc.org/articles/pmc3279530?pdf=render

W. L. Holland, T. A. Knotts, J. A. Chavez, L. P. Wang, K. L. Hoehn et al., Lipid mediators of insulin resistance, Nutr Rev, vol.65, pp.39-46, 2007.
DOI : 10.1111/j.1753-4887.2007.tb00327.x

B. T. Bikman and S. A. Summers, Ceramides as modulators of cellular and whole-body metabolism, J Clin Invest, vol.121, pp.4222-4252, 2011.
DOI : 10.1172/jci57144

URL : http://www.jci.org/articles/view/57144/files/pdf

D. J. Powell, S. Turban, A. Gray, E. Hajduch, and H. S. Hundal, Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells, Biochem J, vol.382, pp.619-648, 2004.

J. R. Goudriaan, V. E. Dahlmans, B. Teusink, D. M. Ouwens, M. Febbraio et al., CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice, J Lipid Res, vol.44, pp.2270-2277, 2003.

T. Hajri, X. X. Han, A. Bonen, and N. A. Abumrad, Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice, J Clin Invest, vol.109, pp.1381-1390, 2002.
DOI : 10.1172/jci14596

URL : http://www.jci.org/articles/view/14596/files/pdf

J. K. Kim, R. E. Gimeno, T. Higashimori, H. J. Kim, H. Choi et al., Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle, J Clin Invest, vol.113, pp.756-63, 2004.

L. Liu, Y. Zhang, N. Chen, X. Shi, B. Tsang et al., Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance, J Clin Invest, vol.117, pp.1679-89, 2007.

M. C. Levin, M. Monetti, M. J. Watt, M. P. Sajan, R. D. Stevens et al., Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle, Am J Physiol Endocrinol Metab, vol.293, pp.1772-81, 2007.
DOI : 10.1152/ajpendo.00158.2007

S. Timmers, J. Vogel-van-den-bosch, M. K. Hesselink, D. Van-beurden, G. Schaart et al., Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle, PLoS One, vol.6, p.14503, 2011.

L. M. Sparks, M. Bosma, B. Brouwers, T. Van-de-weijer, L. Bilet et al., Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes, Diabetes, vol.63, pp.1583-93, 2014.

S. O. Olofsson, P. Bostrom, L. Andersson, M. Rutberg, J. Perman et al., Lipid droplets as dynamic organelles Laurens and Moro: Skeletal muscle lipids and insulin resistance 9 connecting storage and efflux of lipids, Biochim Biophys Acta, vol.1791, pp.448-58, 2009.

T. Fujimoto and Y. Ohsaki, Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform, Ann NY Acad Sci, vol.1086, pp.104-119, 2006.

K. Tauchi-sato, S. Ozeki, T. Houjou, R. Taguchi, and T. Fujimoto, The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition, J Biol Chem, vol.277, pp.44507-44519, 2002.

I. M. Gjelstad, F. Haugen, H. L. Gulseth, F. Norheim, A. Jans et al., Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance, Arch Physiol Biochem, vol.118, pp.22-30, 2012.

R. R. Mason, R. Mokhtar, M. Matzaris, A. Selathurai, G. M. Kowalski et al., PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle, Mol Metab, vol.3, pp.652-63, 2014.

J. G. Granneman, H. P. Moore, R. Krishnamoorthy, and M. Rathod, Perilipin controls lipolysis by regulating the interactions of ABhydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl), J Biol Chem, vol.284, pp.34538-34582, 2009.

J. G. Granneman, H. P. Moore, R. L. Granneman, A. S. Greenberg, M. S. Obin et al., Analysis of lipolytic protein trafficking and interactions in adipocytes, J Biol Chem, vol.282, pp.5726-5761, 2007.

V. Subramanian, A. Rothenberg, C. Gomez, A. W. Cohen, A. Garcia et al., Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes, J Biol Chem, vol.279, pp.42062-71, 2004.

H. Wang and C. Sztalryd, Oxidative tissue: perilipin 5 links storage with the furnace, Trends Endocrinol Metab, vol.22, pp.197-203, 2011.

