W. B. Pennebaker, Hillock growth and stress relief in sputtered au films, Journal of Applied Physics, vol.40, issue.1, pp.394-400, 1969.

F. D'heurle, L. Berenbaum, and R. Rosenberg, On the structure of aluminum films, Transactions of the Metallurgical Society AIME, vol.242, issue.3, pp.502-511, 1968.

H. L. Caswell, J. R. Priest, and Y. Budo, Low-temperature properties of evaporated lead films, Journal of Applied Physics, vol.34, issue.11, pp.3261-3266, 1963.

W. W. Mullins, Theory of thermal grooving, Journal of Applied Physics, vol.28, issue.3, pp.333-339, 1957.

G. E. Rhead, Surface self-diffusion and faceting on silver, Acta Metallurgica, vol.11, issue.9, pp.1035-1042, 1963.
DOI : 10.1016/0001-6160(63)90191-3

G. E. Rhead, Surface self-diffusion of silver in various atmospheres, Acta metallurgica, vol.13, issue.3, pp.223-226, 1965.

R. Brandon and F. J. Bradshaw, The mobility of the surface atoms of copper and silver evaporated deposits, tech. rep., Royal Aircraft Establishment Farnborough, 1966.

C. V. Thompson, Solid-state dewetting of thin films, Annual Review of Materials Research, vol.42, pp.399-434, 2012.

A. B. Presland, G. Price, and D. L. Trimm, Hillock formation by surface diffusion on thin silver films, Surface Science, vol.29, issue.2, pp.424-434, 1972.
DOI : 10.1016/0039-6028(72)90229-4

A. E. Presland, G. L. Price, and D. L. Trimm, The role of microstructure and surface energy in hole growth and island formation in thin silver films, Surface Science, vol.29, issue.2, pp.435-446, 1972.

S. K. Sharma and J. Spitz, Agglomeration in chemically deposited silver films, Thin Solid Films, vol.66, issue.3, pp.51-53, 1980.

S. K. Sharma and J. Spitz, Hillock formation, hole growth and agglomeration in thin silver films, Thin Solid Films, vol.65, issue.3, pp.339-350, 1980.

S. K. Sharma, S. U. Rao, and N. Kumar, Hillock formation and agglomeration in silver films prepared by thermal evaporation, Thin Solid Films, vol.142, issue.1, pp.95-98, 1986.

R. Dannenberg, E. Stach, J. Groza, and B. Dresser, I n-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films, Thin Solid Films, vol.370, issue.1, pp.54-62, 2000.

E. Jiran and C. Thompson, Capillary instabilities in thin films, Journal of Electronic Materials, vol.19, issue.11, pp.1153-1160, 1990.
DOI : 10.1007/bf02673327

J. Kwon, T. Yoon, K. Kim, and S. Min, Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide, Journal of Applied Physics, vol.93, issue.6, pp.3270-3278, 2003.

C. M. Müller and R. Spolenak, Microstructure evolution during dewetting in thin Au films, Acta Materialia, vol.58, issue.18, pp.6035-6045, 2010.

S. Jang, H. Lee, C. Thompson, C. Ross, and Y. Oh, Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope, APL Materials, vol.3, issue.12, p.126103, 2015.

P. Gadkari, A. Warren, R. Todi, R. Petrova, and K. Coffey, Comparison of the agglomeration behavior of thin metallic films on SiO 2, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.23, issue.4, pp.1152-1161, 2005.

G. Atiya, V. Mikhelashvili, G. Eisenstein, and W. D. Kaplan, Solid-state dewetting of Pt on (100) SrTiO 3, Journal of Materials Science, vol.49, issue.11, pp.3863-3874, 2014.
DOI : 10.1007/s10853-013-7966-5

S. Jahangir, X. Cheng, H. Huang, J. Ihlefeld, and V. Nagarajan, I n-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy, Journal of Applied Physics, vol.116, issue.16, p.163511, 2014.

G. Atiya, D. Chatain, V. Mikhelashvili, G. Eisenstein, and W. D. Kaplan, The role of abnormal grain growth on solid-state dewetting kinetics, Acta Materialia, vol.81, pp.304-314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01722656

A. Kosinova, L. Klinger, O. Kovalenko, and E. Rabkin, The role of grain boundary sliding in solid-state dewetting of thin polycrystalline films, Scripta Materialia, vol.82, pp.33-36, 2014.

N. Jedrecy, G. Renaud, R. Lazzari, and J. Jupille, Flat-top silver nanocrystals on the two polar faces of ZnO : an all angle X-ray scattering investigation, Phys. Rev. B, vol.72, p.45430, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01442862

N. Jedrecy, G. Renaud, R. Lazzari, and J. Jupille, Unstrained islands with interface coincidence sites versus strained islands : X-ray measurements on Ag/ZnO, Phys. Rev. B, vol.72, p.195404, 2005.
DOI : 10.1103/physrevb.72.195404

URL : https://hal.archives-ouvertes.fr/hal-01442859

E. Chernysheva, Zinc oxide growth and its interfaces with metals observed by photoemission, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01666148

R. V. Zucker, G. H. Kim, J. Ye, W. C. Carter, and C. V. Thompson, The mechanism of corner instabilities in single-crystal thin films during dewetting, Journal of Applied Physics, vol.119, issue.12, p.125306, 2016.

