P. O. Ljungdahl and B. Daignan-fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae, Genetics, vol.190, pp.885-929, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703026

F. Lacroute, Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae, Journal of bacteriology, vol.95, pp.824-832, 1968.

B. Pinson, S. Vaur, I. Sagot, F. Coulpier, S. Lemoine et al., Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways, Genes Dev, vol.23, pp.1399-407, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403264

J. Etchegaray and R. Mostoslavsky, Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes, Molecular Cell, vol.62, pp.695-711, 2016.

L. Galdieri and A. Vancura, Acetyl-CoA carboxylase regulates global histone acetylation, J Biol Chem, vol.287, pp.23865-76, 2012.

R. J. Klose and Y. Zhang, Regulation of histone methylation by demethylimination and demethylation, Nat Rev Mol Cell Biol, vol.8, pp.307-325, 2007.

K. Igarashi and Y. Katoh, Metabolic aspects of epigenome: coupling of Sadenosylmethionine synthesis and gene regulation on chromatin by SAMIT module, Subcell Biochem, vol.61, pp.105-123, 2013.

R. J. Rolfes, Regulation of purine nucleotide biosynthesis: in yeast and beyond, Biochem Soc Trans, vol.34, pp.786-90, 2006.

K. Rébora, C. Desmoucelles, F. Borne, B. Pinson, and B. Daignan-fornier, Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate, Mol Cell Biol, vol.21, pp.7901-7913, 2001.

P. B. Kim, J. W. Nelson, and R. R. Breaker, An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism, Mol Cell, vol.57, pp.317-345, 2015.

J. E. Sullivan, K. J. Brocklehurst, A. E. Marley, F. Carey, D. Carling et al., Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase, FEBS Lett, vol.353, pp.33-39, 1994.

M. Foretz, N. Guigas, B. Sandrine, . Christophe, . Fabrizio et al., Régulation du métabolisme énergétique par l'AMPK. medecine science INSERM 13. Daignan-Fornier B, Pinson B (2012) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects, vol.2, pp.292-302, 2006.

J. Ceschin, C. Saint-marc, J. Laporte, A. Labriet, C. Philippe et al., Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-?-dribofuranoside (AICAr) transporters, J Biol Chem, vol.289, pp.16844-54, 2014.

X. Liu, R. R. Chhipa, and S. Pooya, Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK, Proc Natl Acad Sci, vol.111, pp.435-479, 2014.

F. V. Mayer, R. Heath, and E. Underwood, ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase, Cell Metab, vol.14, pp.707-721, 2011.

Y. Tang, B. Williams, J. Siegel, and A. Amon, Identification of Aneuploidy-Selective Antiproliferation Compounds, Cell, 2010.

D. G. Albertson, C. Collins, F. Mccormick, and J. W. Gray, Chromosome aberrations in solid tumors, Nat Genet, vol.34, pp.369-76, 2003.

R. Rattan, S. Giri, A. K. Singh, and I. Singh, 5-Aminoimidazole-4-carboxamide-1-beta-Dribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase, J Biol Chem, vol.280, pp.39582-93, 2005.

T. Sengupta, G. Leclerc, T. Hsieh-kinser, G. Leclerc, I. Singh et al., Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-?-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy, Mol Cancer, 2007.

P. Tessarz and T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics, Nat Rev Mol Cell Biol, vol.15, pp.703-711, 2014.

C. A. Musselman, M. Lalonde, J. Côté, and T. G. Kutateladze, Perceiving the epigenetic landscape through histone readers, Nat Struct Mol Biol, vol.19, pp.1218-1245, 2012.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.

M. Clague, C. Heride, and S. Urbé, The demographics of the ubiquitin system, Trends Cell Biol, vol.25, pp.417-426, 2015.

W. Lee, M. Lee, J. W. Jung, K. P. Kim, and D. Kim, SCUD: Saccharomyces cerevisiae ubiquitination database, BMC Genomics, vol.9, p.440, 2008.

P. S. Swerdlow, T. Schuster, and D. Finley, A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae, Mol Cell Biol, vol.10, pp.4905-4916, 1990.

B. E. Nickel, C. D. Allis, and J. R. Davie, Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin, Biochemistry, vol.28, pp.958-63, 1989.

