, r) is chosen. In our case, for the rst guess the amplitude of the wave function is dened as uniform in space and equal to the mean value of the intensity. The phase is chosen randomly in the space. This function is dened over a "support" S k , which can be rstly computed if knowing roughly the size of the studied object or using a Patterson function

, The Fast Fourier Transform (FFT) of g k ( r) is computed, leading to G k ( q) function in the reciprocal space

J. B. Pethica, R. Hutchings, and W. C. Oliver, Composition and hardness proles in ion implanted metals. Nuclear Instruments & Methods, 209/210:9951000, p.22, 1983.

J. L. Loubet, J. M. Georges, J. M. Marchesini, and G. Meille, Vickers indentation curves of magnesium oxide, Journal of tribology, vol.106, p.4348, 1984.

J. L. Loubet, J. M. Georges, and G. Meille, Microindentation Techniques in Materials Science and Engineering: Vickers Indentation Curves of Elastoplastic Materials. American society for Testing and materials, p.22, 1986.

M. Oyen and R. F. Cook, A practical guide for analysis of nanoindentation data, Journal of the mechanical behavior of biomedical materials, vol.2, p.26, 2009.

V. Maier, B. Merle, M. Göken, and K. Durst, An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures, Journal of Materials Research, vol.28, issue.9, p.27, 2013.

K. Durst and C. Maier, Dynamic nanoindentation testing for studying ththermal activated processes from single to nanocrystalline metals. Current Opinion in Solid State and BIBLIOGRAPHY Material Science, vol.19, p.27, 2015.

V. Maier, A. Hohenwarter, R. Pippan, and D. Kiener, Thermal activated deformation processes in body-centered cr-how microstructures iinuence strain rate sensitivity, Scripta Materialia, vol.106, p.27, 2015.

H. Hertz, Miscellaneous Papers-On the contact of elastic solids. Macmillan and co., 1896. rst published in 1881, p.28

H. Hertz, Miscellaneous Papers-On the contact of rigid elastic solids and on Hardness. Macmillan and co., 1896. rst published in 1881, p.28

A. E. Love, Boussinesq's problem for a rigid cone, Quaterly Journal of Mathematics, vol.10, p.30, 1939.

J. Boussinesq, Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques, p.30

A. E. Love, The stress produced in a semi-innite solid by pressure on part of the boundary, Philosophical Transactions of the Royal Society of London. Series A, Containing Papersof a Mathematical or Physical Character, vol.228, issue.377420, p.31, 1929.

I. N. Sneddon, The relation between load and penetration in the axisymetric boussinesq problem for a punch of arbitrary prole, Int. J. Engng Sci, vol.3, p.4757, 1965.

I. N. Sneddon, Fourier transforms. Dover publications, p.31, 1951.

J. R. Willis, Hertzian contact of anisotropic bodies, Journal of Mechanical Physics of Solids, vol.14, p.31, 1966.

C. M. Segedin, The relation between load and penetration for a spherical punch, Mathematika, vol.4, p.31, 1956.

M. F. Doerner and W. D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, vol.1, issue.4, p.31, 1986.

G. M. Pharr, W. C. Oliver, and F. R. Brotzen, On the generality of the relarelation among contact stiness, contact area and elastic modulus, Journal of Materials Re, vol.7, issue.3, p.31, 1992.

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, issue.6, p.15641582, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-manuel, Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures : Nanoexperiments with a surface force appartus, 1993.

G. Hochstetter, A. Jimenez, and J. L. Loubet, Strain rate eect on hardness of glassy polymers in the nanoscale range. comparison between quasi-static and continous stiness measurements, Journal of Macromolecular Science, Part B: Physics, vol.38, issue.5-6, p.39, 1999.

J. L. Bucaille, G. Felder, and . Hochstetter, Inanoindentation the viscoplastic behavior of a polycarbonate based on experiments and numeical modeling of the nano-indentation test, Journal of Materials Science, vol.37, p.48, 2002.

J. B. Pethica and W. C. Oliver, Mechanical properties of nanometer volumes of material: use of elastic response of small area indentations, Thin lms: ststress and mechanical properties, vol.130, p.36, 1989.

S. A. Syed-asif and J. B. Pethica, Nanoscale creep and the role of defects, Thin lms: ststress and mechanical properties, vol.436, p.36, 1997.

X. Li and B. Bhushan, A review of nanoindentation continuous stiness measurement technique and its applications, Materials Characterization, vol.48, p.37, 2002.

E. G. Herbert, K. E. Johanns, R. S. Singleton, and G. M. Pharr, On the measurement of energy dissipation using nanoindentation and the continuous stiness measurement technique, Journal of Materials Research, vol.28, issue.21, p.36, 2013.

W. C. Oliver and G. M. Pharr, Measurements of hardness and elastic modulus by instrumented indentation: Advances in understanding and renements to methodology, Journal of Materials Research, vol.19, issue.1, p.320, 2004.

D. Tabor, A simple theory of static and dynamic hardness, Proceedings of the royal society of london, Serie A, vol.192, p.42, 1948.

D. Tabor, The hardness of Metals, 1951.

H. Hencky, Über einige statisch bestimmte falle des gleichgewichts in plastischen korpern, Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.3, issue.4, p.40, 1923.

. Ishlinsky, Axisymmectrical problem of plaplastic theory and brinel test, Journal of Applied Mathematics and Mechanics, vol.8, issue.3, p.40, 1944.