E. Rabkin, D. Amram, and E. Alster, Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire, Acta Materialia, vol.74, pp.30-38, 2014.

F. Leroy, F. Cheynis, T. Passanante, and P. Müller, Influence of facets on solid state dewetting mechanisms : comparison between Ge and Si on SiO 2, Physical Review B, vol.88, issue.3, p.35306, 2013.
DOI : 10.1103/physrevb.88.035306

URL : https://hal.archives-ouvertes.fr/hal-00914731

F. Cheynis, F. Leroy, and P. Müller, Dynamics and instability of solid-state dewetting, Comptes Rendus Physique, vol.14, issue.7, pp.578-589, 2013.
DOI : 10.1016/j.crhy.2013.06.006

URL : https://hal.archives-ouvertes.fr/hal-00914737

R. V. Zucker, G. H. Kim, W. C. Carter, and C. V. Thompson, A model for solidstate dewetting of a fully-faceted thin film, Comptes Rendus Physique, vol.14, issue.7, pp.564-577, 2013.

N. Simrick, J. Kilner, and A. Atkinson, Thermal stability of silver thin films on zirconia substrates, Thin Solid Films, vol.520, issue.7, pp.2855-2867, 2012.
DOI : 10.1016/j.tsf.2011.11.048

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo et al., Selfassembled silver nanoparticles for plasmon-enhanced solar cell back reflectors : correlation between structural and optical properties, Nanotechnology, vol.24, issue.26, p.265601, 2013.
DOI : 10.1088/0957-4484/24/26/265601

H. Kim, T. Alford, and D. Allee, Thickness dependence on the thermal stability of silver thin films, Applied Physics Letters, vol.81, issue.22, pp.4287-4289, 2002.

C. M. Müller and R. Spolenak, Dewetting of Au and AuPt alloy films : a dewetting zone model, Journal of Applied Physics, vol.113, issue.9, p.94301, 2013.

C. V. Thompson, Grain growth in thin films, Annual Review of Materials Science, vol.20, issue.1, pp.245-268, 1990.

D. Hull and D. J. Bacon, Introduction to dislocations, 2001.

G. S. Rohrer, Grain boundary energy anisotropy : a review, Journal of materials science, vol.46, issue.18, p.5881, 2011.
DOI : 10.1007/s10853-011-5677-3

URL : https://link.springer.com/content/pdf/10.1007%2Fs10853-011-5677-3.pdf

W. Mullins, The statistical self-similarity hypothesis in grain growth and particle coarsening, Journal of Applied Physics, vol.59, issue.4, pp.1341-1349, 1986.
DOI : 10.1063/1.336528

M. Hillert, On the theory of normal and abnormal grain growth, Acta metallurgica, vol.13, issue.3, pp.227-238, 1965.
DOI : 10.1016/0001-6160(65)90200-2

K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metallurgica, vol.5, issue.11, pp.628-637, 1957.

K. Barmak, J. Kim, C. Kim, W. Archibald, G. Rohrer et al., Grain boundary energy and grain growth in al films : Comparison of experiments and simulations, Scripta materialia, vol.54, issue.6, pp.1059-1063, 2006.

D. Chatain, P. Wynblatt, and G. S. Rohrer, Equilibrium crystal shape of bi-saturated cu crystals at 1223k, Acta materialia, vol.53, issue.15, pp.4057-4064, 2005.
DOI : 10.1016/j.actamat.2005.05.009

URL : https://hal.archives-ouvertes.fr/hal-00015235

G. Couturier, R. Doherty, C. Maurice, and R. Fortunier, 3D finite element simulation of the inhibition of normal grain growth by particles, Acta Materialia, vol.53, issue.4, pp.977-989, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00506051

W. Mullins, The effect of thermal grooving on grain boundary motion, Acta metallurgica, vol.6, issue.6, pp.414-427, 1958.

I. Maclaren, R. M. Cannon, M. A. Gülgün, R. Voytovych, N. Popescu-pogrion et al., Abnormal grain growth in alumina : synergistic effects of yttria and silica, Journal of the American Ceramic Society, vol.86, issue.4, pp.650-59, 2003.

F. Genin, W. Mullins, and P. Wynblatt, Capillary instabilities in thin films : A model of thermal pitting at grain boundary vertices, Acta Metallurgica et Materialia, vol.40, issue.12, pp.3239-3248, 1992.

L. Klinger, D. Amram, and E. Rabkin, Kinetics of a retracting solid film edge : The case of high surface anisotropy, Scripta Materialia, vol.64, issue.10, pp.962-965, 2011.

D. Amram, L. Klinger, N. Gazit, H. Gluska, and E. Rabkin, Grain boundary grooving in thin films revisited : the role of interface diffusion, Acta Materialia, vol.69, pp.386-396, 2014.