H. Wang, U. Sreenivasan, H. Hu, A. Saladino, B. M. Polster et al., Perilipin 5, a lipid dropletassociated protein, provides physical and metabolic linkage to mitochondria, J Lipid Res, vol.52, pp.2159-68, 2011.
DOI : 10.1194/jlr.m017939

URL : http://www.jlr.org/content/52/12/2159.full.pdf

M. Bosma, R. Minnaard, L. M. Sparks, G. Schaart, M. Losen et al., The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria, Histochem Cell Biol, vol.137, pp.205-221, 2012.
DOI : 10.1007/s00418-011-0888-x

URL : https://link.springer.com/content/pdf/10.1007%2Fs00418-011-0888-x.pdf

A. Lass, R. Zimmermann, M. Oberer, and R. Zechner, Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores, Prog Lipid Res, vol.50, pp.14-27, 2011.

H. Tornqvist and P. Belfrage, Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue, J Biol Chem, vol.251, pp.813-822, 1976.

M. Karlsson, J. A. Contreras, U. Hellman, H. Tornqvist, and C. Holm, cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases, J Biol Chem, vol.272, pp.27218-27241, 1997.

U. Taschler, F. P. Radner, C. Heier, R. Schreiber, M. Schweiger et al., Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance, J Biol Chem, vol.286, pp.17467-77, 2011.
DOI : 10.1074/jbc.m110.215434

URL : http://www.jbc.org/content/286/20/17467.full.pdf

S. Zhao, Y. Mugabo, J. Iglesias, L. Xie, V. Delghingaro-augusto et al., Prentki M. alpha/ beta-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion, Cell Metab, vol.19, pp.993-1007, 2014.

P. M. Badin, K. Louche, A. Mairal, G. Liebisch, G. Schmitz et al., Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, pp.1734-1776, 2011.
DOI : 10.2337/db10-1364

URL : https://hal.archives-ouvertes.fr/inserm-00726449

J. W. Jocken, C. Moro, G. H. Goossens, D. Hansen, A. Mairal et al., Skeletal muscle lipase content and activity in obesity and type 2 diabetes, J Clin Endocrinol Metab, vol.95, pp.5449-53, 2010.
DOI : 10.1210/jc.2010-0776

URL : https://hal.archives-ouvertes.fr/inserm-00613591

E. T. Kase, Y. Z. Feng, P. M. Badin, S. S. Bakke, C. Laurens et al., Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals, Biochim Biophys Acta, vol.1851, pp.1194-201, 2015.

M. Vaughan, J. E. Berger, and D. Steinberg, Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue, J Biol Chem, vol.239, pp.401-410, 1964.

C. Prats, M. Donsmark, K. Qvortrup, C. Londos, C. Sztalryd et al., Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine, J Lipid Res, vol.47, pp.2392-2401, 2006.

G. Haemmerle, R. Zimmermann, M. Hayn, C. Theussl, G. Waeg et al., Hormonesensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis, J Biol Chem, vol.277, pp.4806-4821, 2002.
DOI : 10.1074/jbc.m110355200

URL : http://www.jbc.org/content/277/7/4806.full.pdf

R. Zimmermann, J. G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-gruenberger et al., Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase, Science, vol.306, pp.1383-1389, 2004.
DOI : 10.1126/science.1100747

G. Haemmerle, A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer et al., Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science, vol.312, pp.734-741, 2006.
DOI : 10.1126/science.1123965

J. Fischer, C. Lefevre, E. Morava, J. M. Mussini, P. Laforet et al., The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy, Nat Genet, vol.39, pp.28-30, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409618

M. T. Sitnick, M. K. Basantani, L. Cai, G. Schoiswohl, C. F. Yazbeck et al., Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity, Diabetes, vol.62, pp.3350-61, 2013.

J. J. Dube, M. T. Sitnick, G. Schoiswohl, R. C. Wills, M. K. Basantani et al., Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice, Am J Physiol Endocrinol Metab, vol.308, pp.879-90, 2015.

A. J. Hoy, C. R. Bruce, S. M. Turpin, A. J. Morris, M. A. Febbraio et al., Adipose triglyceride lipase-null mice are resistant to highfat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation, Endocrinology, vol.152, pp.48-58, 2011.
DOI : 10.1210/en.2010-0661

URL : https://academic.oup.com/endo/article-pdf/152/1/48/9008684/endo0048.pdf

C. Lefevre, F. Jobard, F. Caux, B. Bouadjar, A. Karaduman et al.,

M. Laurens, Skeletal muscle lipids and insulin resistance thioesterase subfamily, in Chanarin-Dorfman syndrome, Am J Hum Genet, vol.69, pp.1002-1014, 2001.

