K. S. Novoselov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, p.666, 2004.
DOI : 10.1126/science.1102896

URL : http://arxiv.org/pdf/cond-mat/0410550

P. R. Wallace, The Band Theory of Graphite, Phys. Rev, vol.71, p.622, 1947.
DOI : 10.1103/physrev.71.622

J. W. Mcclure, Band Structure of Graphite and de Haas-van Alphen Effect, Phys. Rev, vol.108, p.612, 1957.

G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett, vol.53, p.2449, 1984.
DOI : 10.1103/physrevlett.53.2449

K. I. Bolotin, Ultrahigh electron mobility in suspended graphene, Solid State Comm, vol.146, pp.351-434, 2008.
DOI : 10.1016/j.ssc.2008.02.024

URL : http://arxiv.org/pdf/0802.2389

T. Uchihashi, Two-dimensional superconductors with atomic-scale thickness, 2017.
DOI : 10.1088/0953-2048/30/1/013002

URL : http://iopscience.iop.org/article/10.1088/0953-2048/30/1/013002/pdf

K. F. Mak, Atomically Thin MoS 2 : A New Direct-Gap Semiconductor, Phys. Rev. Lett, vol.105, p.136805, 2010.
DOI : 10.1103/physrevlett.105.136805

URL : http://arxiv.org/pdf/1004.0546

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature, vol.499, p.419, 2013.

G. Wang, Direct Growth of Graphene Film on Germanium Substrate, Sci. Rep, vol.3, p.2465, 2013.
DOI : 10.1038/srep02465

URL : https://www.nature.com/articles/srep02465.pdf

L. H. Zeng, Monolayer Graphene/Germanium Schottky Junction As HighPerformance Self-Driven Infrared Light Photodetector, ACS Appl. Mater. Interfaces, vol.5, pp.9362-9366, 2013.
DOI : 10.1021/am4026505

F. Cavallo, Exceptional Charge Transport Properties of Graphene on Germanium, ACS Nano, vol.8, issue.10, pp.10237-10245, 2014.

C. R. Dean, Boron nitride substrates for high-quality graphene electronics, Nature Nanotech, vol.5, pp.722-726, 2010.

J. Xue, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature Mater, vol.10, pp.282-285, 2011.

L. Britnell, Strong light-matter interactions in heterostructures of atomically thin films, Science, vol.340, pp.1311-1314, 2013.

D. Di-felice, Angle dependence of the local electronic properties of the graphene/MoS 2 interface determined by ab initio calculations, J. Phys. D: Appl. Phys, vol.50, pp.17-19, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01520354

Y. Ma, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale, vol.3, pp.3883-3887, 2011.

A. Ebnonnasir, Tunable MoS2 bandgap in MoS2-graphene heterostructures, Appl. Phys. Lett, vol.105, p.31603, 2014.

F. Schwierz, Two-dimensional materials and their prospects in transistor electronics, Nanoscale, vol.7, 2015.

G. E. Moore, Cramming more components onto integrated circuits, Electronics, vol.38, pp.114-177, 1965.

R. H. Dennard, Design of ion-implanted MOSFET's with very small physical dimensions, IEEE J. Solid-State Circ, vol.9, pp.256-268, 1974.

K. Mistry, A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging, IEEE Int. Electron Devices Meet, pp.247-250, 2007.

J. Cartwright, Two-dimensional semiconductors for transistors, Nature, vol.38, pp.114-177, 2011.

I. Ferrain, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors, Nature, vol.479, pp.310-316, 2011.

J. P. Colinge, Multiple-gate SOI MOSFETs, Solid State Electron, vol.48, pp.897-905, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00603741

B. Radisavljevic, Single-layer MoS 2 transistors, Nature Nanotech, vol.6, p.147, 2011.

Y. Yoon, How Good Can Monolayer MoS 2 Transistors Be?, Nano Lett, vol.11, issue.9, pp.3768-3773, 2011.

N. Myoung, Large Current Modulation and Spin-Dependent Tunneling of Vertical Graphene/MoS 2 Heterostructures, ACS Nano, vol.7, issue.8, pp.7021-7027, 2013.