K. Robzyk, J. Recht, and M. Osley, Rad6-Dependent Ubiquitination of Histone H2B in Yeast, Science, vol.287, p.501504, 2000.

A. Wood, N. J. Krogan, and J. Dover, Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter, Mol Cell, vol.11, pp.267-74, 2003.

W. Hwang, S. Venkatasubrahmanyam, A. Ianculescu, A. Tong, C. Boone et al., , 2002.

, Conserved RING Finger Protein Required for Histone H2B Monoubiquitination and Cell Size Control, Mol Cell

A. Wood, J. Schneider, J. Dover, M. Johnston, and A. Shilatifard, The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p, J Biol Chem, vol.278, pp.34739-34781, 2003.

J. L. Betz, M. Chang, T. M. Washburn, S. E. Porter, C. L. Mueller et al., Phenotypic analysis of Paf1/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism, Mol Genet Genomics, vol.268, pp.272-85, 2002.

K. W. Henry, A. Wyce, W. Lo, L. J. Duggan, N. C. Emre et al., Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8, Genes Dev, vol.17, pp.2648-63, 2003.

S. D. Turner, A. R. Ricci, H. Petropoulos, J. Genereaux, I. S. Skerjanc et al., , p.2, 2002.

, ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription, Mol Cell Biol, vol.22, pp.4011-4020

R. G. Gardner, Z. W. Nelson, and D. E. Gottschling, Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin, Mol Cell Biol, vol.25, pp.6123-6162, 2005.

Y. Zhang, Transcriptional regulation by histone ubiquitination and deubiquitination, Genes Dev, vol.17, pp.2733-2773, 2003.

M. J. Clague, J. M. Coulson, and S. Urbé, Deciphering histone 2A deubiquitination, Genome Biol, vol.9, p.202, 2008.

A. W. Thorne, P. Sautiere, G. Briand, and C. Crane-robinson, The structure of ubiquitinated histone H2B, EMBO J, vol.6, pp.1005-1015, 1987.

M. H. Koken, P. Reynolds, I. Jaspers-dekker, L. Prakash, S. Prakash et al., Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6, Proc Natl Acad Sci, vol.88, pp.8865-8874, 1991.

J. Kim, S. B. Hake, and R. G. Roeder, The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions, Mol Cell, vol.20, pp.759-70, 2005.

B. Zhu, Y. Zheng, A. Pham, S. S. Mandal, H. Erdjument-bromage et al., Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation, Mol Cell, vol.20, pp.601-612, 2005.

S. B. Chernikova, O. V. Razorenova, and J. P. Higgins, Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability, Cancer Res, vol.72, pp.2111-2120, 2012.

V. Kari, A. Shchebet, H. Neumann, and S. A. Johnsen, The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA doublestrand break repair, Cell Cycle, vol.10, pp.3495-504, 2011.

J. Kim, M. Guermah, R. K. Mcginty, J. Lee, Z. Tang et al., RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells, Cell, vol.137, pp.459-71, 2009.

E. Shema, I. Tirosh, and Y. Aylon, The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression, Genes Dev, vol.22, pp.2664-76, 2008.

S. Varambally, J. Yu, and B. Laxman, Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression, Cancer Cell, vol.8, pp.393-406, 2005.

T. D. Barber, K. Mcmanus, and K. W. Yuen, Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers, Proc Natl Acad Sci, vol.105, pp.3443-3451, 2008.

T. Tahara, E. Yamamoto, and P. Madireddi, Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators, Gastroenterology, vol.146, pp.530-568, 2014.

A. J. Cole, R. Clifton-bligh, and D. J. Marsh, Histone H2B monoubiquitination: roles to play in human malignancy, Endocr Relat Cancer, vol.22, pp.19-33, 2015.

T. Prenzel, Y. Begus-nahrmann, and F. Kramer, Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B, Cancer Res, vol.71, pp.5739-53, 2011.

Y. Urasaki, L. Heath, and C. W. Xu, Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors, PLoS ONE, vol.7, p.36775, 2012.

M. A. Hahn, K. Dickson, J. S. Clarkson, A. Gill, A. J. Marsh et al., The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination, Hum Mol Genet, vol.21, pp.559-68, 2012.

Y. Zhang, L. Yao, X. Zhang, J. H. Wang, L. Sun et al., Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer, J Cancer Res Clin Oncol, vol.137, pp.1245-53, 2011.

