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Abstract — Due to the environmental protection requirement, fired clay bricks are
facing new development tendency. Fired clay bricks are not only satisfied with mechanical
strength but also rising energy utilization. Thermal conductivity is a very important pa-
rameter to measure the energy utilization. On the premise of guaranteeing the basically
mechanical properties, reducing thermal conductivity has been one of important develop-
ment goals in building industry.

Based on the analysis of micro-structure, microscopic pores have an effect on macro-
scopic elastic constants and thermal conductivity. Parallel micropores resulting from pro-
ducing methods cause the transverse isotropy of fired clay bricks. However, it is not clear
that the influence of micropores on the macroscopic properties. Though some models
studied the effect of porosity on mechanical properties of fired clay bricks, these models
are empirical and ignored many microscopic information. One of the goals of the thesis
is to analyze the influence of shape, orientation and spatial distribution of microscopic
factors on mechanical properties and thermal conductivity in order to provide a reference
to optimize the micro-structure of fired clay bricks.

Firstly, the relationships between elastic properties and porosity are derived by different
homogenization methods. We compare the results from Mori-Tanaka ignoring spatial dis-
tribution of micropores and Ponte Castañeda-Willis considering the spatial distribution.
We find that the prediction for anisotropy by Ponte Castañeda-Willis estimate is much
stronger. Next, the prediction for thermal conductivity is also studied by homogenization
technology. Similar conclusions are obtained.

Meanwhile, microcracks widely exist in fired clay bricks and cause the degradation of
fired clay bricks. In this thesis, it is assumed that the orientations of microcracks are
aligned and the spatial distribution is spherical. We build a micro-mechanical damage
model by transforming open microcrack density into a parameter d to predict the mechan-
ical behavior of fired clay bricks. Experimental validations demonstrate that homogeniza-
tion technology is reliable to build a link between microscopic structure and macroscopic
properties.

Keywords: Fired clay bricks, transverse isotropy, homogenization, micropores, mi-
crocracks, elastic properties, thermal conductivity, damage
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Research Context

As an artificial composite material, transversely isotropic fired clay bricks have kept the
top position in building materials for thousands of years. In ancient, green clay bricks were
dried in the sun and used to build the wall for a long time. Subsequently, fired clay bricks
burnt in a kiln became more and more popular because of better performance. Some fired
clay buildings are very time-honored in the world, such as Albi Cathedral in France, the
Great Wall in China and the Moscow Kremlin. In the historical course, the components
of fired clay bricks are always changing to adapt to the need of construction. In the past,
the traditional function of fired clay bricks was just satisfied with mechanical capacity.
In France, fired clay bricks have to meet the mechanical standard NF EN 771 concerning
masonry elements. Nowadays, under the requirements of sustainable development, it is
obvious that the development trend of fired clay bricks is lightweight, low thermal con-
duction, and so on. In summary, on the premise of guaranteeing the basically mechanical
property, reducing energy consumption has been one of important development goals in
building industry.

As one of the countries complying with the Kyoto Protocol, France has made a com-
mitment that involves reducing the carbon dioxide emissions of 75% by 2050 (from French
national commitments). Fired clay industry, which has cost lots of energy consumption
and resources, is confronted with serious challenges in France. As for the manufacture
process and application of fired clay products, the fired clay industry still has a great po-
tential to develop. In Europe, more than 700 companies work on the fired clay industry
and invest a lot of funds in product development and manufacturing process every year.
These measures improve the function of fired clay products and promote the development
of fired clay industry. More importantly, the technological progress can reduce emissions
of pollutants and energy consumption, and enhance the energy efficiency. According to
French thermal regulation RT2012, the product will have to contribute to the reduction
of the energy demand fixed at 50 kWhEP/m2/year. As one of modes of heat transfer,
thermal conductivity is a very important index to measure the energy utilization. There
have been a lot of studies to reduce the thermal conductivity of fired clay bricks. As is
known to us, fired clay bricks is a porous material containing lots of voids at the micro-
scale. Due to the low thermal conduction of voids, researchers are devoted to mixing
pore-forming agents with clay together in order to develop new types of fired clay bricks
[3, 7, 13]. For example, the project ’Bioclay’ from the cooperation of TERREAL (a man-
ufacturer of fired clay), ARTERRIS (an agricultural cooperative) and other laboratories
(ARMINES, LCA and LMDC) focuses on developing new types of fired clay bricks mixed
with agricultural products and by-products [11, 14]. On one hand, these plants can be
burnt during the firing process and increase porosity of fired clay. On the other hand,

11



these additives can be decomposed and release space occupied by particles to provide the
micro-structure and properties we want. In a word, the research goal is to reach a compro-
mise between mechanical and thermal performance. These experimental studies make it
possible to validate the relationship between macroscopic behavior and their microscopic
characteristics. Now that the macroscopic properties of fired clay bricks can be regulated
by changing their micro-structure, the optimization of micro-structure is an issue to reach
the best compromise between mechanical and thermal properties. As mentioned above,
lots of researchers are interested in this topic, but most work on experiments and few on
macroscopic empirical modeling [11, 14] which didn’t build a link between macroscopic be-
havior and micro-structure together. Studying a micro-macro link to predict the properties
of fired clay bricks is the research goal in this thesis.

According to the analysis of micro-structure and experimental results from other re-
searchers [4, 7, 11, 13, 14, 15], it is seen that the effective stiffness and thermal conductivity
depend on the volume fraction, geometric shape and spatial distribution of each compo-
nents. So it is feasible to control the effective stiffness and thermal conductivity by select-
ing proper additives or improving producing technology. To help engineers find a optimum
solution between mechanical property and thermal conductivity, building the theoretical
modeling to predict the mechanical property and thermal conductivity with the variation
of porosity is quite essential.

In the Chapter 1, we focus on the analysis of fired clay material. At first, the crystal
structures of clay minerals determining the layer characteristic are introduced based on
others’ research. Next, the producing processes for extruded and molded bricks are ex-
pounded. The transversely isotropy of clay bricks is brought in the shaping step. Then,
for new types of bricks, a variety of additives are briefly summarized from others’ research.
Subsequently, the constituents and micro-structure of fired clay bricks are detailed ana-
lyzed on the basis of others’ experiments [3, 4]. Lastly, experimental results containing
porosity and anisotropy are summarized in tables.

In Chapter 2, the prediction for elastic properties of fired clay bricks is studied. Ac-
cording to micro-structure, a simplified representative volume element is presented. Two
homogenization methods are applied to predict the 5 independent elastic constants. The
difference of the two methods are compared. Parameter calibrations and experimental
validations are implemented to highlight the advantage of homogenization.

The prediction for thermal conductivity will be demonstrated in the Chapter 3 of the
thesis. The Eshelby problem of linear conduction is briefly explained at first. Secondly,
three homogenization methods are introduced and applied to the prediction of thermal
conductivity. Parameter calibrations and experimental validations are studied.

In the production process of fired clay bricks, lots of micro-cracks can generate and
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will grow in the process of serving. The existence and evolution of micro-cracks could
cause the degradation of mechanical properties. So the influence of micro-cracks on elastic
properties and mechanical behavior of fired clay bricks is studied in the Chapter 4. A
micro-mechanical damage modeling of transversely isotropic fired clay bricks considering
micro-cracks is built by homogenization scheme under the framework of energy dissipative
mechanism in the thesis.

The prediction of the multi-physics phenomena which determine the behavior of porous
materials is a crucial technological problem for building materials. The aim of the research
project is to build tools to predict the multi-physics phenomena which determine the behav-
ior of porous materials such as fired clay bricks and to help designers to reach performances
referring to physical or mechanical characteristics.
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Chapter 1

The material analysis of fired clay
bricks

Contents
1.1 Raw materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Types of clay minerals . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Manufacturing process . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Inert materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Pore-forming agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Fired clay bricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.1 The constituents of fired clay bricks . . . . . . . . . . . . . . . . . . 24
1.4.2 The micro-structure of fired clay bricks . . . . . . . . . . . . . . . . 26

1.5 The characteristics and properties of fired clay bricks . . . . . . 28
1.5.1 The mechanical properties of fired clay bricks . . . . . . . . . . . . . 28
1.5.2 The thermal conductivity of fired clay bricks . . . . . . . . . . . . . 31
1.5.3 The transverse isotropy of fired clay bricks . . . . . . . . . . . . . . 32
1.5.4 The effect of porosity on mechanical properties and thermal conduc-

tivity of fired clay bricks . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

As mentioned in research context, improving macroscopic properties by changing micro-
structural information has been the development trend of new types of fired clay bricks.
Because the micro-structural information is affected by the whole production process and
constituents, it is necessary to analyze and understand this material of fired clay bricks
before studying the effect of micro-information on their macroscopic properties. In this
chapter, the crystal structure of clay minerals are introduced firstly. Secondly, the ancient
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and modern manufacturing processes are depicted in detail. During the firing process, clay
minerals can occur physical and chemical reactions and can be transformed into a ‘glassy’
ceramic material. In shaping step, both extrusion and pressing will cause the transversely
isotropy of fired clay bricks. Next, many kinds of additives are summarized by literature. In
modern, many new types of additives are mixed with clay minerals in order to produce new
types of fired clay bricks. Then, the micro-information and macro-properties of fired clay
bricks are analyzed, including components, micro-structure, macroscopic mechanical and
thermal properties, as well as influence factors. From mechanical experiments, fired clay
bricks are the elastic-brittle material. Lastly, some points in our research are concluded.

1.1 Raw materials

As one of the most abundant natural resources on the earth, clay minerals are formed
by the weathering of rocks under the physical and chemical erosion over a long period of
time. Clay minerals are hydrous aluminium phyllosilicates containing different ions, such
as silicon, aluminium, oxygen and hydroxyl ions. The ‘phyllo-’ means that the minerals
exist in the form of sheets.

1.1.1 Crystal structure

The feature of crystal structure of theses minerals is a two-layered structure [16]. The
tetrahedral layer is composed of 1 silicon atom and 4 oxygen atoms around the silicon
atom Figure 1.1. The octahedral layer is based on the gibbsite. The octahedral has 6
hydroxyl ions and a central aluminium ion. Clay minerals are constituted of tetrahedral
layer or octahedral layer connected each other (Figure 1.2).

1. Argile et la plasticité

Les mélanges de production des produits de terre cuite sont pré-

parés à base d’argiles, qui sont principalement des phyllosilicates

hydratés d’aluminium. Le préfixe phyllo exprime que la forme de

ces silicates est en feuillets. Ce sont des produits de la dégradation

chimique des composants des roches magmatiques originelles, en

particulier les feldspaths et micas des granites, selon une réaction

du type :

K - feldspath + H + + eau Æ kaolinite + K + + quartz

Selon la roche d’origine, les conditions et le temps de réaction,

on obtient les différentes argiles, qui deviennent de plus en plus

décomposées jusqu’au quartz final.

1.1 Principales formes minéralogiques

Produits de réactions électrochimiques, les argiles se présentent

sous forme de très petits feuillets [4] dont la structure est caractéri-

sée par la superposition de deux couches (figure 1) :

– couche tétraédrique « T » (tétraèdres d’atomes d’oxygène

autour d’un atome central de silicium Si) (figure 1a) ;
– couche octaédrique « O » (octaèdres d’ion hydroxyles OH-

avec, au centre, un ion aluminium Al+++) (voir figure 1b).

Ces deux couches peuvent s’associer de différentes façons : on

distingue les feuillets à deux couches (O, T) et les feuillets à trois

couches (T, O, T).

Il peut y avoir des substitutions ioniques dans la couche T (Si4+

est remplacé par Al3+) et dans la couche O (Al3+ est remplacé par

Mg2+ ou Fe2+). Ces substitutions entraı̂nent un manque d’ions+, et

les couches ne sont plus neutres électriquement. Pour conserver

la neutralité, des cations (K+, Na+, Ca2+,…) vont venir s’absorber,

en particulier entre les couches et les feuillets. Ces cations addition-

nels sont plus ou moins liés et échangeables. Certaines argiles pré-

sentent donc une capacité d’échange cationique élevée. Les molé-

cules d’eau sont attirées par ces cations et les argiles présentent

une grande capacité d’absorption d’eau, entraı̂nant parfois une cer-

taine expansion de la maille.

Suivant l’arrangement des couches dans le feuillet et les substi-

tutions ioniques, on obtient les nombreuses argiles dont les princi-

pales sont les suivantes [5].

& Kaolinite

Il s’agit d’un composé simple à deux couches O-T (figure 2a).
Pour associer les couches, un atome oxygène de la couche T est

remplacé par un ion hydroxyle de la couche O. La composition chi-

mique est 2SiO2.Al2O3.2H2O. Le feuillet est neutre, il n’y a pas d’ab-

sorption de cation. L’espace inter couche est vide. Il n’y a pas

d’échange cationique. L’épaisseur du feuillet est constante à 7,2 Å.

& Smectite

Il s’agit d’un groupe d’argiles à 3 couches TOT, avec différents

niveaux de substitutions et de charge (0,2 à 0,6). Les cristaux sont

généralement très fins.

Par exemple, dans une de ces variétés, la montmorillonite, (Na,
Ca)0.3(Al, Mg)2Si4O10(OH)2,nH2O, un Al3+ de la couche octaédrique
sur 8 est remplacé par Mg2++ (figure 2b). Le feuillet devient partiel-
lement négatif et pour compenser, des cations (Ca2+ ou Na+) vien-
nent s’absorber de façon peu énergétique.

Les smectites se caractérisent par leur capacité d’échange catio-

nique élevée. Des molécules d’eau peuvent pénétrer entre les cou-

ches, l’argile est gonflante et l’unité structurale va varier de 10 à

21 Å, selon la concentration en eau. Elles absorbent donc plus

d’eau que les autres.

& Illite

Il s’agit encore d’un composé à trois couches TOT. Ici, ce sont les

ions K+ qui assurent l’équilibre électrique. Il y a une charge néga-

tive importante dans les couches, les ions sont liés de façon forte,

et il y a une très faible capacité d’échange cationique. L’épaisseur

de la structure est constante : 10 Å.

& Chlorite

C’est aussi un feuillet à 3 couches. Ici, la couche absorbée est à

base d’ions Mg++ hydratés et est très stable. Il s’agit presque d’une

couche supplémentaire de brucite. La structure est proche de

TOT-O. La capacité d’échange est limitée et la structure demeure

stable à 14,1 Å.

& Les principales propriétés de ces argiles sont comparées au

tableau 1.

On voit que les smectites, très fines et gonflantes, montrent des

propriétés assez différentes de celles des autres argiles.

Les feuillets décrits ci-dessus sont généralement empilés les uns

sur les autres pour former les cristaux d’argile, qui sont de très

petites tailles, souvent en forme de plaquettes (généralement

grande longueur, inférieure à 2 mm, et épaisseur, une fraction de
mm).
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Figure 1 – Couches T et O des argiles
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Figure 1.1: The tetrahedral layer [1]
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1. Argile et la plasticité

Les mélanges de production des produits de terre cuite sont pré-

parés à base d’argiles, qui sont principalement des phyllosilicates

hydratés d’aluminium. Le préfixe phyllo exprime que la forme de

ces silicates est en feuillets. Ce sont des produits de la dégradation

chimique des composants des roches magmatiques originelles, en

particulier les feldspaths et micas des granites, selon une réaction

du type :

K - feldspath + H + + eau Æ kaolinite + K + + quartz

Selon la roche d’origine, les conditions et le temps de réaction,

on obtient les différentes argiles, qui deviennent de plus en plus

décomposées jusqu’au quartz final.

1.1 Principales formes minéralogiques

Produits de réactions électrochimiques, les argiles se présentent

sous forme de très petits feuillets [4] dont la structure est caractéri-

sée par la superposition de deux couches (figure 1) :

– couche tétraédrique « T » (tétraèdres d’atomes d’oxygène

autour d’un atome central de silicium Si) (figure 1a) ;
– couche octaédrique « O » (octaèdres d’ion hydroxyles OH-

avec, au centre, un ion aluminium Al+++) (voir figure 1b).

Ces deux couches peuvent s’associer de différentes façons : on

distingue les feuillets à deux couches (O, T) et les feuillets à trois

couches (T, O, T).

Il peut y avoir des substitutions ioniques dans la couche T (Si4+

est remplacé par Al3+) et dans la couche O (Al3+ est remplacé par

Mg2+ ou Fe2+). Ces substitutions entraı̂nent un manque d’ions+, et

les couches ne sont plus neutres électriquement. Pour conserver

la neutralité, des cations (K+, Na+, Ca2+,…) vont venir s’absorber,

en particulier entre les couches et les feuillets. Ces cations addition-

nels sont plus ou moins liés et échangeables. Certaines argiles pré-

sentent donc une capacité d’échange cationique élevée. Les molé-

cules d’eau sont attirées par ces cations et les argiles présentent

une grande capacité d’absorption d’eau, entraı̂nant parfois une cer-

taine expansion de la maille.

Suivant l’arrangement des couches dans le feuillet et les substi-

tutions ioniques, on obtient les nombreuses argiles dont les princi-

pales sont les suivantes [5].

& Kaolinite

Il s’agit d’un composé simple à deux couches O-T (figure 2a).
Pour associer les couches, un atome oxygène de la couche T est

remplacé par un ion hydroxyle de la couche O. La composition chi-

mique est 2SiO2.Al2O3.2H2O. Le feuillet est neutre, il n’y a pas d’ab-

sorption de cation. L’espace inter couche est vide. Il n’y a pas

d’échange cationique. L’épaisseur du feuillet est constante à 7,2 Å.

& Smectite

Il s’agit d’un groupe d’argiles à 3 couches TOT, avec différents

niveaux de substitutions et de charge (0,2 à 0,6). Les cristaux sont

généralement très fins.

Par exemple, dans une de ces variétés, la montmorillonite, (Na,
Ca)0.3(Al, Mg)2Si4O10(OH)2,nH2O, un Al3+ de la couche octaédrique
sur 8 est remplacé par Mg2++ (figure 2b). Le feuillet devient partiel-
lement négatif et pour compenser, des cations (Ca2+ ou Na+) vien-
nent s’absorber de façon peu énergétique.

Les smectites se caractérisent par leur capacité d’échange catio-

nique élevée. Des molécules d’eau peuvent pénétrer entre les cou-

ches, l’argile est gonflante et l’unité structurale va varier de 10 à

21 Å, selon la concentration en eau. Elles absorbent donc plus

d’eau que les autres.

& Illite

Il s’agit encore d’un composé à trois couches TOT. Ici, ce sont les

ions K+ qui assurent l’équilibre électrique. Il y a une charge néga-

tive importante dans les couches, les ions sont liés de façon forte,

et il y a une très faible capacité d’échange cationique. L’épaisseur

de la structure est constante : 10 Å.

& Chlorite

C’est aussi un feuillet à 3 couches. Ici, la couche absorbée est à

base d’ions Mg++ hydratés et est très stable. Il s’agit presque d’une

couche supplémentaire de brucite. La structure est proche de

TOT-O. La capacité d’échange est limitée et la structure demeure

stable à 14,1 Å.

& Les principales propriétés de ces argiles sont comparées au

tableau 1.

On voit que les smectites, très fines et gonflantes, montrent des

propriétés assez différentes de celles des autres argiles.

Les feuillets décrits ci-dessus sont généralement empilés les uns

sur les autres pour former les cristaux d’argile, qui sont de très

petites tailles, souvent en forme de plaquettes (généralement

grande longueur, inférieure à 2 mm, et épaisseur, une fraction de
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Figure 1.2: The octahedral layer [1]

For clay minerals generated from fragment rocks, the shapes of crystals may be plateplet,
discoideus, plate-like or sheet. In the Figure 1.3, the micro-structure of layer of clay min-
erals is observed by SEM.

 

Figure 1.3: The image of clay minerals from CTTB (Centre Technique des Tuiles et
Briques)

1.1.2 Types of clay minerals

Due to the variability of crystal structures, it is demonstrated that more than 80 kinds
of clay minerals exist in the world [8]. In this chapter, we only introduce several widely
distributed clay minerals.
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Kaolinite

The equivalent chemical formula is 2SiO2 · Al2O3 · 2H2O. Kaolinite is the mineral
composed of two layers of T-O. The thickness of the sheet is at 7.2Å. The configuration
of kaolinite is very stable, so the kind of clay mineral can’t expand after absorbing water.
Kaolinite has a good plasticity, and low shrinkage during drying and firing steps. So
kaolinite needs high fired temperature during the firing process, and has the excellent
refractory performance after fired.

Smectite

Smectite is the mineral composed of three layers of T-O-T. The thickness of the sheet
is between 10Å and 21Å. Because of the strong ability of ion exchanging, smectite has the
high plasticity, the water absorption, the heavy shrinkage and expansion.

Illite

Illite is the clay mineral that consists of T-O-T layer. The thickness of the structure is
a constant at 10Å. Illite is the most widely distributed clay mineral on the earth, and also
the most popular material in the fired clay industry. Because of rich potassium K in illite,
the initial melt temperature is not high, approximately 1050◦C.

