, PVA based implants with promising properties of in situ endothelialization, showed a very good patency rate in rats (75% at one month, 1% ratio, p.50

, at 2 and 3 months) and biomechanical properties, close to those of human arterial blood vessels

, Gelatin is a major factor to initiate cell adhesion, through luminal microstructure (micropores), cell contact and migration. Aging of PVA has to be taken account in future works, as well as the conditions of measure of the elastic modulus

, Ackowledgement This study was supported by Inserm, Universities Paris Diderot and Paris 13. The authors would like to thank F. Nadaud (UTC Compiègne, France) for SEM images

N. M. Krishnan, C. Purnell, M. Y. Nahabedian, G. L. Freed, J. F. Nigriny et al.,

, The cost effectiveness of the DIEP flap relative to the muscle-sparing TRAM flap in postmastectomy breast reconstruction, Plast Reconstr Surg, vol.135, issue.4, pp.948-58, 2015.

P. B. Garvey, E. W. Buchel, B. A. Pockaj, W. J. Casey, R. J. Gray et al.,

P. Diep and . Flaps, A Comparison of Outcomes: Plast Reconstr Surg, 2006.

L. Bottero, J. Lefaucheur, S. Fadhul, Y. Raulo, E. D. Collins et al.,

, Electromyographic assessment of rectus abdominis muscle function after deep inferior epigastric perforator flap surgery, Plast Reconstr Surg, vol.113, issue.1, pp.156-61, 2004.

L. Man, J. C. Selber, and J. M. Serletti, Abdominal Wall following Free TRAM or DIEP Flap Reconstruction: A Meta-Analysis and Critical Review: Plast Reconstr Surg, 2009.

S. Tamai, History of microsurgery, Plast Reconstr Surg, vol.124, issue.6, 2009.

S. Tamai, History of microsurgery-from the beginning until the end of the, 1970.

, Microsurgery, vol.14, issue.1, pp.6-13, 1993.

Q. Qassemyar,

, Ann Chir Plast Esthét, 2014.

T. Yamamoto, H. Yoshimatsu, and I. Koshima, Navigation lymphatic supermicrosurgery for iatrogenic lymphorrhea: supermicrosurgical lymphaticolymphatic anastomosis and lymphaticovenular anastomosis under indocyanine green lymphography navigation, J Plast Reconstr Aesthetic Surg JPRAS, vol.67, issue.11, pp.1573-1582, 2014.

K. Tashiro, S. Yamashita, T. Saito, T. Iida, and I. Koshima, Proximal and distal patterns: Different spreading patterns of indocyanine green lymphography in secondary lower extremity lymphedema, J Plast Reconstr Aesthetic Surg JPRAS, 2015.

H. Yoshimatsu, T. Yamamoto, M. Narushima, T. Iida, and I. Koshima, The guide wire method: a new technique for easier side-to-end lymphaticovenular anastomosis, Ann Plast Surg, vol.73, issue.2, pp.231-234, 2014.

T. Yamamoto and I. Koshima, A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema, Plast Reconstr Surg, 2014.

K. Chang, H. Liao, and J. Chen, Preparation and characterization of
URL : https://hal.archives-ouvertes.fr/tel-00703250

, gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies

, Acta Biomater, vol.9, issue.11, pp.9012-9038, 2013.

D. W. Chang, Lymphaticovenular Bypass for Lymphedema Management in Breast Cancer Patients: A Prospective Study: Plast Reconstr Surg, vol.126, pp.752-760, 2010.

M. Atlan, La place de la chirurgie des lymphatiques dans les lymphoedèmes subaigus et chroniques acquis, J Mal Vasc, vol.38, issue.2, p.100, 2013.

L. J. Feng, Recipient vessels in free-flap breast reconstruction: a study of the internal mammary and thoracodorsal vessels, Plast Reconstr Surg, vol.99, issue.2, pp.405-421, 1997.

P. D. Ballyk, C. Walsh, J. Butany, and M. Ojha, Compliance mismatch may promote graftartery intimal hyperplasia by altering suture-line stresses, J Biomech, vol.31, issue.3, pp.229-266, 1998.

L. P. Jensen, M. Lepäntalo, J. E. Fossdal, O. C. Røder, B. S. Jensen et al.,

, Dacron or PTFE for above-knee femoropopliteal bypass. a multicenter randomised study

, Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg, vol.34, issue.1, pp.44-53, 2007.