X. Yang, X. Lu, M. Lombes, G. B. Rha, Y. I. Chi et al., The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase, Cell Metab, vol.11, pp.194-205, 2010.

M. Schweiger, M. Paar, C. Eder, J. Brandis, E. Moser et al., G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase, J Lipid Res, vol.53, pp.2307-2324, 2012.

A. Everard and P. D. Cani, Diabetes, obesity and gut microbiota, Best Pract Res Clin Gastroenterol, vol.27, pp.73-83, 2013.

W. L. Holland, B. T. Bikman, L. P. Wang, G. Yuguang, K. M. Sargent et al., Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice, J Clin Invest, vol.121, pp.1858-70, 2011.

G. S. Hotamisligil, Inflammation and endoplasmic reticulum stress in obesity and diabetes, Int J Obes (Lond), vol.32, issue.7, pp.52-56, 2008.

S. M. Turpin, G. I. Lancaster, I. Darby, M. A. Febbraio, and M. J. Watt, Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance, Am J Physiol Endocrinol Metab, vol.291, pp.1341-50, 2006.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.
DOI : 10.1016/j.cell.2012.02.017

URL : https://doi.org/10.1016/j.cell.2012.02.017

L. J. Van-loon, Use of intramuscular triacylglycerol as a substrate source during exercise in humans, J Appl Physiol, vol.97, pp.1170-1187, 2004.

B. H. Goodpaster, J. He, S. Watkins, and D. E. Kelley, Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurancetrained athletes, J Clin Endocrinol Metab, vol.86, pp.5755-5761, 2001.

C. S. Shaw, S. O. Shepherd, A. J. Wagenmakers, D. Hansen, P. Dendale et al., Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes, Am J Physiol Endocrinol Metab, vol.303, pp.1158-1165, 2012.

C. Moro, J. E. Galgani, and L. Luu, Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals, J Clin Endocrinol Metab, vol.94, pp.3440-3447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410118

C. Thamer, J. Machann, and O. Bachmann, Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity, J Clin Endocrinol Metab, vol.88, pp.1785-1791, 2003.
DOI : 10.1210/jc.2002-021674

URL : https://academic.oup.com/jcem/article-pdf/88/4/1785/9150505/jcem1785.pdf

P. M. Badin, K. Louche, and A. Mairal, Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, pp.1734-1742, 2011.
DOI : 10.2337/db10-1364

URL : https://hal.archives-ouvertes.fr/inserm-00726449

J. W. Jocken, C. Moro, and G. H. Goossens, Skeletal muscle lipase content and activity in obesity and type 2 diabetes, J Clin Endocrinol Metab, vol.95, pp.5449-5453, 2010.
DOI : 10.1210/jc.2010-0776

URL : https://hal.archives-ouvertes.fr/inserm-00613591

G. Haemmerle, A. Lass, and R. Zimmermann, Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science, vol.312, pp.734-737, 2006.
DOI : 10.1126/science.1123965

D. Langin, A. Dicker, and G. Tavernier, Adipocyte lipases and defect of lipolysis in human obesity, Diabetes, vol.54, pp.3190-3197, 2005.

P. M. Badin, C. Loubière, and M. Coonen, Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58
URL : https://hal.archives-ouvertes.fr/inserm-00726508

, J Lipid Res, vol.53, pp.839-848, 2012.

X. Yang, X. Lu, and M. Lombès, The G 0 /G 1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase, Cell Metab, vol.11, pp.194-205, 2010.
DOI : 10.1016/j.cmet.2010.02.003

URL : https://doi.org/10.1016/j.cmet.2010.02.003

K. Kuramoto, T. Okamura, and T. Yamaguchi, Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation, J Biol Chem, vol.287, pp.23852-23863, 2012.
DOI : 10.1074/jbc.m111.328708

URL : http://www.jbc.org/content/287/28/23852.full.pdf

N. M. Pollak, M. Schweiger, and D. Jaeger, Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier, J Lipid Res, vol.54, pp.1092-1102, 2013.

M. Bosma, M. K. Hesselink, and L. M. Sparks, Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels, Diabetes, vol.61, pp.2679-2690, 2012.
DOI : 10.2337/db11-1402

URL : http://diabetes.diabetesjournals.org/content/61/11/2679.full.pdf

R. E. Macpherson, S. V. Ramos, R. Vandenboom, B. D. Roy, and S. J. Peters, Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction, Am J Physiol Regul Integr Comp Physiol, vol.304, pp.644-650, 2013.