Chlorite

Like illite, chlorite is the compound of the layer structure T-O-T. Chlorite is also widely
used in the clay industry. The exchange capacity of ion is limited, and the thickness of the
structure is static at 14.1Å.

The following Table 1.1 shows the comparison of basic information from different clay
minerals.

Mineral Layer Thickness The cation exchange Expansion Specific surface
(Å) capacity, mol(+)/kg capacity (m2/g)

Kaolinite TO 7 3∼15 Never 5∼20
Smectite TOT 10∼21 80∼150 Strong 700∼800
Illite TOT 10 10∼40 Weak 50∼200

Chlorite TOT 14.1 10∼40 Never 5∼20

Table 1.1: The comparison between several kinds of clay minerals [8]
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1.2 Manufacturing process

Because the advantage of wide distribution and easy extraction of clay minerals, clay
bricks are the most oldest and popular construction materials. Long before, clay bricks
were shaped by a mold and hardened by drying in the sunshine. Then these dried bricks
(unfired bricks) were directly used to build constructions. Later, fired clay bricks appeared
with the advent of kilns. At that time, the manufacture of fired clay bricks mainly depended
on the labor. After the invention of machines, the process of the production of fired clay
bricks come into the mechanization age. Generally speaking, the production process of
fired clay bricks contains 5 steps: (1) Extraction (2) Preparation (3) Shaping (4) Drying
(5) Firing.

In ancient, fired clay bricks were produced manually, as shown Figure 1.4. In autumn,
man extracted clay minerals in the open air. Then the clay minerals were kept in storage
in winter. In spring, the clay would be crushed and mixed with water. Because these clay
minerals have the good plasticity, they would be put into mold to shape. After the shaping
step, it is necessary to drive off water for these shaped bricks in the sunshine. In fact, clay
bricks will have shrinkage about 5% during drying, so man will put some leaning agent
to diminish the shrinkage. At last, dried bricks would be put into the kiln to make green
bodies into ceramic materials.

firingdryingmoldingmixturegrindingwinteringextraction

autumn              winter               spring/summer spring/summer
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sol. La cuisson se fait dans un four droit entouré d’un auvent. Le feu est situé sous les briques à 

cuire. La chaleur monte à travers le plancher, « la sole », sur lequel les briques sont disposées de 

champ, en quinconce, en plusieurs couches superposées, parfois alternées de tuiles. La cuisson dure 

quelques jours (3 jours en général), et le refroidissement un peu plus longtemps (une semaine 

environ). Puis, les briques cuites sont triées. En effet, malgré toute l’attention du cuiseur, la 

température n’est pas également répartie dans le four, et donc, la qualité des produits est variable 

(ce qui se visualise par des variations de couleur). Les briques les mieux cuites sont réservées aux 

zones les plus sensibles des édificesTP

14
PT. Ainsi, au XIXP

e
P siècle, en Midi-Pyrénées, les caractéristiques 

des briques sont similaires à celles des siècles précédents : grands formats (hérités des romains) et 

qualités variables.  

Notre recherche bibliographique n’a apporté aucune information sur le comportement mécanique 

de ces briques. 

 

 
 

 
Figure 4 - Fabrication saisonnière des briques jusqu’au XIXP

e
P siècle, en Midi-Pyrénées. 

 

∗ La pierre.  

Avant le XXP

e
P siècle, en l’absence de moyens de transports commodes et bon marché, la pierre n’est 

utilisée que si elle existe à proximité immédiate des sites de construction. En Midi Pyrénées, les 

carrières sont rares. Selon Valérie Nègre, essentiellement trois pierres étaient utilisées en Midi 

toulousain : le grès de Carcassonne, la pierre calcaire de Belbèze et le grès calcaire de Roquefort à 

Gabardos. On peut ajouter, pour le Tarn, les carrières du Sidobre, réputées pour leur granite. 

« L’absence de carrières de pierre explique le rôle restreint joué par la pierre de taille dans les 

                                                 
TP

14
PT La cuisson des briques a progressé avec les techniques de four. Les premiers fours Hoffmann sont arrivés en Midi Pyrénées après 

1920, et les fours tunnel, après 1960. 

transport

Figure 1.4: The ancient manufacturing process of fired clay bricks [2]

In modern, the production process of fired clay bricks are operated by a series of
auto-machines. A simplified flow diagram of production process from FFTB (Fédération
Française Tuiles et Briques) is depicted in Figure 1.5. Compared with the old manufactur-
ing method, the modern technology of producing bricks is automatic, which contributes to
saving more personal labor and making the process more effective and ecologic. The mod-
ern manufacturing process of fired clay bricks will be explained in the following paragraphs.
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Figure 1.5: The modern manufacturing process of fired clay bricks (from FFTB)

1. Extraction

Unlike ancient producing methods, clay minerals are exploited and collected by ma-
chines in the open air. Subsequently, these minerals will be put in trucks and transported
to factories.

2. Preparation

The preparation of raw materials is very important. In order to produce qualified clay
bricks, the requirement of characteristics of clay minerals must comply with the national
standard, such as the particle size, water content, and so on.

- To eliminate impurities, such as grass, tree roots, and so on.

- To smash clay minerals to get appropriate sizes of clay particles.

- To analyze physical and chemical compositions of clay minerals.

- To mix water and additives with clay homogeneously.

Firstly, clay minerals are screened and impurities are eliminated. Then clay materials
are transported to a separator in order to remove out oversize particles. The crusher can
smash clay particles to make their size smaller. Lastly, clay particles having the qualified
size are transported into a storage to mix with water and additives.

3. Shaping
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Most clay bricks are shaped by an extruder, however, some kinds of bricks are shaped
by a pressing mold.

In the extrusion step, raw materials are sent into shaping workshop and grind. Then
they are mixed appropriate amount of water before transporting into a vacuum extrusion
machine. if we obtain the qualified plasticity, these mixtures will be sent into the extrusion
machine. In the extrusion machine, wet green bodies are formed and extruded according to
our demand. Due to the pressure direction in a vacuum machine, extruded bricks possess
the oriented properties. For the directionality, it will be explained in the later part of this
chapter.

For molding, a green body is shaped in a mold which is usually made from woods
or metal. In general, this method demands that raw materials keep low water content.
These mixtures are put into a mold and compressed with a metal tool at an appropriate
compressive load. Similarly, the molding method can also lead to the transverse isotropy
of bricks.

4. Drying

Drying is a quite important step for producing fired bricks. If we want to get the high
quality of fired clay products, we must finish this step cautiously. There is about 15% ∼
30% water (the data is based on the mass percentage of dry matter, called dry weight) in
the green body before firing, so it must be dried to drain most moisture off. If moisture
can’t be removed, the water will steam so quickly that lots of microcracks will generate in
the firing step. After dried, the content of water in the green body should be smaller than
1% ∼ 2%.

5. Firing and cooling

A green body from drying chamber doesn’t possess the ceramic performance. The green
body must be fired around 1000◦C for 10 ∼ 40 hours to obtain satisfactory characteristics.
The fired temperature and fired time are also dependent on the types of kilns. The most
common type of kiln is the tunnel kiln, followed by the periodic kiln. For fuels, the most
popular fuels are mainly natural gas, then LPG (liquefied petroleum gas) and heavy fuel
oil. Generally speaking, Light-colour fired clay products require higher firing temperature
than dark-colour ones. So we have to rigidly control some parameters about firing process,
such as the firing temperature, firing time, and so on.

During the firing process, complex physical and chemical reactions will occur between
different compositions [17]. Most solid components will turn into glassy matrix. The
‘glassy’ phase, which may account for more than half of the total mass of the fired brick,
provides the bond for the coarse and fine aggregates. All the solid phases, together with mi-
cropores constitute the complex microstructure of a fired clay brick with specific mechanical
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and physical properties. [18] studied the effect of fired temperature on the microstructure
of clay minerals. They found that higher fired temperature can generate stronger glassy
phase, and micropores in glassy matrix start to sphere. For the microstructure of fired clay
bricks, we will analyze in detail later.

After the firing temperature arrives at the maximum and is kept for a prescribed time,
fired clay products go into the cooling stage. Cooling time of products depend on the type
of kilns. Like firing temperature, the rate of cooling also has an evident effect on the color
of products. During cooling process, the transform of quartz can cause fissures. So in order
to avoid fissures, the reduction of the cooling speed is quite essential.

6. Storage

After getting fired products, the storage of fired clay bricks is necessary to keep high
quality of fired products. The fired bricks should be far away from moist environment,
the large difference in temperature and strongly corrosive conditions. The bricks should
be placed on a solid, hard-to-water surface on the ground. To prevent collapse, the height
of stacked bricks should not be too high. In addition, fired clay bricks should be put into
engineering sites as soon as possible.

7. Transportation

Fired bricks should be avoided colliding and dumping in the transportation.

8. Construction

In the last step, fired clay bricks are applied to constructions as showed in Figure 1.5.

1.3 Additives

1.3.1 Inert materials

Clay minerals usually have high plasticity, which brings out many difficulties (the slow
drying speed, the strong shrinkage in the drying step) in the manufacturing process. It is
necessary to put some inert and non-plastic materials in the clay mixtures in order to give
off the gas and reduce the shrinkage in the drying step and firing step. Importantly, these
inert materials still keep inert in high temperature, and reduce the phenomena of ‘black
heart’ in the inner of fired clay bricks. The inert materials mostly used in fired clay bricks
are:

1. Sands.
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In modern technology, sands are the necessary additive to improve the production
process of fired products. Generally speaking, the sizes of sands are 0.2 ∼ 1.0 mm.

2. Chamotte.

Chamotte usually refers to smashed fired clay wastes. This kind of additives enhance
the ability to resist thermal effect, and reduce thermal expansion.

Other inert materials are pulverized ash, smashed rocks, and so on.

1.3.2 Pore-forming agents

Engineers or researchers always take many measures to reduce the thermal conductivity
so as to raise the energy utilization in clay industry. Meanwhile, they also try to reduce
the weight and cut the cost of products. The use of pore-forming agents is one of the
most popular methods to increase porosity and improve performance of new fired clay
bricks now [19, 20]. During firing process, pore-forming agents are burnt, some of which
become micropores, some are burnt into residues mixing with glassy phase. Considering the
environmental problems and sustainable development, recycling industrial and agricultural
waste is energetically advocated to save sources and reduce emission. There are two types
of pore-forming agents: renewable resources and mineral resources. The details for the two
resources will be explained in the following paragraphs.

1. Renewable resources

Because lots of residues from the industry and agriculture are not properly disposed,
applying residues for the fired clay industry is a quite practicable method. The advan-
tage of these residues are low cost, large quantities and environmentally friendly. Most
importantly, the experimental results for fired bricks mixed with renewable resources are
optimistic. This type of additives can burn, give off CO2 and create micropores during
the firing step. Especially, more and more organic wastes are incorporated with clay to
produce new bricks. [21] and [22] have published their reviews for pore-forming agents
applied for fired clay industry, in which the author thoroughly summarizes a variety of
types of renewable or mineral wastes.

(1) Agricultural wastes. Lots of agricultural wastes have been used for clay industry,
such as wheat straw [7], rice husk [23, 24], rice husk ash [24], sunflower seed shell [25], and
so on.

(2) Industrial wastes. This type of wastes have also been incorporated into clay prod-
ucts, such as waste marble powder [15], coffee grounds [26], resinous wood fibers [27],
sludge [28], spent grains [29], tobacco waste [30], and so on.
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2. Mineral resources

The mineral resources are also used to improve the performance of fired products and
create micropores, but sometimes give off polluted gas. In addition, more mineral residues
are needed to achieve the same performance of fired products compared with those from
renewable resources. These different additives can be: Ashes and dust [31, 32], Marble
residues [33, 34], Phosphogypsum [35], Waste glass [36, 37]. Other additives are perlite,
vermiculite, diatomite [38, 39, 40], which will occur thermal expansion during firing process.

Using pore-forming agents can generate some problems: (1) additives can reduce the
plasticity of green bodies. (2) Agents containing water can increase the water content of
green bodies. (3) The using of agents can reduce the mechanical property of fired products.
So how to produce better products requires that researchers keep exploring.

Besides those materials mentioned above, there are still other additives used to improve
the performance of fired clay bricks. MnO2 and TiO are used to adjust the color of
products. CaO is used to reduce the water content of green bodies. Na2CO3 and Na3PO4
are used to improve the plasticity. BaCO3 is used for improving the phenomenon of
efforescence.

1.4 Fired clay bricks

At high fired temperature, a series of chemical and physical reactions occur in clay bricks,
which causes the change of density, porosity, micro-structure, size of pores, etc. As a porous
composite material, the study on inner constituents and micro-structure is quite necessary
to understand the link between microscopic information and macroscopic properties. The
constituents and micro-structure of fired clay bricks will be presented in the following
subsections.

1.4.1 The constituents of fired clay bricks

By scanning electron microscope (SEM), we can find that the constituents of fired clay
bricks are made up of fired clay (also named ‘glassy’ matrix), unfired silts and sands, other
residues. Figure 1.6 is the SEM image of fired clay brick at the scale of 10µm. It is
clear that there are many micro-voids exist in the solid phases. Figure 1.7 is the image
of the solid phase of fired clay bricks at 2µm scale, which obviously displays the glassy
characteristic of fired clay.
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Nevertheless, circular shape-closed pores with diameter of 10 µm are observed due to 

vitrification (Figure 4.18b). Fine crystals were also observed in the brick matrix, and 

EDS analysis was performed as shown in Figure 4.19. According to this analysis, these 

crystals were identified as calcium alumina silicates (anorthite or gehlenite phases). 

While the theoretical composition of anorthite is 20.2% CaO, 36.6% Al2O3 and 43.2% 

SiO2 on a weight basis, the composition of gehlenite is 41% CaO, 34% Al2O3 and 25% 

SiO2.

Figure 4.18. Micrographs at different magnifications of brick matrix with 30% residue 
fired at 1100°C.

Figure 1.6: SEM image of fired clay bricks at 10µm scale [3]
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Figure 4.19. Fine calcium aluminosilicate crystallites the brick structure with 30% 
residue fired at 1100°C. Inset: EDS analysis of the marked region.

In the brick with 30% residue, the high amount of porosity existed due to the 

burning of organic matter and decomposition of calcite. In some regions of the bricks, 

calcite rich particles in the brick formed an extremely porous structure upon thermal 

treatment due to the loss of CO2. These loosely bonded particles in brick probably 

contracted more than the bulk of the material during cooling leaving some space around 

them as shown in Figure 4.20(a) and (b). Figure 4.20b shows in closer view the fine 

network of highly porous structure which is extremely helpful in reducing thermal 

conductivity of the brick by resisting convective heat transport. Movement of air is 

restricted in this case as opposed to a completely vacant pore in which heat transfer 

would be freely carried out by air molecules. Heat conduction in air is low because its 

thermal conductivity is low. There is no significant convection in vacancies of limited 

size lower than 1 cm (Kornmann 2007).

Figure 1.7: SEM image of fired clay bricks at 2µm scale [3]

[4] studied the phase identification of fired clay bricks without additives under different
fired temperatures in Figure 1.8. The XRD spectra was collected in the 2θ intervals from
10◦ ∼ 70◦, in which the fired temperature of B1 sample is higher than that of B2 sample.
Besides studying on those without additives, [5, 13, 15] also analyzed the constituents of
fired bricks with additives (paper residues, expanded vermiculite, waste marble powder).
The XRD spectra of fired clay bricks with different content of paper residues were obtained
in the 2θ intervals from 5◦ ∼ 55◦, shown in Figure 1.9. From the two diagrams, it can be
concluded that fired clay bricks without additives are mainly composed of quartz, feldspar
and K-feldspar after firing, even if their raw materials may be from different kinds of clay
minerals. These amorphous glassy phases form the backbone of fired bricks. The content
of noncrystalline solid phases can increase at higher temperature. From Figure 1.9, the
constituents of fired clay bricks with additives are still mainly quartz and hematite, but a
small part of anorthite and gehlenite which are dependent on additives.
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Figure II.2 XRD spectra of B1 and B2 with phase identification: α-quartz (Q), K-feldspar 

(Kf), hematite (H) and mullite (Mu). 

 

 The results of this qualitative analysis are supported by the results of EDX elemental 

mapping on polished sections of bulk samples. Distribution maps of silicon (Si), aluminum 

(Al) and other incorporated elements were collected, and the regions close to the theoretical 

composition of quartz (red), feldspar (dark blue) and hematite (violet) could be identified 

(see Figure II.3). The ‘binding phase’ (green and yellow) is a composite of crystals of mullite 

and spinel-type phase embedded in the glass (sample B1). However, the geometrical forms of 

these minerals could not be obtained in this analysis, because of the fine character of the 

crystal structures of sub-micron size as well as the presence of hosting glass. The features of 

this size are below the spatial resolution limit, which is rarely much better than 1 [µm] in this 

type of analysis13 and is implied by the volume of the material probed with the electron beam 

in EDX coupled to conventional SEM microscope. 

 

Figure II.3 Typical EDX composite map of elemental composition of fired brick obtained 

from the tests: quartz (red), feldspar (blue), hematite (violet), aluminosilicate composite 

matrix (green), pocket of aluminosilicate matrix rich in alkali oxides (yellow). 

Figure 1.8: The XRD spectra of fired clay bricks without additives [4]
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Figure 4.11. X-ray diffraction patterns of the bricks fired at 1100°C with 0, 10, 20 and 
30% paper residue additives (Q: quartz, H: hematite, S: sanidine, A: 
anorthite, G: gehlenite).

When the clay and paper residue mixtures are heated to around 1000°C, CaCO3

coming from the residues decomposes, and CaO forms inside the brick material. CaO 

reacts with aluminum silicates. At a temperature of 1100°C, the illite mineral in brick 

clay decomposes and transforms into a high-temperature K-feldspar (sanidine) or reacts 

with calcium oxide to form anorthite (Cultrone, et al. 2001, Jordán 1999, Jordán 2001, 

Montero 2009). In general, sanidine and anorthite formation is observed in the bricks 

fired at high temperature. In the brick composition without residue, illite mineral 

transformed into sanidine phase when fired at 1100°C. In the brick with paper residues, 

calcium oxide reacted with quartz and other minerals, and eventually minor calcium 

aluminum silicates such as anorthite and gehlenite phases as well as mainly quartz 

formed at 1100°C. Formation of gehlenite was observed possibly due to its ease of 

crystallization (Cultrone, et al. 2001).

Figure 1.9: The XRD spectra of fired clay bricks with additives [5]

1.4.2 The micro-structure of fired clay bricks

As explained above, fired clay bricks are mainly composed of solid glassy phase and micro-
pores. We focus on the analysis of the micro-structure now. In general, the properties of
fired bricks are not isotropic, because each product can memorize the mode of production
(extruding or molding) which can cause different shapes, orientations or distributions of
micropores. Micropores are generated in the production process and possess the oriented
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feature. In the states of drying and baking, the transverse isotropy of fired clay bricks will
be retained [8].

To some extent, the constituents of fired bricks can be regarded as homogeneous at a
relatively large observed scale. However, the material can also be seen as heterogeneous at
a smaller observed scale. This is the multi-scale phenomenon of fired clay bricks, which has
been showed in [4]. [4] studied the micro-structure of extruded clay bricks by SEM, EDX
and MIP. In Figure 1.10, the author found that extruded clay bricks possessed a hierarchical
micro-structure due to different neo-crystals. The solid system of crystallization phases
forms the backbone for macroscopic performance of the bricks. It is apparent that the
micropores (black area) has an obvious orientation (from left to right), which is the same
as extruded direction. These micropores are approximately prolate ellipsoidal and the
orientation of the major axes of micropores are parallel to the extruded direction at the
50µm scale. Then we can see Figure 1.11, the microscopic SEM image of fired bricks whose
extruded direction is normal to the paper surface. In this figure, micropores is randomly
orientated. Summarizing the two figures, that is the reason why the properties of extruded
clay bricks are transversely isotropic.

The experimental micrographs expose, at different length
scales of observation, the dominant features of the microstruc-
ture of B1 and B2 samples. Both microstructures converge to
a common pattern at larger length scales. On the other hand,
the building blocks present at the lowest level considered here
(o10�6 m) diverge significantly, preserving only the chemical
similarity. Hence, each material is characterized by a different
type of matrix phase (see Figs. 4(a) and (b) and 5(a) and (b)),
which hosts larger scale components.

More specifically, the matrix of facing brick B1 is a composite
of amorphous glass, crystals of primary mullite (PM) and oc-
casional acicular forms of secondary mullite (SM), spinel-type
phase, and hematite (H) (Fig. 6(a)). The size of incorporated
crystals varies from nano- to micrometer depending on miner-
alogy of raw materials and processing conditions, as revealed in
transmission electron studies (TEM) carried out by other re-
searchers.8,9,17–19 In contrast, the main matrix components of
the B2 sample are porous complexes of dehydroxylated and
partially molten clay particles (Fig. 6(b)), together with rare lo-
cal clusters of glass reinforced by early developed nanocrystals.
The matrix in the B2 sample is reminiscent of the green ware
(Fig. 5(b)), while a complete new structure has been developed in
sample B1 upon firing (Fig. 4(b)). Otherwise said, there is a clear
structural difference in matrix for the brick microstructure as a
consequence of the firing process (temperature and duration).
This observation suggests that the response of both microstruc-
tures (materials) to prescribed physical and mechanical loads is

expected to be different, due to the different forms of the matrix
present in the two types of clay brick.