E. G. Herbert, G. M. Pharr, W. C. Oliver, B. N. Lucas, and J. L. Hay, On the measurement of stress-strain curves by spherical indentation, Thin Solid Films, p.42, 2001.

K. L. Johnson, The correlation of indentation experiments, Journal of Mechanical Physics of Solids, vol.18, p.42, 1970.

R. F. Bishop, R. Hill, and N. F. Mott, The theory of indentation and hardness tests. The proceedings of the physical society, vol.57, p.42, 1945.

D. M. Marsh, Platest ow in glass, Proceedings of the Royal Society of London. Series A, vol.279, issue.18, p.42, 1964.

R. Hill, Themathemmetals theory of plasticity, p.43, 1950.

F. J. Lockett, Indentaton of a rigid/plastic material by conical indenter, Journal of Mechanical Physics of Solids, vol.11, p.42, 1963.

G. Kermouche, J. L. Loubet, and J. M. Bergheau, An approximate solution to the problem of cone or wedge indentation of elastoplastic solids, Comptes Rendus Mecanique, vol.333, p.43, 2005.

G. Kermouche, Contribution à la modélisation théorique et numérique des essais d'indentation et de rayure, p.43, 2005.

Y. T. Cheng and C. M. Cheng, Eect of 'sinking in' and 'piling up' on estimating the contact area under load in indentation, Philosophical Magazine Letters, vol.78, issue.2, p.44, 1998.

Y. T. Cheng and C. M. Cheng, Scalindentation to conical indentation in elastic-plastic solids with work hardening, Jounral of Applied Physics, vol.83, issue.3, p.44, 1998.

Y. T. Cheng and C. M. Cheng, Can stress-strain relatrelation be obtained from indentation curves using conical and pyramidal indenters, Journal of Materials Research, vol.14, issue.9, p.44, 1999.

M. Dao, N. Chollacoop, K. J. Van, T. A. Vliet, S. Venkatesh et al., Computational modeling of the forward and reverse pproblem in instrumented sharp indentation, Acta Materialia, vol.49, p.47, 2001.

A. E. Giannakopoulos, P. Larsson, and R. V. Vestergaard, Analysis of vickers indentation, International Journal of Solids Structures, vol.31, p.47, 1994.

O. Casals and J. Alcala, The duality in mechanical property extractions from vickers and berkovich instrumented indentation experiments, Acta Materialia, vol.53, p.48, 2005.

J. Bucaille, . Stauss, J. Felder, and . Michler, Determination of plastic properties of metals by instrumented indentation using dierent sharp indenters, Acta Materialia, vol.51, p.48, 2003.

S. R. Kalidindi and S. Pathak, Determination of the eective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia, vol.56, p.48, 2008.

O. Casals, J. Ocenasek, and J. Alcala, Crystal plasticity nite element simulations of pyramidal indentation in copper single crystals, Acta Materialia, vol.55, issue.1, p.48, 2007.

O. Casals, J. Ocenasek, and J. Alcala, Micromechanics of pyramidal indentation in fcc metals: single crystal plasticity nite element analysis, Journal of Mechanical Physics of Solids, vol.56, issue.11, p.48, 2008.

Y. Liu, M. Yoshino, H. Lu, and R. Komanduri, Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale, International Journal of Plasticity, vol.24, p.48, 2008.

N. Zaafarani, D. Raabe, F. Dingh, N. , and S. Zaeerer, Three dimensional investigation of the texture and microstructure below a nanoindent in a cu single crystal using 3d ebsd and crystal plasticity nite element simulations, Acta Materialia, vol.54, p.48, 1994.

M. Verdier, H. J. Chang, and M. Fivel, Eet de la densité initiale de dislocations en indentation de monocristaux de cuivre, Materiaux et techniques, vol.96, p.49, 2008.

H. J. Chang, M. Fivel, D. Rodney, and M. Verdier, Multiscale modelling of indentation in fcc metals: From atomic to continuum, Comptes Rendus Physique, vol.11, issue.3-4, p.285292, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00950687

H. J. Chang, M. Fivel, and M. Verdier, Indentation crystal plasticity: Experiments and multiscale simulations, MRS Proceedings, p.49, 1224.

S. Vuhoang, Simulations numériques et mesure eexpérimentale du comportement mécanique de lms minces, p.49, 2006.

S. Vuhoang, G. Parry, and M. Verdier, Crystal plasticity of single crystal and lm on substrate pprobe by nano-indentation: Simulations and experiments, MRS Proceedings, 1363, p.49, 2011.

H. Nili, K. Kalentar-zadeh, M. Bhaskaran, and S. Sriram, situ nanoindentation: Probing nanoscale multifunctionality. Progress in Materials Science, vol.58, pp.50-76, 2013.

R. Rabe, J. M. Breguet, P. Schwaller, S. Stauss, F. J. Haug et al., Observation of fracture and plastic deformation during indentation and scratching, Thin Solid Films, vol.206, issue.13, p.50, 2004.

K. A. Rzepiejewska-malyska, G. Buerki, J. Michler, R. C. Major, E. Cyrankowski et al., In situ mechanical observation during nanoindentation inside a highresolution scanning electron microscope, Journal of Materials Research, vol.23, p.50, 2008.

B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler, Observation of instabilities during plastic deformation by in-situ sem indentation experiments, Advanced Engineering Materials, vol.7, p.50, 2005.

B. Moser, J. F. Löer, and J. Michler, Discrete deformation in amorphous metals: an in situ sem indentation study, Philosophical Magazine, vol.86, p.50, 2006.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul et al., Elastomeric silicone substrates for terahertz shnet metamaterials, Applied Physics Letters, vol.100, p.50, 2012.

