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Chapter 1
Introduction

In this chapter we review the main ideas of this thesis and informally explain some (if not all) of
the results. We address each of the chapters in order, and suitable references to the actual results
and formal presentation of the concepts are provided along the text.

One of the central ideas of this work is thatrehormalisation Roughly speaking, quantum
physical systems often produce ill-de ned quantities arising from in nities which appears when
considering self-interactions at various scales. Even though at a xed scale these interaction
might be nite computed quantities it is possible that adding up an in nite number of scales
produces in nities. Renormalisation is a way of dealing with these in nities by specifying
relationships between the parameters of the theory in such a way to produce (a nite number of)
what is calleccounter-terms These terms are also diverging but in such a way that they exactly
cancel the diverging quantities.

Even directly at the level of the continuum description of some Quantum Field Theory models
the objects involved are ill-de ned, and the naive attempt at de ning them as the continuum
limit of some regularisation of the problem has to be carefully done. In general some form
of renormalisation has to be performed. Ideally the limiting object, and hence the physical
predictions of the theory, will not depend on the speci c form of this prescription.

A wide amount of renormalisation procedures have been proposed by physicists throughout
the years. Among these there is the Bogoliugov Parasiuk Hepp Zimmerman (BPHZ for short)
renormalisation procedure, which has been recently studied from a mathematical point of view
by M. Hairer and others by means of the theory of Regularity Structures.



1.1 Hopf-algebraic deformations of products

A key step in various of the existing renormalisation procedures for perturbative QFTs is taking
Wick products In its simplest form, a Wick product associates to a pair of random varixhs
with nite moments another random variable

:XY: B XY XEY YEX+ 2BE»XYXYa ExXYYa

Although this de nition might seem arbitrary at rst it enjoys a rich structure intimately related
to the Leonov Shiryaev relatior(eq. [1.5) below, see also Section 4]3.3) between moments
and cumulants, and thus to moment generating functions. The rst thing we remark is that
E: XY: =0, thatis, the Wick product is always a centred random variable independently of the
speci c distribution of X andY provided that the involved expectations are nite, and this is in
fact one of the de ning properties of general Wick products. We also observe ¥t is

a degree 2 polynomial iX andY. Of particular interest is the Wick squar&?: and more

in general the Wick powers of a single random variable with an appropriate amount of nite
moments, which are then given by a polynomiakimof appropriate degree.

De nition 1.1.1. Given a collectiort Xy : k 2 N° of random variables with nite moments of
all orders. For any multi-index , theWick polynomial: X : is a random variable recursively
de ned by setting Xp: B land

X = O OBX WX (1.1)

In the above de nition by a multi-index we mean a function N! N with nite support,
and we have set up the notations

n2N n2N

The Wick power: X": is a polynomial of degreein X. The speci ¢ form of this polynomial
depends on the distribution of and they are known explicitly in some speci c cases. For
example, ifX has a standard Gaussian distribution the®?: = h,tX°and the polynomials,

are known as Hermite polynomials. They are an orthogonal family?th © where! 1x° = e X22

is the Gaussian weight, that is, they satisfy the relation

1

hntXhmx®! 1x°dX =
R

An interesting as well as delicate example of an application of Wick products is the one
appearing in Regularity Structures in the papers [15] 20, 56]. In this setting, the vaXiable



is space-time white noise which is a random distribution living in a Besov space of negative
regularity. Usually one is interested in taking productsXafith itself which are ill-de ned.
Then, one tries to regularis€ by performing convolution with a smooth kernel depending on a
small parametet > 0 and then trying to take the limit &s! 0. Naturally this limit cannot be

well de ned and some kind of renormalisation has to be performed. It turns out that alleugh
will not converge in a suitable space sirfe&? will be proportional to some negative power'qf

the Wick square X?: is centered so the sequence is boundedin

In Chaptef # we construct a Hopf algebra describing Wick products as the action of a linear
functional on it. Thus we abstract the combinatorial properties of Wick polynomials into a
combinatorial setting. In particular, we generalise Wick polynomials to arbitrary multivariate
distributions with nite moments of all orders. We then use this Hopf-algebraic presentation
of Wick polynomials to relate Wick products with Hopf-algebraic deformations of the classical
product of polynomials. More precisely, given a collectiofa : a 2 A° of random variables we
let H = R, : a 2 A¥be the commutative polynomial algebra on formal variabigs a 2 A°,

i.e. H is the vector space spanned by monomialsnd productis givenby x =x * . The
coproduct :H! H Hisgivenby

0

Then, we de ne linearmaps : H! RandW:H'! H bylettingh; x i B ExXX Yand
Wix °B :x :. With these notations, eq. (1.1) can be rewritten as an identity of linear maps on
H as

? W=id

where? is the convolution produét ? ©°1x °=1? © x . This gives a way to write the
Wick product: X : interms of .

Theorem 1.1.2.For all multi-indices we have
Wix =1 19jdoiy o (1.2)

where 1is theconvolutional inversef the linear map .

Observe that although it is not apparent from the notation, this de nition depends heavily on
. We callwx °the generalised Wick polynomial associated to the distributidiXgf a 2 A°.
In particular, using that the inverse ofcan be explicitly computed we obtain the following
formulafor:x : .



Theorem 1.1.3.Wick polynomials have the explicit expression

0 0
X =x 4+ 11" . 1x10 1y noy (1.3)

ni1 + g+t = Li--ov

The groupG!H°=f 2 H : 11°= lgacts canonically ol given by means of the map
:H! Hdenedas

i1x °B 1 ide x =1 ? jdo°ix ©:

Thisis agroup action since one canverifythap , = , ,sothatinparticular °1= 1,
These maps can be used to inducetormationof the Hopf algebra structure &f by setting

X X B 11 1x 0 1y oo
XBll lo 1y ©

H :xiBH; IX%=h;Xxi:

We then have

Theorem 1.1.4.Forany 2 G'H°the quintupléH; ;1, ;" °de nes a Hopfalgebra, and the
map !is a Hopf algebra isomorphism from the initial Hopf algebaonto the deformed one.

In the particular case where= is the map representing the moments of the collection
1Xa : a2 A°de ned above and Theorem 1.1..2 we obtain

Theorem 1.1.5.The Wick product mapV : H! His equal to 1. In particular W :
H;; °It H; ; °isaHopfalgebraisomorphism and

for all monomialsx ;x 2 H.

One of the main di culties for the application of Theorgm 1.[1.2 is the computation of the
inverse 1 appearing in eq.2). For a general eleme@t GtHC° its inverse is given by the
formal series o)

We prove that in fact this computation can be simpli ed by introducing a larger Hopf algebra
structuret such thaH is a left comodule over it, and such that every eleme@iH® lifts to

a unique charactet overH. In particular, the convolutional inverse! can be computed by
means of the extended antipo8en H, i.e. we have that 1 = ~ & The advantage in this



situation is that? has a graded structure and thus the antigf®Has a recursive formula when
applied to an arbitrary monomial 8. Concretely, we de né4 to be the free commutative
polynomial algebra oveld, so that as a vector spatkis also spanned by the monomials but
product is just juxtapositiom  x . That is, we consider each monomialkhto be a di erent
variable inH. For example, for any single variable we hage X, = x§ . Xa Xain K. Thereis
a canonical way to extend the coproductH! H Htoacoproduct': B! H H sothat
1 : "0js a graded connected Hopf algebra with antip8dgven explicitly by the formula

0 0
Sx = x + 11 s X X"

N2 4 o+g,e  Lihn

whence we deduce e{). (IL.3) by restriction.

Finally, we generalise this construction to a larger clagnohomialsappearing in the theory
of Regularity Structures. In this case, the underlying Hopf algebra is the Butcher Connes
Kreimer Hopf algebra over the collection of non-planar decorated rooted treés! In [56] these trees
are used to represent generalised Taylor expansions, and related to the problem of multiplication
of distributions. Our setting then allows us to interpret the renormalised products in [20, 56] as
Hopf algebraic deformations of the pointwise product of smooth functions by using the Hopf
algebra structure over trees in a similar way, thus connecting Regularity Structures with Wick
renormalisation. In particular, we identify the BPHZ renormalisation character appearing in [15,
20] as a Wick product of trees in the sense of Thedrem]1.1.2.

Concretely, in the language of Regularity Structures a random distribution can be considered
as a random linear may over trees taking values in the space of continuous functiori@%on
such thatX;1i = 1. If we suppose thatX; i10°has nite moments of all orders so that we may
de ne a linear map on trees by setting

1 9B B»IX; 1*10%

Theorem 1.1.6.Suppose thaX is stationary in the sense thbX; i*x + ©has the same law as
hX; i for alltrees andx 2 RY. The only character on forests such that

ExiR:  i10°%& 0

for all non-empty forests coincides with” 1, whereX is the unique character extension to
forests ofX.

We also use this Hopf-algebraic language to describe generalised versions of the Leonov-
Shiryaev relation between moments and cumulants. Moment cumulant relations appear naturally
in the context of stochastic integration with respect to random measures, the I1t6 integral being
an speci c example of this broader theory. In particular they are related to chaos expansions.



See for example G. Peccati and M. Taqqu's book [100]. In the case of a univariate distribution

X with nite moments of all orders, if we denote its moments hyB EX", the sequence of

cumulants ,°is de ned by the relation

@ tn O tn
—n = — (1.4)

exp
n=1 n n=0

and in fact the sequenée,® characterises the distribution ¥ Some classical examples include
the standard Gaussian distribution whose cumulants,are0, , =1and ,=0foralln 3.
The Poisson distribution of parameter 0 is characterised by the constant sequence for
alln 1. Equation eq[(1]4) is actually equivalent to the Leonov Shiryaev relations

o n 1
n=— m 1mnm
m=1

which are closely related to the Bell polynomials and Faa di Bruno's formula.

With the same notations as in €g. (1.1) we can de ne joint cumulintsX %4t terms of joint
moments of a collectiohX, : a 2 A° of random variables via the generalised Leonov-Shiryaev
relation

6, O @)
n!

ExX Ve EoX Y (1.5)

n=1 P A N L P

This equation gives a recursive de nition BE»X Yby induction over the sum

~

. . O
] IB a-
a2A

If we de ne the linear functionals : H! Rand :H! Rby
IX°BBEX Y IX°B EoX Y

as before, we can lift ed. (1.5) into our abstract setting.

Proposition 1.1.7. We have

1,

—_ O—n o n.

=expt! °="+ 0
nl

We can invert this relation and obtain
Proposition 1.1.8. We have
() 1 1on
— |Og,>1 0— 1 no?n
: n



In particular, . N

O 1 1on 1 @) 0‘
ExX 114

EcoX Y&

n 1l 1+ + p=

1.2 Modifying Rough Paths

Rough paths theory was initiated by T. Lyons twenty years ago in the seminal paper [86]. The
main goal of his approach is to systematically treat di erential equations of the form

~

O
dy; = faly%dx®  yo= (1.6)

a2A
whereAis a nite index set withjAj = d, f : R! R are smooth functions arxt are some
irregular paths de ned over a compact time interval. In some situations thexpatti be so
irregular that the derivatives appearing in €q.|(1.6) might only be de ned as distributions. In
this case, the classical theory of Di erential Equations will not be able to provide an answer to
this problem. This kind of equations are common for example when dealing with Stochastic
Di erential Equations (SDEs) driven by Brownian paths.

The classical approach is to assume some extra structure on the paths, such as in K. I1td's
theory of stochastic integration. In this approach the pathassume to come from a realisation
of a stochastic process, adapted to an appropriate ltration, having a semi-martingale property
and nite quadratic variation. Solutions are then only de ned outside a set of probability zero,
and are never de ned at a given path. Moreover, the solution xalpy wherey is the Itd
solution to eq.[(1)6) is not continuous: this is illustrated by the Wong Zakai thecrem|[119, 120],
stated here in a somewhat loose version in particular, the exact hypothesis have been relaxed.

Theorem 1.2.1.Let B denote a standard Brownian motion and 18t % o be a sequence of
smooth approximations. Lgt be the classical solution to the ODE

= o

wheref is a smooth function. Then, 44 0, the procesy converges a.s. to the solutignof
the StratonovichSDE

dy; = fly® dB:

Therefore, in the Brownian case, the Wong Zakai theorem|[L19, 120] gives an answer: for a
class of reasonable approximations to Brownian motion, the solutions t¢ eq. (1.6) converge
to the stochastic di erential equation interpreted in the Stratonovich sense. It is still possible
to recover the It6 interpretation in the limit, but one has to apply some corrections to the
approximations. This can be seen as an instancenairmalisation Note however that there are



other kinds of reasonable approximations to Brownian motion for wiiatioes not converge. In
1991, Lyons showed that in fact an even stronger statement is true: any Gubset0; 1v4%uch

that the integral 01 udx is de ned for everyx;u 2 C must have Wiener measure zero. Hence,
this probabilistic approach cannot provide a pathwise meaning to rough equations of the form

eq. [1.6).