C. Uhl, C. Hock, T. Betz, and M. Greindl, To pel I, Steinbauer M. Comparison of venous and HePTFE tibial and peroneal bypasses in critical limb ischemia patients unsuitable for endovascular revascularization, Vascular, vol.23, issue.6, pp.607-620, 2015.

S. Post, T. Kraus, U. Müller-reinartz, C. Weiss, H. Kortmann et al.,

, Dacron vs. polytetrafluoroethylene grafts for femoropopliteal bypass: a prospective randomised multicentre trial, Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg, 2001.

I. J. Rychlik, P. Davey, J. Murphy, O. Donnell, and M. E. , A meta-analysis to compare Dacron versus polytetrafluroethylene grafts for above-knee femoropopliteal artery bypass, J Vasc Surg, vol.60, issue.2, pp.506-521, 2014.

G. Konig, T. N. Mcallister, N. Dusserre, S. A. Garrido, C. Iyican et al.,

, Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery, Biomaterials, 2009.

L. Davidovic, D. Vasic, R. Maksimovic, D. Kostic, D. Markovic et al.,

, Aortobifemoral grafting: factors influencing long-term results, Vascular, 2004.

R. F. Neville, A. Capone, R. Amdur, M. Lidsky, J. Babrowicz et al., A comparison of tibial artery bypass performed with heparin-bonded expanded polytetrafluoroethylene and great saphenous vein to treat critical limb ischemia, J Vasc Surg, vol.56, issue.4, pp.1008-1022, 2012.

B. T. Allen, C. J. Mathias, G. A. Sicard, M. J. Welch, and R. E. Clark, Platelet deposition on vascular grafts. The accuracy of in vivo quantitation and the significance of in vivo platelet reactivity, Ann Surg, vol.203, issue.3, pp.318-346, 1986.

R. J. Zdrahala, Small caliber vascular grafts. Part I: state of the art, J Biomater Appl, vol.10, issue.4, pp.309-338, 1996.

R. H. Schmedlen, K. S. Masters, and J. L. West, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering

, Biomaterials, vol.23, issue.22, pp.4325-4357, 2002.

J. M. Ino, E. Sju, V. Ollivier, E. Yim, D. Letourneur et al., Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films: Hemocompatibility And Endothelialization Of Hybrid PVA/Gelatin Polymer Films, J Biomed Mater Res B Appl Biomater, vol.101, issue.8, pp.1549-59, 2013.

M. Chaouat, L. Visage, C. Baille, W. E. Escoubet, B. Chaubet et al.,

, Novel Cross-linked Poly(vinyl alcohol) (PVA) for Vascular Grafts, Adv Funct Mater, 2008.

, Oct, vol.9, pp.2855-61

J. M. Ino, P. Chevallier, D. Letourneur, D. Mantovani, L. Visage et al., Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement, Biomatter, vol.3, issue.4, 2013.

Y. Liu, L. M. Geever, J. E. Kennedy, C. L. Higginbotham, P. A. Cahill et al.,

, Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels, J Mech Behav Biomed Mater, vol.3, issue.2, pp.203-212, 2010.

Y. Liu, N. E. Vrana, P. A. Cahill, and G. B. Mcguinness, Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility, J Biomed Mater Res B Appl Biomater, vol.90, issue.2, pp.492-502, 2009.

E. D. Grober, S. J. Hamstra, K. R. Wanzel, R. K. Reznick, E. D. Matsumoto et al.,

, The Educational Impact of Bench Model Fidelity on the Acquisition of Technical Skill: The Use of Clinically Relevant Outcome Measures, Ann Surg, vol.240, issue.2, pp.374-81, 2004.

K. R. Wanzel, S. J. Hamstra, M. F. Caminiti, D. J. Anastakis, E. D. Grober et al.,

, Visual-spatial ability correlates with efficiency of hand motion and successful surgical performance, Surgery, vol.134, issue.5, pp.750-757, 2003.

I. Lascar, D. Totir, A. Cinca, S. Cortan, A. Stefanescu et al., Training program and learning curve in experimental microsurgery during the residency in plastic surgery, Microsurgery, vol.27, issue.4, pp.263-270, 2007.

