M. Agrawal and V. Vinay, Arithmetic circuits: A chasm at depth four, Foundations of Computer Science (FOCS), pp.67-75, 2008.
DOI : 10.1109/focs.2008.32

URL : http://www.cse.iitk.ac.in/users/manindra/algebra/depth-four.pdf

J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, Journal of Algebraic Geometry, vol.4, issue.2, pp.201-222, 1995.

F. Alizadeh, A. Jean-pierre, M. L. Haeberly, and . Overton, Primaldual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results, SIAM Journal on Optimization, vol.8, issue.3, pp.746-768, 1998.
DOI : 10.1137/s1052623496304700

V. Arnold, Lectures on Partial Differential Equations, 2004.

K. Atkinson and . Sharma, A partial characterization of poised HermiteBirkhoff interpolation problems, SIAM Journal on Numerical Analysis, vol.6, issue.2, pp.230-235, 1969.
DOI : 10.1137/0706021

M. Ben-or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, Proc. 20th annual ACM Symposium on Theory of Computing, pp.301-309, 1988.
DOI : 10.1145/62212.62241

A. Bia?ynicki-birula and A. Schinzel, Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloquium Mathematicum, vol.112, issue.2, pp.201-233, 2008.

M. Boij, E. Carlini, and A. Geramita, Monomials as sums of powers: the real binary case, Proceedings of the American Mathematical Society, vol.139, issue.9, pp.3039-3043, 2011.

A. Borodin and P. Tiwari, On the decidability of sparse univariate polynomial interpolation, Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC '90, pp.535-545, 1990.

A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf et al., Algorithmes Efficaces en Calcul Formel
URL : https://hal.archives-ouvertes.fr/hal-01431717

A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, and É. Schost, Differential equations for algebraic functions, Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC '07, pp.25-32, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00138206

A. Bostan and P. Dumas, Wronskians and linear independence, The American Mathematical Monthly, vol.117, issue.8, pp.722-727, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00780437

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra and its Applications, vol.433, issue.11, pp.1851-1872, 2010.
DOI : 10.1016/j.laa.2010.06.046

URL : https://hal.archives-ouvertes.fr/inria-00355713

C. Maria, G. Brambilla, and . Ottaviani, On the Alexander-Hirschowitz theorem, Journal of Pure and Applied Algebra, vol.212, issue.5, pp.1229-1251, 2008.

M. Bôcher, The theory of linear dependence, The Annals of Mathematics, vol.2, pp.81-96, 1900.

P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, 2000.

P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, 1997.

E. Carlini, Reducing the number of variables of a polynomial. In Algebraic geometry and geometric modeling, Math. Vis, pp.237-247, 2006.

E. Carlini, M. V. Catalisano, and L. Chiantini, Progress on the symmetric Strassen conjecture, J. Pure Appl. Algebra, vol.219, issue.8, pp.3149-3157, 2015.

G. Comas and M. Seiguer, On the rank of a binary form, Foundations of Computational Mathematics, vol.11, issue.1, pp.65-78, 2011.

D. Cox, J. Little, and D. O'shea, Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics, 1992.

E. De-klerk, Aspects of Semidefinite Programming, 2002.

K. Efremenko, A. Garg, R. De-oliveira, and A. Wigderson, Barriers for rank methods in arithmetic complexity, 2017.

K. Efremenko, J. M. Landsberg, H. Schenck, and J. Weyman, The method of shifted partial derivatives cannot separate the permanent from the determinant, Mathematics of Computation, vol.87, issue.312, pp.2037-2045, 2018.

