A. Dmitry, B. E. Abanin, A. Feldman, B. I. Yacoby, and . Halperin, Fractional and integer quantum hall effects in the zeroth landau level in graphene, Phys. Rev. B, vol.88, p.115407, 2013.

M. Abolfath, H. A. Palacios, . Fertig, A. H. Sm-girvin, and . Macdonald, Critical comparison of classical field theory and microscopic wave functions for skyrmions in quantum hall ferromagnets, Physical Review B, vol.56, issue.11, p.6795, 1997.

R. Achilles and A. Bonfiglioli, The early proofs of the theorem of campbell, baker, hausdorff, and dynkin. Archive for history of exact sciences, pp.295-358, 2012.

Y. Aharonov and A. Casher, Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, vol.19, pp.2461-2462, 1979.

J. Alicea, P. A. Matthew, and . Fisher, Graphene integer quantum hall effect in the ferromagnetic and paramagnetic regimes, Physical Review B, vol.74, issue.7, p.75422, 2006.

J. Anandan and Y. Aharonov, Geometry of quantum evolution, Physical review letters, vol.65, issue.14, p.1697, 1990.

W. Apel, . Yu, and . Bychkov, Hopf term and the effective lagrangian for the skyrmions in a two-dimensional electron gas at small g factor, Physical review letters, vol.78, issue.11, p.2188, 1997.

, Vladimir Igorevich Arnol'd. Mathematical methods of classical mechanics, vol.60, 2013.

. Dp-arovas, D. Karlhede, and . Lilliehöök, Su (n) quantum hall skyrmions, Physical Review B, vol.59, issue.20, p.13147, 1999.

A. Auerbach, Interacting electrons and quantum magnetism, 2012.

H. Bacry, J. Grossmann, and . Zak, Proof of completeness of lattice states in the k q representation, Physical Review B, vol.12, issue.4, p.1118, 1975.

V. Bargmann, On a hilbert space of analytic functions and an associated integral transform part i, Communications on pure and applied mathematics, vol.14, issue.3, pp.187-214, 1961.

V. Bargmann, On a hilbert space of analytie functions and an associated integral transform. part ii. a family of related function spaces application to distribution theory, Communications on pure and applied mathematics, vol.20, issue.1, pp.1-101, 1967.

V. Bargmann, P. Butera, L. Girardello, and J. Klauder, On the completeness of the coherent states, Reports on Mathematical Physics, vol.2, issue.4, pp.221-228, 1971.

S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko, Optically pumped nmr evidence for finite-size skyrmions in gaas quantum wells near landau level filling ? = 1, Phys. Rev. Lett, vol.74, pp.5112-5115, 1995.

S. E. Barrett, R. Tycko, L. N. Pfeiffer, and K. W. West, Directly detected nuclear magnetic resonance of optically pumped gaas quantum wells, Phys. Rev. Lett, vol.72, pp.1368-1371, 1994.

V. Bayot, E. Grivei, S. Melinte, M. B. Santos, and M. Shayegan, Giant low temperature heat capacity of gaas quantum wells near landau level filling ? = 1, Phys. Rev. Lett, vol.76, pp.4584-4587, 1996.

V. Michael and . Berry, Quantal phase factors accompanying adiabatic changes, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.392, pp.45-57, 1984.

B. J. Bjã?rken and S. L. Glashow, Elementary particles and su(4), Physics Letters, vol.11, issue.3, pp.255-257, 1964.

A. Bogdanov and . Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, Journal of magnetism and magnetic materials, vol.138, issue.3, pp.255-269, 1994.

A. N. Bogdanov and . Da-yablonskii, Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets, Zh. Eksp. Teor. Fiz, vol.95, p.182, 1989.

E. B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys, vol.24, p.449, 1976.

M. Boon and . Zak, Discrete coherent states on the von neumann lattice, Physical Review B, vol.18, issue.12, p.6744, 1978.
DOI : 10.1103/physrevb.18.6744

M. Boon and . Zak, Amplitudes on von neumann lattices, Journal of Mathematical Physics, vol.22, issue.5, pp.1090-1099, 1981.
DOI : 10.1063/1.524992

M. Born, W. Heisenberg, and P. Jordan, Zur quantenmechanik. ii, Zeitschrift für Physik, vol.35, issue.8, pp.557-615, 1926.
DOI : 10.1007/bf01328531

M. Born and P. Jordan, Zur quantenmechanik, Zeitschrift für Physik, vol.34, issue.1, pp.858-888, 1925.
DOI : 10.1007/bf01328531

E. Brown, Bloch electrons in a uniform magnetic field, Phys. Rev, vol.133, pp.1038-1044, 1964.

. Yu-a-bychkov, I. D. Maniv, and . Vagner, Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas, Physical Review B, vol.53, issue.15, p.10148, 1996.

