K. S. Novoselov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, p.666, 2004.
DOI : 10.1126/science.1102896

URL : http://arxiv.org/pdf/cond-mat/0410550

P. R. Wallace, The Band Theory of Graphite, Phys. Rev, vol.71, p.622, 1947.
DOI : 10.1103/physrev.71.622

J. W. Mcclure, Band Structure of Graphite and de Haas-van Alphen Effect, Phys. Rev, vol.108, p.612, 1957.

G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett, vol.53, p.2449, 1984.
DOI : 10.1103/physrevlett.53.2449

K. I. Bolotin, Ultrahigh electron mobility in suspended graphene, Solid State Comm, vol.146, pp.351-434, 2008.
DOI : 10.1016/j.ssc.2008.02.024

URL : http://arxiv.org/pdf/0802.2389

T. Uchihashi, Two-dimensional superconductors with atomic-scale thickness, 2017.
DOI : 10.1088/0953-2048/30/1/013002

URL : http://iopscience.iop.org/article/10.1088/0953-2048/30/1/013002/pdf

K. F. Mak, Atomically Thin MoS 2 : A New Direct-Gap Semiconductor, Phys. Rev. Lett, vol.105, p.136805, 2010.
DOI : 10.1103/physrevlett.105.136805

URL : http://arxiv.org/pdf/1004.0546

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature, vol.499, p.419, 2013.

G. Wang, Direct Growth of Graphene Film on Germanium Substrate, Sci. Rep, vol.3, p.2465, 2013.
DOI : 10.1038/srep02465

URL : https://www.nature.com/articles/srep02465.pdf

L. H. Zeng, Monolayer Graphene/Germanium Schottky Junction As HighPerformance Self-Driven Infrared Light Photodetector, ACS Appl. Mater. Interfaces, vol.5, pp.9362-9366, 2013.
DOI : 10.1021/am4026505

T. Roy, Field-Effect Transistors Built from All Two-Dimensional Material Components, ACS Nano, vol.8, pp.6259-6264, 2014.
DOI : 10.1021/nn501723y

URL : https://doi.org/10.1021/nn501723y

S. Bertolazzi, Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures, ACS Nano, vol.7, pp.3246-3252, 2013.
DOI : 10.1021/nn3059136

URL : https://doi.org/10.1021/nn3059136

L. Britnell, Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films, Science, vol.340, pp.1311-1314, 2013.

T. Georgiou, Vertical Field-Effect Transistor Based on Graphene-WS 2 Heterostructures for Flexible and Transparent Electronics, Nature Nanotech, vol.8, pp.100-103, 2013.
DOI : 10.1038/nnano.2012.224

G. Lee, Heterostructures Based on Inorganic and Organic van der Waals Systems, APL Mater, vol.2, p.92511, 2014.
DOI : 10.1063/1.4894435

URL : https://aip.scitation.org/doi/pdf/10.1063/1.4894435

X. Wang and F. N. Xia, Stacked 2D Materials Shed Light, Nature Mater, vol.14, pp.264-265, 2015.
DOI : 10.1038/nmat4218

F. Withers, Light-Emitting Diodes by Band-Structure Engineering in van der Waals Heterostructures, Nature Mater, vol.14, pp.301-306, 2015.
DOI : 10.1038/nmat4205

URL : http://eprints.whiterose.ac.uk/115772/1/Manchester%20Sheffield%20LED.pdf

M. S. Choi, Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices, Nature Commun, vol.4, p.1624, 2013.

K. Zhou, Raman Modes of MoS 2 used as fingerprint of vander Waals interactions, ACS, vol.8, pp.9914-9924, 2014.

H. Fang, Strong Interlayer Coupling in van der Waals Heterostructures Built from Single-Layer Chalcogenides, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.6198-6202, 2014.
DOI : 10.1073/pnas.1405435111

URL : http://www.pnas.org/content/111/17/6198.full.pdf

K. Liu, Evolution of Interlayer Coupling in Twisted Molybdenum Disulfide Bilayers, Nature Commun, vol.5, p.4966, 2014.
DOI : 10.1038/ncomms5966

URL : https://www.nature.com/articles/ncomms5966.pdf

C. H. Lee, Atomically Thin p-n Junctions with van der Waals Heterointerfaces, Nature Nanotech, vol.9, pp.676-681, 2014.
DOI : 10.1038/nnano.2014.150

URL : http://arxiv.org/pdf/1403.3062

P. Rivera, Observation of Long-Lived Interlayer Excitons in Monolayer MoSe 2WSe 2 Heterostructures, Nature Commun, vol.6, p.6242, 2015.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, pp.864-871, 1964.

R. M. Martin, Electronic structure: basic theory and practical methods, 2004.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, pp.1133-1138, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, vol.23, pp.5048-5079, 1981.
DOI : 10.1103/physrevb.23.5048

J. P. Perdew, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, vol.43, 1991.
DOI : 10.1103/physrevb.43.1993

D. R. Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B, vol.40, p.2980, 1989.
DOI : 10.1103/physrevb.40.2980

E. N. Economou, Green's Functions in Quantum Physics, 1990.

G. Binnig, Tunneling through a controllable vacuum gap, Appl. Phys. Lett, vol.40, pp.178-180, 1982.
DOI : 10.1063/1.92999

G. Binnig, 7×7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett, vol.50, pp.120-123, 1983.
DOI : 10.1007/978-94-011-1812-5_2

W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, 1989.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mater, vol.6, pp.183-191, 2007.