D. L. Swift, C. J. Lavie, and N. M. Johannsen, Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention, Circ J, vol.77, pp.281-292, 2013.
DOI : 10.1253/circj.cj-13-0007

URL : https://www.jstage.jst.go.jp/article/circj/77/2/77_CJ-13-0007/_pdf

E. Corpeleijn, M. Mensink, M. E. Kooi, P. M. Roekaerts, W. H. Saris et al., Impaired skeletal muscle substrate oxidation in glucoseintolerant men improves after weight loss, Obesity (Silver Spring), vol.16, pp.1025-1032, 2008.
DOI : 10.1038/oby.2008.24

F. Pillard, C. Moro, and I. Harant, Lipid oxidation according to intensity and exercise duration in overweight men and women. Obesity (Silver Spring), vol.15, pp.2256-2262, 2007.
DOI : 10.1038/oby.2007.268

URL : https://hal.archives-ouvertes.fr/inserm-00409711

J. Bergstrom, Percutaneous needle biopsy of skeletal muscle in phys4870 Louche et al Exercise Training and Muscle Lipases, J Clin Endocrinol Metab, vol.98, issue.12, pp.4863-4871, 2013.

, at 22:52 For personal use only. No other uses without permission.. All rights reserved. iological and clinical research, The Endocrine Society, vol.35, pp.609-616, 1975.

J. E. Galgani, K. Vasquez, and G. Watkins, Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans, J Clin Endocrinol Metab, vol.98, pp.646-653, 2013.
DOI : 10.1210/jc.2012-3111

URL : https://academic.oup.com/jcem/article-pdf/98/4/E646/9049284/jcemE646.pdf

L. M. Sparks, N. M. Johannsen, and T. S. Church, Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes, J Clin Endocrinol Metab, vol.98, pp.1694-1702, 2013.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, pp.911-917, 1959.

J. J. Dubé, F. Amati, M. Stefanovic-racic, F. G. Toledo, S. E. Sauers et al., Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited, Am J Physiol Endocrinol Metab, vol.294, pp.882-888, 2008.

C. Pehmøller, N. Brandt, and J. B. Birk, Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4, Diabetes, vol.61, pp.2743-2752, 2012.

L. Wang, H. Mascher, N. Psilander, E. Blomstrand, and K. Sahlin, Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle, J Appl Physiol, vol.111, pp.1335-1344, 2011.

M. Friedrichsen, B. Mortensen, C. Pehmøller, J. B. Birk, and J. F. Wojtaszewski, Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity, Mol Cell Endocrinol, vol.366, pp.204-214, 2013.
DOI : 10.1016/j.mce.2012.06.013

E. O. Souza, V. Tricoli, and H. Roschel, Molecular adaptations to concurrent training, Int J Sports Med, vol.34, pp.207-213, 2013.

S. Bayod, D. Valle, J. Lalanza, and J. F. , Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues, Exp Gerontol, vol.47, pp.925-935, 2012.

J. R. Berggren, K. E. Boyle, W. H. Chapman, and J. A. Houmard, Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise, Am J Physiol Endocrinol Metab, vol.294, pp.726-732, 2008.
DOI : 10.1152/ajpendo.00354.2007

T. J. Alsted, L. Nybo, and M. Schweiger, Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training, Am J Physiol Endocrinol Metab, vol.296, pp.445-453, 2009.
DOI : 10.1152/ajpendo.90912.2008

H. J. Kim, J. S. Lee, and C. K. Kim, Effect of exercise training on muscle glucose transporter 4 protein and intramuscular lipid content in elderly men with impaired glucose tolerance, Eur J Appl Physiol, vol.93, pp.353-358, 2004.

S. O. Shepherd, M. Cocks, and K. D. Tipton, Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5, J Physiol, vol.591, pp.657-675, 2013.
DOI : 10.1113/jphysiol.2012.240952

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577544

C. Moro, S. Bajpeyi, and S. R. Smith, Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity, Am J Physiol Endocrinol Metab, vol.294, pp.203-213, 2008.

J. A. Kanaley, S. Shadid, M. T. Sheehan, Z. Guo, and M. D. Jensen, Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans, J Physiol, vol.587, pp.5939-5950, 2009.

C. Krintel, P. Osmark, M. R. Larsen, S. Resjo, D. T. Logan et al., Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates, PloS One, vol.3, p.3756, 2008.