Lyons' novel insight was to postulate that the only missing information in order to make
pathwise sense out of an driven equation such as$ eq. (1.6) are the iterated integrals of the path
x = ixL 11 1:x90 against itself. This is motivated by the following observation: for simplicity
assume thatl = 1 and that the path is of classC. Then, by a solution of e.6) one means a

C! pathy such that -

yi= + . flyoxd ds:

If we compute the incremeny st B y; Ys, by Taylor expanding up to rst order we nd that
Yst= f1ys® Xst+ Rt (1.7)

where the remainder 1

Rst B flyosu*:! du

S
satis es the boungRsij . kxkcikyks jt  sj? and the identity Rgyt = fly%y, Xut, where Ris
the second-order nite incremenRsy;t B Rst Rsy  Rut- Approximation(1.7)is also the basis
for some numerical schemes extending the usual Euler's method to the controlled setting, and to
more irregular paths. See [|34,/46) 79].

A classical result of L. C. Young states that it is possible to continuously extend the integral

operator 1
t

ltu;x% = uskdds
0
fromC® C!! CltoC C ! C aslongas + > 1[121]. Moreover, this extension is

the uniqueC function Itu; x° satisfying

[1u; X% = Us Xgt + Ot Sj°
with the precise estimate on the remainder
+ .

j 1M X%t Us Xstf -t S]

Therefore we can still make sense of ¢9.|(1.6) in the case where the trajectories of the driving
proces lie on the Holder spac€ , for any > % Of course, almost surely Brownian motion
does not belong to this space.

10



However, observe that in this case the solutyosatis es

1
t

1
Yst= Flys® Xst+ > lesofolyso XsudXy + Rst:
s

The two-parameter functiods; = St XsudXy is such thajXsj . jt sj? and its second-order
increments areXgyt = Xsu Xut- Moreover, Young's estimate implies that the remainder

RtB yst flys® Xst 3Xst

satisesjRyj . jt sj® andits nite increments are also know. Observe that in this scenario,
the functionAst B fly Xst + flys2fLyLX ¢ satis es the hypothesis of Gubinelli's Sewing
Lemma (Theorer 3.1.3) as long as 3, hence we can nd aintegral | : »0;1% ! R such that

Ist = flys® Xst + lesofOlYSOXst"' otjt  sj%

which is a possible reformulation of ef). ([L.6) in this context. At this point, the existerXeloés

not depend on the ability to integrateagainst itself but only on its de ning properties, i.e. on

the form of its second-order increment and its regularity at the diagonal. In the one-dimensional
case it is easily seen that settiXg; = %1xt xs%2 works for any -Holder path as long as %
One can iterate this idea and obtain that if ﬁ then it su ces to nd appropriate objectX K,

for k = 2;:::;N, satisfying similar analytical and algebraic conditions. In this way we arrive at

our rst de nition of a rough path

k G Joywkj
Xst = XXyt
j=1

andjXXj. jt sk forall k2 Nandsu;t 2 50;1%

So, if X isa -rough path ovek the germAg; = flys°® Xgi+ f1y5°f°1yS°X§t+ will satisfy
the hypothesis of Theorem 3.1..3 and so one can recast efg. (1.6) in a suitable way. For some
choices ofx, a canonical choice of a rough path is available: for examples i smooth
then itssignature[23,/86] serves this purpose. Other cases where geometric rough paths have
been constructed are Brownian motion and fractional Brownian motion|(see [27] ﬂalr1>hé
case and [96] for the general case) among others. Still one might require additional properties
from the integral given by the Sewing Lemma which might not be obvious. For example, itis
not clear that integrals constructed this way should satisfy integration by parts for any choice
of XX, In a stochastic integration context, the notion of integral so obtained coincides with
Stratonovich's integral rather than Itd's version. If one would like to obtain Itd's stochastic
integral, it is mandatory to leXg; = %llxt X% 1t s as one would expect given the
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interpretation oiX as an iterated integrals. In fact, the properties of the nite integral operator
(see Sectiop 3.11.1) entail that given a xed second order progessttingX2, = X+ hgy, for
any2 -Holder functionh, yields another valid second order process, hence a di erent notion of
integral. Therefore, modulo a shift by2a-Hélder function all -rough paths are of the above
form.

The case in dimensiod 2 is drastically di erent. For simplicity we only address the
cased = 2, but the same remarks hold for ady 2. Whenx = x%;x?° has more than one
component we have to deal with integrals of the components against themselves. As bgfore, if
is smooth or -Holder for 1 the integral

1
t

Xq=  xudx (1.8)
S

is well de ned and it satis es Xisjut = X, xljJt andjxgtj . jt sj® . For a general -Holder
pathx we may proceed as before, postulating the existence of iterated intedfadJand we can
recourse to Theorem 3.1.3 in order to build a notion of integral agairtstnce de ne a notion
of solution to the corresponding multi-dimensional version offeq] (1.6). However, in this case
the algebraic relations that these integrals ought to satisfy are not as simple, and in particular
there is no canonical choice of the values<df for an arbitrary pattx 2 C . For example, the
pathx, = X xl satises X!, = xi, x, butitbehavesonly a sj whent s, notas
jt sj? asrequired. We may think of the collectid® as a matrix (2-tensor) on the indices
i;j) 2 f1;:::;dgand as such we may decompose it as a sum of a symmetric rSadrg an
anti-symmetric matriA where
X i +in. . X ii xji.

SiB ., Al B
2 2
By using the properties of the nite incremen{see Sectiop 3.11.1, in particular €g. (3.4)) itis
not hard to see th& = 1 x|, x/,; satis es

S'J' — 11 i j I Jio

sut — é Xsu Xut ¥ Xsu Xut (1-9)

so the symmetric part can always be de ned for an arbitrary path, but nding the anti-symmetric
part is a non-trivial task. Indeed, in the iterated integral interpretation the nfatias entries

given by 1

Agt = 2 XeuOXy  xdydx; (1.10)
S
so this matrix is tightly related to the construction of the Lévy area process. This process is
known to be discontinuous in the uniform topology, and even in the 2-variation topology, as
a function ofx so approximations by smooth functions are immediately ruled out as a valid

strategy. In fact, we remark that sindes antisymmetric the couplex + A actually lives in the
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vector spac®Y  sold® B g°. This vector space is thfeee 2 step nilpotent Lie algebmahere
the Lie bracket is given by

X+Ay+BYsx y y x
Moreover, there is an exponentip, : g°! G? given by
1
expix+A°B 1+ x+A+§x X (12.11)

whereG2B 1+ RY t RY RYjs theLie groupassociated tg? which is free 2 step nilpotent.
The multiplication law orG? can be explicitly stated as

M+ x+X° 11+y+Yo=1+Xx+y+X+Y+Xx Yy

but can also be described by means of the Baker Campbell Hausdor formula (seg €g. (5.7)).

Observe from eql) that the exponential actually adds the symmetric rizmtrixx toA

thus obtaining a matriX 2 RY  RY with symmetric part xed byx in the fashion 0. Thus,

de ning the antisymmetric matriA in eq. [1.10) is equivalent to nding a matrX satisfying

the algebraic constraint below ef. (1.8) provided that we x the symmetric part as n gq. (1.9).

This choice of the symmetric part is clearly not unique but it is in some sense canonical; indeed,
the identityXiSjt + xjsit = x x_it commes from the integration by parts rule

1 1
t t

X, dx), + xudx = X X (1.12)
S S
for smooth pathsc = *x%; x?°. This identity is an example of a more general set of relations
known asshu e relations, in reference to the ipping of the indices appearing in the previous
equation.

This can be formalised and generalised by taking the dual point of view. Consider the set

as words with letters fronA and we letl denote the empty word which acts as the identity for
concatenation. Thehu e productt : H H'! Hisdenedrecursivelybyat 1=1t a=a
foralla2 Aand

aut bv=alut bw+ blaut

wherea;b 2 Aandu;v 2 M1A° are non-empty words. The spaldealso carries a coproduct
:H! H H given by deconcatenation of words

~

a
lar a®= a1 ax a1 @
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in such away thatH;t ; °becomes a graded connected Hopf algebra. It is known that linear
functionalsX 2 H which are multiplicative in the sense tha;ut vi = hX;uihX;vi form

a group. Moreover, if we identify words of length greater than two with zero, the truncated
group so obtained is isomorphic & de ned above. We arrive at the following de nition (see
Sectior{ 5.14 for the general case).

De nition 1.2.3. Let 2 »3; 3°. Aweakly -regular geometric rough patis a pathX : »0; 1% !
G2 such thatXg; = Xsy? Xyt and

jXsguij . jt sj v

Notice that in this case the shu e relation in e. (I}12) might be rewritten as
WXspit ji = WXsgiihXyg i

so the fact thak takes values in the grou@? is just an expression of the fact that the integral
represented b¥ satis es integration by parts. Also, if we write Chen's rdfg; = Xsy ? Xyt In
coordinates we see that

X = PXsgiji = WXsy? Xugiji = Xdy+ X + Xisu Xt
i.e. we recover the algebraic constraint we had before, nam@JM = X, xljn.

A general theorem by T. Lyons and N. Victair [88] gives the existence of a geometric rough
path over any given-Holder path. The precise result is as follows:

Theorem 1.2.4(Lyons Victoir extension) If p 2 »;1°n N, a continuous path of nitg-
variation can be lifted to a geometrggrough path. For anyp, a continuous path of nite nite
p-variation can be lifted to a geometrip + " °-rough path.

Of course, this require extending De nitipn 1.P.3 to lower regularities by the addition of
supplementary higher-order components, which can be seen in a similar way to represent iterated
integrals and higher-order Lévy area processes. This theorem and its proof are very abstract
and thus do not provide a concrete way of constructing the required iterated integrals. In
Chaptef b (see in particular Theorgm 53.4), we provide an alternative approach, inspired by the
Lyons Victoir construction, to construct these integrals in an iterative manner. In its simplest
form, namely when 2 »%; %0 andd = 2 we only need to construct one path simis sot2° = 1.

This may be done by a technique akin to Gubinefiisving LemméTheorenj 3.13), by rst
de ning the antisymmetric matriXA over a dyadic partition of the intervad; 1¥{say). We
rst de ne the values ofAg; for consecutivelyadicss = k2 ™t = 1tk + 1°2 ™ by making some
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choices: for example, we start by settidgs = 0, and this choice is arbitrary. We may as well
replace this initial value by any antisymmetric matrix of our choice and obtain a di erent rough
path. Now, Chen's rule can be rephrased at the levgf &y using the BCH formula (see e@.?)
below): in this case we have that, sin¢e= exp,t x + A°,

expl Xst+ As® = eXpl Xsut As® expl Xyt + Ayt

1
=exp, Xstt+ Asut Ayt 5» Xsut Asu Xut + Aut¥s

whence n
Asut=Ast Asu Au= 51 Xsu Xut Xut Xsu®: (1.13)

Therefore, we also need to choose the values oh the dyadics in such a way so that ¢q. (L.13)

is preserved. Then, we use Chen's rule again in order to extend this de nition to any pair of
dyadics. At last, a continuity argument (Lemma 5.1.6) allows the passage to the limit and de ne
the value ofA for any s;t 2 »0; 1% For this last step we need the fact that there is a suitable
metrisable topology ilG? compatible in a nice way with the analytic bound in De niti2.3.

