, Il existe une fenêtre observationnelle presque directe sur ces petites fluctuations primordiales : les anisotropies de température et de polarisation du fond diffus cosmologique (CMB)

, 16] et les références qui s'y trouvent) pour nettoyer les données observationnelles de ces différentes sources de contamination. Si le CMBétaitCMBétait gaussien, toutes les informations seraient contenues dans le spectre de puissance, qui est liéliéà la fonction de corrélationcorrélationà deux points des fluctuations de température (ou de polarisation) du CMB. Le spectre de puissance est paramétrisé par deux observables importantes du point de vue de l'inflation : son amplitude A s et l'indice spectral n s qui décrit sa pente, c'est-` a-dire l'´ ecart par rapportàrapportà l'invariance d'´ echelle exacte. Les non-gaussianités pride ceux-ci sur des cartes nettoyées du CMB. Ledeuxì eme travail concerne l'inflationàinflationà plusieurs champs, o` u des non-gaussianités de forme locale peuventêtrepeuventêtre produites sur deséchellesdeséchelles super-horizon. Son objectif est triple. Le premier est la suite du travail sur le formalisme long-wavelength (grande longueur d'onde) [163, 162, 164, 191, 192, 189], utilisé pour calculer le paramètre non-gaussien f NL. Nous en , ou si ces modèles prédisent en général de faibles non-gaussianités. De plus, un f NL d'ordre 1, que nous considérerons comme grand, n'a pas encoré eté exclu par Planck mais pourraitêtrepourraitêtre observable par la prochaine génération d'expériences. Ledeuxì eme objectif est de comprendre si il est possible d'avoir des non-gaussianités importantes tout en, Lors de la détermination des paramètres cosmologiques d'origine primordialè a l'aide de mesures précises du CMB, l'un des principauxprobì emes est que plusieurs avant-plans d'origine galactique (comme lapoussì ere interstellaire) ou extra-galactique (par exemple les sources ponctuelles) ´ emettentégalementemettentégalement dans le domaine des micro-ondes. Cela a nécessité le développement de nombreuses techniques (voir [8, 9, vol.9

. Enfin, apremì ere vue très d'une solution homogène et d'une solutionparticulì ere. La solution homogène peutêtre peutêtre donnée analytiquement sous une forme exacte (sans avoir besoin de l'approximation de roulement lent), alors que la solutionparticulì ere est négligeable exactement dans les régions o` u le roulement lent ne fonctionne pas et o` u elle ne peut pasêtrepasêtre calculée analytiquement

K. N. Abazajian,

A. , Planck intermediate results, Astron. Astrophys, vol.566, p.55, 2014.

A. Achucarro, V. Atal, B. Hu, P. Ortiz, and J. Torrado, Inflation with moderately sharp features in the speed of sound: Generalized slow roll and in-in formalism for power spectrum and bispectrum, Phys. Rev, vol.90, p.23511, 2014.

A. Achucarro, J. Gong, S. Hardeman, G. A. Palma, and S. P. Patil, Features of heavy physics in the CMB power spectrum, JCAP, vol.1101, p.30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00527458

A. Achucarro, J. Gong, G. A. Palma, and S. P. Patil, Correlating features in the primordial spectra, Phys. Rev, vol.87, p.121301, 2013.

V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto, Second order cosmological perturbations from inflation, Nucl. Phys, vol.667, pp.119-148, 2003.

R. Adam, Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys, vol.594, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113893

R. Adam, Diffuse component separation: CMB maps, Planck 2015 results. IX, vol.594, p.9, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01119454

R. Adam, Diffuse component separation: Foreground maps, Planck 2015 results. X, vol.594, p.10, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113941

P. A. Ade, Planck 2013 results. XII. Diffuse component separation, Astron. Astrophys, vol.571, p.12, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00804198

P. A. Ade, Constraints on primordial non-Gaussianity, vol.571, p.24, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00804189

P. A. Ade, Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett, vol.116, p.31302, 2016.

P. A. Ade, Planck 2015 results. XIII. Cosmological parameters, vol.594, p.13, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113916

P. A. Ade, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, vol.594, p.17, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113916

P. A. Ade, Planck 2015 results. XX. Constraints on inflation, vol.594, p.20, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113916

P. A. Ade, Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds, vol.594, p.25, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01113916

N. Aghanim, Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys, vol.594, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01169549