Y. Liu, Y. , Y. Xu, H. Dong, and X. Ss, Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer, J Surg Oncol, vol.103, pp.283-292, 2011.

J. Li, Z. Wang, and Y. Li, USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma, J Cancer Res Clin Oncol, vol.138, pp.1291-1298, 2012.

H. Wang, Y. Li, and J. Chen, Prognostic significance of USP22 as an oncogene in papillary thyroid carcinoma, Tumour Biol, vol.34, pp.1635-1644, 2013.

D. Yang, B. Cui, L. Y. Sun, H. Q. Zheng, Q. Huang et al., The coexpression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma, Cell Biochem Biophys, vol.61, pp.703-713, 2011.

Z. Sun and A. C. , Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast, Nature, vol.418, pp.104-108, 2002.

J. Dover, J. Schneider, M. A. Tawiah-boateng, A. Wood, K. Dean et al., , 2002.

, Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6, J Biol Chem, vol.277, pp.28368-71

J. Schneider, A. Wood, J. Lee, R. Schuster, J. Dueker et al., Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression, Mol Cell, vol.19, pp.849-56, 2005.

E. Nedea, D. Nalbant, D. Xia, N. T. Theoharis, B. Suter et al., The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes, Mol Cell, vol.29, pp.577-87, 2008.

E. Nedea, X. He, M. Kim, J. Pootoolal, G. Zhong et al., Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends, J Biol Chem, vol.278, pp.33000-33010, 2003.

H. Cheng, X. He, and C. Moore, The essential WD repeat protein Swd2 has dual functions in RNA polymerase II transcription termination and lysine 4 methylation of histone H3, Mol Cell Biol, vol.24, pp.2932-2975, 2004.

H. Ng, R. Xu, Y. Zhang, and K. Struhl, Ubiquitination of Histone H2B by Rad6 Is Required for Efficient Dot1-mediated Methylation of Histone H3 Lysine 79, J Biol Chem, vol.277, pp.34655-34657, 2002.

J. M. Schulze, J. Jackson, S. Nakanishi, J. M. Gardner, T. Hentrich et al., Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation, Mol Cell, vol.35, pp.626-667, 2009.

M. Vermeulen, K. W. Mulder, S. Denissov, W. W. Pijnappel, F. M. Van-schaik et al., Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4, Cell, vol.131, pp.58-69, 2007.

T. Margaritis, V. Oreal, and N. Brabers, Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3'-end antisense transcription, PLoS Genet, vol.8, p.4506, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762204

C. D. Allis, S. L. Berger, and J. Cote, New nomenclature for chromatin-modifying enzymes, Cell, vol.131, pp.633-639, 2007.

J. Latham, R. Chosed, S. Wang, and S. Dent, Chromatin Signaling to Kinetochores: Transregulation of Dam1 Methylation by Histone H2B Ubiquitination, Cell, 2011.

S. Westermann, D. G. Drubin, and G. Barnes, Structures and functions of yeast kinetochore complexes, Annu Rev Biochem, vol.76, pp.563-91, 2007.

A. M. Courtwright and X. He, Dam1 is the right one: phosphoregulation of kinetochore biorientation, Dev Cell, vol.3, pp.610-611, 2002.

K. Zhang, W. Lin, J. A. Latham, G. M. Riefler, J. M. Schumacher et al., The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation, Cell, vol.122, pp.723-757, 2005.

C. S. Chan and D. Botstein, Isolation and characterization of chromosome-gain and increasein-ploidy mutants in yeast, Genetics, vol.135, pp.677-91, 1993.

L. Francisco and C. S. Chan, Regulation of yeast chromosome segregation by Ipl1 protein kinase and type 1 protein phosphatase, Cell Mol Biol Res, vol.40, pp.207-220, 1994.

E. Wang, S. Kawaoka, M. Yu, J. Shi, T. Ni et al., Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia, Proc Natl Acad Sci, vol.110, pp.3901-3907, 2013.

V. Vethantham, Y. Yang, C. Bowman, P. Asp, J. Lee et al., Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation, Mol Cell Biol, vol.32, pp.1044-55, 2012.

A. Shilatifard, The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis, Annu Rev Biochem, vol.81, pp.65-95, 2012.

M. Wu, P. F. Wang, J. S. Lee, S. Martin-brown, L. Florens et al., Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS, Mol Cell Biol, vol.28, pp.7337-7381, 2008.