The composite matrix phase discussed before is an inherent
structural element of the microstructure at larger scales, 10�6ol
o10�4 m. At this level new components of the brick micro-
structure become relevant, namely microporosity and aggregates
of silt. The difference in the characteristics of microporosity can
be directly observed on the SEM micrographs shown previously
(Figs. 4(a) and 5(a)), and can be quantified with the aid of DIA
technique, MIP and standard gravimetric and capillary suction
methods (Table II).

The volume occupied by the voids in both samples is com-
parable with slight increase in sample B2, but the pore size dis-
tributions curves obtained by DIA exhibit different modality
and different location of the modes (see Fig. 7(a)). The porosity
in sample B1 exhibits a unimodal distribution with the mode
located at deq�18 mm, and a negative skew where voids tend to
concentrate toward larger equivalent diameters (log-normal dis-
tribution). The voids of this sample are within an interval of 1 to
100 mm. In contrast, the porosity domain within the microstruc-
ture of sample B2 exhibits higher variability of voids with re-
spect to the assumed equivalent diameter. In this case, a clear

Fig. 4. BSE-SEM micrographs of the sample B1 (pixel aspect ratios
equal to (1): (a) microstructure in the section with normal vector ori-
ented along the length of the brick (note, that the extrusion axis is par-
allel to the longer edge of the image), characteristic coarse voids with
preferential orientation along the green body extrusion direction, (b)
detailed view at the composite of silt particles (SP), polycrystalline–
amorphous ‘‘glassy’’ matrix (GM), and finer porosity. Fig. 5. BSE-SEM micrographs of the sample B2 (pixel aspect ratios

equal to 1): (a) microstructure in the section with normal vector oriented
along the length of the brick (notice, the extrusion axis normal to
the plane of the image), microstructure with dominant population of
finer porosity and rare coarse voids, (b) detailed view at the ‘‘granular’’
microstructure composed of silt (SP), remnants of porous aggregates
of clay (CA), early developed pockets of the ‘‘glassy’’ melt (GM), and
porosity.

3014 Journal of the American Ceramic Society—Krakowiak et al. Vol. 94, No. 9

Figure 1.10: The microstructure of fired bricks produced by extruding [4] (the extruded
direction from left to right)
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chemical similarity. Hence, each material is characterized by a different type of matrix phase 

(see Figure II.4(a-b) and Figure II.5(a-b)), which hosts larger scale components. 

   

(a)              (b) 

Figure II.4 BSE-SEM micrographs of the sample B1: a) microstructure in the section with 

normal vector oriented along the length of the brick (notice, the extrusion axis is parallel to 

the longer edge of the image), characteristic coarse voids with preferential orientation along 

the green body extrusion direction, b) detailed view at the composite of silt particles (SP), 

polycrystalline-amorphous ‘glassy’ matrix (GM) and finer porosity. 

 

   

(a)              (b) 

Figure II.5 BSE-SEM micrographs of the sample B2: a) microstructure in the section with 

normal vector oriented along the length of the brick (notice, the extrusion axis normal to the 

plane of the image), microstructure with dominant population of finer porosity and rare coarse 

voids, b) detailed view at the ‘granular’ microstructure composed of silt (SP), remnants of 

porous aggregates of clay (CA), early developed pocket of the ‘glassy’ melt (GM) and 

porosity. 

Figure 1.11: The microstructure of fired bricks produced by extruding [4] (the extruded
direction normal to the image plane)

1.5 The characteristics and properties of fired clay
bricks

After the discussion on the micro-structure of fired clay bricks, their physical characteris-
tics, mechanical and thermal properties will be sketched in this part. Firstly, mechanical
properties and thermal conduction of fired clay bricks are introduced based on experi-
mental results. Subsequently, as observed in SEM images, the porous structure and the
orientation of micropores are very important characteristics of fired clay bricks. The effects
of anisotropy and porosity on properties are summarized.

1.5.1 The mechanical properties of fired clay bricks

1. The mechanical behavior of fired clay bricks

The uniaxial compressive property of fired clay bricks is the basically mechanical prop-
erty, which is the foundation of studying the capacity and deformation of masonry struc-
tures. The stress-strain relationship of fired clay bricks is the reflection of macroscopic
mechanical properties, such as the peak strength or the ultimate deformation.

[6] studied the uniaxial compressive experiments of fired extruded bricks and got the
load-unload curves shown in Figure 1.12. It is obvious that fired clay bricks are brittle

28



materials, and the cyclic behavior allows to highlight the degradation of elastic modulus.
The peak strength and the fracture strength are the same. Before getting to the peak
point, the stage between the initial point and the peak point is almost linear except for
so-called compression process. After the peak point, the strength sharply decreases.

86 Chapter 3 

The stress-strain diagrams of the four brick specimens are illustrated in Figure 3.38. The 

diagrams were very difficult to obtain, due to the material’s brittleness. The control in post-peak 

was quite difficult to maintain and some specimens were lost during testing. 
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Figure 3.38 – Stress-strain diagrams of the cylindrical brick specimens tested cyclically. 

The average Young’s modulus, defined in the [30%-70%] stress interval, the peak strength, their 

average quantities and coefficients of variation are presented in Table 3.16. 

Table 3.16 – Characterization of the cyclic tests performed on brick specimens. 

Specimen E30-70 [GPa] σpeak [MPa] 

VCBS6 12.61 65.0 

VCBS7 9.84 50.8 

VCBS8 13.76 70.5 

VCBS9 12.27 63.9 

Average 12.12 62.6 

C.V. 11.78 % 11.6 % 

Figure 1.12: The stress-strain curve of fired extruded bricks from [6]

[2] studied the mechanical behavior of fired molded bricks under the uniaxial compres-
sive loading. The curves in the right part result from the direction of the uniaxial loading.
The curves show the linear behavior up to 50% of peak stress. After the linear stage, the
modulus decreases as the increase of strain.

slenderness lightly smaller than the cuboid ones due

to the impossibility to drill cylinder with a smaller

diameter).

The samples were loaded up to a third of their

previously measured collapse strength level, at con-

stant speed (0.5 MPa/s for the cuboid samples,

0.2 mm/m for the cores), these different loading

speeds were imposed by our testing machine, but

without significant consequences on results due to the

non-viscous behaviour of the brick (Table 3).

3.2 Results on bricks

The compressive strength of bricks reached 22.6 MPa

in the plane of the brick and 13.8 MPa perpendicular

to the plane of the brick. In the latter direction, the

behaviour was quasi linear up to 50% of the breaking

stress (Fig. 5). The Young’s modulus E3, in the

direction perpendicular to the plane of the brick, was

equal to 5,500 MPa. It was approximately a third of

the E1 modulus, which was taken equal to the E2

(hypotheses) measured at 16,700 MPa (Table 4). The

Poisson’s coefficients m were:

m12 ¼ m21 ¼ 0:28

m13 ¼ m23 ¼ 0:23
ð1Þ

Because of the thickness of the bricks (very thin), it

was impossible to do tests to find the shear coefficient

G13, (we would have had to cut samples following the

bisector of directions 1 and 3). So, we decided to use

the empirical formula, Eq. 2, suggested by Raffard

[12], which gave G13 = 3,700 MPa.

G13 ¼
1

1
E1
þ 1

E3
þ 2 m13

E1

ð2Þ

Finally, the elasticity matrix of the bricks was

(stresses in MPa):

4 Brick–mortar composite

4.1 Experimental procedure

Two kinds of experimental masonry samples were

built at the laboratory: ‘‘sandwiches’’, which had only

horizontal joints of mortar, and ‘‘low walls’’ with

horizontal and vertical joints. It should be noted that

Table 3 Mechanic behaviour of bricks under compressive

stresses (6 samples)

Cores

[3 cm

Samples

5 9 5 9 10 cm3

Strength (MPa) fc 13.76 22.75

s.d. 2.39 3.36

Elastic modulus

(MPa)

E 5,524 16,673

s.d. 1,415 1,727

Poisson’s

coefficient

m mhh = 0.08 m21 = 0.28

m23 = 0.23

s.d. 0.02 0.07
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Fig. 5 Tests on bricks. Results of compression tests on cores
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Figure 1.13: The stress-strain curve of fired molded bricks from [2]
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2. Elastic modulus and Poisson’s ratio

Elastic modulus is used to evaluate elastic deformation of fired clay bricks under the
load. In principle, Young’s modulus under pressure is similar to that under tension in
isotropic material. For anisotropic material, there are 9 different elastic moduli: 3 Young’s
moduli, 3 Poisson’s ratios and 3 shear moduli. Due to the extruded or pressed direction,
extruded and molded bricks are transversely isotropic materials and possess 5 independent
elastic constants [8]. In engineering notation, the stress-stain relationship can be shown
by the transversely isotropic stiffness matrix:



E11
E22
E33
2E23
2E13
2E12


=



1
E1

−ν12
E1
−ν31

E3
0 0 0

−ν12
E1

1
E1

−ν31
E3

0 0 0
−ν13

E1
−ν13

E1
1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G23

0
0 0 0 0 0 1

G12





Σ11
Σ22
Σ33
Σ23
Σ13
Σ12


(1.1)

where Eij (i, j = 1, 2, 3) represents the macroscopic strain and Σij the macroscopic stress.

[2] studied on Young’s moduli and Poisson’s ratios of fired molded bricks, showed in
Table 1.2. The difference of tests on three samples is the position of strain gauges. All of
them are applied by a load on the 2-axis. The strains ε11 and ε22 are measured in Sample
1 and 2 both of which are parallel experiments. For Sample 3, the strains ε22 and ε33 are
measured in order to obtain Poisson’s ratio ν23.

Sample (N◦) 1 2 3 Mean value
Peak strength (MPa) 20.73 20.45 27.06 22.58
E2(= E1) (MPa) 21773 13220 15025 16673
Poisson’s ratio ν21 = 0.255 ν21 = 0.303 ν23 = 0.155

Table 1.2: Young’s modulus and Poisson’s ratio of fired molded bricks [2]

3. Compressive strength

Compressive strength is an important property of bricks, presenting the ability of resist-
ing to the load. [2] studied on the mechanical properties of molded bricks. The mechanical
properties are carried out on two types of samples. The results showed an mechanical be-
havior shown as in Table 1.6. The bricks failure stress reached 22.58 MPa in the transverse
direction, and 13.76 MPa in the pressed direction. Young’s modulus E3 along the pressed
direction is equal to 5524 MPa. It is about three times lower than the E1 modulus by
hypothesis equal to E2 modulus measured at 16673 MPa.
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1.5.2 The thermal conductivity of fired clay bricks

Thermal conductivity represents the level of difficulty of heat transfer, and plays a crucial
role in energy transfer of fired clay bricks. As above mentioned, fired clay bricks are the
matrix-inclusions materials. The macroscopic thermal conductivity is also determined by
microscopic factors. In the thesis, we will study the effective thermal conductivity of fired
clay bricks by homogenization approach. In the Law of Fourier, the thermal conductivity
can be described by a second-order tensor.

Q = −λ · SdT
dx

(1.2)

where Q indicates the macroscopic heat flux (W ) vector. S denotes the cross sectional area
(m2). dT/dx represents the thermal gradient (K/m) vector. λ is the thermal conductivity
tensor of material (W/m ·K), depending on microstructure of material, density or porosity
of material. The minus means the heat transfers from the position of high temperature to
the position of low temperature.

For transversely isotropic fired clay bricks, the second-order thermal conductivity ten-
sor can be written as:

λ = λ11 · (e1 ⊗ e1 + e2 ⊗ e2) + λ33 · (e3 ⊗ e3) (1.3)

where e3 = (0, 0, 1) is the symmetric axis.

The thermal conductivity is sensitive to many faults (porosity, inclusion, crystal inter-
face) [8]. In addition to that, anisotropy has an effect on thermal conductivity as mentioned
above. [9] studied the thermal conductivities of clay green bodies in different directions
(Table 1.3). These data in different directions exhibits an obvious transverse isotropy.

No. of samples Perpendicular to extrusion Parallel to extrusion Anisotropic ratio
(W/m ·K) (W/m ·K)

B1 0.66± 0.05 1.10± 0.02 1.67
B2 0.66± 0.06 0.93± 0.05 1.41
B3 0.69± 0.04 1.24± 0.02 1.80
B4 0.57± 0.08 0.86± 0.08 1.51
B5 0.62± 0.04 0.72± 0.04 1.16

Table 1.3: The effect of transverse isotropy on thermal conductivity [9]
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1.5.3 The transverse isotropy of fired clay bricks

Based on experimental results [2, 8, 7], the mechanical properties of fired bricks are trans-
versely isotropic due to the orientation of micropores caused by their producing technology.
Anisotropy has an important effect on mechanical properties and conduction. Even though
under the conditions of drying and baking, the oriented characteristic can’t be changed or
vanished, and just be diminished because of vitrification and recrystallization.

Young’s modulus and compressive strength of fired bricks on three axial directions have
been studied by [8] and the anisotropic ratio is given in Table 1.4. The anisotropic ratio of
Young’s modulus is approximately 1.30. The ratio of compressive strength which generally
depends on the geometry of samples is about 1.39.

Orientation Parallel Perpendicular1 Perpendicular2
Young’s modulus (GPa) 44.3± 1 33.9± 3.5 33.7± 2.4
Anisotropic ratio (%) 1.30 1 1

Compressive strength (MPa) 169 120 119
Anisotropic ratio (%) 1.39 1 1

Table 1.4: The anisotropic ratio of Young’s modulus and compressive strength [8]

[10] studied Young’s modulus and compressive strength of different shape of samples
in the extruded direction and another orthogonal direction. For prismatic samples (PS)
and cylindrical samples (CS), the measured experimental results are shown in the following
Table 1.5.

Orientation Horizontal PS Vertical PS Vertical CS
Young’s modulus (MPa) 10450 12750 12830

Anisotropic ratio 1 1.22 1.23
Compressive strength (MPa) 51 56.8 60.6

Anisotropic ratio 1 1.11 1.19

Table 1.5: The anisotropic ratio of Young’s modulus and compressive strength [10]

For prismatic samples, Young’s modulus in vertical direction is 1.22 times as the value
in horizontal direction. The compressive strength in the vertical direction is about 1.11
times as the value in the horizontal direction. For vertical samples, Young’s modulus of
cylindrical samples is similar to (1.006 times) the value of prismatic samples. It has been
verified that the material constant isn’t affected by the geometry of bricks. The peaks tress
of cylindrical samples is nearly equal to (1.067 times) the value of prismatic samples. In
fact, the strength of sample is dependent on its geometry. But the effect of geometry can
be ignored for the two shape of samples within a certain size.
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The transverse isotropy of fired molded bricks have also been studied by experiments
[2]. The results are exhibited in the following Table 1.6. Young’s modulus in the transverse
direction is 3.02 times as values in pressed direction. Compressive strength in transverse
direction is about 1.64 times as values in the pressed direction.

Direction Pressed direction Transverse direction
Young’s modulus (MPa) 5520 16670

Anisotropic ratio 1 3.02
Compressive strength (MPa) 13.8 22.6

Anisotropic ratio 1 1.64

Table 1.6: The anisotropic ratio of Young’s modulus and compressive strength [2]

1.5.4 The effect of porosity on mechanical properties and ther-
mal conductivity of fired clay bricks

The physical properties of fired clay bricks include shape, porosity, water absorption, and
so on. Porosity is one of the most important parameters, affecting properties of fired
clay bricks. Micropores may be open or closed, and the shape of micropores may be
spherical or flat oblate. The shapes, the volumes and the sizes of micropores can determine
the mechanical properties, thermal property and durability of fired bricks [5, 41, 42, 43].
Generally speaking, the porosity of fired clay bricks means open porosity, because closed
micropores are formed in high fired temperature [8]. The total porosity and the diameter
of micropore can be measured by mercury porosimetry [44]. MIP (mercury intrusion
porosimetry) could provide a good estimation for the open porosity and of the distribution
of micropores with r < 1µm [17]. The porosity of fired clay bricks is affected by many
factors, such as content of additives. Engineers always take interesting measures to change
the porosity of fired bricks in order to improve their properties.

The effects of porosity of fired molding bricks on their mechanical strength and thermal
conductivity have been studied (see [5]). In the research, recycled paper processing residues
are used to be pore-forming agents to create micropores during the firing stage. The effect
of porosity on peak strength is given in the Table 1.7.

In this research, it is found that the additives could contribute the 50% reduction of
energy consumption by application of paper residues. The reason is that the additives
are not only used to create micropores, but also to mix with clay to reduce the thermal
conductivity of solid matrix. Table 1.8 indicates the thermal conductivity under different
porosities.

[11] studied the effect of porosity on mechanical property and thermal conductivity of
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Weight content Porosity Pressed direction Transverse direction
(%) (%) (MPa) (MPa)
0 30.8 40 45
10 38.9 16 23.5
20 46.2 7.6 15
30 52 5.1 7.4

Table 1.7: The effect of porosity on peak strength [5]

Weight content Porosity Thermal conductivity
(%) (%) (W/m ·K)
0 30.8 0.83± 0.03
10 38.9 0.59± 0.03
20 46.2 0.48± 0.01
30 52 0.42± 0.02

Table 1.8: The effect of porosity on thermal conductivity [5]

fired extruded bricks by adding two different agricultural solid wastes. The experimental
results are shown in the Table 1.9. Wheat straw residue is abbreviated to WSR and olive
stone flour is to OSF. The function of additives has two facets. On the one hand, they are
fired to create micropores. On the other hand, they are mixed with clay to improve the
performance of matrix.

Additives Porosity Compressive strength Flexural strength Young’s modulus
(%) (MPa) (MPa) (MPa)

WSR 27.9 36.2 13.37 23000
32.6 26.6 12.42 17339
39.5 21.4 8.4 14741
43.5 18.1 7.1 13472

OSF 29.6 34 14.22 18572
31.2 31.5 12.81 17830
34.5 30.5 11.02 17460
40.6 24.8 8.13 13765

Table 1.9: The effect of porosity on mechanical properties [11]

Table 1.10 shows that the effect of porosity on thermal conductivity from [11] in ex-
truded direction. From these results, we can find that the mechanical properties and
thermal conductivity decrease with the increase of porosity. The decrease tendency will be
studied in the following chapters.
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Additives Porosity Thermal conductivity Thermal conductivity
(%) (W/m ·K) (W/m ·K)

WSR 27.9 0.49± 0.02 0.45
32.6 0.44± 0.05 0.41
39.5 0.36± 0.03 0.38
43.5 0.3± 0.1 0.34

OSF 29.6 0.49± 0.04 0.43
31.2 0.45± 0.06 0.42
34.5 0.44± 0.09 0.41
40.6 0.39± 0.11 0.35

Table 1.10: The effect of porosity on thermal conductivity [11, 12]

1.6 Conclusions

As multiphased and porous materials, fired clay bricks having excellent mechanical and
heat insulating performances. The micro-structure plays an important role in macroscopic
properties. Based on the microscopic and macroscopic analysis, several conclusions about
fired clay products can be obtained:

Firstly, micropores widely exit in fired clay bricks, and have a strong influence on
mechanical properties and thermal conductivity.

Secondly, comparing experimental results, the mechanical properties and thermal con-
ductivity of fired clay bricks display the transverse isotropy, including extruded and molded
bricks. As shown in SEM images, the transverse isotropy is induced by the parallel orien-
tation of micropores related with production technology.

The following research deals with the effect of microscopic information on the mechan-
ical properties and thermal conductivity of fired clay bricks by homogenization theory,
including porosity, the shapes and orientations of micropores and microcracks, as well as
their spatial distributions. The objectives are also to propose a framework of behavior law
to take into account for the anisotropy induced by micropores and microcracks.
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Chapter 2

The effective elastic properties of
fired clay bricks
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2.1 Introduction

The limitation of the traditional phenomenology methods and the invention of advanced
experimental techniques promote the development of micromechanics of porous media. The
main idea of micromechanics characterizes macroscopic properties and behaviors based
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on microscopic structures of porous materials, namely, homogenization [45, 46]. In this
chapter, we will introduce the homogenization theory to deal with the problem of linear
elasticity.

