, The time allowed by the system to one channel is called "Time slot". A time-slot length is 20 micro-seconds, and is presented in figure 3.12. As the minimum time-step is a Time-Slot (TS), stimulation parameters will be expressed as a finite amount of time-slots. Within all the stimulation parameters, only Tdelay and Tinterpulse can be zeroed. The minimum timing for the others parameters equals to 1 TS, i.e. 20 µs. In order to have a 20 µs timing (minimum) for any of the temporal parameters described (fig. 1), one can set the given parameter to the hexadecimal value X"00000000". In order to get a 40 µs timing, the user got to enter the value X"00000001", and so on. In order to bypass the Delay phase or the Interphase, one should use the value X"FFFFFFFF" for those parameters. configures the Kali board peripherals in order to prepare it for stimulation. It is composed of a finite state machine, a RAM, and a SPI driver, I/O of config_kali: ? clk : (in, 1 bit, in) system clock ? reset : (in, 1 bit) system reset ? start_config : (in, 1 bit) signal from the CPU, triggers the beginning of Kali configuration ? enable_1 : (in, 1 bit) write enable signal of the RAM ? data_in_1 : (in, 1 byte)

, First line of the RAM corresponds to data for the first switch; second line is for the second switch, and so on. ? rst : (in, 1 bit) system reset ? clk : (in, 1 bit) system clock ? channel_number : (in, 4 bits) channel number being processed, from sequencer ? new_channel : (in, 1 bit) flag to announce that a new channel can be processed, from sequencer ? ram_enable : (in, 1 bit) input port of the ram. Enable ? ram_data_in : (in, 1 byte) data input of the RAM ? ram_data_out : (out, 1 byte) data output of the RAM ? ram_addr : (in, 10 bits) address input of the RAM. The 2 LSB determine which RAM is addressed, The FSM reads the RAM data, and transfers it to the SPI driver (SPI_master_switch) which sends the data through the SPI bus to the switches, at a rate of 1MHz (slck frequency)

A. Figure, 1: Stimulation parameters addresses

, Therefor it provides the direct control signals for SHIVAs circuits, specific signals for the DAC. I/O of stim_signal_mgmt: ? rst : (in, 1 bit) system reset ? clk : (in, 1 bit) system clock ? trigger : (in, 1 bit) trigger for the module to start operate the stimulation parameters ? stim_order : (in, stimulation_order) stimulation_order, from state_mgmt ? spi_busy : (in, 1 bit) flag from spi_interface, SPI still active when high ? stim_polarity : (in, 1 byte) allows polarity inversion on a given channel, MSB-> Channel, vol.7

, 1 bit) triggers the spi_interface module ? busy : (out, 1 bit) flag, on high-level as long as the module and dependences are in operation ? anodic_DC : (out, 1 byte) Anodic direct control orders for SHIVA ? cathodic_DC : (out, 1 byte) Cathodic direct control orders for SHIVA ? cs_dac : (out, 1 bit) Chip-select for the DAC ? n_rst_shiva : (out, 1 bit) SHIVA's reset signal, ? data_tx_spi : (out, 12 bits) data to be sent to the DAC through spi_interface ? trigger_spi : (out

J. Castelli, F. Kölbl, R. Siu, G. N'kaoua, Y. Bornat et al., An IC-based controllable stimulator for respiratory muscle stimulation investigations, 39th Annual International Conference of the IEEE, pp.1970-1973, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593374

J. Castelli, S. Renaud, Y. Bornat, F. Kolbl, R. Siu et al., Design and validation of an IC-based multi-channel multi-application neurostimulator, IEEE. European finalist to the Best Student Paper Competition, vol.133, 2016.

M. Cobb, Timeline: exorcizing the animal spirits: Jan swammerdam on nerve function, Nature Reviews Neuroscience, vol.3, issue.5, 2002.

L. Galvani and G. Aldini, De Viribus Electricitatis

, Accesserunt Epistolae ad animalis electricitatis theoriam pertinentes, p.1792

A. Volta, On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from mr. alexander volta, frs professor of natural philosophy in the university of pavia, to the rt. hon. sir joseph banks, bart. kbprs. Philosophical transactions of the Royal Society of London, pp.403-431, 1800.

