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Découverte de règles d’association multi-relationnelles à partir de

bases de connaissances ontologiques pour l’enrichissement

d’ontologies

Résumé: Dans le contexte du Web sémantique, les ontologies OWL représen-

tent des connaissance explicite sur un domaine sur la base d’une conceptualisation

des domaines d’intérêt, tandis que la connaissance correspondante sur les individus

est donnée par les données RDF qui s’y réfèrent. Dans cette thèse, sur la base

d’idées dérivées de l’ILP, nous visons à découvrir des motifs de connaissance cachés

sous la forme de règles d’association multi-relationnelles en exploitant l’évidence

provenant des assertions contenues dans les bases de connaissances ontologiques.

Plus précisément, les règles découvertes sont codées en SWRL pour être facilement

intégrées dans l’ontologie, enrichissant ainsi son pouvoir expressif et augmentant les

connaissances sur les individus (assertions) qui en peuvent être dérivées. Deux algo-

rithmes appliqués aux bases de connaissances ontologiques peuplées sont proposés

pour trouver des règles à forte puissance inductive: (i) un algorithme de génération

et test par niveaux et (ii) un algorithme évolutif. Nous avons effectué des expéri-

ences sur des ontologies accessibles au public, validant les performances de notre

approche et les comparant avec les principaux systèmes de l’état de l’art. En outre,

nous effectuons une comparaison des métriques asymétriques les plus repandues,

proposées à l’origine pour la notation de règles d’association, comme éléments con-

stitutifs d’une fonction de fitness pour l’algorithme évolutif afin de sélectionner les

métriques qui conviennent à la sémantique des données. Afin d’améliorer les perfor-

mances du système, nous avons proposé de construire un algorithme pour calculer

les métriques au lieu d’interroger via SPARQL-DL.

Mots clés : Web sémantique, Ontologie, OWL, SWRL, RDF, Exploration

de données, Algorithmes évolutionnaires, Logique de description, Découverte de

modèle





Discovering multi-relational association rules from ontological

knowledge bases to enrich ontologies

Abstract :

In the Semantic Web context, OWL ontologies represent explicit domain knowl-

edge based on the conceptualization of domains of interest while the corresponding

assertional knowledge is given by RDF data referring to them. In this thesis, based

on ideas derived from ILP, we aim at discovering hidden knowledge patterns in the

form of multi-relational association rules by exploiting the evidence coming from

the assertional data of ontological knowledge bases. Specifically, discovered rules

are coded in SWRL to easily integrated within the ontology, thus enriching its ex-

pressive power and augmenting the assertional knowledge that can be derived. Two

algorithms applied to populated ontological knowledge bases are proposed for find-

ing rules with a high inductive power: (i) level-wise generated-and-test algorithm

and (ii) evolutionary algorithm. We performed experiments on publicly available

ontologies, validating the performances of our approach and comparing them with

the main state-of-the-art systems. In addition, we carry out a comparison of popu-

lar asymmetric metrics, originally proposed for scoring association rules, as building

blocks for a fitness function for evolutionary algorithm to select metrics that are suit-

able with data semantics. In order to improve the system performance, we proposed

to build an algorithm to compute metrics instead of querying via SPARQL-DL.

Keywords: Semantic Web, Ontology, OWL, SWRL, RDF, Data mining, Evo-

lutionary Algorithms, Description Logics, Pattern Discovery.
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Chapter 1

Introduction

Contents

1.1 Introduction and objectives . . . . . . . . . . . . . . . . . . . 1

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 4
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1.4 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . 6
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1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction and objectives

1.1.1 Introduction

The Semantic Web has undergone a steady and continuous development toward its

primary objective, which is to associate meaning with the data and to exploit the

data through intelligent processing techniques. On the Semantic Web, data must

be mapped to the RDF, which is a data model [KC04] of the data layer of the

Semantic Web. This data model is designed for the integrated representation of

information obtained from multiple sources and creates new structured information

from information in unstructured form. In RDF, information is represented in RDF

triples [KC04] which allows us to define statements about resources in the form of

subject-predicate-object expressions.

Linked Data, also known as the Web of Data, is one of the core concepts and

pillars of the Semantic Web. This is a way of publishing structured data linked

to each other in order to make it easy to query semantics. We use Linked Data
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to share data in a way that computers can automatically read information instead

of for human readers. Linked Open Data (LOD) is Linked Data which is released

under an open license, which does not impede its reuse for free. Up to now, there

are 1,163 datasets and billions of RDF triples are available on the LOD Cloud

(Figure 1.1). In order to retrieve information from LOD, we use a query language

called SPARQL (through a number of SPARQL endpoints) to perform semantic

queries. These semantic queries enable the retrieval of both explicitly and implicitly

derived information based on the syntax of SPARQL.

Figure 1.1: Linking Open Data cloud diagram 2017 [AAC]

LOD could be considered as a huge knowledge base containing a large number

of facts in many different fields, and what motivated the research that we have

undertaken in this thesis is the opportunity of analyzing wealth of data that are

available on the LOD with the aim of extracting information from it, with respect

to a specific domain of discourse, i.e., learn knowledge from it.
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By combining RDF triples, we obtain an RDF Graph (Fingure 1.2). Therefore,

general methods and techniques that have been employed for mining graphs should

be relevant to mining LOD.

Figure 1.2: RDF Graph

1.1.2 Objectives

1.1.2.1 Overall objective

As noted above (Section 1.1.1), LOD contains a huge amount of data in many dif-

ferent areas, therefore mining the data extracted from LOD is an obvious demand.

The overall objective of the thesis is to build an algorithm which is used for the pur-

pose of inductive learning from assertional data in the ontology. The kind of learned

knowledge will be reintegrated into the ontology to enrich the data. Experimental

evaluation is performed on publicly available ontologies.

1.1.2.2 Specific objectives

The specific objectives of the thesis, which are a consequence of the overal objective

stored in Section 1.1.2.1 are the following:

– First, we must determine the kind of knowledge to be learned, so that after

being extracted, that kind of knowledge will be tested using deductive process.

– Select solutions for the algorithm and define search operators along with biases

to avoid discovering inconsistent, redundant, and trivial knowledge, thereby
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minimizing search efforts.

– Select or propose the best metrics to evaluate the quality of learned knowledge.

We are particularly interested in the metrics that are tailored to comply with

the open world assumption (OWA) scenario.

– Select or propose tools or metrics to assess the accuracy of learned knowledge.

– Provide tools for automatically extracting (learning) knowledge from the on-

tology through a specific application. Users can use the output results of this

application immediately.

– The research results of the thesis will be applied to publicly available ontolo-

gies and compared to the best state-of-the-art systems.

1.2 Research questions

Based on the above research objectives, we have developed the following research

questions:

– Research question 1 :

What kind of knowledge is learned from the ontology?

– Research question 2 :

What mining methods are applied to extract (to learn) knowledge from the

ontology and which mining method is optimal ?

– Research question 3 :

What methods of evaluation are used to assess the kind of knowledge learned

from the ontology and which method of evaluation is the best ?

1.3 Research Methodology

Figure 1.3 illustrates our research methodology. Firstly, we determine a kind of

knowledge that is extracted or learned from knowledge base. Specifically, this kind

of knowledge is expressed in the form of rules standardized by the W3C and it can

be easily integrated in the ontology. Next, we automatically generate these rules by
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Figure 1.3: A schematic illustration of the research methodology

algorithms based on ideas derived from Inductive Logic Programming (ILP) which

is a method for inductively learning rules from facts and the generation of these

rules lays outside of logic (meaning based on frequently occurring events without

deductive process). These algorithms should be designed to be able to reach results

in an acceptable execution time: After that, generated rules will be tested by some

tools such as metrics, a deductive process. A stop condition of the algorithm is met

when one of the following conditions is satisfied: (i) The algorithm has traversed

the whole search space of rules, in case we are dealing with a small search space.

(ii) Otherwise, if we are dealing with a huge search space of rules, some constraint

conditions of the algorithm are created in order to try to retrieve the best rules

in the largest quantity. During the execution of the algorithm, if the stopping

condition of the algorithm has not occurred, the rules can be added to a set of

intermediate rules, that can be combined by the algorithm to generate new rules.

After the stopping condition of the algorithm is reached, the extracted rules (known
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as discovered rules) will be integrated into the ontology to enrich it.

In practice, the rule space might be too large to be exhaustively searched, and

the data mining algorithm will have to use some heuristic methods or soft comput-

ing techniques. In particular, evolutionary algorithms are used in this thesis. In

addition, we might introduce a set of constraints, called a language bias, to reduce

the search space of rules.

Our research results will be compared and evaluated with state-of-the-art sys-

tems in order to identify the weaknesses of the method and to improve it.

1.4 Contributions of the thesis

In this thesis, we address the problem of discovering multi-relational association

rules from ontological knowledge bases. Multi-relational association rules are knowl-

edge patterns learned from the ontology and coded in SWRL (Semantic Web Rule

Language). This is our answer to the first research question. Unlike ours, some pre-

vious approaches (Chapter 2: State-of-the-art) do not consider any background/on-

tological knowledge and do not exploit any reasoning capabilities. Our discovered

rules can be directly added to the ontology, thus enriching its expressive power

and augmenting the assertional knowledge that can be derived (Example 1.1). In

addition, some discovered rules might be transformed to the representation in DL

to complement the ontology (Example 1.2). This is the first contribution of this

thesis.

Example 1.1. Given a knowledge base K with the following TBox and ABox:

T = { Male ⊑ Human,

Female ⊑ Human,

∃.husbandOf.⊤ ⊑ Male,

⊤ ⊑ ∀husbandOf.Female

∃.daughterOf.⊤ ⊑ Female,

⊤ ⊑ ∀daughterOf.Human

∃.motherinlawOf.⊤ ⊑ Female,

⊤ ⊑ ∀motherinlawOf.Human }

A = { husbandOf(John, Anna), husbandOf(Harmen, Jasmin)
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daughterOf(Anna, Flori), daughterOf(Jasmin, Nathalie),

motherinlawOf(Flori, John) }

Suppose we mine the following rule from K:

motherinlawOf(x, y) ← husbandOf(y, z) ∧ daughterOf(z, x)

We integrate this rule in K and retrieve a new assertion, that is motherinla-

wOf(Nathalie, Harmen)

Example 1.2. Suppose we discover the following rules from a knowledge base and

transform them to the representation in DL:

1. Uncle(x) ← Man(x) ∧ hasBrother(x,y) ∧ hasChild(y,z) ∧ Human(z)

becomes

Man ⊓ ∃hasBrother.∃hasChild.Human ⊑ Uncle (concept inclusion)

2. hasChild(x,y) ← hasParent(y,x)

becomes

hasChild¯ ≡ hasParent (Inverse role)

3. hasSibling(x,y) ← hasSibling(x,z) ∧ hasSibling(z,y)

becomes

hasSibling ◦ hasSibling ⊑ hasSibling

In order to answer Research Question 2, in the thesis, we present two algorithms

which aim at discovering frequent and accurate hidden patterns in the form of multi-

relational association rules. Both algorithms generate rules respecting the language

bias (Section 3.5), that is a set of constraints to avoid coming up with redundant or

unnecessary rules. In addition, the rules to be discovered by the two algorithms must

also satisfy the conditions of basic metrics (Section 3.6). The difference between

the two algorithms is as follows:

1. The first algorithm (Chapter 4) discovers all possible rules in the given space

of rules (this space is limited by a maximum length of rule and this length

is usually short due to system performance problems). The contribution of

the first algorithm is, in addition to exploiting reasoning capabilities based

on ontological knowledge, to also outperform state-of-the-art ILP (Inductive
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Logic Programming) systems in terms of number of discovered rules, using

the same samples of the ontologies and the same rule length.

2. The second algorithm (Chapter 5) offers a completely new approach to dis-

cover multi-relational association rules, that is to use a genetic algorithm.

When using this algorithm, the space of rules might be extended and this

means that we can discover rules whose lengths are greater than the lengths

of the rules discovered by state-of-the-art systems and the lengths of the rules

discovered by the first algorithm without affecting the performance of the

system. By considering that a pattern is the genotype of an individual in

the population and the corresponding rule is its phenotype, we have defined

genetic operators to improve the solutions and fitness functions based on two

metrics (the head coverage of the rule and a combination between the head

coverage along with confidence of the rule - Section 5.3.3). This contribution

has achieved encouraging results because the discovered rules have reached the

desired criteria (the number of discovered rules is greater than for the com-

peting systems, the length of rule is arbitrary, discovered rules are consistent

with ontological knowledge base).

With the desire to find the best metrics to assess multi-relational association

rules and also to answer Research Question 3, we carry out a comparison of popular

asymmetric metrics (Chapter 6) adapted from metrics scoring association rules to

conform to the Semantic Web. Comparative work is performed by using each metric

as a building block for a fitness function for evolutionary inductive programming.

The best metrics will be used to score candidate multi-relational association rules

in an evolutionary approach to the enrichment of populated knowledge bases in the

context of the Semantic Web. The result of this work is an important contribution

of the thesis because these metrics have not previously been used in the definition

of fitness functions for this purpose.

Calculation speed of metrics is a very important factor while performing exper-

iments on this thesis. We can use SPARQL-DL to query the data needed to assist

calculation of metrics. However, the data query speed of SPARQL-DL is pretty

slow and does not guarantee the execution in acceptable time, thus we built an al-

gorithm based on the Hash Join algorithm to improve the calculation speed of the

metrics. This is also a significant contribution to carry out successful experiments.
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1.5 Publications

The following publications have been produced during the thesis implementation

process and described the results achieved:

1. Tran Duc Minh, Claudia d’Amato, Binh Thanh Nguyen, Andrea G. B. Tet-

tamanzi. Comparing Rule Evaluation Metrics for the Evolutionary

Discovery of Multi-Relational Association Rules in the Semantic

Web. EuroGP 2018, Parma, Italy, April 4-6, 2018.

2. Tran Duc Minh, Claudia d’Amato, Binh Thanh Nguyen, Andrea G. B. Tet-

tamanzi. An evolutionary algorithm for discovering multi-relational

association rules in the semantic web. Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 2017), pages 513-520, Berlin,

Germany, July 15-19, 2017.

3. Claudia d’Amato, Andrea G. B. Tettamanzi, Tran Duc Minh. Evolutionary

Discovery of Multi-relational Association Rules from Ontological

Knowledge Bases. Knowledge Engineering and Knowledge Management -

20th International Conference (EKAW 2016), pages 113-128, Bologna, Italy,

November 19-23, 2016.

4. Claudia d’Amato, Steffen Staab, Andrea G. B. Tettamanzi, Tran Duc

Minh, Fabien L. Gandon. Ontology enrichment by discovering multi-

relational association rules from ontological knowledge bases. Pro-

ceedings of the 31st Annual ACM Symposium on Applied Computing (SAC

2016), pages 333-338, Pisa, Italy, April 4-8, 2016.

1.6 Thesis outline

This document is basically divided into three parts. The first part containing the

first three chapters presents basic knowledge related to the topic and state of the

art. The second part, consisting of chapters 4, 5, 6 and 7, is the detailed content

of the thesis. This part details the algorithms, improvements, experimental results,

and evaluations in our research. The last part, which is in chapter 8, presents the
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conclusions of our research. The contents of the next chapters are summarized as

follows:

• Chapter 2 : We provide a survey of the state of the art in Semantic Web

mining and ontology learning.

• Chapter 3 : This chapter is devoted to the basic knowledge related to this

thesis and is composed of two parts. The first part presents some fundamental

knowledge of the Semantic Web, the second part offers notations and formal

definitions that are used to support algorithms and to evaluate generated

rules.

• Chapter 4 : We propose an algorithm whose aim is to discover hidden knowl-

edge patterns in the form of multi-relational association rules by implementing

the level-wise generate-and-test approach.

• Chapter 5 : We propose a genetic algorithm that is an improvement of the

algorithm in Chapter 4 and on the state-of-the-art systems for the purpose of

the work.

• Chapter 6 : We adapt popular asymmetric metrics proposed for scoring

association rules to metrics that match the Semantic Web. And in this chap-

ter, we compare these metrics by considering them as building blocks for the

fitness function of the genetic algorithm mentioned in Chapter 5 in order to

select suitable metrics to score multi-relational association rules.

• Chapter 7 : In order to improve the calculation of metrics, in this chapter,

we propose an algorithm based on the Hash Join algorithm but adjusted to

fit the generated SWRL rules. This algorithm replaces SPARQL-DL query

encountering problems in performance.

• Chapter 8 : This chapter offers conclusions based on the contents of the

previous chapters and it also provides perspectives and future work to improve

our research results.
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2.1 Semantic Web Mining

The integration of the two scientific research areas of Semantic Web and Web Mining

is known as Semantic Web Mining. An early state-of-the-art survey on Semantic

Web Mining [SHB06], dating back to 2006, analyzes the convergence of trends from

these two research areas, it then sketches ways of how a closer integration could

be profitable. Recently, the huge increase in the amount of Semantic Web data

became a perfect target for many researchers to apply Data Mining techniques on

it. Another state-of-the-art survey on Semantic Web Mining in 2013 [QKQ13] gives

a detailed account of the advances in this new research area. It shows the positive

effects of Semantic Web Mining, the obstacles faced by researchers and proposes a

number of approaches to deal with the very complex and heterogeneous information

and knowledge which are produced by the technologies of the Semantic Web. A

recent survey (in 2016) in addition to providing various classifications of web mining

along with its subtasks, gives a perspective to the research community about the

potential of applying techniques to extract meaningful patterns [T.R16].
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2.2 Expert Rule Mining

An expert approach is proposed to discover causal relations in RDF-based medical

data [NB12]. This method requires a domain expert defining contexts and objectives

of mining and extraction process.

2.3 Ontology learning

Building ontologies manually is extremely labor-intensive and time-consuming. An

approach is called Ontology Learning that might go from the simple extraction to

the induction of description logic. Some of the researches we can refer to are:

– Learning ontologies from RDF annotations of Web resources [DFZD01]. Ini-

tially, this method extracts some of resource descriptions from the whole RDF

graph gathering all the annotations. Then it builds ontology by gradually in-

creasing the size of the resource descriptions.

– Clustering ontology-based metadata in the Semantic Web [MZ02]. This ap-

proach defines a set of similarity measures that allow to compute similarities

between ontology-based metadata along different dimensions. These measures

are then applied within a hierarchical clustering algorithm.

– Some techniques in the ontology learning cycle have been implemented in

KAON Text-To-Onto [MS]. This ontology learning framework proceeds

through ontology import, extraction, pruning, and refinement to give the

ontology engineer a wealth of coordinated tools for ontology modeling.

– Learning Meta-Descriptions by using clustering to identify classes of people

and Inductive Logic Programming (ILP) to learn descriptions of these groups

in the FOAF Network [GEP04].

2.3.1 Concept learning

The W3C Web Ontology Language (OWL) is designed to represent rich and com-

plex knowledge about things, groups of things, and relations between things. The

following approaches have been developed to automatically learn concepts and pro-

duce their descriptions in OWL:
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– DL-Learner [Leh09], a framework for learning concepts in description logics

and OWL, includes several Machine Learning algorithms, support for different

OWL formats, reasoner interfaces, and learning problems in OWL.

– An approach for mining and analyzing large knowledge bases based on DL-

Learner [HLA08]. This approach obtains complex class descriptions from

objects in large knowledge bases available as SPARQL endpoints or Linked

Data by using Machine Learning techniques.

– A FOIL-like algorithm is proposed that can be applied to general DL lan-

guages [FdE08b] and is implemented in the DL-FOIL system. The main com-

ponents of this system are represented by a set of refinement operators and by

a different gain function which takes into account the open world assumption.

2.3.2 Pattern mining

Pattern mining consists of using data mining algorithms to learn (to discover) useful

and structured patterns. The following researches proposed solutions for mining

hidden knowledge patterns in the Semantic Web:

– A solution focuses on the relation of the semantics of the representation for-

malism to the task of frequent pattern discovery and exploits the semantics

of the combined knowledge base to perform semantic tests [JLL10a]. This

method is used to discover DATALOG clauses and patterns having the form

of conjunctive queries over the combined knowledge base. It is grounded on a

notion of key, standing for the basic attribute to be used for counting elements

for building the frequent patterns.

– A statistical approach to the induction of expressive schemas from large RDF

datasets is described in [VN11]. The kind of knowledge that is explored in this

approach is association rules. The mined association rules can be translated

into OWL 2 EL axioms in a relatively straightforward way. However, this

approach does not exploit any reasoning capabilities.

– Another approach for inducing new assertional knowledge from RDF datasets

is presented in [GTHS13]. This approach also mines association rules and

does not apply any reasoning capabilities. However, it develops a rule mining
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model that is explicitly tailored to support the open world assumption (OWA)

scenario.

2.3.3 Evolutionary algorithm for learning

Learning can be viewed as a search problem in the space of all possible patterns.

This problem is usually NP-hard, however, evolutionary algorithm approaches keep

a good balance between exploration and exploitation of the solution spaces. Several

previous researches have applied evolutionary algorithms to learn concepts:

– An approach applied an evolutionary algorithm to learn concepts for de-

scription logics by combining refinement operators and Genetic Program-

ming [Leh06].

– An evolutionary algorithm for concept learning in First Order Logic (FOL)

was also introduced [DM02], which evolves a population of Horn clauses by

repeated selection, mutation and optimization of more fit clauses. A new

point in this technique is that the use of stochastic search biases for reducing

the complexity of the search process and of the clause fitness evaluation.

– A state-of-the-art survey provides an overview of evolutionary techniques for

ILP to learn concepts in FOL [Div06]. Six systems (Regal, G-Net, Dogma,

Sia01, ECL and GLPS) are described and compared by means of the follow-

ing aspects: search strategy, representation, evaluation, search operators and

biases adopted for limiting the search space.

2.4 Pattern evaluation

Evaluation of the quality of the patterns generated by the mining (learning) tech-

niques is an important step to identify the most interesting patterns. Therefore,

we need to be aware of the importance of choosing appropriate measures for our

study. There are quite a number of objective measures used to assess the quality

of the patterns and some researches performing to compare these measures to aim

at selecting the right ones as follows:

– A comparative study of several key properties in order to select the right

measure for a given application [TKS04]. This research has compared proper-
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ties based on twenty-one measures for association patterns and it shows that

each measure might be appropriate for some applications but not for other

applications.

– Another comparison of metrics for mining rules from data (the metrics in-

cluding confidence, support, gain, chi-squared value, gini-index, entropy gain,

laplace, lift, and conviction) shows that the best rule according to any of these

metrics must reside along a support/confidence border [BA99].

– A research of the predictive ability of some association rule measures [AJ07]

performed an evaluation on seventeen datasets. The research concluded that

conviction is on average the best predictive measure.

All the above researches compare the metrics where the CWA (Closed World

Assumption) is used along with a platform based on statistical inference. There are

some other metrics proposed as being appropriate for a scenario with OWA (Open

World Assumption) that the Semantic Web works under.

1. AMIE [GTHS13] has proposed a metric called PCA-Confidence (where PCA

stands for Partial Completeness Assumption). This metric assumes that, in

all role assertions, if we know one object for a given subject and predicate

(role name), then we know all objects for that subject and predicate. This

assumption allow us to generate counter-examples to increase the accuracy of

the metric, specifically here it is the confidence metric to be focused on.

2. A metric based on possibility theory is proposed by [TFZG14], where a candi-

date axiom holds two values: a degree of possibility and a degree of necessity.

This metric is suitable to represent incomplete knowledge bases and to be used

for automatic axiom induction from ontology. In addition, it also provides a

solid foundation for learning ontology.
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3.1 Introduction

In this chapter, we will cover some basic concepts relating to the content of the

next chapters.

Initially, Inductive Logic Programming (ILP) is introduced in Section 3.2. Next,

in Section 3.3, we present the basic notations and terminology related to the seman-

tic technologies for the Web of data, which is the basis for our research problem that

is to discover hidden knowledge patterns in the form of multi-relational association

rules coded in Semantic Web Rule Language (SWRL). Therefore, in Section 3.4, we

focus on introducing SWRL.

In Sections 3.5 and 3.6, we mention fundamental issues of how to discover hidden

knowledge patterns effectively. In Section 3.5, we propose a language bias used to
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reduce the search space of rules and generate non-redundant rules; In Section 3.6,

we present metrics used to evaluate the quality of generated rules. In addition, we

come up with an extensive list of metrics borrowed from scoring association rules

to apply to the assessment of generated rules in our work (Section 3.7). In order to

measure and evaluate the ability of a rule to perform correct predictions, we carry

out experiments together with metrics shown inside Section 3.8.

As described in Section 3.3.1, we refer to an ontological DL knowledge base

containing a set of axioms, which are of two kinds: terminological (TBox) and

assertional (ABox). In the following the general definition of a relational association

rule for an ontological knowledge base is given. Hence, the problem we want to

address is defined.

Definition 1 (Relational Association Rule). Given a populated ontological KB

K = (T ,A), a relational association rule r for K is a Horn-like clause of the form:

body → head, where: (a) body is a generalization of a set of assertions in K co-

occurring together; (b) head is a consequent that is induced from K and body

Definition 2 (Problem Definition).

Given:

• a populated ontological knowledge base K = (T ,A);

• a minimum ”frequency threshold”, θf ;

• minimum ”metrics thresholds”;

Discover: all frequent and fit hidden patterns with respect to θf and ”metrics

thresholds”, in the form of relational association rules, that may induce new

assertions for K.

Intuitively, a frequent hidden pattern is a generalization of a set of concept/-

role assertions co-occurring reasonably often (with respect to a fixed frequency

threshold) together, showing an underlying form of correlation that is exploited for

obtaining new assertions.

3.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a research field essentially combining Ma-

chine Learning and Logic Programming, which investigates the inductive construc-
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tion of logic programs from examples and background knowledge ( [Mug91], [D9̌6],

[MR94], [MDRP+12]). Learning from datasets to build logic programs is the main

task of ILP because the logic program provides a good representation of the general-

ization of a issue suggested to make predictions. In addition, the logic programs are

also more expressive than alternative representations such as network and graph-

based representations.