K. A. Rzepiejewska-malyska, M. Parlinska-wojtan, K. Wasmer, J. Hejduk, and M. J. , In-situ sem indentation studies of the deformation mmechanism in tin, crn and tin/crn. Micron, vol.40, p.50, 2009.

K. A. Rzepiejewska-malyska, W. M. Mook, M. Parlinska-wojtan, J. Hejduk, and M. J. , In situ scanning electron microscopy indentation studies on multilayer nitride lms: Methodology and deformation mechanisms, Journal of Materials Research, vol.24, p.50, 2009.
DOI : 10.1557/jmr.2009.0139

URL : http://doc.rero.ch/record/298786/files/S0884291400031988.pdf

N. Vecchione, K. Wasmer, D. S. Balint, and K. Nikbin, Characterisation of eb-pvd yttrium-stabilised zirconia by nanoindentation, Surface Coating Technology, vol.203, p.50, 2009.

E. A. Stach, T. Freeman, A. M. Minor, D. K. Owen, J. Cumings et al., Development of a nanoindenter in situ transmission electron microscopy, Microscopy and Microanalysis, vol.7, p.51, 2001.

A. Minor, E. T. Lilleodden, E. A. Stach, and M. J. , In-situ transmission electron microscopy study of nanoidnentation behavior of al, Journal of Electronic Materials, vol.31, p.51, 2002.

A. M. Minor, E. T. Lilleodden, E. A. Stach, and M. J. , Direct oobservation of incipient plasticity during nanoindentation of al, Journal of Materials Research, vol.19, p.51, 2004.

M. Jin, A. M. Minor, D. Ge, and M. J. , Study of deformation behavior of ultranegrained materials through in situ nanoindentation in a transmission electron microscope, Journal of Materials Research, vol.20, p.51, 2005.

T. Ohmura, A. M. Minor, E. A. Stach, and M. J. , Dislocations-grain boundary interactions in martensitic steel observed through in-situ nanoindentation in a transmisBIBLIOGRAPHY sion electron miscroscope, Journal of Materials Research, vol.19, p.51, 2004.

L. Zhang, T. Ohmura, K. Seikido, K. Nakajima, T. Hara et al., Direct observation of plastic deformation in iron-3crystal by in situ nanoindentation in transmission electron microscopy, Scripta Materialia, vol.64, p.51, 2011.

E. Withey, M. Jin, A. Minor, S. Kuramoto, D. C. Chrzan et al., The deformation of "gum metal" in nanoindentation, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, vol.493, p.51, 2008.

R. Holm, Electrics Contacts, Theory and Applications, 2000.

R. S. Timsit, Electrical Contact Resistance: Fundamental Principles, 1999.
DOI : 10.1201/b15640-1

M. Braunovic, V. V. Konchits, and N. K. Myshkin, Electrical Contacts, Fundamental, Applications and Technology, 2007.
DOI : 10.1201/9780849391088

H. Aichi and N. Tahara, Analysis on the constriction resistance of the electric contact by the model using electrolyte bath, Proceedings of 7th International Conference on Electrical Contacts, p.55, 1994.

M. Nakamura, Constriction resistance of conducting spots by the boudary element methode, IEEE Transactions on Components Hy, vol.16, issue.3, p.339343, 1993.

M. G. Cooper, B. B. Mikic, and M. M. Yovanovich, Thermal contact conductance. International Journal of Heat and Mass Transfer, vol.12, p.56, 1969.

Y. Sano, Eect of space angle on constriction resistance and contact resistance for a point contact, Journal of applied physiscs, vol.58, issue.7, p.56, 1985.

Y. Sharvin, A possible method for studying fermi surfaces, Soviet Physics Jetp-Ussr, vol.21, issue.3, p.57, 0197.

G. Wexler, The size eect and the non-local boltzmann transport equation in orice and disk geometry, Proceedings of the Physical Society, vol.89, p.57, 1966.

R. S. Timsit, Electrical contact resistance: Properties of stationnary interfaces, IEEE Transactions on Components, vol.22, p.8598, 1999.

A. Mikrajuddin, F. G. Shi, H. K. Kim, and K. Okuyama, Size-dependant electrical constriction resistance for contacts of arbitrary size: from sharvin to holm limits, Materials Science in Semiconductor Processing, vol.2, p.57, 1999.

B. Nikolic and P. B. Allen, Electron transport through a circular constriction, Physical Review B: Condensed Matter and Materials Physics, vol.60, issue.6, p.57, 1999.

D. Erts, H. Olin, L. Ryen, E. Olsson, and A. Thölén, Maxwell and sharvin conductance in gold point contacts investigated using tem-stm, Physical Review B, vol.61, issue.19, p.59, 2000.

B. Ludolph, M. H. Devoret, D. Esteve, C. Urbina, and J. M. Van-ruitenbeek, Evidence for saturation of channel transmission from conductance uctuations in atomic-size point contacts, Physical Review Letters, vol.82, issue.7, p.59, 1999.

B. Ludolph and J. M. Van-ruitenbeek, Thermopower of atomic-size metallic contacts, Physical Review B, vol.59, issue.19, p.59, 1999.

J. A. Greenwood, Constriction resistance and the real area of contact, Journal of Applied Physics, vol.17, p.61, 1966.

R. S. Timsit, Some fundamental properties of aluminum-aluminum electrical contacts, IEEE Transactions on components, hybrids, and manufacturing technology, vol.3, issue.1, p.62, 1980.