C. Matteucci, Sur le courant électrique de la grenouille: second mémoire sur l'électricité animale faisant suite à celui sur la torpille, Ann Chim Phys, vol.6, p.1842

H. Helmholtz, Note sur la vitesse de propagation de l'agent nerveux dans les nerfs rachidiens, CR Acad Sci, vol.30, pp.204-206, 1850.

J. Maxwell, A dynamical theory of the electromagnetic field, Proceedings of the Royal Society of London, vol.13, pp.531-536, 1863.

J. Bernstein, Untersuchungen zur thermodynamik der bioelektrischen ströme. Archiv für die gesamte, Physiologie des Menschen und der Tiere, vol.92, pp.521-562, 1902.

J. Howard, K. Curtis, and . Cole, Membrane action potentials from the squid giant axon, Journal of Cellular Physiology, vol.15, issue.2, pp.147-157, 1940.

L. Alan, A. Hodgkin, and . Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of physiology, vol.117, issue.4, pp.500-544, 1952.

A. Djourno and C. Eyries, Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling, La Presse Médicale, vol.65, issue.63, pp.1417-1417, 1957.

R. Elmgvist, J. Landegren, S. Olov-pettersson, Å. Senning, and G. William-olsson, Artificial pacemaker for treatment of adams-stokes syndrome and slow heart rate, American Heart Journal, vol.65, issue.6, pp.731-748, 1963.

B. Kolb, Cerveau et comportement [brain and behaviour] de boeck université, 2008.

. Eric-r-kandel, H. James, T. M. Schwartz, . Jessell, A. Steven et al., Principles of neural science, vol.4, 2000.

G. Orjan, S. Martinsen, and . Grimnes, Bioimpedance and bioelectricity basics, 2011.

G. Weiss, Sur la possibilite de rendre comparables entre eux les appareils servant a l'excitation electrique, Archives Italiennes de Biologie, vol.35, issue.1, pp.413-445, 1990.

L. Lapique, Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization, J Physiol Pathol Gen, vol.9, pp.620-635, 1907.

M. Daniel-r-merrill, J. Bikson, and . Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols, Journal of neuroscience methods, vol.141, issue.2, pp.171-198, 2005.

W. Meissner, C. E. Gross, D. Harnack, B. Bioulac, and A. Benazzouz, Deep brain stimulation for parkinson's disease: Potential risk of tissue damage associated with external stimulation, Annals of neurology, vol.55, issue.3, pp.449-450, 2004.

S. Joucla, M. Ambroise, T. Levi, T. Lafon, P. Chauvet et al., Generation of locomotor-like activity in the isolated rat spinal cord using intraspinal electrical microstimulation driven by a digital neuromorphic cpg, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01562686

G. Creasey, J. Elefteriades, A. Dimarco, and P. Talonen, Electrical stimulation to restore respiration, Journal of rehabilitation research and development, vol.33, issue.2, p.123, 1996.

B. Rolfe, J. Mooney, B. Zhang, S. Jahnke, S. Le et al., The fibrotic response to implanted biomaterials: implications for tissue engineering, Regenerative Medicine and Tissue Engineering-Cells and Biomaterials, 2011.

A. James-m-anderson, D. Rodriguez, and . Chang, Foreign body reaction to biomaterials, Seminars in immunology, vol.20, pp.86-100, 2008.

M. Warren, J. Grill, and . Mortimer, Electrical properties of implant encapsulation tissue, Annals of biomedical engineering, vol.22, issue.1, pp.23-33, 1994.

W. G. Ondo, C. Meilak, and K. D. Vuong, Predictors of battery life for the Activa??, Soletra 7426 Neurostimulator. Parkinsonism and Related Disorders, vol.13, pp.240-242, 2007.

J. R. Harry-g-mond, K. Helland, G. A. Stokes, R. Bornzin, and . Mcvenes, The electrode-tissue interface: The revolutionary role of steroid-elution, Pacing and Clinical Electrophysiology, vol.37, issue.9, pp.1232-1249, 2014.

S. Jezernik and M. Morari, Energy-optimal electrical excitation of nerve fibers, IEEE Transactions on Biomedical Engineering, vol.52, issue.4, pp.740-743, 2005.

J. Thomas, C. Foutz, and . Mcintyre, Evaluation of novel stimulus waveforms for deep brain stimulation, Journal of neural engineering, vol.7, issue.6, p.66008, 2010.