H. Frost, C. Thompson, and D. Walton, Simulation of thin film grain structures-i. Grain growth stagnation, Acta Metallurgica et Materialia, vol.38, issue.8, pp.1455-1462, 1990.
DOI : 10.1016/0956-7151(92)90020-f

V. Derkach, A. Novick-cohen, A. Vilenkin, and E. Rabkin, Grain boundary migration and grooving in thin 3-D systems, Acta Materialia, vol.65, pp.194-206, 2014.
DOI : 10.1016/j.actamat.2013.10.061

E. Jiran and C. Thompson, Capillary instabilities in thin, continuous films, Thin Solid Films, vol.208, issue.1, pp.23-28, 1992.
DOI : 10.1016/0040-6090(92)90941-4

O. Kovalenko, J. Greer, and E. Rabkin, Solid-state dewetting of thin iron films on sapphire substrates controlled by grain boundary diffusion, Acta Materialia, vol.61, issue.9, pp.3148-3156, 2013.

A. Kosinova, O. Kovalenko, L. Klinger, and E. Rabkin, Mechanisms of solid-state dewetting of thin au films in different annealing atmospheres, Acta Materialia, vol.83, pp.91-101, 2015.

D. G. Gromov and S. A. Gavrilov, Heterogeneous melting in low-dimensional systems and accompanying surface effects, Thermodynamics-Physical Chemistry of Aqueous Systems, 2011.

M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, Journal of the Physical Society of Japan, vol.9, issue.3, pp.359-363, 1954.

S. Stankic, R. Cortes-huerto, N. Crivat, D. Demaille, J. Goniakowski et al., Equilibrium shapes of supported silver clusters, Nanoscale, vol.5, issue.6, pp.2448-2453, 2013.
DOI : 10.1039/c3nr33896g

URL : https://hal.archives-ouvertes.fr/hal-01240522

L. Vitos, A. Ruban, H. L. Skriver, and J. Kollar, The surface energy of metals, Surface Science, vol.411, issue.1, pp.186-202, 1998.

F. Buttner, E. Funk, and H. Udin, Adsorption of oxygen on silver, The Journal of Physical Chemistry, vol.56, issue.5, pp.657-660, 1952.
DOI : 10.1021/j150497a022

W. Tyson and W. Miller, Surface free energies of solid metals : Estimation from liquid surface tension measurements, Surface Science, vol.62, issue.1, pp.267-276, 1977.

V. Kumikov and K. B. Khokonov, On the measurement of surface free energy and surface tension of solid metals, Journal of Applied Physics, vol.54, issue.3, pp.1346-1350, 1983.

B. Sundquist, A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron, Acta Metallurgica, vol.12, issue.1, pp.67-86, 1964.

P. Heitjans and J. Kärger, Diffusion in condensed matter : methods, materials, models, 2006.

P. M. Agrawal, B. M. Rice, and D. L. Thompson, Predicting trends in rate parameters for self-diffusion on fcc metal surfaces, Surface Science, vol.515, issue.1, pp.21-35, 2002.

W. M. Haynes, CRC handbook of chemistry and physics, 2014.

C. Rehren, M. Muhler, X. Bao, R. Schlögl, and G. Ertl, The interaction of silver with oxygen, Zeitschrift für Physikalische Chemie, vol.174, issue.Part_1, pp.11-52, 1991.

A. J. Nagy, G. Mestl, D. Herein, G. Weinberg, E. Kitzelmann et al., The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system, Journal of Catalysis, vol.182, issue.2, pp.417-429, 1999.

X. Bao, M. Muhler, T. Schedel-niedrig, and R. Schlögl, Interaction of oxygen with silver at high temperature and atmospheric pressure : a spectroscopic and structural analysis of a strongly bound surface species, Physical Review B, vol.54, issue.3, p.2249, 1996.

H. Engelhardt and D. Menzel, Adsorption of oxygen on silver single crystal surfaces, Surface Science, vol.57, issue.2, pp.591-618, 1976.

K. Yoshihara and K. Nii, The effect of oxygen potential on the surface self-diffusion coefficient of silver, Transactions of the Japan Institute of Metals, vol.20, issue.9, pp.533-542, 1979.

D. Chatain, F. Chabert, V. Ghetta, and J. Fouletier, New experimental setup for wettability characterization under monitored oxygen activity : II Wettability of sapphire by silver-oxygen melts, Journal of American Ceramic Society, vol.77, issue.1, pp.197-201, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01786373

L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli et al., Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein : A joint experimental and theoretical study, Catalysis Today, vol.160, issue.1, pp.116-130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581237

C. Bauer, R. Speiser, and J. Hirth, Surface energy of copper as a function of oxygen activity, Metallurgical and Materials Transactions A, vol.7, issue.1, pp.75-79, 1976.

M. Inman and H. Tipler, Interfacial energy and composition in metals and alloys, Metallurgical Reviews, vol.8, issue.1, pp.105-166, 1963.

J. Fiala and J. ?adek, Surface and grain boundary energies of silver at oxygen pressures lower than 10 ?15 pa, Philosophical Magazine, vol.32, issue.1, pp.251-255, 1975.

J. Kudrman and J. ?adek, Relative grain boundary free energy and surface free energy of some metals and alloys, Czechoslovak Journal of Physics, vol.19, issue.11, pp.1337-1342, 1969.

G. I. Waterhouse, G. A. Bowmaker, and J. B. Metson, Oxygen chemisorption on an electrolytic silver catalyst : a combined TPD and Raman spectroscopic study, Applied Surface Science, vol.214, issue.1, pp.36-51, 2003.