The mechanical properties of fired clay bricks, containing elastic property and mechan-
ical behavior, play an important role in engineering design of masonry structures. As the
analysis of micro-structure in chapter 1, fired clay bricks are the transversely isotropic
porous material whose stiffness tensor has 5 independent elastic constants. For fired clay
bricks, micro-void is a quite important characteristic affecting the mechanical properties.
So far, there have been some models used to predict mechanical properties with the con-
sideration of porosity of fired clay bricks [47, 48, 49, 50, 51, 52, 53]. Figure 2.1 shows
the comparison between models and experimental results. Most of them exhibit a good
prediction under moderate porosity. But these models are empirical and don’t build a
micro-macro relationship. Based on these reasons, the prediction for elastic constants
of fired clay bricks is studied by making use of homogenization theory in this chapter.
Referring to mechanical behavior of fired clay bricks, it will be studied in Chapter 4.
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Figure 2.1: The relationship between peak strength and porosity

Firstly, the basic principle and concepts of micromechanics are introduced in detail.
Next, two different shaping technologies of extruded and molded bricks are described to
explain the transverse isotropy. And the simplified representative volume elements (RVE)
are proposed for extruded and molded bricks. Then, the local problem for linear elasticity
and the homogenization method are presented. Subsequently, we present the Mori-Tanaka
(MT) scheme, which is classically used for the case of taking account of interactions between
inclusions. We also introduce the Ponte Castañeda-Willis (PCW) scheme bound, in which
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a distinguish between geometry and spatial distribution of inclusions. For each model,
the transversely isotropic stiffness tensor is calculated and numerical predictions of elastic
constants are achieved in order to quantify the influence of porosity. Finally, parameter
calibrations and experimental validations are carried out.

2.2 Basic concepts of micromechanics of materials

2.2.1 The scale separation of characteristic Scale

The characteristic lengths of RVE and the lengths of macro-structure are defined as l and
L, respectively. On the one hand, l << L is to make the scale of RVE small enough to
satisfy the basic assumption of continuum mechanics. On the other hand, the length of
RVE should be large enough to contain adequate micro-information and allow the statisti-
cal average behavior of local continuum medium. If d is defined as the characteristic length
of local heterogeneities, there will be d << l. In a word, the scale conditions on the RVE
are [54]:

d << l << L

2.2.2 The methodology of micromechanics

The method of micromechanics aims to replace heterogeneous medium by homogenized
equivalent medium or effective medium. There are three steps for homogenization proce-
dure:

1. The mathematical representation of medium at the microscale, including the defini-
tion of phases, the description of geometry and spatial distribution, the description
of local property.

2. The localization, building the quantitative relationship between microscopic phases
and the macroscopic boundary condition applied on the RVE.

3. The homogenization, to obtain the effective property of material based on the micro-
information of heterogeneous material.
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2.3 The representative volume element (RVE) for fired
clay bricks

The produce process and the microstructure of fired clay bricks have been described in the
preceding chapter. In other words, the produce technology affects the microscopic infor-
mation and macroscopic properties of clay products. The influence of produce technology
on products will be expounded in this section.

Based on the information of microstructure studied by [4], fired clay bricks mainly
contain glassy phase, sands and silts, micropores. To simplify the research problem, all
solid phases are considered as a unique solid matrix. The solid matrix and the micropores
are regarded as the two main factors determining the performance of products.

For extruded bricks, in the shaping step, raw materials are pushed by a pushing spiral
in a vacuum environment from one side, and go through from the other side (the machine
head). Between the two sides, all materials are enclosed in the vacuum environment,
and evenly suffered loading all around. This condition can lead to analogously parallel
and spheroidal area showed in Figure 1.10. That is the reason why extruded bricks are
transversely isotropic. A schematic diagram of extruded process has been given in Figure
2.2, including 2-dimensional extruded technology, 3-dimensional brick and 3-dimensional
geometry of micropore. It is assumed that the geometries of all micropores are prolate
spheroids. The extruded direction is parallel to the long 3-axis of prolate spheroid. m1
and m3 represent the semi-axis of ellipsoid on 1-axis and 3-axis, and m1 = m2.

For molded bricks, a brick is shaped and applied a pressure in a mold showed in 3-
dimensional Figure 2.3. The shape of micropore is oblate spheroidal. The short 3-axis
of oblate spheroid is parallel to the pressure direction. The difference between extruded
bricks and moulded bricks is the shape and the orientation of micropores. Likewise, the
3-axis (pressure direction) is also the symmetric axis, and m1 = m2.

Machine head

Pusher

Pressure

Extruded brickExtruded direction

Prolate spheroid

3

2
1

Figure 2.2: The prolate micropore in extruded bricks
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Figure 2.3: The oblate micropore in moulded bricks

In order to characterize the heterogeneous characteristics of fired clay bricks, a simplified
3-dimensional RVE for fired clay bricks at one microscale is showed as the following Figure
2.4 and Figure 2.5. The section of the RVE is taken from the plane that parallels to
our paper in the 3-dimensional brick. The RVE in Figure 2.4 represents extruded bricks,
and another RVE in Figure 2.5 describes moulded bricks. It should be obvious that the
difference of geometry of micropores between two types of bricks result from different
produce technology. Both the physical properties of solid matrix are considered as isotropic.
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3m3
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2
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2

1

Solid matrix Micropore

Figure 2.4: The representative volume element for extruded bricks

2.4 Homogenization of the elastic properites

We consider the RVE of a material as the domain Ω, and ∂Ω denotes the boundary of
the domain. The microscopic strain and stress fields in RVE are equal to zero if there is
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Figure 2.5: The representative volume element for moulded bricks

no external disturbance on the boundary. In the case of ignoring the volume force, the
infinite boundary is subjected to the macroscopic uniform strain tensor E. The link be-
tween the microscopic displacement field and the macro-scale strain field on the boundary
is u(z) = E · z. According to Gauss’ Divergence theorem, it can be proved that:

< ε >= 1
|Ω|

∫
Ω
ε(z)dΩ = E (2.1)

We adopt σ(z) and ε(z) to represent the local stress tensor and local strain tensor at the
microscale, respectively. The solutions of the homogenization problem can be obtained
from the following equations:

∇ · σ(z) = 0
σ(z) = C(z) : ε(z)
ε(z) = 1

2

[
gradu+ (gradu)T

]
u(z) = E · z, ∀z ∈ ∂Ω

(2.2)

where C(z) represents the fourth-order stiffness tensor at point z.

The microscale strain ε(z) can be linearly expressed by the macroscale strain E using
a fourth-order strain concentration tensor A:

ε(z) = A(z) : E (2.3)

It follows that:

< ε >=< A : E >=< A >: E (2.4)
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which, by comparison with (2.1) yields:

< A >= I (2.5)

where I is the fourth-order unit tensor.

Combining the local constitutive equation and (2.3), one gets:

σ(z) = C(z) : ε(z) = C(z) : A(z) : E (2.6)

By average, it is readily obtained:

Σ =< σ(z) >= Chom : E (2.7)

which represents the macroscopic stress-strain relationship, with

Chom =< C(z) : A(z) > (2.8)

where Chom is the macroscopic fourth-order effective stiffness tensor. For a RVE composed
of matrix and inclusions, it is assumed that all properties are same in the r-th phase. We
define |Ωr| as the volume of the r-th phase in the material. Cr is the stiffness tensor in the
r-th phase. fr is the volume fraction of the r-th phase. The concentration tensors A(z) is
replaced by Ar. The effective stiffness tensor can be recast as:

Chom =
N∑
r=0

frCr : Ar (2.9)

where r = 0 represents the solid matrix, which will be signified by the subscript s in what
follows. Recalling relation (2.5), the concentration tensor A0 of solid matrix can be ex-
pressed by the concentration tensors of inclusions:

fsAs = I−
N∑
r=1

frAr (2.10)

It follows that the effective stiffness tensor (2.9) could be recast as another formation:

Chom = Cs +
N∑
r=1

fr(Cr − Cs) : Ar (2.11)

It is obvious that the calculation for localization tensor Ar is crucial to obtain the
effective stiffness tensor. The concentration tensor can be determined by means of three
classical schemes (dilute, Mori-Tanaka, Ponte Castañeda-Willis). Dilute scheme is assumed
that there is no interaction between inclusions and fit for the case of small concentration
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of inclusions. The solution of the localization problem for a single ellipsoidal inclusion
embedded in an infinite matrix is provided by solving the so-called Eshelby’s inclusion
problem [55]. The solution of this problem is:

Ar = [I + Pεr : (Cr − Cs)]−1 (2.12)

with

Pεr = Sεr : C−1
s (2.13)

where the subscript ε indicates the shape and orientation of inclusion. Pεr is the fourth-
order Hill tensor [56]. Sεr is the Eshelby tensor which is dependent on the shape of inclusion
and the stiffness of matrix. Cs is the stiffness tensor of solid matrix.

In the following parts, the above mentioned homogenization schemes based on different
tensors Ar will be introduced briefly.

2.5 Estimates of the effective stiffness tensor

In this section, we will briefly describe two homogenization schemes, including Mori-Tanaka
approach [57] and Ponte Castañeda-Willis approach [58] for multi-phase media by virtue of
the solution of single-inclusion derived by [55]. Both the two approximations consider the
interaction of inclusions, but the difference between them is the consideration of spatial
distributions of inclusions.

2.5.1 The Mori-Tanaka (MT) scheme

Mori-Tanaka scheme takes into account the interactions between inclusions, and it is fit
for the case of inclusions with moderate concentration [57]. In the new framework, the
macroscopic strain boundary condition is no longer E. We assume that the inclusion of
the r-th phase suffers the uniform strain field E0 at infinity. The microscopic strain of the
r-th phase cab be written as:

ε
r

= A0
r : E0 (2.14)

where A0
r is the local localization tensor:

A0
r = [I + Pεr : (Cr − Cs)]−1 (2.15)

Hill tensor Pεr was given in (2.13).
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According to the law of volume average < ε >= E, the tensor ε0 can be expressed by E:

E0 =
[
N∑
r=0

frA0
r

]−1

: E (2.16)

Accordingly, the overall localization tensor AMT
r of the r-th phase is:

AMT
r = A0

r :
[
N∑
r=0

frA0
r

]−1

(2.17)

2.5.2 The Ponte Castañeda-Willis (PCW) scheme

The scheme, which is based on the extension of the Hashin-Shtrikman bound, separates
the shape of inclusion and the spatial distribution of inclusion by two independent tensor
functions [58]. Based on the microstructure of fired clay bricks, it is assumed that the
spatial distribution of parallel micropores is spherical. As shown in Figure 2.6, red inclu-
sions aligned with a symmetric direction are micropores and these circles represents the
spherical distribution.

(a)
(c)

Figure 2.6: The spherical distribution with spheroidal inclusions

The fourth-order strain concentration tensor is in the form of [58, 59]:

APCW
r = [I + Pεr : (Cr − Cs)]−1

:
{
fsI +

N∑
r=1

fr[I + (Pεr − Pdr) : (Cr − Cs)] : [I + Pεr : (Cr − Cs)]−1
}−1 (2.18)

where the subscript ε and Pεr has been pointed that represents the shape. Another subscript
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d denotes the spatial distribution, and Pdr represents the spatial distribution tensor of the
r-th phase.

2.6 The prediction for the effective elastic properties
of fired clay bricks

In this section, the effective elastic properties of fired clay bricks will be deduced by MT
and PCW approaches. It is noted that, for the case of aligned inclusions, the stiffness
tensor by MT scheme can be derived from PCW formula if the distribution function Pdr
is identical to their shape function Pεr [60, 61]. However, for randomly oriented ellipsoidal
inclusions, the Mori-Tanaka result cannot be derived from the PCW estimation [62].

2.6.1 The MT estimate of elastic properties

The prediction for elastic properties by MT scheme will be analyzed in the part. As is shown
in Figure 2.4 and Figure 2.5, heterogeneous fired bricks can be regarded as a two-phase
material composed of solid phase (subscript s) and pore phase (subscript p). Expanding
formula (2.17), the fourth-order strain concentration tensor of micropores yields:

AMT
p =

[
I + Pεp : (Cp − Cs)

]−1
:
{
fsI + fp[I + Pεp : (Cp − Cs)]−1

}−1
(2.19)

The fourth-order effective stiffness tensor of MT estimation can be expressed as:

CMT = (1− fp)Cs :
[
(1− fp)I + fp (I− Sp)−1

]−1
(2.20)

As described in our RVE, micropores are parallel and symmetric about the 3−axis
and the solid matrix is considered to be isotropic, which induce the transversely isotropic
properties of fired clay bricks. Walpole’s notation, which has been described in Appendix
A, is used to represent transversely isotropic tensor by the decomposition of unit tensor in
micromechanics [63]. Based on that, the effective stiffness tensor (2.20) of fired bricks can
be expressed by the following form:

CMT = [C1, C2, C3, C4, C5, C5] (2.21)

where the calculated results of C1, C2, C3, C4, C5 have been given in C.15.

The corresponding fourth-order effective compliance tensor can be expressed by stiff-
ness tensor components:
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SMT = [S1, S2, S3, S4, S5, S5] (2.22)

with

S1 = C2

∆1
, S2 = C1

∆1
, S3 = 1

C3
, S4 = 1

C4
, S5 = −C5

∆1
(2.23)

and

∆1 = C1 · C2 − 2 · C2
5 (2.24)

It is known that the macroscopic stress-strain relationship:

E = SMT : Σ (2.25)

Based on the Voigt notation in Appendix A, the transversely isotropic compliance ten-
sor SPCW can be represented by the following matrix:

SMT ≡



1
2(S1 + S3) 1

2(S1 − S3) S5 0 0 0
1
2(S1 − S3) 1

2(S1 + S3) S5 0 0 0
S5 S5 S2 0 0 0
0 0 0 S4 0 0
0 0 0 0 S4 0
0 0 0 0 0 S3


(2.26)

The five elements in the matrix (2.26) are given in (2.23). Combining matrixes (2.26)
and (1.1), it is readily to obtain 5 elastic constants of fired clay bricks showed in following
expressions.

The longitudinal Young’s modulus is:

EMT
3 = 1

S2
(2.27)

The transverse Young’s modulus is:

EMT
1 = EMT

2 = 2
S1 + S3

(2.28)

The shear modulus are:
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GMT
23 = 1

2S4

GMT
12 = 1

2S3

(2.29)

Possoin’s rato is:

νMT
13 = −E1S5 (2.30)

Subsequently, the relationships between elastic constants and porosity are illustrated
in following figures. The aspect ratio X = m3/m1 > 1 of micropores stands for ex-
truded bricks, and X = m3/m1 < 1 represents molded bricks. At first, the relationship
between stiffness tensor components and porosity is drawn under the fixed parameters
Es = 20000(MPa), νs = 0.1, X = 2, showed in Figure 2.7 (a). The stiffness tensor com-
ponents are represented by Walpole’s notation (shown as C.1). It can be seen that the
stiffness decreases obviously as porosity increases, in which C1/2 represents the compres-
sion modulus, C3/2 denotes the transverse shear modulus, C4/2 represents the axial shear
modulus. C2 and C5 are constants related with Young’s modulus and Poisson’s ratio.

Figure 2.7 (b) and Figure 2.7 (c) display the relationships between normalized Young’s
moduli (EMT/Es) and porosity under different aspect ratios of micropores. Figure 2.7 (b)
depicts the variation of normalized E3, and Figure 2.7 (c) is for normalized E1. From
the two figures, Young’s modulus E3 corresponding to X = 2 is the largest on the 3-axis.
Conversely, Young’s modulus E3 is the smallest on the 1-axis when X = 2. It means that
Young’s modulus on the major axis is larger than those on other orientations. Young’s
modulus on the minor axis is the smallest.

Figure 2.7 (d) and Figure 2.7 (e) show the relationships between normalized shear
moduli (GMT/Gs) on two coordinate planes and porosity under different aspect ratios of
micropores. It is also obvious that shear moduli decrease with the increasing of porosity.
From two figures, it can be concluded that the shear modulus on the plane paralleling to
the major axis of micropore is greater than those on other planes. The effect of aspect
ratio on shear modulus G12 appears more clearly.

Figure 2.7 (f) plots the variation of normalized Poisson’s ratio ν13 as porosity increases.
The aspect ratio obviously affects the ν13 of molded bricks.
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(c) The prediction for E1
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Figure 2.7: The relationships between elastic constants and porosity by MT estimate
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Figure 2.7: The relationships between elastic constants and porosity by MT estimate
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2.6.2 The PCW estimate of elastic properties

As mentioned above, the PCW estimation considers the spatial distribution of micropores
compared with MT method. For micropores, the strain concentration tensor (2.18) can be
recast as:

APCW
p =

[
I + Pεp : (Cp − Cs)

]−1

:
{
fsI + fp[I + (Pεp − Pdp) : (Cp − Cs)] : [I + Pεp : (Cp − Cs)]−1

}−1 (2.31)

It is assumed that the spatial distribution of micropores is spherical. So the tensorial
function of the spatial distribution can be expressed as [64]:

Pdp = α

3ks
J + β

2µs
K (2.32)

with

α = 3ks
3ks + 4µs

β = 6(ks + 2µs)
5(3ks + 4µs)

(2.33)

where ks is the bulk modulus of solid matrix and µs is the shear modulus of solid matrix.

The stiffness tensor of micropores Cp is equal to 0, so equation (2.31) can be simplified
as:

APCW
p = (I− Sεp)−1 : [I + fp(αJ + βK) : (I− Sεp)−1]−1 (2.34)

As in the previous section, the effective stiffness tensor of fired clay bricks by PCW
estimation can be derived and expressed by Walpole’s notation [63]:

CPCW = [C1, C2, C3, C4, C5, C5] (2.35)

where the calculated results of C1, C2, C3, C4, C5 have been given in C.2.

In order to exhibit the relationship between stiffness tensor components and porosity,
the following hypothetical parameters are still taken: Es = 20000(MPa), νs = 0.1 and
X = 2. Figure 2.8 (a) gives the variation of stiffness tensor components. Compared with
results from MT method, the predictions for C1 and C3 by PCW scheme decline much
steeper. In other words, the spatial distribution has a stronger influence on the two elastic
constants.
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Figure 2.8 (b) and Figure 2.8 (c) illustrate that the relations between normalized
Young’s moduli and porosity under different aspect ratios. From two figures, we can
find that Young’s modulus on the 3-axis is greater than that on the 1-axis. Combining two
figures, it is seen that the aspect ratio has a more sensible effect on Young’s modulus E3.

Figure 2.8 (d) and Figure 2.8 (e) exhibit the variation between normalized shear moduli
and porosity under different aspect ratios. It is clear that shear moduli decline with the
increase of porosity. From the two figures, it can be concluded that the shear modulus on
the plane paralleling to the long axis of micropore is greater than those on other planes.
From extruded bricks, the aspect ratio has little influence on G23.

Figure 2.8 (f) depicts the variation of normalized Poisson’s ratio. We can find that
porosity has a stronger influence on ν13 of molded bricks than that of extruded bricks. In
all word, the five independent constants can entirely represent elastic properties of fired
clay bricks.

2.6.3 The comparison of the prediction between MT and PCW
schemes

The difference of the prediction for normalized Young’s modulus between MT and PCW
schemes is illustrated in following figures.

Figure 2.9 plots the prediction for normalized Young’s modulus of fired extruded bricks
by two schemes. It is assumed that the aspect ratio of micropores is equal to 2 and
Poisson’s ratio of solid matrix is 0.1. In this figure, Young’s modulus along the orienta-
tion of the major 3-axis of prolate ellipsoid is greater than that on the 1-axis. In fact,
Young’s modulus along the major axis is the maximum and the value along the minor
axis is the minimum. Young’s modulus on other orientations can be calculated by rota-
tion matrix. Moreover, compared with the prediction of MT scheme, the prediction by
PCW scheme considering spatial distribution exhibits the greater ratio of modulus, that
is EPCW

3 /EPCW
1 > EMT

3 /EMT
1 . Figure 2.10 draws the prediction for normalized Young’s

modulus of fired molded bricks by two schemes. The assumed parameters are the aspect
ratio of micropores X = 0.5 and Poisson’s ratio of solid matrix νs = 0.1. It can be
summarized similar conclusions.

Figure 2.11 and 2.12 are the comparison of normalized shear modulus between MT
scheme and PCW scheme. Like Young’s modulus, the prediction of shear modulus by
PCW estimate also exhibits a greater ratio of shear modulus than that by MT approach.
For extruded and molded bricks, the shear modulus G23 perpendicular to the isotropic
plane is always greater than shear moduli on other planes.
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(a) The prediction for stiffness tensor
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(b) The prediction for E3
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(c) The prediction for E1
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(d) The prediction for G23
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(e) The prediction for G12
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Figure 2.8: The relationships between elastic constants and porosity by PCW estimate
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Figure 2.8: The relationships between elastic constants and porosity by PCW estimate
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Figure 2.9: The prediction for Young’s modulus of extruded bricks
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Figure 2.10: The prediction for Young’s modulus of molded bricks

2.7 Calibrations and experimental validations

The effective elastic properties derived by homogenization approaches have been analyzed
above. In this part, calibrations and experimental validations are implemented by an
optimization software named modeFRONTIER, which is especially applied for the multi-
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Figure 2.11: The prediction for shear modulus of extruded bricks

0 5 10 15 20 25 30 35 40 45 50 55

Porosity (%)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 s
he

ar
 m

od
ul

us

G23
MT

G12
MT

G23
PCW

G12
PCW

Figure 2.12: The prediction for shear modulus of molded bricks

objective optimization.