A. Cappelli, C. A. Trugenberger, and G. R. Zemba, Infinite symmetry in the quantum hall effect, Nuclear Physics B, vol.396, issue.2-3, pp.465-490, 1993.

F. Casas, A. Murua, and M. Nadinic, Efficient computation of the zassenhaus formula, Computer Physics Communications, vol.183, issue.11, pp.2386-2391, 2012.

R. Côté, M. Barrette, and É. Bouffard, Electromagnetic absorption and kerr effect in quantum hall ferromagnetic states of bilayer graphene, Physical Review B, vol.92, issue.12, p.125426, 2015.

R. Côté, D. B. Boisvert, J. Bourassa, M. Boissonneault, and H. A. Fertig, Collective modes of cP 3 skyrmion crystals in quantum hall ferromagnets, Phys. Rev. B, vol.76, p.125320, 2007.

J. P. Réné-côté, W. Fouquet, and . Luo, Biased bilayer graphene as a helical quantum hall ferromagnet, Phys. Rev. B, vol.84, p.235301, 2011.

I. Dana and . Zak, Adams representation and localization in a magnetic field, Physical Review B, vol.28, issue.2, p.811, 1983.

S. D. Sarma, S. Sachdev, and L. Zheng, Canted antiferromagnetic and spin-singlet quantum hall states in double-layer systems, Phys. Rev. B, vol.58, pp.4672-4693, 1998.

R. De-gail, M. O. Goerbig, F. Guinea, G. Montambaux, and A. H. Castro-neto, Topologically protected zero modes in twisted bilayer graphene, Phys. Rev. B, vol.84, p.45436, 2011.

E. P. De-poortere, Y. P. Shkolnikov, E. Tutuc, S. J. Papadakis, M. Shayegan et al., Enhanced electron mobility and high order fractional quantum hall states in alas quantum wells, Applied Physics Letters, vol.80, issue.9, pp.1583-1585, 2002.

. Brian-p-dolan, Modular invariance, universality and crossover in the quantum hall effect, Nuclear Physics B, vol.554, issue.3, pp.487-513, 1999.

R. L. Doretto, A. O. Caldeira, and S. M. Girvin, Lowest landau level bosonization, Phys. Rev. B, vol.71, p.45339, 2005.

R. L. Doretto, A. O. Caldeira, and C. Smith, Bosonization approach for bilayer quantum hall systems at ? T = 1, Phys. Rev. Lett, vol.97, p.186401, 2006.

R. L. Doretto and C. Smith, Quantum hall ferromagnetism in graphene: Su(4) bosonization approach, Phys. Rev. B, vol.76, p.195431, 2007.

B. Douçot, Spin textures in quantum hall systems, Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School, vol.103, 2014.

B. Douçot, M. O. Goerbig, P. Lederer, and R. Moessner, Entanglement skyrmions in multicomponent quantum hall systems, Phys. Rev. B, vol.78, p.195327, 2008.

R. Michael, N. A. Douglas, and . Nekrasov, Noncommutative field theory, Rev. Mod. Phys, vol.73, pp.977-1029, 2001.

. Eb-dynkin, Calculation of the coefficients in the campbell-hausdorff formula, Doklady Akademii Nauk SSSR, vol.57, p.31, 1947.

. Ie-dzialoshinskii, Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. SOVIET, PHYSICS JETP-USSR, vol.5, issue.6, pp.1259-1272, 1957.

. Ie-dzyaloshinskii, Theory of helicoidal structures in antiferromagnets. 1. nonmetals, Sov. Phys. JETP, vol.19, pp.960-971, 1964.

. Ie-dzyaloshinskii, Theory of helicoidal structures in antiferromagnets. 3. SOVIET PHYSICS JETP-USSR, vol.20, p.665, 1965.