Learning logic programs is considered as a search problem in the space of all

possible solutions. This problem is often NP-hard, thus we need to figure out the

right solution to decrease the search space and in combination with evaluating the

complexity of the solutions.

3.3 Description Logics

Description logics (DLs) [BCM+03] are a family of knowledge representation lan-

guages that are widely used in ontological modelling.

We use description logics to represent knowledge about a domain of interest;

description logics are based on three disjoint sets of primal elements:

1. Concept names contains names that refer to types, categories or classes of

entities. For instance: Country, University, Animal, Doctor, ...

2. Role names contains names that denote binary relationships which might

hold between individuals of domain. For instance: sonOf, fatherOf, hasChild,

livedIn, ...

3. Individual names contains names that denote singular entities in the domain

of interest. For instance: the sun, JOHN, ...

3.3.1 Knowledge Base

A knowledge representation system based on description logics provides facilities to

set up knowledge bases, to reason about their content, and to manipulate them. A

knowledge base DL does not fully describe a specific situation, instead it includes

a set of statements, called axioms, each of which must be true in the situation

described. Often these axioms only capture a partial knowledge of the situation

that the ontology is describing and at the same time they are consistent with that
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ontology. A knowledge base separates axioms into three components: terminolog-

ical (TBox) axioms, assertional (ABox) axioms and relational (RBox) axioms. In

this thesis, when we mention TBox, this means that we refer to both TBox and

RBox.

– The TBox is considered as intensional knowledge in the form of sentences

relating concepts (terms) to other concepts, which introduces the terminology,

i.e., the vocabulary of an application domain.

Let C and D be concepts. Then:

* Concept inclusion has the form C ⊑ D that states that every C is a D.

This type of statement is also called subsumption and C ⊑ D is often

read "C is subsumed by D" or "D subsumes C".

* Concept equivalence has the form C ≡ D that asserts that two concepts

C and D have the same instances. This kind of statement is regarded as

an abbreviation for the two concept inclusions C ⊑ D and D ⊑ C. C ≡

D is often read "C and D are equivalent".

Example 3.1 (TBox). TBox defines concepts of the application domain, their

properties and their relations, actually inclusions, to each other:

Male ⊑ Human

Female ⊑ Human

Male ⊑ ¬Female

Mother ⊑ Human ⊓ Female

Parent ⊑ Human ⊓ ∃fatherOf.Human

fatherOf ⊑ parentOf

– The ABox is regarded as extensional knowledge, which contains assertions

about named individuals in terms of this vocabulary.

Example 3.2 (ABox). ABox makes assertions about the individuals in the

application domain:

Female(ANNA)

motherOf(ANNA, JOHN)
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– The RBox refer to properties of roles. In addition, it also refers to character-

istics of roles such as transitive, symmetric, asymmetric, reflexive, irreflexive,

functional, inverse functional.

Let r and s be roles. Then

* Role inclusion has the form r ⊑ s that states that every pair of individuals

related by r is also related by s. This type of statement is also called

subrole and r ⊑ s is often read "r is a subrole of s".

Example 3.3 (RBox). role inclusion and disjoint role:

fatherOf ⊑ parentOf

Disjoint(spouseOf, siblingOf)

Starting with atomic concepts and atomic roles, which are simply described

by concept names and role names respectively, complex concepts (called concepts)

are inductively defined by expressions built using suitable constructs (column 2 of

Table 3.1) as follows:

– Every concept name is a concept.

– ⊤, which is the common super type of all defined concepts in KB and captures

all individuals in the domain, is a concept (called top concept or Thing).

– ⊥, which is the empty set or nothing, is a concept (called bottom concept)

– If C and D are concepts, then ¬C (complement), C ⊓ D (intersection), C ⊔

D (union) are also concepts.

– If r is a role and C is a concept then so are ∃R.C (existential restriction),

∀R.C (universal restriction).

– If r is a atomic role, n is a non-negative integer and C is a concept, then

∃R.Self (local reflexivity), >n R.C (at-least restriction) and 6n R.C (at-

most restriction) are also concepts.

– Every finite set {a1, ..., an} ⊆ NI (the set of individual names) is a concept;

concepts of this type are called nominal concepts.
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Example 3.4 (Complex concepts). The following expressions are complex concepts

(also called concepts):

– Human ⊓ Female

– Human ⊓ ∃fatherOf.Human

DLs to be used in this thesis are based on description logic SROIQ [HKS06]

which is one of the most expressive DLs commonly considered today. SROIQ

roughly corresponds to the set of constructors available in OWL 2 (Section 3.3.3).

SROIQ is constituted by fragments as follows:

– SR denotes description logic ALC extended with all kinds of RBox axioms as

well as self concepts.

* ALC (Attribute Language with general Complement) only allows atomic

concepts, ⊤, ⊥, ¬, ⊓, ⊔, ∃, ∀ as its concept constructors, but do not allow

RBox axioms.

– O indicates that nominal concepts are assisted.

– I indicates that role inverses are supported.

– Q indicates that qualified number restrictions are supported.

3.3.2 Semantics

The semantics of description logics is given by a model-theoretic way. The seman-

tics specifies what the logical consequences of an ontology are. The purpose of the

semantics is to give a consequence relation, which tells us whether an axiom is a log-

ical consequence of a KB. Therefore, one central notion is that of an interpretation,

normally denoted with a symbol I, which is a pair (∆
I , .I) consisting of:

1. a nonempty set ∆
I , called the domain or universe of discourse, which is re-

garded as the whole of individuals or things existing in the domain that I

represents.

2. a function .I , called interpretation function, which maps the vocabulary ele-

ments to ∆
I . Specifically, it provides:
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Table 3.1: Syntax and semantics of SROIQ constructors

Syntax Semantics

individual name a aI

atomic concept C CI

intersection C ⊓ D CI ∩ DI

union C ⊔ D CI ∪ DI

complement ¬C ∆
I \ CI

top concept ⊤ ∆
I

bottom concept ⊥ ∅

existential restriction ∃R.C {x | some RI -successor of x is in CI}

universal restriction ∀R.C {x | all RI -successors of x are in CI}

at-least restriction >n R.C {x | at least n RI -successors of x are in CI}

at-most restriction 6n R.C {x | at most n RI -successors of x are in CI}

local reflexivity ∃R.Self {x | (x,x) ∈ RI}

nominal {a} {aI}

atomic role R RI

inverse role R− {(x, y) | (y, x) ∈ RI}

universal role U ∆
I x ∆

I

where a, b are individual names, A is a concept name, C, D are concepts, R is a role

“RI -successors of x” means any individual y such that (x, y) ∈ RI

– every individual name a to an element aI of ∆
I .

– every concept name C to a subset CI of ∆
I .

– every role name R to a subset RI of ∆
I x ∆

I .

The interpretation of complex concepts and roles follows from the interpretation

of the basic expressions. Table 3.2 shows the way to achieve the semantics of each

compound expression from the semantics of its components.

In addition, the consequence relation is denoted by |= and defined as follows:

An axiom A is a consequence of (satisfied by) a knowledge base KB (written KB

|= A) if every model of the KB is also a model of A.

* Satisfaction: Let I = (∆
I , .I) be an interpretation.

– I satisfies the statement C ⊑ D if CI ⊆ DI (written I |= C ⊑ D).

– I satisfies the statement C ≡ D if CI = DI (written I |= C ≡ D).

– I satisfies C(a) if aI ∈ CI (written I |= C(a)).

– I satisfies R(a, b) if (aI ,bI) ∈ RI (written I |= R(a, b)).
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Table 3.2: Syntax and semantics of SROIQ axioms

Syntax Semantics

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI ,bI) ∈ RI

individual equality a ≈ b aI = bI

individual inequality a 6≈ b aI 6= bI

concept inclusion C ⊑ D CI ⊆ DI

concept equivalence C ≡ D CI = DI

role inclusion R ⊑ S RI ⊆ SI

role equivalence R ≡ S RI = SI

complex role inclusion R1 ◦ R2 ⊑ S RI
1

◦ RI
2

⊆ S

role disjointness Disjoint(R, S) RI ∩ SI = ∅

* Model:

– An interpretation I is a model for a TBox T if I satisfies all the state-

ments in T .

– An interpretation I is a model for a ABox A if I satisfies every assertion

of A.

* Satisfiability:

– A TBox T is satisfiable if it has a model.

– An ABox A is satisfiable if it has a model.

3.3.3 Web Ontology Language OWL

The Web Ontology Language OWL is a component of the Semantic Web activity,

which is a W3C standard, builds on RDF and RDFS to let us define ontologies.

This aims to make Web resources more readily accessible to automated processes.

In addition, OWL makes an open world assumption (OWA). The OWA means

that what cannot be inferred from the knowledge base might be true as well as false,

contrary to what holds for closed world assumption (CWA), where everything that

is not stated in the CWA is false.

In order to write an ontology that can be interpreted unambiguously and used

by software agents we require a syntax and formal semantics for OWL. OWL is a
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vocabulary extension [RDF Semantics] of RDF. The OWL semantics are defined in

OWL Web Ontology Language Semantics and Abstract Syntax.

OWL has three species: OWL-Lite, OWL DL, and OWL Full.

– OWL-Lite is a variant of the description logic SHIF(D). In which, F at

the end of a DL name allows for role functionality statements which can be

expressed as ⊤ ⊑ 61.⊤; (D) enables use of datatype properties, data values

or data types.

– OWL DL is a variant of the description logic SHOIN (D). In which, N at

the end of a DL name enables assist for unqualified number restrictions, i.e.,

concepts of the form >nr.⊤ and 6nr.⊤.

– OWL Full is based on a different semantics from OWL Lite or OWL DL,

and was designed to preserve some compatibility with RDF Schema. OWL

Full allows an ontology to augment the meaning of the pre-defined vocabulary.

OWL Full is undecidable, so no reasoning software is able to perform complete

reasoning for it.

For instance, column 1 and 2 of Figure 3.1 and Figure 3.2 for a mapping between

the OWL DL abstract syntax and the syntax of the description logic SHOIN (D).

A new version of OWL is OWL 2 [W3Cb] which has a very similar overall struc-

ture to OWL. OWL 2 is backwards compatibility with OWL, all OWL ontologies

remain valid OWL 2 ontologies, with identical inferences in all practical cases.

OWL 2 adds a couple of new features with respect to OWL as follows (some

features are syntactic sugar) :

– keys

– property chains

– richer datatypes, data ranges

– qualified cardinality restrictions

– asymmetric, reflexive, and disjoint properties

– enhanced annotation capabilities
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Figure 3.1: OWL DL descriptions, data ranges, properties, individuals and data

values syntax and semantics [Obi]
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Figure 3.2: OWL DL axioms and facts [Obi]
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OWL 2 also defines a new syntax (called Manchester syntax [W3Ca]) and three

new profiles OWL 2 EL, OWL 2 QL and OWL 2 RL [W3Cc]. These profiles have

advantages in particular application scenarios:

– OWL 2 EL enables polynomial time algorithms for all the standard reasoning

tasks; it is particularly suitable for applications where very large ontologies are

needed, and where expressive power can be traded for performance guarantees.

– OWL 2 QL is based on description logics similar to DL-Lite. It enables con-

junctive queries to be answered in LogSpace (more precisely, AC0) using stan-

dard relational database technology; it is particularly suitable for applications

where relatively lightweight ontologies are used to organize large numbers of

individuals and where it is useful or necessary to access the data directly via

relational queries (e.g., SQL).

– OWL 2 RL enables the implementation of polynomial time reasoning algo-

rithms using rule-extended database technologies operating directly on RDF

triples; it is particularly suitable for applications where relatively lightweight

ontologies are used to organize large numbers of individuals and where it is

useful or necessary to operate directly on data in the form of RDF triples.

3.4 Semantic Web Rule Language (SWRL)

SWRL is an acronym for Semantic Web Rule Language, which is a standard lan-

guage based on OWL-DL and on the Rule Markup Language (RuleML) which

provides both OWL-DL expressivity and rules from RuleML [HPSB+04]. SWRL

represents Horn-like rules expressed in terms of OWL concepts to reason about

OWL individuals. Rules in SWRL are implication rules and they can be used to in-

fer new knowledge from the existing OWL knowledge bases, which is an important

feature that we are interested in in this work.

A SWRL rule has the following form [Mun10]:

consequent ← antecedent

This syntax shows that the consequent must be true when the antecedent is sat-

isfied. The antecedent is referred to as the rule body and the consequent is referred
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to as the head in the Definition 1. The head and body consist of a conjunction of

one or more atoms.

Definition 3 (SWRL Rule). Given a knowledge base K, a SWRL rule is an impli-

cation between an antecedent (body) and a consequent (head) of the form: H1 ∧

· · · ∧Hm ← B1 ∧ · · · ∧Bn, where B1 ∧ · · · ∧Bn is the rule body and H1 ∧ · · · ∧Hm

is the rule head. Each B1, . . . , Bn, H1, . . . Hm is called an atom.

An atom is a unary or binary predicate of the form C(s), R(s1, s2),

sameAs(s1, s2) or differentFrom(s1, s2), where the predicate symbol C is a concept

name in K, R is a role name in K, s, s1, s2 are terms. A term is either a vari-

able (denoted by x, y, z) or a constant (denoted by a, b, c) standing for an individual

name or data value. Variables are treated as universally quantified, with their scope

limited to a given rule.

The SWRL rules can be generally called multi-relational rules since multiple

binary predicates R(s1, s2) with different role names of K could appear in a rule.

A rule having more than one atom in the head can be equivalently transformed,

due to the safety condition (see Definition 4), into multiple-relational rules, each

one having the same body and a single atom in the head. In our work, we will only

consider SWRL rules with one atom in the head.

Example 3.5 (SWRL rule). Given a SWRL rule of the form sonOf(x, y) ←

fatherOf(y, x)∧Male(x) where sonOf(x, y) is the rule head; fatherOf(y, x)∧Male(x)

is the rule body; fatherOf, Male, sonOf are atoms and x, y are variables.

3.5 Language Bias

We know that the search space of the rules formed in SWRL is huge. Thus, in order

to reduce the search space, we use a set of constraints giving a tight specification

of the patterns worth considering. This set is called a language bias. In order to

manage language bias, we are interested in the following aspects:

– Just focus on the rules given by a set of atomic concept names (atomic unary

predicates), a set of atomic role names (atomic binary predicates) and a set

of individuals (functional constants).
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– Only consider the connected rules [GTHS13] to be defined in Definition 5 and

non-redundant rules [JLL10b] to be defined in Definition 7. Additionally, the

considered rules must satisfy the safety condition [HPS04] to be defined in

Definition 4.

– In order to guarantee decidability which means that a conclusion can always

be reached, only DL-safe rules are managed [MSS05], that is rules interpreted

under the DL-safety condition consisting in binding all variables in a rule only

to explicitly named individuals in knowledge base. When added to an ontol-

ogy, DL-safe rules are decidable and generate sound results but not necessarily

complete.

Given an atom A, let T (A) denote the set of all the terms occurring in A and

let V (A) ⊆ T (A) denote the set of all the variables occurring in A.

Example 3.6. Suppose that C is an atomic concept, R is an atomic role. We have:

V (C(x)) = {x} and V (R(x, y)) = {x, y}

Definition 4 (Safety Condition). Given a knowledge base K and a rule r = H ←

B1 ∧B2 ∧ · · · ∧Bn, r satisfies the safety condition if all variables appearing in the

rule head also appear in the rule body; formally if: V (H) ⊆
⋃n

i=1 V (Bi),

The constraint to safety condition of the rule avoids mining meaningless rules.

Example 3.7. Rule spouseOf(x, y) ← fatherOf(x, z) ∧ Female(z) does not satisfy

the safety condition, since the variable y appears in the head but not appear in the

body.

Definition 5 (Connected Rule). Given a knowledge base K and a rule r = H ←

B1 ∧ B2 ∧ · · · ∧ Bn, r is connected if and only if every atom in r is transitively

connected to every other atom in r.

Two atoms Bi and Bj in r, with i 6= j, are connected if they share at least a

variable or a constant i.e. if T (Bi) ∩ T (Bj) 6= ∅.

Two atoms B1 and Bk in r are transitively connected if in r there exist atoms

B2, . . . , Bk−1, with k ≤ n, such that, for all i, j ∈ {1, . . . , k} with i 6= j, T (Bi) ∩

T (Bj) 6= ∅, in which n is the total number of atoms in r.

The constraint to connected rules avoids mining rules with completely unrelated

atoms.
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Example 3.8. Rule liveIn(x, y) ← workIn(w, v) is not a connected rule, since two

atoms in the rule are completely unrelated.

Definition 6 (Closed Rule). Given a knowledge base K and a rule r = H ←

B1 ∧B2 ∧ . . . Bn, r is closed if and only if every variable in r is closed.

Each variable vj ∈
⋃n

i=0 V (Bi), j ∈ {0, . . . , k}, with k ≤ n, B0 = H, is closed if

it appears at least twice in r, in which n is the total number of atoms in r.

The constraint to closed rules avoids mining rules that predict merely the exis-

tence of a fact.

Example 3.9 (Open Rule). Rule r = liveIn(x, y) ← workIn(x, z) is not a closed

rule, since the variable z appears only once in r. r is an open rule.

Definition 7 (Non-redundant Rule). Given a knowledge base K and a rule r =

H ← B1 ∧B2 ∧ . . . Bn, r is a non-redundant rule if no atom in r is entailed by

other atoms in r with respect to K, i.e., if, ∀i ∈ {0, 1, . . . , n}, with B0 = H, results:
∧

j 6=i Bj 6|=K Bi,

The constraint to non-redundant rule avoids mining rules that are obvious.

Example 3.10. Given a knowledge base K with the following TBox:

T = { AnimalDoctor ⊑ Human,

Male ⊑ Human,

Dog ⊑ Animal,

∃.hasPatient.⊤ ⊑ AnimalDoctor,

⊤ ⊑ ∀hasPatient.Animal }

– A trivial rule:

* Human(x) ← hasPatient(x, y) ∧ Human(x) ∧ Dog(y)

– Redundant rules:

* Rule Human(x) ← hasPatient(x, y) ∧ Dog(y) is a redundant rule, since

the atom Human(x) is entailed by the domain of hasPatient (the domain

of hasPatient is AnimalDoctor, such that AnimalDoctor is subsumed by

Human) with respect to K.
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* Rule Dog(y) ← hasPatient(x, y) ∧ Animal(y) ∧ Human(x) is also a

redundant rule, since the atom Human(x) is entailed by the domain of

hasPatient and Animal(y) is entailed by the range of hasPatient as well

(the range of hasPatient is Animal) with respect to K.

– A non-redundant rule:

* Dog(y) ← hasPatient(x, y) ∧ Male(x)

3.6 Basic metrics for rules evaluation

In order to discover all frequent and fit hidden patterns, metrics are a necessary

tool used to assess the quality of a rule. The following metrics are basic metrics

that we adopted for evaluation of the quality of a rule.

Definition 8 (Binding). A binding is a mapping from a set of variables to a set of

individuals that occur in the ABox.

Given a rule r = H ← B1 ∧ . . . ∧ Bn, let us denote:

• ΣH(r) the set of distinct bindings of the variables occurring in the head of r,

formally: ΣH(r) = {binding V (H)}

• EH(r) the set of distinct bindings of the variables occurring in the head of r

provided the body and the head of r are satisfied, formally:

EH(r) = { binding f of V(H) | there is a binding f’ of V (B1 ∧ · · · ∧Bn) that

extends f, such that f ′(B1 ∧ · · · ∧Bn ∧H) is satisfied}.

Since rules are the safety condition, V (H) ⊆ V (B1 ∧ · · · ∧Bn)

• MH(r) the set of distinct bindings of the variables occurring in the head of r

also appearing as binding for the variables occurring in the body of r (since

rules are the safety condition), formally:

MH(r) = { binding f of V(H) | there is a binding f’ of V (B1 ∧ · · · ∧Bn) that

extends f, such that f ′(B1 ∧ · · · ∧Bn) is satisfied}.

• PH(r) the set of distinct bindings of the variables occurring in the head of r

provided that the body and the domain variable in the head of r along with



3.6. Basic metrics for rules evaluation 33

a new variable (which replaces the range variable in the head) are satisfied.

Particularly, this applies when a role atom is in the head of the considered

rule. Formally:

PH(r) = { binding f of V(H) | there is a binding f’ of V (B1 ∧ · · · ∧Bn) ∪

vrng(H ′) that extends f, such that f ′(B1 ∧ · · · ∧Bn ∧H ′) is satisfied} where

- H and H ′ are role atoms with the same the predicate symbol R;

- V (H) ⊆ V (B1 ∧ · · · ∧Bn) since rules are safety condition

- vdom(H) = vdom(H ′) and vrng(H) 6= vrng(H ′);

with vdom and vrng standing for the domain and range variables respectively

of the predicate symbol R

- vrng(H ′) /∈ V (B1 ∧ · · · ∧Bn);

PH(r) is used to assist the computation of the metric PCA-Confidence (Defini-

tion 12). PH(r) is computed by creating counter-examples. Counter-examples

are created as follows: Given a role r(x, y), we assume that if we know one y

for a given x and r, then we know all y for that x and r. A new range variable

vrng(H ′) to be created to replace the range variable vrng(H) in the head, is

the way to keep positive and negative examples for r.

Following [GTHS13], we redefine a few basic definitions, modified from the clas-

sical ones (as given e.g. in [AIS93]) to ensure suit with the SWRL rules.

Definition 9 (Rule Support). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its support is

the number of distinct bindings of the variables in the head, provided the body and

the head of r are satisfied jointly, formally:

supp(r) = |EH(r)|. (3.1)

Example 3.11 (Computation of Rule Support). Given the rule r = feed(x, y) →

love(x, y) and assuming the bindings in Table 3.3.

By the Definition 9, we have supp(r) = 1, as there is just one binding for

the rule head (feed(Anna, Dog)) allowing the head love(Anna, Dog) and the body

feed(Anna, Dog) to be jointly satisfied.

Definition 10 (Head Coverage for a Rule). Given the rule r = H ← B1 ∧ . . . ∧

Bn, its head coverage is the ratio between the rule support and the distinct variable

bindings from the head of the rule:

headCoverage(r) = |EH(r)|/|ΣH(r)|. (3.2)
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Table 3.3: A rule and a KB with assertions about two relations between people and

pets.

r = feed(x, y)→ love(x, y)

feed love

Anna Dog Anna Dog

Anna Cat George Cat

Peter Pig

headCoverage(r) ranges from 0 to 1.

Example 3.12 (Computation of Head Coverage). Given the rule r in Table 3.3

and the corresponding bindings, headCoverage(r) = 1
2 since there are two bindings

for the head of r: {love(Anna, Dog), love(George, Cat)}.

Definition 11 (Rule Confidence). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its

confidence is defined as the ratio between the rule support and the number of bindings

in the rule body:

conf(r) = |EH(r)|/|MH(r)|. (3.3)

conf(r) ranges from 0 to 1.

Example 3.13 (Computation of Rule Confidence). Given the rule r in Table 3.3

and the corresponding bindings, conf(r) = 1
3 , since there are three bindings,

{feed(Anna, Dog), feed(Anna, Cat), feed(Peter, Pig)} for the body of r.

Rule Confidence in Definition 11 is a standard confidence metric used in CWA

(Closed World Assumption) where all facts neither in the knowledge base nor con-

sequence of the knowledge base are regarded as negative evidences. In CWA, no

distinction between incorrect predictions, i.e., bindings σ matching r such that

K |= ¬Hσ, and unknown predictions, i.e., bindings σ matching r such that both

K |= Hσ and K |= ¬Hσ, is made. Ontologies operate under OWA (Open World

Assumption). In OWA, a prediction that is not contained in the knowledge base is

not necessarily false, it is just unknown. Reasoning on ontologies is also grounded

on the OWA and our goal is to maximize correct predictions, not just describing the
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available data. Hence, we also adopt the PCA Confidence [GTHS13] in Definition 12

that is able to take into account the OWA.

Definition 12 (Rule PCA-Confidence). Given the rule r = H ← B1 ∧ . . . ∧ Bn,

its PCA (Partial Completeness Assumption) confidence is defined as follows:

pcaconf(r) =







|EH(r)|/|MH(r)|, if H is a concept atom;

|EH(r)|/|PH(r)|, if H is a role atom.
(3.4)

pcaconf(r) ranges from 0 to 1. For the example described in Table 3.3,

pcaconf(r) = 1
2 .

– The head of the rule in Table 3.3 is a role atom.

– PH(r) consists of two examples for the rule in Table 3.3. love(Anna, Dog)

is positive example; love(Anna, Cat) is the prediction and is regarded as

negative example, because we already know a different animal for Anna. The

prediction love(Peter, Pig) is completely disregarded as evidence, because we

donot know what animal Peter loves.

3.7 Extensive metrics for rules evaluation

Besides the metrics we have described so far, in this section, we give some other

metrics originally proposed for scoring association rules. There are two kind of met-

rics, symmetric and asymmetric metrics. In our work, we focus only on introducing

asymmetric metrics that are suitable for assessing rules coded in SWRL because the

form of SWRL rules having the general form H ←− B and values of an asymmetric

metric for H ←− B and B ←− H may not be the same. We do not use symmetric

metrics because they are only appropriate for evaluating itemsets, which is values

of an symmetric metric for H ←− B and B ←− H are the same.

We modified the old definitions with the symbols defined in Section 3.6 and the

following symbols to ensure suit with the SWRL rules.

– Σi total number of individuals inside a KB.

– Given the rule r = H ← B1 ∧ . . . ∧ Bn, N is a number defined as follows:

N =







Σi, if H is a concept atom;

P 2
Σi

= (Σi)!
(Σi−2)! , if H is a role atom.
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Definition 13 (Laplace for a Rule). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its

Laplace [CB91], often used to grade rules for classification goals, is defined as

Laplace(r) =
|EH(r)|+ 1
|MH(r)|+ 2

(3.5)

Laplace(r) ranges from 0 to 1. For the example described in Table 3.3,

Laplace(r) = 2
5 .