A. Ortega-molina, I. W. Boss, and A. Canela, The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development, Nat Med, vol.21, p.151, 2015.

M. M. Steward, J. Lee, O. 'donovan, A. Wyatt, M. Bernstein et al., Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes, Nat Struct Mol Biol, vol.13, pp.852-856, 2006.

A. Barski, S. Cuddapah, K. Cui, T. Roh, D. E. Schones et al., , 2007.

, High-resolution profiling of histone methylations in the human genome, Cell, vol.129, pp.823-860

R. Pavri, B. Zhu, G. Li, P. Trojer, S. Mandal et al., Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II, Cell, vol.125, pp.703-720, 2006.
DOI : 10.1016/j.cell.2006.04.029

URL : https://doi.org/10.1016/j.cell.2006.04.029

R. J. Sims and D. Reinberg, Histone H3 Lys 4 methylation: caught in a bind?, Genes Dev, vol.20, pp.2779-86, 2006.
DOI : 10.1101/gad.1468206

URL : http://genesdev.cshlp.org/content/20/20/2779.full.pdf

J. Corral, I. Lavenir, H. Impey, A. J. Warren, A. Forster et al., An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes, Cell, vol.85, pp.853-61, 1996.
DOI : 10.1016/s0092-8674(00)81269-6

URL : https://doi.org/10.1016/s0092-8674(00)81269-6

J. D. Rowley, The critical role of chromosome translocations in human leukemias, Annu Rev Genet, vol.32, pp.495-519, 1998.

C. C. Wong, I. Martincorena, and A. G. Rust, Inactivating CUX1 mutations promote tumorigenesis, Nat Genet, vol.46, pp.33-41, 2014.
DOI : 10.1038/ng.2846

URL : http://europepmc.org/articles/pmc3874239?pdf=render

S. P. Cleary, W. R. Jeck, and X. Zhao, Identification of driver genes in hepatocellular carcinoma by exome sequencing, Hepatology, vol.58, pp.1693-702, 2013.

D. W. Parsons, M. Li, and X. Zhang, The genetic landscape of the childhood cancer medulloblastoma, Science, vol.331, pp.435-444, 2011.

R. D. Morin, K. Mungall, and E. Pleasance, Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing, Blood, vol.122, pp.1256-65, 2013.

L. H. Hartwell, R. K. Mortimer, J. Culotti, and M. Culotti, Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants, Genetics, vol.74, pp.267-86, 1973.

D. O. Morgan, Principles of CDK regulation, Nature, vol.374, pp.131-135, 1995.

P. E. Sudbery, A. R. Goodey, and B. L. Carter, Genes which control cell proliferation in the yeast Saccharomyces cerevisiae, Nature, vol.288, pp.401-405, 1980.

C. Wittenberg, K. Sugimoto, and S. I. Reed, G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase, Cell, vol.62, pp.225-262, 1990.

J. Bloom and F. R. Cross, Multiple levels of cyclin specificity in cell-cycle control, Nat Rev Mol Cell Biol, vol.8, pp.149-60, 2007.

K. Nasmyth and L. Dirick, The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast, Cell, vol.66, pp.995-1013, 1991.

C. Koch, T. Moll, M. Neuberg, H. Ahorn, and K. Nasmyth, A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase, Science, vol.261, pp.1551-1558, 1993.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Mol Biol Cell, vol.9, pp.3273-97, 1998.

D. Bruin, R. A. Mcdonald, W. H. Kalashnikova, T. I. Yates, J. Wittenberg et al., Cln3 activates G1specific transcription via phosphorylation of the SBF bound repressor Whi5, Cell, vol.117, pp.887-98, 2004.

E. Vergés, N. Colomina, E. Garí, C. Gallego, and M. Aldea, Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry, Mol Cell, vol.26, pp.649-62, 2007.

F. R. Cross and A. H. Tinkelenberg, A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle, Cell, vol.65, pp.875-83, 1991.

E. Schwob and K. Nasmyth, CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae, Genes Dev, vol.7, pp.1160-75, 1993.

M. D. Mendenhall and A. E. Hodge, Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.62, pp.1191-243, 1998.

H. E. Richardson, C. Wittenberg, F. Cross, and S. I. Reed, An essential G1 function for cyclin-like proteins in yeast, Cell, vol.59, pp.1127-1160, 1989.