S. M. Engdahl and A. E. Parker, Peano on wronskians: A translation
DOI : 10.4169/loci003642

I. Fischer, chapter Sums of like powers of multivariate linear forms, vol.67, pp.59-61, 1994.

H. Fournier, N. Limaye, G. Malod, and S. Srinivasan, Lower bounds for depth 4 formulas computing iterated matrix multiplication, Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp.128-135, 2014.
DOI : 10.1137/140990280

H. Fournier, N. Limaye, G. Malod, and S. Srinievasan, Lower bounds for depth 4 formulas computing iterated matrix multiplication, SIAM J. Comput, vol.44, issue.5, pp.1173-1201, 2015.
DOI : 10.1137/140990280

I. García, -. Marco, and P. Koiran, Lower bounds by Birkhoff interpolation, Journal of Complexity, p.39, 2015.

I. García-marco, P. Koiran, and T. Pecatte, Reconstruction algorithms for sums of affine powers, Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '17, pp.317-324, 2016.

I. García-marco, P. Koiran, and T. Pecatte, On the linear independence of shifted powers, Journal of Complexity, vol.45, pp.67-82, 2018.

I. García-marco, P. Koiran, and T. Pecatte, Polynomial equivalence problems for sums of affine powers, 2018.

M. Giesbrecht and D. S. Roche, Interpolation of shifted-lacunary polynomials, Comput. Complex, vol.19, issue.3, pp.333-354, 2010.
DOI : 10.1007/s00037-010-0294-0

URL : http://arxiv.org/pdf/0810.5685

J. , H. Grace, and A. Young, The algebra of invariants. Cambridge Library Collection, 2010.

D. Grigoriev and M. Karpinski, A zero-test and an interpolation algorithm for the shifted sparse polynomials, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp.162-169, 1993.
DOI : 10.1007/3-540-56686-4_41

URL : http://www.maths.univ-rennes1.fr/~dima/pub/shift.ps

A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi, Approaching the chasm at depth four, Proceedings of the Conference on Computational Complexity (CCC), 2013.
DOI : 10.1145/2629541

URL : http://eccc.hpi-web.de/report/2012/098/revision/3/download/

A. Roger, C. R. Horn, and . Johnson, Topics in Matrix Analysis, 1991.

A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, 1999.
DOI : 10.1007/bfb0093426

J. Jelisiejew, An upper bound for the Waring rank of a form, Archiv der Mathematik, vol.102, issue.4, pp.329-336, 2014.

E. Kaltofen and B. Trager, Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators, Journal of Symbolic Computation, vol.9, issue.3, pp.301-320, 1990.

N. , An exponential lower bound for the sum of powers of bounded degree polynomials, Electronic Colloquium on Computational Complexity (ECCC), 2012.

N. Kayal, P. Koiran, T. Pecatte, and C. Saha, Lower bounds for sums of powers of low degree univariates, Proc. 42nd International Colloquium on Automata, Languages and Programming, vol.9134, pp.810-821, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-01991259

N. Kayal, Efficient algorithms for some special cases of the polynomial equivalence problem, Symposium on Discrete Algorithms (SODA), pp.1409-1421, 2011.

N. Kayal, Affine projections of polynomials, Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp.643-662, 2012.

N. Kayal and C. Saha, Lower bounds for depth three arithmetic circuits with small bottom fanin, Proceedings of the 30th Conference on Computational Complexity, pp.158-182, 2015.

N. Kayal, C. Saha, and R. Saptharishi, A super-polynomial lower bound for regular arithmetic formulas, Proceedings of the forty-sixth annual ACM symposium on Theory of computing, p.14, 2014.

N. Kayal and R. Saptharishi, A Selection of Lower Bounds for Arithmetic Circuits, pp.77-115, 2014.

J. Kleppe, Representing a homogeneous polynomial as a sum of powers of linear forms. Thesis for the degree of Candidatus Scientarum (University of Oslo), 1999.

D. E. Knuth, Fascicle 4: Generating All Trees-History of Combinatorial Generation (Art of Computer Programming), vol.4, 2006.

P. Koiran, Arithmetic circuits: the chasm at depth four gets wider, Theoretical Computer Science, vol.448, pp.56-65, 2012.
URL : https://hal.archives-ouvertes.fr/ensl-00494642

P. Koiran, Shallow circuits with high-powered inputs. CoRR, abs/1004, Innovations in Computer Science, vol.4960, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00477023

P. Koiran, N. Portier, and S. Tavenas, A Wronskian approach to the real ?-conjecture, Journal of Symbolic Computation, vol.68, issue.2, pp.195-214, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-01991276

M. Kumar and S. Saraf, The limits of depth reduction for arithmetic formulas: It's all about the top fan-in, Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp.136-145, 2014.