Due to lacking of enough material parameters of fired clay bricks, design factors are:
Es, νs, X. In DOE Properties, Sobol algorithm [65] based on a pseudo random sequence
is chosen to generate 4 discrete initial values and to fill the design space. For our non-
linear problem, we use the more efficient SIMPLEX algorithm [66], which differs from a
traditional simplex method for linear programming. A Matlab subscript constructing the
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process from input variables to an output variable is imported into the workflow, in which
the sum of squares of the difference between experimental data and predicted values is
defined as the output variable Ferr. In the last of the workflow, the minimized demand of
Ferr is set to achieve the least square. The workflow in modeFRONTIER is developed
and shown in Figure 2.13:

=0

vs

Matlab11

Ferrmin

Exit

X

DOE

Ferr

Es

SIMPLEX

Main

Figure 2.13: The workflow of calibration in modeFRONTIER

Figure 2.14 and Figure 2.15 show that the comparison for Young’s modulus between
our prediction and experimental data of extruded bricks [7]. Unknown parameters are
calibrated by means of two points on two different axes under the condition of fp = 27.9%.
Other experimental results in this figure are used to validate our prediction. For the 1st
group of data containing 10% sands in Figure 2.14, we choose the common calibrated values
of MT and PCW schemes and keep Ferr the least. The values of calibrated parameters
are: X = 1.4, Es = 32000 MPa, νs = 0.09, Ferr = 1.54× 104. Likewise, in Figure 2.15, we
calibrate two points corresponding to fp = 29.6% and compare our prediction with other
points. The values of calibrated parameters are: X = 1.4, Es = 30400 MPa, νs = 0.06,
Ferr = 6.17× 103. It should be noted that the additives (wheat straw residues and olive
stone flour) are not only used to create micro-voids, but also used to mix with clay in
order to reduce the thermal conductivity of solid matrix, which also leads to the reduction
of mechanical properties. Consequently, it is reasonable that the prediction for Young’s
modulus is greater than most experimental results in the two figures. Moreover, the PCW
estimate shows the anisotropic ratio more closer to experimental results.
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Figure 2.14: 10% sands
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Figure 2.15: 5% sands

2.8 Conclusions

In this chapter, we not only build the relations between elastic properties and porosity, but
also analyze the effect of shape and spatial distribution of micropores on elastic properties.
From the validations, there is a good agreement between our prediction and experimental
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results. We can give some conclusions, as follows:

Firstly, porosity is the most important influence factor weakening the elastic properties
of fired clay bricks. With the rising of porosity, the variations of elastic moduli have been
given in our results.

Secondly, besides porosity, the shape of micropore also has a notable impact on elastic
properties according to our results. The aspect ratio of micropores is the fundamental
reason causing the transverse isotropy of fired clay bricks. From the predictions, Young’s
modulus on the major axis is always larger than those on other orientations. Young’s
modulus on the minor axis is the smallest. The aspect ratio of micropores has a much
stronger influence on Young’s modulus parallel to the symmetric axis than that in other
directions. For extruded bricks, the shear modulus in the plane perpendicular to the
isotropic plane is greater than those in other planes. For molded bricks, the conclusion is
on the contrary. The aspect ratio affects the shear modulus in the isotropic plane more
clearly. With the increase of aspect ratio, E3 rises but G12 decreases.

Thirdly, by the comparison of results from MT and PCW schemes, PCW scheme con-
sidering the spatial distribution of micropores exhibits the more conspicuous anisotropy
than the prediction by MT estimate. It means that the spatial distribution of micropores
is an important factor for elastic properties.

In terms of numerical results, it is feasible to optimize the elastic properties of fired clay
bricks by changing the volume fraction, the shape or the spatial distribution of micropores.
To achieve a compromise between mechanical and thermal properties, the influence of
micropores on thermal conductivity will be studied in Chapter 3.
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Chapter 3

The effective thermal conductivity of
fired clay bricks

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Homogenization for stationary linear thermal conductivity . . . 60
3.3 Schemes of the effective thermal conductivity tensor . . . . . . . 63

3.3.1 The Mori-Tanaka estimate of the thermal conductivity . . . . . . . . 63
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3.4 The prediction for effective thermal conductivity of fired clay
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3.5 The prediction for thermal conductivity and calibrations . . . . 68

3.5.1 The relationship between thermal conductivity and porosity . . . . . 68
3.5.2 Calibrations and validations for thermal conductivity . . . . . . . . . 70

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Introduction

In the preceding chapter, the effective elastic properties of fired clay bricks have been
analyzed by homogenization method. In order to find the balance between heat preserving
and mechanical capacity, the effective thermal conductivity will be studied in this chapter,
which is a very important index to measure the ability of heat transfer. Similar to the
elastic properties, the problem of linearly static heat conduction can be also solved by
homogenization theory. Eshelby’s problem is originally applied in linear microelasticity.
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However, the thermal conduction phenomena is adapted to the higher order microelasticity
problem [67, 68].

In the theoretical part, the problem of the linearly static heat conduction is introduced
firstly. Secondly, the inhomogeneity problem and Eshelby’s solution are explained to solve
the linear thermal conduction problem. Then, two homogenization schemes (MT and
PCW) for effective thermal conductivity are will be given in detail.

Based on the research objective, the same representative volume element with Chapter
2 is taken to analyzed the influence of micropores on the macroscopic thermal conductivity.
Next, the numerical implementation for theoretical estimates is carried out to show the
effect of micropores on effective thermal conductivity, including porosity, shape and spatial
distribution of micropores. The predicted differences between different schemes are also
compared. Then, parameter calibrations and experimental validations are achieved. Lastly,
we conclude the effect of micropores on thermal conductivity of fired clay bricks.

3.2 Homogenization for stationary linear thermal con-
ductivity

In this part, the micro-macro scale transformation of homogenization of thermal conduc-
tivity for porous fired clay bricks will be interpreted in detail.

We consider RVE of fired clay bricks as the domain Ω. The boundary of RVE is ∂Ω
which undergoes the macroscopic homogeneous thermal gradient gradT . We adopt q(x)
and gradT (x) to represent the microscopic heat flux vector and the microscopic thermal
gradient field vector, respectively. λ(x) denotes the microscopic second-order thermal con-
ductivity tensor. The problem for thermal conduction is analogous to that for elasticity.
For the same RVE as shown in Chapter 2, the equations of localization can be expressed
compared with (2.2): 

divq(x) = 0
q(x) = −λ(x) · gradT (x)
T (x) = gradT · x, ∀x ∈ ∂Ω

(3.1)

Using T (x) = gradT · x and integrating by parts, it is readily to yield:∫
Ω

∂T

∂xj
dΩ =

∫
∂Ω
TnjdS = gradTi|Ω| (3.2)

in which T (x) = gradT ·x has been used. It is sufficient to derive the relationship between
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macroscopic and microscopic thermal gradient vectors by averaging and (3.2):

< gradT (x) >= 1
|Ω|

∫
Ω
gradT (x)dΩ = 1

|Ω|

∫
Ω

∂T

∂xj
dΩ = gradT (3.3)

The macroscopic thermal flux as the microscopic volume averaging:

Q =< q(x) > (3.4)

Homogenization aims to acquire the equivalent macroscopic thermal conductivity based
on micro-structure information of heterogeneous material. The microscopic temperature
gradient gradT (x) and the macroscopic temperature gradient gradT can be related to-
gether by a second-order tensor (also named, concentration tensor or localization tensor)
A(x).

gradT (x) = A(x) · gradT (3.5)

By the volume averaging operations for (3.5), it follows that:

< A(x) >= δ (3.6)

Here, the tensor A is symmetric:

Aij = Aji (3.7)

Combining (3.1) and (3.4), we obtain:

Q =< q(x) >= − < λ(x) · gradT (x) > (3.8)

Substituting (3.5) into (3.8) yields:

Q = − < λ(x) · A(x) · gradT >= − < λ(x) · A(x) > ·gradT = −λhom · gradT (3.9)

where the second-order effective thermal conductivity tensor is:

λhom =< λ(x) · A(x) > (3.10)

In the same way, under the boundary condition of homogeneous heat flux on the ∂Ω,
we have:

gradT = −Shom ·Q (3.11)
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with

Shom =< S(x) ·B(x) > (3.12)

Shom is the second-order effective thermal resistance tensor. S(x) is the microscopic ther-
mal resistance tensor. The relationship between the thermal conductivity tensor and the
thermal resistance tensor is:

λ · S = δ (3.13)

B(x) is the second-order concentration tensor for heat flux. It also has:

< B(x) >= δ (3.14)

and

Bij = Bji (3.15)

It should be pointed out that it is impossible to calculate exact solutions for concen-
tration tensors A(x) and B(x) at all points of material. For a RVE composed of matrix
and inclusions, it is assumed that all properties are same in the r-th phase. We define |Ωr|
as the volume of the r-th phase in the material. λ

r
is the thermal conductivity tensor in

the r-th phase. The concentration tensors A(x) and B(x) can be replaced by A
r
and B

r
.

Based on these above, we can have the following set of expressions:
divq

r
= 0

q
r

= −λ
r
· gradTr

Tr = gradT · x, ∀x ∈ ∂Ω
(3.16)

The localization equation:

gradTr = A
r
· gradT (3.17)

According to the volume averaging, it has:

N∑
r=0

fr · Ar = δ (3.18)

where fr is the volume fraction of the r-th phase.

The second-order effective thermal conductivity tensor is:

λhom =
N∑
r=0

fr · λr · Ar (3.19)
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where the localization tensor in the problem of single inclusion can be written as (see Ap-
pendix D):

A
r

= [δ + P ε
r
· (λ

r
− λ

s
)]−1 (3.20)

where the second-order tensor P ε
r
can be expressed by the following relation:

P ε
r

= Sε
r
· (λ

s
)−1 (3.21)

Like stiffness tensor, the second-order thermal conductivity tensor is dependent on the
second-order concentration tensor A

r
. Next, we will introduce three classical concentration

tensors by homogenization approaches.

3.3 Schemes of the effective thermal conductivity ten-
sor

Similarly, the problem of multi-inclusions in thermal conductivity can be also regarded
as the problem of single inclusion when constructing the local relations. The solution of
Eshelby inhomogeneity problem has been thoroughly derived in the previous part. In this
part, two different homogenization schemes for thermal conductivity will be interpreted.

3.3.1 The Mori-Tanaka estimate of the thermal conductivity

Unlike the dilute scheme, the Mori-Tanaka scheme considers the interactions between in-
clusions, and fits for the case of moderate concentration of inclusions [57]. It means that
the thermal gradient boundary condition of the rth-phase inclusion is no longer gradT .
We assume that the inclusion suffers a thermal gradient gradT 0 at infinity.

The thermal gradient vector of the rth-phase inclusion is:

gradTr = A0
r
· gradT 0 (3.22)

where the second-order localization tensor of the polarization was given by (3.20).

According to the law of average, we have:

gradT =< gradT >=
N∑
r=0

frgradTr =
(
fsδ +

N∑
r=1

frA
0
r

)
· gradT 0 (3.23)
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The thermal gradient boundary condition of the rth-phase inclusion is:

gradT 0 =
[
fsδ +

N∑
r=1

frA
0
r

]−1

· gradT (3.24)

Substituting (3.24) into (3.22) yields the following relationship between the thermal
gradient of the rth-phase inclusion and the thermal gradient boundary of RVE:

gradTr = AMT
r
· gradT (3.25)

The second-order concentration tensor of thermal gradient in the equation (3.25) is:

AMT
r

=
[
δ + P ε

r
· (λ

r
− λ

s
)
]−1
·
[
fsδ +

N∑
w=1

fwA
0
w

]−1

(3.26)

3.3.2 The Ponte Castañeda-Willis estimate of the thermal con-
ductivity

The model, which is based on the extension of the Hashin-Shtrikman bound, separates
the shape of inclusion and the spatial distribution of inclusion by two independent tensor
functions [58]. The second-order concentration tensor of thermal gradient of the r-th phase
is:

APCW
r

=
[
δ + P ε

r
· (λ

r
− λ

s
)
]−1

·
{
fsδ +

N∑
r=1

fr[δ + (P ε
r
− P d

r
) · (λ

r
− λ

s
)] · [δ + P ε

r
· (λ

r
− λ

s
)]−1

}−1 (3.27)

where the subscript ε indicates the shape and d denotes the spatial distribution. P ε
r
is the

shape tensor of the r-th phase. P ε
r

= Sε
r
· (λ

s
)−1, and Sε

r
is second-order Eshelby’s tensor

of the r-th phase. P d
r
represents the spatial distribution tensor of the r-th phase.

3.4 The prediction for effective thermal conductivity
of fired clay bricks

In this part, the effective thermal conductivity tensors of porous fired bricks are derived by
different estimates. The approach of homogenization allows us to determine the influence
of geometry of micropores on thermal conductivity. As the micro-structure showed, the
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micropores of extruded bricks and moulded bricks are represented by prolate spheroid and
oblate spheroid, respectively. The spatial distribution of the micropores is regarded as
spherical distribution. The orientation of micropores in the isotropic glassy matrix induces
the transversely isotropic thermal conductivity. The solution of second-order tensor P ε

p
for

spheroidal micropores in the isotropic matrix can be found in [67] and [54].

P ε
p

= V

λs
(e1 ⊗ e1 + e2 ⊗ e2) + 1− 2V

λs
e3 ⊗ e3 (3.28)

According to [46], we take e3 = n as the unit vector normal to isotropic plane for trans-
versely isotropic materials. The second-order tensor P ε

p
can be also written as:

P ε = V

λs

(
δ − n⊗ n

)
+ 1− 2V

λs
n⊗ n (3.29)

where V is dependent on the aspect ratio X = m3/m1.

V =


1
2

[
1 + 1

X2−1

(
1− 1

2χ1
ln
(

1+χ1
1−χ1

))]
, if X ≥ 1

1
3 , if X = 1
1
2

[
1 + 1

X2−1

(
1− 1

χ2
arctan (χ2)

)]
, if X ≤ 1

(3.30)

with

χ2
2 = −χ2

1 = 1
X2 − 1 (3.31)

3.4.1 The effective thermal conductivity tensor by Mori-Tanaka
estimate

Based on the equation (3.22) mentioned in 3.3.1, the tensors A0
r for our case are calculated

at first:

A0
s

= δ

A0
p

=
(
δ + P ε

p
· (λ

p
− λ

s
)
)−1 (3.32)

Combining (3.29) and (??), we can obtain the same expression for A0
p
as (??):

A0
p

= λs
λs + V (λp − λs)

(δ − n⊗ n) + λs
λs + (1− 2V )(λp − λs)

n⊗ n (3.33)

The expression of the volume averaging, it is written as:
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1∑
i=0

fiA
0
i

= fsδ + fpA
0
p

(3.34)

Substituting (3.33) into (3.34), it derives:

1∑
i=0

fiA
0
i

=
[
fs + λsfp

λs + V (λp − λs)

]
(δ − n⊗ n)

+
[
fs + λsfp

λs + (1− 2V )(λp − λs)

]
n⊗ n

(3.35)

Calculating the inverse for equation (3.35) in terms of equation (??), it is:
( 1∑
i=0

fiA
0
i

)−1

=
[
fs + λsfp

λs + V (λp − λs)

]−1

(δ − n⊗ n)

+
[
fs + λsfp

λs + (1− 2V )(λp − λs)

]−1

n⊗ n
(3.36)

Inserting equations (3.33) and (3.36) into (3.26), the concentration tensor for microp-
ores is obtained:

AMT
p

= λs
λs + V (λp − λs)

[
fs + λsfp

λs + V (λp − λs)

]−1

(δ − n⊗ n)

+ λs
λs + (1− 2V )(λp − λs)

[
fs + λsfp

λs + (1− 2V )(λp − λs)

]−1

n⊗ n
(3.37)

The effective thermal conductivity tensor for two phases can be expressed as:

λMT =
1∑
r=0

frλr · A
MT
r

= λ
s

+ fp
(
λ
p
− λ

s

)
· AMT

p
(3.38)

Replacing (3.37) into (3.38), the second-order effective thermal conductivity tensor can
be derived, as follows:

λMT =
[
λs + fpλs(λp − λs)

λs + (1− fp)V (λp − λs)

]
(δ − n⊗ n)

+
[
λs + fpλs(λp − λs)

λs + (1− fp)(1− 2V )(λp − λs)

]
n⊗ n

(3.39)

The effective thermal conductivities on the two axial directions are, respectively:
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λMT
11 = λMT

22 = λs + fpλs(λp − λs)
[[1− (1− fp)V ]λs + (1− fp)V λp

(3.40)

and

λMT
33 = λs + fpλs(λp − λs)

[1− (1− fp)(1− 2V )]λs + (1− fp)(1− 2V )λp
(3.41)

where V has been given (3.30).

3.4.2 The effective thermal conductivity tensor by Ponte Castañeda-
Willis estimate

The spatial distribution of micropores have to be considered in the PCW scheme. It is
assumed that the spatial distribution of micropores is spherical, so the tensorial function
representing the spatial distribution is identical with the shaping function of spheroidal
voids. That is:

P d
p

= 1
3(λ

s
)−1 (3.42)

Substituting (3.29) and (3.42) into (3.27), it yields the second-order concentration ten-
sor of micropores:

APCW
p

= 3λs
(3V − fp)λp + (3− 3V + fp)λs

(δ − n⊗ n)

+ 3λs
(3− 6V − fp)λp + (6V + fp)λs

n⊗ n
(3.43)

The effective thermal conductivity tensor derived from PCW model is:

λPCW =
[
λs + 3fp (λp − λs)λs

(3V − fp)λp + (3− 3V + fp)λs

]
(δ − n⊗ n)

+
[
λs + 3fp (λp − λs)λs

(3− 6V − fp)λp + (6V + fp)λs

]
n⊗ n

(3.44)

The effective thermal conductivities by PCW estimate on the two axial directions are,
respectively:

λPCW11 = λPCW22 = λs + 3fp (λp − λs)λs
(3V − fp)λp + (3− 3V + fp)λs

(3.45)
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and

λPCW33 = λs + 3fp (λp − λs)λs
(3− 6V − fp)λp + (6V + fp)λs

(3.46)

where V was given by (3.30).

3.5 The prediction for thermal conductivity and cal-
ibrations

3.5.1 The relationship between thermal conductivity and poros-
ity

In this part, we will study the relationship between thermal conductivity and porosity for
fired clay bricks.

For extruded bricks, the direction 3 represents the extrusion direction, and the direction
1 is on the transversely isotropic plane. We know the thermal conductivity of air λp = 0.026
W/m·K. Under fixed parameters: X = m3/m1 = 2, the tendency of thermal conductivity is
analyzed. Figure 3.1 shows the relationship between thermal conductivity and porosity for
extruded fired clay bricks from the three above homogenization schemes. From the figure,
we can see that λ33 > λ11. It means that the thermal conductivity on the major axis is
the largest, that on minor axis is the smallest. Comparing the curves, it can be found that
the prediction by PCW scheme considering the spatial distribution of micropores shows a
much stronger anisotropy than the prediction by MT scheme. It means that the spatial
distribution of micropores has an important effect on the thermal conductivity of fired clay
bricks.

For moulded bricks, the minor axis of the oblate micropore is on the axis 3. For an
aspect ratio X = m3/m1 = 0.5, the prediction of thermal conductivity is shown in Figure
3.2. Similar to extruded bricks, some similar results about molded bricks can be also
obtained. The thermal conductivity on the major axis is the largest than those on other
orientations, that is λPCW11 > λPCW33 . The prediction by PCW estimate gives a greater ratio
λ11/λ33.

Figure 3.3 and Figure 3.4 show that the comparison for thermal conductivity for ex-
truded and molded bricks by PCW estimate for different aspect ratios. Figure 3.3 predicts
the effective thermal conductivity on direction 3. As the decreasing of aspect ratio, λ33
decreases more clearly. Figure 3.4 predicts that on direction 1. Comparing the two figures,
it can be seen that the aspect ratio has a greater impact on the thermal conductivity on

68



0 5 10 15 20 25 30 35 40 45 50 55

Porosity (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 th
er

m
al

 c
on

du
ct

iv
ity

33
MT

33
PCW

11
MT

11
PCW

Figure 3.1: The normalized thermal conductivity of extruded bricks
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Figure 3.2: The normalized thermal conductivity of molded bricks

the symmetric axis than that on direction 1.
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Figure 3.3: The prediction for λ33 by Ponte Castañeda-Willis scheme
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Figure 3.4: The prediction for λ11 by Ponte Castañeda-Willis scheme

3.5.2 Calibrations and validations for thermal conductivity

For two groups of data from [7], one group corresponds to the content of sands 5% and an-
other corresponds to the content of sands 10%. Here, a two-step homogenization procedure
for the evaluation of the effective thermal conductivity of fired clay bricks is performed.
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In step 1, we only consider solid phase as the homogeneous and isotropic material. The
solid phase is composed of fired clay and sands.