R. D. Basco, M. D. Segal, and S. I. Reed, Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae, Mol Cell Biol, vol.15, pp.5030-5072, 1995.

L. H. Hartwell, Saccharomyces cerevisiae cell cycle, Bacteriol Rev, vol.38, pp.164-98, 1974.

F. R. Cross and C. M. Blake, The yeast Cln3 protein is an unstable activator of Cdc28, Mol Cell Biol, vol.13, pp.3266-71, 1993.

F. Parviz, D. D. Hall, D. D. Markwardt, and W. Heideman, Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae, J Bacteriol, vol.180, pp.4508-4523, 1998.

C. Gallego, E. Garí, N. Colomina, E. Herrero, and M. Aldea, The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast, EMBO J, vol.16, pp.7196-206, 1997.

S. Menoyo, N. Ricco, S. Bru, S. Hernández-ortega, X. Escoté et al., Phosphateactivated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry, Mol Cell Biol, vol.33, pp.1273-84, 2013.

M. Tyers, G. Tokiwa, R. Nash, and B. Futcher, The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation, EMBO J, vol.11, pp.1773-84, 1992.

J. Yaglom, M. H. Linskens, S. Sadis, D. M. Rubin, B. Futcher et al., mediated control of Cln3 cyclin degradation, Mol Cell Biol, vol.15, pp.731-772, 1995.

P. Jorgensen and M. Tyers, How cells coordinate growth and division, Curr Biol, vol.14, pp.1014-1041, 2004.

D. Koshland and A. Strunnikov, Mitotic chromosome condensation, Annu Rev Cell Dev Biol, vol.12, pp.305-338, 1996.

D. M. Glover, M. H. Leibowitz, D. A. Mclean, and H. Parry, Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles, Cell, vol.81, pp.95-105, 1995.

K. Ajiro, K. Yoda, K. Utsumi, and Y. Nishikawa, Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells, J Biol Chem, vol.271, pp.13197-201, 1996.

D. J. Stillman, Dancing the cell cycle two-step: regulation of yeast G1-cell-cycle genes by chromatin structure, Trends Biochem Sci, vol.38, pp.467-75, 2013.

J. Veis, H. Klug, M. Koranda, and G. Ammerer, Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals, Mol Cell Biol, vol.27, pp.8364-73, 2007.

M. Morillo-huesca, M. D. Muñoz-centeno, M. C. Singh, R. K. Oreal, V. Reddy et al., FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1, PLoS Genet, vol.6, p.1000964, 2010.

L. Connell-crowley, J. W. Harper, and D. W. Goodrich, Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation, Mol Biol Cell, vol.8, pp.287-301, 1997.

U. Asghar, A. K. Witkiewicz, N. C. Turner, and E. S. Knudsen, The history and future of targeting cyclin-dependent kinases in cancer therapy, Nat Rev Drug Discov, vol.14, pp.130-176, 2015.

K. B. Rank, D. B. Evans, and S. K. Sharma, The N-terminal domains of cyclin-dependent kinase inhibitory proteins block the phosphorylation of cdk2/Cyclin E by the CDK-activating kinase, Biochem Biophys Res Commun, vol.271, pp.469-73, 2000.

Y. Geng, Q. Yu, E. Sicinska, M. Das, J. Schneider et al., Cyclin E ablation in the mouse, Cell, vol.114, pp.431-474, 2003.

S. Ortega, I. Prieto, J. Odajima, A. Martín, P. Dubus et al., Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice, Nat Genet, vol.35, pp.25-31, 2003.
DOI : 10.1038/ng1232

D. J. Lew, V. Duli?, and S. I. Reed, Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast, Cell, vol.66, pp.1197-206, 1991.

A. W. Murray, Recycling the cell cycle: cyclins revisited, Cell, vol.116, pp.221-255, 2004.

C. J. Sherr and J. M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev, vol.13, pp.1501-1513, 1999.
DOI : 10.1101/gad.13.12.1501

URL : http://genesdev.cshlp.org/content/13/12/1501.full.pdf

P. D. Jeffrey, L. Tong, and N. P. Pavletich, Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors, Genes Dev, vol.14, pp.3115-3140, 2000.

J. A. Pietenpol and Z. A. Stewart, Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis, Toxicology, vol.181, pp.475-81, 2002.