B. C. Bergman, D. M. Hunerdosse, A. Kerege, M. C. Playdon, and L. Perreault, Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans, Diabetologia, vol.55, pp.1140-1150, 2012.

A. Lass, R. Zimmermann, and G. Haemmerle, Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome, Cell Metab, vol.3, pp.309-319, 2006.

N. E. Wolins, B. K. Quaynor, and J. R. Skinner, OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization, Diabetes, vol.55, pp.3418-3428, 2006.
DOI : 10.2337/db06-0399

URL : http://diabetes.diabetesjournals.org/content/55/12/3418.full.pdf

N. A. Ducharme and P. E. Bickel, Lipid droplets in lipogenesis and lipolysis, Endocrinology, vol.149, pp.942-949, 2008.

, at 22:52 For personal use only. No other uses without permission, The Endocrine Society, 2016.

. , ?MEM, human epithelial growth factor (hEGF), fetuin, gentamycin, and penicillin-streptomycin and amphotericin B were purchased from Gibco Invitrogen (Gibco, Life Technologies, DMEM without phenol red, heat-inactivated foetal calf serum (FCS), vol.18

M. A. Beverly and . Us), Human HSL cDNA was cloned into the pcDNA3 vector (Invitrogen, Carlsbad, CA) and obtained from Vector Biolabs (Philadelphia, PA). subjects Eight non-obese/non-diabetic (lean) control subjects, nine obese/ non-diabetic (obese) subjects and eight obese/diabetic (T2D) subjects /L, HbA1c ? 6.5% and/or use of one or more antidiabetic drug. Diabetic patients were treated either with diet alone or in combination with sulfonylurea, metformin or insulin, which was withdrawn 1 week before the study. The patients had no diabetic complications apart from simplex retinopathy that was self-reported based on previous diagnosis by an ophthalmologist. The control subjects had normal fasting glucose concentrations and HbA1c levels and no family history for type 2 diabetes. The groups were matched with respect to age, but differed by BMI, fasting plasma glucose concentrations, fasting serum insulin levels, HbA1c and glucose infusion rate by hyperinsulinemic euglycemic clamp (HEC, 40 mU/m 2 per min of insulin, after overnight fasting for 10 h), Corning CellBIND® tissue culture plates (96-and 12-well plates) were obtained from Corning Life-Sciences

, 2% FCS, 2% Ultroser G, 25 IU penicillin, 25 ?g/mL streptomycin, and 1.25 ?g/mL amphotericin B or in DMEM-Glutamax? (5.5 mmol/L glucose) supplemented with 10% FCS, 10 ng/mL hEGF, 0.39 ?g/mL dexamethasone, 0.05% BSA, 0.5 mg/mL fetuin, 50 ng/mL gentamycin and 50 ng/mL amphotericin B. At 70-80% confluence, the growth medium was replaced by DMEM-Glutamax? supplemented with 2% FCS, 25 IU penicillin, 25 ?g/mL streptomycin, 1.25 ?g/mL amphotericin B, and 25 pmol/L insulin or ?MEM supplemented with 2% FCS, 0.5 mg/mL fetuin, Cell culture Myoblasts from control, obese and T2D subjects were cultured on multi-well plates or 25 cm 2 flasks in DMEM-Glutamax? (5.5 mmol/L glucose)

, After pre-labelling, the cells were washed twice with 0.5% fatty acid-free BSA in DPBS at 37 °C. Some of the OA-labelled cells were harvested at the end of the pulse period (T0) with two additions of 125 ?L distilled water to determine OA incorporation into TAG, DAG, FFA (free fatty acid), CE (cholesteryl esters) and PL (phospholipids), Pulse-chase assay and lipid distribution from oleic acid Myotubes were cultured on 96-well or 12-well plates

W. T. Cefalu, Insulin resistance: cellular and clinical concepts, Exp. Biol. Med, vol.226, issue.1, pp.13-26, 2001.

L. Chow, A. From, and E. Seaquist, Skeletal muscle insulin resistance: the interplay of local lipid excess and mitochondrial dysfunction, Metabolism, vol.59, issue.1, pp.70-85

P. M. Coen and B. H. Goodpaster, Role of intramyocellular lipids in human health, Trends Endocrinol. Metab, vol.23, issue.8, pp.391-398, 2012.

A. Golay and J. Ybarra, Link between obesity and type 2 diabetes, Best Pract. Res. Clin. Endocrinol. Metab, vol.19, issue.4, pp.649-663, 2005.