A. H. Castro-neto, The electronic properties of graphene, Rev. Mod. Phys, vol.81, pp.109-162, 2009.

A. K. Geim, Graphene: Status and prospects, Science, vol.324, pp.1530-1534, 2009.
DOI : 10.1126/science.1158877

URL : http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/science review 2009.pdf

D. Reddy, Graphene field-effect transistors, J. Phys. D: Appl. Phys, vol.45, p.19501, 2012.

G. Lee, Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures, ACS Nano, vol.7, issue.9, pp.7931-7936, 2013.
DOI : 10.1021/nn402954e

X. Li and H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications, Journal of Materiomics, vol.1, pp.33-44, 2015.
DOI : 10.1016/j.jmat.2015.03.003

URL : https://doi.org/10.1016/j.jmat.2015.03.003

A. Molina-sánchez and L. Wirtz, Phonons in single and few-layer MoS 2 and WS 2, Phys. Rev. B, vol.84, p.155413, 2011.

M. Tsai, Monolayer MoS2 Heterojunction Solar Cells, ACS Nano, vol.8, issue.8, pp.8317-8322, 2014.
DOI : 10.1021/nn502776h

A. Kumar-mishra, Graphene and Beyond Graphene MoS2: A New Window in Surface-Plasmon-Resonance-Based Fiber Optic Sensing, J. Phys. Chem. C, vol.120, issue.5, pp.2893-2900, 2016.

Z. B. Aziza, Bandgap inhomogeneity of MoS 2 monolayer on epitaxial graphene bilayer in van der Waals p-n junction, Carbon, vol.110, pp.396-403, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01490885

H. C. Diaz, Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS 2 van der Waals Heterostructures, Nano Lett, vol.15, pp.1135-1140, 2015.

W. Jin, Tuning the electronic structure of monolayer graphene/MoS 2 van der Waals heterostructures via interlayer twist, Phys. Rev. B, vol.92, 2015.

Z. Wang, Electronic Structure of Twisted Bilayers of Graphene/MoS 2 and MoS 2 /MoS 2, J. Phys. Chem. C, vol.119, pp.4752-4758, 2015.

J. M. Lopes and . Santos, Graphene Bilayer with a Twist: Electronic Structure, Phys. Rev. Lett, vol.99, p.256802, 2007.

D. Pierucci, Band Alignment and Minigaps in Monolayer MoS 2-Graphene van der Waals Heterostructures, Nano Lett, vol.16, p.4054, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01345010

C. Zhang, Direct Imaging of Band Profile in Single Layer MoS 2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending, Nano Lett, vol.14, p.2443, 2014.

D. , D. Felice, and Y. J. Dappe, 2D vertical field effect transistor, Nanotechnology, 2018.
DOI : 10.1088/1361-6528/aae406

URL : https://hal.archives-ouvertes.fr/cea-01936725

S. Luryi, Quantum capacitance devices, Appl. Phys. Lett, vol.52, p.201, 1988.
DOI : 10.1063/1.99649

M. Heiblum, Ballistic hot-electron transistors, IBM J. Res. Develop, vol.34, p.530, 1990.
DOI : 10.1147/rd.344.0530

J. A. Simmons, Planar quantum transistor based on 2D-2D tunneling in double quantum well heterostructures, J. Appl. Phys, vol.84, 1998.

A. Zaslavsky, Ultrathin silicon-on-insulator vertical tunneling transistor, Appl. Phys. Lett, vol.83, p.1653, 2003.
DOI : 10.1063/1.1600832

A. Sciambi, Vertical field-effect transistor based on wave-function extension, Phys. Rev. B, vol.84, p.85301, 2011.
DOI : 10.1103/physrevb.84.085301

URL : http://arxiv.org/pdf/1008.0668

L. Liu, Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review, Journal of Materials Science & Technology, vol.31, pp.599-606, 2015.

Z. Lin, Defect engineering of two-dimentional transition metal dichalcogenides, 2016.

K. C. , Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor, Nanotechnology, vol.25, p.375703, 2014.

X. Liu, Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene, J. Phys. Chem. C, vol.120, 2016.
DOI : 10.1021/acs.jpcc.6b02073

URL : http://arxiv.org/pdf/1604.00682

N. Kodama, Electronic States of Sulfur Vacancies Formed on a MoS2 Surface, Jpn. J. Appl. Phys, vol.49, 2010.

S. G. Sørensen, Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS 2 on a Gold Surface, ACS Nano, vol.8, p.6788, 2014.

C. Lu, Bandgap, Mid-Gap States, and Gating Effects in MoS 2, Nano Lett, vol.14, p.4628, 2014.
DOI : 10.1021/nl501659n

URL : http://arxiv.org/pdf/1405.2367

R. Addou, Surface Defects on Natural MoS 2, Appl. Mat. Interf, vol.7, p.11921, 2005.
DOI : 10.1021/acsami.5b01778

P. Vancsó, The intrinsic defect structure of exfoliated MoS 2 single layers revealed by Scanning Tunneling Microscopy, Sci. Rep, vol.6, p.29726, 2016.

P. Bampoulis, Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts, ACS Appl. Mater. Interfaces, vol.9, 2017.
DOI : 10.1021/acsami.7b02739

URL : https://doi.org/10.1021/acsami.7b02739

D. Di-felice, Forces and electronic transport in a contact formed by a graphene tip and a defective MoS 2 monolayer: a theoretical study, Nanotechnology, vol.29, p.225704, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872025

J. Noh, Stability and electronic structures of native defects in single-layer MoS 2, Phys. Rev. B, vol.89, 2014.

W. Zhou, Intrinsic Structural Defects in Monolayer Molybdenum Disulfide, Nano Lett, vol.13, p.2615, 2013.
DOI : 10.1021/nl4007479

J. Hong, Exploring atomic defects in molybdenum disulphide monolayers, Nature Commun, vol.6, p.6293, 2015.