S. Demarco, P. Liu, G. Singh, M. Lazzi, J. S-humayun et al., An Arbitrary Waveform Stimulus Circuit for Visual Prostheses USing a Low-Area Multibias DAC, IEEE Journal of Solid-State Circuits, vol.38, issue.10, p.12, 2003.

S. Nag, . Nitish, and . Thakor, Implantable neurotechnologies: electrical stimulation and applications, Medical & biological engineering & computing, vol.54, issue.1, pp.63-76, 2016.

H. Skarzynski, A. Lorens, A. Piotrowska, and I. Anderson, Partial deafness cochlear implantation provides benefit to a new population of individuals with hearing loss, Acta oto-laryngologica, vol.126, issue.9, pp.934-940, 2006.

Z. Zhu, Q. Tang, F. Zeng, T. Guan, and D. Ye, Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation, Hearing research, vol.283, issue.1, pp.45-58, 2012.

. Mark-s-humayun, Intraocular retinal prosthesis, Transactions of the American Ophthalmological Society, vol.99, p.271, 2001.

J. Joseph-f-rizzo, J. Wyatt, S. Loewenstein, D. Kelly, and . Shire, Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials, Investigative ophthalmology & visual science, vol.44, issue.12, pp.5362-5369, 2003.

J. Weiland and M. Humayun, Retinal prosthesis, Neural Engineering, pp.635-655, 2013.

J. Edward, . Tehovnik, M. Warren, . Slocum, M. Stelios et al., Microstimulation of visual cortex to restore vision, Progress in brain research, vol.175, pp.347-375, 2009.

M. Jahanshahi, Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in parkinson's disease. Frontiers in systems neuroscience, vol.7, 2013.

H. Guo, H. Zhang, Y. Kuang, C. Wang, X. Jing et al., Electrical stimulation of the substantia nigra pars reticulata (snr) suppresses chemically induced neocortical seizures in rats, Journal of Molecular Neuroscience, vol.53, issue.4, pp.546-552, 2014.

A. Kundu, K. R. Harreby, K. Yoshida, T. Boretius, T. Stieglitz et al., Stimulation selectivity of the "thin-film longitudinal intrafascicular electrode"(tflife) and the "transverse intrafascicular multi-channel electrode"(time) in the large nerve animal model, IEEE transactions on neural systems and rehabilitation engineering, vol.22, pp.400-410, 2014.

S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa et al., Restoring natural sensory feedback in real-time bidirectional hand prostheses, Science translational medicine, vol.6, issue.222, pp.222-241, 2014.

R. Claudia-a-angeli, . Edgerton, P. Yury, S. J. Gerasimenko, and . Harkema, Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans, Brain, vol.137, issue.5, pp.1394-1409, 2014.

C. Ethier, E. R. Oby, L. E. Bauman, and . Miller, Restoration of grasp following paralysis through brain-controlled stimulation of muscles, Nature, vol.485, issue.7398, pp.368-371, 2012.

R. Fuentes, P. Petersson, B. William, . Siesser, M. A. Marc-g-caron et al., Spinal cord stimulation restores locomotion in animal models of parkinson's disease, Science, vol.323, issue.5921, pp.1578-1582, 2009.

E. John and . Hall, Guyton and Hall Textbook of Medical Physiology E-Book, 2015.

N. A. Fitzsimmons, . Drake, M. A. Hanson, M. Lebedev, and . Nicolelis, Primate reaching cued by multichannel spatiotemporal cortical microstimulation, Journal of Neuroscience, vol.27, issue.21, pp.5593-5602, 2007.

L. R. Brian-m-london, . Jordan, L. E. Christopher-r-jackson, and . Miller, Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.16, issue.1, pp.32-36, 2008.

A. Matthew, K. H. Schiefer, . Polasek, . Triolo, D. J. Gcj-pinault et al., Selective stimulation of the human femoral nerve with a flat interface nerve electrode, Journal of neural engineering, vol.7, issue.2, p.26006, 2010.

M. Noah, C. Ledbetter, E. R. Ethier, . Oby, D. Scott et al., Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses, Journal of neurophysiology, vol.109, issue.2, pp.580-590, 2013.