F. Leroy, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann et al., How to control solid state dewetting : a short review, Surface Science Reports, vol.71, issue.2, pp.391-409, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01454999

G. Schmidl, J. Dellith, H. Schneidewind, D. Zopf, O. Stranik et al., Formation and characterization of silver nanoparticles embedded in optical transparent materials for plasmonic sensor surfaces, Materials Science and Engineering : B, vol.193, pp.207-216, 2015.

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda et al., Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on Sio 2 dewetting, Nanoscale, vol.8, issue.5, pp.2844-2849, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01811397

P. Pandey, S. Kunwar, M. Sui, Q. Zhang, M. Li et al., Morphological and optical evolution of silver nanoparticles on sapphire (0001) along with the concurrent influence of diffusion, ostwald's ripening, and sublimation, IEEE Transactions on Nanotechnology, vol.16, issue.2, pp.321-332, 2017.

F. Ruffino and M. Grimaldi, Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films, Journal of Materials Science, vol.49, issue.16, pp.5714-5729, 2014.

I. Tanyeli, H. Nasser, F. Es, A. Bek, and R. Turan, Effect of surface type on structural and optical properties of Ag nanoparticles formed by dewetting, Optics Express, vol.21, issue.105, pp.798-807, 2013.

S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M. Li et al., Ag nanostructures on GaN (0001) : morphology evolution controlled by the solid state dewetting of thin films and corresponding optical properties, Crystal Growth & Design, vol.16, issue.12, pp.6974-6983, 2016.

N. Kalfagiannis, A. Siozios, D. V. Bellas, D. Toliopoulos, L. Bowen et al., Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA) : putting control into bottom-up plasmonic nanostructuring, Nanoscale, vol.8, issue.15, pp.8236-8244, 2016.

J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Pulsedlaser-induced dewetting in nanoscopic metal films : Theory and experiments, Physical Review B, vol.75, issue.23, p.235439, 2007.

A. Siozios, N. Kalfagiannis, D. Bellas, C. Bazioti, G. Dimitrakopulos et al., Sub-surface laser nanostructuring in stratified metal/dielectric media : a versatile platform towards flexible, durable and large-scale plasmonic writing, Nanotechnology, vol.26, issue.15, p.155301, 2015.

S. V. Makarov, V. A. Milichko, I. S. Mukhin, I. I. Shishkin, D. A. Zuev et al., Controllable femtosecond laser-induced dewetting for plasmonic applications, Laser & Photonics Reviews, vol.10, issue.1, pp.91-99, 2016.

N. Panagiotopoulos, N. Kalfagiannis, K. Vasilopoulos, N. Pliatsikas, S. Kassavetis et al., Self-assembled plasmonic templates produced by microwave annealing : applications to surface-enhanced raman scattering, Nanotechnology, vol.26, issue.20, p.205603, 2015.

R. Yu, P. Mazumder, N. F. Borrelli, A. Carrilero, D. S. Ghosh et al., Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals, ACS Photonics, vol.3, issue.7, pp.1194-1201, 2016.

M. Yoshino, H. Osawa, and A. Yamanaka, Effects of process conditions on nano-dot array formation by thermal dewetting, Journal of Manufacturing Processes, vol.14, issue.4, pp.478-486, 2012.

J. Mizsei and V. Lantto, I n situ AFM, XRD and resistivity studies of the agglomeration of sputtered silver nanolayers, Journal of Nanoparticle Research, vol.3, issue.4, pp.271-278, 2001.

A. Kosinova, R. Schwaiger, L. Klinger, and E. Rabkin, Indentation-induced solid-state dewetting of thin Au (Fe) films, Applied Surface Science, vol.411, pp.466-475, 2017.

P. Farzinpour, A. Sundar, K. Gilroy, Z. Eskin, R. Hughes et al., Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer, Nanotechnology, vol.23, issue.49, p.495604, 2012.

J. Ye and C. V. Thompson, Templated solid-state dewetting to controllably produce complex patterns, Advanced Materials, vol.23, issue.13, pp.1567-1571, 2011.

A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Applied Physics Letters, vol.86, issue.12, p.121903, 2005.

A. Giermann and C. Thompson, Requirements for graphoepitaxial alignment through solid-state dewetting of Au films, Journal of Applied Physics, vol.109, issue.8, p.83520, 2011.

Y. Oh, C. A. Ross, Y. S. Jung, Y. Wang, and C. V. Thompson, Cobalt nanoparticle arrays made by templated solid-state dewetting, Small, vol.5, issue.7, pp.860-865, 2009.

J. Petersen and S. Mayr, Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates, Journal of Applied Physics, vol.103, issue.2, p.23520, 2008.

M. Altomare, N. T. Nguyen, and P. Schmuki, Templated dewetting : designing entirely self-organized platforms for photocatalysis, Chemical Science, vol.7, issue.12, pp.6865-6886, 2016.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao et al., Template-confined dewetting process to surface nanopatterns : Fabrication, structural tunability, and structure-related properties, Advanced Functional Materials, vol.21, issue.13, pp.2446-2455, 2011.

L. Wang, C. Cheng, J. Liao, C. Wang, D. Wang et al.,

R. Lin, L. Ho, C. Chen, and . Lai, Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1 0 FePt nanoparticle arrays, Nanoscale, vol.8, issue.7, pp.3926-3935, 2016.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science & Technology B, vol.14, issue.6, pp.4129-4133, 1996.