λs = λcl + 3f saλcl(λsa − λcl)
3f saλcl + f cl(λsa + 2λcl)

(3.47)

In step 2, the fired clay brick is made up of two phases, which are solid phases and
micropores.

λPCW11 = λPCW22 = λs + 3fp (λp − λs)λs
(3V − fp)λp + (3− 3V + fp)λs

(3.48)

and

λPCW33 = λs + 3fp (λp − λs)λs
(3− 6V − fp)λp + (6V + fp)λs

(3.49)

The following Figure 3.5 and Figure 3.6 illustrate the relationship between thermal
conductivity and porosity under different content of sands [7]. The two group of data
is measured by hot plate apparatus. We know that the thermal conductivity of voids
λp = 0.026 W/m·K. Because these tested samples for thermal conductivity are same as
those for Young’s modulus, we take the same aspect ratio of micropores X = 1.4, which
was calibrated in Chapter 2. Figure 3.5 corresponds to the experimental results of 10%
sands. We use this group of data to calibrate parameters and obtain: λcl = 0.559 W/m·K
and λsa = 2.2 W/m·K. The least square is Ferr = 5.95× 10−3. Making use of calibrated
parameters, we predict the thermal conductivity on the 1-axis. We use these obtained
parameters to predict the thermal conductivity with 5% sands and compare with another
group of data, which is shown in Figure 3.6.

Figure 3.7 and Figure 3.8 show the calibrated and predicted curves by using two groups
of data containing 10% and 5% sands [7], respectively. The two groups of data are measured
according to NF EN 1745 [7, 12]. We calibrate the parameters according to the data of
samples with 10% sands along the 3-axis direction. Similarly, the calibrated parameters
are: λcl = 0.568 W/m·K, λsa = 1.4 W/m·K. The error Ferr = 5.88× 10−5. Based on the
calibrated parameters, we make the prediction for thermal conductivity of samples with 5%
sands and compare with experimental data in Figure 3.8. It can seen that our estimation
can give a reasonable prediction.

Figure 3.9 and Figure 3.10 calibrate the model by PCW estimation according to exper-
imental data on the direction 3 [3]. By using calibrated parameters, the predictions by MT
estimation were given to compare with the results from PCW estimation. In Figure 3.9,
the fired temperature of experimental samples is at 1000◦C. The calibrated parameters are:
X = 0.63, λs = 1.279 W/m·K, Ferr = 0.00128. In Figure 3.10, the experimental samples
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Figure 3.5: The data containing 10% sands (by hot plate apparatus) [7]
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Figure 3.6: The data containing 5% sands (by hot plate apparatus) [7]

were fired at 1300◦C, and the group of data corresponds to high porosity. The calibrated
parameters are: X = 0.69, λs = 0.964 W/m·K, Ferr = 0.000822. We give the prediction
on direction 1, and need the experimental data on the direction 1 to validate.
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Figure 3.7: The data containing 10% sands (by NF EN 1745) [7]
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Figure 3.8: The data containing 5% sands (by NF EN 1745) [7]

3.6 Conclusions

In this chapter, we analyze the effect of micropores on thermal conductivity of fired clay
bricks by three homogenization approaches and obtain the following conclusions:

At first, the effect of porosity on thermal conductivity of fired clay bricks is studied by
different homogenization estimates. The results by dilute estimation ignoring the interac-
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Figure 3.9: The samples fired at 1000◦C [3]
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Figure 3.10: The samples fired at 1300◦C [3]

tion among micropores exhibit the linear and lower prediction. Compared with the results
by MT scheme, the results from PCW scheme show the greater ratio of modulus. It means
that the spatial distribution of micropores also plays an important role in anisotropic ratio
and cannot be ignored.

Next, the influence of the aspect ratio of micropores on thermal conductivity has been
studied. For extruded and molded bricks, the thermal conductivity along the major axis
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of micropore is larger than those along other directions. The thermal conductivity on the
minor axis of micropores is the smallest. In the two axial directions, the aspect ratio of
micropores affects the thermal conductivity along the symmetric axis more obviously.

Combining the analysis in Chapter 2, it is obvious that reducing the thermal conductiv-
ity can also cause the decreasing of elastic properties. The optimal determination between
mechanical properties and thermal conduction is dependent on the geometry of fired clay
bricks and the situation in constructions. Following the analysis of elastic properties and
thermal conductivity, the effect of micropores on mechanical strength of fired clay bricks
will be studied in Chapter 4.
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Chapter 4

The micromechanical damage
modeling for fired clay bricks

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 The representative volume element (RVE) considering microcracks 78
4.3 The effective stiffness of cracked fired clay bricks . . . . . . . . . 78

4.3.1 The MT estimate for open microcracks . . . . . . . . . . . . . . . . 80
4.3.2 The MT estimate for closed microcracks . . . . . . . . . . . . . . . . 81
4.3.3 The PCW estimate for open microcracks of isotropic distribution . . 83
4.3.4 The PCW estimate for closed microcracks of isotropic distribution . 85

4.4 Thermodynamic potential and state laws . . . . . . . . . . . . . . 87
4.5 The study on parameters of the damage model . . . . . . . . . . 89

4.5.1 The study on parameter η . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.2 The study on parameter R0 . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3 The study on parameter fp . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.4 The study on parameter X . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.5 The comparison between PCW scheme and MT scheme . . . . . . . 94

4.6 Calibrations and experimental validations of the micromechani-
cal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Introduction

A micro-mechanical damage modeling is proposed for fired clay bricks produced by ex-
truding or molding under the uniaxial compressive load. Taking advantage of homogeniza-
tion schemes implemented in chapter 2, we first extended our previous results to porous
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materials with distributed microcracks. We then deduce damage models based on MT
and PCW schemes combined with classical thermodynamics approach. The microcracks-
induced damage is represented by a microcracks density parameter. Unilateral effects
(closure or opening) will be also considered. It is assumed that the orientations of all mi-
crocracks are aligned and the spatial distribution of microcracks is spherical. The obtained
models are finally calibrated and then validated by comparison with experimental data.

4.2 The representative volume element (RVE) con-
sidering microcracks

Besides micropores exiting in fired clay bricks, microcracks can be generated during the
manufacturing process or the service stage and play a crucial role in the mechanical behav-
ior. As the analysis of micro-structure of fired clay bricks [4], this material mainly contains
then glassy matrix, silts, micropores and microcracks. For simplicity, all solid phases in
fired clay bricks are summarized into the a unique solid matrix. In order to illustrate
the heterogeneity and the multi-scale characteristics of fired clay bricks, a representative
volume element for microcracked porous fired clay bricks is established and shown in the
following Figure 4.1. The RVE of fired clay bricks is constituted of solid matrix, micropores
and microcracks at this microscopic scale. The RVE is suitable for both extruded bricks
and molded bricks. As mentioned in Chapter 2, for extruded bricks, their shapes are pro-
late and the long axes of micropores are identical with the extruded direction. The shapes
of micropores of molded bricks are oblate and the short axes of micropores are parallel to
pressed direction. The shapes of all microcracks are considered penny-shaped, however,
their orientations are assumed to be parallel.

4.3 The effective stiffness of cracked fired clay bricks

As mentioned before, microcracks have an important influence on the mechanical behavior
of cracked porous bricks. Now, we introduce a parameter microcrack density, which is a
very important state variable to make predictions in continuum damage mechanics. The
j-th family of microcracks is Fj relying on the orientation. The aspect ratios of microcracks
of all families are assumed to be Xc = c/a << 1 (see Figure 4.2). The aspect ratio Xc will
be eliminated in the derivation of homogenized stiffness [69], so that the effective stiffness
is not affected by the aspect ratio of microcracks when the later tends to 0. Then, we in-
troduce the microcracks density parameter d = Na3, with N is the number of microcracks
by unit volume. The volume fraction of microcracks is denoted fc while that of micropores
is fp. Moreover, the volume fraction of microcracks is written as:
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Solid matrix

MicroporeMicrocrack

Figure 4.1: The RVE for extruded bricks at one microscale

fc = 4
3πa

2cN = 4
3πdXc (4.1)

2c

2a
• a

Figure 4.2: The penny-shaped microcrack

Like other brittle materials (see [70, 71]), the mechanical behavior of transversely
isotropic fired clay bricks is dependent on the open or closed state of microcracks. Aa
microcracks families are composed of open microcracks and closed microcracks, the vol-
ume fractions of open and closed microcracks are indicated by f opc and f clc , respectively.

We have the following expression for the volume fraction of microcracks:
∑
j,op

f opcj
+
∑
j,cl

f clcj
= fc (4.2)
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Based on the definition of homogenization theory, the effective stiffness tensor for the
material composed of 3 phases (solid matrix, micropores and microcracks) can be written
as:

Chom =
2∑
r=0

frCr : Ar (4.3)

fr is the volume fraction of r-th phase. Cr holds for the stiffness tensor of the r-th phase.
Ar represents the the strain concentration tensor of r-th phase. We use subscripts s, p
and c to indicate solid matrix, micropores, and microcracks, respectively. The expansion
of equation (4.3) is recast as:

Chom = fsCs : As + fpCp : Ap +
∑
j,op

f opcj
Cop
cj

: Aop
cj

+
∑
j,cl

f clcj
Ccl
cj

: Acl
cj

(4.4)

with:

2∑
r=0

frAr = I (4.5)

and

2∑
r=0

fr = 1 (4.6)

Note that we only consider unilateral effects of microcracks that all microcracks are open
or closed in this chapter. The following parts focus on the estimates of two homogenization
schemes considering unilateral effect of microcracks of fired clay bricks.

4.3.1 The MT estimate for open microcracks

As showed in Figure 4.1, the simplified RVE contains one family of micropores and one
family of microcracks. It is known that Cp = 0 and Cop = 0. All microcracks of fired clay
bricks are assumed to be open, the localization tensors of micropores and microcracks can
be calculated by MT estimation, respectively:

AMT
p =

(
I− Sεp

)−1
:
[
fsI + fp(I− Sεp)−1 + 4

3πdT
]−1

(4.7)

and

AMT
op =

(
I− Sεop

)−1
:
[
fsI + fp(I− Sεp)−1 + 4

3πdT
]−1

(4.8)
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where the subscript ’p’ represents pores and ’op’ represents open cracks. Tensor T was
given in (B.10). Subsequently, it is not difficult to calculate the effective stiffness tensor
with open microcracks.

CMT
op (d) = Cs − fpCs : (I− Sεp)−1 :

[
fsI + fp(I− Sεp)−1 + 4

3πdT
]−1

− 4πd
3 Cs : T :

[
fsI + fp(I− Sεp)−1 + 4

3πdT
]−1 (4.9)

The fourth-order effective stiffness tensor considering open microcracks can be indicated
by Walpole’s notation [63]. The relationships between mechanical constants and open
microcrack density d (damage parameter) can be obtained. Because the orientations of
microcracks are aligned with the symmetric 3-axis (extruded or pressed direction), Young’s
modulus E1(d) and shear modulus G12(d) are always invariants. Poisson’s ratios ν13(d) and
ν12(d) are not affected by parameter d.

Figure 4.3 depicts the relationship between normalized Young’s modulus E3(d) and
microcrack density d. The relations are drawn under the given parameters: fp = 20% and
νs = 0.1. It is seen that E3(d) decreases with the rising of microcrack density d. During
the damage process, the aspect ratio X affects E3(d) of molded bricks more clearly, not
that of extruded bricks.

Figure 4.4 exhibits the effect of damage parameter d on the normalized G23(d). When
X > 1, the aspect ratio X doesn’t have an obvious effect on G23(d). When X < 1, the
smaller the aspect ratio X is, the value G23(d) is lower.

4.3.2 The MT estimate for closed microcracks

In this case, it is assumed that all microcracks are closed and the microcracks faces are
frictionless. That is to say, these faces only transmit the normal stress and the shear stress
between lips is equal to zero. The bulk modulus of microcracks is kcl = ks and the shear
modulus of microcracks is µcl = 0. It has been known that the stiffness tensor of closed
microcracks [72]:

Ccl = 3ksJ (4.10)

The concentration tensor for micropores is recast by the following expression:

AMT
p =

(
I− Sεp

)−1
:
[
fsI + fp(I− Sεp)−1 + 4

3πdT
′
]−1

(4.11)
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Figure 4.3: The relation between normalized E3 and d for open microcracks by MT
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Figure 4.4: The relation between normalized G23 and d for open microcracks by MT

The concentration tensor for microcracks is simplified by the expression:

AMT
cl = (I− Sεcl)

−1 :
[
fsI + fp(I− Sεp)−1 + 4

3πdT
′
]−1

(4.12)

The effective stiffness tensor considering closed microcracks can be written as:
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CMT
cl (d) = Cs − fpCs : (I− Sεp)−1 :

[
fsI + fp(I− Sεp)−1 + 4

3πdT
′
]−1

− 8πd
3 µsK : T′ :

[
fsI + fp(I− Sεp)−1 + 4

3πdT
′
]−1 (4.13)

We still take Walpole’s notation to describe the fourth-order effective stiffness tensor
with closed microcracks. For the case of aligned closed microcracks, the microcrack density
d doesn’t affect E3(d), E1(d) and G12(d). Moreover, Poisson’s ratios ν13(d) and ν12(d) are
not affected by parameter d. There is only one stiffness tensor component C4(d), where
C4(d)/2 represents the longitudinal shear modulus, decreases about with the increasing of
d. Figure 4.5 exhibits the effect of damage parameter d on the normalized G23(d). When
X < 1, the aspect ratio X has a more clear effect on the shear modulus G23(d).
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Figure 4.5: The relation between normalized G23 and d for closed microcracks by MT

4.3.3 The PCW estimate for open microcracks of isotropic dis-
tribution

In this part, we assume that all the microcracks are open. Our damage model is based
on the scheme proposed by Ponte Castañeda-Willis [58]. Let us recall that this scheme is
the extension of the Hashin-Shtrikman bound, and separates the shape of inclusion and
the spatial distribution of inclusion by two independent functions. It is assumed that the
spatial distributions of micropores and open microcracks are spherical. The damage is
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characterized by a scalar microcrack density parameter d. We know Cp = 0 and Cop = 0.

The fourth-order strain concentration tensors of micropores and microcracks by the
PCW estimate are, respectively:

Ap =
[
I + Pεp : (Cp − Cs)

]−1

:
fsI +

2∑
j=1

fj[I + (Pεj − Pdj ) : (Cj − Cs)] : [I + Pεj : (Cj − Cs)]−1


−1 (4.14)

and

Aop =
[
I + Pεop : (Cop − Cs)

]−1

:
fsI +

2∑
j=1

fj[I + (Pεj − Pdj ) : (Cj − Cs)] : [I + Pεj : (Cj − Cs)]−1


−1 (4.15)

where the subscript ε indicates the shape and d denotes the spatial distribution as explained
in Chapter 2. Pεr is the shape tensor of the r-th phase. Pεr = Sεr : C−1

s , and Sεr is fourth-order
Eshelby’s tensor of the r-th phase, which has been given in B. Pdr represents the spatial
distribution tensor of the r-th phase. For the tensorial functions of spatial distribution of
micropores and microcracks, we consider that both of them are the spherical distribution.
The tensorial function of the spatial distribution is [64]:

Pdp = Pdop = α

3ks
J + β

2µs
K (4.16)

where α and β were shown in equation (2.33).

For simplification, (4.14) and (4.15) can be written as follows:

Ap =
[
I + Pεp : (Cp − Cs)

]−1
: M (4.17)

and

Aop =
[
I + Pεop : (Cop − Cs)

]−1
: M (4.18)

with

M =
{
fsI + fp[I + (Pεp − Pdp) : (Cp − Cs)] : [I + Pεp : (Cp − Cs)]−1

+ fop[I + (Pεop − Pdop) : (Cop − Cs)] : [I + Pεop : (Cop − Cs)]−1
}−1 (4.19)

The strain concentration tensors for micropores and open microcracks can be repre-
sented as the following expressions, respectively:

84



Ap =
(
I− Sεp

)−1
: M (4.20)

Aop =
(
I− Sεop

)−1
: M (4.21)

where tensor M can be simplified as:

M =
{
I + fp(αJ + βK) : (I− Sεp)−1 + 4π

3 d(αJ + βK) : T
}−1

(4.22)

with tensor T was given in B.10.

The effective stiffness tensor of fired clay bricks with open microcracks can be recast
as:

CPCW
op (d) = Cs − fpCs : (I− Sεp)−1 : M− 4πd

3 Cs : T : M (4.23)

The fourth-order effective stiffness tensor with open microcracks can be expressed by
Walpole’s notation [63]. Due to the parallel orientations of microcracks, only two material
damage functions E3(d) and G23(d) are analyzed. Under given parameters νs = 0.1 and
fp = 20%, the relationships between material constants and microcrack density d can be
analyzed below for different aspect ratios of micropores X.

Figure 4.6 shows the relationship between normalized Young’s modulus E3(d)/Es and
damage parameter d for different aspect ratios. The microcrack density d can strongly
weaken Young’s modulus. Besides parameter d, the aspect ratio X of micropores also
affects E3(d). the aspect ratio X is smaller, E3(d) is lower, especially in the case of X < 1.
When X > 1, the aspect ratio doesn’t have a clear influence on E3(d).

Figure 4.7 shows the relationship between normalized shear modulus G23(d)/µs and
damage parameter d for different aspect ratios. There is no obvious difference between
X = 4 and X = 2. It means that rising the aspect ratio of micropore barely affects G23(d)
of extruded bricks. But for G23(d) of molded bricks, with the decreasing of aspect ratio,
G23(d) will decline.

4.3.4 The PCW estimate for closed microcracks of isotropic dis-
tribution

In this case, it is assumed that the spatial distributions of closed micropores and microc-
racks are spherical. The lips between closed microcracks are assumed to be frictionless.
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Figure 4.6: The relation between normalized E3 and d for closed microcracks by PCW
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Figure 4.7: The relation between normalized G23 and d for closed microcracks by PCW

The strain concentration tensors for micropores and closed microcracks can be repre-
sented as the following expressions, respectively:

Ap =
(
I− Sεp

)−1
: M (4.24)

and
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Acl = (I− Sεcl : K)−1 : M (4.25)

The fourth-order tensor M is simplified as:

M = {I + fp(αJ + βK) : (I− Sεp)−1 + 4π
3 dβK : T′}−1 (4.26)

where the Walpole notations of tensors J and K can be found in A. The tensor T′ has been
given in B.11.

The fourth-order effective stiffness tensor for frictionless closed microcracks can be de-
duced as:

CPCW
cl = Cs − fpCs : (I− Sεp)−1 : M− 8πd

3 µsK : T′ : M (4.27)

According to [63], the fourth-order effective stiffness tensor for closed microcracks can be
expressed by Walpole’s notation. The detailed expressions of stiffness tensor components
can be found in C.3.

Under the fixed parameters νs = 0.1 and fp = 20%, For aligned closed microcracks,
Ccl

4 (d)/2 representing shear modulus G23(d) decreases as the rising of microcrack density
d, whereas other stiffness components keep invariant. In other words, longitudinal and
transverse Young’s moduli and Poisson’s ratio are constants. Figure 4.8 is the tendency of
shear modulus G23(d) under different aspect ratios.

4.4 Thermodynamic potential and state laws

Damage of materials is the irreversible generation and propagation of micro-defects (mi-
crocracks and micropores) in material subjected to loading. The framework of continuum
damage mechanics was firstly established by [73]. For an elastic-brittle material, we can
introduce a damage internal parameter d to present the degradation of stiffness. The
independent state variables are the strain tensor E and the damage parameter d.

The thermodynamic potential considering state variables is:

W (E, d) = 1
2E : Chom(d) : E (4.28)
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Figure 4.8: The relation between normalized G23 and d for closed microcracks by PCW

d is a positive damage internal variable related with crack density. d = 0 corresponds to
the intact material. Chom(d) is the fourth-order effective stiffness tensor related with d.

The first state laws is:

Σ(E, d) = ∂W (E, d)
∂E

= Chom(d) : E (4.29)

The second state law is:

F d(E, d) = −∂W (E, d)
∂d

= −1
2E :

(
Chom(d)

)′
: E (4.30)

F d is the damage driving force (also called energy release rate), and F d > 0. (Chom(d))′ is
the derivative of the effective stiffness tensor considering crack density.

The evolution of damage doesn’t take place for closed microcracks, but the damage
evolution of open microcracks can be represented by the damage driving force F d.

The classical damage criterion is expressed as:

f(F d, d) = F d −R(d) 6 0 (4.31)

R(d) is a positive scalar as a function of d, which represents the ability to resist the dam-
age propagation. Generally, the following linear resistance function introduced by [74] is
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considered:

R(d) = R0(1 + ηd) (4.32)

where R0 > 0 and η > 0. R0 is the initial threshold surface, and η is the material parameter.