H. A. Osborn, J. Kuthubutheen, C. Yao, J. M. Chen, and V. Y. Lin, Predicting Microsurgical Aptitude, Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol

R. D. Campbell, K. G. Hecker, D. J. Biau, and D. Pang, Student Attainment of Proficiency in a Clinical Skill: The Assessment of Individual Learning Curves. Launois P, editor, PLoS ONE, vol.9, issue.2, p.88526, 2014.

A. Alzakri, M. Al-rajeh, P. A. Liverneaux, and S. Facca, État des lieux de l'enseignement des techniques microchirurgicales en France et à l'étranger, Chir Main, 2014.

S. Shurey, Y. Akelina, J. Legagneux, G. Malzone, L. Jiga et al., The Rat Model in Microsurgery Education: Classical Exercises and New Horizons, Arch Plast Surg, vol.41, issue.3, p.201, 2014.

P. Guerreschi, A. Qassemyar, J. Thevenet, T. Hubert, C. Fontaine et al.,

V. , Reducing the number of animals used for microsurgery training programs by using a task-trainer simulator, Lab Anim, vol.48, issue.1, pp.72-79, 2014.

E. Belykh and V. Byvaltsev, Off-the-job microsurgical training on dry models: Siberian experience, World Neurosurg, vol.82, issue.1-2, pp.20-24, 2014.

S. Ramachandran, C. Chui, and B. Tan, The Chicken Aorta as a Simulation

, Training Model for Microvascular Surgery Training. Arch Plast Surg, vol.40, issue.4, p.327, 2013.

G. Prunières, C. Taleb, S. Hendriks, H. Miyamoto, N. Kuroshima et al., Use of the Konnyaku Shirataki noodle as a low fidelity simulation training model for microvascular surgery in the operating theatre, Chir Main, vol.33, issue.2, pp.106-117, 2014.

M. Oliveira-magaldi, A. Nicolato, J. V. Godinho, M. Santos, A. Prosdocimi et al.,

J. A. , Human Placenta Aneurysm Model for Training Neurosurgeons in Vascular Microsurgery: Neurosurgery, vol.10, pp.592-601, 2014.

E. Erel, B. Aiyenibe, and P. Butler, Microsurgery simulators in virtual reality: review

. Microsurgery, , vol.23, pp.147-52, 2003.

H. Kazemi, J. K. Rappel, T. Poston, H. Lim, B. Burdet et al., Assessing suturing techniques using a virtual reality surgical simulator, Microsurgery, 2010.

J. N. Carey, E. Rommer, C. Sheckter, M. Minneti, P. Talving et al.,

, Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers, J Plast Reconstr Aesthetic Surg JPRAS, vol.67, issue.2, pp.42-50, 2014.

S. Ramachandran, Y. Ong, A. Y. Chin, I. Song, B. Ogden et al., Stepwise Training for Reconstructive Microsurgery: The Journey to Becoming a Confident Microsurgeon in, vol.41, p.209, 2014.

E. Nugent, C. Joyce, G. Perez-abadia, J. Frank, M. Sauerbier et al., Factors influencing microsurgical skill acquisition during a dedicated training course, Microsurgery, vol.32, issue.8, pp.649-56, 2012.

C. J. Hopmans, P. T. Hoed, L. Van-der-laan, E. Van-der-harst, and M. Van-der-elst,

G. Mannaerts, Assessment of surgery residents' operative skills in the operating theater using a modified Objective Structured Assessment of Technical Skills (OSATS): a prospective multicenter study, Surgery, vol.156, issue.5, pp.1078-88, 2014.

J. A. Martin, G. Regehr, R. Reznick, H. Macrae, J. Murnaghan et al.,

, Objective structured assessment of technical skill (OSATS) for surgical residents, Br J Surg, vol.84, issue.2, pp.273-281, 1997.

D. Dumestre, J. K. Yeung, and C. Temple-oberle, Evidence-Based Microsurgical Skills Acquisition Series Part 2: Validated Assessment Instruments-A Systematic Review, J Surg Educ, vol.72, issue.1, pp.80-89, 2015.

C. Temple and D. C. Ross, A New, Validated Instrument to Evaluate Competency in Microsurgery: The University of Western Ontario Microsurgical Skills

, Acquisition/Assessment Instrument, Plast Reconstr Surg, 2011.

R. Remie, The PVC-rat and other alternatives in microsurgical training, Lab Anim

U. Spetzger, A. Schilling, T. Brombach, and G. Winkler, Training models for vascular microneurosurgery, Acta Neurochir Suppl, vol.112, pp.115-124, 2011.