Y. Akrami, Planck intermediate results. LIV. Polarized dust foregrounds
URL : https://hal.archives-ouvertes.fr/hal-01678505

A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett, vol.48, pp.1220-1223, 1982.
DOI : 10.1103/physrevlett.48.1220

M. Alishahiha, E. Silverstein, and D. Tong, DBI in the sky, Phys. Rev, vol.70, p.123505, 2004.

R. A. Alpher and R. Herman, Evolution of the universe, Nature, vol.162, p.774, 1948.

H. W. Babcock, The rotation of the Andromeda Nebula, Lick Observatory Bulletin, vol.19, pp.41-51, 1939.

D. Babich, Optimal estimation of non-Gaussianity, Phys. Rev, vol.72, p.43003, 2005.

D. Babich, P. Creminelli, and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP, vol.0408, p.9, 2004.

J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev, vol.22, pp.1882-1905, 1980.

J. M. Bardeen, J. Bond, N. Kaiser, and A. Szalay, The statistics of peaks of gaussian random fields, The Astrophysical Journal, vol.304, pp.15-61, 1986.

J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev, vol.28, p.679, 1983.

N. Barnaby and J. M. Cline, Nongaussianity from Tachyonic Preheating in Hybrid Inflation, Phys. Rev, vol.75, p.86004, 2007.

N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Non-Gaussianity from inflation: Theory and observations, Phys. Rept, vol.402, pp.103-266, 2004.

N. Bartolo, S. Matarrese, and A. Riotto, On non-Gaussianity in the curvaton scenario, Phys. Rev, vol.69, p.43503, 2004.

T. Battefeld and R. Easther, Non-Gaussianities in Multi-field Inflation, vol.0703, p.20, 2007.

D. Baumann, Inflation, Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, pp.523-686, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01270427

J. Baur, Determining the mass of cosmological neutrinos using Lyman-alpha forests. Theses, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01710883

C. L. Bennett, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl, vol.208, p.20, 2013.

C. Bennett, D. Larson, J. Weiland, N. Jarosik, G. Hinshaw et al., Nine-year wilkinson microwave anisotropy probe (wmap) observations: final maps and results, The Astrophysical Journal Supplement Series, vol.208, p.20, 2013.

F. Bernardeau and L. Kofman, Properties of the cosmological density distribution function, Astrophys. J, vol.443, pp.479-498, 1995.

F. Bernardeau, L. Kofman, and J. Uzan, Modulated fluctuations from hybrid inflation, Phys. Rev, vol.70, p.83004, 2004.

D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP, vol.1107, p.34, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00613035

J. R. Bond and A. S. Szalay, The Collisionless Damping of Density Fluctuations in an Expanding Universe, Astrophys. J, vol.274, pp.443-468, 1983.

F. R. Bouchet, COrE: Cosmic Origins Explorer-A White Paper
URL : https://hal.archives-ouvertes.fr/hal-00730257

M. Bucher, Physics of the cosmic microwave background anisotropy, Int. J. Mod. Phys, vol.24, p.1530004, 2015.

M. Bucher, B. Racine, and B. Van-tent, The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches, JCAP, vol.1605, p.55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554131

M. Bucher, B. Van-tent, and C. S. Carvalho, Detecting Bispectral Acoustic Oscillations from Inflation Using a New Flexible Estimator, Mon. Not. Roy. Astron. Soc, vol.407, p.2193, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00432446

C. T. Byrnes, Lecture notes on non-Gaussianity, vol.45, pp.135-165, 2016.

C. T. Byrnes, K. Choi, and L. M. Hall, Conditions for large non-Gaussianity in two-field slow-roll inflation, JCAP, vol.0810, p.8, 2008.

C. T. Byrnes, M. Cortês, and A. R. Liddle, Comprehensive analysis of the simplest curvaton model, Phys. Rev, vol.90, p.23523, 2014.

C. T. Byrnes, M. Gerstenlauer, S. Nurmi, G. Tasinato, and D. Wands, Scale-dependent non-Gaussianity probes inflationary physics, JCAP, vol.1010, p.4, 2010.

C. T. Byrnes and J. Gong, General formula for the running of fNL, Phys. Lett, vol.718, pp.718-721, 2013.

C. T. Byrnes, D. Regan, D. Seery, and E. R. Tarrant, The hemispherical asymmetry from a scale-dependent inflationary bispectrum, JCAP, vol.1606, p.25, 2016.