D. Guggenmos and R. Nudo, Clinical systems neuroscience, 2014.

L. Cheryl, . Lynch, and . Popovic, Functional electrical stimulation, IEEE control systems, vol.28, issue.2, pp.40-50, 2008.

H. Wu, S. Young, and T. Kuo, A versatile multichannel direct-synthesized electrical stimulator for fes applications, Instrumentation and Measurement Technology Conference, vol.1, pp.180-185, 2000.

J. Castelli, F. Kölbl, R. Siu, Y. Gilles-n'kaoua, A. Bornat et al., An ic-based controllable stimulator for respiratory muscle stimulation investigations, 39th Annual International Conference of the IEEE, pp.1970-1973, 2017.
DOI : 10.1109/embc.2017.8037236

URL : https://hal.archives-ouvertes.fr/hal-01593374

W. Chung, C. Chuang, Y. Liao, and C. Chang, A new microstimulator with pulse width modulation, Journal of Medical and Biological Engineering, vol.24, pp.125-132, 2004.

S. Chang, W. Chung, and C. Chuang, System design of implantable micro-stimulator for medical treatments, Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, pp.478-481, 2006.
DOI : 10.1109/apccas.2006.342493

S. Oh, J. Ahn, J. Shin, H. Ko, Y. Goo et al., Pulse count modulation based biphasic current stimulator for retinal prosthesis and in vitro experiment using rd1 mouse, 36th Annual International Conference of the IEEE, pp.1711-1714, 2014.

H. Wu, S. Young, and T. Kuo, A versatile multichannel direct-synthesized electrical stimulator for fes applications, IEEE Transactions on Instrumentation and Measurement, vol.51, issue.1, pp.2-9, 2002.

D. R. Erik-a-cheever, B. L. Thompson, . Cmolik, P. William, D. Santamore et al., A versatile microprocessor-based multichannel stimulator for skeletal muscle cardiac assist, IEEE transactions on biomedical engineering, vol.45, issue.1, pp.56-67, 1998.

B. Smith, . Hunter-peckham, W. Michael, D. Keith, and . Roscoe, An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle, IEEE Transactions on Biomedical Engineering, issue.7, pp.499-508, 1987.
DOI : 10.1109/tbme.1987.325979

M. Ilic, D. Vasiljevic, and . Popovic, A programmable electronic stimulator for fes systems, IEEE Transactions on rehabilitation engineering, vol.2, issue.4, pp.234-239, 1994.
DOI : 10.1109/86.340875

K. Abdelhalim and R. Genov, CMOS DAC-sharing stimulator for neural recording and stimulation arrays, IEEE Int. Symp. Circuits Syst, pp.1712-1715, 2011.
DOI : 10.1109/iscas.2011.5937912

K. Arabi and M. A. Sawan, Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation, IEEE Transactions on Rehabilitation Engineering, vol.7, issue.2, pp.204-214, 1999.

. Scott-k-arfin, A. Michael, M. S. Long, R. Fee, and . Sarpeshkar, Wireless neural stimulation in freely behaving small animals, Journal of neurophysiology, vol.102, issue.1, pp.598-605, 2009.

R. Scott-k-arfin and . Sarpeshkar, An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation, IEEE transactions on biomedical circuits and systems, vol.6, issue.1, pp.1-14, 2012.

M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface, IEEE J. Solid-State Circuits, vol.46, issue.4, pp.731-745, 2011.
DOI : 10.1109/jssc.2011.2108770

U. Bihr, T. Ungru, H. Xu, J. Anders, J. Becker et al., A bidirectional neural interface with a hv stimulator and a lv neural amplifier, IEEE International Symposium on, pp.401-404, 2013.
DOI : 10.1109/iscas.2013.6571865

R. Blum, J. Ross, E. Brown, and S. Deweerth, An Integrated System for simultaneous, Multichannel Neuronal Stimluation and Recording, IEEE Transactions on circuits and systems-I: Regular papers, vol.54, issue.12, p.11, 2007.

C. Chang, W. Chung, C. Chuang, R. Wei, and J. Dai, A novel system design for implantable stimulator application, 2004.

S. Chang, W. Chung, and C. Chuang, System Design of Implantable Microstimulator for Medical Treatments, IEEE Asia Pacific Conference on Circuits and Systems, 2006.