Remarkl.2.5 The previous argument, i.e. the cas@ »%;%»andd = 2, already appears in
[88]. 4

Finally, a word about the non-geometric case. In some situations, the imposition of the usual
rules of calculus might lead to an undesirable notion of integral; such is the case of Brownian
motion where the Itd integral might be preferred over Stratonovich's since, even though both
are adapted, the latter is the limit of non-adapted sums so it needs to look into the future .
Moreover the 1t6 integral enjoys a martingale property and it is an isometry into the space of
square integrable functions; none of this is true for the Stratonovich integral. The shu e relations
mentioned in the above paragraph present the integration by parts rule in an algebraic language.
For example, ifx! andx? are smooth paths and we 3€f, = St xi,dx}, the usual integration by
parts implies thakd, + XL, = xi; x!;. In 1977, K. T. Chen showed [23] that a similar relation
holds for higher-order iterated integrals

1

Ky - ooy o

s<ui<  <up<t

Considering the family of linear maps ¢hgiven by
WXsgiz  ini = X4

we see that this can be rephrased as requiringXhdie multiplicative with respect to the shu e

product. This is the context of Lyons' original theory and essentially it dealt only with this case.
In 2010, M. Gubinelli further extended the theory to the non-geometric case in what he called
branched rough pathsHis approach is based on E. Hairer and G. Wanner's observation that
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solutions to the classical ODf= fly° can be expanded as a Butcher series

0 1 .
o= + Sfiyot!
o1

where the sum is overon-planartrees [16} 54].

In the branched case, the shu e algebra is replaced by the Butcher Connes Kreimer Hopf
algebraH over non-planar rooted trees decorated by the alphab&his is the commutative
polynomial algebra over the spa€eof decorated trees where the coproductH! H H
can be represented by means of admissible cuts (see Section 2.5 for further details). As before,
the set of linear mapX 2 H which are multiplicative form a group, which we denote®y

De nition 1.2.6. A branched -rough path is a patiX : »0;1%! G such thatXs; = Xsu? Xut
and
%t j . jt sl

In this de nition, j j denotes the number of nodes in the tre&Ve can think of a branched
rough path as a family of paths indexed by forests, satisfying additional regularity and algebraic
relations.

The connection between these two settings, namely geometric and branched rough paths, was
extensively explored by M. Hairer and D. Kelly [57]. In a subsequent work, Y. Bruned, C. Curry
and K. Ebrahimi-Fard examined the algebraic aspects of this relation [14]. The main contribution
of Hairer and Kelly's article is to give an application(latter dubbed the Hairer Kelly map)
converting branched rough paths to geometric rough paths. They also provide another map, which
they denote by 4, converting geometric rough paths to branched rough paths. As a by-product of
this conversion they obtain 1td Stratonovich conversion formulas which generalise the classical
formula converting It6 integrals into Stratonovich integrals to a more general class of driving
paths. However, they remark that their construction is far from optimal in the general case since,
even in the Brownian setting, the formula obtained contains redundant terms that have to be
collected afterwards. In[14] this conversion is addressed in the context of semimartingale driving
noises, interpreting the Hairer Kelly map as the arbori cation of the Ho man exponential.

We take up on this problem by constructing a translation map, similar to the Hairer Kelly
map, allowing to rewrite branched rough paths as a more general class of geometric rough
paths, callednisotropic geometric rough pathsitroduced in Section 5.5. Roughly, this new
setting allows us to identify the redundant data constructed by the original Hairer Kelly map as
components having high regularity, thus permitting a ner control over what objects have to be
actually constructed and what objects are already xed by the other levels.

The idea of iteratively constructing the valueshXf, i for trees of increasing size by means
of the nite second order incrementalready appears in Gubinelli's work on branched rough
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paths. He uses this technique|in|[51], together withSe&siing magTheorenj 3.1]3), to prove an
extension theorem stating that branched rough paths depend e ectively only on a nite number
of trees. In other words, once one has the values oh trees with at mosi B b 1c nodes,

the rest of the values are uniquely de ned.

One of the main results of this chapter is the following:

Theorem 1.2.7.Let1x? : a 2 A° be a collection of real-valued-Holder paths. There is a
geometric -rough pathX such thatXs;ai = x2 x& foralla2 A

The proof consists of an iterative construction of a geometric rough path over the given
Hdlder paths, thus improving Theor¢m 1]2.4. In order to achieve our construction we have to
keep a balance between the analytical and algebraic constraints imposed by the de nition of a
geometric rough path: on one hand, the algebraic conditions demand that at each step Chen's
rule and the multiplicativity of the rough path are to be kept, and on the other hand the path so
obtained should be-Hdélder continuous with respect to a suitable metric, see De njtion 5.3.1.
Our approach heavily relies on an explicit form of the Baker Campbell Hausdor formula by
Reutenauer [103] (formul.9)), as well as on analytic techniques akin to Gubinelli's Sewing
Lemma [50], exploiting the fact that the group of characters over the shu e Hopf algebra is in
fact a Lie group whose topology may be metrized in various ways.

In fact, our technique allows us to generalise Lyons and Victoir's construction to di erent
cases and so we obtain

Theorem 1.2.8.Let1x? : a 2 A° be a collection of real-valued-Hélder paths. There is a
branched -rough pathX such thatXs;eai = x2 xZforalla2 A

Theorem 1.2.9.Let1x? : a 2 A° be a collection of real-valued paths and fet, : a 2 A° be real
numbers witlD <, < 1, such thatx® is ,-Holder. There is an anisotropic geometric rough
path X such thatXs;ai = x2 xS foralla2 A

In physical applications, it is interesting to understand the limiting behaviour of regularised
(or discretised) solutions to e{). (IL.6). Moreover, there are some reasonable approximations for
which the corresponding solutions do not converge [85]. In this case, one has to perform some
kind of modi cations to the involved quantities in order to obtain a meaningful limiting object.
For this reason we explore possible modi cations to rough paths both in the geometric and in
the branched case. In the branched case we prove that the abeliarCgrotipollections of
functionslg : 2 T°suchthag is | j-Holder acts transitively over the space of branched
rough paths.

Theorem 1.2.10.The groupC acts transitively on branched rough paths. Gie C and a
branched rough path there is another branched rough path of the same reg@rgych that
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g%gXe = 1g+ g®X for all g°2 C . Moreover, ifX and X°are any two branched rough paths of
the same regularity, then there exigt® C such thatx®= gX.

Our method works by iteratively constructing each level with the help of a general extension
theorem (see Theorgm 5.8.4). The main di culty for the proof of Theofem 1]2.10 is that this
successive construction of level has to respect not only Chen's rule and the analytical constraints
imposed by the de nition of rough path, but also the modi cation already done to the previous
levels. In particular, the way in whid@ acts on rough paths is by adding the increment of a

j J-Holder function to each componenhX; i. To see why this should be the case consider a
2 »%; %»so thatN = 2, and assume that the rst leveiXst;+2i and hXSt;-ai are equal and xed.
Chen's rule then implies that if we sEtB hXs;;2°i and de neF®accordingly then

Fsut = WXsgevinXygeai = hXZ;e0inXG;eai = FO,
so that there exists2 -Holder functiong such that
hXG10 = PXsp 0 + o 06!

Modulo some technical considerations this is the core of the argument and so our construction is
fully explicit. A similar kind of modi cation was considered by Bruned, Chevyreyv, Friz and
Preiy in [13], but in the case where the modi cations are given by constant multiples of an
extra pathX® which they assume to be regular enough so the tran@m;nects the de nition

of a rough path. The advantage is that they can describe the result of this translation as the
action of a left comodule over the Butcher Connes Kreimer Hopf algebra by using a version

of the extraction-contraction coproduct investigated irj [17] and the cointeraction property it
satis es with respect to the usual Connes Kreimer coproduct. For the moment we do not have a
similar description of our modi cation in such an algebraic setting, but Theprem 1.2.10 is general
enough to allow for modi cations by arbitrary Holder functions. Also, for the same reason,
the renormalisation groupC we obtain is in nite-dimensional as opposed to the one found

in [13]. Another instance of this modi cation theorem and its relation to Rough Di erential
Equations has been studied|in|[14] by Bruned, Curry and Ebrahimi-Fard, where they assume that
the underlying Hopf algebra has a quasi-shu e structure. This is supposed to represent the fact
that the base paths are semi-martingales so that the 1t6 rule provides a deformed product where
there's an extra term coming from the quadratic variation, hence the quasi-shu e structure.

AIn their terminology
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1.3 Directed Polymers

One of the main motivations for this work was to study a coupled system of singular stochastic
PDEs arising from as a scaling limit of a physical model calledntudtilayer semi-discrete
directed polymemtroduced by I. Corwin and A. Hammond [25]. This model, which we explain
below, was introduced in order to understand a continuous model introduced by N. O'Connell
and J. Warren known as timeultilayer Stochastic Heat Equatigmultilayer SHE for short) a

few years earlier [98]. The multilayer SHE, for a xed2 N and > 0, is de ned by its chaos
expansion

. . !
1100 O 110
Z Migx;tyo = pis x;tyo" 1+ Ruz s xtye  Mdu;dz
k=1 kls;to Rk

wherepts, x; t; y° is the standard heat kerneE{;(”0 is the correlation kernel of a collection of

n non-intersecting Brownian motions ands a Gaussian space-time white noiseFon R.

The precise sense in which this iterated stochastic integral is de ned is rigorously treated in
Sectior] 6.2. The random eld for the case= 1 rst appeared in[[3] as a scaling limit of the
partition function of the (discrete) directed polymer model under intermediate disorder. Later
on, it would be used in [2] to de ne a continuum random polymer for whicH acts as the
partition function. This partition function can be interpreted as the mild solution to the classical

multiplicative SHE
1

@ = > Z+ Z (1.14)
which corresponds to the Hopf-Cole solution to the KPZ equation. However, to our knowledge
no similar description exists for the dynamics of the elts™ forn > 1 although some partials
results in this direction have been obtained [83].

This family of stochastic processes has many properties shared by other related models such
as the classical SHE, which have already been shown in the recent works|[26/, 83, 84, 95]. In
particular, they bear a re

One way of thinking oz ™is by formally interpreting it as the partition function for a
n-layer continuum directed polymer. In tine= 1 case the value of the eld can be formally seen
as giving the average quenched energy of a continuum polymer

1
t

Z T1sx;t;y0 = pisx;t; y°Ex exp I Xldu X =y
S
where X is a Brownian motion undd? (andE is the associated expectation). Of course the
above equality is only formal as the right-hand side is ill-de ned &snot a real function but
a random distribution. This already makes clear that if one wants to formally de ne this eld
as the limit of discrete approximations some form of renormalisation has to be involved. In
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this interpretation, it is also clear by use of the Feynman Kac formulaZhatshould satisfy

eq. (1.14). It can be shown that ™ appears as the scaling limit of the partition function for
discrete and semi-discrete directed polymers in the intermediate disorder regime [3, 93], with
convergence in the sense of chaos expansiohs.in

A similar formal argument can be made for 1. In this caseZ "™ can be now seen to be
formally equal to the energy

n - | #
0 a ' t ; .
Z " = pisx;t; y"ED exp Wy X°du Xi= =X"=y

i=1 S

in the previous case, one can also view" as the limiting partition function of appropriately

de ned multilayer polymer models under the same regime|[[25, 95]. In Chapter 6 we show this
for the multilayer semi-discrete directed polymer de ned in/ [25]. See also [95] for an alternative
proof.

As stated in a previous paragraph, the dynamics governing the behavibu? dfs not fully
understood. In their seminal papeér [98], O'Connell and Warren study this dynamic under a
smoothness assumption for the noise potenti&oncretely, they replaceby a smooth function
' and derive a set of PDEs satis ed by the now smooth 2. They prove that the ratios

1n0 1n 10

u™ = 2"z satisfy the nested system of PDEs

in 10

110 1 0 © aa ;.o
= > u™+ ¥+ log- - —@R " (1.15)
« « -

wherez® 1, subject to the initial conditions ™15 x; 5; y° = 1x yO The irregularity of the

initial condition also poses additional problems for the analysis of these equations in the stochastic
setting. After showing this, O'Connell and Warren state that they were not able to show that if
now" is replaced by a suitable molli cation: of the space-time white noise, the corresponding
solutionsul;r.‘.o converge to a meaningful limit in an appropriate topology &s 0. We note that

this is to be expected as this is also the cas@ forl, where already some renormalisation is
needed in order to make sense of €q. ([L.14) as the limit of smoothed-out versions as one removes
the smoothing. In the single layer setting this result was proven by M. Hairer and C. Labbé by
using the theory of Regularity Structurés|[58]. Speci cally, they show that one has to consider
instead the modi ed equation

Q@ y=52Zy+ 2Zy CO

NI

20



whereC- is a function of' which diverges a8 ! 0. They show this by essentially using the
BPHZ renormalisation scheme built into Regularity Structures which uses Wick renormalisation
as a crucial step.