T. Eguchi, A. Peter-b-gilkey, and . Hanson, Gravitation, gauge theories and differential geometry, Physics reports, vol.66, issue.6, pp.213-393, 1980.

C. Emmrich and A. Weinstein, Geometry of the transport equation in multicomponent wkb approximations, Comm. Math. Phys, vol.176, issue.3, pp.701-711, 1996.

Z. F. Ezawa, M. Eliashvili, and G. Tsitsishvili, Ground-state structure in ? = 2 bilayer quantum hall systems, Phys. Rev. B, vol.71, p.125318, 2005.

Z. Ezawa and G. Tsitsishvili, Quantum hall ferromagnets, Reports on Progress in Physics, vol.72, issue.8, p.86502, 2009.

Z. F. Ezawa, Spin-pseudospin coherence and cp 3 skyrmions in bilayer quantum hall ferromagnets, Physical review letters, vol.82, issue.17, p.3512, 1999.

Z. F. Ezawa and . Hasebe, Interlayer exchange interactions, su (4) soft waves, and skyrmions in bilayer quantum hall ferromagnets, Physical Review B, vol.65, issue.7, p.75311, 2002.

Z. F. Ezawa and G. Tsitsishvili, Su (4) skyrmions and activation energy anomaly in bilayer quantum hall systems, Physical Review B, vol.70, issue.12, p.125304, 2004.

Z. F. Ezawa and G. Tsitsishvili, Topological solitons in the noncommutative plane and quantum hall skyrmions, Physical Review D, vol.72, issue.8, p.85002, 2005.

. Zf-ezawa, K. Tsitsishvili, and . Hasebe, Noncommutative geometry, extended w ? algebra, and grassmannian solitons in multicomponent quantum hall systems, Physical Review B, vol.67, issue.12, p.125314, 2003.

Z. Francis-ezawa, Quantum Hall effects: Field theoretical approach and related topics, 2008.

O. Forster, Lectures on Riemann surfaces, vol.81, 2012.

P. D. Francesco, P. Mathieu, and D. Senechal, Conformal field theory, Graduate texts in contemporary physics, 1997.

A. H. Sm-girvin, P. M. Macdonald, and . Platzman, Collective-excitation gap in the fractional quantum hall effect, Physical review letters, vol.54, issue.6, p.581, 1985.

A. H. Sm-girvin, P. M. Macdonald, and . Platzman, Magneto-roton theory of collective excitations in the fractional quantum hall effect, Physical Review B, vol.33, issue.4, p.2481, 1986.

G. Giuliani and G. Vignale, Quantum theory of the electron liquid, 2005.

M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys, vol.83, pp.1193-1243, 2011.

M. O. Goerbig and N. Regnault, Analysis of a SU(4) generalization of halperin's wave function as an approach towards a SU(4) fractional quantum hall effect in graphene sheets, Phys. Rev. B, vol.75, p.241405, 2007.

K. Goldberg, The formal power series, Duke Mathematical Journal, vol.23, issue.1, pp.13-21, 1956.

R. Gopakumar, S. Minwalla, and A. Strominger, Noncommutative solitons, Journal of High Energy Physics, issue.05, p.20, 2000.

K. A. Srijit-goswami, M. Slinker, L. M. Friesen, J. L. Mcguire, C. Truitt et al., Controllable valley splitting in silicon quantum devices, Nat Phys, vol.3, issue.1, pp.41-45, 2007.

P. Griffiths and J. Harris, Principles of algebraic geometry, 2014.
DOI : 10.1002/9781118032527

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118032527.fmatter

H. J. Groenewold, On the principles of elementary quantum mechanics, Physica, vol.12, issue.7, pp.405-460, 1946.
DOI : 10.1007/978-94-017-6065-2_1

S. S. Gubser and S. L. Sondhi, Phase structure of non-commutative scalar field theories, Nuclear Physics B, vol.605, issue.1, pp.395-424, 2001.

F. Haldane, Geometrical description of the fractional quantum hall effect, Physical review letters, vol.107, issue.11, p.116801, 2011.

F. Haldane, When is a"wavefunction"not a wavefunction?: a quantum-geometric reinterpretation of the laughlin state, APS Meeting Abstracts, 2013.