Definition 14 (Conviction for a Rule). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its

Conviction [BMUT97], measuring the intensity of implication of a rule, is defined

using the confidence metrics in the denominator:

conviction(r) =
N − |ΣH(r)|

N (1− |conf(r)|)
(3.6)

conviction(r) ranges from 0.5 to +∞. Conviction is infinite for confidence 1 and

is 1 if the head and the body are independent. Conviction values in (0.5, 1) mean

negative dependence and far from 1 indicate interesting rules. For the example

described in Table 3.3, conviction(r) = 7
5 .

Definition 15 (Certainty factor for a Rule). Given a rule r = H ← B1 ∧ . . . ∧

Bn, its Certainty Factor [FS00] represents uncertainty in the rule and is defined as

follows:

cf(r) =































conf(r)−
|ΣH (r)|

N

1−
|ΣH (r)|

N

, if conf(r) >
|ΣH (r)|

N
;

conf(r)−
|ΣH (r)|

N
|ΣH (r)|

N

, if conf(r) <
|ΣH (r)|

N
;

0, if conf(r) = |ΣH (r)|
N

.

(3.7)

cf(r) ranges from -1 to +1. For the example described in Table 3.3, cf(r) =

0.286.

Definition 16 (Added value for a Rule). Given a rule r = H ← B1 ∧ . . . ∧ Bn,

Added Value [SM99] for the rule r is defined as:

av(r) = conf(r)−
|ΣH(r)|

N
(3.8)

av(r) ranges from -0.5 to 1. This metric is more meaningful when the amount

of evidence is large, because it relies on probabilities. For the example described in

Table 3.3, av(r) = 0.267.
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Definition 17 (J-Measure for a Rule). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its

J-Measure [SG91] is defined according to the probability distribution of individuals

as follows:

J(r) = |EH (r)|
N

log2
N |EH (r)|

|MH (r)||ΣH (r)| +
|MH (r)|−|EH (r)|

N
log2

N(|MH (r)|−|EH (r)|)
|MH (r)|(N−|ΣH (r)|) . (3.9)

J(r) ranges from 0 to 1. For the example described in Table 3.3, J(r) = 0.045.

Definition 18 (Gini index for a Rule). Given a rule r = H ← B1 ∧ . . . ∧ Bn, its

Gini Index [BFOS84] is defined according to the probability distribution of individ-

uals from the sum of squared probabilities as follows:

gn(r) = |MH (r)|
N

[

(

|EH (r)|
|MH (r)|

)2
+

(

|MH (r)|−|EH (r)|
|MH (r)|

)2
]

−
(

|ΣH (r)|
N

)2

+ N−|MH (r)|
N

[

(

|ΣH (r)|−|EH (r)|
N−|MH (r)|

)2
+

(

(N−|MH (r)|)−(|ΣH (r)|−|EH (r)|)
N−|MH (r)|

)2
]

−
(

N−|ΣH (r)|
N

)2
.

gn(r) ranges from 0 to 1. For the example described in Table 3.3, gn(r) = 0.016.

3.8 Evaluation of Rule Precision

Definition 19 (Rule Precision). Given the rule r = H ← B1 ∧ . . . ∧ Bn, its

precision is the ratio of the number of correct predictions made by r and the total

number of correct and incorrect predictions (predictions logically contradicting K),

leaving out the predictions with unknown truth value.

This metric expresses the ability of a rule to perform correct predictions, but

it is not able to take into account the induced knowledge, that is the unknown

predictions. For this reason, the metrics proposed in [FdE08a] are also considered

(for the evaluation in Sections 4.4, 5.4 and 6.2):

• match rate: number of predicted assertions in agreement with facts in the

complete ontology, out of all predictions;

• commission error rate: number of predicted assertions contradicting facts in

the full ontology, out of all predictions;

• induction rate: number of predicted assertions that are not known (i.e., for

which there is no information) in the complete ontology, out of all predictions.
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In order to compute these metrics, we need three kind of samples of ontology:

Stratified sample, Complete sample and Full sample. These samples of ontology is

introduced in Section 4.4.1.
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4.1 Introduction

In this chapter, we present an algorithm that aims at discovering hidden knowledge

patterns in the form of multi-relational association rules coded in SWRL [+04].

This algorithm uses an ILP (Inductive Logic Programming) approach to induce

rules from facts. The goal of the algorithm is to explore all possible rules in a given

space, specifically, this space is determined by the maximum length of the rules to

be discovered (Figure. 4.1).

An overview of the algorithm is shown in Figure. 4.2. During processing, the

algorithm generates connected rules by applying a downward refinement operator

(Section 4.2) on all previously generated rules whose length is less than a given

maximum length. The rules not satisfying a certain condition will be pruned, while
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Figure 4.1: The space of rules

the rules passing all conditions will be added into a set of discovered rules, which

contains the final results of the algorithm.

Basically, discovered rules must pass three verification steps:

1. Use refinement operator to generate rules satisfying the language bias: This

step ensures that rules to be generated are neither redundant nor trivial.

2. Use metrics to assess the quality of the rules: We regard passing a minimum

threshold value as a basic quality assurance for a rule.

3. Checking if the rules are consistent with the knowledge base: Each rule is con-

sidered separately with the ontology in order to check whether it contradicts

the knowledge base.

Besides exploring all discovered rules in a given space, another advantage of this

algorithm is that we never have to consider and evaluate redundant or trivial rules

because they are never generated. However, the limitation of this method is that it

is difficult to generate long rules, thus this algorithm is only suitable for discovering

short rules.

The rest of this chapter is structured as follows: In Section 4.2, we propose

a downward refinement operator used by the algorithm to traverse the space of

rules and find valid rules. Details of the algorithm are presented in Section 4.3

while its experimental evaluation is given in Section 4.4. Conclusions are drawn in

Section 4.5.
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Figure 4.2: Overview of the algorithm

4.2 Downward Refinement Operator

4.2.1 Preliminaries

We regard deriving rules from facts as a search process in the space of rules. In

order to perform this operation, we use an idea from ILP [NCW97], which offers

an ordering on search space and uses a refinement operator to traverse it and find

hypotheses. In this algorithm, we shall deal with a downward refinement operator

constructing specializations of rules.

Definition 20 (Downward refinement operator [LH07]). A quasi-ordering is a

reflexive and transitive relation. Let S be a set and � a quasi-ordering on S. In the

quasi-ordered space (S, �) a downward refinement operator ρ is a mapping from S

to 2S, such that for any C ∈ S we have that C’ ∈ ρ(C) implies C’ � C. C’ is called

a specialization of C.

Suppose we call EH(r) a set of distinct bindings of the variables in the head of

r (see Section 3.6). We rely on Definition 20 to come up with an idea of searching
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in the space of rules. A rule r covers a rule r′ (r ≻ r′), which means that EH(r′) ⊆

EH(r). This provides a suitable order for searching the space of rules.

Definition 21 (Types of operators). Let ℜ be a set of rules to be formed in SWRL

(Section 3.4). A downward refinement operator ρ is a mapping from EH(r) (r ∈

ℜ) to its powerset. ρ is called

– finite iff ρ(EH(r)) is finite for any rule r.

– proper iff for all rules r and r′, EH(r′) ∈ ρ(EH(r)) implies r′ 6≡ r.

– complete iff for all rules r and r′ with r ≻ r′ we can reach a rule r′′ from r

by ρ with r′ ≡ r′′.

– weakly complete iff for all rules r with EH(r) � EH(ℜ) we can reach a rule

r′ from EH(ℜ) by ρ with r ≡ r′.

– ideal iff it is finite, complete, and proper.

4.2.2 Definition of the downward refinement operator

4.2.2.1 Definition of the operator

Assume

– ℜ is a set of rules to be formed in SWRL (r: H ← B1 ∧...∧ Bn)

– EH(ℜ) is a set of distinct bindings of the variables occurring in the head of

the rules in ℜ.

– Af is a list containing atomic concept names and atomic role names whose

cardinality of instances is higher than a given threshold θf .

Definition 22. The downward refinement operator ρ : EH(ℜ) −→ ℘(EH(ℜ)) is

defined as:

ρ(EH(r)) := {binding V(H) | ∃binding V(B1∧...∧Bn∧A) : B1∧...∧Bn∧A∧H}

For r ∈ ℜ; ℘(EH(r)) is the powerset of distinct bindings of the variables in the

head of r; A ∈ Af ; V(X) denotes the set of all the variables occurring in X.



4.3. The algorithm 43

Example 4.1. Suppose we have:

Af = {fatherOf , grandfatherOf , sonOf , Male}

r: fatherOf(x, y) ← grandfatherOf(x, z)

Distinct bindings of the variables in the head of each following rules are contained

in ℘(EH(r)). These rules are generated by using mapping ρ with respect to r:

– fatherOf(x, y) ← grandfatherOf(x, z) ∧ sonOf(z, y)

– fatherOf(x, y) ← grandfatherOf(x, z) ∧ Male(z)

– ...

4.2.2.2 An ideal downward refinement operator

Proposition 1. ρ is a finite and complete downward refinement operator on space

(EH(ℜ), �)

Proof :

– It is easily noticed that ρ is a downward refinement operator. ρ adds an atom

to a rule r by using ∧, thus ρ(EH(r)) ⊆ EH(r). Hence, EH(r′) � EH(r) for

all EH(r′) ∈ ρ(EH(r)).

– ρ(EH(r)) is finite because ℘(EH(r)) consists only of rules of length at most

length(r) + 1, ρ(EH(r)) ⊆ EH(r) and EH(r) is finite.

– ρ(EH(r)) is complete because for all r and r′ with EH(r′) � EH(r), we can

find an atom A ∈ Af in order to generate a new rule r′′, such that EH(r′) ≡

EH(r′′).

We notice that ρ(EH(r)) is not proper because, for all r and r′ with EH(r′) �

EH(r), we can find an atom A ∈ Af in order to generate a new rule r′′, such that

EH(r′) ≡ EH(r′′).

4.3 The algorithm

The algorithm is divided into two main phases. The former is to discover all possible

frequent patterns by implementing the level-wise generate-and-test approach. The
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latter is to obtain multi-relational association rules from the discovered frequent

patterns by considering the first atom in the pattern as the head and the remaining

atoms as the body.

4.3.1 Discover all possible frequent patterns

The level-wise generate-and-test approach is applied to discover all possible frequent

patterns having a given maximum length. Firstly, a list of general patterns is

initialized and each of them contains a single atom which satisfies a given criterion.

Next, a level-wise approach is applied to discover the frequent patterns by using

relevant operators to specialize the pattern continuously until a certain stopping

criterion is met. Specifically, discovery activities on each level are divided into two

phases: the generate phrase creates a set of specialized patterns and then the test

phrase evaluates each pattern in the set of patterns for possible pruning.

Algorithm 1 describes the whole process of discovery of all possible frequent

patterns that have the maximum length of a given MAX_RULE_LENGTH. The

algorithm can be expressed in the following steps:

1. First, the function CreateGeneralPatterns is called to generate all general

patterns, each consisting of only one single atom referring to a concept name

or role name in the knowledge base; the function only maintains all concept

and role names whose cardinality extensions, instance retrieval, is higher than

a threshold θf . All output patterns of the function CreateGeneralPatterns

are stored in the queue q and we call a set of these patterns a set of frequent

atoms.

Example 4.2. Give two sets of concepts names NC , role names NR and the

number of facts of each atom with θf = 5

NC = {Male(50), Female(27), Father(8), Mother(22), Son(2), Daughter(15)}

NR = {FatherOf(15), MotherOf(18), SonOf(2), DaughterOf(5) }

Output patterns of the function CreateGeneralPatterns are stored in the

queue q as follows:

q = {Male, Female, Father, Mother, Daughter, FatherOf, MotherOf}
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Algorithm 1: Discover multi-relational association rules from a populated

ontological KB
input : K: ontological KB; θf : frequency threshold;

output: frequent: set of frequent patterns discovered from K

1 infrequent ← Ø; frequent ← Ø;

2 q ← CreateGeneralPatterns(K, θf );

3 while ¬q.isEmpty() do

4 p ← q.dequeue();

5 specPatternList ← GenerateSpecializedPatterns(p);

6 specializationAdded ← false;

7 foreach p’ ∈ specPatternList do

8 pruned ← EvaluatePatternForPruning(K, p, p’, q, infrequent);

9 if pruned then

10 infrequent ← infrequent ∪ {p’} ;

11 end

12 else if p’.length() < MAX_RULE_LENGTH then

13 q.enqueue(p’);

14 specializationAdded ← true;

15 end

16 else if IsSafe(p’.asRule()) then

17 frequent ← frequent ∪ {p’} ;

18 specializationAdded ← true;

19 end

20 end

21 if ¬specializationAdded and p.length() ≥ 2 then

22 psafe ← GetSafePatternOrAncestorPattern(p);

23 if (psafe 6= null) and (psafe /∈ frequent) then

24 frequent ← frequent ∪ {psafe} ;

25 end

26 end

27 end

28 return frequent
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2. Next, the function GenerateSpecializedPatterns is called to specialize

each general pattern which is dequeued from q until q is empty. This func-

tion performs to specialize the general pattern by adding a new atom into the

pattern for each level and then evaluating the achieved pattern for possible

pruning. Pattern specialization is performed until a stopping criterion is met,

precisely here it is the maximum length of the pattern is reached. The follow-

ing two operators are applied to generate the specialized pattern from a given

pattern, namely at each step of the specialization process, the operators are

applied to obtain rules satisfying the language bias (Section 3.5):

(a) Add a concept atom (see Section 4.3.1.1 for more details): This operator

adds an atom into a given pattern, this atom is taken from the set of

frequent atoms and its variable argument already appears in the given

pattern. This atom (concept name) can already appear in the given

pattern; in that case, a different variable name must be selected.

Example 4.3. Given the pattern:

p : [Male(x), siblingOf(y, x)]

and the concept Male is added to p.

The variable name of the concept Male can only be y because the vari-

able x is in the previous Male concept. Therefore, new pattern after

specializing with the concept Male is:

pnew : [Male(x), siblingOf(y, x), Male(y)]

(b) Add a role atom (see Section 4.3.1.2 for more details): This operator also

adds an atom into a given pattern, but this atom is a role name in the

set of frequent atoms and at least one of its variable arguments already

appears in the given pattern while other can already appear or can be

a new variable. This atom (role name) can already appear in the given

pattern.

Example 4.4. Given the pattern:

p : [Male(x), siblingOf(y, x)]

and the role motherOf is added to p.

The domain variable name of the role motherOf can not be x because

x is a Male. Therefore, new pattern after specializing with the role
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motherOf can be:

p1
new : [Male(x), siblingOf(y, x), motherOf(y, z)] or

p2
new : [Male(x), siblingOf(y, x), motherOf(z, x)]

...

3. The function EvaluatePatternForPruning is called to evaluate the pattern

for possible pruning at each specialization level. (see Section 4.3.1.3 for more

details)

4. A list of the infrequent patterns is used to contain the specialized patterns to

be pruned and a list of the frequent patterns is used to contain the discovered

frequent patterns.

(a) The lines 9-10 in Algorithm 1 show that if the specialized pattern p′ is

pruned, it is added to the list of the infrequent patterns.

(b) On the contrary, the lines 12-13 in Algorithm 1 show that if the pattern

is not pruned and the pattern length does not reach the given maximum

length, the specialized pattern p′ is enqueued to the queue q and it is

considered as a general pattern.

(c) In the remaining case, the lines 16-17 in Algorithm 1 show that if the

pattern is not pruned but the pattern length reaches the given maximum

length, the specialized pattern p′ is added to the list of the discovered

frequent patterns if it satisfies the safety condition (see Definition 4).

(d) If all specialized patterns of a given pattern are pruned, the lines 21-24

in Algorithm 1 show that a pattern is computed as follows so that it is

added to the list of the discovered frequent patterns:

i. Either that pattern is the given pattern satisfying the safety condi-

tion.

ii. Or that pattern is a first ancestor of the given pattern if the given

pattern does not satisfy the safety condition but its first ancestor

satisfies.

iii. And that pattern does not already appear in the list.

5. When q is empty, namely all the general patterns are fully specialized, the list

of the discovered frequent patterns is returned (line 28 of Algorithm 1).
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4.3.1.1 The specialization operator "Add a concept atom"

Algorithm 2: Implements the specialization operator "add a concept atom"

which, given the current pattern r and the candidate concept atom C ′, returns

all possible non-redundant patterns w.r.t. the combination of variables

input : r: the pattern to be specialized; C ′: the candidate concept atom;

conceptsr: concept names appearing in the pattern under

construction;

rolesr: role names appearing in the pattern under construction;

varsr: variable names appearing in the pattern under construction;

output: specializedPatternsGivenAConceptAtom: the list of all

non-redundant specializations for the input pattern, given the

candidate concept atom C ′

1 specializedPatternsGivenAConceptAtom ← Ø;

2 subCr ← conceptsr.getConceptsSubsumedBy(C ′);

3 superCr ← conceptsr.getConceptsSubsuming(C ′);

4 subRr ← rolesr.getRolesWithDomainOrRangeSubsumedBy(C ′);

5 used ← subCr.getVars() ∪ superCr.getVars() ∪ subRr.getVars();

6 foreach v ∈ varsr \ used do

7 specializedPatternsGivenAConceptAtom.add(r ∧ C’(v));

8 end

9 return specializedPatternsGivenAConceptAtom

This operator is used to add an atom being a concept name in the knowledge

base into a given pattern (see Algorithm 2 for more details) and the added atom can

already appear. After adding the concept name to the pattern, the operator must

ensure the obtained rule satisfies the language bias (Section 3.5), and is neither

redundancy nor triviality. The lines 2-7 in Algorithm 2 show that non-redundancy

and non-triviality are assured by the following check:

1. A candidate concept name is never added as a concept atom if its variable

name is the same as the variable name of a concept atom in the given pattern,

and that concept atom subsumes or is subsumed by the candidate concept

name (lines 2-3 in Algorithm 2).
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Example 4.5. Given the pattern:

p : [Male(x), siblingOf(y, x)]

and the concept Brother is added to p.

The variable name of the concept Brother can only be y because the vari-

able x already appears in the previous Male concept, and Brother ⊑ Male.

Therefore, new pattern after specializing with the concept Brother is:

pnew : [Male(x), siblingOf(y, x), Brother(y)]

2. A candidate concept name is never added as a concept atom if its variable

name already appears in a role atom of the given pattern, whose domain

and/or range is subsumed by the candidate concept name (line 4 in Algo-

rithm 2).

Example 4.6. Given the pattern:

p : [FatherOf(x, y), HusbandOf(x, z)]

and the concept Male is added to p.

The variable name of the concept Male can not be x because the variable x

already appears in the domain of previous FatherOf and HusbandOf roles,

and ∃FatherOf.⊤ ⊑ Male, ∃HusbandOf.⊤ ⊑ Male. Therefore, new pat-

tern after specializing with the role Male can be:

p1
new : [FatherOf(x, y), HusbandOf(x, z), Male(y)] or

p2
new : [FatherOf(x, y), HusbandOf(x, z), Male(z)]

p2
new is acceptable to generate in this function, however it will be pruned when

considered jointly with the ontology and unsatisfiable because the concept Male

is disjoint with the range of the role HusbandOf.

4.3.1.2 The specialization operator "Add a role atom"

This operator is used to add an atom being a role name in the knowledge base

into a given pattern (see Algorithm 3 and Algorithm 4 for more details) and the

added atom can already appear. After adding the role name to the pattern, the

operator must ensure the obtained rule satisfies the language bias (Section 3.5), and

is neither redundancy nor triviality. Non-redundancy and non-triviality are assured

by the following check:

1. In case there is a new variable: A candidate role name is never added as a
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Algorithm 3: Implements the specialization operator "add a role atom intro-

ducing a fresh variable" which, given the current pattern r and the candidate

role atom R′, returns all possible non-redundant patterns w.r.t. the combina-

tion of variables and a fresh variable
input : r: the pattern to be specialized; R′: the candidate role atom;

conceptsr: concept names appearing in the pattern under

construction;

rolesr: role names appearing in the pattern under construction;

varsr: variable names appearing in the pattern under construction;

output: specializedPatternsWithFreshV arGivenARoleAtom: the list of

all non-redundant specializations for the input pattern, given the

candidate role atom R′

1 specializedPatternsWithFreshVarGivenARoleAtom ← Ø;

2 z ← GetFreshVariable();

3 supConceptsOfDomainr ← conceptsr.getConceptsSubsuming(dom(R′));

4 supConceptsOfRanger ← conceptsr.getConceptsSubsuming(range(R′));

5 foreach v ∈ varsr \ supConceptsOfDomainr.getVars() do

6 specializedPatternsWithFreshVarGivenARoleAtom.add(r ∧ R′
i(v, z));

7 end

8 foreach v ∈ varsr \ supConceptsOfRanger.getVars() do

9 specializedPatternsWithFreshVarGivenARoleAtom.add(r ∧ R′
i(z, v));

10 end

11 return specializedPatternsWithFreshV arGivenARoleAtom
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Algorithm 4: Implements the specialization operator "add a role atom with

all variables bound" which, given the current pattern r and the candidate role

atom R′, returns all possible non-redundant patterns w.r.t. the combination

of variables
input : r: the pattern to be specialized; R′: the candidate role atom;

conceptsr: concept names appearing in the pattern under

construction;

rolesr: role names appearing in the pattern under construction;

varsr: variable names appearing in the pattern under construction;

output: specializedPatternsWithBoundV ars: the list of all non-redundant

specializations for the input pattern, given the candidate role atom

R′

1 specializedPatternsWithBoundVars ← Ø;

2 supConceptsOfDomainr ← conceptsr.getConceptsSubsuming(dom(R′));

3 supConceptsOfRanger ← conceptsr.getConceptsSubsuming(range(R′));

4 if R′ /∈ rolesr then

5 foreach v ∈ varsr \ supConceptsOfDomainr.getVars() do

6 foreach w ∈ varsr \ supConceptsOfRanger.getVars() do

7 specializedPatternsWithBoundVars.add(r ∧ R′(v, w));

8 end

9 end

10 end

11 else

12 usedDomV ars ← rolesr.getElement(R′).getListOfVarsForDomain();

13 usedRangeV ars ← rolesr.getElement(R′).getListOfVarsForRange();

14 usedDomV ars ← usedDomV ars ∪ supConceptsOfDomainr.getVars();

15 usedRangeV ars ← usedRangeV ars ∪

supConceptsOfRanger.getVars();

16 foreach v ∈ varsr \ usedDomV ars do

17 foreach w ∈ varsr \ usedRangeV ars do

18 specializedPatternsWithBoundVars.add(r ∧ R′(v, w));

19 end

20 end

21 end

22 return specializedPatternsWithBoundV ars
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role atom, if the domain (range) of that candidate has a variable name being

a new variable and the other variable appears in a concept atom of the given

pattern, and that concept atom subsumes the domain (range) of the candidate

role name. (Algorithm 3)

Example 4.7. Given the pattern:

p : [Male(x), siblingOf(y, x)]

and the role fatherOf is added to p.

The domain variable name of the role fatherOf can not be x because x is a

Male and ∃FatherOf.⊤ ⊑ Male. Therefore, new pattern after specializing

with the role fatherOf can be:

p1
new : [Male(x), siblingOf(y, x), fatherOf(y, z)] or

p2
new : [Male(x), siblingOf(y, x), fatherOf(z, y)] or

p3
new : [Male(x), siblingOf(y, x), fatherOf(z, x)]

2. In case there is no new variable: A candidate role name is never added as a

role atom, if all variable names in the domain and range of that candidate

appear in concept atoms whose predicate symbol subsumes the domain and

range of the role name, respectively. (Algorithm 4)

Example 4.8. Given the pattern:

p : [Male(x), siblingOf(y, x)]

and the role fatherOf is added to p.

The domain variable name of the role fatherOf can not be x because x is a

Male and ∃FatherOf.⊤ ⊑ Male. Therefore, new pattern after specializing

with the role fatherOf can be:

pnew : [Male(x), siblingOf(y, x), fatherOf(y, x)]

4.3.1.3 On evaluating pattern pruning

Algorithm 5 is used to check for several different pruning conditions on a given

specialized pattern. The pattern is pruned, if it satisfies one of the following condi-

tions:

1. The rule obtained from the specialized pattern contradicts the reference

knowledge base. The pattern can be pruned if its rule is considered jointly
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Algorithm 5: Determine if a pattern has to be pruned or not.
input : K: ontological KB; p: parent pattern of the pattern to be evaluated;

p′: pattern to be evaluated for pruning; q: list of the generated

patterns;

infrequent: set of the patterns that have been pruned;

output: pruned: true if the pattern has to be pruned, false otherwise

1 r’ ← p’.asRule(); r ← p.asRule();

2 if K ∪ r′ |= ⊥ then

3 return true

4 end

5 else if headCoverage(r’) < θhc then

6 return true

7 end

8 else if conf(r’) - conf(r) < θic then

9 return true

10 end

11 else if isPatternAlreadyGenerated(p’, q) then

12 return true

13 end

14 else

15 foreach infPatt ∈ infrequent do

16 if r’.getSupportExtention() ⊆ infPatt.getSupportExtention() then

17 return true

18 end

19 end

20 end

21 return false
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with the ontology (line 2 in Algorithm 5) and unsatisfiable. According to the

remark of [JLL10b], the satisfiability check is helpful if disjointness axioms

exist in the ontology; this check can be omitted in order to save computa-

tional efforts if no disjointness axioms occur.

This condition cannot be satisfied if the ontological knowledge base is con-

sistent and noise-free. However, this method is built to be able to apply to

noisy ontologies, thus an unsatisfiable rule can be discovered when considered

jointly with the ontology, particularly if low frequency and Head Coverage

thresholds (see Definitions 2 and 10) are selected.

2. Head Coverage threshold of the pattern is less than a given threshold θhc

(line 6 in Algorithm 5). This condition ensures that a satisfiable rule to be

discovered does not depend on the absolute number of predictions in the rule

to be obtained from the pattern.

3. In this algorithm, we consider that the specialized pattern is not improved if

it does not contain new information. This means that the pattern is pruned

if its confidence does not improve compared to the confidence of its parent

(line 8 in Algorithm 5).

4. The function isPatternAlreadyGenerated is called to avoid considering

the same pattern more than once (line 11 in Algorithm 5) in order to save

computational costs. The candidate pattern is pruned if it is the same as an

already generated pattern.