To our knowledge there are no similar results in the ¢asel, and this was one of the main
motivations for the work done on the previous chapters. We would like to have a similar kind of
result expressing the eld "™ as the renormalised limit of the classical solutions to the system
eq. (1.15) as in the single layer case. It could be also interesting to treat more general cases by
letting, for instance, the distribution of the background noise to be di erent from a Gaussian
distribution. E orts in this direction directly at the level of the KPZ equation have been made by
Hairer and Shen [59]. Again, a crucial step in order to be able to show this is to understand the
ner structure of Wick products which play a more prominent role in this setup.
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Chapter 2

Algebra

In this chapter we will introduce the main algebraic tools needed for the principal concepts
appearing in the core of the work. We will provide suitable references at the beginning of each
section.

2.1 Some category theory

Although not strictly necessary, category theory provides a unifying framework for some of the
objects that will appear throughout this chapter, whichuameersalin a broad sense. We will

just provide the main de nitions and facts without going in too much detail, and focusing mainly
on examples that will be used further in the text. This part is loosely based on Appendix B of the
book by J.-L. Loday and B. Vallette [81].

A categoryis a collection of objects arafrowsor maps between them, such that for any three
objectsC, C0andC®and arrowsf : C! CPandg: C°! C%there is a notion of composition
whereg f:C! C%is again an arrow, and this operation is supposed to be associative. Each
object comes with a special arrade : C! C such thatforanyf : C! Clandg:C°! C
we havef idc = f andidc g = g. Given two object€ andC°we denote b{Hom:1C;C® the
set of arrows between them. Categories will be written in sans-serif upright font and its objects
will be denoted in serif italic style. The concept is best illustrated with examples. The category
Set has sets as objects and functions as arrows; given a commutative tiregcategoryRMod
consists of (leftR modules withR-linear maps as arrows, and in the particular case wRerek
is a eld this is the categoryecty of vector spaces ovex.

A functor between to categorigs andD is a mapping sending obje€t of C to objects
D of D and arrows to arrows, such thatidc® = idg:co, if f : C!  Clis an arrow inC then
Fifo: Ficol Fi:C®js an arrowimD, andFlg f°= Fig® F1f° Given a pair of functors
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L:C! DandR:D! C,we saythat isleft-adjointto RandR s right-adjointto L if there
Is a natural isomorphism

Homp!LC%D° HomcC; RID®

for any two object< andD in the respective categories. In some categories there is a special
functor, called thdorgetful functorand denoted by, obtained by forgetting some of the
structure. A functor left-adjoint to the forgetful functor is callettee functor denoted byF;

then, the above equality of hom-sets translates into the following property: for each pair of
objectsC in C andD in D, and an arromf 2 Homc1C; U1D®, there is anf' 2 HompF1C® D°

such thatJ1f® = f.

2.2 Algebras

The next three sections are based of the standard references such as M. E. Sweedléer's book [113],
or the books|[9, 10] by N. Bourbaki. We x once and for all a ekdof characteristic zero. An
algebrais tripleA = 1A;m u° whereAis ak-vector space, anch: A A! Aandu:k! A
arek-linear maps such that the diagram

A A A m_id s A A
w
‘dm m k A
A A m \A/
A Kk

commutes. The main square expresses associativity of the product and the side triangles say
thatut1® 2 Ais the neutral element. Frequently we will not distinguish between the tuple and
the vector space and so statements sudbt#sbe an algebrawill appear. Likewise, we will

most usually denote the imagemfon two elements;y 2 A simply by juxtaposition, that is,

mtx  y°= Xxy.

Let A andA%be two algebras. Amlgebra map or homomorphisma map : A! A°
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respecting the products and units, i. e. such that the diagram

A ATy
w
K
mAO

commutes.

An ideal of an algebra is a subspaca A suchthaimta A+A a° a,thatis,it
absorbs left and right multiplication by elementsfofA subalgebraof A is a subspac€ A
such thatm'S S° Sandulk® S. Ideals serve to form quotients as the next proposition
shows.

Proposition 2.2.1.Let A be an algebra an@ A an ideal. The quotient spada has an
algebra structure and the canonical projection A! Aeais an algebra map.

Proof. It su ces to show thatifx x%2 aandy y°2 athenxy+a= x%°+ a. But then
there areay; ay 2 a such thatx = x°+ a, andy = y%+ ay , so that

xy = X%+ a,°ty0+ a,° = xYO+ x%y + y%y + axay = x4+ a

wherea 2 a by hypothesis. Hence, one can de ne a producA®a unambiguously by setting
Ix + aly + a° = xy + a. This also means that iftx° = x + a is the canonical projection then
Ixy°=xy+a= 1x° 1y° Obviously,u = u acts as the unit.

Proposition 2.2.2.LetA be an algebraa A be an ideal. Suppos&®is another algebra and
thatf : A1 AQlis an algebra homomorphism such tlzat ker f. Then, there exists a unique
algebra morphisnf=: Aea! Alsuch thatf = f

Proof. De ne fix + a°= fix°for eachx 2 A. This is well de ned since ik + a = y + a then
there isa 2 a such thatx = y + aand so

f1xo

fly + a°
flyo+ f1a°
fly°

fiy + a%

fix+a°
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Moreover, for allx;y 2 A we have

filx + a%y + a®° = fixy + a°

fixy°
f 1X0f 1y0

fix+a’fty + a°

It is a simple exercise to show that an arbitrary intersection of ideals is again an ideal. Thus,
given a subse® A one can form the intersection of all the ideals contairnghich is the
smallest ideal containin§, and will be denoted bifSi. This ideal admits amternal description
in terms of the elements &

Proposition 2.2.3.LetS A. Then

O] )
S = iaisbh:n2N;, 2kis2Sa;b2A : (2.1)

Proof. Let | be the set appearing on the right-hand side of[eq] (2.1). This set is clearly an ideal
containingS, hencetlS 1.

A left moduleover an algebrd\, or left A-module, is a tupléM = *M; °whereM is a
k-vector spaceand: A M ! M is alinear map such that the diagram

A A MG A

w

id k M

-

commutes. A right comodule is de ned similarly.

AM———M

Let A; A®be two algebras. The tensor prodéct Alalso carries an algebra structure with
productma a0 =my ma® 23, where .3: A AP A A1 A A A? Alisthe
natural isomorphism. Thus, the productAn ACis given astx x®ty y® = xy x40
Clearly, the unit is the mapa a0=Up  Upo.

An algebraA is said to begradedif its underlying vector space can be decomposed as a
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direct sum .

p=0
such tham!A,  Aq°  Apigandulk® Ag. The elements ol are callechomogeneousf
degreep. Thus, every element iA can be write as a nite sum of homogeneous elements, and
these terms are called its homogeneous componeniss Hn isomorphism theA is said to be
connectedWe denotadedx® = p sometimesjx] if this does not lead to confusion if and only
if x2 Ap.

Proposition 2.2.4.For everyqg 0 the subspace

is an ideal inA.

Proof. Letx 2 A anda 2 aq. SinceA is graded we have that for gl  0andr > qthe product
Xpar 2 Apir  @q. Therefore xaandax belong toaq since, for example,
o
Xy =  Xapr2ag:
r=0

Corollary 2.2.5. Forall g  0the quotient algebr#ea, is isomorphic to the algebra

=
AgpB  Ap
p=0

with product
§xy dedx®+ dedy® q;

X qy =
20  degx®+degy° > q

2.2.1 The free algebra

LetV be a vector space. Thefold tensor product of with itself is the vector spacé P with
the convention that © k. The vector space

EL
Tive= v P (2.2)
p=0
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carries a natural product structure given by the natural isomorp¥iglm vV 94 Vv 'P+a,
Denoting byl the unique vector spanning °, the natural isomorphisha W W k W
where W is an arbitrary real vector space gives tHaacts as the unit for this product. The
algebral TV ;1°is known in the literature as thtensor algebra oveY, and it corresponds to
thefree associative algebraverV [81]. Observe that*V°is in fact a graded connected algebra,
where the tensor products P are the homogeneous components.

Remark2.2.6 In order to avoid confusion, we reserve the tensor symioldenote the internal
tensor product od1Ve, i.e. the one giving the algebra structure. When talking about the
external tensor product oT V° with itself we will use the decorated tensor productSo for
example the product oRtV° can be written ast*a ~b°=a b. Likewise, the vectorg ~a
andl a= abelongtolv° ~T1V°andTV?, respectively. 4

There is another equivalent construction of the free algebra.Allst a set, considered
as an alphabet, and |& denote thefree monoidover A; the unit in A will be denoted
by 1. As a set,A consists of all the nite sequences = 'aj;:::;ap° of elements ofA
called words , and for such a word denote byw® = p its length By de nition, we have
an associative lawA A ! A, 'ab° 7! a:ib such thatl:w = w1 = wforallw 2 A,
and ifw = tag;::a5wWP = 1811 ag® 2 A thenw:iw? = tay; 1 1ap;a0; 00 1;a0°. Evidently
“ww = T twe + T 1w®, Every mapf @ Al M whereM is some monoid extends uniquely to a
monoid morphismf : A ! M by fla;:::a,°= fla,°::: fla°.

Denote byk A the free vector space ovér. The bilinear extension of the monoid law é&n
induces a product okA , wherel remains as the unit, as is easy to check. Every inag! A
whereA in any algebra extends uniquely to an algebra morpHisthk A ! A, hence we can
identify kA as thefree algebra over the sé&t, and we denote it bithAi . Note that in particular
all words can be written as a nite produat= aj:a,: : : a, of letters fromA. We denote byAP
the collection of all wordsv 2 A with “1w° = p. Thus,khAi is graded by word-length and the
subspacek AP are the homogeneous components.

Remark2.2.7. If V is a vector space of dimension the cardinality®othere is a bijection between
a basis foiv andA. Thus, we can identify/ as the free vector space owkiand then the monoid
operation onA will coincide with the tensor product oftk A°. 4

The algebr&hAi is sometimes called th@on-commutative polynomial algebamd each
letter from A plays the role of an indeterminate. Observe that there is no restriction on the
cardinality of A. In the case wherd is nite, khAi is easily seen to be isomorphic to the
non-commutative polynomial ringhx, : a 2 Ai. For this reason, words iA that is, the basis
elements of the underlying vector space are called monomials.

28



The free commutative algebra

There is a natural action of the symmetric grdymn the vector spacé P, given by
D v Vp0 =V 10 V 1po:

If we let SP1V° =V Pe S, denote the collection of all orbits of elements\ofP under the action
of S, the vector space

EL
Stve = SPye
p=0
becomes a commutative algebra with un S°2V°. This algebra is called tr®ymmetric algebra
overV.

Remark2.2.8 An equivalent construction can be over an arbitrary/sby considering/ to be
the vector spack Aspanned byA. The action ofS, is by permuting the letters in a word. 4

We can obtair§'V° as a quotient of 'V° by a suitable ideal. Consider the set
S=fu v v u:uyv2Vg

and leta = S be the ideal generated by this set. TI#¥° is isomorphic as an algebra to
the quotienTV°a, because every element$j can be decomposed into a nite number of
transpositions.

The commutative algebi@Ve enjoys the following universal property: ff: V! Alis any
linear map fronV to a commutative unital algebgy, it uniquely extends to an algebra morphism
f:SVe! A. Thisis true in view of Propositign 2.2.2. Indeedfif V! Alis alinear map, it
extends uniquely as an algebra homomorphfsnT1V°! A. SinceA is commutative this map
is symmetric, thatisflu 0= flv w°. Hencea kerf and so Proposition 2.2.2 applies. In
particular, ifAis a nite alphabet, we can identifig»AlAvith the usual (commutative) polynomial
rng k»x, : a 2 A%

A very special case, that will be of interest for latter developments is witrerfag or V is
1-dimensional. In this case bolhAi andk»AYare isomorphic to the polynomial ring in one
variablek>x¥ A basis for this space is given by the monomiglsx; x?; : : :gand the product is
the usual product of poweprd' x™M = x™M,

2.2.2 The shu e algebra

It is possible to endow the spat&Vv° de ned above with another commutative algebra structure
which di ers from the free commutative algebra constructed above. For the description of this
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product it is best to use the presentation of the free algebra with words. Construct a map bilinear
mapt : KA kA ! KA inductively by settinglt a=at 1= aforalla2 Aand, if
v;w2 A are words an@; b 2 A are any two letters, then

avt bw=alvt bwl+ blavt we:
For example, we may compute

at b=ab+ba abt cd=abcd+ acbd+ cabd+ cadb+ cdahb

It can be shown thak A ;t ;1°is a commutative unital algebra, which is also graded and
connected. The homogeneous component of dggre® is spanned byP, the set of words of
length exactlyp. In the case the st is totally ordered, it can also be shown that the shu e
algebra is free over a special set of wotd#\® A, calledLyndon words This means that, as
an algebra, the shu e algebra is isomorphic to the polynomial g, : w 2 L1AY%,

2.2.3 Universal enveloping algebras

LetL be a Lie algebra with bracket Y4 Recall that this means thatthe map“ L L ! L is
bilinear, and satis esx; xX¥& 0 and the Jacobi identity

X W5 ZYaYa sy 37, XY ¥z, X, YYa¥ O (2.3)

forall x;y;z 2 L. If L andL%are two Lie algebras, a linear function: L ! L9 satisfying
Ly y¥a= » 1x% 1y%js said to be d.ie algebra homomorphism or maphere is a canonical
way to associate, to any associative algebmalie algebrd. p by settingx; y¥& xy  yx.