L. Britnell, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, vol.335, p.947, 2012.

W. Yu, Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary Inverters, Nature Mater, vol.12, pp.246-252, 2013.

A. K. Singh, Low-Voltage and High-Performance Multilayer MoS 2 Field-Effect Transistors with Graphene Electrodes, ACS Appl. Mater. Interfaces, vol.8, pp.34699-34705, 2016.

T. Roy, Field-Effect Transistors Built from All Two-Dimensional Material Components, ACS Nano, vol.8, pp.6259-6264, 2014.
DOI : 10.1021/nn501723y

URL : https://doi.org/10.1021/nn501723y

S. Bertolazzi, Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures, ACS Nano, vol.7, pp.3246-3252, 2013.
DOI : 10.1021/nn3059136

URL : https://doi.org/10.1021/nn3059136

L. Britnell, Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films, Science, vol.340, pp.1311-1314, 2013.

T. Georgiou, Vertical Field-Effect Transistor Based on Graphene-WS 2 Heterostructures for Flexible and Transparent Electronics, Nature Nanotech, vol.8, pp.100-103, 2013.
DOI : 10.1038/nnano.2012.224

G. Lee, Heterostructures Based on Inorganic and Organic van der Waals Systems, APL Mater, vol.2, p.92511, 2014.
DOI : 10.1063/1.4894435

URL : https://aip.scitation.org/doi/pdf/10.1063/1.4894435

X. Wang and F. N. Xia, Stacked 2D Materials Shed Light, Nature Mater, vol.14, pp.264-265, 2015.
DOI : 10.1038/nmat4218

F. Withers, Light-Emitting Diodes by Band-Structure Engineering in van der Waals Heterostructures, Nature Mater, vol.14, pp.301-306, 2015.
DOI : 10.1038/nmat4205

URL : http://eprints.whiterose.ac.uk/115772/1/Manchester%20Sheffield%20LED.pdf

M. S. Choi, Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices, Nature Commun, vol.4, p.1624, 2013.

K. Zhou, Raman Modes of MoS 2 used as fingerprint of vander Waals interactions, ACS, vol.8, pp.9914-9924, 2014.

H. Fang, Strong Interlayer Coupling in van der Waals Heterostructures Built from Single-Layer Chalcogenides, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.6198-6202, 2014.
DOI : 10.1073/pnas.1405435111

URL : http://www.pnas.org/content/111/17/6198.full.pdf

K. Liu, Evolution of Interlayer Coupling in Twisted Molybdenum Disulfide Bilayers, Nature Commun, vol.5, p.4966, 2014.
DOI : 10.1038/ncomms5966

URL : https://www.nature.com/articles/ncomms5966.pdf

C. H. Lee, Atomically Thin p-n Junctions with van der Waals Heterointerfaces, Nature Nanotech, vol.9, pp.676-681, 2014.
DOI : 10.1038/nnano.2014.150

URL : http://arxiv.org/pdf/1403.3062

P. Rivera, Observation of Long-Lived Interlayer Excitons in Monolayer MoSe 2WSe 2 Heterostructures, Nature Commun, vol.6, p.6242, 2015.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, pp.864-871, 1964.