We regard two patterns being semantically equivalent as the same; more

specifically, if the support extension of the rules that are obtained from the

patterns is the same then these patterns have the same semantics. In the

function, we use a heuristic to check for an already generated pattern (the

same semantics). Because comparing the support extension of the rule to be

obtained from the candidate pattern with those of all already generated pat-

terns has a high computational cost, the heuristic selects the patterns whose

corresponding rules have the same head coverage value as the candidate pat-

tern generated in advance, then it compares the support extension of the rules

to be obtained from these patterns with the candidate pattern. The candidate

pattern is pruned if found.
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Table 4.1: Key facts about the ontological KBs used.

Ontology # Concepts # Roles # Indiv. # Declared # Decl.+Derived

Assertions Assertions

Financial 59 16 1000 3359 3814

BioPAX 40 33 323 904 1671

NTMerged 47 27 695 4161 6863

5. A candidate pattern is pruned if its semantics is included in the semantics

of previous patterns to be pruned. We use a heuristic to solve this case: the

candidate pattern whose corresponding rule has the support extension to be

contained in the support extension of a rule which obtained from the pattern

in the list of the infrequent patterns. (lines 15-16 in Algorithm 5).

4.3.2 Obtain multi-relational association rules

For each pattern, in order to obtain multi-relational association rules coded in

SWRL, the first atom is considered as the head of the rule and the remaining as

the rule body.

Example 4.9. Given the pattern:

p : [Male(x), siblingOf(y, x), Brother(y)]

The rule corresponding to the pattern p is:

r : Male(x) ← siblingOf(y, x) ∧ Brother(y)

4.4 Experiments and evaluation

4.4.1 Experimental protocol

We carry out testing of the level-wise generate-and-test approach on the following

publicly available ontologies (details on them are reported in Table 4.1):

– Financial Ontology (Financial): Describing the banking domain.

http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

– Biological Pathways Exchange (BioPAX): Describing biological pathway data.

http://www.biopax.org/release/biopax-level2.owl
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– New Testament Names Ontology (NTNMerged): Describing named entities

(people, places, and other classes) in the New Testament, as well as their

attributes and relationships.

http://www.semanticbible.com/ntn/ntn-view.html

This experiment aims at the following two basic goals:

1. The first goal of our experiments consisted in assessing the ability of the dis-

covered rules to predict new assertional knowledge for a considered ontological

knowledge base.

2. The second goal of our experiments consisted in showing the importance and

the value added of exploiting the terminological knowledge and the reasoning

capabilities when extracting rules from ontological knowledge bases.

For the first purpose, we use three kinds of samples for each ontology in

Table 4.1 in order to compute metrics in Section 3.8. Specific samples are as follows:

1. Stratified Sample: This sample is built by randomly removing p% of concept

assertions, according to Algorithm 6. In the Algorithm 6, in addition to

deleting the concept assertions, we also eliminate role assertions or assertional

axioms that involve in the removed concept assertions. We perform this so

that the removed concept assertions are not entailed by the rest axioms in the

ontology.

2. Complete Sample: This sample is an ontology taken from the Table 4.1 and

used to create stratified sample.

3. Full Sample: This sample is built by integrating a rule discovered by the strat-

ified sample after running Algorithm 1 into the complete sample. Therefore,

the number of full samples is always equal to the number of discovered rules

by the stratified sample.

We collected all predictions of the full sample, that is the head atoms of the

instantiated rules. All predictions already contained in the stratified sample have

been discarded while the remaining predicted facts have been considered. A pre-

diction is assessed as correct if it is contained in the complete sample or entailed by
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Algorithm 6: The createStratifiedOntology()
input : Of : an ontology; p: rate of concept assertions is deleted;

output: Os: a stratified ontology;

1 Os ← Of ;

2 foreach concept in Os do

3 nIndividuals ← the number of individuals in concept;

4 if nIndividuals > 0 then

5 n ← p * nIndividuals;

6 for i = 1 −→ n do

7 Pick an individual in the set of individuals of concept at random;

8 Eliminate individual out of the set of individuals of concept in Os;

9 Delete role assertions in Os that their subject or object contains

individual;

10 Eliminate all other assertional axioms in Os that contains

individual;

11 end

12 end

13 end

14 return Os
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Figure 4.3: The space of rules

the full sample. A prediction is assessed as incorrect if it is inconsistent with the

full sample.

The Venn diagram in Figure. 4.3 describes sets of facts or predictions, that are

in the head atoms of the discovered rule r: SS is the set of facts of the stratified

sample; CS is the set of facts of the complete sample; and FS(r) is the set of

predictions of the full sample after integrating a rule r into the complete sample.

The metrics defined in Section 3.8 are calculated as follows:

– predictions = |FS(r) / SS(r)|: The total of predictions.

– match rate = |CS(r)/SS(r)|
predictions

– commission error rate = contradicting facts(r)
predictions

– induction rate = |F S(r)/CS(r)|
predictions

match rate shows that the discovered rule is able to predict new assertional

knowledge for the considered ontology; commission error rate determines whether

conflicting knowledge exists in the ontology, if commission error rate is greater than

0 then there exists, otherwise not. Facts are regarded as contradictory knowledge

when considered jointly with the ontology and unsatisfiable; induction rate to be

greater than 0 demonstrates the ability to induce new knowledge that is not logically

derivable.

For the second purpose, we compared our system with AMIE [GTHS13],

which represents the state-of-the-art system in the considered setting, but it is not
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Table 4.2: Average performance metrics on each ontology

Ontology
Sample Match Comm. Ind. Precision Tot. nr.

Rate Rate Rate Predictions

Financial

20% 0.81 0 0.19 1.0 947

30% 0.81 0 0.19 1.0 1,890

40% 0.82 0 0.18 1.0 2,960

BioPAX

20% 1.0 0 0 1.0 669

30% 1.0 0 0 1.0 1,059

40% 1.0 0 0 1.0 1,618

NTNMerged

20% 0.94 0 0.06 1.0 9,085

30% 0.9 0 0.1 1.0 9,765

40% 0.94 0 0.06 1.0 10,418

able to exploit neither terminological information nor reasoning capabilities. Since

one of the AMIE key points (as argued in [GTHS13]) is its ability to outperform

state-of-the-art ILP systems in terms of number of discovered rules, we compared

the number of rules discovered by our system with the number of rules discovered

by AMIE, using the same samples of the ontologies in Table 4.1.

4.4.2 Experimental evaluation

For each ontology in Table 4.1, we build three stratified samples by randomly remov-

ing respectively 20%, 30%, 40% of the concept assertions, according to Algorithm 6,

thus the total number of stratified samples to be created is 9. We ran by repeating

10 times the sampling procedure for each stratified sample and using the following

parameters setting:

MAX_RULE_LENGTH = 3; θf = 1;

θhc = 0.01; θic = 0.001

4.4.2.1 The ability to predict assertional knowledge

Looking at Table 4.2, we have some remarks as follows:

1. It is possible to see that very high values of match rate are reached for the

considered ontologies. This proves that the discovered rules are actually able

to predict new assertional knowledge for the considered ontologies.
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Table 4.3: Comparison # extracted rules: AMIE vs LW-GAT.

Ontology Sample

# Rules Top

LW-GAT AMIE n
# Predictions # Predictions

LW-GAT AMIE

Financial

20% 177 2 2 29 208

30% 181 2 2 57 197

40% 180 2 2 85 184

BioPAX

20% 298 8 8 25 2

30% 283 8 8 34 2

40% 272 0 8 50 0

NTNMerged

20% 243 1,129 10 620 420

30% 225 1,022 10 623 281

40% 239 1,063 10 625 332

2. Values of commission error rate are equal to 0, this means that no contra-

dicting knowledge is predicted. This is one of the expectations of the system

because of the exploitation of the terminology and the reasoning capabilities.

3. Values of induction rate are greater than 0 for the case of ontologies where

cases of concepts and roles for which a large number of assertions is available

(Financial and NTNMerged) while for other concepts and roles, few assertions

are available (BioPAX). This means that the ability of the level-wise generate-

and-test method inducing new knowledge that is not logically derivable, is

suitable with ontologies containing a large number of assertions.

4. Values of precision are always the highest one since the induced assertions are

not considered for the computation of this metric and no mistake (commission

error rate is equal to 0) is made.

5. It is also interesting to note how the number of predicted assertions increases

when less knowledge is available, since a higher number of assertions have

been removed from the ontologies.

4.4.2.2 The importance and the value added

We call the level-wise generate-and-test method LW-GAT. Averaged results are re-

ported in Table 4.3 where it is possible to see that LW-GAT outperformed the
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number of rules discovered by AMIE for the case of Financial and BioPAX on-

tologies. Indeed, the output rules of LW-GAT is open rules (see Example 3.9) and

having both concept and role atoms in the head, while AMIE can only output closed

rules (Definition 6) with role atoms in the head. Additionally LW-GAT is able to

prune redundant rules and rules that are inconsistent when considered jointly with

the reference ontology. This is the reason why AMIE registered a larger number of

rules then our system for the case of NTNMerged. LW-GAT outperformed AMIE

also in terms of number of predictions.

We compared the top n rules, ranked with respect to match rate. n was set equal

to the number of rules discovered by AMIE when few rules were discovered, and

equal to 10 for the other cases. LW-GAT clearly outperformed AMIE for the cases

of BioPAX and NTNMerged. The same did not happen for Financial ontology.

This is because outputs of LW-GAT as much as possible specific rules. For the

case of Financial ontology, AMIE output two rules, each one having just one atom

in the body, while output of LW-GAT several refinements of such two rules, thus

preventing the predictions just coming from the general rules. This suggested an

improvement of LW-GAT consisting in assessing whether more general or refined

rules have to be returned.

Example 4.10. Two output rules of AMIE in case of Financial ontology are the

following:

– hasOwner(x, y) ← isOwnerOf(y, x)

– isOwnerOf(x, y) ← hasOwner(y, x)

While output rules of LW-GAT to be specialization of AMIE output rules are:

– hasOwner(x, y) ← isOwnerOf(y, x) ∧ Woman(y)

– hasOwner(x, y) ← isOwnerOf(y, x) ∧ Man(y)

– hasOwner(x, y) ← isOwnerOf(y, x) ∧ isCreditCardOf(z, y)

– hasOwner(x, y) ← isOwnerOf(y, x) ∧ hasOwner(z, y)

– isOwnerOf(x, y) ← hasOwner(y, x) ∧ isUserOf(z, y)

– isOwnerOf(x, y) ← hasOwner(y, x) ∧ isOwnerOf(z, y)

– isOwnerOf(x, y) ← hasOwner(y, x) ∧ IsLoanOf(z, y)
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4.5 Summary

In this chapter, we presented a method for discovering multi-relational associa-

tion rules from ontological knowledge bases, to be used for enriching assertional

knowledge. The algorithm obtains all possible rules in a given space and eliminates

redundant/trivial rules at the same time. Discovered rules are carefully selected by

three basic steps: (i) The generated rules ensure the language bias to be respected.

(ii) To pass the evaluation of the metrics. (iii) Satisfaction when considered jointly

with the ontology.

Discovered rules are represented in SWRL, which can be easily integrated in

the ontology enriching its expressive power and increasing the assertional knowl-

edge that can be derived. In addition, discovered rules may suggest new axioms

to be added to the ontology,such as transitivity and symmetry of a role, and/or

concept/role inclusion axioms.

The proposed approach has been experimentally evaluated through its appli-

cation to publicly available ontologies and comparisons with the state of the art

system.
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5.1 Introduction

Similar to the level-wise generate-and-test algorithm, in this chapter we also propose

an algorithm for discovering frequent and accurate hidden patterns in the form of

multi-relational association rules to be exploited for making predictions of new

assertions in the knowledge base. Multi-relational association rules are DL-Safe

and expressed in SWRL which can be easily integrated in the ontology, enriching
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its expressive power and increasing the assertional knowledge that can be derived.

The algorithm that we propose is based on a genetic algorithm.

Although the goal of both algorithms is the same, the genetic algorithm is

an improvement of the level-wise generate-and-test algorithm. As we have seen

in the previous chapter, the goal of the level-wise generate-and-test algorithm is

to retrieve all possible rules determined by the given maximum length. However,

this method has a fundamental disadvantage: since the size of the search space

increases exponentially with the maximum rule length, it is difficult to obtain long

rules because the execution time explodes.

We create the genetic algorithm for rule discovery to overcome the above dis-

advantage of the level-wise generate-and-test algorithm. Although the genetic al-

gorithm can hardly find all possible rules in the space determined by the given

maximum length, it can discover rules of long length along with selecting and keep-

ing the best rules that it traverses in the search space. The weakness of the genetic

algorithm is that it can miss some rules (we call these rules the undiscovered rules).

To overcome this weakness, we choose the appropriate number of generations for

the genetic algorithm to minimize the number of undiscovered rules (Figure. 5.1).

Figure 5.1: The search space of rules used in genetic algorithm

An overview of the algorithm is shown in Figure. 5.2. The algorithm maintains a

population of individuals (the patterns) and makes it evolve by iteratively applying

a number of genetic operators. A fitness function based on metrics of pattern is
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used to assist the genetic operators to select the best individuals. Each individual

is generated or produced in a space to be limited in a given maximum length of

pattern and compliant with the fixed language bias (Section 3.5).

Figure 5.2: Overview of the genetic algorithm

We regard this genetic algorithm as steady-state, this means that children are

created by applying genetic operators on selected parents, and then the children are

added back into the population to compete with individuals in the old population

in order to allow transition into the new population at the next cycle. With this

method, we always ensure that the best individuals are retained until the final

generation, and they are also the best ones during the process of traversing the

search space of the algorithm.

At the final generation, an individual is added to a set of discovered rules if it

satisfies the following conditions:

1. The fitness value is higher than a given threshold θfit.

2. The individual does not contradict the knowledge base. This means that it is

considered jointly with the ontology and satisfiable.

The rest of this chapter is structured as follows: In Section 5.2, we briefly intro-
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duce the genetic algorithm and steady-state genetic algorithm used in the proposed

method. Details of the algorithm are presented in Section 5.3 while its experimental

evaluation is given in Section 5.4. Conclusions are drawn in Section 5.5.

5.2 Genetic Algorithm

5.2.1 Introduction

Genetic algorithms ( [Hol75], [Gol89], [DeJ02], [ES03]) are adaptive heuristic

search algorithms based on the evolutionary ideas of natural selection and genet-

ics. They are frequently used to find optimal or near-optimal solutions to difficult

problems which otherwise would take a long time to solve. Although we are often

not able to guarantee that our genetic algorithm can find the global optimum solu-

tion to our problem, we can in general obtain a close approximation of the optimal

solution.

In the genetic algorithm, a population consisting of individuals is maintained

within the search space. Each individual describes a possible solution of a given

problem with an associated fitness value representing the competitiveness of an

individual. New generations of the population are created by applying genetic

operators (selection, crossover, mutation) on individuals of a previous generation.

We aim at the creation of genetic operators to produce offspring better than their

parents by investigating information from the chromosomes. Actually, we are trying

to create new solutions which are better than old solutions and replace the old

solutions by the new ones. In this way, we hope that better solutions in successive

generations are retained for further development while the least fit solutions will be

eliminated. Eventually, the genetic algorithm has three basic stopping criteria as

follows:

1. The process is executed iteratively through generations and stops when meet-

ing the optimal solution.

2. As soon as no improvement of the fitness value for the best solution is observed

for a fixed number of iterations. In such event, the current best solution is

returned as the optimal solution for the problem.
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3. The process is executed iteratively until the final generation. The best solution

in the final generation is regarded as the optimal solution of problem.

5.2.2 Terminology

– Population is a subset of all the encoded solutions to the given problem.

– Chromosome is a specific solution to the given problem.

– Genotype is the encoding of a solution in the computation space in which

the solutions are represented in a way that can be easily understood and

manipulated using a computing system.

– Phenotype is a solution in the actual real world solution space which is

represented in a way close to what is expected in real world situations.

– Fitness Function is used to evaluate the quality of the solution to the prob-

lem in the population. It evaluates how good a single solution is in a popula-

tion.

– Genetic Operators are used to guide the algorithm towards a solution to a

given problem. There are three main types of operators (selection, crossover

and mutation), which must work in conjunction with one another in order for

the algorithm to be successful.

5.2.3 Structure

We start by randomly initializing a population, determine fitness for all the indi-

viduals in the population and then select parents from this population for mating.

We then apply crossover and mutation operators on the parents to generate new

offspring. Finally, these offspring replace the existing individuals in the population

(generational genetic algorithm) or directly compete with their parents to obtain

the best individuals and replace the existing parents in the population (steady-

state genetic algorithm). This process repeats until it meets a stopping criterion

(Figure. 5.3).
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Figure 5.3: Structure of the genetic algorithm

5.2.4 Steady-state genetic algorithm

Actually, steady-state genetic algorithm means that there are no generations. It is

different from the generational genetic algorithm in that tournament selection does

not replace the selected individuals in the population, and instead of adding the

children of the selected parents into the next generation, the two best individuals

out of the two parents and two children are added back into the population so that

the population size remains constant.
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5.3 The algorithm

The genetic algorithm we propose is based on steady-state, however, instead of

giving two offspring in direct competition with their parents, we add them back into

the population so that they compete with individuals in the whole population. With

this change, the best individuals are always retained until the final generation. A

pattern is the genotype of an individual and the corresponding rule is its phenotype,

constructed using the first atom of the pattern as the head and the remaining atoms

as the body.

The goal of the algorithm is to discover rules capable of making (possibly a large

number of) accurate predictions. In this algorithm we use two fitness functions and

each is run on an independent experiment, in which either one contains a metric

suited to the OWA (Open World Assumption).

5.3.1 Representation

An evolutionary algorithm is shown by Algorithm 7, which describes the overall

flow of discovering the best frequent patterns having the maximum length of a

given MAX_LENGTH. The algorithm can be expressed in the following steps:

1. Firstly, initialize a list Af of frequent atoms (line 1 in Algorithm 7), each

being a pattern containing an atomic concept name or an atomic role name

in the knowledge base. This list is computed once and for all before launch-

ing the evolutionary process and it maintains all atomic concept and atomic

role names whose instance retrieval is higher than a threshold θf . This step

is similar to calling the function CreateGeneralPatterns at the line 2 in

Algorithm 1.

2. The first population pop with n individuals (patterns) is initialized by per-

forming an initialization operator (see Section 5.3.2.1 for more details).

3. Lines 3-4 in Algorithm 7 are considered a support task of the selection operator

(see Section 5.3.2.2 for more details). The fitness value of each pattern in

the first population is computed to measure the quality of the pattern (see

Section 5.3.3 for more details about the fitness function). Thereafter, we

perform to sort all population individuals (patterns) by decreasing fitness
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Algorithm 7: Evolutionary algorithm for the discovery of multi-relational

association rules from a populated ontological KB
input : K: ontological KB; θf : frequency threshold;

n: the size of the population;

pcross: crossover probability; put: mutation probability;

τ : truncation proportion; θfit: fitness threshold;

output: pop: set of frequent patterns discovered from K

1 Initialize a list Af of frequent atoms in K;

2 Initialize a population pop of size n by using n times the function

CreateNewPattern();

3 Compute fitness values for all of the patterns in pop;

4 Sort pop by decreasing fitness values;

5 theNumberOfGeneration ← 0 ;

6 while theNumberOfGeneration < MAX_GENERATIONS do

7 for i = 1 −→ [τn] do

8 CrossOver(pop[i], pop[[τn] + i]);

9 CrossOver(pop[i], pop[2[τn] + i]);

10 foreach os ∈ offspring do

11 with probability pmut do Mutate(os);

12 end

13 Compute fitness values for all of offspring;

14 Add all offspring to pop;

15 end

16 Sort pop by decreasing fitness value;

17 Remove patterns located at the end of pop so that the size of pop is

exactly n;

18 theNumberOfGeneration ← theNumberOfGeneration + 1 ;

19 end

20 Remove inconsistent rules from the final population pop;

21 Remove rules where fitness value is less than θfit from the final population

pop;

22 return pop
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values, this means that we are performing to filter the best quality patterns

and bring them to the top of the list.

4. We regard this evolutionary algorithm as steady-state, therefore operations

are performed at each generation as follows:

(a) We pick out the first 3⌊τn⌋ individuals (patterns) in the population to

apply genetic operator on them. Because the first ⌊τn⌋ individuals has

the best quality, therefore we apply the crossover operator to them twice

in this algorithm (lines 8-9 in Algorithm 7); At first we mate each in-

dividual from 1 to ⌊τn⌋ with each individual from ⌊τn + 1⌋ to 2⌊τn⌋

and apply the crossover operator to them; At second we continue mating

each individual from 1 to ⌊τn⌋ with each individual from ⌊2⌊τn⌋+ 1⌋ to

3⌊τn⌋ and apply the crossover operator to them as well (see Figure. 5.4).

(b) After performing the crossover operator, we have two offspring (see Sec-

tion 5.3.2.3 for more details), thus the total number of offspring generated

per generation is 4⌊τn⌋. All these offspring (patterns) are perturbed by

the mutation operator (see Section 5.3.2.4 for more details) with a given

probability pmut (lines 10-11 in Algorithm 7) for each.

(c) The fitness value of each offspring is computed, after that all offspring are

added to the population (lines 13-14 in Algorithm 7). At this time the

number of individuals in the population increases by 4⌊τn⌋ individuals.

(d) In order to keep the number of individuals in the population as the

original population size and at the same time eliminate weak individuals

within the population, we perform the following two processes: Sort all

individuals in the population by decreasing fitness values for the former;

Eliminate 4⌊τn⌋ individuals located at the end of the population for the

latter (lines 16-17 in Algorithm 7). With this method, we really retain

the best individuals for the next generation. And obviously the best

individuals in the whole process of algorithm is in the population of the

final generation.

5. We achieve the best individuals by eliminating unqualified individuals in the

population of the final generation. The list of the discovered frequent patterns
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is the list of the rest individuals in this population. The best individual to be

kept in this population must overcome two conditions as follows:

(a) The rule to be obtained from the pattern (individual) is consistent with

the knowledge base (line 20 in Algorithm 7): this means that the rule is

satisfiable when considered jointly with the ontology (see Section 5.3.4

for more details), K ∪ p 2 ⊥, in which p is the considered pattern in the

population.

(b) The fitness value of the pattern (individual) is greater than a given

threshold θfit.

5.3.2 Operators

5.3.2.1 Initialization Operator

Algorithm 8: The function CreateNewPattern()
input : a global variable Af : a list of frequent atoms;

output: p: a new random pattern

1 length ← random(2, MAX_LENGTH);

2 p ← Ø;

3 while p.length() < length do

4 pick an atom a ∈ Af at random;

5 if ¬p.isEmpty() then

6 Call AdjustAtom() in Algorithm 24 to adjust the variables in a to

ensure the language bias is respected;

7 end

8 add a to the end of p;

9 end

10 return p

The initialization operator initializes the first population pop with n patterns

by using n times the function CreateNewPattern.

The function CreateNewPattern is shown in Algorithm 8. First, this function

initializes the maximum length of the pattern in range from 2 to MAX_LENGTH.
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After that the function proceeds to create a new pattern by picking a frequent atom

at random from the list Af and adding that atom at the end of the pattern, this

is performed iteratively until reaching the maximum length of the pattern. The

picked atom can already appear in the pattern. Each time an atom is added to the

pattern, the variables in this atom have to be adjusted (Section A.1) for ensuring

the language bias to be respected, what means we never create a redundant or

trivial rule to be obtained from the new pattern.

5.3.2.2 Selection Operator

Figure 5.4: Selection operator for crossover

Before performing the selection operator, individuals in the population are

sorted by decreasing fitness value and a given parameter τ (0 < τ < 1
3) is used

to assist in the selection of individuals.

The selection operator is used before calling the crossover operator. The pur-

pose of this operator is to select the best individuals in the population to perform
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crossover. An illustrative diagram is depicted in Figure. 5.4: 3[τn] individuals are

selected for reproduction, each individual in Part 1 (the best individuals) is se-

lected twice to mate with each individual in Part 2 and each individual in Part 3,

respectively, in order from top to bottom.

5.3.2.3 Crossover Operator

Algorithm 9: The CrossOver Operator
input : p1, p2: the two patterns to be crossed over.

output: O1, O2: two patterns that are a recombination of the input

patterns.

1 Initialize a set L containing all of the atoms in both parents

A1 ← a set contains atoms of p1

A2 ← a set contains atoms of p2

L ← A1 ∪ A2;

2 Randomly choose a target length for each offspring in the range of 2 to

MAX_LENGTH

length_O1 ← random(2, MAX_LENGTH)

length_O2 ← random(2, MAX_LENGTH);

3 O1 ← Ø;

4 O2 ← Ø;

5 for i = 1 −→ 2 do

6 while Oi.length() < length_Oi do

7 Pick an atom a ∈ L at random;

8 if ¬Oi.isEmpty() then

9 Call AdjustAtom() in Algorithm 24 to adjust the variables in a to

ensure the language bias is respected;

10 end

11 Add a to the end of Oi;

12 end

13 end

14 return O1, O2
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The crossover operator produces two offspring patterns from two parent patterns

that are selected according to the selection operator (Figure. 5.4). The atoms of

the offspring are randomly selected from the atoms of the parents. The crossover

operator is shown by Algorithm 9, which describes the overall flow of creating two

offspring patterns having the maximum length of a given MAX_LENGTH from

two parent patterns. The operator can be expressed in the following steps:

1. Initialize a set L including all the atoms in the two input patterns (parents)

(line 1 in Algorithm 9). This set contains only the concept or role names of

the parent patterns.

2. Initialize randomly the maximum length of the two offspring in range from

2 to MAX_LENGTH (line 2 in Algorithm 9). The maximum length can be

different for each offspring.

3. The operator creates two output patterns (offspring) and each pattern is cre-

ated by picking an atom at random from the set L and adding that atom to the

end of the pattern, this is performed iteratively until reaching the maximum

length of the pattern. The picked atom can already appear in the pattern.

Each time an atom is added to the pattern, the variables in this atom have

to be adjusted for ensuring the language bias to be respected.