K. Chen, . Yang, J. Hoang, . Weiland, W. Humayun et al., An Integrated 256-Channel Epiretinal Prosthesis, IEEE Journal of Solid-State Circuits, vol.45, issue.9, p.11, 2010.

W. Chen, H. Chiueh, T. Chen, C. Ho, C. Jeng et al., A fully integrated 8-channel closed-loop neural-prosthetic cmos soc for real-time epileptic seizure control, IEEE journal of solid-state circuits, vol.49, issue.1, pp.232-247, 2014.

A. Chun, . Kavehei, S. Tran, and . Skafidas, A Flexible Biphasic Pulse Generating and Accurate Charge Balancing Stimluator with a 1 microW Neural Recording Amplifier. Circuits and Systems (ISCAS), IEEE International Symposium on, p.4, 2013.

H. Chun, Y. Lehmann, and . Yang, Implantable Stimulator For Bipolar Stimulation Without Charge Balancing Circuits, IEEE Biomedical Circuits and Systems Conference, p.4, 2010.

T. Constandinou, C. Georgiou, and . Toumazou, A Partial-Current-Steering Biphasic Stimulation Driver for Vestibular Prostheses, IEEE Transactions on Biomedical Circuits and Systems, p.8, 2008.

J. Coulombe, J. Sawan, and . Gervais, A Highly Flexible System for Microstimluation of the Visual Cortex: Design and Implementation, IEEE Transactions on Biomedical Circuits and Systems, vol.1, issue.4, p.12, 2007.

N. Dommel, Y. Wong, C. Lehmann, N. Dodds, G. Lovell et al., A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation, Journal of Neural Engineering, vol.6, issue.1, p.10, 2009.

M. N-von-dongen and W. Serdijn, A Switched-Mode Multichannel Neural Stimlulator with a Minimum Number of External Components. Circuits and Systems (ISCAS), IEEE International Symposium on, p.4, 2013.

A. Eftekhar, . Constandinou, C. Triantis, E. Toumazou, and . Drakakis, Towards a reconfigurable sense-and-stimulate neural interface generating biphasic interleaved stimulus, Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, p.4, 2007.

W. Fang, . Wills, . Granacki, . Lacoss, J. Arakelian et al., Novel ChargeMetering Stimulus Amplifier for Biomimetic Implantable Prosthesis, IEEE International Symposium on Circuits and Systems, p.4, 2007.

J. Georgiou and C. Toumazou, A 126-µW Cochlear Chip for a Totally Implantable System, IEEE Journal of Solid-State Circuits, vol.40, issue.2, p.14, 2005.

C. Gong, M. Shiue, C. Su, and Y. Chang, An Efficient Micro-Stimulator Array Using Unitary-Size DAC With Adiabatic Baseband Scheme, IEEE International Conference on Electronics Circuits and Systems, 2006.

C. Gong, K. Yao, and M. Shiue, A cmos multichannel electrical stimulation prototype system, International Journal of Circuit Theory and Applications, vol.41, issue.3, pp.238-258, 2013.

G. Gudnason, M. Bruun, and . Haugland, An implantable mixed Analog/Digital Neural Stimulator Circuit, Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, p.4, 1999.

C. Hitzelberger, . Manoli, S. Hakenes, and . Gross, A Microcontroller Embedded ASIC for an Implantable Electro-Neural Stimulator, Proceedings of the 27th European Solid-State Circuits Conference, p.4, 2001.

J. Hu and C. Gordon, A General Adaptive Charge-Balancing Stimulator, 51st Midwest Symposium on Circuits and Systems, p.4, 2008.

D. Jiang, A. Demosthenous, T. Perkins, X. Liu, and N. Donaldson, A stimulator asic featuring versatile management for vestibular prostheses, IEEE transactions on biomedical circuits and systems, vol.5, issue.2, pp.147-159, 2011.