A universal enveloping algebffar L is an algebraA such that for any other algebsd, every
Lie algebramap : L ! Laouniquely extends to an algebra map A! A% As with all
objects satisfying universal properties, universal enveloping algebras are unique up to algebra
isomorphism.

Given an arbitrary Lie algebrh, there is a canonical way of constructing its universal
enveloping algebra. Consider the free algebia® over the underlying vector space lofas
constructed on Sectign 2.2.1 andaete the ideal generated by the set

S=fx y y X »xy¥%ixy2Lg
Proposition 2.2.9. The quotient algebr&J1L° = T1L%ais a universal enveloping algebra far.

Proof. Let A°be an algebra anfl : L ! Laoa Lie algebra morphism. In particulaf, is
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linear so it admits a unique extensién TL°! L oas an algebra homomorphism. Now, by
Propositiorj 2.2]3 everg 2 a is a linear combination of elements of the form

Vi Vi IX Yy Yy X »XyYe vig Vo
wherevy; Xy 2L andp 1. But the image undef of an element of this form is equal to
flao = f1Vlo fl\/|01f 1Xof1y0 flyoflxo fl»x; y1/40P1v|+10 flva =0

hencea  kerf. Thus, in view of Propositiof 2.3.2 there exists a unique algebra map
f: UL®! Laosuchthatf = f~

2.3 Coalgebras

A coalgebrais a tripleC = 1C; ;"°whereC is ak-vector space,and : C! C C and
" :C! karek-linear maps such that the diagram

Kk C
N
/c s C C
C k id
|7(\ )
C C id vC C C

commutes. Observe that this is the same diagram as before but with arrows reversed . We will

use Sweedler's notation to denote the image af follows. Forx 2 C we write
O
X= X1 X

1XD

or in a more compact way,x = X3 X2. Sometimes we will also drop the limit on the sum. In
this notation, the coassociativity propetig °© =1  id® reads

~ ~

O O
Xp 1X% X% = X% X% X

for all x 2 C, hence there is no ambiguity in simply writing

~

@]
lid 0 x=1 id° x = X1 X2  Xa:
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Likewise, the counit satis es
@) @)
X = H'; X101 %o = H'; Xoi X1:

Let C andCPbe two coalgberas. Aoalgebra homomorphisimamap :C! CPsuch that
the diagram
cC——C C

P

k

Ny

c0l—— Y O

A coidealin a coalgebr& is a subspace suchthat C c+c C. A subcoalgebrafC
isasuspac&suchthat S S SandS ker". Coideals serve, as ideals in an algebra, to
form quotients.

Proposition 2.3.1.LetC be a coalgebra and C a coideal. The quotient spa€»chas a
coalgebra structure and the canonical projection is a coalgebra map.

Proof. Let : C ! Cecbe the canonical projection, and de ne a coprodugt: Cec !
Cec Cechy 4 x°=1 ° X. To check that 4 is well de ned it su ces to show that if

1x0= 1x®Pthen 4 x°= 4 1x® Butin that case there is@2 csuch thatx = x°+ ¢ and
then x= x%°+ c, whence

130 = 1x® 41 0 c=

q q

sinceC c+c C ken 0,

Nowdene" :Cec! khbyh'; x% = H' xi. Thisis well-de ned and

i |d0 q 1X0: i o X = 1X0:

The other identity can be checked in a similar way.

A left comoduleover a coalgebr&, or left C-comodule, is a tupl&1 = *M; °whereM is a
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vector spaceand: M! C M is such that the diagram

M———>C M

e

k M id

CMHidCCM

commutes. A right comodule is de ned in a similar fashion. Using Sweedler's notation, the
image of is sometimes written o)
X=X X

so the diagram above imposes the identities

) @)
Xt %% 'X%= X% X% X

and o)
H'; X101 Xg = X:

If C;CPare two coalgebras, their tensor prodGct CPis also a coalgebra with coproduct

c co= 23 ¢ candcounitc co="¢c "co where pzisthe ipmap 23ta b ¢ d°=
a c¢c b d

A coalgebreaC is said to begradedif its underlying vector space admits a decomposition

such thaker® C; C» and

Cp Cq Ci:
a+r=p

As before, a graded coalgelais said to beconnectedf Cg is one-dimensional.

It is an easy exercise to prove that

Proposition 2.3.2.Fixq 1. The subspace

is a coideal inC.
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2.3.1 The cofree coalgebra

Similarly to the case of an algebra, there is an explicit construction of the cofree coalgebra over a
vector spac®/’. LetV be a vector space. As before, let
EL
T = ALS
p=0

It is possible to de ne a coproduct : T¢Vve | TC\/o ~TC1\0 jn the following way: let
1=1 ~1and for an elementary tenspr= v; Vp 2V Pset
61
X=1~-X+x~1+ 1y Vi® 2 Vi1 Vo
j=1

The counit is the map such thidt 1i = 1andHh';vi = O else. The coalgebfd 1V°, ;"°has the
following property: ifC is any coalgebra, each mdp. C! V extends uniquely to a coalgebra

mapf :C! TCV° Note thafT“?V°is a graded connected coalgebra where the tensor products
V P play the role of the homogeneous components.

There is another, equivalent construction of the cofree coalgebra heta set, regarded
as an alphabet, and Iét be the free monoid ovehk; the unitinA is denoted byl. There is a
coproduct : KA ! kA KA suchthat 1=1 1landifw=a;:::apisanon-empty word
then ~
o
w=1l w+w 1+ a;::iiaj aj+1:iiap
j=1

As before, both constructions are trivially isomorphic.

2.3.2 The convolution algebra

Let C be a coalgebra anl be an algebra. It is possible to obtain an algebra structure on the
space ok-linear mapsHom1C; A° by transposing the coalgebra structureCofSpeci cally,
given ; 2 Hom!C;AS, their convolution product is the ma 2 Hom*C;A° as

192 olyo=mmt o x: (2.4)
In Sweedler's notation this reads

O
19 01y0 = 1X10 1X20:

Associativity of the convolution product follows from both the associativitynaind the
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coassociativity of since

»? 17?7 YRO=mt ? %X
=mid m” od  ° x
=mm id% o1 d° x

=»l? 0?2 L%

Themap =u " acts as the unit, since

1 ‘7 leo - rI]]_u " [0} X
@)

= _ H;xqiutl® 1xp°
O

= Hyxd x°

= H'; X11 X2

= 1X0:

The other identity is proven similarly.

This shows that in particular the linear d@@l = Homg1C; k° of C possesses an associative
algebra structure. In this case, the couniCgblays the role of the unit i€ . The associative
algebralC ;?;" °is known as thelual algebraof the coalgebr&.

There is a nice duality between subcoalgebra<Cof © and ideals ofC ;?°. Recall that for
asubsetl C, itsanihilator is the subspace

J’Bf 2C :h;xi =08x2Jg

Proposition 2.3.3.Let S be a subspace &@. Then

1. Sis a subcoalgebra if and only 8 is an ideal inC .

2. Sis a coideal if and only iB? is a subalgebra of .

2.3.3 The restricted and graded duals

We observe however that it is not always possible to turn the dual space of an arbitrary algebra into
a coalgebra by dualising the product. Supp@sen; 1°is an algebra and I& = HomA; k°®

denote the dual space of its underlying vector space. The productis a lineannfap A! A

hence its transposa : A '1 A A°. ButingeneralA A° isstrictly biggertharA A ,
unlessA is nite-dimensional, in which case they are isomoprhic.
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Suppose there is a subspdze A suchthamD°® D D. Inthis case, the restriction
= m jp de nes a coproduct because, sinoés associative, one has

ht id® ;x y zZ=h;xy 1z
= h; 1xy°z
= h; xtyZo
=h ; x yz
= hid ° X y z:

Moreover, the linear map: A ! kdenedbyH; i =h; 1li satises
h* id® ;xi=h ;1 xi=h;x

so that'D; ;"°is a coalgebra, which is cocommutativedifis commutative.

One can consider the spa&e consisting of all linear maps 2 A such thaker contains
a co nite ideal, that is, such that there is an idaal ker with dimtAea® < 1. This space
satis estheidentityA A° A A andmA° A A . Hencetherestriction = m jp
de nes a coproduct, andthe méh i = h; 1i isacounitséA ; ;"°becomes a coalgebra.

We obtain an alternate construction of the cofree coalgéebra [30].

Proposition 2.3.4.LetV be a vector space. Thad#V ° is the cofree coalgebra ovaf.

In the caséA is also graded one can do a little bit better. Suppdsea graded algebra with
homogeneous componemtg. Thegraded duabf A is the space

EL

ar .
AYB A

p=0

which is a subspace of the full dual. One hasA A%"  AS%" A9 gndm 1A% A9 A9
and so the restriction = m jaor is @ coproduct, hencé\?'; ;"°is also a coalgebra.

There is a relation between the graded a restricted duals.

Proposition 2.3.5.LetA be alocally nite graded algebra, i.e. such that, is nite-dimensional
foreachp 0. ThenA? A .

Proof. Suppose 2 AY". Then, decomposes as a sum
a

- PP
p=0
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where , 2 Ajand only a nite number of coe cients  is non-zero. Moreover, for ak 2 A

one has ~
e

h; xi = ph s Xpl
p=0

wherex, 2 Ap are the homogeneous components of

Letqg 2 Nbesuchthat, = Oforallp q. Then,ifx2Aq Ag+1 we haveh; xi =0,
that is,x 2 ker . But the subspace

a= Ap
P=q
is an ideal (Proposition 2.2.4) iy contained irker  such that (Corollary 2.2,5)

so in particulam is co nite, whence 2 A .

Remark2.3.6 The full linear dualA of a graded algebra consists of formal series of the type

where , 2 A,. In other words, we may identify

&
A = Ay
p=0
the direct product of the duals. In general this space is much largeiA¥iaexcept when
dimA < 1 inwhichcaseA A  AY. Infact, whenA is locally nite we can identify

A9 A as vector spaces. 4

2.4 Bialgebras and Hopf algebras

For this section, besides the references given at the beginning of Section 2.2 the reader is also
referred to the more speci ¢ P. CartiesPrimer of Hopf algebra§l8] and the nice review by
D. Manchon[[89].

A bialgebraB = 1B;mu; ;"°is a 5-tuple such thaB; m;u°is an algebra antB; ;"°is a
coalgebra, and the eitherand” are algebra morphisms, orandu are coalgebra morphisms.
Here, the tensor produBt B is supposed to carry the natural algebra or coalgebra structure
introduced on the previous sections. A proof of the equivalence between these two statements
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can be found in[113].

A morphism of bialgebras is a map which is a morphism of algebras and coalgebras as the
same time. A biideal of a bialgebEa is a subspack B which is an ideal otB ;m; 1° and
a coideal oftB; ;"°. If bis a biideal therB «b has a canonical bialgebra structure and the
projection is a morphism of bialgebras.

A Hopf algebraH is a bialgebra together with a linear m8pH ! H, called theantipode
such that the diagram

H H 4 __sH H
/ N
H - y k u > H
\ %
H H T >H H
commutes. This means that the identity
mS id® x=mid S x="1x°1 (2.5)

holds for allx 2 H. In other wordsSis the convolutional inverse @l in HomctH;H®, hence it
IS unique when it exists.

Proposition 2.4.1.LetH andH®be two Hopf algebras anfl : H ! H%a bialgebra map. Then
f s=8 f.