J. Massagué, G1 cell-cycle control and cancer, Nature, vol.432, pp.298-306, 2004.

L. Santo, K. T. Siu, and N. Raje, Targeting Cyclin-Dependent Kinases and Cell Cycle Progression in Human Cancers, Semin Oncol, vol.42, pp.788-800, 2015.
DOI : 10.1053/j.seminoncol.2015.09.024

J. Zhu, M. A. Sammons, and G. Donahue, Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth, Nature, vol.525, pp.206-217, 2015.

P. A. Muller and K. H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities, Cancer Cell, vol.25, pp.304-321, 2014.

K. Ansari, S. Kasiri, and S. Mandal, Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo, Oncogene, vol.32, pp.3359-3370, 2012.

K. Ansari, S. Kasiri, B. Mishra, and S. Mandal, Mixed lineage leukaemia-4 regulates cell-cycle progression and cell viability and its depletion suppresses growth of xenografted tumour in vivo, Br J Cancer, vol.107, pp.315-324, 2012.

F. Cai, P. Chen, and L. Chen, Human RAD6 promotes G1-S transition and cell proliferation through upregulation of cyclin D1 expression, PLoS ONE, vol.9, p.113727, 2014.

J. M. Thompson, Q. H. Nguyen, M. Singh, and O. V. Razorenova, Approaches to identifying synthetic lethal interactions in cancer, Yale J Biol Med, vol.88, pp.145-55, 2015.

S. D. Taverna, S. Ilin, and R. S. Rogers, Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs, Mol Cell, vol.24, pp.785-96, 2006.

X. Shi, I. Kachirskaia, and K. L. Walter, Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36, J Biol Chem, vol.282, pp.2450-2455, 2007.

C. Bian, C. Xu, and J. Ruan, Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation, EMBO J, vol.30, pp.2829-2871, 2011.

S. E. Rundlett, A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner et al., HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription, Proc Natl Acad Sci, vol.93, pp.14503-14511, 1996.

S. Rodríguez-navarro, Insights into SAGA function during gene expression, EMBO Rep, vol.10, pp.843-50, 2009.

E. Koutelou, C. L. Hirsch, and S. Y. Dent, Multiple faces of the SAGA complex, Curr Opin Cell Biol, vol.22, pp.374-82, 2010.

M. Vermeulen, H. C. Eberl, and F. Matarese, Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers, Cell, vol.142, pp.967-80, 2010.

T. Kim, Z. Xu, S. Clauder-münster, L. M. Steinmetz, and S. Buratowski, Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics, Cell, vol.150, pp.1158-69, 2012.

W. W. Pijnappel, D. Schaft, A. Roguev, A. Shevchenko, H. Tekotte et al., The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program, Genes Dev, vol.15, pp.2991-3004, 2001.

B. Van-schooten, C. Testerink, and T. Munnik, Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite, Biochim Biophys Acta, vol.1761, pp.151-160, 2006.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat Rev Mol Cell Biol, vol.9, pp.112-136, 2008.

C. J. Loewen, M. L. Gaspar, S. A. Jesch, C. Delon, N. T. Ktistakis et al., Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid, Science, vol.304, pp.1644-1651, 2004.

T. Munnik, S. A. Arisz, D. Vrije, T. Musgrave, and A. , Protein Activation Stimulates Phospholipase D Signaling in Plants, Plant Cell, vol.7, pp.2197-2210, 1995.

M. Den-hartog, A. Musgrave, and T. Munnik, Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation, Plant J, vol.25, pp.55-65, 2001.

A. H. Van-der-luit, T. Piatti, A. Van-doorn, A. Musgrave, G. Felix et al., Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate, Plant Physiol, vol.123, pp.1507-1523, 2000.

D. Jong, C. F. Laxalt, A. M. Bargmann, B. O. De-wit, P. J. Joosten et al., Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction, Plant J, vol.39, pp.1-12, 2004.

F. Pascual and G. M. Carman, Phosphatidate phosphatase, a key regulator of lipid homeostasis, Biochim Biophys Acta, vol.1831, pp.514-536, 2013.

D. A. Toke, W. L. Bennett, J. Oshiro, W. I. Wu, D. R. Voelker et al., Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase, J Biol Chem, vol.273, pp.14331-14339, 1998.