A. L. Bris, F. Maloum, J. Teisseire, and F. Sorin, Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting, Applied Physics Letters, vol.105, issue.20, p.203102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086445

A. Dubov, K. Perez-toralla, A. Letailleur, E. Barthel, and J. Teisseire, Superhydrophobic silica surfaces : fabrication and stability, Journal of Micromechanics and Microengineering, vol.23, issue.12, p.125013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903577

J. D. Jackson and C. Electrodynamics, , 1975.

E. D. Palik, Handbook of Optical Constants of Solids, vol.1, 1985.

T. Oates and A. Mücklich, Evolution of plasmon resonances during plasma deposition of silver nanoparticles, Nanotechnology, vol.16, issue.11, p.2606, 2005.

C. Herzinger, B. Johs, W. Mcgahan, J. A. Woollam, and W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, Journal of Applied Physics, vol.83, issue.6, pp.3323-3336, 1998.

S. A. Maier, Plasmonics : fundamentals and applications, 2007.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol.25, 1995.

H. U. Yang, J. D'archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman et al., Optical dielectric function of silver, Physical Review B, vol.91, issue.23, p.235137, 2015.
DOI : 10.1103/physrevb.91.235137

URL : https://link.aps.org/accepted/10.1103/PhysRevB.91.235137

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1983.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2001.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux et al., Multipolar optical absorptions in supported metallic particles : the case of Ag/Al 2 O 3 (0001), Physical Review B, vol.65, pp.235424-235425, 2002.

R. Lazzari, J. Jupille, R. Cavallotti, and I. Simonsen, Model-free unraveling of supported nanoparticles plasmon resonance modes, Journal of Physical Chemistry C, vol.118, pp.7032-7048, 2014.
DOI : 10.1021/jp500675h

URL : https://hal.archives-ouvertes.fr/hal-01442823

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Annalen der physik, vol.330, issue.3, pp.377-445, 1908.
DOI : 10.1002/andp.19083300302

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19083300302

U. Kreibig and M. Vollmer, Optical properties of metal clusters, vol.25, 2013.

B. T. Draine and P. J. Flatau, Discrete-dipole approximation for scattering calculations, Journal of the Optical Society of America A, vol.11, issue.4, pp.1491-1499, 1994.
DOI : 10.1364/josaa.11.001491

URL : http://muri.lci.kent.edu/References/NIM_Papers/Discrete_dipole/1994_Draine_Discrete_Dipole.pdf

M. Moharam and T. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction, Journal of the Optical Society of America, vol.71, issue.7, pp.811-818, 1981.
DOI : 10.1364/josa.71.000811

J. Jin, The finite element method in electromagnetics, 2015.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman et al., Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption, Applied Physics Letters, vol.102, issue.15, p.153902, 2013.
DOI : 10.1063/1.4802451

URL : https://repository.tudelft.nl/islandora/object/uuid%3A36b0cd17-f1ca-46bc-b13a-c8d3afdb7436/datastream/OBJ/download

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal et al., Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells, Applied Physics Letters, vol.103, issue.17, p.173905, 2013.
DOI : 10.1063/1.4826639

URL : https://repository.tudelft.nl/islandora/object/uuid%3Ab3303f46-c311-48fa-9758-78bcccbc2960/datastream/OBJ/download

C. S. Schuster, S. Morawiec, M. J. Mendes, M. Patrini, E. R. Martins et al., Plasmonic and diffractive nanostructures for light trapping-an experimental comparison, Optica, vol.2, issue.3, pp.194-200, 2015.

G. Wulff, Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen, Zeitschrift für Kristallographie-Crystalline Materials, vol.34, issue.1-6, pp.449-530, 1901.

R. Kaischew, Sur la thermodynamique des germes cristallins, Bull. Acad. Sci. Bulg.(Ser. Phys.), vol.2, p.191, 1951.

W. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metallurgica, vol.15, issue.2, pp.303-310, 1967.

A. B. Presland, G. Price, and D. L. Trimm, Hillock formation by surface diffusion on thin silver films, Surface Science, vol.29, issue.2, pp.424-434, 1972.
DOI : 10.1016/0039-6028(72)90229-4

A. E. Presland, G. L. Price, and D. L. Trimm, The role of microstructure and surface energy in hole growth and island formation in thin silver films, Surface Science, vol.29, issue.2, pp.435-446, 1972.

S. K. Sharma and J. Spitz, Agglomeration in chemically deposited silver films, Thin Solid Films, vol.66, issue.3, pp.51-53, 1980.
DOI : 10.1016/0040-6090(80)90398-3

S. K. Sharma and J. Spitz, Hillock formation, hole growth and agglomeration in thin silver films, Thin Solid Films, vol.65, issue.3, pp.339-350, 1980.
DOI : 10.1016/0040-6090(80)90244-8

S. K. Sharma, S. U. Rao, and N. Kumar, Hillock formation and agglomeration in silver films prepared by thermal evaporation, Thin Solid Films, vol.142, issue.1, pp.95-98, 1986.
DOI : 10.1016/0040-6090(86)90311-1

C. V. Thompson, Grain growth in thin films, Annual Review of Materials Science, vol.20, issue.1, pp.245-268, 1990.

O. Kovalenko, J. Greer, and E. Rabkin, Solid-state dewetting of thin iron films on sapphire substrates controlled by grain boundary diffusion, Acta Materialia, vol.61, issue.9, pp.3148-3156, 2013.
DOI : 10.1016/j.actamat.2013.01.062

W. W. Mullins, Theory of thermal grooving, Journal of Applied Physics, vol.28, issue.3, pp.333-339, 1957.
DOI : 10.1063/1.1722742

R. Dannenberg, E. Stach, J. Groza, and B. Dresser, I n-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films, Thin Solid Films, vol.370, issue.1, pp.54-62, 2000.