S. Komatsu, K. Yamada, S. Yamashita, N. Sugiyama, E. Tokuyama et al.,

, Evaluation of the Microvascular Research Center Training Program for Assessing Microsurgical Skills in Trainee Surgeons, Arch Plast Surg, vol.40, issue.3, p.214, 2013.

L. M. Sutherland, P. F. Middleton, A. Anthony, J. Hamdorf, P. Cregan et al., Surgical simulation: a systematic review, Ann Surg, vol.243, issue.3, pp.291-300, 2006.

C. J. Vaughn, E. Kim, P. O'sullivan, E. Huang, M. Lin et al., Peer video review and feedback improve performance in basic surgical skills, Am J Surg

. Nov, , 2015.

R. B. Mcgoldrick, C. R. Davis, J. Paro, K. Hui, D. Nguyen et al., Motion Analysis for

, Microsurgical Training: Objective Measures of Dexterity, Economy of Movement, and Ability. Plast Reconstr Surg, vol.136, pp.231-240, 2015.

S. Onoda, Y. Kimata, N. Sugiyama, E. Tokuyama, K. Matsumoto et al., Analysis of 10-Year Training Results of Medical Students Using the Microvascular Research Center Training Program, J Reconstr Microsurg, 2015.

E. N. Spruit, G. Band, and J. F. Hamming, Increasing efficiency of surgical training: effects of spacing practice on skill acquisition and retention in laparoscopy training, Surg Endosc, vol.29, issue.8, pp.2235-2278, 2015.

A. M. Ghanem, N. Hachach-haram, C. Leung, and S. R. Myers, A systematic review of evidence for education and training interventions in microsurgery, Arch Plast Surg, 2013.

E. Pektok, B. Nottelet, J. Tille, R. Gurny, A. Kalangos et al., Degradation and Healing Characteristics of Small-Diameter Poly(-Caprolactone) Vascular Grafts in the Rat Systemic Arterial Circulation. Circulation, vol.118, pp.2563-70, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00416599

H. Jiang, Y. Zuo, L. Zhang, J. Li, A. Zhang et al., Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea, J Mater Sci Mater Med, vol.25, issue.3, pp.941-52, 2014.

M. V. Schaverien, C. N. Ludman, J. Neil-dwyer, and S. J. Mcculley, Contrast-enhanced magnetic resonance angiography for preoperative imaging of deep inferior epigastric artery perforator flaps: advantages and disadvantages compared with computed tomography angiography: a United Kingdom perspective, Ann Plast Surg, vol.67, issue.6, pp.671-675, 2011.

E. W. Swanson, Y. Hsu, and H. Cheng, CTA and contrast-enhanced MRA are equally accurate for localizing deep inferior epigastric perforator flap arteries: a systematic review

, J Plast Reconstr Aesthetic Surg JPRAS, vol.68, issue.4, pp.580-581, 2015.

B. O. Mofikoya, A. O. Ugburo, and O. B. Bankole, Does open guide suture technique improve the patency rate in submillimeter rat artery anastomosis? Handchir Mikrochir Plast Chir Organ Deutschsprachigen Arbeitsgemeinschaft Für Handchir Organ Deutschsprachigen Arbeitsgemeinschaft Für Mikrochir Peripher Nerven Gefässe Organ Ver Dtsch Plast Chir

M. Yamanami, A. Yamamoto, H. Iida, T. Watanabe, K. Kanda et al., 3-Tesla magnetic resonance angiographic assessment of a tissue-engineered small-caliber vascular graft implanted in a rat, J Biomed Mater Res B Appl Biomater, vol.92, issue.1, pp.156-60, 2010.

A. Iravani, J. Mueller, and A. Yousefi, Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach, J Biomater Sci Polym Ed, vol.25, issue.2, pp.181-202, 2014.

K. Surry, H. Austin, A. Fenster, and T. M. Peters, Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging, Phys Med Biol, vol.49, issue.24, pp.5529-5575, 2004.

J. Gebhardt, L. Budinsky, U. Reulbach, M. Weyand, A. Hess et al.,

, Noninvasive Magnetic Resonance Imaging of Vessels Affected by Transplant Arteriosclerosis in an Experimental Mouse Aortic Allograft Model, Thorac Cardiovasc Surg, vol.59, issue.02, pp.85-92, 2011.