Example 5.1. Given the two parent patterns

p1: [sonOf(x, y), fatherOf(y, x), Male(x)],

p2: [fatherOf(x, y), grandfatherOf(x, z), sonOf(z, y)],

according to Algorithm 3, we have:

L = {sonOf, fatherOf, Male, grandfatherOf}.

Suppose the (random) target length for the first child (O1) is 4 and for the second

child (O2) is 3. The offspring after performing crossover may be the following

patterns:

O1: [grandfatherOf(x, y), fatherOf(x, z), fatherOf(z, y), Male(y)],

O2: [fatherOf(x, y), grandfatherOf(x, z), fatherOf(y, z)].
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Algorithm 10: The Mutation Operator
input : p: the pattern to be mutated.

output: p′: the mutated pattern.

1 if p.getFitnessValue() > θmut then

2 if p.length() < MAX_LENGTH then

3 p′ ← Specialization(p);

4 end

5 else

6 p′ ← CreateBodyPattern(p);

7 end

8 end

9 else

10 if p.length() > 2 then

11 p′ ← Generalization(p);

12 end

13 else

14 p′ ← CreateBodyPattern(p);

15 end

16 end

17 return p′
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5.3.2.4 Mutation Operator

The mutation operator perturbs a pattern from the offspring of crossover with a

given probability pmut and uses two operators based on the idea of specialization

and generalization in ILP. The mutation operator is shown by Algorithm 10, which

describes the whole mutation process of the offspring being the output of crossover

operator. The operator can be expressed in the following steps:

1. If the fitness value of the input pattern (offspring) is above a given threshold

θmut and the length of it is smaller than MAX_LENGTH then we apply the

specialization operator (see Section 5.3.2.5 for more details) on it.

2. If the fitness value of the input pattern (offspring) is below a given threshold

θmut and the length of it is greater than 2 then we apply the generalization

operator (see Section 5.3.2.6 for more details) on it.

3. In case a pattern is too long to undergo specialization or too short to un-

dergo generalization, the mutation operator will apply function CreateBody-

Pattern() on the input pattern, which creates a completely new body by

picking atoms at random from the list Af of frequent atoms, while keeping

the same head as the the parent pattern and respecting the language bias.

The picked atoms may be the same.

Example 5.2. Assume p = [siblingOf(x, y), stayWith(y, x)],

with fitness(p) < θmut undergoes mutation; then, p′ = CreateBodyPattern(p),

for instance, and p′ = [siblingOf(x, y), brotherOf(z, x), Female(x), sisterOf(y, z)].

5.3.2.5 Specialization Operator

The specialization operator, detailed in Algorithm 11, appends a new atom by

picking an atom at random from the list Af of frequent atoms to the input pattern,

while preserving the language bias.

Example 5.3 (Specialization). Given

p = [GrandFather(x), Father(x)],

p′ = Specialization(p) might yield, for instance,

p′ = [GrandFather(x), Father(x), Husband(x)].
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Algorithm 11: The Specialization Operator
input : p: the pattern to be specialized;

a global variable Af : a list of frequent atoms;

output: p′: the specialized pattern.

1 pick an atom a ∈ Af at random;

2 Call AdjustAtom() in Algorithm 24 to adjust the variables in a to ensure the

language bias is respected (adjust according to p);

3 p′ ← Add a to the end of p;

4 return p′

5.3.2.6 Generalization Operator

Algorithm 12: The Generalization Operator
input : p: the pattern to be generalized;

output: p′: the generalized pattern.

1 Randomly generate a number n which represents the number of atoms will be

removed.

n ← random(1, p.body.length() - 1);

2 for i = 1 −→ n do

3 Remove the last atom from p;

4 end

5 p′ ← Call AdjustPattern() in Algorithm 36 to adjust the variables of atoms

in p (if necessary) to ensure the language bias is respected.;

6 return p′

The generalization operator, detailed in Algorithm 12, removes a random num-

ber of atoms located at the end of the body of p. After removing atoms, the length

of the body must remain at least one atom and preserve the language bias.

Example 5.4 (Generalization). Given

p = [sonOf(x, y), fatherOf(y, x), Male(x), motherOf(z, x), mathsfspouseOf(z, y)],

p′ = Generalization(p) might yield, assuming the operator randomly chooses to

remove three atoms,

p′ = [sonOf(x, y), fatherOf(y, x)].
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5.3.3 Fitness function

In this algorithm, we run on two independent experiments and the fitness function

of each experiment is defined as follows:

1. The first fitness function is defined as the head coverage of the rule:

fH(r) = HeadCoverage(r)

This metric captures the generality of a pattern, since one expects good-

quality patterns to cover a large share of the known true facts.

2. The second fitness function is defined as a combination between the head

coverage and confidence of the rule:

fHP CA(r) = HeadCoverage(r) + PCAConfidence(r)

This metric allows, besides covering a large number of true facts (the head cov-

erage metric) to also cover as few false facts as possible (the rule confidence).

Since DLs adopt the OWA, we use the PCA-Confidence metric (Definition 12)

to measure the confidence of a pattern. This metric is an indication of how

often the pattern has been found to be true. High confidence value means

that the pattern has a low error rate and vice versa. A high fitness indicates

that a pattern is meaningful (general and accurate). The two terms of the

fitness function might be viewed as two conflicting objectives; therefore, they

could be weighted differently or a two-objective EA could be used to find

non-dominated rules. We leave the exploration of both ideas for future work.

The comparison of experimental results of the above two fitness functions is

shown in Section 5.4. The result of the second fitness function is better than the

result of the first fitness function, which demonstrates the correctness of adding the

rule PCA-Confidence to the fitness function.

5.3.4 Consistency check

For each of the obtained rules from the patterns at the final population, it is consid-

ered jointly with the ontology, if the rule is unsatisfiable then it is an inconsistent

rule, otherwise it is an consistent rule.
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We only check patterns for consistency in the final population, without checking

them during evolution. We defer this check for the following reasons:

1. Checking rules for consistency may be computationally very expensive, to the

point that the algorithm gets stuck, even with the small ontology.

2. It is not necessary to immediately omit the inconsistent rules during evolution

because even if we apply a genetic operator to inconsistent rules, its offspring

may still be consistent rules.

The satisfiability check in the current implementation is performed by using an

off-the-shelf OWL reasoner, namely Pellet [SPG+07].

5.3.5 Language bias

In the genetic algorithm, whenever adding or removing atoms from the pattern, we

must adjust the variables in order to ensure the language bias is respected, this

means that the discovered patterns are not redundant and trivial. Patterns com-

plying with the definitions in Section 3.5, are considered as respecting the language

bias.

5.4 Experiments and evaluation

We carry out the experiments based on the evolutionary algorithm with respect to

the publicly available ontologies shown in Table 4.1. The objectives and evaluation

metrics of the experiments are shown in Section 4.4.1.

We perform two independent experiments corresponding to the two fitness func-

tions described in Section 5.3.3. For each ontology in Table 4.1, we build three

stratified samples by randomly removing respectively 20%, 30%, 40% of the concept

assertions, according to Algorithm 6, thus the total number of stratified samples to

be created is 9. For each experiment, we run the evolutionary algorithm presented

in Section 5.3 by repeating, for each run, the sampling procedure. We performed

30 runs for each stratified sample of each ontology using the following parameter

setting:
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n = 5, 000; pmut = 5%;

MAX_GENERATIONS = 200; θmut = 0.2;

MAX_RULE_LENGTH = 10; τ = 1
5

θf = 1.

Figure 5.5: The growth of population over generations

The charts in Figure. 5.5 demonstrate the unfolding of the evolutionary process

over 30 distinct runs. The left charts shows the growth over generations of the

number of patterns having a fitness greater than θfit. The right charts shows the

growth over generations of the average fitness of the entire population. We can

observe that high quality patterns are gradually discovered over the generations.
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Table 5.1: Averageg (± st.dev.) performance on each ontology

(fH(r) = HeadCoverage(r))

Ontology
Sample Match Comm. Ind. Precision Tot. nr.

Rate Rate Rate Predictions

Financial

20%
0.855 0 0.145 1.0 47,232

± 0.033 ± 0.033 ± 36,777

30%
0.864 0 0.136 1.0 25,456

± 0.044 ± 0.044 ± 34,174

40%
0.861 0 0.139 1.0 23,207

± 0.044 ± 0.044 ± 30,133

BioPAX

20%
0.567 0 0.433 1.0 84,035

± 0.031 ± 0.031 ± 15,018

30%
0.591 0 0.409 1.0 85,499

± 0.03 ± 0.03 ± 11,660

40%
0.58 0 0.42 1.0 90,856

± 0.027 ± 0.027 ± 14,048

NTNMerged

20%
0.572 0 0.428 1.0 2,311,624

± 0.026 ± 0.026 ± 287,858

30%
0.564 0 0.436 1.0 2,314,346

± 0.039 ± 0.039 ± 458,522

40%
0.621 0 0.379 1.0 2,345,588

± 0.027 ± 0.027 ± 357,565

5.4.1 The ability to predict assertional knowledge

Results in the Tables 5.1 and 5.2 have been averaged over 30 different runs for each

stratified sample. Table 5.1 offers the results of the evolutionary algorithm using

the fitness function fH(r); Table 5.2 offers the results of the evolutionary algorithm

using the fitness function fHP CA(r);

We have the following remarks when looking at the two tables (Table 5.1 and

Table 5.2):

1. Positive values of match rate at both tables indicate that the discovered rules

are actually able to predict new assertional knowledge for the considered on-

tologies.

2. No contradicting knowledge is predicted for both fitness functions because

values of commission error rate are equal to 0.

3. Values of induction rate are greater than 0 for all ontologies. This means that
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Table 5.2: Avg (± st.dev.) performance on each ontology

(fHP CA(r) = HeadCoverage(r) + PCAConfidence(r))

Ontology
Sample Match Comm. Ind. Precision Total #

Rate Rate Rate Predictions

Financial

20%
0.871 0 0.129 1.0 44,962

± 0.036 0 ± 0.036 ± 41,949

30%
0.855 0 0.145 1.0 39,401

± 0.047 0 ± 0.047 ± 44,645

40%
0.864 0 0.136 1.0 31,226

± 0.039 0 ± 0.039 ± 33,952

BioPAX

20%
0.571 0 0.429 1.0 86, 920

± 0.028 0 ± 0.028 ± 11,691

30%
0.59 0 0.41 1.0 79,543

± 0.025 0 ± 0.025 ± 11,850

40%
0.584 0 0.416 1.0 97,559

± 0.031 0 ± 0.031 ± 13,049

NTNMerged

20%
0.632 0 0.368 1.0 3,439,660

± 0.059 0 ± 0.059 ± 554,720

30%
0.6 0 0.4 1.0 2,353,420

± 0.055 0 ± 0.055 ± 477,735

40%
0.711 0 0.289 1.0 2,899,464

± 0.075 0 ± 0.075 ± 563,711

evolutionary algorithm with the above fitness functions can come up with

rules that induce previously unknown facts.

4. Values of precision are always equal to 1 at both tables on all samples of all on-

tologies considered, which show that these results fully confirm the capability

of the proposed approach to discover accurate rules.

5. We notice that the evolutionary algorithm approach creates a very large num-

ber of predictions compared to the level-wise generate-and-test approach (Ta-

ble 4.2).

5.4.2 The importance and the value added

We call GA_FHP CA the evolutionary algorithm with the fitness function fH(r);

GA_FH the evolutionary algorithm with the fitness function fHP CA(r); LW-GAT

the level-wise generate-and-test method presenting in Chapter 4; AMIE [GTHS13]
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Table 5.3: Comparison of the number of discovered rules.

Ontology Samp.
# The total number of rules discovered

GA_FHP CA GA_FH LW-GAT AMIE

Financial

20%
27 26

177 2
± 3 ± 4

30%
26 25

181 2
± 3 ± 3

40%
24 23

180 2
± 4 ± 3

BioPAX

20%
132 129

298 8
± 10 ± 13

30%
118 128

283 8
± 12 ± 9

40%
137 129

272 0
± 12 ± 11

NTNMerged

20%
1,834 1,157

243 1,129
± 782 ± 168

30%
1,235 1,052

225 1,022
± 495 ± 353

40%
1,810 1,088

239 1,063
± 733 ± 181

the state-of-the-art system. Table 5.3 reports the average number of rules discovered

by each system given each knowledge base sample. It is possible to see that LW-GAT

outperformed the number of rules discovered by GA_FHP CA, GA_FH and AMIE

for the case of Financial and BioPAX ontologies. The reason is that the output rules

(Definition ...) of LW-GAT is open rules, while the output rules of the rest are close

rules (Definition ...). We can observe a clear tendency for GA_FHP CA to perform

better with respect to the ontology containing large number of assertions; GA_FH

performs better than LW-GAT and AMIE. A dominant feature of GA_FHP CA and

GA_FH is that the maximum length of a discovered rule is 10, while LW-GAT and

AMIE are only 3.

Additional comparative results are reported in Table 5.4. Here, given the top m

rules, with n equal to 10 or equal to the number of rules discovered by AMIE, when
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Table 5.4: Comparison of the number of extracted predictions.

Ontology Samp.

Top

n
# Predictions

GA_FHP CA GA_FH LW-GAT AMIE

Financial

20% 2
42,575 * 46,536

29 208
± 38,239 ± 36,708

30% 2
36,799 23,764

57 197
± 41,667 ± 32,093

40% 2
30,263 22,316

85 184
± 33,825 ± 30,120

BioPAX

20% 8
41,024 * 40,051

25 2
± 7,567 ± 8,213

30% 8
39,283 * 40,580

34 2
± 6,485 ± 6,562

40% 8
43,698 * 40,860

50 0
± 6,524 ± 8,052

NTNMerged

20% 10
933,248 * 593,634

620 420
± 110,786 ± 81,448

30% 10
724,020 * 646,419

623 281
± 162,851 ± 99,601

40% 10
828,317 * 707,093

625 332
± 250,804 ± 154,251

fewer than 10 rules were discovered, the number of correct predictions generated

by the top m rules discovered by each system is compared. The results reported

in Table 5.4 corroborate the claim that GA_FHP CA can substantially outperform

the existing systems, not only in terms of rules discovered, but also (and more

importantly) in terms of their predictive power. A star in the GA_FHP CA column

means that Welch’s t-test on the comparison of GA_FHP CA and GA_FH rejects

the null hypothesis with a confidence level of at least 95%.
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5.5 Summary

In this chapter, we presented an evolutionary algorithm for discovering multi-

relational association rules from ontological knowledge bases, to be used for en-

riching assertional knowledge. This algorithm is an improvement over the level-

wise generated-and-test algorithm. The algorithm maintains a population of the

patterns and makes it evolve by iteratively performing genetic operators and dis-

covered rules are gained at the final population after checking consistency with the

ontology.

Discovered rules are coded in SWRL, hence they can be directly added to the

considered ontological KB deriving new assertional knowledge. Furthermore, the

discovered rules may suggest new axioms at schema level, such as role transitivity,

symmetry, role/concept subsumption.

We applied the proposed approach in two independent experiments, each with

a separated fitness function. This experiments has been evaluated through its ap-

plication to publicly available ontologies and comparisons with the state of the art

system.
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6.1 Introduction

In Chapter 5, we performed and compared two independent experiments of the

evolutionary algorithm with two fitness functions representing two metrics. In this

chapter, we will study the predictive ability of some other metrics, originally pro-

posed for scoring association rules. As in Chapter 5, we will employ these metrics

as building blocks for a fitness function for evolutionary inductive programming.

All metrics to be used in experiments of this chapter are popular asymmetric

metrics which are shown in Sections 3.6 and 3.7. We employ asymmetric metrics

because our evolutionary algorithm searches for hidden knowledge patterns in the

form of SWRL rules having the general form A −→ B and values of an asymmetric

metric for A −→ B and B −→ A may not be the same.

The main goal in this chapter is that we might select metrics that are suitable

with data semantics by comparing the number of generated rules, total predictions

and the number of unknown facts when the metrics are used to compute the fitness
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function of the evolutionary algorithm. The selection of these metrics is also a

crucial step towards scoring multi-relational association rules that are generated

from ontologies.

Because the evolutionary algorithm is presented in Section 5.2 along with the

asymmetric metrics are mentioned in Section 3.6, this chapter is shortened as follow:

Experiments and evaluation are given in Section 6.2. Conclusions are drawn in

Section 6.3.

6.2 Experiment and evaluation

In order to easily compare results with the experiments in previous chapters, we

continue to carry out experiments on the ontologies publicly available in Table 4.1.

The objectives and evaluation metrics of the experiments are shown in the Sec-

tion 4.4.1.

We perform independent experiments for separate fitness functions, each fitness

function corresponds to an asymmetric metric describing in Sections 3.6 and 3.7. We

construct 3 stratified samples of each ontology in Table 4.1 by randomly removing

respectively 20%, 30%, 40% of the concept assertions, according to Algorithm 6.

We performed 30 runs of the evolutionary algorithm described in Section 5.2 for

each stratified sample and for each choice of fitness function using the following

parameter setting:

n = 5, 000; pmut = 5%;

MAX_GENERATIONS = 200; θmut = 0.2;

MAX_RULE_LENGTH = 10; τ = 1
5

θfit = 0 θf = 1.

(Conviction: θfit = 1)

As we have known, θfit is a given threshold used to aid in pattern selection. For

each fitness function, θfit might be set to a new value within the effective range

that corresponds to the metric used to compute the fitness function. Details of the

effective range are presented in Table 6.1.
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Table 6.1: Symbols and range of metrics (the effective range is used to assist in the

choice of θfit.)

Symbol Metric Range Effective range

H Head Coverage [0, 1] (0, 1]

C Confidence [0, 1] (0, 1]

P PCA-Confidence [0, 1] (0, 1]

L Laplace [0, 1] (0, 1]

CV Conviction [0.5, +∞) (1, +∞)

CF Certainty Factor [-1, 1] (0, 1]

A Added Value [-0.5 , 1] (0, 1]

J J-Measure [0, 1] (0, 1]

G Gini Index [0, 1] (0, 1]

6.2.1 Compare the number of rules discovered and the ability to

predict assertional knowledge

Our experiments aimed at comparing the results obtained by the EA using different

rule evaluation metrics as fitness based on the three following criteria:

1. The number of the rules discovered by the EA.

2. The induction rate: if > 0, this means assertions are predicted that could

not be inferred from the stratified version. The higher the induction rate, the

more novel predictions (unknown facts) are induced for the KB.

3. The number of correct predictions = number of predictions × precision, where

the number of predictions is the number of predicted assertions and precision

is defined in Definition 19.

Table 6.2 shows a comparison of the metrics (identified with the acronyms de-

fined in Table 6.1) according to the first criterion. The second and third criteria are

used to compare the predictive power of the discovered rules. In order to compare

the metrics according to these criteria, we applied the rules discovered from the

stratified samples to the full ontology versions and collected all predictions, i.e., the

head atoms of the instantiated rules. Given the collected predictions, those already

contained in the stratified ontology samples were discarded, while the remaining

predicted facts were considered. A prediction is evaluated as correct if it is con-

tained/entailed by the full ontology version and as incorrect if it is inconsistent with
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Table 6.2: Comparison of the metrics by the number of discovered rules.

Ontology Samp.
Total number of discovered rules by metric ± stdev

H C P L CV CF A J G

Financial

20%
26 25 25 3,254 4 25 26 3 487

± 4 ± 4 ± 3 ± 30 ± 1 ± 3 ± 3 ± 1 ± 12

30%
25 25 25 3,301 4 26 24 4 485

± 3 ± 4 ± 4 ± 31 ± 1 ± 3 ± 4 ± 1 ± 9

40%
23 23 22 3,296 3 23 21 3 479

± 3 ± 3 ± 4 ± 31 ± 1 ± 4 ± 3 ± 1 ± 11

Biopax

20%
129 122 130 4,293 35 118 119 58 3,486

± 13 ± 12 ± 10 ± 24 ± 5 ± 9 ± 9 ± 5 ± 182

30%
128 130 130 4,384 33 117 110 55 3,658

± 9 ± 13 ± 9 ± 22 ± 5 ± 8 ± 9 ± 5 ± 139

40%
129 136 133 4,530 36 124 122 59 3,560

± 11 ± 11 ± 8 ± 23 ± 5 ± 9 ± 7 ± 6 ± 157

NTNMerged

20%
1,157 1,345 1,418 4,563 382 671 656 504 2,040

± 168 ± 423 ± 492 ± 53 ± 31 ± 36 ± 34 ± 22 ± 690

30%
1,052 947 1,017 4,805 509 743 728 460 457

± 353 ± 238 ± 370 ± 13 ± 39 ± 45 ± 48 ± 21 ± 90

40%
1,088 1,223 1,295 4,797 397 687 664 500 1,506

± 181 ± 177 ± 357 ± 22 ± 26 ± 38 ± 34 ± 26 ± 61

the full ontology version. All the results (see Table 6.3, 6.4, 6.5, 6.6 and 6.7) have

been computed using the rules discovered by each metrics (see Table 6.2) based on

30 runs with the above parameter setting and have been measured in terms of pre-

cision (see Definition 19), match, commission, and induction rate (see Section 3.8).

The statistic significance of all pairwise comparisons between metrics have been

assessed using 1-tailed Welch’s t-test.

The evolutionary algorithm achieves precision = 1 and commission error rate

= 0 on all versions of all considered ontologies; this confirms its ability to discover

accurate rules; as a consequence, the number of correct predictions coincides with

the number of discovered predictions.

From the observations in Tables 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7, we can draw a

few remarks:

1. Laplace has the highest number of discovered rules. However, it hardly pro-

duces any new knowledge (induction rate ≈ 0).

2. Gini Index scores the second highest number of discovered rules. However,



6.2. Experiment and evaluation 91

this measure looks less robust when compared to other metrics, since large

deviations among discovered rules show up for different stratified samples of

the same ontology (see Table 6.2); sometimes, it produces much new knowl-

edge, sometimes little or none (induction rate is not stable - see Table 6.7).

In addition, the number of predictions is medium or low compared to other

metrics (see Table 6.7).

3. Five metrics (HeadCoverage, Confidence, PCA-Confidence, Certainty Factor,

and Added Value) allow the evolutionary algorithm to discover the largest

number of rules (see Table 6.2) and, which is even more relevant, to come up

with rules that induce a large number of previously unknown facts (induc-

tion rate > 0), with a very large absolute number of correct predictions (see

Tables 6.3, 6.4, 6.5 and 6.6).

4. Two metrics (Conviction and J-Measure) produce the smallest number of

rules. Although both the induction rate and the number of predictions are

acceptable, the low number of discovered rules may mean valuable rules are

missed out.

From the above remarks, we may conclude that HeadCoverage, Confidence,

PCA-Confidence, Certainty Factor, and Added Value are the best choices as an

optimization criterion (i.e., fitness function).

6.2.2 The importance and the value added

We call GA_FHP CA the evolutionary algorithm with the fitness function

fHP CA(r) = HeadCoverage(r) + PCAConfidence(r) presenting in Chapter 5;

LW-GAT the level-wise generate-and-test method presenting in Chapter 4; AMIE

[GTHS13] the state-of-the-art system. We compared the experimental performance

of the five best metrics to GA_FHP CA, LW-GAT and AMIE which are closest to it

in purpose. Table 6.8 reports the number of rules discovered by each system given

each knowledge base sample. We can remark the following:

1. The top-5 metrics discover more rules than LW-GAT from NTNMerged, but

fewer from the Financial and Biopax knowledge bases. One reason is that

LW-GAT can discover also open rules (see Example 3.9), which are barred
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by language bias of the evolutionary algorithm; furthermore, the maximum

length of a rule is 10 atoms. Another reason is that the number of individuals

in Financial and Biopax is less than that of NTNMerged (see Tab 4.1, last

column). If one factor these differences out, the top-5 metrics are superior to

LW-GAT.

2. The top-5 metrics discover more rules than AMIE from Financial and Biopax

and a comparable number from the NTNMerged knowledge base. One lim-

itation of deterministic level-wise generate-and-test methods like AMIE and

LW-GAT is that they cannot scale up to rules longer than 3 atoms, while

the evolutionary algorithm (with any metrics) can easily discover rules of 10

atoms (and possibly more).

3. The fitness function of GA_FHP CA outperforms each of the top-5 metrics;

however, it is a combination of two of them. This suggests a new promising

direction of research, that is to try to find an optimal fitness function for the

evolutionary algorithm by combining the individual metrics studies in this

chapter.

6.3 Summary

We have just compared the results of the experiments in the previous chapters

with some popular asymmetric metrics by applying them as fitness functions for

evolutionary inductive programming. After comparison, we figured out five metrics

as the most promising candidates for further exploration.