The next proposition from [30, 113] gives some of the properties of the antipode.
Proposition 2.4.2.LetH be a Hopf algebra with antipod®. Then
1. Stxy° = Sy°Stx°,
2. St1°=1,
i
3. Sx°= Sx° Sx°and

4l n S : n .
If H is commutative or cocommutative th&h= id.

The following theorem is of utter importance in what follows. We cite it here without proof,
but one can be found in [89].
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Theorem 2.4.3.LetH be a graded connected bialgebra. Thens a Hopf algebra, and its
antipode satis es the recursion
0 0
SIx0= x+ SIx1% = X+ X1 Stx0

1X0 1X0

for all x 2 ker".

2.4.1 Primitive and group-like elements

LetH;m ;S°be a Hopf algebra. We now single out two special classes of elemeHts A

elementx 2 H is said to begroup-likeif x = x x; we denote byG'H®° the collection of all
group-like elements ikl. An elementx 2 H is said to beprimitiveif x=x 1+1 x;we

denote byg'H® the collection of all primitive elements id.

We have

Proposition 2.4.4.The group-like elements form a group with uh2 H and inverses 1 = Stxe.
Furthermoreh’; xi = 1 for all x 2 GH®.

Proof. First note that by de nition 1 =1 1s01l 2 G'H° Letx;y 2 G!H°. Since isan
algebra morphism then
Ixye= 1x° ly®=xy Xy

soxy 2 G*H®°. The counit property implies the identiy= H'; xi x and soi’; xi = 1. Finally,
the de ning property of the antipode gives the identity

1=mS id°® x = S'x°x = xSx°
that is,x 1= Sixe.

Proposition 2.4.5. The space of primitive elemerdgdH? is a Lie algebra under the bracket
X, Y¥&E Xy  yXx,andgtH®  ker".

Proof. Clearlyg*H?is a subspace dfi. A simple computation yields

»yYE X0 tye 1y 1x°
=xy 1+4x y+y x+1 xy yx 1 y x x y 1 yx
=1xy yx° 1+1 1xy yx°
=X YYa 1+ 1 »XyYa
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hencex; y¥2 2'H°. Finally, the properties of the counit give the identity
x=H;xil+ X
whencell’; xi = 0.

Finally we have the following

Proposition 2.4.6.Let A be an algebra andf 2 A be an algebra map, i.e. such that
hf;xyi = hf;xihf;yi. Thenif!A ; ;"°denotes the dual coalgebra as described in Se€tion|2.3.3
we havef 2A , f=f fandh; fi =1

2.5 Algebraic structures on rooted trees

A non-planar rooted tree is a connected acyclic griaphN;; E:° with one distinguished vertex,
called theroot. Graphically, we draw rooted trees with the root at the bottom and growing
northwards; the root is drawn in slightly bigger size. As a convention we think of edges as being
oriented away from the root, but this will not be re ected in the graphical representation; given
an edgee = 1x; y° 2 E; we will call x;y 2 N; its source and target, respectively. The rst eight

rooted trees are
o I E; V' }; Y; K/; N

Non planarity means that we do not distinguish the Kr{eefrom \/I Henceforth we shall
drop the adjectives non-planar and rooted since this will be the only type of trees we will
consider. Given a treiewe write jtj for the number of its vertices or nodes. There is a natural
partial order on\; by declaring thak vy if and only if there is a path ih from the root to
y 2 N; containing the vertex. For example, the node set of a linear tree is linearly order with its
root acting as the minimal element, and its unique leaf as the maximal element; the leaves on the
fourth three in the above example are not comparable.

A rooted foresis a nite collection of rooted trees, irrespective of order; in particular, trees
are a particular kind of forest. There is also #rapty forestvhich we will denote byl. We
can union two forests two obtain a third forest, and this operation will be denoted simply by
juxtaposition both symbolically and graphically. Since a forest can be thought of as the union of
its constituent trees, these will be denoted bytito  tk, and we sejtj = jt1j + jtoj +  + jtk].
The treeds;: : :;tx forming a forest are said to be thiactorsof t. Finally, given a forest wittk
factorss=1t; tx, we denote byB,t;  tk°the tree obtained by grafting each of the roots of

B+110 = -; B+1-0 = I’ B+1uuo = v, B+lI-0 = b,
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and it is fairly easy to see that all trees can be obtained #rbyniteration of this operation and
the union of forests. We also denoteBy the inverse operation, so for a tred3 t°is the forest
formed by the children of its root.

Finally, we de ne the symmetry fact@t® of a treet recursively by setting'°® = 1 and

SBUM tF0=ng!  nlsity® st (2.6)

se0=1;, g°=1, s*/S°=2 s} =1 sb =1

2.5.1 The Connes Kreimer Hopf algebra

First, we will describe a Hopf algebra structure introduced in 1998 [24] by A. Connes and D.
Kreimer in order to describe the renormalisation procedure in the perturbative expansion of
Quantum Field Theories (QFTs for short). Without going into further details, this Hopf algebra
describes the combinatorics behind various renormalisation procedures which serve to extract
suitable counterterms from divergent Feynman graphs, which can be thought of as representing
diverging integrals appearing in the Taylor expansion of Green's function of the interaction, with
respect to a dimensionless coupling parameter.

We will now proceed to a mathematical description of this Hopf algebra, which we will
denote byHck. As an algebraH ck is constructed as the free commutative algebra over the real
vector space spanned by trees. In particular, it can be seen to be isomorphic, as a vector space,
to the real vector space spanned by forests, with forest union as producaarnbe unit. The
coproduct and counit dfick are constructed by using its freeness as a commutative algebra in
the following way: the counit : Hcx ! R is the unique algebra morphism such thati = 0
for all trees. The coproduct: Hck ! Hck  Hck is the unique algebra morphism such that

B.t°= B,%° 1+1%d B° t: (2.7)

In [24] it is shown that this coproduct is coassociative, and that it admits a description in terms of
cuts Given a tred, we call an arbitrary subs& E; acut;, a cut is said to badmissiblaf

any path from the root to any vertex bfontains at most one edge fraddpand it is said to be
elementary if it consists of a single edge. Any admissibleZaf t containingk edges mapsto
aforestCi®=1t; ty+1 Obtained by deleting the edges frdin It is customary to denote by
RC1t° the unique factor o€t° containing the original root, and §Ft° the forest formed by

the rest. This notion can be extended to foréstd;  tx in the obvious way by choosing an

41



admissible cuC; for each tred; and letting
C° = Cy1t;° Cilty©; Pclto — antlo ka1tko; Rclto — RCutlo Rckltkoi

If we denote the set of admissible cutstdfy At° then

~

o)
t=t 1+1 t+ pCito  RCuto: (2.8)
C2A1°

forallt 2 Hck. As an example

I\/:b 1+1 R/+. £+. VD ltee T+l

and this shows that is not cocommutative.

Until now, we have de ned a commutative bialgeliak on rooted forests. This bialgebra is
graded by the number of nodes, that is, its homogeneous component of degfeis spanned
by forests with exactlyh nodes. Since there is only one forest with zero nodes, namely the
empty forestl, we have that in fadtick is connected. Hence, appealing to a general result [89,
Corollary 5] we obtain thalck is indeed a Hopf algebra. Moreover, we have the following
recursive expression for its antipo8e Hck ! Hck by St1°= 1 and

~ ~

o) o)
Sito= t SIPC1toRC10 = ¢ PC1toS RC1t00,
C2AY®° C2A1°

forallt 2 Hck. For example,

SO= SLIO: I+..; SK/ = K/+.}+.V+II 3..I+....

where we have used the fact ti&its an algebra morphism siné&:-k is commutative in general
it is only an antihomomorphism.

2.5.2 The Grossman-Larson Hopf algebra

There is another Hopf algebra structure that can be de ned on trees which was rst de ned by R.
Grossman and R. Larson in 1989 [48], in order to study e cient ways to compute the action of
certain di erential operators. We will denote this Hopf algebraHyy, , and as a vector space is
spanned by trees. The product of two treesB,!t;  tc° andt, denoted by ? t is obtained

as the sum of all the ways of grafting the tregs: : ;tx to a vertex ot, e.g.

N 2 2.9)
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so in particular the product is not commutative. Remark that the tree consisting of a single node
acts as the unit. As an algelig;| is graded bydedt® = jtj 1and therefore itis also connected.
The coproduct > : Hg. ! HgL HgLisgiven, fort = Byt tk°, by

where the sum ranges over all the partitiond of the nite setf1;:::;kgandt) = B:'t,  t,°

?I\/:K/ ot K/+E 1+ E:

In general, , is cocommutative and this endows; . with a graded connected cocommutative
bialgebra structure. As before, this implies thi, is actually a Hopf algebra and we have a
similar recursive expression for the antipdéle As an example

Sw=. sP= [ sl :2k/+2§+Y:

There is an interesting relation between the Connes Kreimer and the Grossman Larson
Hopf algebras which was shown by M. E. Ho man [63]. Given two tregSlet 1t;t® = slt® o
wherestt® is the symmetry factor de ned in ed. (2.6). This de nition is extended to rooted
forestst;t® 2 F by 1t;t® = 1B, 1t% B,t®° observe this is well de ned since for rooted trees
SiO = s'B, 1t

Theorem 2.5.1.The linearmap :HgL! HZ, given byh %ui = !B 1t%uw = 1t; B,u®is
a Hopf algebra isomorphism.

Thus, theé? productinHg_ as de ned above corresponds to the convolution product associated
to the Connes Kreimer coproduct, that Is,%t 2 t®ui = h 1°  %® ui. We will present a
full proof of this statement in the next section.

2.5.3 Decorated rooted trees

We now introduce decorated versions of the Connes Kreimer and Grossman Larson Hopf
algebras, as this is the right context in which Rough Paths theory is formulated. Fix, once and for
the rest of this section, a nite alphabAt

A (non-planar) rooted tree decorated by the alph#bista pair = 1t;c® wheret is a tree in

the sense of the previous sections and\; ! Ais a function. We denote thenderlying treeof

= 1t;c° by t! ° = t; the collection of all decorated trees will be denotedihyor a positive
integern 2 N, we denote byl (resp. T.y) the collection of trees having at most (resp. exactly)
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n nodes. The vector spaces spanned by these collections will be dendde®BhyandB i,
respectively. Graphically, we put decorations besides the nodes, e.g.

. b. b scC.

A decorated rooted forest is a forest of decorated trees and we use the notatign ¢
where each factor, 2 T. The collection of all decorated rooted forests will be denoteB pbgnd
the empty forests will also be denoted hyFor a natural numbar 2 N, we denote by, (resp.

F 1) the collection of forests with at most (resp. exactlygdges; the empty forest is the unique
forest with no vertices. For each let@2 Awe have map82 : F ! T whereB3! ; K2 Is
the decorated tree obtained by grafting each of the trges:; ¢ to a new root decorated lay
There is also, for each lettar2 A, amapB? : T ! F such that

Balel 1 %0 =

All of the previous notions can be imported into this setting, applying them to the underlying
tree taking care of the decorations since now decorated trees with identical underlying trees are
considered to be di erent if their decorations do not match for all nodes. For example, &
we have

S =1 s =2

The decorated version of the Connes Kreimer Hopf algebra has been considered in [51].
We will denote this Hopf algebra UyéK. As an algebrdd éK is the free commutative algebra
overT; hence, as a vector space it is isomorphi€tand the product is given by the disjoint
union of decorated forests. As before, it is graded by the number of nodes so in particular the
homogeneous component of degre2 N is spanned by:0. Of course, when the alphabet
contains a single lettdd 2, Hck. The coproduct : HA, ! HA HE&, is the same as for
Hck by keeping the decorations in eachRS§ft ©andR¢t ©, e.g.

vc = %C 1 + 1 %C + ep I: + oc Ig + epec ea’
The antipode has a similar expression with the inclusion of the decorations so for example

g..ao et .a; S MC = %C + -bI: + aCIZ eaehec:

We will now proceed to describe a decorated version of the Grossman Larson Hopf algebra,
which we denote bylél_. For this, we will need a new type of trees, in which the root is distinct
in that it is always undecorated. We draw this special root as a blank node, and we have a map
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B, attaching the trees in a forest to an undecorated root; hence all trees in the vector basis of
Hél_ can be written a8, 1 k° for some decorated forest. Given such a treee denote by

ded °=j j 1the number of its decorated nodes. The product and the coproduct are given by
the same formula as before, so for example

Vb?lcziéb+§/b+qéfa+ a o
Compare this with eq[ (2.9), and notice that there the second tree has a factor of two while here

we have two (potentially) di erent trees due to the decorations. As before, the &icte as the
unit. The coproduct, : HS, ! H&, HZ, is again given by partitions of the children of the

root, e.g.
?%c :%c o+o I%/C+£2 1° + 1 Eg

Remark2.5.2 Of course, considerintjléL to be generated, as a vector space, by forests instead
of trees with an undecorated root would have given an isomorphic construction. The only caveat
is that in that case one has to be more careful in order to de ne the product and the copratuct.