V. Chernyak, A. M. Rozenblit, D. T. Greenspun, J. L. Levine, D. L. Milikow et al.,

, Breast Reconstruction with Deep Inferior Epigastric Artery Perforator Flap, pp.3-3

, Gadolinium-enhanced MR Imaging for Preoperative Localization of Abdominal Wall Perforators 1, Radiology, vol.250, issue.2, pp.417-441, 2009.

D. Greenspun, J. Vasile, J. Levine, H. Erhard, R. Studinger et al.,

, Anatomic Imaging of Abdominal Perforator Flaps without Ionizing Radiation: Seeing Is Believing with Magnetic Resonance Imaging Angiography, J Reconstr Microsurg, 2010.

E. Junior, J. Santos, A. C. Koenigkam-santos, M. Nogueira-barbosa, and M. H. ,

V. F. Muglia, Complicações do uso intravenoso de agentes de contraste à base de gadolínio para ressonância magnética. Radiol Bras, vol.41, pp.263-270, 2008.

R. A. Natalin, M. R. Prince, M. E. Grossman, D. Silvers, J. Landman et al.,

, Applications and Limitations of Magnetic Resonance Imaging Contrast Materials, J Urol

C. Foss, J. K. Smith, L. Ortiz, C. Hanevold, and L. Davis, Gadolinium-Associated Nephrogenic Systemic Fibrosis in a 9-Year-Old Boy, Pediatr Dermatol, 2009.

T. A. Rose and J. W. Choi, Intravenous Imaging Contrast Media Complications: The Basics That Every Clinician Needs to Know, Am J Med, vol.128, issue.9, pp.943-952, 2015.

C. M. Hassan and N. A. Peppas, Structure and Applications of Poly

, Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods

·. Biopolymers and . Hydrogels, Anionic Polymerisation Nanocomposites

H. Berlin, , pp.37-65, 2000.

J. A. Stammen, S. Williams, D. N. Ku, and R. E. Guldberg, Mechanical properties of a novel PVA hydrogel in shear and unconfined compression, Biomaterials, vol.22, issue.8, pp.799-806, 2001.

K. L. Spiller, S. J. Laurencin, D. Charlton, S. A. Maher, and A. M. Lowman, Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties

, Acta Biomater, vol.4, issue.1, pp.17-25, 2008.

J. S. Bach, F. Detrez, M. Cherkaoui, S. Cantournet, D. N. Ku et al., Hydrogel fibers for ACL prosthesis: Design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs, J Biomech, vol.46, issue.8, pp.1463-70, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821932

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent, J Biomed Mater Res, vol.63, issue.6, pp.854-61, 2002.

L. E. Millon, H. Mohammadi, and W. K. Wan, Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications, J Biomed Mater Res B Appl Biomater, vol.79, issue.2, pp.305-316, 2006.

N. Alexandre, J. Ribeiro, A. Gärtner, T. Pereira, I. Amorim et al.,

, Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies: Biocompatibility and Hemocompatibility of PVA Hydrogel, J Biomed Mater Res A, 2014.

F. Caiado and S. Dias, Endothelial progenitor cells and integrins: adhesive needs

, Fibrogenesis Tissue Repair, vol.5, issue.1, p.4, 2012.

S. P. Massia and J. A. Hubbell, Vascular endothelial cell adhesion and spreading promoted

, J Biol Chem, vol.267, issue.20, pp.14019-14045, 1992.

S. D. Hudson, J. L. Hutter, M. Nieh, J. Pencer, L. E. Millon et al., Characterization of anisotropic poly(vinyl alcohol) hydrogel by small-and ultra-small-angle neutron scattering

, J Chem Phys, vol.130, issue.3, p.34903, 2009.

K. Nakajima, J. Fujita, M. Matsui, S. Tohyama, N. Tamura et al.,

, Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to

, Ameliorate Cardiac Function after Myocardial Infarction, PLOS ONE

, Jul, vol.17, issue.7, p.133308

P. Dubruel, R. Unger, S. Van-vlierberghe, V. Cnudde, P. Jacobs et al.,

, Porous Gelatin Hydrogels: 2. In Vitro Cell Interaction Study, Biomacromolecules, 2007.

S. T. Koshy, T. C. Ferrante, S. A. Lewin, and D. J. Mooney, Injectable, porous, and cellresponsive gelatin cryogels, Biomaterials, vol.35, issue.8, pp.2477-87, 2014.