Through this comparison, we also identified a promising new direction for re-

search with the aim of optimizing the fitness function. That is to find ways to

combine the above metrics to achieve the best results.
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Table 6.3: Avg (± st.dev.) performance on each ontology of HeadCoverage (H),

Confidence (C)

Ontology
Samp. Match Com. Ind. Precision Total #

Rate Rate Rate Predictions

H

Financial

20%
0.855 0 0.145 1.0 47,232

± 0.033 ± 0.033 ± 36,777

30%
0.864 0 0.136 1.0 25,456

± 0.044 ± 0.044 ± 34,174

40%
0.861 0 0.139 1.0 23,207

± 0.044 ± 0.044 ± 30,133

BioPAX

20%
0.567 0 0.433 1.0 84,035

± 0.031 ± 0.031 ± 15,018

30%
0.591 0 0.409 1.0 85,499

± 0.03 ± 0.03 ± 11,660

40%
0.58 0 0.42 1.0 90,856

± 0.027 ± 0.027 ± 14,048

NTNMerged

20%
0.572 0 0.428 1.0 2,311,624

± 0.026 ± 0.026 ± 287,858

30%
0.564 0 0.436 1.0 2,314,346

± 0.039 ± 0.039 ± 458,522

40%
0.621 0 0.379 1.0 2,345,588

± 0.027 ± 0.027 ± 357,565

C

Financial

20%
0.848 0 0.152 1.0 43,151

± 0.045 ± 0.045 ± 44,254

30%
0.860 0 0.140 1.0 27,589

± 0.038 ± 0.038 ± 41,184

40%
0.858 0 0.142 1.0 33,795

± 0.051 ± 0.051 ± 41,880

BioPAX

20%
0.574 0 0.426 1.0 79,454

± 0.036 ± 0.036 ± 14,019

30%
0.584 0 0.416 1.0 88,879

± 0.027 ± 0.027 ± 12,890

40%
0.582 0 0.418 1.0 96,884

± 0.023 ± 0.023 ± 13,782

NTNMerged

20%
0.618 0 0.382 1.0 1,437,868

± 0.042 ± 0.042 ± 253,206

30%
0.581 0 0.419 1.0 1,164,306

± 0.036 ± 0.036 ± 167,173

40%
0.670 0 0.330 1.0 1,557,516

± 0.030 ± 0.030 ± 280,666
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Table 6.4: Avg (± st.dev.) performance on each ontology of PCA-Confidence (P),

Laplace(L)

Ontology
Samp. Match Com. Ind. Precision Total #

Rate Rate Rate Predictions

P

Financial

20%
0.859 0 0.141 1.0 41,350

± 0.055 ± 0.055 ± 46,196

30%
0.850 0 0.150 1.0 32,812

± 0.055 ± 0.055 ± 41,501

40%
0.859 0 0.141 1.0 29,762

± 0.043 ± 0.043 ± 35,582

BioPAX

20%
0.571 0 0.429 1.0 89,486

± 0.028 ± 0.028 ± 11,303

30%
0.584 0 0.416 1.0 92,392

± 0.023 ± 0.023 ± 13,878

40%
0.587 0 0.413 1.0 91,849

± 0.027 ± 0.027 ± 11,960

NTNMerged

20%
0.609 0 0.391 1.0 2,130,947

± 0.046 ± 0.046 ± 380,546

30%
0.588 0 0.412 1.0 1,409,235

± 0.043 ± 0.043 ± 286,439

40%
0.670 0 0.330 1.0 1,727,343

± 0.042 ± 0.042 ± 262,891

L

Financial

20%
1.0 0 0 1.0 122,432

± 1,704

30%
1.0 0 0 1.0 180,231

± 2,801

40%
1.0 0 0 1.0 230,736

± 3,484

BioPAX

20%
1.0 0 0 1.0 51,060

± 866

30%
1.0 0 0 1.0 78,488

± 1,527

40%
1.0 0 0 1.0 100,699

± 1,600

NTNMerged

20%
0.994 0 0.006 1.0 197,374

± 0.001 ± 0.001 ± 6,116

30%
0.995 0 0.005 1.0 284,065

± 5,806

40%
0.996 0 0.004 1.0 323,085

± 6,359
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Table 6.5: Avg (± st.dev.) performance on each ontology of Conviction(CV), Cer-

tainty Factor(CF)

Ontology
Samp. Match Com. Ind. Precision Total #

Rate Rate Rate Predictions

CV

Financial

20%
0 0 1.0 1.0 48,661

± 0.001 ± 0.001 ± 41,318

30%
0.001 0 0.999 1.0 43,078

± 0.001 ± 0.001 ± 39,328

40%
0.001 0 0.999 1.0 26,268

± 0.002 ± 0.002 ± 33,679

BioPAX

20%
0.08 0 0.92 1.0 44,971

± 0.018 ± 0.018 ± 10,928

30%
0.11 0 0.89 1.0 44,451

± 0.017 ± 0.017 ± 10,557

40%
0.102 0 0.898 1.0 50,457

± 0.018 ± 0.018 ± 12,368

NTNMerged

20%
0.32 0 0.68 1.0 831,416

± 0.019 ± 0.019 ± 183,095

30%
0.344 0 0.656 1.0 1,123,266

± 0.013 ± 0.013 ± 208,471

40%
0.361 0 0.639 1.0 868,467

± 0.015 ± 0.015 ± 174,865

CF

Financial

20%
0.877 0 0.123 1.0 31,656

± 0.038 ± 0.038 ± 45,045

30%
0.852 0 0.148 1.0 48,568

± 0.057 ± 0.057 ± 45,051

40%
0.857 0 0.143 1.0 31,068

± 0.039 ± 0.039 ± 36,044

BioPAX

20%
0.556 0 0.444 1.0 80,361

± 0.026 ± 0.026 ± 8,700

30%
0.581 0 0.419 1.0 78,933

± 0.023 ± 0.023 ± 11,147

40%
0.564 0 0.436 1.0 84,476

± 0.035 ± 0.035 ± 12,647

NTNMerged

20%
0.565 0 0.435 1.0 1,039,112

± 0.01 ± 0.01 ± 179,322

30%
0.535 0 0.465 1.0 1,424,334

± 0.014 ± 0.014 ± 180,205

40%
0.557 0 0.443 1.0 2,110,928

± 0.018 ± 0.018 ± 423,539
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Table 6.6: Avg (± st.dev.) performance on each ontology of Added value (A),

J-Measure (J)

Ontology
Samp. Match Com. Ind. Precision Total #

Rate Rate Rate Predictions

A

Financial

20%
0.859 0 0.141 1.0 33,358

± 0.041 ± 0.041 ± 31,445

30%
0.858 0 0.142 1.0 29,866

± 0.041 ± 0.041 ± 31,123

40%
0.859 0 0.141 1.0 29,870

± 0.041 ± 0.041 ± 44,276

BioPAX

20%
0.549 0 0.451 1.0 83,666

± 0.032 ± 0.032 ± 11,663

30%
0.578 0 0.422 1.0 78,059

± 0.029 ± 0.029 ± 9,368

40%
0.579 0 0.421 1.0 84,483

± 0.02 ± 0.02 ± 10,376

NTNMerged

20%
0.563 0 0.437 1.0 966,840

± 0.012 ± 0.012 ± 204,430

30%
0.541 0 0.459 1.0 1,324,518

± 0.014 ± 0.014 ± 282,410

40%
0.566 0 0.434 1.0 1,632,633

± 0.014 ± 0.014 ± 218,033

J

Financial

20%
0 0 1.0 1.0 10,148

± 0.001 ± 0.001 ± 13,149

30%
0.001 0 0.999 1.0 32,052

± 0.001 ± 0.001 ± 39,154

40%
0 0 1.0 1.0 36,204

± 40,910

BioPAX

20%
0.083 0 0.917 1.0 82,799

± 0.011 ± 0.011 ± 11,596

30%
0.108 0 0.892 1.0 80,797

± 0.013 ± 0.013 ± 13,564

40%
0.11 0 0.89 1.0 90,480

± 0.013 ± 0.013 ± 12,579

NTNMerged

20%
0.294 0 0.706 1.0 1,317,526

± 0.008 ± 0.008 ± 207,005

30%
0.301 0 0.699 1.0 1,765,003

± 0.011 ± 0.011 ± 242,269

40%
0.319 0 0.681 1.0 2,387,450

± 0.011 ± 0.011 ± 698,911
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Table 6.7: Avg (± st.dev.) performance on each ontology of Gini factor (G)

Ontology
Samp. Match Com. Ind. Precision Total #

Rate Rate Rate Predictions

G

Financial

20%
0.182 0 0.818 1.0 20,321

± 0.007 ± 0.007 ± 22,967

30%
0.181 0 0.819 1.0 49,443

± 0.01 ± 0.01 ± 42,556

40%
0.186 0 0.814 1.0 20,645

± 0.009 ± 0.009 ± 18,367

BioPAX

20%
1.0 0 0 1.0 30,839

± 1,632

30%
1.0 0 0 1.0 45,063

± 1,727

40%
1.0 0 0 1.0 62,941

± 2,781

NTNMerged

20%
0.768 0 0.232 1.0 199,745

± 0.054 ± 0.054 ± 50,410

30%
0.725 0 0.275 1.0 82,059

± 0.023 ± 0.023 ± 13,066

40%
0.785 0 0.215 1.0 258,454

± 0.007 ± 0.007 ± 10,162
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Table 6.8: Comparison of the number of discovered rules.

Ontology Samp.
# The total number of rules discovered

H C P CF A GA_FHP CA LW-GAT AMIE

Financial

20%
26 25 25 25 26 27

177 2
± 4 ± 4 ± 3 ± 3 ± 3 ± 3

30%
25 25 25 26 24 26

181 2
± 3 ± 4 ± 4 ± 3 ± 4 ± 3

40%
23 23 22 23 21 24

180 2
± 3 ± 3 ± 4 ± 3 ± 3 ± 4

Biopax

20%
129 122 130 118 119 132

298 8
± 13 ± 12 ± 10 ± 9 ± 9 ± 10

30%
128 130 130 117 110 118

283 8
± 9 ± 13 ± 9 ± 8 ± 9 ± 12

40%
129 136 133 124 122 137

272 0
± 11 ± 11 ± 8 ± 9 ± 7 ± 12

NTNMerged

20%
1,157 1,345 1,418 671 656 1,834

243 1,129
± 168 ± 432 ± 492 ± 36 ± 34 ± 782

30%
1,052 947 1,017 743 728 1,235

225 1,022
± 353 ± 238 ± 370 ± 45 ± 48 ± 495

40%
1,088 1,223 1,295 687 664 1,810

239 1,063
± 181 ± 177 ± 357 ± 38 ± 34 ± 733
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7.1 Introduction

Since rules are represented in SWRL, to compute metrics for a rule, we can directly

add it to the ontology and then implement a query along with the reasoner in order

to retrieve calculation support information accordingly. Initially, we performed

querying on SPARQL-DL (see Section 7.2.1) based on the following advantages:

1. SPARQL-DL is quite more expressive than other DL query languages (par-

ticularly, it allows to mix TBox, RBox, and ABox queries) and can still be
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implemented without too much effort on top of existing OWL-DL reasoners

[SP07].

2. It is easy to convert the format of a SWRL rule into the SPARQL-DL query

language to gain the necessary information related to the rule.

However, creating and evaluating a large number of rules in a short time interval

requires fast data retrieval speed, but the data query speed of SPARQL-DL is quite

slow, although we tried to employ some methods of tuning SPARQL-DL queries for

performance. Thus the performance problem is a major drawback of SPARQL-DL

in evaluating the rules and the use of SPARQL-DL queries to evaluate rules is not

appropriate in this case.

In order to overcome this obstacle, we propose to build an algorithm to compute

metrics with the goal of improving the speed of evaluating the rules (see Section 7.3

for more details). This algorithm is derived from the hash join algorithm used in

the implementation of RDBMS (Relational Database Management System) because

there are some steps in the algorithm that are similar to compute the natural join

of two relations. Specifically, we performed this by loading the data of the ontology

into memory for processing. The in-memory data include concept names, role names

and assertions to be used as the input of the algorithm. The algorithm does not load

the T-Box axioms of the ontology into memory because it will invoke the reasoner

to do reasoning as needed.

Performance of rule evaluation is greatly improved by this approach (for the

evaluation in Section 7.5), which leads to overall system performance increasing

efficiency. The limitation of the algorithm is that we need a large enough memory

to store and support the calculation, thus this approach is suitable for small to

medium ontologies.

The rest of this chapter is structured as follows: In Section 7.2, we introduce the

SPARQL-DL query language and how the metrics are calculated based on it. An

algorithm instead of querying via SPARQL-DL to improve the speed of assessing

the rules is shown in Section 7.3. The application for the calculation of metrics

based on the query optimization algorithm is presented in Section 7.4. Finally,

evaluation and comparison are illustrated in Section 7.5.
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7.2 From SWRL rule to SPARQL-DL Query

7.2.1 SPARQL-DL Query

Figure 7.1: Selection operator for crossover

As remarked in [SP07], the SPARQL-DL query language is a distinct subset of

SPARQL (a query language for RDF), and is located on the top of the OWL API (a

high level Application Programming Interface for working with OWL ontologies).

SPARQL-DL is defined as a powerful and expressive query language for OWL-

DL that can blend TBox, RBox and ABox queries. In addition, it can interact with

applications on the Semantic Web (see Figure. 7.1) and especially it can be easily

built on top of existing OWL-DL reasoners.

Example 7.1. Here, we give two examples that show SPARQL-DL is friendly and

easy to use.

1. Query that gets all concept names:

SELECT ?c WHERE { Class(?c) }

2. Query that gets the class hierarchy by means of class/sub-class pairs:

SELECT ?a ?b

WHERE SubClassOf(?a, ?b)

7.2.2 Calculate metrics with SPARQL-DL

We notice that all metrics shown in Sections 3.6 and 3.7 are calculated based on

a few basic components, thus we can compute those by SPARQL-DL queries and

then combine their resulting values together by using the quantity of elements to be

queried in order to retrieve the value of the metrics. Specifically, suppose given a

rule r = B1 ∧ . . .∧Bn → H, we use SPARQL-DL queries to calculate the following
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four basic components in advance: ΣH(r), EH(r), MH(r) and PH(r), and then

compute the metrics by using the number of elements of these components:

∗ supp(r) = |EH(r)|

∗ headCoverage(r) = |EH(r)|/|ΣH(r)|

∗ conf(r) = |EH(r)|/|MH(r)|

∗ etc ...

Example 7.2. Given a SWRL rule of the form:

r: isMotherInLaw(x, y) ← isHusband(y,z) ∧ isMother(x,z) ∧ Female(z)

where

∗ isMotherInLaw(x, y) is the rule head

∗ isHusband(y, z) ∧ isMother(x, z) ∧ Female(z) is the rule body

∗ isMotherInLaw, isHusband, isMother and Female are atoms

∗ x, y, z are variables.

We use SPARQL-DL queries to compute the four basic components with respect

to the rule r as follows:

1. ΣH(r) =

PREFIX ex: <http://example.com#>

SELECT ?x ?y

WHERE { PropertyValue(?x, ex:isMotherInLaw, ?y) }

2. EH(r) =

PREFIX ex: <http://example.com#>

SELECT DISTINCT ?x ?y

WHERE { PropertyValue(?x, ex:isMotherInLaw, ?y),

PropertyValue(?y, ex:isHusband, ?z),

PropertyValue(?x, ex:isMother, ?z),

Type(?z, ex:Female) }
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3. MH(r) =

PREFIX ex: <http://example.com#>

SELECT DISTINCT ?x ?y

WHERE { PropertyValue(?y, ex:isHusband, ?z),

PropertyValue(?x, ex:isMother, ?z),

Type(?z, ex:Female) }

4. PH(r) =

PREFIX ex: <http://example.com#>

SELECT DISTINCT ?x ?y

WHERE { PropertyValue(?y, ex:isHusband, ?z),

PropertyValue(?x, ex:isMother, ?z),

Type(?z, ex:Female),

PropertyValue(?x, ex:isMotherInLaw, ?y’) }

Example 7.2 shows that it is easy to perform the calculation of metrics using

SPARQL-DL query. However, the performance problem is not solved in this case

due to the fact that data query speed of SPARQL-DL is quite slow. Therefore,

we propose an algorithm in Section 7.3 to compute metrics in order to replace the

SPARQL-DL query for the purpose speeding up the rule evaluation process. Actu-

ally, SPARQL-DL query is rewritten into an equivalent algorithm with immutable

semantics.

7.3 The algorithm

The goal of this algorithm is to support the calculation of metrics instead of

SPARQL-DL query to improve the system performance. The following definitions

are used in the algorithm.

Definition 23 (Variable structure). A variable structure includes two components:

the variable name and the list of individuals of that variable.

Example 7.3. One variable structure contains a variable ?y and its list of indi-

viduals in order [b, c, d]
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Definition 24 (Individual Matrix). A list of variable structures is called an indi-

vidual matrix.

In fact, an individual matrix is a set of distinct bindings of the variables occur-

ring in both the head and the body of the rule. A row in this matrix is a variable

binding (Section 3.6).

Example 7.4. The individual matrix Matrixinput contains a list of variable struc-

tures in order [?x, ?y, ?z1, ?z2] .

The input of the algorithm is a pattern representing a SWRL rule, where the

first atom is the rule head and the remaining atoms are the rule body. The output of

the algorithm is an individual matrix containing a list of variable structures whose

variable names are in the atoms of the input pattern. This output individual matrix

has a few features as follows:

1. Used to aid in the calculation of metrics.

2. The number of individuals of all variable structures are always the same.

3. Variable names at the top of the list of variable structures are always variable

names of the head of the rule to be obtained from the input pattern.

7.3.1 Representation

Algorithm 13 describes the main idea of the problem, which is to create an individual

matrix from an input pattern in order to support the calculation of metrics. We
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Algorithm 13: Compute an individual matrix of the pattern
input : p: the pattern to be computed.

output: matrix: a individual matrix

1 matrix ← Ø;

2 for i = 1 −→ p.size() do

3 if p[i].isConcept() then

4 varstruct ← a variable structure with the variable name to be the

variable name of p[i] and the list of individuals to be the list of

individuals of the atom p[i] obtained from the OWL reasoner ;

5 matrix ← AddConceptToIndividualMatrix(matrix, varstruct);

6 end

7 else if p[i].isRole() then

8 varDomainstruct ← a variable structure with the variable name to be

the domain variable name of p[i] and the list of individuals to be the

list of domain individuals of the atom p[i] obtained from the OWL

reasoner ;

9 varRangestruct ← a variable structure with the variable name to be

the range variable name of p[i] and the list of individuals to be the

list of range individuals of the atom p[i] obtained from the OWL

reasoner ;

10 matrix ← AddRoleToIndividualMatrix(matrix, varDomainstruct,

varRangestruct);

11 end

12 end

13 return matrix
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take each of the atoms in the pattern one by one and perform iteratively (line 2 in

Algorithm 13) the following:

1. If the atom is a concept atom, we create a variable structure containing

two components: the variable name of the atom and the list of individu-

als of that atom obtained from the OWL reasoner. After that, this variable

structure is passed to the function AddConceptToIndividualMatrix (see

Section 7.3.2) to change the content of the matrix accordingly (lines 3-5 in

Algorithm 13).

2. Otherwise, if the atom is a role atom, we create two variable structures, and

each also contains two components: The former includes the domain variable

name of the atom and the list of individuals to be obtained from domain

of that atom by using the OWL reasoner, and the latter includes the range

variable name of the atom and the list of individuals to be obtained from

range of the atom by using the OWL reasoner. And then, these two variable

structures are transferred to the function AddRoleToIndividualMatrix

(see Section 7.3.3) to change the content of the matrix accordingly (lines 8-10

in Algorithm 13).

After calculating with the final atom of the pattern, we achieve the final in-

dividual matrix. This matrix is used to support the calculation of metrics and is

returned by the algorithm.

7.3.2 The individual matrix "Add a concept atom"

The function AddConceptToIndividualMatrix in Algorithm 13 is represented

by Algorithm 14, which is used to change the content of the input individual matrix

after receiving the input information referring to an added concept atom.

Arguments of the function are an input individual matrix matrixinput (before

the change) and a variable structure varstruct including the variable name of the

added concept atom and its list of individuals. The steps of the algorithm are

performed as follows:

1. If matrixinput is empty, we return the new individual matrix matrixnew after

adding varstruct to matrixinput (lines 1-2 in Algorithm 14).
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Algorithm 14: AddConceptToIndividualMatrix() : Compute the individual

matrix after adding a concept atom
input : matrixinput: the input individual matrix;

varstruct: the variable structure of the concept atom;

output: matrixnew: a individual matrix is computed after adding the

concept;

1 if matrixinput.isEmpty() then

2 matrixnew ← matrixinput.add(varstruct);

3 end

4 else

5 matrixnew ← all variable structures in matrixinput (keep the variable

name, but set the list of individuals to be empty);

6 varstrconcept ← matrixinput.getStructure(varstruct.variableName());

7 for i = 1 −→ varstruct.individuals.size() do

8 for j = 1 −→ varstrconcept.individuals.size() do

9 if varstruct.individuals[i] == varstrconcept.individuals[j] then

10 foreach vstr ∈ matrixinput do

11 vstrtemp ← matrixnew.getStructure(vstr.variableName());

12 vstrtemp.add(vstr.individuals[j]);

13 matrixnew.replaceStructure(vstrtemp);

14 end

15 end

16 end

17 end

18 end

19 return matrixnew
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2. Otherwise, we notice that because the rule to be obtained from the input

pattern definitely satisfies the language bias, thus its atoms are transitively

connected (see Definition 5). Therefore, the variable name of the added con-

cept atom certainly exists in a certain variable structure in matrixinput. In

this case, matrixnew is created as follows:

(a) Initialize matrixnew from matrixinput by copying all variable structures

but set the list of individuals to be empty. This means that the variable

structure in matrixnew only contains the variable name, but its list of

individuals is empty (line 5 in Algorithm 14)

(b) Compare each individual in the input variable structure varstruct with

each individual in the variable structure varstrconcept which is contained

in matrixinput and the variable name of varstrconcept is the same as the

variable name of varstruct. If these two individuals are the same, we add

all of individuals of the variable structures in the same row (index) with

the individual of varstrconcept from matrixinput to matrixnew (lines 6-13

in Algorithm 14).

After computing, we return matrixnew as the output result of the algorithm.

Example 7.5. Suppose we have individuals of an input matrix and an added concept

atom as follows:

Matrixinput

?x ?y ?z1 ?z2

a b a b

k f e c

c b b g

s a s b

Concept

?y

b

c

d

The resultant matrix of the Algorithm 14 is:

Matrixoutput

?x ?y ?z1 ?z2

a b a b

c b b g

7.3.3 The individual matrix "Add a role atom"

The function AddRoleToIndividualMatrix in Algorithm 13 is shown by Algo-

rithm 15, which is used to change the content and structure (if possible) of the
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Algorithm 15: AddRoleToIndividualMatrix() : Compute the individual ma-

trix after adding a role atom
input : matrixinput: the input individual matrix;

vardomain
struct : the domain variable structure of the role atom;

var
range
struct: the range variable structure of the role atom;

output: matrixnew: an individual matrix is computed after adding the role;

1 if matrixinput.isEmpty() then

2 matrixnew ← matrixinput.add(vardomain
struct );

3 matrixnew ← matrixinput.add(var
range
struct);

4 end

5 else

6 if vardomain
struct .variableName() ∈ matrixinput.variableNames() and

var
range
struct.variableName() /∈ matrixinput.variableNames() then

7 matrixnew ← DomainVarExists(matrixinput, vardomain
struct , var

range
struct);

8 end

9 else if vardomain
struct .variableName() /∈ matrixinput.variableNames() and

var
range
struct.variableName() ∈ matrixinput.variableNames() then

10 matrixnew ← RangeVarExists(matrixinput, vardomain
struct , var

range
struct);

11 end

12 else if vardomain
struct .variableName() ∈ matrixinput.variableNames() and

var
range
struct.variableName() ∈ matrixinput.variableNames() then

13 matrixnew ← BothVarsExist(matrixinput, vardomain
struct , var

range
struct);

14 end

15 else

16 matrixnew ← BothVarsNotExist(matrixinput, vardomain
struct , var

range
struct);

17 end

18 end

19 return matrixnew
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input individual matrix after receiving the input information referring to an added

role atom.

Arguments of the function are an input individual matrix matrixinput (before

the change) and two variable structures: vardomain
struct including the domain variable

name of the added role atom and its list of domain individuals; var
range
struct including

the range variable name of the added role atom and its list of range individuals.

The steps of the algorithm are performed as follows:

1. If matrixinput is empty, we add both vardomain
struct and var

range
struct to the new in-

dividual matrix matrixnew before returning matrixnew to the function (lines

1-3 in Algorithm 15).

2. Otherwise, we must deal with one of the following four cases, depending on

the variable names of the added role atom:

(a) The domain variable name of the added role atom is in a certain variable

structure of matrixinput, but the range variable name is not. This case

happens when a specialized pattern has a new variable (fresh variable)

in the range of the role. We invoke the function DomainVarExists

(see Section 7.3.3.1) to compute matrixinput in this case (lines 6-7 in

Algorithm 15) and return the result to matrixnew.

(b) The range variable name of the added role atom is in a certain vari-

able structure of matrixinput, but the domain variable name is not.

Similarly, this case happens when a specialized pattern has a new vari-

able (fresh variable) in the domain of the role. We invoke the function

RangeVarExists (see Section 7.3.3.2) to compute matrixinput in this

case (lines 9-10 in Algorithm 15) and return the result to matrixnew.

(c) Both the domain variable name and the range variable name of the added

role atom are in certain variable structures of matrixinput. In this case,

we invoke the function BothVarsExist (see Section 7.3.3.3) to compute

matrixinput in this case (lines 12-13 in Algorithm 15) and return the

result to matrixnew.

(d) Both the domain variable name and the range variable name of the added

role atom do not exist in any of variable structures inside matrixinput.
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This case happens when we compute the confidence of the rule (Defini-

tion 11), the denominator of the formula (3.3) is calculated based on a

pattern corresponding to the body of the rule, thus it is possible that

the variable names of an added role atom do not exist in any of variable

structures inside matrixinput.

In this case, we invoke the function BothVarsNotExist (see Sec-

tion 7.3.3.4) to compute matrixinput in this case (line 16 in Algorithm 15)

and return the result to matrixnew.

Example 7.6. Suppose we have the rule:

isMother(x, y) ← Male(y) ∧ isMother(x, z1) ∧ isSibling(z1, y)

The denominator of the above rule is Male(y) ∧ isMother(x, z1) ∧

isSibling(z1, y), and when computing the denominator to the second atom

isMother(x, z1) we need to call the function BothVarsNotExist because

both variables in this second atom do not exist in matrixinput (it contains

the variable structure y at this time)

matrixnew is returned as the output result of the algorithm after computing.

7.3.3.1 The function DomainVarExists()

The function DomainVarExists, is called when the domain variable name of the

added role atom is in a certain variable structure in matrixinput while the range

variable name is not, which is described in Algorithm 16.

Arguments of this function are the same as those of the function calling it in

Algorithm 15. However, the domain variable name of vardomain
struct is in a certain

variable structure of matrixinput, but the range variable name of var
range
struct is not.