R. M. Martin, Electronic structure: basic theory and practical methods, 2004.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, pp.1133-1138, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, vol.23, pp.5048-5079, 1981.
DOI : 10.1103/physrevb.23.5048

J. P. Perdew, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, vol.43, 1991.
DOI : 10.1103/physrevb.43.1993

D. R. Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B, vol.40, p.2980, 1989.
DOI : 10.1103/physrevb.40.2980

G. B. Bachelet, Pseudopotentials that work: From H to Pu, Phys. Rev. B, vol.26, p.4199, 1982.

G. P. Kerker, Non-singular atomic pseudopotentials for solid state applications, J. Phys. C, vol.13, p.189, 1980.

A. Zunger and M. L. Cohen, First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms, Phys. Rev. B, vol.5449, 1978.

D. R. Hamann, Norm-Conserving Pseudopotentials, Phys. Rev. Lett, vol.43, p.1494, 1979.

L. Kleinman and D. M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett, vol.48, p.1425, 1982.

J. P. Lewis, Advances and applications in the Fireball ab initio tight-binding molecular-dynamics formalism, Phys. Status Solidi B, vol.248, 2011.

J. Harris, Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B, vol.31, pp.1770-1779, 1985.

W. Matthew, Tight-binding models and density-functional theory, Phys. Rev. B, vol.39, pp.12520-12536, 1989.

A. A. Demkov, Electronic structure approach for complex silicas, Phys. Rev. B, vol.52, issue.3, pp.1618-1630, 1995.

P. Löwdin, On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals, J. Chem. Phys, vol.18, p.365, 1950.

O. F. Sankey, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B, vol.40, p.3979, 1989.

E. Abad, Barrier formation and charging energy for a variable nanogap organic molecular junction: a tip/C 6 0/Au(111) configuration, J. Phys.: Condens. Matt, vol.22, p.304007, 2010.

E. Abad, Energy Level Alignment and Electron Transport Through Metal/Organic Contacts, 2013.

Y. J. Dappe, Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach, Phys. Rev. B, vol.74, p.205434, 2006.

E. C. Goldberg, Molecular orbital theory for chemisorption and physisorption: The case of He on metals, Phys. Rev. B, vol.39, 1989.

F. J. García-vidal, Molecular-orbital theory for chemisorption: The case of H on normal metals, Phys. Rev. B, vol.44, p.11412, 1991.

J. Ortega, Simplified electronic-structure model for hydrogen-bonded systems: Water, J. Chem. Phys, vol.50, p.3696, 1994.

L. V. Keldysh, Diagram technique for nonequilibrium process, Eskp, Teor. Phys, vol.47, p.1515, 1018.

C. Caroli, Direct calculation of the tunneling current, J. Phys. C: Solid State Phys, vol.4, p.916, 1971.

N. D. Lang, ;. Ferrer, A. Martin-rodero, and F. Flores, Contact resistance in the scanning tunneling microscope at very small distances, Phys. Rev. B, vol.36, 1987.

E. N. Economou, Green's Functions in Quantum Physics, 1990.

G. Binnig, Tunneling through a controllable vacuum gap, Appl. Phys. Lett, vol.40, pp.178-180, 1982.
DOI : 10.1063/1.92999

G. Binnig, 7×7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett, vol.50, pp.120-123, 1983.
DOI : 10.1007/978-94-011-1812-5_2

W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, 1989.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mater, vol.6, pp.183-191, 2007.

A. H. Castro-neto, The electronic properties of graphene, Rev. Mod. Phys, vol.81, pp.109-162, 2009.

A. K. Geim, Graphene: Status and prospects, Science, vol.324, pp.1530-1534, 2009.
DOI : 10.1126/science.1158877

URL : http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/science review 2009.pdf

D. Reddy, Graphene field-effect transistors, J. Phys. D: Appl. Phys, vol.45, p.19501, 2012.

G. Lee, Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures, ACS Nano, vol.7, issue.9, pp.7931-7936, 2013.
DOI : 10.1021/nn402954e

X. Li and H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications, Journal of Materiomics, vol.1, pp.33-44, 2015.
DOI : 10.1016/j.jmat.2015.03.003

URL : https://doi.org/10.1016/j.jmat.2015.03.003

A. Molina-sánchez and L. Wirtz, Phonons in single and few-layer MoS 2 and WS 2, Phys. Rev. B, vol.84, p.155413, 2011.

M. Tsai, Monolayer MoS2 Heterojunction Solar Cells, ACS Nano, vol.8, issue.8, pp.8317-8322, 2014.
DOI : 10.1021/nn502776h

A. Kumar-mishra, Graphene and Beyond Graphene MoS2: A New Window in Surface-Plasmon-Resonance-Based Fiber Optic Sensing, J. Phys. Chem. C, vol.120, issue.5, pp.2893-2900, 2016.