C. T. Byrnes and G. Tasinato, Non-Gaussianity beyond slow roll in multi-field inflation, JCAP, vol.0908, p.16, 2009.

J. Cardoso, M. Martin, J. Delabrouille, M. Betoule, and G. Patanchon, Component separation with flexible models. Application to the separation of astrophysical emissions, pp.803-1814
URL : https://hal.archives-ouvertes.fr/in2p3-00729030

X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron, p.638979, 2010.

X. Chen, R. Easther, and E. A. Lim, Generation and Characterization of Large Non-Gaussianities in Single Field Inflation, JCAP, vol.0804, p.10, 2008.

J. Chluba, J. Hamann, and S. P. Patil, Features and New Physical Scales in Primordial Observables: Theory and Observation, vol.24, p.1530023, 2015.

K. Choi, L. M. Hall, and C. Van-de-bruck, Spectral Running and Non-Gaussianity from Slow-Roll Inflation in Generalised Two-Field Models, vol.0702, p.29, 2007.

T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified Gravity and Cosmology, vol.513, pp.1-189, 2012.

S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev, vol.7, pp.1888-1910, 1973.

E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey, Reconstructing the inflation potential, in principle and in practice, Phys. Rev, vol.48, pp.2529-2547, 1993.

P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, Limits on non-gaussianities from wmap data, p.4, 2006.

A. Curto, M. Tucci, M. Kunz, and E. Martinez-gonzalez, The CIB-lensing bispectrum: impact on primordial non-Gaussianity and detectability for the Planck mission, vol.450, pp.3778-3801, 2015.

M. Dias, J. Frazer, D. J. Mulryne, and D. Seery, Numerical evaluation of the bispectrum in multiple field inflation-the transport approach with code, JCAP, vol.1612, p.33, 2016.

R. H. Dicke, P. J. Peebles, P. G. Roll, and D. T. Wilkinson, Cosmic Black-Body Radiation, Astrophys. J, vol.142, pp.414-419, 1965.

C. Dickinson, R. D. Davies, and R. J. Davis, Towards a free-free template for CMB foregrounds, Mon. Not. Roy. Astron. Soc, vol.341, 2003.

S. Dodelson and M. Cosmology, , 2003.

S. Donzelli, F. K. Hansen, M. Liguori, D. Marinucci, and S. Matarrese, On the linear term correction for needlets/wavelets non-Gaussianity estimators, Astrophys. J, vol.755, p.19, 2012.

B. T. Draine and A. Lazarian, Electric dipole radiation from spinning dust grains, Astrophys. J, vol.508, pp.157-179, 1998.

B. T. Draine, Physics of the interstellar and intergalactic medium, 2010.

A. Einstein, Die feldgleichungen der gravitation, 1913.

A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik, vol.354, pp.769-822, 1916.

J. Elliston, L. Alabidi, I. Huston, D. Mulryne, and R. Tavakol, Large trispectrum in two-field slow-roll inflation, JCAP, vol.1209, p.1, 2012.

J. Elliston, D. Mulryne, D. Seery, and R. Tavakol, Evolution of non-Gaussianity in multi-scalar field models, Int. J. Mod. Phys, vol.26, pp.3821-3832, 2011.

J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol, Evolution of fNL to the adiabatic limit, JCAP, vol.1111, p.5, 2011.

J. Elliston, S. Orani, and D. J. Mulryne, General analytic predictions of two-field inflation and perturbative reheating, Phys. Rev, vol.89, p.103532, 2014.

F. Elsner and B. D. Wandelt, Efficient Wiener filtering without preconditioning, Astron. Astrophys, vol.549, p.111, 2013.

K. Enqvist, A. Jokinen, A. Mazumdar, T. Multamaki, and A. Vaihkonen, Non-Gaussianity from preheating, Phys. Rev. Lett, vol.94, p.161301, 2005.

K. Enqvist and T. Takahashi, Mixed Inflaton and Spectator Field Models after Planck, JCAP, vol.1310, p.34, 2013.

H. K. Eriksen, J. B. Jewell, C. Dickinson, A. J. Banday, K. M. Gorski et al., Joint Bayesian component separation and CMB power spectrum estimation, Astrophys. J, vol.676, pp.10-32, 2008.

H. K. Eriksen, I. J. O'dwyer, J. B. Jewell, B. D. Wandelt, D. L. Larson et al., Power spectrum estimation from high-resolution maps by Gibbs sampling, Astrophys. J. Suppl, vol.155, pp.227-241, 2004.