The steps of the algorithm are performed as follows:

1. Initialize matrixnew from matrixinput by copying all variable structures but

set the list of individuals to be empty. After that, we add a variable structure

including the variable name of var
range
struct along with an empty individual list to

matrixnew (lines 1-3 in Algorithm 16). Therefore, the structure of matrixnew

is different from the structure of matrixinput.
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Algorithm 16: DomainVarExists()
input : matrixinput: the input individual matrix;

vardomain
struct : the domain variable structure of the role atom;

var
range
struct: the range variable structure of the role atom;

output: matrixnew: a individual matrix after being computed;

1 matrixnew ← all variable structures in matrixinput (keep the variable name,

but set the list of individuals to be empty);

2 varnewstr ← the variable structure var
range
struct (keep the variable name, but set

the list of individuals to be empty);

3 matrixnew ← matrixnew.add(varnewstr);

4 varstrdomain ← matrixinput.getStructure(vardomain
struct .variableName());

5 for i = 1 −→ vardomain
struct .individuals.size() do

6 for j = 1 −→ varstrdomain.individuals.size() do

7 if vardomain
struct .individuals[i] == varstrdomain.individuals[j] then

8 foreach vstr ∈ matrixinput do

9 vstrtemp ← matrixnew.getStructure(vstr.variableName());

10 vstrtemp.add(vstr.individuals[j]);

11 matrixnew.replaceStructure(vstrtemp);

12 end

13 vstrtemp ← matrixnew.getStructure(var
range
struct.variableName());

14 vstrtemp.add(var
range
struct.individuals[i]);

15 matrixnew.replaceStructure(vstrtemp);

16 end

17 end

18 end

19 return matrixnew
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2. Compare each individual in the input domain variable structure vardomain
struct

with each individual in the variable structure varstrdomain which is contained

in matrixinput and the variable name of varstrdomain is the same as the vari-

able name of vardomain
struct . If these two individuals are the same, we add all

of the individuals of the variable structures in the same row (index) with

the individual of varstrdomain from matrixinput to matrixnew, and then we

add an individual of var
range
struct in the same row (index) with the individual of

vardomain
struct to the newly added variable structure of matrixnew (lines 4-15 in

Algorithm 16).

matrixnew is returned as the output result of the algorithm.

Example 7.7. Suppose we have individuals of an input matrix and an added role

atom as follows:

Matrixinput

?x ?y ?z1 ?z2

a d a b

k a e c

c b b g

s a e b

Role

?y ?z3

d b

c e

d g

The resultant matrix of the Algorithm 16 is:

Matrixoutput

?x ?y ?z1 ?z2 ?z3

a d a b b

a d a b g

7.3.3.2 The function RangeVarExists()

Similarily, the function RangeVarExists to be described in Algorithm 17 is called

when the range variable name of the added role atom is in a certain variable struc-

ture in matrixinput while the domain variable name is not.

Arguments of this function are also the same as those of the function calling

it in Algorithm 15. However, the range variable name of var
range
struct is in a certain

variable structure of matrixinput, but the domain variable name of vardomain
struct is not.

The steps of the algorithm are performed as follows:

1. Initialize matrixnew from matrixinput by copying all variable structures but

set the list of individuals to be empty. After that, we add a variable structure
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Algorithm 17: RangeVarExists()
input : matrixinput: the input individual matrix;

vardomain
struct : the domain variable structure of the role atom;

var
range
struct: the range variable structure of the role atom;

output: matrixnew: a individual matrix after being computed;

1 matrixnew ← all variable structures in matrixinput (keep the variable name,

but set the list of individuals to be empty);

2 varnewstr ← the variable structure vardomain
struct (keep the variable name, but set

the list of individuals to be empty);

3 matrixnew ← matrixnew.add(varnewstr);

4 varstrrange ← matrixinput.getStructure(var
range
struct.variableName());

5 for i = 1 −→ var
range
struct.individuals.size() do

6 for j = 1 −→ varstrrange.individuals.size() do

7 if var
range
struct.individuals[i] == varstrrange.individuals[j] then

8 foreach vstr ∈ matrixinput do

9 vstrtemp ← matrixnew.getStructure(vstr.variableName());

10 vstrtemp.add(vstr.individuals[j]);

11 matrixnew.replaceStructure(vstrtemp);

12 end

13 vstrtemp ← matrixnew.getStructure(vardomain
struct .variableName());

14 vstrtemp.add(vardomain
struct .individuals[i]);

15 matrixnew.replaceStructure(vstrtemp);

16 end

17 end

18 end

19 return matrixnew
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including the variable name of vardomain
struct along with an empty individual list to

matrixnew (lines 1-3 in Algorithm 17). Therefore, the structure of matrixnew

is different from the structure of matrixinput.

2. Compare each individual in the input range variable structure var
range
struct with

each individual in the variable structure varstrrange which is contained in

matrixinput and the variable name of varstrrange is the same as the variable

name of var
range
struct. If these two individuals are the same, we add all of indi-

viduals of the variable structures in the same row (index) with the individual

of varstrrange from matrixinput to matrixnew, and then we add an individual

of vardomain
struct in the same row (index) with the individual of var

range
struct to the

newly added variable structure of matrixnew (lines 4-15 in Algorithm 17).

matrixnew is returned as the output result of the algorithm.

Example 7.8. Suppose we have individuals of an input matrix and an added role

atom as follows:

Matrixinput

?x ?y ?z1 ?z2

a b a b

k a e c

c b b g

s a e b

Role

?z3 ?y

b d

e b

g d

The resultant matrix of the Algorithm 17 is:

Matrixoutput

?x ?y ?z1 ?z2 ?z3

a b a b e

c b b g e

7.3.3.3 The function BothVarsExist()

The function BothVarsExist to be shown in Algorithm 18 is invoked when both

the domain variable name and the range variable name of the added role atom are

in certain variable structures of matrixinput.

This function also receives arguments the same as those of the function calling

it in Algorithm 15. The steps of the algorithm are performed as follows:
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Algorithm 18: BothVarsExist()
input : matrixinput: the input individual matrix;

vardomain
struct : the domain variable structure of the role atom;

var
range
struct: the range variable structure of the role atom;

output: matrixnew: a individual matrix after being computed;

1 matrixnew ← all variable structures in matrixinput (keep the variable name,

but set the list of individuals to be empty);

2 varstrdomain ← matrixinput.getStructure(vardomain
struct .variableName());

3 varstrrange ← matrixinput.getStructure(var
range
struct.variableName());

4 for i = 1 −→ vardomain
struct .individuals.size() do

5 for j = 1 −→ varstrdomain.individuals.size() do

6 if vardomain
struct .individuals[i] == varstrdomain.individuals[j] and

var
range
struct.individuals[i] == varstrrange.individuals[j] then

7 foreach vstr ∈ matrixinput do

8 vstrtemp ← matrixnew.getStructure(vstr.variableName());

9 vstrtemp.add(vstr.individuals[j]);

10 matrixnew.replaceStructure(vstrtemp);

11 end

12 end

13 end

14 end

15 return matrixnew
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1. Initialize matrixnew from matrixinput by copying all variable structures but

set the list of individuals to be empty (line 1 in Algorithm 18).

2. Compare the individuals in turn on the same row (index i) of vardomain
struct and

var
range
struct with the individuals on the same row (index j) of varstrdomain and

varstrrange which are contained in matrixinput with the condition that the vari-

able name of varstrdomain is the same as the variable name of vardomain
struct and

the variable name of varstrange is the same as the variable name of var
range
struct.

If the individuals of vardomain
struct and varstrdomain are the same, and the individ-

uals of var
range
struct and varstrrange are also the same, we add all of individuals

of the variable structures in the same row (index) with both individuals of

varstrdomain and varstrrange from matrixinput to matrixnew (lines 4-10 in Al-

gorithm 18).

matrixnew is returned as the output result of the algorithm after computing.

Example 7.9. Suppose we have individuals of an input matrix and an added role

atom as follows:

Matrixinput

?x ?y ?z1 ?z2

a b a b

k a e c

c b b g

s a e b

Role

?x ?z2

s b

a b

c a

The resultant matrix of the Algorithm 18 is:

Matrixoutput

?x ?y ?z1 ?z2

s a e b

a b a b

7.3.3.4 The function BothVarsNotExist()

The function BothVarsNotExist to be shown in Algorithm 19 is invoked when

both the domain variable name and the range variable name of the added role atom

are not inside variable structures of matrixinput.

This function also receives arguments the same as those of the function calling

it in Algorithm 15. The steps of the algorithm are performed as follows:



118 Chapter 7. Query Optimization

Algorithm 19: BothVarsNotExist()
input : matrixinput: the input individual matrix;

vardomain
struct : the domain variable structure of the role atom;

var
range
struct: the range variable structure of the role atom;

output: matrixnew: a individual matrix after being computed;

1 matrixnew ← all variable structures in matrixinput (keep the variable name,

but set the list of individuals to be empty);

2 varnewdomainstr ← the variable structure vardomain
struct (keep the variable name,

but set the list of individuals to be empty);

3 varnewrangestr ← the variable structure var
range
struct (keep the variable name, but

set the list of individuals to be empty);

4 matrixnew ← matrixnew.add(varnewdomainstr);

5 matrixnew ← matrixnew.add(varnewrangestr);

6 varstrfirst ← matrixinput.getStructure(1);

7 for i = 1 −→ vardomain
struct .individuals.size() do

8 for j = 1 −→ varstrfirst.individuals.size() do

9 foreach vstr ∈ matrixinput do

10 vstrtemp ← matrixnew.getStructure(vstr.variableName());

11 vstrtemp.add(vstr.individuals[j]);

12 matrixnew.replaceStructure(vstrtemp);

13 end

14 vstrtemp ← matrixnew.getStructure(vardomain
struct .variableName());

15 vstrtemp.add(vardomain
struct .individuals[i]);

16 matrixnew.replaceStructure(vstrtemp);

17 vstrtemp ← matrixnew.getStructure(var
range
struct.variableName());

18 vstrtemp.add(var
range
struct.individuals[i]);

19 matrixnew.replaceStructure(vstrtemp);

20 end

21 end

22 return matrixnew
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1. Initialize matrixnew from matrixinput by copying all variable structures but

set the list of individuals to be empty. After that, we add a variable structure

including the variable name of vardomain
struct along with an empty individual list

and another variable structure including the variable name of var
range
struct along

with an empty individual list to matrixnew (lines 1-5 in Algorithm 19). There-

fore, the structure of matrixnew is different from the structure of matrixinput.

2. We traverse the individuals of vardomain
struct and var

range
struct in turn. Corresponding

to each iteration, we add the whole individuals from matrixinput to matrixnew,

after that we fill up the two newly added variable structures with individuals

of vardomain
struct and var

range
struct (lines 6-19 in Algorithm 18). This is a weakness of

this algorithm as we spend a lot of memory when encountering this case.

matrixnew is returned as the output result of the algorithm after computing.

Example 7.10. Suppose we have individuals of an input matrix and an added role

atom as follows:

Matrixinput

?x ?y ?z1 ?z2

a b a b

k a e c

c b b g

Role

?z3 ?z4

s b

a b

The resultant matrix of the Algorithm 19 is:

Matrixoutput

?x ?y ?z1 ?z2 ?z3 ?z4

a b a b s b

k a e c s b

c b b g s b

a b a b a b

k a e c a b

c b b g a b

This is the Cartesian product of the two matrices.

7.4 How to compute metrics with the query optimiza-

tion algorithm

As mentioned in Section 7.3, the output of the query optimization algorithm is

an individual matrix used to aid in the calculation of metrics. In this section,
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we based on this output matrix to compute the basic metrics (Section 3.6), the

extensive metrics (Section 3.7) will be computed similarly.

7.4.1 Support

Algorithm 20: Compute support value
input : p: the pattern to be computed.

output: valuesupport: Support value of the rule to be obtained from p

1 matrixsupport ← Invoke Algorithm 13 with parameter p;

2 if p[1] is ConceptAtom then

3 valuesupport ← count distinct individuals of the first variable structure in

matrixsupport;

4 end

5 else if p[1] is RoleAtom then

6 valuesupport ← count distinct individuals of the first two variable

structures in matrixsupport;

7 end

8 return valuesupport

Algorithm 20 describes the steps for calculating the rule support (Definition 9).

First, the support matrix matrixsupport is retrieved from calling the Algorithm 13

(line 1 of Algorithm 20). If the first atom of the input pattern p is a concept atom

(this means that the rule r to be obtained from the pattern p has the head is the

concept atom) then the returned support value is computed by counting distinct

individuals of the first variable structure in matrixsupport. Otherwise, If the first

atom of the input pattern p is a role atom then the returned support value is

computed by counting distinct individuals of the first two variable structures in

matrixsupport (lines 2-8 of Algorithm 20).

Example 7.11. Suppose we have the following output matrix of the rule r that

has the head to be the concept atom:
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Matrixoutput

?x ?y ?z1 ?z2 ?z3 ?z4

a b a b s b

k a e c s b

c b b g s b

a b a b a b

k a e c a b

c g b g a b

We have: supp(r) = 3

7.4.2 Head Coverage

Algorithm 21: Compute head coverage
input : p: the pattern to be computed.

output: valueHeadCoverage: Head coverage value of the rule to be obtained

from p

1 valuesupport ← Invoke Algorithm 20 with parameter p;

2 headsize ← the size of list of individuals in the atom ∈ Af whose name is the

same as the name of the atom p[1] (the first atom of p);

3 valueHeadCoverage ← valuesupport/headsize;

4 return valueHeadCoverage;

The steps for calculating the head coverage of the rule (Definition 10) are shown

in Algorithm 21. First, Algorithm 20 is called to compute the support value

valuesupport of p (line 1 of Algorithm 21). The returned head coverage is com-

puted by taking the quotient of valuesupport with headsize which is the size of list

of individuals in the atom ∈ Af whose name is the same as the name of the head

of the rule to be obtained from the pattern p (lines 2-4 of Algorithm 21).

Example 7.12. Suppose we have the output matrix of the rule r as in the Exam-

ple 7.11 and the head of r is the role atom whose the number of assertions in the

knowledge base is 10.

We have: supp(r) = 4; headsize = 10; Thus headCoverage(r) = 4/10 = 0.4
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Algorithm 22: Compute the confidence
input : p: the pattern to be computed.

output: valueConfidence: Confidence value of the rule to be obtained from p

1 valuesupport ← Invoke Algorithm 20 with parameter p;

2 pbody ← p \ p[1];

3 valuedenominator ← Invoke Algorithm 20 with parameter pbody;

4 valueConfidence ← valuesupport/valuedenominator;

5 return valueConfidence ;

7.4.3 Confidence

The steps for calculating the confidence of the rule (Definition 11) are presented

in Algorithm 22. First, Algorithm 20 is called to compute the support value

valuesupport of p (line 1 of Algorithm 22). Next, we continue to apply the Al-

gorithm 20 with the input pattern to be the body of the rule corresponding to the

pattern p to compute valuedenominator (lines 2-3 of Algorithm 22). Finally, The

returned rule confidence is computed by taking the quotient of valuesupport with

valuedenominator (lines 4-5 of Algorithm 22).

Example 7.13. Suppose we have the output matrix of the rule r as in the Exam-

ple 7.11 and the output matrix of the body of the rule r is shown below. The head

of r is the role atom.

Matrix
body
output

?x ?y ?z1 ?z2 ?z3 ?z4

a b a b s b

k a e c s b

c b b g s b

a b a b a b

k a e c a b

c g b g a b

c g a g a c

c k a b b a

b a c k a b

We have: supp(r) = 4; valuedenominator = 6; Thus conf(r) = 4/6 ≈ 0.67
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Algorithm 23: Compute the PCA-Confidence
input : p: the pattern to be computed.

output: valueP CAConfidence: PCAConfidence value of the rule to be

obtained from p

1 valuesupport ← Invoke Algorithm 20 with parameter p;

2 atomhead ← p[1];

3 pbody ← p \ p[1];

4 if atomhead is RoleAtom then

5 atomhead.Range.Var ← CreateNewFreshVariable();

6 pbody ← pbody ∪ atomhead;

7 end

8 valuedenominator ← Invoke Algorithm 20 with parameter pbody;

9 valueP CAConfidence ← valuesupport/valuedenominator;

10 return valueP CAConfidence ;

7.4.4 PCA-Confidence

The steps for calculating the confidence of the rule (Definition 12) are presented

in Algorithm 23. First, Algorithm 20 is called to compute the support value

valuesupport of p (line 1 of Algorithm 23). If the head of the rule to be obtained

from the input pattern p is the concept atom, the returned pca-confidence of the

rule is computed as the confidence. On the contrary, if the head is the role atom, we

change the range variable of the head to a new variable that does not exist inside

p and then move that atom (the head) in the first position to the last position.

After that, we continue to apply the Algorithm 20 with the modified patten to

compute valuedenominator. The returned rule pca-confidence is computed by taking

the quotient of valuesupport with valuedenominator (lines 4-10 of Algorithm 23).

7.5 Evaluation

We carry out a comparison of the query optimization algorithm and SPARQL-DL

queries based on execution time. Both solutions have been applied on both the

level-wise generate-and-test algorithm (Chapter 4) and the evolutionary algorithm

(Chapter 5) along with the inputs which are publicly available ontologies (Table 4.1).
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Figure 7.2: Execution time of the Level-wise Generate-And-Test algorithm

All experiments have been performed on a Dell computer with Intel Core i5-4210U

CPU at 1.7GHz x 4, 8GB RAM, under the Ubuntu 16.04 LTS 64-bit operating

system.

1. Applying to level-wise generate-and-test algorithm

The algorithm sets the input parameters as in Section 4.4.2. Query optimiza-

tion algorithm or SPARQL-DL queries are applied to compute metrics Head

Coverage (line 5 in Algorithm 5) and Rule Confidence (line 8 in Algorithm 5)

of each generated pattern. The chart in Figure. 7.2 shows that the execu-

tion time of the query optimization algorithm is better than the SPARQL-DL

query in all three ontologies.

2. Applying to evolutionary algorithm

In this algorithm, the input parameters are set as in Section 5.4. Query

optimization algorithm or SPARQL-DL queries are applied to compute the

fitness value of each individual within the population. The chart in Figure. 7.3

presents that the execution time of the query optimization algorithm is still

better than the SPARQL-DL query in all three ontologies. In the ontology

NTNMerged, the execution time of SPARQL-DL query is not acceptable due
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Figure 7.3: Execution time of the Evolutionary algorithm

to it taking too long, the symbol ### is used to express this.
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8.1 Conclusions

OWL ontologies are one of the key foundations of the Semantic Web context, which

describe formally shared conceptualizations of a domain. Meanwhile, LOD is the

first massive deployment of the Semantic Web, which contains ontologies in it.

Therefore, knowledge extraction and analysis from ontologies are obvious demands.

In this thesis, we have proposed algorithms for discovering hidden knowledge

patterns from ontological knowledge bases, in the form of multi-relational associa-

tion rules coded in SWRL, by exploiting the evidence coming from the assertional

data. We hope that this research result will be used for enriching an ontology

both at terminological (schema) and assertional (facts) level, even in presence of

incompleteness and/or noise. Our approach in the thesis consists of the following

steps:

1. Building algorithms to discover hidden knowledge patterns from ontological

knowledge bases.

2. Improving metrics applied in the algorithms.

3. Improving computing speed.
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8.1.1 Discovering hidden knowledge patterns

We built the two following algorithms to discover hidden knowledge patterns coded

in SWRL from ontological knowledge bases:

1. The first algorithm, a level-wise generate-and-test approach (Chapter 4), dis-

covers all possible SWRL rules in the given space of rules that is limited by

a maximum length of rule. In this algorithm, first, we used an downward

refinement operator (Section 4.2) to generate knowledge patterns respecting

the language bias (Section 3.5), after that we employed the basic metrics (Sec-

tion 3.6) to evaluate the quality of knowledge patterns. Besides, a heuristic

was developed to avoid generating rules that have the same semantics (Algo-

rithm 5). Finally, SWRL rules to be discovered are the rules obtained from

knowledge patterns by setting the first atom as the head of the rule and the

remaining as the rule body. In addition, the rules to be discovered are not

allowed to contradict the reference knowledge base(Section 4.3.1.3), this en-

sures that the discovered rules are easily integrated within the ontology. The

advantage of this approach is that we might obtain all discovered rules in a

given space and ensure them to be consistent with the knowledge base. How-

ever, its disadvantage is that it is difficult to reach the discover long rules

because of performance problem (slow execution time).

2. The second algorithm, an evolutionary approach (Chapter 5), has the same

objective as the first algorithm but is proposed to overcome its disadvan-

tages. The algorithm maintains a population of the best knowledge patterns

and makes it evolve by iteratively applying genetic operators (Section 5.3).

These genetic operators are designed to create offspring (knowledge patterns)

from their parents selected in the population and these offspring must re-

spect the language bias (Section 3.5); offspring are then added back into the

population to compete directly with old individuals. This ensures that indi-

viduals (knowledge patterns) in the final generation are the best individuals

in the whole traversal process. A fitness function based on metrics of pattern

(Section 3.6), is used to assist the operators in the evolutionary algorithm.

Discovered SWRL rules to be extracted from the final population are knowl-

edge patterns that satisfy two conditions: (i) Their fitness value is higher than
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a given threshold and (ii) They do not contradict the knowledge base. The

advantage of this approach is that it is possible to face larger search spaces

than with the first algorithm. This means that we can discover rules having a

maximum length greater than the length of the rules discovered by first algo-

rithm without worrying about performance problems. The discovered rules to

be generated by this algorithm are also easily integrated with in a knowledge

base. The disadvantage of this approach is that it can miss some rules; how-

ever, in order to overcome this disadvantage, we might increase the number

of generations for the evolutionary algorithm accordingly.

In order to compare the quality of solutions, we based ourselves on the number

of discovered rules and used the metrics presented in Section 3.8 to evaluate rule

precision. AMIE [GTHS13] is a state-of-the-art system outperforming others state-

of-the-art ILP systems in terms of the number of discovered rules. We compared

our system with AMIE using the same samples of the ontologies and found that the

number of rules discovered by both of our algorithms was greater than the num-

ber of rules discovered by AMIE (Table 5.3). For the ability to predict assertional

knowledge (Sections 4.4.2.1 and 5.4.1), both above algorithms indicate that the dis-

covered rules are able to predict new assertional knowledge (match rate > 0), no

contradicting knowledge is predicted and show the ability to exploit accurate rules

(commission error rate = 0), come up with rules that induce previously unknown

facts, this means that new knowledge is found which is not logically derivable (in-

duction rate > 0). In addition, the second algorithm creates a very large number

of predictions compared to the first algorithm. Through experiments (Sections 4.4

and 5.4), we found that the evolutionary approach is currently the best approach to

discovering hidden knowledge patterns coded in SWRL from ontological knowledge

bases.

8.1.2 Selecting the best asymmetric metrics

Language bias is a set of constraints that the generated rules must respect in order

to avoid to create redundant or trivial rules. However, to ensure quality for the

generated rules, we employ metrics to evaluate them. Besides the basic metrics

that we have described (Section 3.6) and used (Chapter 4 and 5), there are other

alternative metrics (Section 3.7) proposed for assessing the quality of the generated
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rules. In this thesis, we only used asymmetric metrics because values of an asym-

metric metric for head −→ body and body −→ head may not be the same. These

asymmetric metrics have originally been proposed for scoring association rules.

Because there are many asymmetric metrics (Table 6.1) to evaluate the quality

of the rules, we have decided to compare these metrics to select the best metrics that

are suitable for the semantic web. Our comparative goal was based on the number of

discovered rules and used metrics in Section 3.8 to assess rule precision. Asymmetric

metrics were applied in turn to evolutionary algorithm (shown in Chapter 5) as a

fitness function.

By observing the results of the experiment (Section 6.2), we concluded that

HeadCoverage, Confidence, PCA-Confidence, Certainty Factor, and Added Value

are the best metrics because they discover the largest number of rules (see Ta-

ble 6.2) and come up with rules that induce a large number of previously unknown

facts, with a very large absolute number of correct predictions. In addition, when

compared to the state-of-the-art system AMIE, the best metrics also discover more

rules than AMIE. However, these best metrics do not outperform the second fitness

funtion in Section 5.3.3 (fHP CA(r) = HeadCoverage(r) + PCAConfidence(r)).

We observed that this fitness function is a combination of two metrics, thus this

will be a new promising direction of research.

8.1.3 Improving computing speed

In order to compute the metrics (Sections 3.6 and 3.7) for a rule expressed in

the form of SWRL, we might perform querying on SPARQL-DL (see Section 7.2.1)

because SPARQL-DL query statement is easily converted from the format of SWRL.

However, the data query speed of SPARQL-DL is rather slow, thus it is not suitable

for computing constantly in a short time. Therefore, we came up with an algorithm

in Section 7.3 to compute metrics with the goal of replacing the SPARQL-DL query

to speed up the rule evaluation process.

The algorithm we propose is based on the hash join algorithm used in the imple-

mentation of RDBMS (Relational Database Management System) but is adapted

to fit the notions in the semantic web. The input of the algorithm is a SWRL rule

and an ontology used to retrieve information. The output of the algorithm is a data

structure employed to support the computation of metrics.
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Reviews and comparisons in Section 7.5 show that the processing speed of the

algorithm is much faster than the SPARQL-DL query. Therefore, this is a direction

that we might follow to improve the performance of the system. However, the dis-

advantage of this algorithm is that it must store all the calculated data in memory,

which means that it uses a significant amount of memory for a large amount of data.

Thus, the proposed algorithm is only suitable for small and medium ontologies. In

order to ensure the performance of the system and work with big data, we need to

find a new approach that is more appropriate and combine it with the proposed

algorithm.

8.2 Future Work

In this thesis, we have proposed some approaches based on ideas taken from In-

ductive Logic Programming to discover hidden knowledge patterns from ontologi-

cal knowledge bases, in the form of multi-relational association rules expressed in

SWRL. The results of the thesis have achieved some positive effects and can be

applied to the ontological knowledge bases in practice, as it is evidenced by the

experimental results. In the future, we will continue to research and improve the

algorithm in order to achieve better performance. Specifically, future work might

focus on the main following aspects:

– Exploration of various possible combinations of the promising met-

rics: We have compared the popular asymmetric metrics in Chapter 6 and

identified the best five metrics for further exploration. However, when run-

ning the experiment with a fitness function combining two metrics, we found

that this combined fitness function performed better than each of the best

five metrics individually. Therefore, the idea of finding a combined fitness

functions has been proposed for future work.