E. Crinon and J. T. Evans, The eect of surface roughness, oxide lm thickness and interfacial sliding on electrical contact resistance of aluminium, Materials Science and Engineering, vol.242, p.63, 1998.

J. Aronstein, An updated view of the aluminum contact interface, IEEE Holm conference on electrical contact, p.62, 2004.

D. Mercier, V. Mandrillon, A. Holtz, F. Volpi, M. Verdier et al., Quantitative evolution of electrical contact resistance between aluminium thin lms, Proceedings of the 58th IEEE Holm Conference on elecrical contact, p.18, 2012.

H. R. Le, M. P. Sutclie, P. Z. Wang, and G. T. Burstein, Surface oxide fracture in cold aluminium rolling, Acta Materialia, vol.52, p.911920, 2004.

H. R. Le, M. P. Sutclie, P. Wang, and G. T. Burstein, Surface generation and boundary lubrication in bulk forming of aluminium alloy, Wear, vol.258, p.15671576, 2005.

H. A. Mohamed and J. Washburn, Mechanism of solid state pressure welding, Welding Research Supplement, vol.54, issue.9, p.214, 1975.

J. G. Simmons, Generalized formula for the electric tunnel eect between similar electrodes separeted by a thin insulating lm, Journal of applied physiscs, vol.34, issue.6, p.62, 1963.

I. C. Chen, S. E. Holland, and C. M. Hu, Electrical breakdown in thin gate and tuntunnel oxides, IEEE Transactions on Electron, vol.32, issue.2, p.63, 1985.

K. Gloos, P. J. Koppinen, and J. P. Pekola, Properties of native ultrathin aluminium oxide tunnel barriers, Journal of Physics: Condensed Matter, vol.15, p.63, 2003.

A. Bouchoucha, H. Zaidi, E. K. Kadiri, and D. Paulmier, Inuence of electric elds on tribological behaviour of electrodynamical copper/steel contacts, vol.434441, pp.203-204, 1997.

W. C. Liu, S. W. Chen, and C. M. Chen, The al/ni interfacial reactions under the inuence of electric current, Journal of Electronic Materials, vol.27, issue.1, p.65, 1998.

F. Kohlraush, Über den stationären temperatursustand eines elektrish geheizten leiters, Annalen der Physik, vol.306, issue.1, p.232, 1900.

R. S. Timsit, On the evaluation of contact temperature from potential-drop measurements, IEEE Transactions on components, hybrids, and manufacturing technology, vol.6, p.66, 1983.

V. V. Konchits and C. K. Kim, Electrical current passage and interface heating, Wear, vol.232, p.67, 1999.

H. Blok, Theoritical study of temperature rise at surfaces of actual contact under oilness lubricating conditions, Proceedings of Institude of Mechanical Engineering, vol.2, p.66, 1959.

J. S. Jaeger, Moving sources of heat and the temperature at sliding surfaces, Proceedings of the Royal Society of New South Wales, vol.56, p.66, 1942.

P. D. Wolf, T. Clarysse, and W. Vandervorst, Quantication of nanospreading resistance proling data, Journal of Vacuum Science & Technology, B: Nanotechnology and Microelectronics, vol.16, issue.1, p.69, 1997.

W. Vandervorst and M. Meuris, European patent 466274, p.68, 1992.

P. Eyben, W. Vandervorst, D. Alvarez, M. Xu, and M. Fouchier, Probing Semiconducteurs Technology and Devices with Scanning Spreading Resistance Microscopy IN Scanning Probe Microscopy Electrical and Electromechanical Phenomena at the NaProbing

. Springer, , p.70, 2007.

P. Eyben, S. Denis, T. Clarysse, and W. Vandervorst, Progress towards a physical contact model for scanning spreading resistance microscopy, Materials Science & Engineering, B: Solid-State Materials for Advanced Technology, vol.102, p.70, 2003.

T. Clarysse, P. Eyben, N. Duhayon, and M. W. Xu, Carrier spilling revisited: on-bevel junction behavior of dierent electrical depth proling techniques, Journal of Vacuum Science & Technology, B: Nanotechnology and Microelectronics, vol.21, issue.2, p.70, 2003.

A. Olbrich, B. Ebersberger, and C. Boit, Conducting atomic force microscopy for nanoscale electrical characterization of thin si02, Applied Physics Letters, vol.73, p.31143116, 1998.

A. Olbrich, B. Ebersberger, and C. Boit, Nanoscale electrical characterization of thin oxides with conducting atomic force microscopy. 36th annual IEEE, p.74, 1998.

M. Porti, M. Nafria, X. Aymerich, A. Olbrich, and B. Ebersberger, Nanometer-scale electrical characterization of ststress ultrathin si02 lms using conducting atomic force microscopy, Applied Physics Letters, vol.78, p.71, 2001.

W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, C-afm-based thickness determination of thin and ultra-thin si02 lms by use of dierent conductive-coated probe tips, Applied Surface Science, vol.253, p.36153626, 2007.

G. Benstetter, R. Biberger, and D. Liu, A review of advanced scanning probe microscope analysis of functional lms and semiconductor devices, Thin Solid Films, vol.517, p.51005105, 2009.

S. J. O'shea, R. M. Atta, M. P. Murrel, and M. E. Welland, Conducting atomic force microscopy study of silicon dioxide breakdown, Journal of Vacuum Science & Technology, B: Nanotechnology and microelectronics, vol.13, issue.5, p.19451952, 1995.