Y. N. Lakshman and B. D. Saunders, Sparse shifts for univariate polynomials. Applicable Algebra in Engineering, vol.7, pp.351-364, 1996.

M. Joseph, Z. Landsberg, and . Teitler, On the ranks and border ranks of symmetric tensors, Foundations of Computational Mathematics, vol.10, issue.3, pp.339-366, 2010.

H. W. Lenstra, A. K. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, vol.261, pp.515-534, 1982.
DOI : 10.1007/bf01457454

URL : http://www.busim.ee.boun.edu.tr/~mihcak/teaching/ee684-spring07/proposed-project-papers/hard-problems/lattice-problems/lenstra.pdf

G. Lorentz and S. Riemenschneider, Probabilistic approach to Schoenberg's problem in Birkhoff interpolation, Acta Mathematica Hungarica, vol.33, issue.1-2, pp.127-135, 1979.
DOI : 10.1007/bf01903387

K. George-g-lorentz, S. Jetter, and . Riemenschneider, Birkhoff interpolation, of Encyclopedia of Mathematics and its Applications, vol.19, 1984.

G. Labahn, M. Giesbrecht, and W. Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, vol.44, issue.8, pp.943-959, 2009.

W. , L. M. Giesbrecht, and E. Kaltofen, Algorithms for computing sparsest shifts of polynomials in power, chebyshev and pochhammer bases, Journal of Symbolic Computation, vol.36, issue.3-4, pp.401-424, 2003.
DOI : 10.1016/s0747-7171(03)00087-7

URL : https://doi.org/10.1016/s0747-7171(03)00087-7

N. Nisan and A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives, Conference version in FOCS'95, vol.6, pp.217-234, 1996.
DOI : 10.1109/sfcs.1995.492458

URL : http://www.brics.dk/RS/95/Ref/BRICS-RS-95-Ref/../../../../RS/95/43/BRICS-RS-95-43.ps.gz

L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for waring decomposition, Journal of Symbolic Computation, vol.54, pp.9-35, 2013.
DOI : 10.1016/j.jsc.2012.11.005

URL : https://doi.org/10.1016/j.jsc.2012.11.005

G. Polya and G. Szego, Problems and Theorems in Analysis, volume II, 1976.

S. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Information Processing Letters, vol.18, pp.147-150, 1984.

A. Schrijver, Theory of linear and integer programming, WileyInterscience Series in Discrete Mathematics, 1986.

J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, Journal of the ACM, vol.27, issue.4, pp.701-717, 1980.
DOI : 10.1145/322217.322225

URL : http://rjlipton.files.wordpress.com/2009/11/schwartz.pdf

Y. Shitov, How hard is the tensor rank, 2016.

. Volker-strassen, Vermeidung von Divisionen, J. Reine Angew. Math, vol.264, pp.184-202, 1973.

S. Tavenas, Improved bounds for reduction to depth 4 and depth 3, Mathematical Foundations of Computer Science (MFCS), pp.813-824, 2013.
DOI : 10.1007/978-3-642-40313-2_71

L. G. Valiant, Completeness classes in algebra, Proceedings of the 11th Annual STOC, pp.249-261, 1979.
DOI : 10.1145/800135.804419

L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel computation of polynomials using few processors, SIAM, vol.12, issue.4, pp.641-644, 1983.

M. Voorhoeve and A. Van-der-poorten, Wronskian determinants and the zeros of certain functions, Indagationes Mathematicae (Proceedings), vol.78, issue.5, pp.417-424, 1975.
DOI : 10.1016/1385-7258(75)90050-5

URL : https://doi.org/10.1016/1385-7258(75)90050-5

R. Zippel, Probabilistic algorithms for sparse polynomials, pp.216-226, 1979.
DOI : 10.1007/3-540-09519-5_73