S. R. Wente and M. P. Rout, The nuclear pore complex and nuclear transport, Cold Spring Harb Perspect Biol, vol.2, p.562, 2010.

D. S. Goldfarb, J. Gariépy, G. Schoolnik, and R. D. Kornberg, Synthetic peptides as nuclear localization signals, Nature, vol.322, pp.641-645, 1986.

C. Dingwall, J. Robbins, S. M. Dilworth, B. Roberts, and W. D. Richardson, The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen, J Cell Biol, vol.107, pp.841-850, 1988.

L. F. Pemberton and B. M. Paschal, Mechanisms of receptor-mediated nuclear import and nuclear export, Traffic, vol.6, pp.187-98, 2005.

P. Kalab, K. Weis, and R. Heald, Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts, Science, vol.295, pp.2452-2458, 2002.

J. D. Aitchison and M. P. Rout, The yeast nuclear pore complex and transport through it, Genetics, vol.190, pp.855-83, 2012.

W. Huh, J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson et al., Global analysis of protein localization in budding yeast, Nature, vol.425, pp.686-91, 2003.

Y. M. Chook and K. E. Süel, Nuclear import by karyopherin-?s: recognition and inhibition, Biochim Biophys Acta, vol.1813, pp.1593-606, 2011.

D. M. Leslie, W. Zhang, B. L. Timney, B. T. Chait, M. P. Rout et al., Characterization of karyopherin cargoes reveals unique mechanisms of Kap121p-mediated nuclear import, Mol Cell Biol, vol.24, pp.8487-503, 2004.

S. S. Walker, W. C. Shen, J. C. Reese, L. M. Apone, and M. R. Green, Yeast TAF(II)145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state, Cell, vol.90, pp.607-621, 1997.

N. Mosammaparast, Y. Guo, J. Shabanowitz, D. F. Hunt, and L. F. Pemberton, Pathways mediating the nuclear import of histones H3 and H4 in yeast, J Biol Chem, vol.277, pp.862-870, 2002.

K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi, Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line, Biochem Biophys Res Commun, vol.287, pp.562-569, 2001.

M. Igata, H. Motoshima, and K. Tsuruzoe, Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression, Circ Res, vol.97, pp.837-881, 2005.

B. Raboy, A. Marom, Y. Dor, and R. G. Kulka, Heat-induced cell cycle arrest of Saccharomyces cerevisiae: involvement of the RAD6/UBC2 and WSC2 genes in its reversal, Mol Microbiol, vol.32, pp.729-768, 1999.

C. Zimmermann, P. Chymkowitch, V. Eldholm, C. D. Putnam, J. M. Lindvall et al., A chemical-genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6-Bre1 to cell cycle progression, Proc Natl Acad Sci, vol.108, pp.18748-53, 2011.

S. M. Doyle, O. Genest, and S. Wickner, Protein rescue from aggregates by powerful molecular chaperone machines, Nat Rev Mol Cell Biol, vol.14, pp.617-646, 2013.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol Life Sci, vol.62, pp.670-84, 2005.

J. Ceschin, H. C. Hürlimann, C. Saint-marc, A. D. Violo, T. Moenner et al., Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5Aminoimidazole-4-carboxamide-1-?-d-ribofuranoside Monophosphate (AICAR), J Biol Chem, vol.290, pp.23947-59, 2015.

L. Cai and B. P. Tu, Driving the cell cycle through metabolism, Annu Rev Cell Dev Biol, vol.28, pp.59-87, 2012.

Q. Xu, C. Yang, and Y. Du, AMPK regulates histone H2B O-GlcNAcylation, Nucleic Acids Res, vol.42, pp.5594-604, 2014.

D. Hu, X. Gao, M. A. Morgan, H. Herz, E. R. Smith et al., The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers, Mol Cell Biol, vol.33, pp.4745-54, 2013.

H. C. Hürlimann, B. Laloo, B. Simon-kayser, C. Saint-marc, F. Coulpier et al., Physiological and toxic effects of purine intermediate 5-amino-4imidazolecarboxamide ribonucleotide (AICAR) in yeast, J Biol Chem, vol.286, pp.30994-1002, 2011.

I. X. Annexe, En tant que co-auteur de l'article « Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-?-d-ribofuranoside Monophosphate (AICAR). », j'ai réalisé la Figure 7A. L'article complet se trouve ci-dessous