A. Kosinova, L. Klinger, O. Kovalenko, and E. Rabkin, The role of grain boundary sliding in solid-state dewetting of thin polycrystalline films, Scripta Materialia, vol.82, pp.33-36, 2014.

P. Heitjans and J. Kärger, Diffusion in condensed matter : methods, materials, models, 2006.

S. Stankic, R. Cortes-huerto, N. Crivat, D. Demaille, J. Goniakowski et al., Equilibrium shapes of supported silver clusters, Nanoscale, vol.5, issue.6, pp.2448-2453, 2013.
DOI : 10.1039/c3nr33896g

URL : https://hal.archives-ouvertes.fr/hal-01240522

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo et al., Selfassembled silver nanoparticles for plasmon-enhanced solar cell back reflectors : correlation between structural and optical properties, Nanotechnology, vol.24, issue.26, p.265601, 2013.
DOI : 10.1088/0957-4484/24/26/265601

A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Applied Physics Letters, vol.86, issue.12, p.121903, 2005.
DOI : 10.1063/1.1885180

A. Giermann and C. Thompson, Requirements for graphoepitaxial alignment through solid-state dewetting of Au films, Journal of Applied Physics, vol.109, issue.8, p.83520, 2011.

D. Chatain, F. Chabert, V. Ghetta, and J. Fouletier, New experimental setup for wettability characterization under monitored oxygen activity : II Wettability of sapphire by silver-oxygen melts, Journal of American Ceramic Society, vol.77, issue.1, pp.197-201, 1994.
DOI : 10.1111/j.1151-2916.1994.tb06977.x

URL : https://hal.archives-ouvertes.fr/hal-01786373

R. Brandon and F. J. Bradshaw, The mobility of the surface atoms of copper and silver evaporated deposits, tech. rep., Royal Aircraft Establishment Farnborough, 1966.

G. Atiya, V. Mikhelashvili, G. Eisenstein, and W. D. Kaplan, Solid-state dewetting of Pt on (100) SrTiO 3, Journal of Materials Science, vol.49, issue.11, pp.3863-3874, 2014.
DOI : 10.1007/s10853-013-7966-5

T. Oates and A. Mücklich, Evolution of plasmon resonances during plasma deposition of silver nanoparticles, Nanotechnology, vol.16, issue.11, p.2606, 2005.

L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli et al., Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein : A joint experimental and theoretical study, Catalysis Today, vol.160, issue.1, pp.116-130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581237

W. B. Pennebaker, Hillock growth and stress relief in sputtered au films, Journal of Applied Physics, vol.40, issue.1, pp.394-400, 1969.
DOI : 10.1063/1.1657067

D. Weygand, Y. Bréchet, and J. Lépinoux, Zener pinning and grain growth : a twodimensional vertex computer simulation, Acta Materialia, vol.47, issue.3, pp.961-970, 1999.
DOI : 10.1016/s1359-6454(98)00383-8

E. Saiz and A. P. Tomsia, Atomic dynamics and marangoni films during liquid-metal spreading, Nature Materials, vol.3, pp.903-909, 2004.
DOI : 10.1038/nmat1252

S. Curiotto, H. Chien, H. Meltzman, S. Labat, P. Wynblatt et al., Copper crystals on the (11 ¯ 20) sapphire plane : orientation relationships, triple line ridges and interface shape equilibrium, Journal of Materials Science, vol.48, issue.7, pp.3013-3026, 2013.
DOI : 10.1007/s10853-012-7080-0

URL : https://hal.archives-ouvertes.fr/hal-00810502

J. Kwon, T. Yoon, K. Kim, and S. Min, Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide, Journal of Applied Physics, vol.93, issue.6, pp.3270-3278, 2003.

S. Stankic, R. Cortes-huerto, N. Crivat, D. Demaille, J. Goniakowski et al., Equilibrium shapes of supported silver clusters, Nanoscale, vol.5, issue.6, pp.2448-2453, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01240522

L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli et al., Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein : A joint experimental and theoretical study, Catalysis Today, vol.160, issue.1, pp.116-130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581237

A. B. Presland, G. Price, and D. L. Trimm, Hillock formation by surface diffusion on thin silver films, Surface Science, vol.29, issue.2, pp.424-434, 1972.

W. W. Mullins, Theory of thermal grooving, Journal of Applied Physics, vol.28, issue.3, pp.333-339, 1957.

F. Buttner, E. Funk, and H. Udin, Adsorption of oxygen on silver, The Journal of Physical Chemistry, vol.56, issue.5, pp.657-660, 1952.

G. Wulff, Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen, Zeitschrift für Kristallographie-Crystalline Materials, vol.34, issue.1-6, pp.449-530, 1901.