The rate form of the constitutive law is:

Σ̇ = Lhom(d) : Ė (4.33)

where the tangent tensor operator is:

Lhom(d) =

C(d)−

[
C′(d) : ε

]
⊗
[
C′(d) : ε

]
−
∂F d

∂d
+R0 · η

 (4.34)

The numerical implementation of the micromechanical damage modeling
The proposed damage model is implemented in the standard ABAQUS by means of UMAT
subroutine. For the local integration of micromechanical modeling at each integration point
(or Gauss point), a numerical algorithm is presented as follows:

(1) It is assumed that the strain E
n
at the step (n) is given and the strain increment

∆E
n+1 is known. At the (n+ 1) step, the macroscopic strain E

n+1 = E
n

+ ∆E
n+1.

(2) At the linearly elastic stage, dn+1 = dn and f(F d
n+1, dn) 6 0.

(3) At the non-linear stage, if f(F d
n+1, dn) > 0, ∆dn+1 will be determined. Then it has

dn+1 = dn + ∆dn+1.

(4) The macroscopic stress can be obtained: Σ(dn+1) = Chom(dn+1) : E
n+1.

4.5 The study on parameters of the damage model

Based on our damage modeling, the following parameters need to be determined: Young’s
modulus of solid matrix Es, Poisson’s ratio of solid matrix νs, the volume fraction of
micropores fp, the aspect ratio of micropores X, the initial threshold surface R0 and the
hardening parameter η.
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Solid matrix Micropore

Material parameters Es fp
νs X

Damaged parameters R0
η

Table 4.1: Parameters of the damage modeling

4.5.1 The study on parameter η

The effect of η on mechanical behavior is studied under the fixed parameters in this part:
Es = 20000MPa, νs = 0.1, fp = 20%, X = 2, R0 = 0.2MPa.

Figure 4.9 exhibits the macroscopic full stress-strain curves under different values of
η. The blue line is the linearly elastic stage. Other color curves represent the damage
stages of fired clay bricks. From this figure, we can see that the greater the value η is, the
stronger the strain hardening is. In other words, parameter η determines the peak strength
of material. Figure 4.10 shows the variation tendency of the microcracks density with the
increase of macroscopic strain on the 3−axis. Under given the strain of the damage stage,
the greater the value of η is, the microcracks density is smaller. Though the values of η
are different, the linear elastic stages are the same under the identical R0. The value of η
determines whether there is the strain-hardening stage in the damage process.

0 0.2 0.4 0.6 0.8 1 1.2

E33 (%)

0

10

20

30

40

50

60

33
 (

M
P

a)

=30
=0.1

Figure 4.9: The stress-strain curves by PCW estimation under different values of η
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Figure 4.10: The relationships between damage parameter d and the axial strain E33

4.5.2 The study on parameter R0

As above mentioned, the parameter R0 determines the initial damage threshold. The
influence of R0 on mechanical behavior is studied under the hypothetical parameters: Es =
20000MPa, νs = 0.1, fp = 20%, X = 2, η = 30.

Figure 4.11 shows the macroscopic stress-strain curves under the values ofR0 = 0.1MPa

and R0 = 0.2MPa. The greater the value of R0 is, the higher the elastic critical point is.
In other words, the parameter R0 determines the elastic limitation of fired clay bricks. So
the greater R0 also gives the higher strength.

Figure 4.12 shows the variation tendency of the microcracks density with the increase
of macroscopic strain on the 3−axis. From the two figures, we can find that the smaller
the value of R0 is, the damage initial strain is smaller.

4.5.3 The study on parameter fp

The influence of damage parameters η and R0 on mechanical behavior has been analyzed
in the above two parts. The effect of porosity on mechanical behavior of fired clay bricks
will be studied here. Given parameters Es = 20000MPa, νs = 0.1, R0 = 0.1MPa, η = 30,
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Figure 4.11: The stress-strain curves by PCW estimation under different values of R0
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Figure 4.12: The relationships between d and the axial strain E33 under different R0

X = 2, the stress-strain curves corresponding to 20% and 40% are obtained. It is obvious
that porosity affects the elastic modulus and peak stress. When η is the same, the damage
stages for different porosities are parallel.
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Figure 4.13: The stress-strain curve for different porosity when η = 0.1
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Figure 4.14: The stress-strain curve for different porosity when η = 30

4.5.4 The study on parameter X

In Chapter 2, the empirical models referring to peak strength was given. Figure 4.15 shows
the relationship between normalized peak strength Σ33/σs and porosity for different aspect
ratios. For given parameters Es = 20000MPa, νs = 0.1, fp = 20%, η = 30, it can be seen
that both the porosity and the aspect ratio of micropores affect the peak strength of fired
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clay bricks. Combining the predictions for the condition of X > 1 and X < 1, the aspect
ratios of micropores of molded bricks have a more impact on the peak strength.
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Figure 4.15: The relationship between peak strength and porosity by PCW

4.5.5 The comparison between PCW scheme and MT scheme

The difference between PCW and MT schemes is that the former considers the spatial
distribution of micropores. So the mechanical behavior of fired clay bricks by the two
estimates are shown in the following figures.

Figure 4.16 exhibits the comparison of full stress-strain curves between Mori-Tanaka
and PCW estimate under the hypothetical parameters of η = 30 and fp = 20%. Other
hypothetical material constants are: Es = 20000MPa, νs = 0.1, X = 2, R0 = 0.2MPa.
Figure 4.17 shows the comparison of results by MT and PCW estimations under η = 0.1
and fp = 20%. Compared with the two figures, the elastic moduli and strength by MT
and PCW estimations are different, and there is no declined tendency for the results by
MT estimation in the damage process even if η is very small. The difference between two
estimations is that the MT approach ignores the spatial distribution of micropores and
microcracks.

Compared with the results in Figure 4.17, the curves in Figure 4.18 are attained under
η = 0.1 and fp = 0. In this case, the material is only composed of solid matrix when
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Figure 4.16: The stress-strain curves under η = 30 and fp = 20%
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Figure 4.17: The stress-strain curves under η = 0.1 and fp = 20%

damage parameter d is equal to 0. The elastic parts from the two estimations are absolutely
coincident. When the damage appears, the evolution of stress-strain is different due to the
Mori-Tanaka approach ignores the spatial distribution of microcracks.
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Figure 4.18: The stress-strain curves under η = 0.1 and fp = 0

4.6 Calibrations and experimental validations of the
micromechanical model

Calibrations and validations are performed in order to evaluate the predictive ability of
our proposed modeling. Concerning our case, multi-variable calibration (η and R0) are
realized by a software, named modeFRONTIER. A ’simplex’ operation is selected for
the minimization of a function of variables [75].

Table 4.2 gives the peak strength and Young’s moduli in different directions. We
calibrate the modeling parameters according to average values from experiments [6] on
the 3-axis, and give our predicted results on the 1-axis. The calibrated parameters are:
fp = 24.0%, X = 1.6, Es = 15200MPa, νs = 0.1, R0 = 0.12MPa, η = 0.1. Figure 4.19
displays the full stress-strain curves from our modeling and experimental data. In this
figure, the experimental curve is only from one test, so the peak result is different from the
data showed in Table 4.2.

Table 4.3 exhibits the peak strength and Young’s moduli on different orientations. The
experimental results were obtained from molded bricks [2], which caused oblate microp-
ores. We calibrate the modeling parameters according to data on the 3-axis, and give
our predicted results on the 1-axis. The relative error is also calculated in the Table 4.3.
The calibrated parameters are: fp = 27.0%, X = 0.35, Es = 21000MPa, νs = 0.07, R0 =
0.039MPa, η = 150. Figure 4.20 exhibits the comparison between the experimental curve
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Σp3(MPa) Σp1(MPa) Σp3/Σp1 E3(MPa) E1(MPa) E3/E1
Experiment 56.8 51.0 1.11 12750 10450 1.22
Modeling 57.0 50.9 1.12 10457 8702 1.20

Σp3: Peak stress on the 3-axis, Σp1: Peak stress on the 1-axis
E3: Young’s modulus on the 3-axis, E1: Young’s modulus on the 1-axis

Table 4.2: Predictions for peak stress and Young’s modulus on different directions
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Figure 4.19: The comparison between our modeling and experimental results of extruded
bricks [6]

and the prediction of modeling. It is clear that our modeling is in agreement with experi-
mental results.

Σp3(MPa) Σp1(MPa) Σp3/Σp1 E3(MPa) E1(MPa) E3/E1
Experiment 13.76 22.58 0.61 5524 16673 0.33
Modeling 13.74 400.27 0.034 5537 14065 0.39

Table 4.3: Predictions for peak stress and Young’s modulus on different directions

Table 4.4 gives the comparison between experimental data [3] and modeling results
under different porosities. Because paper residues are used to create micropores and to
be part solid matrix in order to improve the thermal conductivity in this experiment,
the physical properties of solid matrix are not same under different porosities. In our
prediction, the effect of fired paper residues on the solid matrix is ignored. That is to
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Figure 4.20: The comparison between our modeling and experimental results of molded
bricks [2]

say, all solid matrix under contents of residues are regarded as the same. Under given
values νs = 0.1, fp = 30.8%, X = 0.51 and the experimental result Σp3 = 40MPa, we
calibrate the following parameters: Es = 25200MPa,R0 = 0.18MPa, η = 98. Other peak
stresses are predicted and listed in the table. From the results of modeling, our prediction
is always greater than experimental results. Recalling that the solid matrix isn’t same
under different porosities, so our prediction for strength is reasonable.

Porosity 30.8% 38.9% 46.2% 52.0 %
Experiment Σp3(MPa) 40.0 16.0 7.6 5.1
Modeling Σp3(MPa) 40.0 24.11 14.45 8.05

Table 4.4: The comparison between experimental data and modeling results

4.7 Conclusions

In view of the context of application of fired clay bricks, we have built a micromechani-
cal damage modeling by homogenization. It is assumed that the shape of microcracks is
penny-shaped and the orientations of all microcracks are parallel. The unilateral effect of
microcracks is taken to analyze the influence of damage parameter d on mechanical prop-
erties. Then we build a micro-mechanical damage modeling considering open microcracks.
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After the analysis of mechanical behavior of our modeling, we can come to the following
conclusions:

Firstly, the microcracks have strong influence on the degradation of fired clay bricks.
With the increase of microcracks density (also the damage parameter d), the elastic moduli
of fired clay bricks decrease obviously. Similar to elastic moduli, porosity and the aspect
ratio of micropores weaken the peak strength. The lower the aspect ratio, the smaller the
peak strength.

Secondly, compared with Mori-Tanaka estimation, Ponte Castañeda-Willis estimation
can predict the strain softening stage during the damage process by virtue of considering
the spatial distribution of inclusions. The material parameter η determines the soften
variation.

The numerical results of our proposed micromechanical damage modeling are approx-
imately in agreement with the experimental data, which can predict accurately the me-
chanical behavior of fired clay bricks under the uniaxial compressive loading, including the
damage stage.
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Conclusions and perspectives

Conclusions

On the premise of satisfying mechanical capacity, fired clay bricks possessing the func-
tion of energy-saving have been the developing target with the demand of sustainable
development. It is obvious that the macroscopic properties of fired clay bricks are de-
pendent on their microscopic information. In order to provide a reference to change the
information of micropores by using pore-forming agents, the effects of micropores and mi-
crocracks on macroscopic mechanical properties and thermal conductivity are studied by
homogenization theory, which helps to understand the relationship between composition,
micro-structure, material processing and mechanical or thermal properties. The study re-
lies on the description of fired clay bricks at the micro-scale. It appears that the relation
between micro-structure and macroscopic properties is important to predict engineering
properties. The conclusions of this thesis are summarized as follows.

The Chapter 2 begins with the description of representative volume element as a micro-
structural morphology composed of continuous solid matrix with micropores. It has been
seen that the micro-structure is linked with the manufacturing technology of fired clay
bricks. We proposed two different representative volume elements depending on extruding
and molding technology, which generate the prolate or oblate micropores. Based on the
analysis micro-structure, the effective elastic properties of fired clay bricks are studied by
homogenization. We can obviously find that the volume fraction of pores is the most
important factor which can weaken the elastic moduli. Besides porosity, we evaluate the
effect of aspect ratio of micropores on elastic moduli. It can be found that the aspect ratio
has a much stronger influence on Young’s modulus parallel to the symmetric axis than that
in other directions. It affects the shear modulus in the isotropic plane more clearly. With
the increase of aspect ratios, E3 rises but G12 decreases. By using different approaches, the
spatial distribution of micropores also affects the elastic moduli. The results considering
the spherical distribution of pores exhibit more conspicuous anisotropic ratio than those
of parallel distribution.

Based on the same microstructure, Chapter 3 is devoted to the study on effective
thermal conductivity of fired clay bricks. Like the effective elastic properties, we study
the influence of micropores on thermal conductivity. The effect of porosity on thermal
conductivity is also the most apparent. In this chapter, we also predict the tendency of
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thermal conductivity under the condition of high porosity. The prediction in this case still
needs experimental data to validate. The aspect ratio of micropores affects the thermal
conductivity λ33 on the symmetric axis more obviously. With the increasing of aspect ratio,
λ33 significantly rises but λ11 decreases. The spherical spatial distribution of micropores
shows much stronger anisotropy than those of aligned distribution. We can conclude that
a method to improve the optimization between mechanical and thermal properties is not
only changing the volume fraction of pores, but also adding different kind of pore-forming
agents in the production process. An opening research direction is to study the effect of
vegetable fibers on mechanical strength and thermal conduction.

As a kind of structural materials, fired clay bricks are mainly used to support the load.
But it appears to be empirical to evaluate the mechanical strength. In Chapter 4, we build
a micro-mechanical damage modeling to link peak strength and micropores, including the
volume fraction and aspect ratio of pores. The impact of porosity on peak strength is
studied under different aspect ratios. It can be seen that the effect of porosity on peak
strength is very strong. Moreover, the aspect ratio of micropores also obviously affects
the peak strength. The aspect ratio is greater, the strength on the major axis is higher.
By comparison of results by MT and PCW approaches, the PCW estimation consider-
ing the spatial distribution of micropores and microcracks can predict the strain-softening
behavior of fired clay bricks, but MT estimate can’t achieve. The material parameter η
determines the tendency of strain-softening. The parameter R0 is the initial elastic thresh-
old of material. The validations between our proposed damage modeling and experimental
data approximately exhibit an agreement.

Perspectives

Some work of this thesis can be improved and a lot of research perspectives can be found
in the future work.

The optimization between mechanical properties and thermal conductivity can be
achieved by combining engineering situations. For example, due to the transverse isotropy
of fired clay bricks, the orientation of bricks laying in the wall can cause different mechani-
cal strength and thermal conductivity of walls. Due to hollow fired clay bricks are also used
in masonry structures, the influence of different geometries of hollow bricks on mechanical
properties of masonries can be the following research work.

We take the same microscopic scales for micropores and microcracks in the RVE. To
study the micro-mechanical modeling more precisely, it is necessary to analyze the distri-
bution of size of micropores and microcracks, which is helpful to build a multi-scale RVE.

102



In the Chapter 4, our proposed damage modeling is based on the assumption of aligned
opening microcracks of spherical distribution. The following work can focus on the condi-
tion of random orientation of microcracks, including opening or closed ones. In this thesis,
we only consider the porous and cracked solid matrix without liquid as the research objec-
tive in the thesis. The influence of transfer of substances in opening microcracks on the
properties of fired clay bricks will be a new direction in the following work. The multi-scale
micromechanical modeling considering multi-phenomena couplings can help us understand
mechanical behavior under complex environmental conditions.

The study on fired clay tiles with additives is an interesting research subject. The
difference with bricks is that the orientations and the spatial distributions of micropores in
tiles due to the molding technology. Considering that tiles are always suffered the changing
of the seasons, the impact of numbers and temperatures of freeze-thaw cycles on durability
of fired clay bricks is also attractive.
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Appendix A

Walpole’s notation

The transverse isotropy is that the elastic properties of arbitrary directions which are
normal to a symmetric axis are the same. The fourth-order stiffness tensor only has 5 in-
dependent constants. In order to study the transversely isotropic problems, it is necessary
to introduce the notation from [63] which is helpful to obtain the elements of transversely
isotropic tensors. Given a unit normal vector n, other directions perpendicular to n are
equivalent because of transversely isotropic symmetry. Also given the second-order unit
tensor 1 (Kronecker tensor δij), the unit tensor is decomposed of two elementary tensors
a and b:

1 = a + b (A.1)

with

a = 1− n⊗ n, b = n⊗ n (A.2)

The set of fourth order elementary tensors contain 4 unit tensors with diagonal sym-
metry and 2 tensors without diagonal symmetry. The diagonally symmetric tensors are:

E1 = 1
2a ⊗ a, E2 = b⊗ b, E3 = a⊗a − 1

2a ⊗ a, E4 = a⊗b + b⊗a (A.3)

It is easily seen that:

E1 + E2 + E3 + E4 = I (A.4)

Especially, when p and q are integers from 1 to 4, we can also obtain the following
expressions:

E4 : J = J : E4 = 0, E4 : K = K : E4 = E4 (A.5)
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and

Ep : Eq = Eq, if p = q; Ep : Eq = 0, if p 6= q (A.6)

The non-diagonally symmetric tensors are:

E5 = b⊗ a, E6 = a ⊗ b (A.7)

The tensor products of elements can be presented as the table:

E1 E2 E3 E4 E5 E6
E1 E1 0 0 0 0 E6
E2 0 E2 0 0 E5 0
E3 0 0 E3 0 0 0
E4 0 0 0 E4 0 0
E5 E5 0 0 0 0 2E2
E6 0 E6 0 0 2E1 0

Table A.1: The products of Walpole tensor elements

Based on Walpole notation, any transversely isotropic fourth-order tensor, which is not
necessarily symmetric, can be expressed by six elementary tensors.

U = cE1 + dE2 + eE3 + fE4 + gE5 + hE6 (A.8)

which can be recast as another form:

U = [c, d, e, f, g, h] (A.9)

If the tensor U is symmetric, it has g = h.
The inverse of U is:

U−1 = [d
l′
,
c

l′
,
1
e
,

1
f
,−g

l′
,−h

l′
] (A.10)

with l = cd− 2gh.
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The fourth-order unit tensor I of equation (A.4) can be represented as:

I = [1, 1, 1, 1, 0, 0] (A.11)

The spherical tensor J and deviatoric tensor K of equation (A.5) can be represented as:

J = [23 ,
1
3 , 0, 0,

1
3 ,

1
3], K = [13 ,

2
3 , 1, 1,−

1
3 ,−

1
3] (A.12)

Walpole defined the unit tensor as I = J+K. These fourth-order tensors can be written
as:

Iijkl = 1
2(δikδjl + δilδjk), Jijkl = 1

3δijδkl

Kijkl = 1
2(δikδjl + δilδjk −

2
3δijδkl)

(A.13)

The decomposed tensors are idempotent and orthogonal:

J : J = J, K : K = K, J : K = 0 (A.14)

For isotropic solid matrix, the stiffness tensor can be expressed by decomposed tensors
J and K.

Cs = 3ksJ + 2µsK (A.15)

where ks is the bulk modulus of solid matrix and µs is the shear modulus of solid matrix.

In Voigt notation, these fourth-order tensors can be recast as:

I =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


J =



1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


K =



2
3 −1

3 −
1
3 0 0 0

−1
3

2
3 −1

3 0 0 0
−1

3 −
1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



The base tensor of Walpole can be expressed by Voigt notation when n=(0,0,1), as
follows:
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E1 =



1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


E2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



E3 =



1
2 −1

2 0 0 0 0
−1

2
1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


E4 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0



E5 =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


E6 =



0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Appendix B

Eshelby tensor in linear elasticity

Sεr is called as Eshelby tensor of the r-th phase. The fourth-order Eshelby tensor of can be
represented by six elemental tensors as the following form [63, 46]:

Sεr = a1E1 + a2E2 + a3E3 + a4E4 + a5E5 + a6E6 (B.1)

or

Sεr = [a1, a2, a3, a4, a5, a6] (B.2)

where, ai(i = 1 6) are the following six scalars:

a1 = S1111 + S1122, a2 = S3333, a3 = S1111 − S1122,

a4 = 2S3131, a5 = S3311, a6 = S1133
(B.3)

For the inclusion in isotropic matrix, the Eshelby tensor depends on the shape of inclu-
sion and the stiffness of matrix. When the symmetric axis of inclusion is n = (0, 0, 1), the
shape of ellipsoidal inclusion can be expressed by three-dimensional Cartesian coordinate
system.

z2
1
m2

1
+ z2

2
m2

2
+ z2

3
m2

3
= 1, with m1 = m2 (B.4)

[55] has given the components of Eshelby tensor of ellipsoidal inclusion.

Siiii = 3
8π(1− ν)m

2
i Iii + 1− 2ν

8π(1− ν)Ii

Siijj = 1
8π(1− ν)m

2
jIij −

1− 2ν
8π(1− ν)Ii

Sijij = 1
16π(1− ν)(m2

i +m2
j)Iij + 1− 2ν

16π(1− ν)(Ii + Ij)

(B.5)
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where ν is Poisson’s ratio of matrix. Iij and Ii can be expressed as the following integrals
by [76] and [55].