2.6 The free pre-Lie algebra

We start this section by recalling the de nition of a pre-Lie algebralefs pre-Lie algebra
IS a vector spacé together with a linear map : L L ! L such that theassociator
axx;y;Z2=x.ty. 22 1 x.y°. zis left symmetric, i,e.

X.ly.22 1x.y%. z=y.1x. 22 1y.x°. z (2.10)

for all x;y;z 2 L. If the associator is right-symmetric instead of left-symmetrics said to be a
right pre-Lie algebra. The following proposition justi es the name.

Proposition 2.6.1.LetL;.° be a pre-Lie algebra, and de ne;y%s= x.y y. Xx. Then
1IL;»; ¥Pis a Lie algebra.

Proof. It is clear that»; Yis bilinear andx; x¥a= 0 for all x 2 L. Now we check the Jacobi
identity. Letx;y;z2 L, then

X)W, ZY = X . W, 2% »Y,Z%. X
=X.ly.z z.y°ly.z z.y°%. x

X.ly. 22 x.'z.y° ly. 2. x+1z.y%. x;
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and

XK, YYAa= 7. X YYa » X YYa. Z
=z.X.y y.xX01x.y y.x%. .z

=z.1Xx.y% z.ly.x° 1x.y% z+1ly.x°. z
and also

W XY=y ., XYa » Z,XYa. Y
=y.lz.x x.22'z.x x.2%.y

=y.1z.x° y.Ix. 22 1z. xX0.y+x.2.y;
hence the sum; »y; Z/4/a+ »z,»; yYa/a+ »y;»z, x¥4/= 0 by eq. (2.1D).

Now, let Abe a nite alphabet and@ be the collection of all rooted trees decorated®)yas

above. Given three trees; 2 T denote byn'; ; °the number of elementary cuts on
such thatP®t °©= andR‘t °= . De ne a bilinear operation off by

é 1 Ogl O

st %s
y = ——n; %

o S
Observe that the sum is actually nite sinoe; ; °isnon-zeroifandonlyif j=j j+] |.
For example

C

ay IE:I;+ Iy .a:ﬁ)\:
This operation make;y ©a pre-Lie algebra as is shown |n [22]. In fact, we have

Theorem 2.6.2(Chapoton Livernet) The pre-Lie algebraT;y °is the free pre-Lie algebra
over the vector space spannedAyonce one considers the natural embedd®y T; T.

This operations bears an interesting relation with the decorated Grossman Larson product
de ned in Sectio 2.5]3.

Proposition 2.6.3. The identity y y =B,t°?B*° B °?B,! °holds for
all ; 2T.

This Proposition together with the Chapoton Livernet theofem 2.6.2 provides us with a
procedure for de ning characters d'l‘héK as follows: letA be an associative algebra, pick
a;::;ag 2Aanddene %i°= g foralli = 1;:::;d. Observe that sinca& is associative its
product endows it with a preLie algebra structure. Henoextends uniquely to a preLie algebra
morphism : B ! A, and further to a Lie algebra morphism: B ! La. Finally, we use
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the fact thaHH éK is the universal enveloping algebra of its primitive elements and the previous
proposition.
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Chapter 3
Analysis

In this chapter we will describe the main analytical tools needed to understand and prove some
of the results in this work. We will mainly follow M. Gubinelli's line of work, introduced in [50,

51]. There are also some classical notions such as Holder and Besov regularity, for which the
reader is referred to the classical textboogks [32| 90, 116].

3.1 Hodlder spaces

Let>0; TVbe a xed time interval, and x once and for the rest of this section a normed vector
spacéV;j j° Forafunctionf :»0;T%! Vand 2 10;1°let

»¥aB  sup M: (3.2)

10207 It S)
The classical -Holder spac€ is the vector space of functions such thi¥. < 1 . Note that
eq. [3.1) de nes only a seminorm, because it becomes zero for all constant functions. Holder
functions are necessarily continuous since we can bound the di erg¢ficgs fij » f%jhj .
The seminorm on ed. (3.1) can be turned into a norm in two di erent inequivalent ways: one can
considerkfk = jfpj + »f ¥4 or the spacéfJ =C sR=ff 2C : fg=0g We will also denote
by CP the space of continuous functions.

Proposition 3.1.1.Let0 < < 1. The Holder spac€ is an algebra under pointwise product.

Proof. Let f;g2 C . Then

i fs0s) Jotfe o)+ jfslar 0<%
1k gky »fVa+ kfky »g¥°)t g
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whencefg 2 C and»fg¥s k gk »f %+ kf kg »g¥%a.

Since we will be working on a compact interval we have the following

Proposition 3.1.2. Thereis aninclusio€! C C CYif0< < < 1. Moreover, this
inclusion is continuous, that is, the canonical magC ! C is continuous.

Proof. The inclusionC C° was shown in the previous paragraph. A simple computation
givesthatif0< < < 1then»f¥% T  »f%. Inparticular the inclusionmap: C ! C
isboundedantt k T . Moreover, iff 2 C! then its derivative is bounded and so by the
Mean Value Theoremf¥s T kf% .

It should be noted however that in general these inclusions are strict. As an example take
V = R and consider the functioff =t whichisinC since the inequalitjt+s® t +s
holds for alls;t 2 0;T¥and 2 10;1°. Thereforejfi fsj jt s andsoxf¥ 1. Butif
> thenjt‘(—tj =t isunbounded sd cannot lie inC . The same example shows that the
inclusion of Ct into C is strict for any 2 10;1°sincef®!' 1 whent! 0. Taking

1

f =
"7 log 21

with fo = 0 shows that the inclusio@ C is strict. In fact, if f were inC for some 2 10;1°
then we would have that
Ct logit® 1

for some positive constaf > 0 and allt 2 »0; 1+ 2%which is impossible since log't®! 0as
t! 0.
3.1.1 Finite increments

These de nitions can be extended to functions depending on more than one variable by introducing
suitable nite increments. We denote B the space of continuous functions frofyT¥% to

V such thatf;,...;, = Owhenevet; = tj+1 forsomej = 1;:::;k 1. Foreactkk 1denean
operator i : Cx! Cyg+1 by

k ft1;:::1k+1 B ! 1Ok+j ft N T DO (3-2)
wheref} means the argument is omited. In particular we have thiat = f; fsand

ofsut= st fsu  fut:
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It can be shown [50] that

1 2

0! R! Cy!* Cyt?cy’®

Is anacyclic cochain complex This means that for ak 1 one hasy+1 « = 0 and
ker x+1 = kCk. Concretely, each timec.1f = O we can nd a functiong 2 Cy such that

f = «g. From now on, we set e
C = Ck
k 1

and by a slight abuse of notation we obtain an operatoc€ ! C suchthat? = 0.

Given > 0, andF in C, de ne

kFk = sup JFsd
152015 U S

LetC, C;denote the space of functions such tkiek < 1. Also, let

1)
C3'= Cy
>1
Given ; > OandF 2 Czde ne
kFk. = sup - Foud _
wsurenTa U St U
and nO o) 0
KFk =inf  kGk, ,:F= G;0< ;<

LetC, Csdenote the space of functions such tkek < 1 and set

1+ Z
Cy = Cj
>1

We will also need to consider the spac3, = C,\ ker andZC3* = C3*\ ker .

The following result by M. Gubinelli is of central importance to the theory of branched rough

paths.

Theorem 3.1.3(Sewing Lemma, [51]) There exists a unique linear map: ZC3" ! CJ* such
that = id. Moreover, its restriction tZC, satis es the bound

1
1 2

k Fk kFk :
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In the casé/ is also an algebra, given a continuous functioandF;G 2 C, we de ne new
functionsfF 2 C,, FG 2 CzandF G 2 C, by

Y%t = fsFst  'FG%ut= FsuGus *F GO%t = FstGst:
It is easy to see that the following relations
ffFoe=f F t fOF (3.3)
and
IF G°=1 F° 1 G°+1Fe+eF G+ F 1Ge+eG+FG+GF (3.4)

hold, wheree 2 C; is the function given by = 1 for all 1s;t° 2 »0; T%. The spac€; is an
algebra under theproduct with unite.

3.2 Wavelets

Let L2 denote the space of functiofis: R ! C such that 7! j f1x°? is integrable with respect
to dx. The standard Fourier transfoffn : L2 ! L2 given by

1
1

I foi1 0B fixoe 2 X dx (3.5)
1

describes the global frequency content of the functib2 L2. This information can sometimes
be used to describe the global oscillatory behaviour of a given function but it is too sensitive
to discontinuities as the ltering functione 2 ¥ is spread out over the whole real line. In
other words, a change in local behaviourfotthink of a jump discontinuity at a given point, for
example translates into a modi cation of the whole spectrum content represented by its Fourier
transformF f; moreover, given this frequency representation it is in general hard to pinpoint
where such events occur as the exponential kernel appearing jn €q. (3.5) is not well localised in
space. One way to attempt to solve this problem is to introdwa@dowedFourier transform. A
window functionw : R! R is, roughly, a compactly supported and smooth function. Spatial
localisation can then be achieved by rst windowing the functfoand then taking the standard

Fourier transform, i.e.

1
1

1E,, fou: x°B fiyowty x% 2 V' dy: (3.6)
1

Observe that thisvindowed Fourier transforndepends on two parameters, where the extra
parametex 2 R now describes the centre of the spatial localisation. We remark that here the
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ltering function y 7! wty x% 2 ¥ is now well localised in space and in frequency. Under
suitable assumptions on the window function, it can be shown that the coe cients ej. (3.6) are

enough to characterise (and reconstruct) the original fundtiby means of the formula

1
1

fixo = %0 lef°1!; X°e2 ix! Jr-:
1

In fact, only a countable number of such coe cients are actually needed; these coe cients

correspond to discrete translate of the Iter by some xed> 0 and frequency o:

1
1

ikt OB 1Ry foinxg k! = flyogly nxfe 2 V'ody:
1

It turns out that there is another, related, type of transform, calledévelet transform
Givenafunction :R! R called themother waveletwhose precise properties will be detailed
down below anda;b 2 R with a, Olet

1
1

1
W %%, b°B p— f1xo°

laj 1

X b

dx (3.7)

be thecontinuous wavelet transforof f 2 L2. Note the resemblance with the windowed Fourier
transform eq.6). Loosely speaking, we require that the functiéfis® = jaj 112 1X.bo

be well localised in time and frequency, as for the Fourier transform. Then, €. (3.7) provides
another time-frequency description of a functib2 L2. The rst parameter is related to scale ,

I.e. frequency localisation aralis simply is a time shift in order to change localisation in time.
An example of an admissible wavelet function is Mexican hat function t°= 11 x%% x22,

other, more interesting examples will be examined in what follows.

One of the main di erences between €g. (3.6) andfeq] (3.7) is that the window size in the
windowed Fourier transform is the same regardless of its frequency localisation whereas the
wavelets 2P have their window sizes adapted to the frequency localisation. This allows for
wavelets to better describe the behaviourf ait small scales; we will see that this translates
into a better ability to describe function and distributions spaces than what can be done with the
Fourier transform.

In this context there is also an inversion formula,

1 1
1 1

f=c!? Law foig be 2P dadb: (3.8)
1 1 a2

where the normalising constant
1
C = ' wdl
1 1
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Is assumed to be nite. If the mother waveletis integrable, thel© can be nite only if
IF 20° =0, i.e. if = 0. One can also set up a discrete wavelet transform obtained by
considering translates and scaling by xagl> 1 andby > 1, i.e.

X0 B ag’ tafx kb (3.9)

for n;k 2 Z. Unfortunately, since there is some redundancy in the wavelet coe cients

1
1

hf; nki B . fIx° pixldx (3.10)
in general there is no inversion formula just like e@. (8.8). This inversion problem is related
to the fact that the x should form an orthonormal basis bf, which may not be true for
an arbitrary choice of andag;bg. The choice of mother wavelet is only constrained by
the fact that the normalising constadt appearing in eq[ (3.8) should be nite. For reasons
made clear in the above paragraphs, however, we also require thatell concentrated in
time and in frequency. It turns out that for some special choices af andbg, the collection
1 .k : Nk 2 Z°forms an orthonormal basis of.