Z. B. Aziza, Bandgap inhomogeneity of MoS 2 monolayer on epitaxial graphene bilayer in van der Waals p-n junction, Carbon, vol.110, pp.396-403, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01490885

H. C. Diaz, Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS 2 van der Waals Heterostructures, Nano Lett, vol.15, pp.1135-1140, 2015.

W. Jin, Tuning the electronic structure of monolayer graphene/MoS 2 van der Waals heterostructures via interlayer twist, Phys. Rev. B, vol.92, 2015.

Z. Wang, Electronic Structure of Twisted Bilayers of Graphene/MoS 2 and MoS 2 /MoS 2, J. Phys. Chem. C, vol.119, pp.4752-4758, 2015.

J. M. Lopes and . Santos, Graphene Bilayer with a Twist: Electronic Structure, Phys. Rev. Lett, vol.99, p.256802, 2007.

D. Pierucci, Band Alignment and Minigaps in Monolayer MoS 2-Graphene van der Waals Heterostructures, Nano Lett, vol.16, p.4054, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01345010

C. Zhang, Direct Imaging of Band Profile in Single Layer MoS 2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending, Nano Lett, vol.14, p.2443, 2014.

Z. Liu, Strain and structure heterogeneity in MoS 2 atomic layers grown by chemical vapour deposition, Nature Commun, vol.5, p.5246, 2014.

L. Yang, Lattice strain effects on the optical properties of MoS 2 nanosheets, Sci. Rep, vol.4, p.5649, 2014.

M. T. Dau, Beyond van der Waals Interaction: The Case of MoSe 2 Epitaxially Grown on Few-Layer Graphene, ACS Nano, vol.12, pp.2319-2331, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847258

M. T. Dau, Millimeter-Scale Layered MoSe 2 Grown on Sapphire and Evidence for Negative Magnetoresistance, Appl. Phys. Lett, vol.110, p.11909, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01664036

B. Hunt, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, vol.340, pp.1427-1430, 2013.

M. Yankowitz, Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride, Nature Phys, vol.8, p.382, 2012.

T. Ohta, Controlling the Electronic Structure of Bilayer Graphene, Science, vol.313, pp.951-954, 2006.

D. Pierucci and D. , Self-Organized Metal-Semiconductor Epitaxial Graphene Layer on Off-Axis 4H-SiC(0001), Nano Res, vol.8, pp.1026-1037, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01366518

M. Sprinkle, First Direct Observation of a Nearly Ideal Graphene Band Structure, Phys. Rev. Lett, vol.103, p.226803, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01002913

S. Y. Zhou, Substrate-Induced Bandgap Opening in Epitaxial Graphene, Nature Mater, vol.6, p.770, 2007.

J. Bardeen and W. H. Brattain, The Transistor, A Semi-Conductor Triode, Phys. Rev, vol.74, 1948.

M. C. Lemme, A graphene field-effect device, IEEE Electron Device Lett, vol.28, pp.282-284, 2007.

X. Li, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, vol.319, pp.1229-1232, 2008.

M. Y. Han, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett, vol.98, p.206805, 2007.

P. Kim, Graphene nanoribbon devices and quantum heterojunction devices, Tech. Dig. Int. Electron Devices Meeting, pp.241-244, 2009.

E. V. Castro, Biased bilayer graphene: Semiconductor with a cap tunable by the electric field effect, Phys. Rev. Lett, vol.99, p.216802, 2007.