Ii = 2πm1m2m3

∫ ∞
0

du

(m2
i + u)∆

Iii = 2πm1m2m3

∫ ∞
0

du

(m2
i + u)2∆

Iij = 2πm1m2m3

∫ ∞
0

du

(m2
i + u)(m2

j + u)∆

(B.6)

with

∆ = (m2
1 + u) 1

2 (m2
2 + u) 1

2 (m2
3 + u) 1

2 (B.7)

For the prolate spheroidal inclusion (m1 = m2 < m3), the integral result is:

I1 = I2 = 2πm2
1m3

(m2
3 −m2

1) 3
2

m3

m1

(
m2

3
m2

1
− 1

) 1
2

− cosh−1m3

m1


I3 = 4π − 2I1, I11 = I22 = I12

I12 = π

m2
1
− 1

4I13 = π

m2
1
− (I1 − I3)

4(m2
3 −m2

1)

I31 = I1 − I3

m2
3 −m2

1

3I33 = 4π
m2

3
− 2I31

3I11 = 4π
m2

1
− I12 −

I1 − I3

m2
3 −m2

1

(B.8)

For the oblate spheroidal inclusion (m1 = m2 > m3),the integral result is:
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I1 = I2 = 2πm2
1m3

(m2
1 −m2

3) 3
2

cos−1m3

m1
− m3

m1

(
1− m2

3
m2

1

) 1
2


I3 = 4π − 2I1, I11 = I22 = I12

I12 = π

m2
1
− 1

4I13 = π

m2
1
− (I1 − I3)

4(m2
3 −m2

1)

I31 = I1 − I3

m2
3 −m2

1

3I33 = 4π
m2

3
− 2I31

3I11 = 4π
m2

1
− I12 −

I1 − I3

m2
3 −m2

1

(B.9)

The tensor T of penny-shaped (Xc << 1) open microcracks is [77]:

T = lim
Xc→0

Xc(I− Sεc)−1 = 4
π

[
0, (1− νs)2

1− 2νs
, 0, 1− νs

2− νs
,
νs(1− νs)

1− 2νs
, 0
]

(B.10)

The tensor T′ of penny-shaped closed microcracks is [77]:

T′ = lim
Xc→0

Xc(I− Sεc : K)−1 = 4
π

[
0, 0, 0, 1− νs

2− νs
, 0, 0

]
(B.11)
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Appendix C

The calculations of transversely
isotropic stiffness tensor

Contents
C.1 The calculation of elastic stiffness tensor of Mori-Tanaka estimate113

C.2 The calculation of elastic stiffness tensor of Ponte Castañeda-
Willis estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.3 The calculation of stiffness tensor of Ponte Castañeda-Willis es-
timate considering damage . . . . . . . . . . . . . . . . . . . . . . . 118

C.1 The calculation of elastic stiffness tensor of Mori-
Tanaka estimate

In this section, the elastic stiffness tensor by Mori-Tanaka estimate is derived and the
calculated result is expressed by Walpole notation.

According to equations (A.11), (B.2) and (A.10), it is readily to have:

(I− Sεr)
−1 = [b1, b2, b3, b4, b5, b6] (C.1)

with
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b1 = 1− a2

(1− a1) (1− a2)− 2a5a6

b2 = 1− a1

(1− a1) (1− a2)− 2a5a6

b3 = 1
1− a3

b4 = 1
1− a4

b5 = a5

(1− a1) (1− a2)− 2a5a6

b6 = a6

(1− a1) (1− a2)− 2a5a6

(C.2)

where a1, a2, ..., a6 were given in (B.3).

Replacing Pεp by Sεp : C−1
s , it is easy to calculate the following equation:

fsI + fp[I + Pεp : (Cp − Cs)]−1 = [n1, n2, n3, n4, n5, n6] (C.3)

with

n1 = I1 + fp(b1 − I1)
n2 = I2 + fp(b2 − I2)
n3 = I3 + fp(b3 − I3)
n4 = I4 + fp(b4 − I4)
n5 = I5 + fp(b5 − I5)
n6 = I6 + fp(b6 − I6)

(C.4)

The inverse of equation (C.3) is:

{fsI + fp[I + Pεp : (Cp − Cs)]−1}−1 = [g1, g2, g3, g4, g5, g6] (C.5)

with

g1 = n2/(n1 · n2 − 2n5 · n6)
g2 = n1/(n1 · n2 − 2n5 · n6)
g3 = 1/n3

g4 = 1/n4

g5 = −n5/(n1 · n2 − 2n5 · n6)
g6 = −n6/(n1 · n2 − 2n5 · n6)

(C.6)

From the expression (2.17), the strain localization tensor of micropores could be written as:
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AMT
p =

(
I− Sεp

)−1
: {fsI + fp[I + Pεp : (Cp − Cs)]−1}−1 (C.7)

By calculation, AMT
p is described by Walpole’s notation:

AMT
p = [Ap1, Ap2, Ap3, Ap4, Ap5, Ap6] (C.8)

with

Ap1 = b1g1 + 2b6g5

Ap2 = b2g2 + 2b5g6

Ap3 = b3g3

Ap4 = b4g4

Ap5 = b5g1 + b2g5

Ap6 = b6g2 + b1g6

(C.9)

The fourth-order stiffness tensor of isotropic solid matrix can be written as:

Cs = [Cs1, Cs2, Cs3, Cs4, Cs5, Cs6] (C.10)

with

Cs1 = 2ks + 2
3µs, Cs2 = ks + 4

3µs, Cs3 = 2µs

Cs4 = 2µs, Cs5 = ks −
2
3µs, Cs6 = ks −

2
3µs

(C.11)

where ks is the bulk modulus of solid matrix and µs is the shear modulus of solid matrix.

Having known that (C.10) and (C.8), the following expression can be calculated:

fp(Cp − Cs) : AMT
p = [s1, s2, s3, s4, s5, s6] (C.12)

with

s1 = −[Cs1 · (b1g1 + 2b6g5) + 2Cs6 · (b5g1 + b2g5)] · fp
s2 = −[Cs2 · (b2g2 + 2b5g6) + 2Cs5 · (b6g2 + b1g6)] · fp
s3 = −(Cs3 · b3g3) · fp
s4 = −(Cs4 · b4g4) · fp
s5 = −[Cs5 · (b1g1 + 2b6g5) + Cs2 · (b5g1 + b2g5)] · fp
s6 = −[Cs6 · (b2g2 + 2b5g6) + Cs1 · (b6g2 + b1g6)] · fp

(C.13)

According to the homogenization expression (2.11), the effective stiffness tensor by MT
scheme can be obtained and expressed by:
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CMT = [C1, C2, C3, C4, C5, C6] (C.14)

with

C1 = Cs1 + s1

C2 = Cs2 + s2

C3 = Cs3 + s3

C4 = Cs4 + s4

C5 = Cs5 + s5

C6 = Cs6 + s6

(C.15)

C.2 The calculation of elastic stiffness tensor of Ponte
Castañeda-Willis estimate

Like the part C.1, the concentration tensor need to be calculated at first in this section.
We calculate the expression (C.1) :

(
I− SEsh

)−1
= [b1, b2, b3, b4, b5, b6] (C.16)

where b1, ..., b6 were given in (C.2).

Then it is also easy to calculate the following equation:

I + fp(αJ + βK) :
(
I− SEsh

)−1
= [c1, c2, c3, c4, c5, c6] (C.17)

with

c1 = 1 + fp

[
(2
3α + 1

3β) · b1 + 2(1
3α−

1
3β) · b5

]
c2 = 1 + fp

[
(1
3α + 2

3β) · b2 + 2(1
3α−

1
3β) · b6

]
c3 = 1 + fp · β · b3

c4 = 1 + fp · β · b4

c5 = fp

[
(1
3α−

1
3β) · b1 + (1

3α + 2
3β) · b5

]
c6 = fp

[
(1
3α−

1
3β) · b2 + (2

3α + 1
3β) · b6

]

(C.18)

where α and β have been given in equation (2.33).
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The inverse of equation (C.17) is:[
I + fp(αJ + βK) :

(
I− SEsh

)−1
]−1

= [g1, g2, g3, g4, g5, g6] (C.19)

with

g1 = c2/(c1 · c2 − 2c5 · c6)
g2 = c1/(c1 · c2 − 2c5 · c6)
g3 = 1/c3

g4 = 1/c4

g5 = −c5/(c1 · c2 − 2c5 · c6)
g6 = −c6/(c1 · c2 − 2c5 · c6)

(C.20)

The strain localization tensor for micropores could be obtained:

APCW
p = [Ap1, Ap2, Ap3, Ap4, Ap5, Ap6] (C.21)

with

Ap1 = b1g1 + 2b6g5

Ap2 = b2g2 + 2b5g6

Ap3 = b3g3

Ap4 = b4g4

Ap5 = b5g1 + b2g5

Ap6 = b6g2 + b1g6

(C.22)

Then the following expression can be calculated:

fp(Cp − Cs) : APCW
p = [s1, s2, s3, s4, s5, s6] (C.23)

with

s1 = −[Cs1 · (b1g1 + 2b6g5) + 2Cs6 · (b5g1 + b2g5)] · fp
s2 = −[Cs2 · (b2g2 + 2b5g6) + 2Cs5 · (b6g2 + b1g6)] · fp
s3 = −(Cs3 · b3g3) · fp
s4 = −(Cs4 · b4g4) · fp
s5 = −[Cs5 · (b1g1 + 2b6g5) + Cs2 · (b5g1 + b2g5)] · fp
s6 = −[Cs6 · (b2g2 + 2b5g6) + Cs1 · (b6g2 + b1g6)] · fp

(C.24)

And the fourth-order stiffness tensor of solid matrix can be written as the following form:
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Cs = [Cs1, Cs2, Cs3, Cs4, Cs5, Cs6] (C.25)

The effective stiffness tensor can be recast as:

CPCW = [C1, C2, C3, C4, C5, C6] (C.26)

with

CPCW
1 = Cs1 + s1

CPCW
2 = Cs2 + s2

CPCW
3 = Cs3 + s3

CPCW
4 = Cs4 + s4

CPCW
5 = Cs5 + s5

CPCW
6 = Cs6 + s6

(C.27)

C.3 The calculation of stiffness tensor of Ponte Castañeda-
Willis estimate considering damage

The calculated process of stiffness tensor components is shown as follows.

According to the expression of Eshelby tensor (B.2) and Walpole notation, we still need
to obtain:

(
I− SEshp

)−1
= [b1, b2, b3, b4, b5, b6] (C.28)

where b1, ..., b6 were given in (C.2).

Then it is also easy to calculate the following equation:

I + fp(αJ + βK) :
(
I− SEshp

)−1
= [c1, c2, c3, c4, c5, c6] (C.29)

with
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c1 = 1 + fp

[
(2
3α + 1

3β) · b1 + 2(1
3α−

1
3β) · b5

]
c2 = 1 + fp

[
(1
3α + 2

3β) · b2 + 2(1
3α−

1
3β) · b6

]
c3 = 1 + fp · β · b3

c4 = 1 + fp · β · b4

c5 = fp

[
(1
3α−

1
3β) · b1 + (1

3α + 2
3β) · b5

]
c6 = fp

[
(1
3α−

1
3β) · b2 + (2

3α + 1
3β) · b6

]

(C.30)

where α and β have been given in equation (2.33).

The tensor < T′ > can be expressed by Walpole’s notation, as follows:

< T′ >= [Tp1, Tp2, Tp3, Tp4, Tp5, Tp6] (C.31)

with

Tp1 = 8(1− νs)
15π(2− νs)

, Tp2 = 16(1− νs)
5π(2− νs)

, Tp3 = 8(1− νs)
5π(2− νs)

Tp4 = 8(1− νs)
5π(2− νs)

, Tp5 = − 8(1− νs)
15π(2− νs)

, Tp6 = − 8(1− νs)
15π(2− νs)

(C.32)

The tensor M in equation (4.19) can be calculated and expressed by the following expres-
sions:

M = [g1, g2, g3, g4, g5, g6] (C.33)

with

g1 = (c2 + e2)/((c1 + e1) · (c2 + e2)− 2 · (c5 + e5) · (c6 + e6))
g2 = (c1 + e1)/((c1 + e1) · (c2 + e2)− 2 · (c5 + e5) · (c6 + e6))
g3 = 1/(c3 + e3)
g4 = 1/(c4 + e4)
g5 = −(c5 + e5)/((c1 + e1) · (c2 + e2)− 2 · (c5 + e5) · (c6 + e6))
g6 = −(c6 + e6)/((c1 + e1) · (c2 + e2)− 2 · (c5 + e5) · (c6 + e6))

(C.34)

and

e1 = 4π
3 · d · β · Tp1, e2 = 4π

3 · d · β · Tp2, e3 = 4π
3 · d · β · Tp3

e4 = 4π
3 · d · β · Tp4, e5 = 4π

3 · d · β · Tp5, e6 = 4π
3 · d · β · Tp6

(C.35)
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and β has been given in equation (2.33).
Then we can obtain the following results:

fp(Cp − Cs) : Ap = [s1, s2, s3, s4, s5, s6] (C.36)

with

s1 = −[Cs1 · (b1g1 + 2b6g5) + 2Cs6 · (b5g1 + b2g5)] · fp
s2 = −[(Cs2 · (b2g2 + 2b5g6) + 2Cs5 · (b6g2 + b1g6)] · fp
s3 = −(Cs3 · b3g3) · fp
s4 = −(Cs4 · b4g4) · fp
s5 = −[Cs5 · (b1g1 + 2b6g5) + Cs2 · (b5g1 + b2g5)] · fp
s6 = −[Cs6 · (b2g2 + 2b5g6) + Cs1 · (b6g2 + b1g6)] · fp

(C.37)

And Walpole’s notation of the fourth-order stiffness tensor of solid matrix was given in
(C.10). We can have the expression for microcracks:

f c(Cc − Cs) : Ac = [r1, r2, r3, r4, r5, r6] (C.38)

with

r1 = −8
3πµs · d · (Tp1 · g1 + 2 · Tp6 · g5)

r2 = −8
3πµs · d · (Tp2 · g2 + 2 · Tp5 · g6)

r3 = −8
3πµs · d · Tp3 · g3

r4 = −8
3πµs · d · Tp4 · g4

r5 = −8
3πµs · d · (Tp5 · g5 + Tp2 · g5)

r6 = −8
3πµs · d · (Tp6 · g6 + Tp1 · g6)

From equation (4.3), the effective stiffness tensor can be written as:

Chom = Cs + fp(Cp − Cs) : Ap + f c(Cc − Cs) : Ac (C.39)

Replacing equation (C.36) and (C.38) into (C.39), the fourth-order effective stiffness tensor
of fired clay bricks can be represented as:

Chom = [Cpcw
1 , Cpcw

2 , Cpcw
3 , Cpcw

4 , Cpcw
5 , Cpcw

6 ] (C.40)

with
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Cpcw
1 = Cs1 + s1 + r1

Cpcw
2 = Cs2 + s2 + r2

Cpcw
3 = Cs3 + s3 + r3

Cpcw
4 = Cs4 + s4 + r4

Cpcw
5 = Cs5 + s5 + r5

Cpcw
6 = Cs6 + s6 + r6

(C.41)
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Appendix D

Eshelby’s problem in linear thermal
conduction

Contents
D.1 The thermal conductivity inclusion problem . . . . . . . . . . . . 124

D.2 The second-order hill tensor . . . . . . . . . . . . . . . . . . . . . . 126

D.3 The inhomogeneity problem . . . . . . . . . . . . . . . . . . . . . . 127

In the above part, the effective thermal conductivity, which is dependent on the ther-
mal conductivities of inclusions and matching localization tensors, has been derived. Now
we study Eshelby’s problem that contributes to the solutions of the localization problem.
We consider a RVE Ω composed of a solid phase Ωs and another phase ΩI . The thermal
conductivity tensor are denoted by λ

s
and λ

I
, respectively. The boundary of RVE ∂Ω is

submitted to the macroscopic homogeneous thermal gradient gradT .

divq(x) = 0

q(x) = −λ(x) · gradT (x) with λ(x) =
λI for x ∈ ΩI

λ
s

for x ∈ Ωs

T (x) = gradT · x ∀x ∈ ∂Ω

(D.1)

The set of equations (D.1) are proposed for a problem in a bounded domain. We can
consider an auxiliary problem (so-callled Eshelby’s Problem) in which a bounded inclu-
sion I is embedded in an infinite homogeneous medium Ω, respectively, corresponding to
thermal conductivity tensors λ

I
and λ

s
. The boundary condition of this problem for the

infinite medium will be changed. The controlling equations for the inhomogeneity problem
are:
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

divq(x) = 0

q(x) = −λ(x) · gradT (x) with λ(x) =
λI for x ∈ I
λ
s

for x ∈ (Ω− I)
T (x) = gradT · x when |x| → ∞

(D.2)

Introducing δλ = λ
I
− λ

s
, we can have:

q(x) = −λ
s
· gradT (x) + q

f
(x) (D.3)

with

q
f
(x) = −δλ · χI(x)gradT (x) (D.4)

where χI(x) is denoted as the characteristic function of the domain I.

Supposing that q
f
(x) = qcχI(x), where qc is a constant vector. The problem of inho-

mogeneity could be written as:
divq(x) = 0
q(x) = −λ

s
· gradT (x) + qcχI(x)

T (x) = gradT · x when |x| → ∞
(D.5)

The set of equations (D.5) is named as Eshelby’s inclusion problem [55].

D.1 The thermal conductivity inclusion problem

In this problem, we consider the case of gradT = 0. From (D.5), the following equation is
obtained:

− λ
s
·∆T + qc · gradχI = 0 (D.6)

gradχI involves derivations of a discontinuous function (see [46]). In terms of the definition
of the derivative of a distribution, we can have:

< gradχI , ψ >= − < χI , gradψ >= −
∫
I
gradψdV = −

∫
∂I
ψndS (D.7)
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where ψ is a function of D(R3) and n is the outward normal unit vector of I. The Dirac
distribution δ∂I connected with the boundary of I is introduced by:

< δ∂I , ψ >=
∫
∂I
ψdS (D.8)

From (D.7) and (D.8), we can obtain:

gradχI = −nδ∂I (D.9)

Then equation (D.6) can be written as:

λ
s
·∆T + qc · nδ∂I = 0 (D.10)

The solution of (D.10) can be acquired by the Green function G(x), which is defined
as the solution of the following equation:

λ
s
·∆xG+ δx′ = 0 (D.11)

where δx′ is the Dirac function at x′ that is defined by any function ψ ∈ D(R3). The
solution of (D.11) is [78, 79]:

G(x, x′) = 1
4πRκ (D.12)

with

R = [(x− x′)T · λ−1
s
· (x− x′)]1/2 (D.13)

and

κ = detλ1/2
s

(D.14)

By superposition, we can obtain the solution of (D.10):

T =
∫
∂I
G(x− x′)qc · ndSx′ (D.15)

Using the Gauss’s theorem:

T = − ∂

∂xj

∫
I
G(x− x′)qc

j
dVx′ (D.16)
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It is readily to have another derivation:

∂T

∂xi
(x) = ∂2

∂xi∂xj

(∫
I
G(x− x′)dVx′

)
qc
j

(D.17)

The thermal gradient vector can be expressed as:

gradT = P ε · qc (D.18)

with

Pij(x) = − ∂2

∂xi∂xj

∫
I
G(x− x′)dVx′ (D.19)

The above mentioned derivations are performed under gradT = 0. For the case of
gradT 6= 0, we have:

gradT = P ε · qc + gradT (D.20)

Supposing that qc was constant, the solution of Eshelby’s problem could be reduced to
the calculation of the second-order Hill tensor P .

D.2 The second-order hill tensor

In view of the Green function, it is necessary to introduce the potential function Φ(x)
relying on the geometry of I:

Φ(x) =
∫
I

1
|x− x′|

dVx′ (D.21)

Combining (D.12) and (D.19), it yields:

Pij(x) = − 1
4πκ

∂2Φ
∂xi∂xj

(x) (D.22)
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D.3 The inhomogeneity problem

Now we turn to the inhomogeneity problem. Recalling equation (D.3) and (D.4):

q(x) = −λ
s
· gradT (x) + q

f
(x) (D.23)

with

q
f
(x) = −δλ · χI(x)gradT (x) (D.24)

The necessary and sufficient condition is that the thermal gradient is uniform in the
domain I so that the inhomogeneity problem is consistent with the inclusion problem. In
this instance, The solution of the inhomogeneity problem can be obtained by that of the
inclusion problem:

gradT (x) = P ε · q
f
(x) + gradT (D.25)

with

q
f
(x) = −δλ · gradT (x) (D.26)

From above two equations, we can obtain:

q
f
(x) = −δλ · (δ + δλ · P ε)−1 · gradT (D.27)

The local thermal gradient vector in the ellipsoidal domain I is:

gradT = A
I
· gradT (D.28)

where the localization tensor is:

A
I

= [δ + (λ
I
− λ

s
) · P ε]−1 (D.29)
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