C. I. Pakes, S. Ramelow, S. Prawer, and D. N. Jamieson, Nanoscale electrical characterization of trap-assisted quasibreakdown uctuations in si02, Applied Physics Letters, vol.84, issue.16, p.74, 2004.

Z. G. Sun, H. Kuramochi, H. Akinaga, H. H. Yu, and E. D. Gu, Conductive atomic force microscopy study of silica nanotrench structure, Applied Physics Letters, vol.90, p.4210613, 2007.

S. Gsell, M. Schreck, G. Benstetter, B. Lodermeier, and B. Stritzker, Combined afm-sem study of the diamond nucleation layer on ir(001). Diamond & Related Materials, 16:665 670, 2007.

A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani et al., Current mapping of gan lms by conductive atomic force microscopy, Applied BIBLIOGRAPHY Physics Letters, vol.82, issue.12, p.18901892, 2003.

X. A. Cao, J. M. Teetsov, M. P. D'evelyn, D. W. Merfeld, and C. H. Yan, electrical characteristics of ingan/gan light emitting diodes grown on gan and sapphire substrates, Applied Physics Letters, vol.85, issue.1, pp.71-74, 2004.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng et al., Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy, Applied Physics Letters, vol.81, issue.14, p.73, 2002.

J. A. Steen, J. Hayakawa, T. Harada, K. Lee, F. Calame et al., Elelectrical conducting probes with full tungsten cantilever and tip for scaning probe applications, Nanotechnology, vol.17, p.71, 2006.
DOI : 10.1088/0957-4484/17/5/050

URL : https://infoscience.epfl.ch/record/83483/files/Steen_2006_Nanotech.pdf

S. J. O'shea, R. M. Atta, and M. E. Welland, Characterization of tips for conducting atomic microscopy, Review of Scientic Instruments, vol.66, issue.3, p.71, 1995.

E. Chery, Fiabilité des diéléctriques low-k SiOCH poreux dans les interconnections CMOS avancées, p.73, 2006.

E. W. Lim and R. Ismail, Conduction mechanism of valence change resistive switching memory: A survey, vol.4, p.73, 2015.
DOI : 10.3390/electronics4030586

URL : http://www.mdpi.com/2079-9292/4/3/586/pdf

J. W. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Direct imaging of reverse-bias leakage through pure screw dislocations in gan lms grown by molecular beam epitaxy on gan templates, Applied Physics Letters, vol.81, issue.1, p.74, 2002.

M. Lanza, M. Porti, M. Nafria, X. Aymerich, E. Whittaker et al., Electrical resolution during conductive atomic force microscopy measurements under dierent environmental conditions and contact forces, Review of Scientic Instruments, vol.81, p.181
DOI : 10.1063/1.3491956

M. Lanza, M. Porti, M. Nafria, X. Aymerich, E. Whittaker et al., Uhv cafm characterisation of high-k dielectrics: Eect of the technique resolution on the preand post-breakdown electrical measurements. Microelectronics Reliability, vol.50, p.13121315, 2010.

D. Stievenard and B. Legrand, Silicon surface nano-oxidation using scanning probe microscopy, Progress in Surface Science, vol.81, p.181, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00127846

D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Amorphization and conductivity of silicon and germanium induced by indentation, Physical Review Letters, vol.60, p.76, 1988.
DOI : 10.1103/physrevlett.60.2156

G. M. Pharr, W. C. Oliver, R. F. Cook, P. D. Kirchner, and M. ,

T. R. Krkroll and . Dinger, Electrical resistance of metallic contacts on silicon and germanium during indentation, Journal of Materials Research, vol.7, p.180, 1992.

A. B. Mann, D. Van-heerden, J. B. Pethica, and T. P. Weihs, Size-dependent phase transformation during point loading of silicon, Journal of Materials Research, vol.15, issue.8, pp.1754-1758, 2000.

A. B. Mann, D. Van-heerden, J. B. Pethica, P. Bowes, and T. P. Weihs, Contact resistance and phase ttransformation during nanoindentation of silicon, Philosophical Magazine A, vol.82, issue.10, p.19211929, 2002.

J. Bradby, J. S. Williams, and M. V. Swain, In situ electrical characterisation of phase transformation in si during indentation, Physical Review B: Condensed Matter and Materials Physics, vol.67, p.180, 2003.

J. S-ruell, J. S. Bradby, and W. Williams,

O. L. , An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon, Journal of Materials Research, vol.22, issue.3, p.578585, 2007.

J. S-ruell, N. Bradby, J. S. Fujisawa, and . Williams, Identication of nanoindentationinduced phase changes in silicon by in situ electrical characterization, Journal of Applied Physics, vol.101, p.83531, 2007.

D. D. Stauer, R. C. Major, D. Vodnick, J. H. Thomas, J. Parkern et al., Plastic response of the native oxide on cr and al thin lms from in situ conductive nanoindentation, Journal of Materials Research, vol.27, issue.4, p.180, 2012.

J. B. Pethica and D. Tabor, Contact of characterised metal surface at very low loads: deformation and adhesion, Surface Science, vol.89, p.180, 1979.

H. H. Nguyen, P. J. Wei, and J. F. Lin, Electrical contact resistance for monitoring nanoindentation-induced delamination, Advanced Natural Sciences: nanoscience and nanotechnology, vol.2, p.180, 2011.
DOI : 10.1088/2043-6262/2/1/015007

URL : http://iopscience.iop.org/article/10.1088/2043-6262/2/1/015007/pdf

P. Y. Duvivier, Etude expérimentale et modélisation du contact électrique et mécanique quasi statique entre surfaces rugueuses d'or: application aux micro-relais mems, p.77, 2010.