J. R. Fergusson, Efficient optimal non-Gaussian CMB estimators with polarisation, Phys. Rev, vol.90, p.43533, 2014.

J. R. Fergusson, M. Liguori, and E. P. Shellard, General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of fNL, Phys. Rev, vol.82, p.23502, 2010.

J. R. Fergusson, M. Liguori, and E. P. Shellard, The CMB Bispectrum, JCAP, vol.1212, p.32, 2012.

J. R. Fergusson and E. P. Shellard, The shape of primordial non-Gaussianity and the CMB bispectrum, Phys. Rev, vol.80, p.43510, 2009.

F. Finelli, Exploring Cosmic Origins with CORE: Inflation
URL : https://hal.archives-ouvertes.fr/hal-01763425

R. Flauger, M. Mirbabayi, L. Senatore, and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity

P. J. Fox, G. Jung, P. Sorensen, and N. Weiner, Dark Matter in Light of the LUX Results, Phys. Rev, vol.89, p.103526, 2014.

K. Freese, J. A. Frieman, and A. V. Olinto, Natural inflation with pseudoNambu-Goldstone bosons, Phys. Rev. Lett, vol.65, pp.3233-3236, 1990.

A. Friedman, Uber die krümmung des raumes, vol.10, pp.377-386, 1922.

A. Friedmann, Uber die möglichkeit einer welt mit konstanter negativer krümmung des raumes, Zeitschrift für Physik, vol.21, pp.326-332, 1924.

G. Gamow, Expanding universe and the origin of elements, Phys. Rev, vol.70, pp.572-573, 1946.

D. M. Goldberg and D. N. Spergel, Microwave background bispectrum. 2. A probe of the low redshift universe, Phys. Rev, vol.59, p.103002, 1999.

C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Adiabatic and entropy perturbations from inflation, Phys. Rev, vol.63, p.23506, 2001.

K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen et al., HEALPix-A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J, vol.622, pp.759-771, 2005.

G. Nibbelink and B. J. Van-tent, Density perturbations arising from multiple field slow roll inflation

G. Nibbelink and B. J. Van-tent, Scalar perturbations during multiple field slow-roll inflation, Class. Quant. Grav, vol.19, pp.613-640, 2002.

H. F. Gruetjen, J. R. Fergusson, M. Liguori, and E. P. Shellard, Using inpainting to construct accurate cut-sky CMB estimators, Phys. Rev, vol.95, p.43532, 2017.

A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev, vol.23, pp.347-356, 1981.

A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett, vol.49, pp.1110-1113, 1982.

R. J. Hardwick, V. Vennin, K. Koyama, and D. Wands, Constraining Curvatonic Reheating, JCAP, vol.1608, p.42, 2016.

C. Haslam, C. Salter, H. Stoffel, and W. Wilson, A 408 mhz all-sky continuum survey. ii-the atlas of contour maps, Astronomy and Astrophysics Supplement Series, vol.47, p.1, 1982.

S. W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett, vol.115, p.295, 1982.

S. Hotchkiss and S. Sarkar, Non-Gaussianity from violation of slow-roll in multiple inflation, JCAP, vol.1005, p.24, 2010.

C. Howlett, A. Lewis, A. Hall, and A. Challinor, CMB power spectrum parameter degeneracies in the era of precision cosmology, JCAP, vol.1204, p.27, 2012.

W. Hu and S. Dodelson, Cosmic microwave background anisotropies, Ann. Rev. Astron. Astrophys, vol.40, pp.171-216, 2002.

W. Hu and N. Sugiyama, Toward understanding CMB anisotropies and their implications, Phys. Rev, vol.51, pp.2599-2630, 1995.

E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proceedings of the National Academy of Sciences, vol.15, pp.168-173, 1929.

A. Jokinen and A. Mazumdar, Very large primordial non-gaussianity from multi-field: application to massless preheating, JCAP, vol.0604, p.3, 2006.

G. Jung, B. Racine, and B. Van-tent, The bispectra of galactic CMB foregrounds and their impact on primordial non-Gaussianity estimation
URL : https://hal.archives-ouvertes.fr/hal-01902914

G. Jung and B. Van-tent, Non-Gaussianity in two-field inflation beyond the slow-roll approximation, JCAP, vol.1705, p.19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554576

R. Juszkiewicz, D. H. Weinberg, P. Amsterdamski, M. Chodorowski, and F. Bouchet, Weakly nonlinear Gaussian fluctuations and the Edgeworth expansion, Astrophys. J, vol.442, 1995.