D. Jiang, T. Demosthenous, . Perkins, N. Liu, and . Donaldson, An Implantable 3-D Vestibular Stimulator with Neural Recording. ESSCIRC (ESSCIRC), Proceedings, vol.1, issue.1, p.4, 2012.
DOI : 10.1109/esscirc.2012.6341339

S. Kelly and J. Wyatt, A Power-Efficient Neural Tissue Stimulator With Energy Recovery, IEEE Transactions on Biomedical Circuits and Systems, vol.5, issue.1, p.10, 2011.
DOI : 10.1109/tbcas.2010.2076384

P. Langlois, . Demosthenous, N. Pachnis, and . Donaldson, High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation, IEEE Transactions on Biomedical Circuits and Systems, vol.4, issue.1, p.10, 2010.
DOI : 10.1109/tbcas.2009.2034138

H. Lee, M. Park, and . Ghovanloo, A Power-Efficient WIreless System With Adaptive Supply Control for Deep Brain Stimulation, IEEE Journal of Solid-State Circuits, vol.48, issue.9, p.14, 2013.
DOI : 10.1109/jssc.2013.2266862

URL : http://europepmc.org/articles/pmc3964183?pdf=render

J. Lee, . Rhew, M. Kipke, and . Flynn, A 64 Channel Programmable Closed-loop Deep Brain Stimulator with 8 Channel Neural Amplifier and Logarithmic ADC, Symposium on VLSI Circuits Digest of Technical Papers, 2008.
DOI : 10.1109/vlsic.2008.4585958

C. Lin, W. Chen, and M. Ker, Implantable stimulator for epileptic seizure suppression with loading impedance adaptability, IEEE transactions on biomedical circuits and systems, vol.7, issue.2, pp.196-203, 2013.

W. Liu, . Vichienchom, S. Clements, C. Demarco, . Hughes et al., A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device, IEEE Journal of Solid-State Circuits, vol.35, issue.10, p.11, 2000.
DOI : 10.1109/4.871327

X. Liu, N. Demosthenous, and . Donaldson, A Stimulator Output Stage with Capacitor Reduction and Failure-Checking Techniques, IEEE ISCAS, issue.4, 2006.

X. Liu, N. Demosthenous, and . Donaldson, An integrated Stimulator With DCIsolation and Fine Current Control for Implanted Nerve Tripoles, IEEE Journal of Solid-State Circuits, vol.46, issue.7, p.14, 2011.
DOI : 10.1109/jssc.2011.2144310

X. Liu, . Demosthenous, . Vanhoestenberghe, N. Jiang, and . Donaldson, Active Books: The Design of an Implantable Stimulator That Minimizes Cable Count Using Integrated Circuits Very Close to Electrodes, IEEE Transactions on Biomedical Circuits and Systems, vol.6, issue.3, p.12, 2012.
DOI : 10.1109/tbcas.2011.2174360

P. Nadeau and M. Sawan, A flexible high voltage biphasic current-controlled stimulator, 2006.
DOI : 10.1109/biocas.2006.4600344

W. Ngamkham, M. Van-dongen, W. Serdijn, C. Bes, J. Briaire et al., , pp.1-13

E. Noorsal, H. Sooksood, . Xu, . Hornig, M. Becker et al., A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants, IEEE Journal of Solid-State Circuits, vol.47, issue.1, p.13, 2012.
DOI : 10.1109/jssc.2011.2164667

M. Ortmanns, . Rocke, H. Gehrke, and . Tiedkte, A 232-Channel Epiretinal Stimulator ASIC, IEEE Journal of Solid-State Circuits, vol.42, issue.12, p.14, 2007.

F. Shahrokhi, . Abdelhalim, P. Serletis, R. Carlen, and . Genov, The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface, IEEE Transactions on Biomedical Circuits and Systems, vol.4, issue.3, p.13, 2010.

D. Shen and Y. Chu, A Linearized Current Stimulator for Deep Brain Stimulation, 2010.

R. Shulyzki, K. Abdelhalim, and R. Genov, Cmos current-copying neural stimulator with ota-sharing, Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp.1232-1235, 2010.

J. Sit and R. Sarpeshkar, A low-power blocking-capacitor-free chargebalanced electrode-stimulator chip with less than 6 na dc error for 1-ma full-scale stimulation, IEEE Transactions on Biomedical Circuits and Systems, vol.1, issue.3, pp.172-183, 2007.

M. Sivarprakasam, M. Liu, J. Humayun, and . Weiland, A Variable Range Bi-phasic Current Stimulus Driver Circuitry for an Implantable Retinal Prosthetic Device, IEEE Journal of Solid-State Circuits, vol.40, issue.3, p.9, 2005.