E. E. Blaak, Fatty acid metabolism in obesity and type 2 diabetes mellitus, Proc. Nutr. Soc, vol.62, issue.3, pp.753-760, 2003.

L. J. Van-loon and B. H. Goodpaster, Increased intramuscular lipid storage in the insulinresistant and endurance-trained state, Pflugers Arch, vol.451, issue.5, pp.606-616, 2006.

D. E. Kelley, B. H. Goodpaster, and L. Storlien, Muscle triglyceride and insulin resistance, Annu. Rev. Nutr, vol.22, pp.325-346, 2002.

M. Bosma, Re-evaluating lipotoxic triggers in skeletal muscle: relating intramyocellular lipid metabolism to insulin sensitivity, Prog. Lipid Res, vol.51, issue.1, pp.36-49, 2012.

L. M. Sparks, Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes, Diabetes, vol.63, issue.5, pp.1583-1593, 2014.

E. Corpeleijn, Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids, Am. J. Physiol. Endocrinol. Metab, vol.299, issue.1, pp.14-22, 2010.

M. Gaster, Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes, Diabetes, vol.53, issue.3, pp.542-548, 2004.

J. W. Jocken, Skeletal muscle lipase content and activity in obesity and type 2 diabetes, J. Clin. Endocrinol. Metab, vol.95, issue.12, pp.5449-5453, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00613591

A. Lass, Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores, Prog. Lipid Res, vol.50, issue.1, pp.14-27, 2011.

P. M. Badin, D. Langin, and C. Moro, Dynamics of skeletal muscle lipid pools, Trends Endocrinol. Metab, vol.24, issue.12, pp.607-615, 2013.

J. Langfort, Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle, Biochem. J, vol.340, issue.2, pp.459-465, 1999.

P. M. Badin, Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, issue.6, pp.1734-1742, 2011.
DOI : 10.2337/db10-1364

URL : https://hal.archives-ouvertes.fr/inserm-00726449

P. M. Coen, Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content, Diabetes, vol.59, issue.1, pp.80-88, 2010.

J. W. Jocken, Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: effect of beta-adrenergic stimulation, Diabetes, vol.57, issue.7, pp.1834-1841, 2008.

M. Li, High muscle lipid content in obesity is not due to enhanced activation of key triglyceride esterification enzymes or the suppression of lipolytic proteins, Am. J. Physiol. Endocrinol. Metab, vol.300, issue.4, pp.699-707, 2011.

C. Moro, Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals, J. Clin. Endocrinol. Metab, vol.94, issue.9, pp.3440-3447, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410118

S. Bakke, Myotubes from severely obese type 2 diabetic subjects accumulate less lipids and show higher lipolytic rate than myotubes from severely obese nondiabetic subjects, PLoS ONE, vol.10, issue.3, p.119556, 2015.
DOI : 10.1371/journal.pone.0119556

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0119556&type=printable

B. Ukropcova, Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor, J. Clin. Invest, vol.115, issue.7, pp.1934-1941, 2005.

M. Gaster, The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity, Diabetes, vol.51, issue.4, pp.921-927, 2002.

N. Ortenblad, Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect, Biochim. Biophys. Acta, vol.1741, issue.1-2, pp.206-214, 2005.

M. Gaster, A cellular model system of differentiated human myotubes, Ampis, vol.109, issue.11, pp.735-744, 2001.

P. M. Badin, Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58, J. Lipid Res, vol.53, issue.5, pp.839-848, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726508

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

M. Boschmann, LMNA mutations, skeletal muscle lipid metabolism, and insulin resistance, J. Clin. Endocrinol. Metab, vol.95, issue.4, pp.1634-1643, 2010.

R. R. Henry, Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms, J. Clin. Invest, vol.98, issue.5, pp.1231-1236, 1996.

A. W. Thorburn, Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake, J. Clin. Invest, vol.85, issue.2, pp.522-529, 1990.

V. Aas, Chronic hyperglycaemia promotes lipogenesis and triacylglycerol accumulation in human skeletal muscle cells, Diabetologia, vol.47, issue.8, pp.1452-1461, 2004.
DOI : 10.1007/s00125-004-1465-9

E. T. Kase, Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals, Diabetologia, vol.50, issue.10, pp.2171-2180, 2007.
DOI : 10.1007/s00125-007-0760-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs00125-007-0760-7.pdf

E. T. Kase, Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway, Diabetes, vol.54, issue.4, pp.1108-1115, 2005.

M. D. Mantzaris, E. V. Tsianos, and D. Galaris, Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells, FEBS J, vol.278, issue.3, pp.519-530, 2011.