L. Fang, C. L. Muhlsteing, J. G. Collins, A. L. Romasco, and L. H. Friedman, Continuous electrical in situ contact area measurement during instrumented indentation, Journal of Materials Research, vol.23, issue.9, p.24802485, 2008.
DOI : 10.1557/jmr.2008.0298

D. J. Sprouster, J. Ruel, D. D. Bradby, R. C. Stauer, . Major et al., Quantitative electromechanical characterization of materials using BIBLIOGRAPHY conductive ceramic tips, Acta Materialia, vol.71, p.153163, 2014.
DOI : 10.1016/j.actamat.2014.02.028

D. J. Sprouster, J. E. Ruel, J. S. Bradby, M. N. Williams, M. R. Lockrey et al., Structural characterization of b-doped diamond nanoindentation tips, Journal of Materials Research, vol.26, issue.24, p.30513057, 2011.
DOI : 10.1557/jmr.2011.377

T. Yudate, J. Toyoizumi, M. Onuma, T. Kondo, T. Shimizu et al., The investigation of the electrical contact resistance through thin oxide layer on a nanometer scale, IEEE Holm conference on electrical contact, p.78, 2016.

L. Maniguet, F. Roussel, R. Martin, E. Djurado, M. C. Steil et al., Fuel cells and cceramic-characterizing real-world ssample with a fe-sem ready for challenges, Microscopy and Analysis, vol.21, p.93, 2015.

F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Applied Physics Letters, vol.69, 1996.

C. Herrera, D. Ponge, and D. Raabe, Design of a novel mn-based 1gpa duplex stainless trip steel with 60ductility by a reduction of austenite stability, Acta Materialia, vol.59, p.116, 2011.

A. Lechartier, Inuence de la transformation martensitique induite par la déformation sur le comportement mécanique d'aciers inoxydables duplex, p.122, 2016.

A. Lechartier, G. Martin, S. Comby, F. Roussel-dherbey, A. Deschamps et al., Inuene of the martensite transformation on the microscale plastic strain heterogeneities in a duplex stainless steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol.48, issue.1, p.2025, 2017.

M. Asgari, R. Johnsen, and A. Barnoush, Nanomechanical characterization of the hydrogen eect on pulsed plasma nitrided super duplex stainless steel, International Journal of Hydrogen Energy, vol.38, p.117, 2013.
DOI : 10.1016/j.ijhydene.2013.08.137

M. Delince, P. J. Jacques, and T. Pardoen, Separation of size-dependent strengthening contributions in ne-grained dual phase steels by nanoindentation, Acta Materialia, vol.54, issue.33953404, p.118, 2006.

H. Naser, Development of architectured micro-composite duplex stainless ssteel: manufacturing, microstructure & mechanical behavior, 2016.
DOI : 10.1016/j.matdes.2018.02.069

R. Saha and W. D. Nix, Eect of the substrate on the determination of thin lm mechanical properties by nanoindentation, Acta Materialia, vol.50, p.126, 2002.

R. Ouahab, Comportement des aciers bainitiques à diérentes temperature: étude de la cémentite aux grands instruments, p.127, 2012.

A. Fernandes-vincente, M. Pellizzari, and J. L. Arias, Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls, Journal of Materials Processing BIBLIOGRAPHY Technology, vol.212, p.127, 2008.

G. Constantinides, K. S. Chandran, F. J. Ulm, K. J. Van, and . Vliet, Grid indentation analysis of composite microstructure and mechanics: Principles and validation, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, vol.430, p.130, 2005.

F. Mas, C. Tassin, N. Valle, R. F. , F. Charlot et al., Metallurgical characterization of coupled carbon diusion and precipitation in dissimilar steel welds, Journal of Materials Science, vol.51, issue.10, p.133, 2016.

J. D. Currey, Bones: Structure and Mechanics, p.137, 2002.

C. E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maier et al., Architecture and material properties of diatom shells provide eective mechanical protection, Nature, vol.421, p.137, 2003.
DOI : 10.1038/nature01416

URL : http://epic.awi.de/5688/1/Ham2002b.pdf

J. C. Weaver, J. Aizenberg, G. E. Fantner, D. Kisailus, A. Woesz et al., Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge euplectella aspergillum, Journal of Structural Biology, vol.158, issue.1, p.137, 2007.

M. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, High-strenght cellular ceramic ccomposite with 3d microarchitecture, Proceedings of the National Academy of Sciences, vol.111, issue.7, p.24532458, 2014.

L. R. Meza, S. Das, and J. R. Greer, Strong, lightwlight, and recoverable threedimensional ceramic nanolattices, Science, vol.345, issue.6202, p.140, 2014.
DOI : 10.1126/science.1255908

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, Approching theoritical strength in glassy carbon nanolattices, Nature Materials, vol.15, p.438444, 2016.

I. Wang, M. Bouriau, and P. L. Baldeck, Three-dimensional microfabrication by twophoton initiated polymerpolymer with a low-cost microlaser, Optics Letters, vol.27, issue.15, p.137, 2002.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, The mechanical properties of natural materials. i. material property charts, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol.450, p.140, 1995.

S. S. Brenner, Plastic deformation of copper and silver whiskers, Journal of Applied Physics, vol.28, p.10231026, 1957.
DOI : 10.1063/1.1722900

B. Wu, A. Heidelber, and J. J. Boland, Mechanical properties of ultrahigh-strength gold nanowires, Nature materials, vol.4, p.143, 2005.