F. Soulier, . Lerat, . Gouyet, G. Bernard, and . Cathebras, A Neural Stimulator Output Stage for Dodecapolar Electrodes, IEEE Computer Society Annua Symposion on VLSI, p.4, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00279905

G. Suaning and N. Lovell, CMOS Neurostimulation ASIC with 100 CHannels, Scaleable Output, and Bidirectional Radio-Frequency Telemetry, IEEE Transactions on Biomedical Engineering, vol.48, issue.2, p.13, 2001.

J. Tan, K. Liu, . H-wee, Y. S-c-yen, T. Xu et al., Monolithic Programmable Nerve/ Muscle Stimulator, 2011.

S. Techer, Y. Bernard, . Bertrand, D. Cathébras, and . Guiraud, New Implantable Stimulator for the FES of Paralyzed Muscles. Solid-State Circuits Conference, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108820

T. Tokuda, . Hiyama, . Sawamura, Y. Sasagawa, . Terasawa et al., CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis, IEEE Transactions on Electron Devices, vol.56, issue.11, p.9, 2009.

P. Troyk, V. Meshahwar, R. Stein, D. Suh, and . Everaert, An Implantable Neural Stimulator for Intraspinal MicroStimulation. 34th Annual International Conference of the, IEEE EMBS, vol.1, issue.1, p.4, 2012.

V. Valente, R. Demosthenous, and . Bayford, Design of a Current-Steering Implantable Stimulator with Electric Field Shifting for Deep Brain Stimulation, p.4, 2010.

V. Valente, R. Demosthenous, and . Bayford, A Tripolar Current-Steerin Stimulator ASIC for Field Shaping in Deep Brain Stimulation, IEEE Transactions on Biomedical Circuits and Systems, vol.6, issue.3, p.11, 2012.

I. Williams and T. Constandinou, An Energy-Efficient, Dynamic VOltage Scaling Neural Stimulator for a Proprioceptive Prosthesis, IEEE Transactions on Biomedical Circuits and Systems, vol.7, issue.2, p.10, 2013.

F. Kolbl, Design of elecrical adaptive stimulators for different pathological contexts, a global approach, 2014.

R. D. Klafter and L. Hrebien, An in vivo study of cardiac pacemaker optimization by pulse shape modification, IEEE Transactions on Biomedical Engineering, vol.23, issue.3, pp.233-242, 1976.

M. Sahin and Y. Tie, Non-rectangular waveforms for neural stimulation with practical electrodes, Journal of neural engineering, vol.4, issue.3, pp.227-260, 2007.

J. Thomas, C. Foutz, and . Mcintyre, Evaluation of novel stimulus waveforms for deep brain stimulation, Journal of Neural Engineering, vol.7, issue.6, p.66008, 2010.

A. Wongsarnpigoon and . Warren, Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm, Journal of neural engineering, vol.7, issue.4, p.46009, 2010.

. Warren, Model-based analysis and design of waveforms for efficient neural stimulation, Progress in brain research, vol.222, pp.147-162, 2015.

G. Wick, C. Grundtman, C. Mayerl, T. Wimpissinger, J. Feichtinger et al., The immunology of fibrosis, Annual review of immunology, vol.31, pp.107-135, 2013.

P. Dvorak, M. Novak, P. Kamaryt, B. Slana, J. Lipoldova et al., Histological findings around electrodes in pacemaker and implantable cardioverter-defibrillator patients: comparison of steroid-eluting and nonsteroid-eluting electrodes, Europace, vol.14, issue.1, pp.117-123, 2011.

B. Goldstein, D. Kim, J. Xu, K. Vanderlick, and E. Culurciello, Cmos low current measurement system for biomedical applications, IEEE transactions on biomedical circuits and systems, vol.6, issue.2, pp.111-119, 2012.

B. Sanchez, . Guasch, C. Bogonez, . Galvez, C. Puig et al., Towards on line monitoring the evolution of the myocardium infarction scar with an implantable electrical impedance spectrum monitoring system, 2012 Annual International Conference of the IEEE, pp.3223-3226, 2012.

C. Justin, J. A. Williams, J. Hippensteel, W. Dilgen, . Shain et al., Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants, Journal of neural engineering, vol.4, issue.4, p.410, 2007.

G. C. Mcconnell, R. V. Butera, and . Bellamkonda, Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes, Journal of neural engineering, vol.6, issue.5, p.55005, 2009.