F. Haldane and Y. Shen, Geometry of landau orbits in the absence of rotational symmetry, 2015.

B. Hall, Lie groups, Lie algebras, and representations: an elementary introduction, vol.222, 2015.

C. Brian and . Hall, Holomorphic methods in analysis and mathematical physics. first summer school in analysis and mathematical physics,(cuernavaca morelos, Contemp. Math, p.260, 1998.

J. Jung-hoon-han, Z. Zang, J. Yang, N. Park, and . Nagaosa, Skyrmion lattice in a two-dimensional chiral magnet, Physical Review B, vol.82, issue.9, p.94429, 2010.

A. Hatcher, Algebraic topology. Tsinghua University press, 2002.

W. Heisenberg, Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen, Zeitschrift für Physik, vol.33, issue.1, pp.879-893, 1925.

H. Heydari, Geometric formulation of quantum mechanics, 2015.

J. Hubbard, Electron correlations in narrow energy bands, vol.276, pp.238-257, 1365.

R. Iengo and D. Li, Quantum mechanics and quantum hall effect on reimann surfaces, Nuclear Physics B, vol.413, issue.3, pp.735-753, 1994.

N. Imai, . Ishikawa, . Matsuyama, and . Tanaka, Field theory in a strong magnetic field and the quantum hall effect: Integer hall effect, Physical Review B, vol.42, issue.16, p.10610, 1990.

K. Ishikawa, . Maeda, H. Ochiai, and . Suzuki, Field theory on the von neumann lattice and the quantized hall conductance of bloch electrons. Physica E: Low-dimensional Systems and Nanostructures, vol.4, pp.37-55, 1999.

C. Itzykson, Remarks on boson commutation rules, Communications in Mathematical Physics, vol.4, issue.2, pp.92-122, 1967.

. Jainendra-k-jain, Composite fermions, 2007.

T. Jungwirth and A. H. Macdonald, Pseudospin anisotropy classification of quantum hall ferromagnets, Phys. Rev. B, vol.63, p.35305, 2000.

C. Kallin and B. I. Halperin, Excitations from a filled landau level in the two-dimensional electron gas, Phys. Rev. B, vol.30, pp.5655-5668, 1984.

A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X, vol.6, p.31043, 2016.

I. Kézsmárki, . Bordács, . Milde, L. M. Neuber, J. S. Eng et al., Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor gav4s8, Nature Materials, 2015.

P. Khandelwal, A. E. Dementyev, N. N. Kuzma, S. E. Barrett, L. N. Pfeiffer et al., Spectroscopic evidence for the localization of skyrmions near ? = 1 as T ? 0, Phys. Rev. Lett, vol.86, pp.5353-5356, 2001.

M. Kharitonov, Phase diagram for the ? = 0 quantum hall state in monolayer graphene, Phys. Rev. B, vol.85, p.155439, 2012.

T. Kimura, Full expansion of the baker-campbell-hausdorff formula, 2017.

A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics, vol.321, issue.1, pp.2-111, 2006.

S. Kivelson, . Kallin, P. Daniel, J. Arovas, and . Schrieffer, Cooperative ring exchange theory of the fractional quantized hall effect, Physical review letters, vol.56, issue.8, p.873, 1986.

S. Kivelson, D. Lee, and S. Zhang, Global phase diagram in the quantum hall effect, Physical Review B, vol.46, issue.4, p.2223, 1992.

A. Knothe and T. Jolicoeur, Edge structure of graphene monolayers in the ? = 0 quantum hall state, Phys. Rev. B, vol.92, p.165110, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218597

P. Kramer, Geometry of the time-dependent variational principle in quantum mechanics, vol.140, 1981.

D. Lee and C. Kane, Boson-vortex-skyrmion duality, spin-singlet fractional quantum hall effect, and spin-1/2 anyon superconductivity, Physical review letters, vol.64, issue.12, p.1313, 1990.
DOI : 10.1103/physrevlett.64.1313

K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim et al., Chemical potential and quantum hall ferromagnetism in bilayer graphene, Science, vol.345, issue.6192, pp.58-61, 2014.
DOI : 10.1126/science.1251003

URL : http://arxiv.org/pdf/1401.0659

X. Li, F. Zhang, and A. H. Macdonald, Su(3) quantum hall ferromagnetism in snte, Phys. Rev. Lett, vol.116, p.26803, 2016.
DOI : 10.1103/physrevlett.116.026803