J. E. Taylor, II-Mean curvature and weighted mean curvature, Acta Metallurgica et Materialia, vol.40, issue.7, pp.1475-1485, 1992.

D. Chatain, F. Chabert, V. Ghetta, and J. Fouletier, New experimental setup for wettability characterization under monitored oxygen activity : II Wettability of sapphire by silver-oxygen melts, Journal of American Ceramic Society, vol.77, issue.1, pp.197-201, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01786373

R. Brandon and F. J. Bradshaw, The mobility of the surface atoms of copper and silver evaporated deposits, tech. rep., Royal Aircraft Establishment Farnborough, 1966.

E. Jiran and C. Thompson, Capillary instabilities in thin films, Journal of Electronic Materials, vol.19, issue.11, pp.1153-1160, 1990.

R. V. Zucker, G. H. Kim, W. C. Carter, and C. V. Thompson, A model for solidstate dewetting of a fully-faceted thin film, Comptes Rendus Physique, vol.14, issue.7, pp.564-577, 2013.

A. Kosinova, L. Klinger, O. Kovalenko, and E. Rabkin, The role of grain boundary sliding in solid-state dewetting of thin polycrystalline films, BIBLIOGRAPHIE Chapitre IV, vol.82, pp.33-36, 2014.

G. Atiya, D. Chatain, V. Mikhelashvili, G. Eisenstein, and W. D. Kaplan, The role of abnormal grain growth on solid-state dewetting kinetics, Acta Materialia, vol.81, pp.304-314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01722656

N. Parikh, Effect of atmosphere on surface tension of glass, Journal of the American Ceramic Society, vol.41, issue.1, pp.18-22, 1958.

G. E. Rhead, Surface self-diffusion and faceting on silver, Acta Metallurgica, vol.11, issue.9, pp.1035-1042, 1963.

K. Yoshihara and K. Nii, The effect of oxygen potential on the surface self-diffusion coefficient of silver, Transactions of the Japan Institute of Metals, vol.20, issue.9, pp.533-542, 1979.

F. Bradshaw, R. Brandon, and C. Wheeler, The surface self-diffusion of copper as affected by environment, Acta Metallurgica, vol.12, issue.9, pp.1057-1063, 1964.

P. M. Agrawal, B. M. Rice, and D. L. Thompson, Predicting trends in rate parameters for self-diffusion on fcc metal surfaces, Surface Science, vol.515, issue.1, pp.21-35, 2002.

H. Engelhardt and D. Menzel, Adsorption of oxygen on silver single crystal surfaces, Surface Science, vol.57, issue.2, pp.591-618, 1976.

N. Combe, P. Jensen, and A. Pimpinelli, Changing shapes in the nanoworld, Physical Review Letters, vol.85, pp.110-113, 2000.

O. Kovalenko, J. Greer, and E. Rabkin, Solid-state dewetting of thin iron films on sapphire substrates controlled by grain boundary diffusion, Acta Materialia, vol.61, issue.9, pp.3148-3156, 2013.

H. E. Grenga and R. Kumar, Surface energy anisotropy of iron, Surface Science, vol.61, issue.1, pp.283-290, 1976.

M. Muolo, F. Valenza, A. Passerone, and D. Passerone, Oxygen influence on ceramics wettability by liquid metals : Ag/?-Al 2 O 3 : experiments and modelling, Material Science Engineering A, vol.495, pp.153-158, 2008.

, Les particules étant à l'interface entre deux milieux, deux pics sont donc attendus (i=silice ou i=air). Les données expérimentales nous permettent d'observer le pic relatif au substrat uniquement

, Augmenter l'absorption, grâce à des particules à l'interface de la phase active, précisément dans la gamme visée permettrait d'augmenter l'efficacité globale de la cellule. Pour d'autres applications industrielles (notamment les vitrages bas-émissifs), créer de l'absorption dans le proche infrarouge est un enjeu important. Cependant, la présence d'absorption dans la gamme visible dans nos systèmes peut être un obstacle. Toutefois, nous avons montré que cette absorption dépend de la nature du matériau employé, En termes d'applications, le contrôle des propriétés optiques des réseaux de particules offre de nouvelles perspectives

, Changer le matériau qui compose le substrat permet également de modifier la position du mode du substrat. Le principal défi est lié à l'utilisation du démouillage, qui ne permet pas l'obtention de n'importe quel réseau. Dans l'exemple des réseaux anisotropes, les deux périodes ne peuvent pas être trop différentes : nous avons vu que l'optimisation de l'épaisseur initiale de la couche métallique était dépendante de la texture. Si les deux périodes s'écartent trop, il ne sera plus possible d'avoir une épaisseur correspondant aux deux, D'autres pistes d'expérimentation sont envisageables : une texture anisotrope (un paramètre de réseau différent selon la direction du plan) devrait donner lieu à deux pics d'absorption différents selon notre modèle

A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Applied Physics Letters, vol.86, issue.12, p.121903, 2005.

A. Giermann and C. Thompson, Requirements for graphoepitaxial alignment through solid-state dewetting of Au films, Journal of Applied Physics, vol.109, issue.8, p.83520, 2011.