G. Richter, K. Hillerich, D. S. Gianola, R. Mönig, O. Kraft et al., Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition, Nano Letters, vol.9, issue.8, pp.143-145, 2009.
DOI : 10.1021/nl9015107

URL : http://gianola.seas.upenn.edu/pubs/PDFs/Richter_nanowhisk_published_nanolett_2009.pdf

F. Östlund, K. A. Rzepiejewska-malyska, K. Leifer, L. M. Hale, Y. Tang et al., Nanostructure fracturing: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature, Advanced Functional Materials, vol.19, issue.15, p.144, 2009.

S. G. Corcoran, R. J. Colton, E. T. Lilleodden, and W. W. Gerberich, Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals, Physical Review B: Condensed Matter and Materials Physics, vol.55, issue.24, 1997.

H. Bei, S. Shim, G. M. Pharr, and E. P. George, Eects of pre-strain on the compressive stress-strain response of mo-alloy single-crystal micropillars, Acta Materialia, vol.56, issue.17, p.144, 2008.

M. U. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Sample dimensions inuence strength and crystal plasticity, Science, vol.50, p.145, 2004.
DOI : 10.1126/science.1098993

J. R. Greer, W. C. Oliver, and W. D. Nix, Size dependance of mechanical properties of gold at the micron scale in the abscence of strain gradient, Acta Materialia, vol.53, p.18211830, 2005.

H. Bei, S. Shim, M. K. Miller, G. M. Pharr, and E. P. George, Eects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal, Journal of Applied Physics, vol.91, p.144, 2007.

C. Kiener, M. Motz, M. Rester, G. Jenko, and . Dehm, Fib damage of cu possible consequences for miniaturized mechanical tests, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, vol.459, p.144, 2007.

H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert et al., Compressive sstrength of molybdenum alloy micro-pillars prepared using a new technique, Scripta Materialia, vol.57, p.145, 2007.

D. Mordehai, M. Kazakevich, D. J. Srolovitz, and E. Rabkin, Nanoindentation size eect in single-crystal nanoparticles and thin lms: a comparative experimental and simulation study, Acta Materialia, vol.59, p.23092321, 2011.

D. Mordehai, S. K. Lee, B. Backes, D. J. Srolovitz, W. D. Nix et al., Size eect in compression of single-crystal gold microparticles, Acta Materialia, vol.59, p.52025215, 2011.

W. M. Mook, C. Niederberger, M. Bechelany, P. L. Michler, and J. , Compression of freestanding gold nanostructures: from stochastic yield to predictable ow, Nanotechnology, vol.21, p.19, 2010.

W. D. Nix and Y. Gao, Indentation size eect in crystalline materials: a law for strain gradient plastictity, Journal of Mechanics and Physics of Solids, vol.46, issue.3, p.411425, 1998.

A. H. Ngan, L. Zuo, and P. C. Wo, Size dependance and stochastic nature of yield strength of micron-sized crystals: a case study on ni3al, Proceedings of the royal society of london, Serie A, vol.462, pp.145-164, 2006.

J. R. Greer and W. D. Nix, Nanoscale gold pillars strengthened throug dislocation starvation, Physical Review B: Condensed Matter and Materials Physics, vol.73, p.145, 2006.

Y. Feruz and D. Mordehai, Towards a universal size-dependant strength of face-centered cubic nanoparticles, Acta Materialia, vol.103, p.172, 2016.

M. Dupraz, Coherent X-ray diraction applied to metal physics, 2015.

R. Rupp, Solid state dewetting of gold on sapphire for ptychography measurements of nano-indented crystals, p.153, 2015.

G. Beutier, M. Verdier, G. Parry, B. Gilles, S. Labat et al.,

S. V. Lory, F. Hoang, O. Livet, M. D. Thomas, and . Boissieu, Strain inhomogeneity in copper islands probed by x-ray diraction, Thin Solid Films, vol.530, p.147, 2013.

G. , Zur frage der geschwindigkeit des wachstums und der auösung der krystallagen, vol.34, p.150, 1901.

W. L. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metallurgica, vol.15, p.152, 1967.

O. Malyi, L. Klinger, D. J. Srolovitz, and E. Rabkin, Size and shape evolution of faceted bicrystal nanoparticles of gold on sapphire, Acta Materialia, vol.59, p.153, 2011.

O. Kovalenko and E. Rabkin, Mechano-stimulated equilibration of gold nanoparticles on sapphire, Scripta Materialia, vol.107, p.154, 2015.

I. Robinson and R. Harder, Coherent x-ray diraction imaging strain at the nanoscale, Nature materials, vol.8, pp.291-298, 2009.

M. Dupraz, G. Beutier, T. Cornelius, G. Parry, Z. Ren et al., 3d imaging of a dislocation loop at the onset of plasticity in an indented nanocrystal, Nano Letters, vol.17, issue.11, p.157, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633795

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature, vol.400, p.157, 1999.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Three-dimensional imaging of strain in a single zno nanorod, Nature Materials, vol.9, issue.279, p.157, 2010.

G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, and I. K. Robinson, Three-dimensional imaging of microstructure in au nanocrystals, Physical Review Letters, vol.90, issue.17, p.159, 2003.

U. F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the fcc case, Progress in Materials Science, vol.48, p.168, 2003.

M. Dupraz, G. Beutier, D. Rodney, D. Mordehai, and M. Verdier, Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent x-ray diraction patterns: a numerical study, Journal of Applied Crystallography, vol.48, issue.3, p.174, 2015.