M. Kamionkowski, A. Kosowsky, and A. Stebbins, A Probe of primordial gravity waves and vorticity, Phys. Rev. Lett, vol.78, pp.2058-2061, 1997.

Z. Kenton and D. J. Mulryne, The squeezed limit of the bispectrum in multi-field inflation, JCAP, vol.1510, p.18, 2015.

Z. Kenton and D. J. Mulryne, The Separate Universe Approach to Soft Limits, JCAP, vol.1610, p.35, 2016.

T. Kobayashi, F. Takahashi, T. Takahashi, and M. Yamaguchi, Spectator field models in light of spectral index after Planck, JCAP, vol.1310, p.42, 2013.

L. Kofman, A. D. Linde, and A. A. Starobinsky, Reheating after inflation, Phys. Rev. Lett, vol.73, pp.3195-3198, 1994.

E. Komatsu and D. N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev, vol.63, p.63002, 2001.

E. Komatsu, D. N. Spergel, and B. D. Wandelt, Measuring primordial non-Gaussianity in the cosmic microwave background, Astrophys. J, vol.634, pp.14-19, 2005.

E. Komatsu, B. D. Wandelt, D. N. Spergel, A. J. Banday, and K. M. Gorski, Measurement of the cosmic microwave background bispectrum on the COBE DMR sky maps, Astrophys. J, vol.566, pp.19-29, 2002.

F. Lacasa, A. Pénin, and N. Aghanim, Non-Gaussianity of the cosmic infrared background anisotropies-I. Diagrammatic formalism and application to the angular bispectrum, Mon. Not. Roy. Astron. Soc, vol.439, pp.123-142, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01440994

D. Langlois and F. Vernizzi, Conserved non-linear quantities in cosmology, Phys. Rev, vol.72, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00025104

R. Laureijs, Euclid Definition Study Report

E. M. Leitch, A. C. Readhead, T. J. Pearson, and S. T. Myers, An Anomalous component of galactic emission, Astrophys. J, vol.486, 1997.

G. Lema??trelema??tre, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Annales de la Société Scientifique de Bruxelles, vol.47, pp.49-59, 1927.

, J. Lesgourgues, Inflationary cosmology

J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, 1104, p.2932

J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept, vol.429, pp.307-379, 2006.

A. Lewis, A. Challinor, and D. Hanson, The shape of the CMB lensing bispectrum, JCAP, vol.1103, p.18, 2011.

A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J, vol.538, pp.473-476, 2000.

A. Liddle, An introduction to modern cosmology, 2015.

A. R. Liddle and D. H. Lyth, Cosmological inflation and large scale structure, 2000.
DOI : 10.1017/cbo9781139175180

A. R. Liddle and D. H. Lyth, The Cold dark matter density perturbation, Phys. Rept, vol.231, pp.1-105, 1993.

A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett, vol.108, pp.389-393, 1982.

A. D. Linde, Chaotic Inflation, Phys. Lett, vol.129, pp.177-181, 1983.

A. D. Linde, Hybrid inflation, Phys. Rev, vol.49, pp.748-754, 1994.

F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev, vol.32, p.1316, 1985.

X. Luo, The Angular bispectrum of the cosmic microwave background, Astrophys. J, vol.427, 1994.

X. Luo and D. N. Schramm, Kurtosis, skewness, and nonGaussian cosmological density perturbations, Astrophys. J, vol.408, pp.33-42, 1993.
DOI : 10.1086/172567

URL : https://doi.org/10.1086/172567

R. Lupton, Statistics in theory and practice, 1993.

D. H. Lyth, Generating the curvature perturbation at the end of inflation, JCAP, vol.0511, p.6, 2005.

D. H. Lyth and Y. Rodriguez, The Inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett, vol.95, p.121302, 2005.

D. H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett, vol.524, pp.5-14, 2002.
DOI : 10.1016/s0370-2693(01)01366-1

URL : https://doi.org/10.1016/s0370-2693(01)01366-1

J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, vol.013, issue.05, 2003.

K. A. Malik and D. Wands, Evolution of second-order cosmological perturbations, Class. Quant. Grav, vol.21, pp.65-72, 2004.