N. Hato, J. Nota, H. Komobuchi, M. Teraoka, H. Yamada et al., Facial nerve decompression surgery using bFGF-impregnated biodegradable gelatin hydrogel in patients with Bell palsy. Otolaryngol-Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg, vol.146, pp.641-647, 2012.

A. Marui, Y. Tabata, S. Kojima, M. Yamamoto, K. Tambara et al., A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study, Circ J Off J Jpn Circ Soc, vol.71, issue.8, pp.1181-1187, 2007.

, PNIPAAm-based Biohybrid Injectable Hydrogel for Cardiac Tissue Engineering, Acta Biomater, 2015.

S. Bae, S. Son, K. Sakar, S. Nguyen, T. Kim et al.,

, Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane

P. Membrane, J Biomed Mater Res B Appl Biomater, vol.102, issue.4, pp.840-849, 2014.

N. Alobaid, H. J. Salacinski, K. M. Sales, R. B. Kannan, R. Y. Hamilton et al.,

, Nanocomposite Containing Bioactive Peptides Promote Endothelialisation by Circulating Progenitor Cells: An In vitro Evaluation, Eur J Vasc Endovasc Surg, vol.32, issue.1, pp.76-83, 2006.

L. S. Ferreira, S. Gerecht, J. Fuller, H. F. Shieh, G. Vunjak-novakovic et al.,

, Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells, Biomaterials, vol.28, issue.17, pp.2706-2723, 2007.

S. X. Deng, J. Tomioka, J. C. Debes, and Y. C. Fung, New experiments on shear modulus of elasticity of arteries, Am J Physiol, vol.266, issue.1, pp.1-10, 1994.

N. Assoul, P. Flaud, M. Chaouat, D. Letourneur, and I. Bataille, Mechanical properties of rat thoracic and abdominal aortas, J Biomech, vol.41, issue.10, pp.2227-2263, 2008.

B. Hansen, A. H. Menkis, and I. Vesely, Longitudinal and radial distensibility of the porcine aortic root, Ann Thorac Surg, vol.60, issue.2, pp.384-90, 1995.

N. A. Peppas and E. W. Merrill, Development of semicrystalline poly

, hydrogels for biomedical applications, J Biomed Mater Res, vol.11, issue.3, pp.423-457, 1977.

X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang et al., Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method, Acta Biomater, 2010.

J. D. Bobyn, G. J. Wilson, D. C. Macgregor, R. M. Pilliar, and G. C. Weatherly, Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants, J Biomed Mater Res, vol.16, issue.5, pp.571-84, 1982.

S. Lack, V. Dulong, L. Picton, L. Cerf, D. Condamine et al., High-resolution nuclear
URL : https://hal.archives-ouvertes.fr/hal-01866833

H. T. Peng, L. Martineau, and A. Hung, Hydrogel-elastomer composite biomaterials, p.4

, Mater Sci Mater Med, vol.19, issue.4, pp.1803-1816, 2008.

N. E. Vrana, P. A. Cahill, and G. B. Mcguinness, Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions, J Biomed Mater Res A, vol.9999, pp.NA -NA, 2010.

S. G. Wise, M. J. Byrom, A. Waterhouse, P. G. Bannon, M. Ng et al., A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties, Acta Biomater, vol.7, issue.1, pp.295-303, 2011.

S. Enomoto, M. Sumi, K. Kajimoto, Y. Nakazawa, R. Takahashi et al.,

, Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material, J Vasc Surg, vol.51, issue.1, pp.155-64, 2010.

T. Fukayama, K. Takagi, R. Tanaka, Y. Hatakeyama, D. Aytemiz et al.,

, Biological Reaction to Small-Diameter Vascular Grafts Made of Silk Fibroin Implanted in the Abdominal Aortae of Rats, Ann Vasc Surg, vol.29, issue.2, pp.341-52, 2015.

V. M. Merkle, D. Martin, M. Hutchinson, P. L. Tran, A. Behrens et al.,

P. Hemocompatibility-of, Gelatin Core-Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation, ACS Appl Mater Interfaces

, Apr, vol.22, issue.15, pp.8302-8314

N. Linh, Y. K. Min, H. Song, and B. Lee, Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties, J Biomed Mater Res B Appl Biomater, 2010.

L. 'heureux, N. Dusserre, N. Konig, G. Victor, B. Keire et al., Human tissue-engineered blood vessels for adult arterial revascularization, Nat Med, 2006.