P. Gava, Ab initio study of gap opening and screening effects in gated bilayer graphene, Phys. Rev. B, vol.79, p.165431, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00421070

T. Roy, Dual-gate moS 2 /WSe 2 van der Waals Tunnel Diodes and Transistors, ACS Nano, vol.9, pp.2071-2079, 2015.

A. Nourbakhsh, Transport properties of a MoS 2 /WSe 2 heterojunction transistor and its potential for application, Nano Lett, vol.16, pp.1359-1366, 2016.

D. Sarkar, A subtermionic tunnel field-effect transistor with a atomically thin channel, Nature, vol.526, pp.91-95, 2015.

D. , D. Felice, and Y. J. Dappe, 2D vertical field effect transistor, Nanotechnology, 2018.
DOI : 10.1088/1361-6528/aae406

URL : https://hal.archives-ouvertes.fr/cea-01936725

S. Luryi, Quantum capacitance devices, Appl. Phys. Lett, vol.52, p.201, 1988.
DOI : 10.1063/1.99649

M. Heiblum, Ballistic hot-electron transistors, IBM J. Res. Develop, vol.34, p.530, 1990.
DOI : 10.1147/rd.344.0530

J. A. Simmons, Planar quantum transistor based on 2D-2D tunneling in double quantum well heterostructures, J. Appl. Phys, vol.84, 1998.

A. Zaslavsky, Ultrathin silicon-on-insulator vertical tunneling transistor, Appl. Phys. Lett, vol.83, p.1653, 2003.
DOI : 10.1063/1.1600832

A. Sciambi, Vertical field-effect transistor based on wave-function extension, Phys. Rev. B, vol.84, p.85301, 2011.
DOI : 10.1103/physrevb.84.085301

URL : http://arxiv.org/pdf/1008.0668

L. Liu, Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review, Journal of Materials Science & Technology, vol.31, pp.599-606, 2015.

Z. Lin, Defect engineering of two-dimentional transition metal dichalcogenides, 2016.

K. C. , Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor, Nanotechnology, vol.25, p.375703, 2014.

X. Liu, Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene, J. Phys. Chem. C, vol.120, 2016.
DOI : 10.1021/acs.jpcc.6b02073

URL : http://arxiv.org/pdf/1604.00682

N. Kodama, Electronic States of Sulfur Vacancies Formed on a MoS2 Surface, Jpn. J. Appl. Phys, vol.49, 2010.

S. G. Sørensen, Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS 2 on a Gold Surface, ACS Nano, vol.8, p.6788, 2014.

C. Lu, Bandgap, Mid-Gap States, and Gating Effects in MoS 2, Nano Lett, vol.14, p.4628, 2014.
DOI : 10.1021/nl501659n

URL : http://arxiv.org/pdf/1405.2367

R. Addou, Surface Defects on Natural MoS 2, Appl. Mat. Interf, vol.7, p.11921, 2005.
DOI : 10.1021/acsami.5b01778

P. Vancsó, The intrinsic defect structure of exfoliated MoS 2 single layers revealed by Scanning Tunneling Microscopy, Sci. Rep, vol.6, p.29726, 2016.

P. Bampoulis, Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts, ACS Appl. Mater. Interfaces, vol.9, 2017.
DOI : 10.1021/acsami.7b02739

URL : https://doi.org/10.1021/acsami.7b02739

D. Di-felice, Forces and electronic transport in a contact formed by a graphene tip and a defective MoS 2 monolayer: a theoretical study, Nanotechnology, vol.29, p.225704, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872025

J. Noh, Stability and electronic structures of native defects in single-layer MoS 2, Phys. Rev. B, vol.89, 2014.

W. Zhou, Intrinsic Structural Defects in Monolayer Molybdenum Disulfide, Nano Lett, vol.13, p.2615, 2013.
DOI : 10.1021/nl4007479

J. Hong, Exploring atomic defects in molybdenum disulphide monolayers, Nature Commun, vol.6, p.6293, 2015.

C. González, Theoretical characterisation of point defects on a MoS 2 monolayer by scanning tunnelling microscopy, Nanotechnology, vol.27, p.105702, 2016.