J. Martin and D. J. Schwarz, The Precision of slow roll predictions for the CMBR anisotropies, Phys. Rev, vol.62, 2000.

J. C. Mather, Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument, Astrophys. J, vol.420, pp.439-444, 1994.

T. Matsumura, Mission design of LiteBIRD

M. A. Miville-deschenes, G. Lagache, F. Boulanger, and J. L. Puget, Statistical properties of dust far-infrared emission, Astron. Astrophys, vol.469, p.595, 2007.

S. Mizuno, F. Arroja, K. Koyama, and T. Tanaka, Lorentz boost and non-Gaussianity in multi-field DBI-inflation, Phys. Rev, vol.80, p.23530, 2009.

S. Mizuno and K. Koyama, Primordial non-Gaussianity from the DBI Galileons, Phys. Rev, vol.82, p.103518, 2010.

V. Mukhanov, Physical Foundations of Cosmology, 2005.

V. Mukhanov and V. Mukhanov, sov. phys. jetp, vol.67, p.1297, 1988.

V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations, Phys. Rept, vol.215, pp.203-333, 1992.

D. Munshi and A. Heavens, A New Approach to Probing Primordial Non-Gaussianity, vol.401, p.2406, 2010.

E. Pajer, F. Schmidt, and M. Zaldarriaga, The Observed Squeezed Limit of Cosmological Three-Point Functions, Phys. Rev, vol.88, p.83502, 2013.

C. Patrignani, Review of Particle Physics, Chin. Phys, vol.40, p.100001, 2016.

A. A. Penzias and R. W. Wilson, A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J, vol.142, pp.419-421, 1965.

S. Perlmutter, Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J, vol.517, pp.565-586, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-00130951

P. Peter, J. Uzan, and P. Cosmology, Oxford Graduate Texts, 2013.

G. W. Pettinari, The intrinsic bispectrum of the Cosmic Microwave Background, pp.2013-2022

D. Polarski and A. A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav, vol.13, pp.377-392, 1996.

A. G. Riess, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J, vol.116, pp.1009-1038, 1998.

G. I. Rigopoulos and E. P. Shellard, The separate universe approach and the evolution of nonlinear superhorizon cosmological perturbations, Phys. Rev, vol.68, 2003.

G. I. Rigopoulos, E. P. Shellard, and B. J. Van-tent, Large non-Gaussianity in multiple-field inflation, Phys. Rev, vol.73, p.83522, 2006.

G. I. Rigopoulos, E. P. Shellard, and B. J. Van-tent, Non-linear perturbations in multiple-field inflation, Phys. Rev, vol.73, p.83521, 2006.

G. I. Rigopoulos, E. P. Shellard, and B. J. Van-tent, Quantitative bispectra from multifield inflation, Phys. Rev, vol.76, p.83512, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00258367

A. Riotto, Inflation and the theory of cosmological perturbations, ICTP Lect. Notes Ser, vol.14, pp.317-413, 2003.

H. P. Robertson, Kinematics and World-Structure, Astrophys. J, vol.82, pp.284-301, 1935.

V. C. Rubin and W. K. Ford, Rotation of the andromeda nebula from a spectroscopic survey of emission regions, The Astrophysical Journal, vol.159, p.379, 1970.

R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J, vol.147, pp.73-90, 1967.

M. Sasaki, Large Scale Quantum Fluctuations in the Inflationary Universe, Prog. Theor. Phys, vol.76, p.1036, 1986.

M. Sasaki and E. D. Stewart, A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys, vol.95, pp.71-78, 1996.

D. J. Schwarz, C. A. Terrero-escalante, and A. A. Garcia, Higher order corrections to primordial spectra from cosmological inflation, Phys. Lett, vol.517, pp.243-249, 2001.

U. Seljak and M. Zaldarriaga, A Line of sight integration approach to cosmic microwave background anisotropies, Astrophys. J, vol.469, pp.437-444, 1996.

L. Senatore, Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015, pp.447-543, 2015.

L. Senatore, K. M. Smith, and M. Zaldarriaga, Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data, JCAP, vol.1001, p.28, 2010.