T. N. Mcallister, M. Maruszewski, S. A. Garrido, W. Wystrychowski, and N. Dusserre,

A. Marini, Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study, Lancet Lond Engl, vol.373, issue.9673, pp.1440-1446, 2009.

W. Wystrychowski, T. N. Mcallister, K. Zagalski, N. Dusserre, L. Cierpka et al., First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access, J Vasc Surg, vol.60, issue.5, pp.1353-1360, 2014.

W. Wystrychowski, L. Cierpka, K. Zagalski, S. Garrido, N. Dusserre et al., Case study: first implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access, J Vasc Access, vol.12, issue.1, pp.67-70, 2011.

A. Mahara, S. Somekawa, N. Kobayashi, Y. Hirano, Y. Kimura et al.,

, Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity, Biomaterials, vol.58, pp.54-62, 2015.

J. L. Holloway, A. M. Lowman, and G. R. Palmese, Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions, Acta Biomater, vol.9, issue.2, pp.5013-5034, 2013.

J. L. Holloway, K. L. Spiller, A. M. Lowman, and G. R. Palmese, Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement, Acta Biomater, vol.7, issue.6, pp.2477-82, 2011.

J. Fromageau, J. Gennisson, C. Schmitt, R. L. Maurice, R. Mongrain et al., Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings, IEEE Trans Ultrason Ferroelectr Freq Control, vol.54, issue.3, pp.498-509, 2007.

P. J. Willcox, D. W. Howie, K. Schmidt-rohr, D. A. Hoagland, S. P. Gido et al., Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling, J Polym Sci Part B Polym Phys, vol.37, issue.24, pp.3438-54, 1999.

S. Ohya, S. Kidoaki, T. Matsuda, and . Poly, N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness, Biomaterials, vol.26, issue.16, pp.3105-3116, 2005.

M. G. Cascone, N. Barbani, C. Cristallini, P. Giusti, G. Ciardelli et al., Bioartificial polymeric materials based on polysaccharides, J Biomater Sci Polym Ed, vol.12, issue.3, pp.267-81, 2001.

D. Chong, B. Lindsey, M. J. Dalby, N. Gadegaard, A. M. Seifalian et al., Luminal Surface Engineering

, Endothelialising Vascular Grafts?, Eur J Vasc Endovasc Surg, vol.47, issue.5, pp.566-76, 2014.

M. C. Gutiérrez, Z. Y. García-carvajal, M. Jobbágy, F. Rubio, L. Yuste et al.,

, Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release, Adv Funct Mater, vol.17, issue.17, pp.3505-3518, 2007.

H. Wang, T. Inada, K. Funakoshi, and S. Lu, Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution, Cryobiology, vol.59, issue.1, pp.83-92, 2009.

A. Hasan, A. Paul, A. Memic, and A. Khademhosseini, A multilayered microfluidic blood vessel-like structure, Biomed Microdevices, vol.17, issue.5, 2015.

M. Cutiongco, D. Anderson, M. T. Hinds, and E. Yim, In vitro and ex vivo hemocompatibility of off-the-shelf modified poly(vinyl alcohol) vascular grafts, Acta Biomater, 2015.

S. J. Liliensiek, J. A. Wood, J. Yong, R. Auerbach, P. F. Nealey et al., Modulation of human vascular endothelial cell behaviors by nanotopographic cues, Biomaterials, 2010.

K. E. Mccracken, P. L. Tran, D. J. You, M. J. Slepian, J. Yoon et al.,

C. E. Ayres, B. S. Jha, S. A. Sell, G. L. Bowlin, and D. G. Simpson, Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.2, issue.1, pp.20-34, 2010.

J. L. Holloway, A. M. Lowman, and G. R. Palmese, The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels, Soft Matter, vol.9, issue.3, pp.826-859, 2013.

J. M. Lee, S. A. Haberer, and D. R. Boughner, The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium, J Biomed Mater Res, vol.23, issue.5, pp.457-75, 1989.

, Réparer les coeurs brisés et les vaisseaux abîmés

C. Le-visage-;-inserm and U. Bio-ingénierie-cardiovasculaire, Laboratoire de microfluidique, organisation chimique et nanotechnologies, CNRS UMR8640, Ecole normale supérieure de Paris, vol.3

U. Bichat and . Paris, , vol.13