E. T. Kase, Biochimica et Biophysica Acta, vol.1851, pp.1194-1201, 2015.

M. Coué, P. Badin, I. K. Vila, C. Laurens, and K. Louche,

M. Marquès, V. Bourlier, E. Mouisel, G. Tavernier, A. C. Rustan et al., Dominique Langin and Cedric Moro Diabetes, vol.64, issue.12, pp.4033-4045, 2015.

I. K. Vila, Claire Laurens, vol.1, issue.2

K. Louche, , vol.1, 2002.

, Geneviève Tavernier, vol.1, issue.2

C. Arild and . Rustan, , p.3

J. E. Galgani, , p.5

S. R. Smith, Dominique Langin

J. Arnlöv, E. Ingelsson, J. Sundström, and L. Lind, Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men, Circulation, vol.121, pp.230-236, 2010.

J. Arnlöv, J. Sundström, E. Ingelsson, and L. Lind, Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men, Diabetes Care, vol.34, pp.61-65, 2011.

T. J. Wang, M. G. Larson, M. J. Keyes, D. Levy, E. J. Benjamin et al., Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals, Circulation, vol.115, pp.1345-1353, 2007.

T. J. Wang, M. G. Larson, and D. Levy, Impact of obesity on plasma natriuretic peptide levels, Circulation, vol.109, pp.594-600, 2004.

M. Magnusson, A. Jujic, and B. Hedblad, Low plasma level of atrial natriuretic peptide predicts development of diabetes: the prospective Malmo Diet and Cancer study, J Clin Endocrinol Metab, vol.97, pp.638-645, 2012.

M. Lazo, J. H. Young, and F. L. Brancati, NH2-terminal pro-brain natriuretic peptide and risk of diabetes, Diabetes, vol.62, pp.3189-3193, 2013.

C. Moro, Natriuretic peptides and fat metabolism, Curr Opin Clin Nutr Metab Care, vol.16, pp.645-649, 2013.
DOI : 10.1097/mco.0b013e32836510ed

T. J. Wang, The natriuretic peptides and fat metabolism, N Engl J Med, vol.367, pp.377-378, 2012.

C. Moro and S. R. Smith, Natriuretic peptides: new players in energy homeostasis, Diabetes, vol.58, pp.2726-2728, 2009.
DOI : 10.2337/db09-1335

URL : http://europepmc.org/articles/pmc2780882?pdf=render

M. Coué and C. Moro, Natriuretic peptide control of energy balance and glucose homeostasis, Biochimie, 2015.

L. R. Potter, S. Abbey-hosch, and D. M. Dickey, Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions, Endocr Rev, vol.27, pp.47-72, 2006.
DOI : 10.1210/er.2005-0014

URL : https://academic.oup.com/edrv/article-pdf/27/1/47/8861770/edrv0047.pdf

D. G. Gardner, Natriuretic peptides: markers or modulators of cardiac hypertrophy?, Trends Endocrinol Metab, vol.14, pp.411-416, 2003.

M. Kuhn, Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A, Circ Res, vol.93, pp.700-709, 2003.

L. R. Potter, Natriuretic peptide metabolism, clearance and degradation, FEBS J, vol.278, pp.1808-1817, 2011.

C. Moro and M. Lafontan, Natriuretic peptides and cGMP signaling control of energy homeostasis, Am J Physiol Heart Circ Physiol, vol.304, pp.358-368, 2013.

S. Collins, A heart-adipose tissue connection in the regulation of energy metabolism, Nat Rev Endocrinol, vol.10, pp.157-163, 2014.

C. Moro, F. Crampes, and C. Sengenes, Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans, FASEB J, vol.18, pp.908-910, 2004.

C. Sengenes, M. Berlan, D. Glisezinski, I. Lafontan, M. et al., Natriuretic peptides: a new lipolytic pathway in human adipocytes, FASEB J, vol.14, pp.1345-1351, 2000.

M. Bordicchia, D. Liu, and E. Z. Amri, Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes, J Clin Invest, vol.122, pp.1022-1036, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00758279

S. Engeli, A. L. Birkenfeld, and P. M. Badin, Natriuretic peptides enhance the oxidative capacity of human skeletal muscle, J Clin Invest, vol.122, pp.4675-4679, 2012.