A. Mercanzini, P. Colin, J. Bensadoun, A. Bertsch, and P. Renaud, In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays, IEEE Transactions on biomedical engineering, vol.56, issue.7, pp.1909-1918, 2009.

T. Dowrick, D. Blochet, and . Holder, In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography, Physiological measurement, vol.36, issue.6, p.1273, 2015.

Z. Czaja, A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse, Sensors and Actuators A: Physical, vol.173, issue.1, pp.284-292, 2012.

Y. Lo, C. Chang, and W. Liu, Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.474-477, 2014.

A. Uranga, J. Sacristán, T. Osés, and N. Barniol, Electrode-Tissue Impedance Measurement CMOS ASIC for Functional Electrical Stimulation Neuroprostheses, vol.56, pp.2043-2050, 2007.

J. L-ausín, G. Ramos, and . Torelli, Live Demonstration : A Wireless Multichannel Bio-impedance Spectrometer for Patient Monitoring, p.2013, 2013.

X. Liu, D. Rairigh, and A. Mason, A fully integrated multichannel impedance extraction circuit for biosensor arrays, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.3140-3143, 2010.

F. Iasonas, A. Triantis, M. Demosthenous, H. Rahal, R. Hong et al., A multi-frequency bioimpedance measurement ASIC for electrical impedance tomography, Proceedings of the ESSCIRC (ESSCIRC), pp.331-334, 2011.

T. Garcia-sanchez, A. Azan, I. Leray, J. Rosell-ferrer, R. Bragos et al., Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes, Bioelectrochemistry, vol.105, pp.123-135, 2015.

G. Amorós-figueras, E. Jorge, T. García-sánchez, R. Bragós, J. Rosell-ferrer et al., Recognition of fibrotic infarct density by the pattern of local systolic-diastolic myocardial electrical impedance, Frontiers in physiology, vol.7, 2016.

J. Castelli, Design and validation of an ic-based multi-channel multiapplication neurostimulator, TBCAS, vol.0, issue.0, p.0, 2018.

H. Ballan and M. Declercq, High voltage devices and circuits in standard CMOS technologies, 2013.

M. Knaipp, J. M. Park, and V. Vescoli, Evolution of a cmos based lateral high voltage technology concept, Microelectronics journal, vol.37, issue.3, pp.243-248, 2006.

M. Richard and . Forsyth, Technology and design of integrated circuits for up to 50 v applications, IEEE International Conference on, vol.1, pp.7-13, 2003.

. John-j-como, R. H. Erica, M. Sutton, . Mccunn, P. Richard et al., Characterizing the need for mechanical ventilation following cervical spinal cord injury with neurologic deficit, Journal of Trauma and Acute Care Surgery, vol.59, issue.4, pp.912-916, 2005.

H. Chester, R. J. Ho, A. L. Triolo, K. L. Elias, A. F. Kilgore et al., Functional electrical stimulation and spinal cord injury. Physical medicine and rehabilitation clinics of North America, vol.25, pp.631-654, 2014.

A. M. Zbrzeski, R. Siu, Y. Bornat, and . Bk-hillen, Ranu Jung, and Sylvie Renaud. A versatile fast-development platform applied to closed-loop diaphragmatic pacing, 7th International IEEE/EMBS Conference on, pp.791-794, 2015.

F. Kölbl, F. Gilles-n'kaoua, F. Naudet, E. Berthier, S. Faggiani et al., An embedded deep brain stimulator for biphasic chronic experiments in freely moving rodents, IEEE transactions on biomedical circuits and systems, vol.10, issue.1, pp.72-84, 2016.

R. Siu-ricardo-abbas and J. J. Jung, Parametrization of a closed-loop adaptive controller for respiratory pacing in a rodent model, Neuroscience Meeting Planner, 2016.

M. Deterre, Toward an energy harvester for leadless pacemakers, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00868838

K. Robert-c-rennert, K. Rustad, M. Levi, M. Harwood, . Sorkin et al., A histological and mechanical analysis of the cardiac lead-tissue interface: implications for lead extraction, Acta biomaterialia, vol.10, issue.5, pp.2200-2208, 2014.

M. Sahin and Y. Tie, Non-rectangular waveforms for neural stimulation with practical electrodes, Journal of neural engineering, vol.4, issue.3, p.227, 2007.