A. L. Bris, F. Maloum, J. Teisseire, and F. Sorin, Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting, Applied Physics Letters, vol.105, issue.20, p.203102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086445

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science & Technology B, vol.14, issue.6, pp.4129-4133, 1996.

M. Hillert, On the theory of normal and abnormal grain growth, Acta metallurgica, vol.13, issue.3, pp.227-238, 1965.

C. V. Thompson, Grain growth in thin films, Annual Review of Materials Science, vol.20, issue.1, pp.245-268, 1990.

S. Stankic, R. Cortes-huerto, N. Crivat, D. Demaille, J. Goniakowski et al., Equilibrium shapes of supported silver clusters, Nanoscale, vol.5, issue.6, pp.2448-2453, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01240522

W. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metallurgica, vol.15, issue.2, pp.303-310, 1967.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo et al., Selfassembled silver nanoparticles for plasmon-enhanced solar cell back reflectors : correlation between structural and optical properties, Nanotechnology, vol.24, issue.26, p.265601, 2013.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux et al., Multipolar optical absorptions in supported metallic particles : the case of Ag/Al 2 O 3 (0001), Physical Review B, vol.65, pp.235424-235425, 2002.

R. Lazzari, I. Simonsen, and J. Jupille, Onset of charge localisation on coupling multipolar absorption modes in supported silver particles, Europhysics Letters, vol.61, issue.4, pp.541-546, 2003.

R. Lazzari, J. Jupille, R. Cavallotti, and I. Simonsen, Model-free unraveling of supported nanoparticles plasmon resonance modes, Journal of Physical Chemistry C, vol.118, pp.7032-7048, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01442823

I. Tanyeli, H. Nasser, F. Es, A. Bek, and R. Turan, Effect of surface type on structural and optical properties of Ag nanoparticles formed by dewetting, Optics Express, vol.21, issue.105, pp.798-807, 2013.

P. Royer, J. Goudonnet, R. Warmack, and T. Ferrell, Substrate effects on surfaceplasmon spectra in metal-island films, Physical Review B, vol.35, issue.8, p.3753, 1987.
DOI : 10.1103/physrevb.35.3753

V. Kravets, F. Schedin, and A. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles, Physical Review Letters, vol.101, issue.8, p.87403, 2008.

S. Zou and G. C. Schatz, Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays, The Journal of Chemical Physics, vol.121, issue.24, pp.12606-12612, 2004.
DOI : 10.1063/1.1826036

G. Box, Sur une surface plane, si l'on étudie l'absorption, seul un pic à 420 nm est visible. Sur une surface texturée, un deuxième pic émerge. La finesse de ce pic est dépendante de la qualité du réseau de particules, et sa position dépend de la période du réseau avec une relation linéaire. Des simulation optiques ont consolidé notre étude expérimentale. Elles retrouvent les mêmes comportements, et indiquent la présence d'un troisième pic, lui aussi dépendant linéairement de la période du réseau. Ces simulations et ces observations nous permettent d'avancer que les pics d'absorption observés sont dûs au couplage de la lumière, via la diffraction, aux particules. Ce système est prometteur en termes d'applications : il permet de positionner très précisément un pic d'absorption. Par exemple, en le plaçant dans l'IR, ceci permettrait de renforcer une propriétés de basse-émissivité d'un système, Conclusion déterminant dans le contrôle du démouillage. Il existe une densité surfacique optimale de grain en croissance qui la densité surfacique de trous dans la texture, 1979.

, Ceci nous a permis de proposer une nouvelle description du démouillage. La connaissance du phénomène est précieuse en vue de l'amélioration des propriétés optiques des réseaux de particules obtenus par démouillage. Nous avons montré par simulations que le pic d'absorption généré par le réseau est indépendant du matériau qui constitue les particules. Ainsi, la recherche d'un autre métal à faire démouiller permettrait, tout en gardant le pic du réseau dont la position est contrôlée, de faire disparaître l'absorption dans le domaine visible. La nature du substrat est un paramètre déterminant dans la position des pics, permettant de moduler encore davantage la réponse optique du système. Enfin, la texturation par des réseaux anisotropes (possédant deux périodes distinctes suivant la direction du réseau) est une possibilité de faire varier la réponse optique, par exemple en augmentant le nombre de pics d'absorption. Nous disposons d'un bon panorama des paramètres à prendre en compte en vue d'applications industrielles, La configuration de cette thèse était originale, puisqu'elle abordait la question du démouillage sous un angle industriel. Cette approche imposait un système d'étude loin des cas modèles (une couche d'argent polycristalline sur une substrat amorphe)

A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Applied Physics Letters, vol.86, issue.12, p.121903, 2005.

A. Giermann and C. Thompson, Requirements for graphoepitaxial alignment through solid-state dewetting of Au films, Journal of Applied Physics, vol.109, issue.8, p.83520, 2011.

D. Weygand, Y. Brechet, and J. Lepinoux, A vertex dynamics simulation of grain growth in two dimensions, Philosophical Magazine B, vol.78, issue.4, pp.329-352, 1998.

T. Brakstad, M. Kildemo, Z. Ghadyani, and I. Simonsen, Dispersion of polarization coupling, localized and collective plasmon modes in a metallic photonic crystal mapped by Mueller Matrix Ellipsometry, Optics Express, vol.23, issue.17, pp.22800-22815, 2015.