– Development of other metrics suited for scenarios based on OWA

(Open World Assumption): There are currently many metrics used to

evaluate the quality of the association rules, but most of them support for

scenarios based on CWA (Closed World Assumption). Only very few metrics

are employed to assist the scenario based on OWA which is suitable with the

ontological knowledge bases. However, their effectiveness is still not what we
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would expect. Therefore, another work proposed in the future is to research

and develop metrics suited for OWA.

– Scalability: In order to bring research results into practice, our next work

will go toward applying our solutions in datasets from Linked Open Data

(LOD). By using these datasets, we will continue to improve the algorithm to

process more incomplete or unusual dataset. In addition, that is also a way

to increase the reliability of our solution in practice.

– Parallelization according to programming models: As mentioned in

Section 8.1.3, we need to find a new solution combining with the results of

this research to overcome weaknesses and be able to work with big data. One

future direction along which we aim to expand our study is to parallelize

the algorithms. We will perform in parallel by convert the algorithms pre-

sented in the thesis to program models such MapReduce to take advantage

of frameworks like Hadoop or Spark, in order to be able to perform big data

analytics.



Appendix A

The algorithm for generating a

closed rule

A.1 An algorithm description

The algorithm to be mentioned in this part focuses on creating a closed rule from

some input arguments. Specifically, we have an input pattern p and an input atom

A, where p is a closed rule or contains at most two fresh variables (a fresh variable

appears only once in the pattern) and A is an atom attached to the tail of p. The

output of the algorithm is the atom A adjusted variables so that the rule routput

corresponding to the pattern {p ∪ A} satisfying one of the following conditions:

1. routput is a closed rule.

2. if routput has a length of two atoms then it contains at most two fresh variables.

3. if routput has a length greater than two atoms then it contains at most one

fresh variables.

Algorithm 24 represents the whole above idea and is named AdjustAtom(). The

algorithm is divided into two smaller functions that depend on the type of atom

whose variables need to be adjusted. To be more specific, if A is a concept atom,

then the value of the output A will be received from the function AdjustConcep-

tAtom() in Algorithm 25 (the lines 1-2 in Algorithm 24), otherwise if A is a role atom

then the value of the output A will be received from the function AdjustRoleAtom()

in Algorithm 29 (the lines 4-5 in Algorithm 24).

A.1.1 The adjusted atom is a concept atom

Algorithm 25 returns a concept atom whose variable is adjusted based on the input

pattern p, so that the rule corresponding to the pattern {p ∪ C} satisfies one of the
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Algorithm 24: The function AdjustAtom(): Adjust the variables in the atom

to ensure the language bias is respected
input : p: the input pattern; A: the atom needs to be adjusted variables;

output: A: The atom have been adjusted variables based on p

1 if A is ConceptAtom then

2 A ← AdjustConceptAtom(p, A) in Alg 25;

3 end

4 else if A is RoleAtom then

5 A ← AdjustRoleAtom(p, A) in Alg 29;

6 end

7 return A

conditions in Section A.1. There are three cases occurring inside this algorithm:

1. p = Ø: In this case, p does not contain any atoms, thus the variable of

the output concept atom receives the given default value (the lines 1-2 in

Algorithm 25).

2. The length of p is 1: In this case, the variable in the output concept atom

will receive one of the variables already exists in p. If the head of the rule (the

first element of the pattern p) corresponding to the pattern p is the concept

atom then the value of the output C will be received from the function Adjust-

ConceptAtomWithP1AndPHeadIsConceptAtom() in Algorithm 26 (the lines

5-6 in Algorithm 25); otherwise if the head is the role atom then the variable

of the output concept atom will randomly pick one of the two variables of the

head (the lines 8-9 in Algorithm 25).

3. The length of p is greater than 1: In this case, the variable in the out-

put concept atom will also receive one of the variables already existing in

p. If the head of the rule corresponding to the pattern p is a concept atom

then the value of the output C will be received from the function Adjust-

ConceptAtomWithPHeadIsConceptAtom() in Algorithm 27 (the lines 13-14

in Algorithm 25); otherwise if the head is a role atom, then the value of the

output C will be received from the function AdjustConceptAtomWithPHead-

IsRoleAtom() in Algorithm 28 (the lines 16-17 in Algorithm 25).
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Algorithm 25: The function AdjustConceptAtom(): Adjust the variable in

the concept atom to ensure the language bias is respected
input : p: the input pattern; C: the concept atom needs to be adjusted

variables;

output: C: The concept atom have been adjusted variable based on p

1 if p = Ø then

2 C.Var ← The given default variable of concept atom;

3 end

4 else if p.length() = 1 then

5 if p.headAtom is ConceptAtom then

6 C ← AdjustConceptAtomWithP1AndPHeadIsConceptAtom(p, C) in

Alg 26;

7 end

8 else if p.headAtom is RoleAtom then

9 C.Var ← randomly pick between two variables

p.headAtom.DomainVar and p.headAtom.RangeVar ;

10 end

11 end

12 else if p.length() > 1 then

13 if p.headAtom is ConceptAtom then

14 C ← AdjustConceptAtomWithPHeadIsConceptAtom(p, C) in Alg 27;

15 end

16 else if p.headAtom is RoleAtom then

17 C ← AdjustConceptAtomWithPHeadIsRoleAtom(p, C) in Alg 28;

18 end

19 end

20 return C
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– The length of p is 1 and the head is the concept atom (Algorithm 26)

Algorithm 26: The function

AdjustConceptAtomWithP1AndPHeadIsConceptAtom(): Adjust the vari-

ables in the concept atom to ensure the language bias is respected with

p.length()=1 and p.headAtom is a concept atom
input : p: the input pattern; C: the concept atom needs to be adjusted

variables;

a global variable Af : a list of frequent atoms;

output: C: The concept atom have been adjusted variable based on p

1 Aftemp ← Af ;

2 returnAtom ← false;

3 repeat

4 if ¬C.isSubsumedBy(p.headAtom) then

5 C.Var ← p.headAtom.Var ;

6 returnAtom ← true;

7 end

8 else

9 Aftemp ← Aftemp \ C;

10 C ← pick an concept atom in Aftemp at random;

11 end

12 until returnAtom = true;

13 return C

This function (Algorithm 26) returns the concept atom whose variable will

receive the variable of the head if the concept atom is not subsumed by the

head (the lines 4-5 in Algorithm 26); otherwise a new concept atom will

be picked at random from the list Af until the picked concept atom is not

subsumed by the head, after that its variable will receive the variable of the

head (the lines 1-12 in Algorithm 26).

– The length of p is greater than 1 and the head is a concept atom

(Algorithm 27)
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Algorithm 27: The function

AdjustConceptAtomWithPHeadIsConceptAtom(): Adjust the variables in the

concept atom to ensure the language bias is respected with p.length()>1 and

p.headAtom is a concept atom
input : p: the input pattern; C: the concept atom needs to be adjusted

variables;

conceptsbody
p : concept names appearing in the body of the pattern;

rolesbody
p : role names appearing in the body of the pattern;

varsp: variable names appearing in the pattern p;

output: C: The concept atom have been adjusted variable based on p

1 if C.isSubsumedBy(p.headAtom) then

2 varsp ← varsp \ p.headAtom.Var ;

3 end

4 subCp = conceptsbody
p .getConceptsSubsumedBy(C);

5 superCp = conceptsbody
p .getConceptsSubsuming(C);

6 subRDomain
p = rolesbody

p .getRolesWithDomainSubsumedBy(C);

7 subRRange
p = rolesbody

p .getRolesWithRangeSubsumedBy(C);

8 used ← subCp.getVars() ∪ superCp.getVars() ∪ subRDomain
p .getVars() ∪

subRRange
p .getVars();

9 varsp ← varsp \ used;

10 C.Var ← pick a variable in varsp at random;

11 return C

This function (Algorithm 27) returns the concept atom C whose variable is

randomly picked in the variables appearing in the pattern p after removing

the unsuitable variables as follows:

* The variable in the head will be removed if C is subsumed by the head

(the lines 1-2 in Algorithm 27).

* The variables of the concept atoms in the body will be removed if C

subsumes or is subsumed by these concept atoms (the lines 4-5 in Algo-

rithm 27).
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* The variables of the role atoms in the body will be removed if the domain

or the range of these role atoms are subsumed by C (the lines 6-7 in

Algorithm 27).

– The length of p is greater than 1 and the head is a role atom

(Algorithm 28)

Algorithm 28: The function

AdjustConceptAtomWithPHeadIsRoleAtom(): Adjust the variables in the

concept atom to ensure the language bias is respected with p.length()>1 and

p.headAtom is a role atom
input : p: the input pattern; C: the concept atom needs to be adjusted

variables;

conceptsbody
p : concept names appearing in the body of the pattern;

rolesbody
p : role names appearing in the body of the pattern;

varsp: variable names appearing in the pattern p;

output: C: The concept atom have been adjusted variable based on p

1 subCp = conceptsbody
p .getConceptsSubsumedBy(C);

2 superCp = conceptsbody
p .getConceptsSubsuming(C);

3 subRDomain
p = rolesbody

p .getRolesWithDomainSubsumedBy(C);

4 subRRange
p = rolesbody

p .getRolesWithRangeSubsumedBy(C);

5 used ← subCp.getVars() ∪ superCp.getVars() ∪ subRDomain
p .getVars() ∪

subRRange
p .getVars();

6 varsp ← varsp \ used;

7 C.Var ← pick a variable in varsp at random;

8 return C

This function (Algorithm 28) returns the concept atom C whose variable is

randomly picked in the variables appearing in the pattern p after removing

the unsuitable variables as follows:

* The variables of the concept atoms in the body will be removed if C

subsumes or is subsumed by these concept atoms (the lines 1-2 in Algo-

rithm 28).
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* The variables of the role atoms in the body will be removed if the domain

or the range of these role atoms are subsumed by C (the lines 3-4 in

Algorithm 28).

A.1.2 The adjusted atom is a role atom

Algorithm 29 returns a role atom whose variables are adjusted based on the input

pattern p so that the rule corresponding to the pattern {p ∪ R} satisfies one of the

conditions in Section A.1. There are three cases occurring inside this algorithm:

1. p = Ø: In this case, p does not contain any atoms, thus the domain and range

variables of the output role atom receive the given default value (the lines 1-3

in Algorithm 29).

2. The length of p is 1: In this case, if the head of the rule corresponding to the

pattern p is the concept atom then the value of the output R will be received

from the function AdjustRoleAtomWithP1AndPHeadIsConceptAtom() in Al-

gorithm 30 (the lines 6-7 in Algorithm 29); otherwise if the head is the role

atom then the value of the output R will be received from the function Adjus-

tRoleAtomWithP1AndPHeadIsRoleAtom() in Algorithm 31 (the lines 9-10 in

Algorithm 29).

3. The length of p is greater than 1: In this case, if the head of the rule cor-

responding to the pattern p is the concept atom then the value of the output

R will be received from the function AdjustRoleAtomWithPHeadIsConcep-

tAtom() in Algorithm 32 (the lines 14-15 in Algorithm 29); otherwise if the

head is the role atom then the value of the output R will be received from

the function AdjustRoleAtomWithPHeadIsRoleAtom() in Algorithm 35 (the

lines 17-18 in Algorithm 29).

– The length of p is 1 and the head is a concept atom (Algorithm 30)

This function (Algorithm 30) returns the role atom whose variable names will

be identified as follows:

* The domain variable receives the variable of the head and the range
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Algorithm 29: The function AdjustRoleAtom(): Adjust the variables in the

role atom to ensure the language bias is respected
input : p: the input pattern; R: the role atom needs to be adjusted

variables;

output: R: The role atom have been adjusted variables based on p

1 if p = Ø then

2 R.DomainVar ← The given default domain variable of concept atom;

3 R.RangeVar ← The given default range variable of concept atom;

4 end

5 else if p.length() = 1 then

6 if p.headAtom is ConceptAtom then

7 R ← AdjustRoleAtomWithP1AndPHeadIsConceptAtom(p, R) in

Alg 30;

8 end

9 else if p.headAtom is RoleAtom then

10 R ← AdjustRoleAtomWithP1AndPHeadIsRoleAtom(p, R) in Alg 31;

11 end

12 end

13 else if p.length() > 1 then

14 if p.headAtom is ConceptAtom then

15 R ← AdjustRoleAtomWithPHeadIsConceptAtom(p, R) in Alg 32;

16 end

17 else if p.headAtom is RoleAtom then

18 R ← AdjustRoleAtomWithPHeadIsRoleAtom(p, R) in Alg 35;

19 end

20 end

21 return R
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Algorithm 30: The function

AdjustRoleAtomWithP1AndPHeadIsConceptAtom(): Adjust the variables in

the role atom to ensure the language bias is respected with p.length()=1 and

p.headAtom is a concept atom
input : p: the input pattern; R: the role atom needs to be adjusted

variables;

a global variable Af : a list of frequent atoms;

output: R: The role atom have been adjusted variables based on p

1 Aftemp ← Af ;

2 returnAtom ← false;

3 varhead ← p.headAtom.Var ;

4 z ← CreateNewFreshVariable();

5 repeat

6 if ¬R.Domain.isSubsumedBy(p.headAtom) and

R.Range.isSubsumedBy(p.headAtom) then

7 R.Domain.Var ← varhead; R.Range.Var ← z; returnAtom ← true;

8 end

9 else if R.Domain.isSubsumedBy(p.headAtom) and

¬R.Range.isSubsumedBy(p.headAtom) then

10 R.Domain.Var ← z; R.Range.Var ← varhead; returnAtom ← true;

11 end

12 else if ¬R.Domain.isSubsumedBy(p.headAtom) and

¬R.Range.isSubsumedBy(p.headAtom) then

13 R.Domain.Var ← randomly pick between two variables varhead and z;

14 R.Range.Var ← (varhead ∪ z) \ R.Domain.Var ;

15 end

16 else

17 Aftemp ← Aftemp \ R;

18 R ← pick an role atom in Aftemp at random;

19 end

20 until returnAtom = true;

21 return R
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variable receives a new fresh variable if the range of R is subsumed by

the head but the domain of R is not (the lines 6-7 in Algorithm 30).

* The range variable receives the variable of the head and the domain

variable receives a new fresh variable if the domain of R is subsumed by

the head but the range of R is not (the lines 9-10 in Algorithm 30).

* The domain variable receives the variable of the head or a new fresh

variable, the range variable receives the remaining variable if both the

domain and the range of R are not subsumed by the head (the lines 12-14

in Algorithm 30).

* In the last case, a new role atom will be picked at random from the list

Af until the picked role atom satisfies the above conditions, after that its

variables will be received according to the satisfied condition (the lines

1-20 in Algorithm 30).

– The length of p is 1 and the head is a role atom (Algorithm 31)

This function (Algorithm 31) returns the role atom whose variable names will

be identified by one of the following three variables: a new fresh variable, the

domain and the range variables of the head (the lines 1-5 in Algorithm 31).

If the position of variables in R coincides with the position of variables in the

head and R is SubProperty of the head then we will change the position of

variables in R (the lines 6-10 in Algorithm 31).

– The length of p is greater than 1 and the head is a concept atom

(Algorithm 32)

This function (Algorithm 32) returns the role atom R whose variables is re-

ceived after removing the unsuitable variables as follows:

* The variable in the head will be removed from the list of variables of

domain if the domain of R is subsumed by the head (the lines 3-4 in

Algorithm 32).

* The variable in the head will be removed from the list of variables of range

if the range of R is subsumed by the head (the lines 6-7 in Algorithm 32).
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Algorithm 31: The function

AdjustRoleAtomWithP1AndPHeadIsRoleAtom(): Adjust the variables in the

role atom to ensure the language bias is respected with p.length()=1 and

p.headAtom is a role atom
input : p: the input pattern; R: the role atom needs to be adjusted

variables;

varsp: variable names appearing in the pattern p;

output: R: The role atom have been adjusted variables based on p

1 z ← CreateNewFreshVariable();

2 varsp ← varsp ∪ z;

3 vardomain ← pick a variable in varsp at random;

4 varsp ← varsp \ vardomain;

5 varrange ← pick a variable in varsp at random;

6 if (vardomain = p.headAtom.Domain.Var) and

(varrange = p.headAtom.Range.Var) then

7 if R.isSubPropertyOf(p.headAtom) then

8 vartemp ← vardomain;

9 vardomain ← varrange;

10 varrange ← vartemp;

11 end

12 end

13 R.Domain.Var ← vardomain;

14 R.Range.Var ← varrange;

15 return R
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Algorithm 32: The function

AdjustRoleAtomWithPHeadIsConceptAtom(): Adjust the variables in the

role atom to ensure the language bias is respected with p.length()>1 and

p.headAtom is a concept atom
input : p: the input pattern; R: the role atom needs to be adjusted

variables;

varsp: variable names appearing in the pattern p;

output: R: The role atom have been adjusted variables based on p

1 varsdomain ← varsp;

2 varsrange ← varsp;

3 if R.Domain.isSubsumedBy(p.headAtom) then

4 varsdomain ← varsdomain \ p.headAtom.Var ;

5 end

6 if R.Range.isSubsumedBy(p.headAtom) then

7 varsrange ← varsrange \ p.headAtom.Var ;

8 end

9 subDomainRp = conceptsbody
p .getConceptsSubsuming(R.Domain);

10 subRangeRp = conceptsbody
p .getConceptsSubsuming(R.Range);

11 varsdomain ← varsdomain \ subDomainRp.Vars;

12 varsrange ← varsrange \ subRangeRp.Vars;

13 if ¬p.isExistFreshVariable() then

14 Rtemp ← NoFreshVariablesExist() in Alg 33;

15 end

16 else

17 Rtemp ← FreshVariablesExist() in Alg 34;

18 end

19 R.Domain.Var ← Rtemp.Domain.Var ;

20 R.Range.Var ← Rtemp.Range.Var ;

21 return R



A.1. An algorithm description 145

* The variables of the concept atoms in the body will be removed from

the list of variables of domain or range if these concept atoms subsume

R.Domain or R.Range respectively (the lines 9-12 in Algorithm 32).

* If the pattern p does not contains the fresh variable then the value of the

output R will be received from the function NoFreshVariablesExist() in

Algorithm 33; otherwise if the pattern p contains the fresh variable then

the value of the output R will be received from the function FreshVari-

ablesExist() in Algorithm 34 (the lines 13-20 in Algorithm 32).

(a) The function NoFreshVariablesExist()

This function (Algorithm 33) has the input containing two lists of domain

and range variables and returns the role atom R whose variables will be

identified as follows:

* If the size of the list of domain variables is greater than one and

the size of the list of range variables equals 0 then the domain vari-

able of R is picked randomly in the list of domain variables, the

range variable of R receives a new fresh variable (the lines 1-3 in

Algorithm 33).

* If the size of the list of range variables is greater than one and the size

of the list of domain variables equals 0 then the range variable of R

is picked randomly in the list of range variables, the domain variable

of R receives a new fresh variable (the lines 5-7 in Algorithm 33).

* If both size of the lists of domain and range variables is greater than

one then add a new fresh variable to both lists, after that select ran-

domly a pair of variables in two lists of domain and range variables

such that this pair of variables is different from pairs of variables of

role atoms in rolesbody
p that are SubProperty or SuperProperty of R

(the lines 9-13 in Algorithm 33).

(b) The function FreshVariablesExist()

This function (Algorithm 34) has the input containing two lists of domain and
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Algorithm 33: The function

NoFreshVariablesExist(): Support the function AdjustRoleAtomWithP-

HeadIsConceptAtom() to select the domain and range variables accordingly

in case no fresh variables exist
input : R: the role atom needs to be adjusted variables;

varsdomain: the list of domain variables;

varsrange: the list of range variables;

rolesbody
p : role names appearing in the body of the pattern;

output: R: The role atom have been adjusted variables

1 if (varsdomain.size() > 0) and (varsrange.size() = 0) then

2 vardomain ← pick a variable in varsdomain at random;

3 varrange ← CreateNewFreshVariable();

4 end

5 else if (varsdomain.size() = 0) and (varsrange.size() > 0) then

6 vardomain ← CreateNewFreshVariable();

7 varrange ← pick a variable in varsrange at random;

8 end

9 else if (varsdomain.size() > 0) and (varsrange.size() > 0) then

10 z ← CreateNewFreshVariable();

11 varsdomain ← varsdomain ∪ z;

12 varsrange ← varsrange ∪ z;

13 Select randomly a pair of variables vardomain ∈ varsdomain and varrange

∈ varsrange such that this pair of variables is different from pairs of

variables of role atoms in rolesbody
p that are SubProperty or

SuperProperty of R;

14 end

15 R.Domain.Var ← vardomain;

16 R.Range.Var ← varrange;

17 return R
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Algorithm 34: The function

FreshVariablesExist(): Support the function AdjustRoleAtomWithPHeadIs-

ConceptAtom() to select the domain and range variables accordingly in case

there are fresh variables
input : R: the role atom needs to be adjusted variables;

varsdomain: the list of domain variables;

varsrange: the list of range variables;

rolesbody
p : role names appearing in the body of the pattern;

output: R: The role atom have been adjusted variables

1 if (varsdomain.size() > 0) and (varsrange.size() = 0) then

2 varsdomain ← varsdomain \ GetFreshVariable();

3 vardomain ← pick a variable in varsdomain at random;

4 varrange ← GetFreshVariable();

5 end

6 else if (varsdomain.size() = 0) and (varsrange.size() > 0) then

7 varsrange ← varsrange \ GetFreshVariable();

8 vardomain ← GetFreshVariable();

9 varrange ← pick a variable in varsrange at random;

10 end

11 else if (varsdomain.size() > 0) and (varsrange.size() > 0) then

12 Select randomly a pair of variables vardomain ∈ varsdomain and varrange

∈ varsrange such that this pair of variables is different from pairs of

variables of role atoms in rolesbody
p that are SubProperty or

SuperProperty of R;

13 end

14 R.Domain.Var ← vardomain;

15 R.Range.Var ← varrange;

16 return R
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range variables and returns the role atom R whose variables will be identified

as follows:

* If the size of the list of domain variables is greater than one and the size

of the list of range variables equals 0 then the domain variable of R is

picked randomly in the list of domain variables after removing the fresh

variable, the range variable of R receives a new fresh variable (the lines

1-4 in Algorithm 34).

* If the size of the list of range variables is greater than one and the size

of the list of domain variables equals 0 then the range variable of R is

picked randomly in the list of range variables after removing the fresh

variable, the domain variable of R receives a new fresh variable (the lines

6-9 in Algorithm 34).

* If both size of the lists of domain and range variables is greater than one

then select randomly a pair of variables in two lists of domain and range

variables such that this pair of variables is different from pairs of variables

of role atoms in rolesbody
p that are SubProperty or SuperProperty of R

(the lines 11-12 in Algorithm 34).

– The length of p is greater than 1 and the head is a role atom

(Algorithm 35)

This function (Algorithm 35) returns the role atom R whose variables is re-

ceived after removing the unsuitable variables as follows:

* The domain and range variable in the head will be removed from two

lists of domain and range variables respectively if R is SubProperty or

SuperProperty of the head (the lines 3-5 in Algorithm 35).

* The variables of the concept atoms in the body will be removed from

the list of variables of domain or range if these concept atoms subsume

R.Domain or R.Range respectively (the lines 7-10 in Algorithm 35).

* If the pattern p does not contains the fresh variable then the value of the

output R will be received from the function NoFreshVariablesExist() in

Algorithm 33; otherwise if the pattern p contains the fresh variable then
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Algorithm 35: The function

AdjustRoleAtomWithPHeadIsRoleAtom(): Adjust the variables in the role

atom to ensure the language bias is respected with p.length()>1 and

p.headAtom is a role atom
input : p: the input pattern; R: the role atom needs to be adjusted

variables;

varsp: variable names appearing in the pattern p;

output: R: The role atom have been adjusted variables based on p

1 varsdomain ← varsp;

2 varsrange ← varsp;

3 if R.isSubPropertyOf(p.headAtom) or R.isSuperPropertyOf(p.headAtom)

then

4 varsdomain ← varsdomain \ p.headAtom.Domain.Var ;

5 varsrange ← varsrange \ p.headAtom.Range.Var ;

6 end

7 subDomainRp = conceptsbody
p .getConceptsSubsuming(R.Domain);

8 subRangeRp = conceptsbody
p .getConceptsSubsuming(R.Range);

9 varsdomain ← varsdomain \ subDomainRp.Vars;

10 varsrange ← varsrange \ subRangeRp.Vars;

11 if ¬p.isExistFreshVariable() then

12 Rtemp ← NoFreshVariablesExist() in Alg 33;

13 end

14 else

15 Rtemp ← FreshVariablesExist() in Alg 34;

16 end

17 R.Domain.Var ← Rtemp.Domain.Var ;

18 R.Range.Var ← Rtemp.Range.Var ;

19 return R
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the value of the output R will be received from the function FreshVari-

ablesExist() in Algorithm 34 (the lines 11-15 in Algorithm 35).

A.1.3 Pattern adjustment

Algorithm 36: The function

AdjustPattern(): Adjust the pattern to become the closed rule
input : p: the input pattern;

varsp: variable names appearing in the pattern p;

output: p: The pattern have been adjusted to become the closed rule

1 z ← GetFreshVariable();

2 varsp ← varsp \ z;

3 R ← the role atom contains GetFreshVariable();

4 if z is the domain variable then

5 Select randomly a variable varp ∈ varsp such that varp is different from

variables of concept atoms in conceptsbody
p that subsumes the domain of

R;

6 end

7 else if z is the range variable then

8 Select randomly a variable varp ∈ varsp such that varp is different from

variables of concept atoms in conceptsbody
p that subsumes the range of R;

9 end

10 Substitute varp for z;

11 return p

This function is used to adjust the rule corresponding to the pattern p to become

a closed rule if that rule is a open rule with one fresh variable. This function

mainly support for the generalization operator (Section 5.3.2.6) in the evolutionary

algorithm.
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