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.116.026803

Y. Lian, A. Rosch, and M. O. Goerbig, Su(4) skyrmions in the ? = ±1 quantum hall state of graphene, Phys. Rev. Lett, vol.117, p.56806, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02065952

Y. Lian and M. O. Goerbig, Spin-valley skyrmions in graphene at filling factor ? = ?1, Phys. Rev. B, vol.95, p.245428, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582402

T. M. Lu, L. A. Tracy, D. Laroche, S. Huang, Y. Chuang et al., Density-controlled quantum hall ferromagnetic transition in a two-dimensional hole system, Scientific Reports, vol.7, issue.1, p.2468, 2017.

J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev, vol.97, pp.869-883, 1955.

. Vladimir-g-makhankov, P. Yurii, . Rybakov, . Valerii, and . Sanyuk, The Skyrme Model: Fundamentals Methods Applications, 2012.

D. K. Maude, M. Potemski, J. C. Portal, M. Henini, L. Eaves et al., Spin excitations of a two-dimensional electron gas in the limit of vanishing landé g factor, Phys. Rev. Lett, vol.77, pp.4604-4607, 1996.

D. Miravet and C. R. Proetto, Pseudospin anisotropy of trilayer semiconductor quantum hall ferromagnets, Phys. Rev. B, vol.94, p.85304, 2016.
DOI : 10.1103/physrevb.94.085304

URL : http://arxiv.org/pdf/1607.07909

G. Montambaux, F. Piéchon, J. Fuchs, and M. O. Goerbig, A universal hamiltonian for motion and merging of dirac points in a two-dimensional crystal, The European Physical Journal B, vol.72, issue.4, p.509, 2009.

K. Moon, K. Mori, . Yang, A. H. Sm-girvin, L. Macdonald et al., Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions, Physical Review B, vol.51, issue.8, p.5138, 1995.
DOI : 10.1103/physrevb.51.5138

URL : http://arxiv.org/pdf/cond-mat/9407031

A. Mooradian and A. L. Mcwhorter, Polarization and intensity of raman scattering from plasmons and phonons in gallium arsenide, Phys. Rev. Lett, vol.19, pp.849-852, 1967.
DOI : 10.1103/physrevlett.19.849

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev, vol.120, pp.91-98, 1960.

J. E. , Quantum mechanics as a statistical theory, Mathematical Proceedings of the Cambridge Philosophical Society, vol.45, issue.1, pp.99-124, 1949.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch et al., Skyrmion lattice in a chiral magnet, Science, vol.323, issue.5916, pp.915-919, 2009.

D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol.28, 1983.

N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat Nano, vol.8, issue.12, pp.899-911, 2013.

, Geometry, topology and physics, 2003.

W. John, H. Negele, and . Orland, Quantum many-particle systems, 1988.

G. Nenciu, Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective hamiltonians, Rev. Mod. Phys, vol.63, pp.91-127, 1991.

K. Nomura and A. H. Macdonald, Quantum hall ferromagnetism in graphene, Phys. Rev. Lett, vol.96, p.256602, 2006.

K. Nomura, S. Ryu, and D. Lee, Field-induced kosterlitz-thouless transition in the n = 0 landau level of graphene, Phys. Rev. Lett, vol.103, p.216801, 2009.

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Fal/'ko, M. I. Katsnelson et al., Unconventional quantum hall effect and berry/'s phase of 2[pi] in bilayer graphene, Nat Phys, vol.2, issue.3, pp.177-180, 2006.

S. Odake, Unitary representations of w infinity algebras, International Journal of Modern Physics A, vol.7, issue.25, pp.6339-6355, 1992.

M. Oestreich, S. Hallstein, A. P. Heberle, K. Eberl, E. Bauser et al., Temperature and density dependence of the electron landé g factor in semiconductors, Phys. Rev. B, vol.53, pp.7911-7916, 1996.

A. Pal, Multi-component spin textures in quantum hall ferromagnets, 2015.

B. Paredes, C. Tejedor, L. Brey, and L. Martín-moreno, Spin-isospin textured excitations in a double layer at filling factor ? = 2, Phys. Rev. Lett, vol.83, pp.2250-2253, 1999.