C. González, Reactivity Enhancement and Fingerprints of Point Defects on a MoS 2 Monolayer Assessed by ab initio Atomic Force Microscopy, J. Phys. Chem. C, vol.120, pp.17115-17126, 2016.

H. Li, Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nature Mater, vol.15, p.48, 2016.

M. Makarova, Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS 2 (0001), Followed by Vacancy Repair via S-C Dissociation, J. Phys. Chem. C, vol.116, p.22411, 2012.

L. Qi, Chemisorption-induced n-doping of MoS 2 by oxygen, App. Phys. Lett, vol.108, p.63103, 2016.

B. Akdim, Theoretical analysis of the combined effects of sulfur vacancies and analyte adsorption on the electronic properties of singlelayer MoS 2, Nanotechnology, vol.27, p.185701, 2016.

H. Li, Markedly different adsorption behaviors of gas molecules on defective monolayer MoS 2 : a first-principles study, Phys. Chem. Chem. Phys, vol.18, pp.15110-15117, 2016.

M. P. Sahoo, Modulation of Gas Adsorption and Magnetic Properties of Monolayer-MoS 2 by Antisite Defect and Strain, J. Phys. Chem. C, vol.120, pp.14113-14121, 2016.

S. Cho, Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS 2 Layers, ACS Nano, vol.9, pp.9314-9321, 2015.

C. González, Adsorption of small inorganic molecules on a defective MoS 2 monolayer, Phys. Chem. Chem. Phys, vol.19, pp.9485-9499, 2017.

C. González and Y. J. Dappe, Molecular Detection on a defective MoS 2 monolayer by simultaneous conductance/force simulations, Phys. Rev. B, vol.95, p.214105, 2017.

A. Castellanos-gomez, Carbon tips as electrodes for single-molecule junctions, Appl. Phys. Lett, vol.99, p.123105, 2011.

A. Castellanos-gomez, Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors, Nanotechnology, vol.21, p.145702, 2010.

Y. J. Dappe, Carbon tips for all-carbon single-molecule electronics, Nanoscale, vol.6, p.6953, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01376328

C. González, Theoretical study of carbon-based tips for Scanning Tunnelling Microscopy, Nanotechnology, vol.27, p.105702, 2016.

J. Quereda, Single-layer MoS 2 roughness and sliding friction quenching by interaction with atomically flat substrates, Appl. Phys. Lett, vol.105, p.53111, 2014.

B. Liu, High-Performance Chemical Sensing Using Schottky Contacted Chemical Vapor Deposition Grown Monolayer MoS 2 Transistors, ACS Nano, vol.8, p.5304, 2014.

X. Lu, Layer-by-Layer Thinning of MoS 2 by Thermal Annealing, Nanoscale, vol.5, 2013.

V. Kaushik, Nanoscale Mapping of Layer-Dependent Surface Potential and Junction Properties of CVD-Grown MoS 2 Domains, Phys. Chem. C, vol.119, 2015.

S. Barja, Charge density wave order in 1D mirror twin boundaries of singlelayer MoSe 2, Nature Phys, vol.12, pp.751-756, 2016.

S. H. Song, Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy, Nature Commun, 2017.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, vol.47, 1993.

G. Kresse and J. J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, p.11169, 1996.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, p.1758, 1999.

J. P. Perdew, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.3865, 1996.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, p.17953, 1994.

S. Grimme, Semiempirical GGA-type density functional constructed with a longrange dispersion correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

I. Horcas, Rev. Sci. Instrum, vol.78, 2007.

A. Altibelli, Interpretation of STM images: the MoS 2 surface, Surf. Sci, vol.367, pp.209-220, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00006438