D. Mercier, V. Mandrillon, G. Parry, M. Verdier, R. Estevez et al., Investigation of the fracture of very thin amorphous alumina lm durin spherical nanoindentation, Thin Solid Films, vol.638, pp.182-209, 2017.

O. Schneegans, L. Boyer, F. Houzé, P. Meyer, and . Chrétien, Copper sample analysed with an n-doped silicon tip using conducting probe atomic force microscopy, Journal of Vacuum Science & Technology, B: Nanotechnology and microelectronics, vol.20, issue.5, 2002.

J. Liening, Electromigration and its impact on physical design in future technology, Proceedings of the 2013 ACM international symposium on physical design, p.233, 2013.

M. Runde, Mass transport in stationary contact points, Hybrids, and Manufacturing Technology, vol.10, p.233, 1987.

H. Gan, W. J. Choi, and K. N. Tu, Electromigration in solder joints and solder lines, The Journal of The Minerals, Metals & Materials Society, vol.54, issue.6, p.233, 2002.

J. Liening, Introduction to electromigration-aware physical design, Proceeedings of SLIP, vol.8188, p.233, 2006.

J. A. Slinkman, H. K. Wickramasinghe, and C. C. Williams, Scanning capacitance-voltage microscopy, p.239, 1991.

J. J. Kopanski, Scanning capacitance microsscopy for electrical characterization of semiconductors and dielectrics IN Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, 2007.

H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier et al., Calibrated nanoscale dopant proling using a scanning microwave miscroscope, Journal of Applied Physics, vol.111, p.240, 2012.

L. S. Pingree and M. C. Hersam, Bridge-enhanced nanoscale impedance microscopy, Applied Physics Letters, vol.87, p.242, 2005.

A. Layson, S. Gadad, and D. Teeters, Resistance measurements at the nanoscale: scanning probe ac impedance spectroscopy, Electrochimica Acta, vol.48, p.241, 2003.

R. Shao, S. V. Kalinin, and D. A. Bonnell, Local impedance imaging and spectroscopy of polycrystalline zno using contact atomic force microscopy, Applied Physics Letters, vol.82, issue.12, p.241, 2001.

R. O'hayre, G. Feng, W. D. Nix, and F. B. Prinz, Quantitative impedance measurement using atomic force microscopy, Journal of Applied Physics, vol.96, issue.6, p.241, 2004.

O. Schneegans, P. Chrétien, F. Houzé, and R. Meyer, Capacitance measurements on small parallel plate capacitors using nanoscale impedance microscopy, Applied Physics BIBLIOGRAPHY Letters, vol.90, p.243, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00320357

I. Estevez, P. Chrétien, O. Schneegans, and F. Houzé, Specic methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasite eects, Applied Physics Letters, vol.104, p.243, 2014.

D. T. Lee, J. P. Pelz, and B. Bushan, Instrumentation for direct, low frequency scanning capacitance microscopy and analysis of position dependent stray capacitance, Review of scientic instruments, vol.73, issue.10, p.242, 2002.

L. Fumagalli, G. Farrari, M. Sampietro, I. Casuso, E. Martinez et al., Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy, Nanotechnology, vol.17, p.242, 2006.

F. Houzé, P. Chrétien, O. Schneegans, R. Meyer, and L. Boyer, Simultaneous resistance and capacitance cartography by conducting probe atomic force microscopy in contact mode, Applied Physics Letters, vol.86, p.243, 2005.

T. Motoki, S. Kiyono, and T. Ono, A nanoindentation instrument for mechanical property measurement of 3d micro/nano-structured surfaces, Measurement Science and Technology, vol.17, issue.495499, p.243, 2006.

B. K. Nowakowski, D. T. Smith, S. T. Smith, L. F. Correa, and R. F. Cook, Development of a precision nanoindentation platform, Review of Scientic Instruments, vol.84, p.243, 2013.

W. Kang, M. Merrill, and J. M. Wheeler, In situ thermomechanical testing methods for micro/nano-scale materials, Nanoscale, vol.9, p.243, 2017.

Z. L. Zhang, H. Kristiansen, and J. Liu, A method for determining elastic properties of micron-sized polymer particles by using at punch test, Computational Materials Science, vol.39, p.243, 2007.

A. Koszewski, D. Levy, and F. Souchon, Study of mechanical properties of rf mems switches by nanoindentation: characterization and modeling of electro-mechanical behavior, Sensors and Actuators, A: Physical, vol.163, p.243, 2010.

V. Koval, M. J. Reece, and A. J. Bushby, Relaxation processes in dielectrics and electromechanical response of pzt thin lms under nanoindentation, Ferroelectrics, vol.318, p.243, 2005.

G. Molnar, S. Rat, L. Salmon, W. Nicolazzi, and A. Boussekou, Spin crossover, nanomaterials: From fundamental concepts to devices, Advanced Materials, vol.30, p.265, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01961776

J. R. Fienup, Reconstruction of an object from the modulus of its fourier transform, Optics Letters, vol.3, issue.1, p.286, 1978.

J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics, vol.21, issue.15, p.287, 1982.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-riege, A. Noy et al., X-ray image reconstruction from a diraction pattern alone, Physical Review B: Condensed Matter and Materials Physics, vol.68, issue.14, p.287, 2003.

J. M. Zhang, Y. Zhang, K. W. Xu, and V. Ji, Young modulus surface and poisson ratio curves for cubic metals, Journal of Physics and Chemistry of Solids, vol.68, p.293, 2007.