C. Sengenès, A. Zakaroff-girard, and A. Moulin, Natriuretic peptidedependent lipolysis in fat cells is a primate specificity, Am J Physiol Regul Integr Comp Physiol, vol.283, pp.257-265, 2002.

K. Miyashita, H. Itoh, and H. Tsujimoto, Natriuretic peptides/cGMP/cGMPdependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity, Diabetes, vol.58, pp.2880-2892, 2009.

P. M. Badin, K. Louche, and A. Mairal, Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans, Diabetes, vol.60, pp.1734-1742, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00726449

M. E. Riou, E. Pigeon, and J. St-onge, Predictors of cardiovascular fitness in sedentary men, Appl Physiol Nutr Metab, vol.34, pp.99-106, 2009.

J. E. Galgani, K. Vasquez, and G. Watkins, Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans, J Clin Endocrinol Metab, vol.98, pp.646-653, 2013.

J. Bergstrom, Percutaneous needle biopsy of skeletal muscle in physiological and clinical research, Scand J Clin Lab Invest, vol.35, pp.609-616, 1975.

R. A. Defronzo, J. D. Tobin, and R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance, Am J Physiol, vol.237, pp.214-223, 1979.

I. K. Vila, P. M. Badin, and M. A. Marques, Immune cell Toll-like receptor 4 mediates the development of obesity-and endotoxemia-associated adipose tissue fibrosis, Cell Reports, vol.7, pp.1116-1129, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00991860

P. M. Badin, I. K. Vila, and K. Louche, High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle, Endocrinology, vol.154, pp.1444-1453, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00841051

B. Ukropcova, M. Mcneil, and O. Sereda, Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor, J Clin Invest, vol.115, pp.1934-1941, 2005.

P. M. Badin, C. Loubière, and M. Coonen, Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58, J Lipid Res, vol.53, pp.839-848, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726508

E. Plante, A. Menaouar, B. A. Danalache, T. L. Broderick, M. Jankowski et al., Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice, Diabetologia, vol.57, pp.1257-1267, 2014.

J. A. Chavez and S. A. Summers, A ceramide-centric view of insulin resistance, Cell Metab, vol.15, pp.585-594, 2012.

V. T. Samuel and G. I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell, vol.148, pp.852-871, 2012.
DOI : 10.1016/j.cell.2012.02.017

URL : https://doi.org/10.1016/j.cell.2012.02.017

C. Moro, J. Galitzky, C. Sengenes, F. Crampes, M. Lafontan et al., Functional and pharmacological characterization of the natriuretic peptidedependent lipolytic pathway in human fat cells, J Pharmacol Exp Ther, vol.308, pp.984-992, 2004.

C. Sengenes, A. Bouloumie, and H. Hauner, Involvement of a cGMPdependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes, J Biol Chem, vol.278, pp.48617-48626, 2003.

O. Pivovarova, Ö. Gögebakan, and N. Klöting, Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: a missing link between CVD risk and obesity?, J Clin Endocrinol Metab, vol.97, pp.731-739, 2012.

R. Sarzani, P. Dessì-fulgheri, and F. Salvi, A novel promoter variant of the natriuretic peptide clearance receptor gene is associated with lower atrial 4044 NPR Signaling, Obesity, and T2D Diabetes, J Hypertens, vol.64, pp.1301-1305, 1999.

R. Sarzani, P. Strazzullo, and F. Salvi, Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity, Obes Res, vol.12, pp.351-356, 2004.
DOI : 10.1038/oby.2004.44

A. M. Khan, S. Cheng, and M. Magnusson, Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies, J Clin Endocrinol Metab, vol.96, pp.3242-3249, 2011.
DOI : 10.1210/jc.2011-1182

URL : https://academic.oup.com/jcem/article-pdf/96/10/3242/9111367/jcem3242.pdf

N. Matsukawa, W. J. Grzesik, and N. Takahashi, B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebocontrolled cross-over study in healthy men, Proc Natl Acad Sci U S A, vol.96, pp.3-24, 1999.

T. Tang, M. J. Abbott, M. Ahmadian, A. B. Lopes, Y. Wang et al., Desnutrin/ ATGL activates PPARd to promote mitochondrial function for insulin secretion in islet b cells, Cell Metab, vol.18, pp.883-895, 2013.
DOI : 10.1016/j.cmet.2013.10.012

URL : https://doi.org/10.1016/j.cmet.2013.10.012