P. Arjendu-kishore, Semiquantal and Semiclassical Dynamics of Gaussian Wave Packets, 1994.

. Askol'd-mikhailovich and . Perelomov, On the completeness of a system of coherent states, Theoretical and Mathematical Physics, vol.6, issue.2, pp.156-164, 1971.

M. K. Prasad and C. M. Sommerfield, Exact classical solution for the 't hooft monopole and the julia-zee dyon, Phys. Rev. Lett, vol.35, pp.760-762, 1975.

J. P. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Communications in Mathematical Physics, vol.76, issue.3, pp.289-301, 1980.

S. Puri, S. Boutin, and A. Blais, Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving, npj Quantum Information, vol.3, p.18, 2017.

B. I. Mark-rasolt, D. Halperin, and . Vanderbilt, Dissipation due to a "valley wave" channel in the quantum hall effect of a multivalley semiconductor, Phys. Rev. Lett, vol.57, pp.126-129, 1986.

R. Ray, Quantum hall ferromagnets: Induced topological term and electromagnetic interactions, Physical Review B, vol.60, issue.20, p.14154, 1999.

N. Read, Hall viscosity, orbital spin, and geometry: paired superfluids and quantum hall systems, Physical Review B, vol.84, issue.8, p.85316, 2011.

N. Read and S. Sachdev, Spin-peierls, valence-bond solid, and néel ground states of lowdimensional quantum antiferromagnets, Phys. Rev. B, vol.42, pp.4568-4589, 1990.

J. Sampaio, . Cros, . Rohart, A. Thiaville, and . Fert, Nucleation, stability and currentinduced motion of isolated magnetic skyrmions in nanostructures, Nature nanotechnology, vol.8, issue.11, pp.839-844, 2013.

A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Evidence for skyrmions and single spin flips in the integer quantized hall effect, Phys. Rev. Lett, vol.75, pp.4290-4293, 1995.

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, vol.23, issue.49, pp.823-828, 1935.

C. Schütte and J. Iwasaki, Achim Rosch, and Naoto Nagaosa. Inertia, diffusion, and dynamics of a driven skyrmion, Phys. Rev. B, vol.90, p.174434, 2014.

N. Seiberg, T. Senthil, C. Wang, and E. Witten, A duality web in 2+1 dimensions and condensed matter physics, Annals of Physics, vol.374, pp.395-433, 2016.

N. Seiberg and E. Witten, String theory and noncommutative geometry, Journal of High Energy Physics, issue.09, p.32, 1999.
DOI : 10.1088/1126-6708/1999/09/032

URL : http://iopscience.iop.org/article/10.1088/1126-6708/1999/09/032/pdf

T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. Fisher, Quantum criticality beyond the landau-ginzburg-wilson paradigm, Phys. Rev. B, vol.70, p.144407, 2004.

T. Senthil, P. A. Matthew, and . Fisher, Competing orders, nonlinear sigma models, and topological terms in quantum magnets, Physical Review B, vol.74, issue.6, p.64405, 2006.

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. Fisher, Deconfined quantum critical points, Science, vol.303, issue.5663, pp.1490-1494, 2004.
DOI : 10.1142/9789814280709_0014

URL : http://arxiv.org/pdf/cond-mat/0311326

M. Shayegan, . Ep-de-poortere, Y. P. Gunawan, . Shkolnikov, K. Tutuc et al., Two-dimensional electrons occupying multiple valleys in alas. physica status solidi (b), vol.243, pp.3629-3642, 2006.

X. Shen, W infinity and string theory, International Journal of Modern Physics A, vol.7, issue.28, pp.6953-6993, 1992.

S. Michael and . Shur, Handbook series on semiconductor parameters, vol.1, 1996.

T. H. Skyrme, A non-linear field theory, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.260, pp.127-138, 1300.

T. H. Skyrme, A unified field theory of mesons and baryons, Nuclear Physics, vol.31, pp.556-569, 1962.
DOI : 10.1016/0029-5582(62)90775-7

I. Sodemann and A. H. Macdonald, Broken su(4) symmetry and the fractional quantum hall effect in graphene, Phys. Rev. Lett, vol.112, p.126804, 2014.
DOI : 10.1103/physrevlett.112.126804

URL : http://arxiv.org/pdf/1310.1642

. Sl-sondhi, . Karlhede, E. H. Sa-kivelson, and . Rezayi, Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies, Physical Review B, vol.47, issue.24, p.16419, 1993.