J. Silk, Cosmic black body radiation and galaxy formation, Astrophys. J, vol.151, pp.459-471, 1968.

E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev, vol.70, p.103505, 2004.
DOI : 10.1103/physrevd.70.103505

URL : http://arxiv.org/pdf/hep-th/0310221

K. M. Smith and M. Zaldarriaga, Algorithms for bispectra: Forecasting, optimal analysis, and simulation, Mon. Not. Roy. Astron. Soc, vol.417, pp.2-19, 2011.
DOI : 10.1111/j.1365-2966.2010.18175.x

URL : http://arxiv.org/pdf/astro-ph/0612571

G. F. Smoot, Structure in the COBE differential microwave radiometer first year maps, Astrophys. J, vol.396, pp.1-5, 1992.

A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett, vol.91, pp.99-102, 1980.

A. A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett, vol.117, pp.175-178, 1982.

A. A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation of Perturbations, JETP Lett, vol.42, pp.152-155, 1985.

E. D. Stewart and D. H. Lyth, A More accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett, vol.302, pp.171-175, 1993.

Y. Tada and V. Vennin, Squeezed Bispectrum in the ?N Formalism: Local Observer Effect in Field Space, vol.1702, p.21, 2017.

T. Tanaka and Y. Urakawa, Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP, vol.1105, p.14, 2011.

J. Tauber, M. Bersanelli, J. M. Lamarre, G. Efstathiou, C. Lawrence et al., The Scientific programme of Planck

A. Taylor and P. Watts, Parameter information from nonlinear cosmological fields, Mon. Not. Roy. Astron. Soc, vol.328, p.1027, 2001.

J. Torrado, B. Hu, and A. Achucarro, Robust predictions for an oscillatory bispectrum in Planck 2015 data from transient reductions in the speed of sound of the inflaton, Phys. Rev, vol.96, p.83515, 2017.

M. Tucci, V. Desjacques, and M. Kunz, Cosmic Infrared Background anisotropies as a window into primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc, vol.463, pp.2046-2063, 2016.

E. Tzavara, Second-order cosmological perturbations in two-field inflation and predictions for non-Gaussianity, 0126.
URL : https://hal.archives-ouvertes.fr/tel-00935606

E. Tzavara, S. Mizuno, and B. Van-tent, Covariant second-order perturbations in generalized two-field inflation, JCAP, vol.1407, p.27, 2014.

E. Tzavara and B. Van-tent, Bispectra from two-field inflation using the long-wavelength formalism, JCAP, vol.1106, p.26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00554239

E. Tzavara and B. Van-tent, Gauge-invariant perturbations at second order in two-field inflation, JCAP, vol.1208, p.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00646313

E. Tzavara and B. Van-tent, Momentum dependence of the bispectrum in two-field inflation, JCAP, vol.1306, p.1, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00758428

V. Vennin, K. Koyama, and D. Wands, Inflation with an extra light scalar field after Planck, JCAP, vol.1603, p.24, 2016.

F. Vernizzi and D. Wands, Non-gaussianities in two-field inflation, JCAP, issue.0605, p.19, 2006.

A. G. Walker, On milne's theory of world-structure, Proceedings of the London Mathematical Society, vol.2, pp.90-127, 1937.

D. Wands, Multiple field inflation, Lect. Notes Phys, vol.738, pp.275-304, 2008.

S. Weinberg, Cosmology, 2008.

Y. Welling, D. Van-der-woude, and E. Pajer, Lifting Primordial Non-Gaussianity Above the Noise, JCAP, vol.1608, p.44, 2016.

M. J. White and W. Hu, The Sachs-Wolfe effect, Astron. Astrophys, vol.321, pp.8-9, 1997.
URL : https://hal.archives-ouvertes.fr/cea-01289968

A. P. Yadav, E. Komatsu, and B. D. Wandelt, Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background, Astrophys. J, vol.664, pp.680-686, 2007.

A. P. Yadav, E. Komatsu, B. D. Wandelt, M. Liguori, F. K. Hansen et al., Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background II: Partial Sky Coverage and Inhomogeneous Noise, Astrophys. J, vol.678, pp.578-582, 2008.

A. P. Yadav and B. D. Wandelt, Evidence of Primordial Non-Gaussianity (f(NL)) in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8sigma, Phys. Rev. Lett, vol.100, p.181301, 2008.

M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys. Rev, vol.69, p.43508, 2004.

M. Zaldarriaga, U. Seljak, and E. Bertschinger, Integral solution for the microwave background anisotropies in non-flat universes, Astrophys.J, vol.494, pp.491-502, 1998.

F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta, vol.6, pp.110-127, 1933.