A. Stern, S. M. Girvin, A. H. Macdonald, and N. Ma, Theory of interlayer tunneling in bilayer quantum hall ferromagnets, Phys. Rev. Lett, vol.86, pp.1829-1832, 2001.

D. Stoler, Equivalence classes of minimum uncertainty packets, Physical Review D, vol.1, issue.12, p.3217, 1970.
DOI : 10.1103/physrevd.1.3217

D. Stoler, Equivalence classes of minimum-uncertainty packets. ii, Physical Review D, vol.4, issue.6, p.1925, 1971.
DOI : 10.1103/physrevd.1.3217

R. J. Szabo, Quantum field theory on noncommutative spaces, Physics Reports, vol.378, issue.4, pp.207-299, 2003.
DOI : 10.1016/s0370-1573(03)00059-0

URL : http://arxiv.org/pdf/hep-th/0109162

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. , Quantum hall effect and landau-level crossing of dirac fermions in trilayer graphene, Nat Phys, vol.7, issue.8, pp.621-625, 2011.

X. G. Wen and . Zee, Shift and spin vector: New topological quantum numbers for the hall fluids, Physical review letters, vol.69, issue.6, p.953, 1992.

H. Westfahl, A. H. Castro-neto, and A. O. Caldeira, Landau level bosonization of a twodimensional electron gas, Phys. Rev. B, vol.55, pp.7347-7350, 1997.

B. Wielinga and G. J. Milburn, Quantum tunneling in a kerr medium with parametric pumping, Physical Review A, vol.48, issue.3, p.2494, 1993.

E. Witten, Current algebra, baryons, and quark confinement, Nuclear Physics B, vol.223, issue.2, pp.433-444, 1983.

F. Wu, I. Sodemann, Y. Araki, A. H. Macdonald, and T. Jolicoeur, So(5) symmetry in the quantum hall effect in graphene, Phys. Rev. B, vol.90, p.235432, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117748

K. Yang, ,. Sarma, and A. H. Macdonald, Collective modes and skyrmion excitations in graphene s u (4) quantum hall ferromagnets, Physical Review B, vol.74, issue.7, p.75423, 2006.

A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-zimansky et al., Spin and valley quantum hall ferromagnetism in graphene, Nat Phys, vol.8, issue.7, pp.550-556, 2012.

A. F. Young, . Sanchez-yamagishi, . Hunt, . Choi, . Watanabe et al., Tunable symmetry breaking and helical edge transport in a graphene quantum spin hall state, Nature, vol.505, issue.7484, pp.528-528, 2014.

X. Z. Yu, Y. Kanazawa, . Onose, W. Z. Kimoto, . Zhang et al., Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege, Nature materials, vol.10, issue.2, pp.106-109, 2011.

X. Z. Yu, . Onose, J. H. Kanazawa, . Park, Y. Han et al.,

, Real-space observation of a two-dimensional skyrmion crystal, Nature, vol.465, issue.7300, pp.901-904, 2010.

B. Yurke and D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett, vol.57, pp.13-16, 1986.

C. Zachos, D. Fairlie, and T. Curtright, Quantum mechanics in phase space: an overview with selected papers, World Scientific, vol.34, 2005.

I. Zahed and G. E. Brown, The skyrme model, Physics Reports, vol.142, issue.1, pp.1-102, 1986.

J. Zak, Magnetic translation group, Phys. Rev, vol.134, pp.1602-1606, 1964.

J. Zak, Discrete weyl-heisenberg transforms, Journal of Mathematical Physics, vol.37, issue.8, pp.3815-3823, 1996.

J. Wojciech and . Zakrzewski, Low dimensional sigma models, 1989.

A. Zee, Group theory in a nutshell for physicists, 2016.

S. Cheng-zhang, The chern-simons-landau-ginzburg theory of the fractional quantum hall effect, International Journal of Modern Physics B, vol.06, issue.01, pp.25-58, 1992.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum hall effect and berry's phase in graphene, Nature, vol.438, issue.7065, pp.201-204, 2005.