3.2.1 Multiresolution analysis

One of the principal examples of such a special choice is the Haar wavelet basis, de ned in 1910
by A. Haar [53]. The mother wavelet is the step function

él 0 x<%

Xe=_1 3 x<UI (3.11)

_EO otherwise

Even though this function is not very well localised, its translates and scalings do form an
orthonormal basis of 2, see|[32] for a proof. In the proof, one builds the sequence of subspaces
Vj, consisting of functions irh_c2 which are constant in each interv@l'k; 2"k + 1°°. This nested

sequence Vi Wy Wi L2 is such that
g
Vo= L2
n2Z
and U
Vh = f0g:
n2Z

Moreover, they satisfy 2 V;, if and only if f12"° 2\pandf 2 \pifand only if f1  k° 2\
for all k;n 2 Z. Also, the function' such that 1x°=1if 0 x < 1 andO else is such that
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11 kO:k2Z°is a Schauder basis fof.

De nition 3.2.1. A sequence of subspacd® : n 2 Z°of L2 such that

1. Vi W Vi :
2. a
Vo= LE
n2z
3 U
Vh = f0g
n2Z

4. f 2V,ifandonlyiff12"° 2\ foralln2 Z,

(62}

. f2Vifandonlyifft k°2\yforall k2 Z, and

(o2}

. thereis 2\psuchthat'l k°:k 2 Z°is a Schauder basis faf

Is called amultiresolution analysisThe functiorl appearing in 6. is called thecaling function
of the multiresolution analysis.

We remark right away that the scaling condition 4. together with 6. implies that for each
n 2 Z the functions ,4t° = 2n2+ 19Nt ko k 2 Z for an orthonormal (Schauder) basis for
Vh. In particular, observe that the functiong,*x® = pi' 12x kO k 2 Z spanV; by 4. and 6.
above, and sincey V; by 1. then there are coe cients i : k 2 Z° such that

~

O
'1y0 = kl 12x  ko:
k2z
It turns out that setting &
0B 1 1% g 12x kO
k2z

and nx°B 2 ™2 12 "x  Kkothen! .y : k 2 Z°spans the orthogonal complem&tt of V,

|n Vn 1-

Proposition 3.2.2.Let1V, :2 Z° be a multiresolution analysis. Then there exists an associated
orthonormal wavelet basis i : Nk 2 Z° of L§ such that, ifP, denotes the projection onig,
then o)

Pn+]_ = Pn + h, n;ki n;k: (312)
k2z
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A simple consequence of 2. in de nitign 3.2.1 is that the projectiBnk converge tof in L2
asn!1l . Then, eq.[(3.72) implies that the decomposition

~ ~ ~

@) Q@ O
k2z n=0 k2Z

also holds inL2. Depending on the regularity properties of the mother wavelet, a multiresolution
analysis can be used to describe and characterise functional and distributional classes other than
L2.

3.2.2 Function spaces

One of the main tools of the preceding work has been the Fourier transform. We now present
the Schwartz space of rapidly decreasing functions, which is specially adapted to this kind of
transformation. Givem; k 2 N and a smooth functioi : R! Clet

kfkok B supjxkf1x0] (3.14)
t2R

The linear spac& composed of all smooth functions such thdik,x < 1 for alln;k 2 N is
known as theschwartz spac honour of L. Schwartz who de ned them for the rst time [108].

We observe that the classical sp&le of smooth functions with compact support also known

as test functions is included i8, and if 2 Sthen!l+ x2° 1x°is bounded and so
1 1
1 1
j X°Pdx supjil+ x20 1x0jP

2dx<1
1 x2R 1 1+x

forall1 p 1 ,hencewe havetheinclusioBé S LP. Astandard result then implies
that the Schwartz space is densé_tin the L norm, for allp 2 »1;1Y4

The standard topology o8 is given by the family of norms de ned in ed. (3]14). This
topology is induced by the metric

R

2 1 n+k° K K’];k

1- 07
; 7! T+ k ke

nk O

and S becomes a complete metric space. Its topological 8athe space ofempered
distributions consists of all linear functionals: S! C continuous with respect to the above
topology. Given 2 S, the linear functional : S! C given by

1
1

HT: i B 1x0 1xodx
1

is continuous in the topology @ by a standard argument. Moreover, it is an injection since
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if T =0thenhl ; i =Kk kfz = Owhence = 0. We therefore have a continuous injection
S S0 Infact, since the inclusioB LP is also continuous for ap 2 »1; 1%andS is dense
in LP, in a similar way we have th&, LP)! Sforalll p 1 .

The main feature of the Schwartz space is that it bears a close relation to the Fourier transform.

Theorem 3.2.3.The Fourier transform is a continuous automorphisnsof

Proof. The result is standard but we provide a (partial) proof nonetheless for the sake of

completeness, and because it introduces two useful properties of the Fourier transform. Let
2 S. We rst observe from the de nition that all the derivatives ofas well as its product by

any polynomial still belong t&. Next, let! 2 R; for anyh 2 R we then have

1
1

F 1l +h° F 1l 0= 10 2 X! g 2ixh 1 gy

1 1
1

= 2ih  x 1x%e 2™ dx+ otho:
1
sincex 7! x" 1x°is a Schwartz function in particular it is integrable for all 2 N. Therefore,
we obtain the formula q
d—IF = 2 iFx ¢ (3.15)

valid for all 2 S. lterating eq.[(3.1l5) we obtain the formula

dn

GRF =t 2 F N (3.16)

foralln 2 N. In particularF 2 C! forany 2S.

Now we have to evaluate the behaviour of the Fourier transform at in nity. For this, observe
that

=

1
IF 11 0= 1 @ 21X 1500y
1 1 1
1 109 g 21 gy
21 1 dx
i

F1 Q)1!o

1
2
after integrating by parts and using the behaviour at in nity. We have shown that

F1Oyo=2jlF 1o (3.17)

and therefore
F1 o1 0=19 j| O"F 1] 0 (3.18)

is valid for alln 2 N.
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Next, if is any Schwartz function then

1
1

JE 19 . ] X%dx<1

so in particulaiF  is bounded. This fact, together with formul@s16)and(3.18)imply that
! "d‘!’nn F is bounded for alk;n 2 N, thatis,F 2 Swhenever 2 S.

Continuity is implied by the fact that if, ! in S, in particular ! uniformly. A
proof of the invertibility ofF can be found in [108].

The continuity of this transformations allows to extéhdo S°. Indeed, if 2 SPis atempered
distribution, thertF ; i = h; F i uniquely de nes the tempered distributién 2 S°.

Other classes of interesting subspaceSare theBesov spaceBg, for s2 R, p;q 2 50; 1%
(although we will only be interested in the cases whge2 11;1°° . These spaces admit various
equivalent, of course de nitions, but essentially they capture the local behaviour (regularity,
integrability) of its members, see for example [L17] for a precise de nition in these terms. The
rst parameters 2 R is closely related to smoothness in the fashion of the Holder sfgaces
the smoothness parameter in the Sobolev spA@esT he second parametér p 1 describes
integrability, and plays basically the same role as in the Sobolev spéded-inally, the third
paramete® q 1 corresponds to approximation and, in essence, describes the growth of the
coe cients of an approximating function series; c.f. the coe cients of the Fourier series of an
L2 function are in' 2. In fact, the Besov spaces contain bGth andWFS, as special cases, hence
they provide a ner way to analyse functions on the real line.

For our purposes it will enough to character% in terms of discrete wavelet expansians
la eq. [3.1B), as is done in [90]. See also|[61]. Let © be the scaling function and the mother
wavelet associated to the Daubechies orthonormnagjular multresolution analysis, i.e.is of
classC" with compact support. Recall that we denote= * k°and py = 2™2 12"  Kk°
fork;n2 Z.

De nition 3.2.4. Letl p;g 1 andjsj<r. The Besov spa@;q is the space of distributions
2 SPsuch that

e) ! lep & . d ! gep 1eq
k kBrS);q B Jh, kljp + 211q5+q.2 qep° Jh, n’k”p <1 (319)
k2z =0 k2z

with the usual modi cations whepg=1.

It can be shown that eadd}, is a Banach space, fsr2 Randl p;q 1 . Moreover, the
following equalities hold:Bf ; = C®for 0 < s< 1andBg;, = WP for s > 0 not an integer.
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Chapter 4

Hopf-algebraic deformations of products

4.1 Introduction

Chaos expansions and Wick products have notoriously been thought of as key steps in the
renormalisation process in perturbative quantum eld theory (QFT). The technical reason for
this is that they allow to remove contributions to amplitudes (say, probability transitions between
two physical states) that come from so-called diagonal terms from which divergences in the
calculation of those amplitudes may originate. Rota and Wallstrom [107] addressed these issues
from a strictly combinatorial point of view using, in particular, the structure of the lattice of set
partitions. These are the same techniques that are currently used intensively in the approach by
Peccati and Taqqu in the context of Wiener chaos and related phenomena. We refer to their book
[100] for a detailed study and the classical results on the subject, as well as for a comprehensive
bibliography and historical survey.

Recently, the interest in the ne structure of cumulants and Wick products for non-Gaussian
variables has been revived, since they both play important roles in M. Hairer's theory of regularity
structures|[56]. See, for instance, references [20, 59]. The progress in these works relies
essentially on describing the underlying algebraic structures in a transparent way. Indeed, the
combinatorial complexity of the corresponding renormalisation process requires the introduction
of group-theoretical methods such as, for instance, renormalisation group actions and comodule
Hopf algebra structures [15]. Another reference of interest on generalised Wick polynomials in
view of the forthcoming developments is the recent paper [82].

Starting from these remarks, in this chapter we shall discuss algebraic constructions related
to moment cumulant relations as well as Wick products, using Hopf algebra techniques. A
key observation, that seems to be new in spite of being elementary and powerful, relates to the
interpretation of multivariate moments of a family of random variables as a linear form on a
suitable Hopf algebra. It turns out that the operation of convolution with this linear form happens
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to encode much of the theory of Wick products and polynomials. On the one hand, this approach
enlightens the classical theory, as various structure theorems in the theory of chaos expansions
follow immediately from elementary Hopf algebraic constructions, and therefore are given by the
latter a group-theoretical meaning. Our methods should be compared with the combinatorial
approach in[[100]. On the other hand, we show a natural relation with the results and techniques
that have been developed in the theory of regularity structures.

Our approach has been partially motivated by similarities with methods that have been
developed for bosonic and fermionic Fock spaces by C. Brouder ét al. [11, 12] to deal with
interacting elds and non-trivial vacua in perturbative QFT. This is not surprising since, whereas
the combinatorics of Gaussian families is re ected in the computation of averages of creation
and annihilation operators over the vacuum in QFT, combinatorial properties of non-Gaussian
families correspond instead to averages over non-trivial vacua.

The main idea of this chapter is that the coproduct of a bialgebra allows to deform the product
and that this permits to encode interesting constructions such as generalised Wick polynomials. In
the last sections of this paper, we show how the above ideas can be used in more general contexts,
which include regularity structures. Regarding the latter, we mention that these ideas have been
used and greatly expanded in a series of recent papers [15, 20, 56] on renormalisation of regularity
structures. These papers handle productamfilomdistributions which can be ill-de ned and
need to beenormalised The procedure is rather delicate since the renormalisation, which we
rather calldeformationin this paper, must preserve other algebraic and analytical structures.
Without explaining in detail the rather complex constructions appearing in [15, 20, 56], we
describe how one can formalise this deformed (renormalised) product of distributions by means
of a comodule structure.

4.1.1 Generalised Wick polynomials

The main results of the rst part of this chapter (Theorems 4.5.1 and|4.5.4) are multivariate
generalisations of the following statements for single real-valued random vaKahbii nite
moments of all orders.

We denote byH B R>x%the algebra of polynomials in the variabteendowed with the
standard product
x" xmB xm™m (4.1)

forn;m 0. We equipH with the cocommutative coproduct: H! H H de ned by

x" B . X" K xk: (4.2)

62



Product eq.[(4]1) and coproduct eq. [4.2) together de ne a connected graded commutative
bialgebra, and therefore a Hopf algebratbnOn the dual space a dual product? 2 H
can be de ned in terms of ed. (4.2)

19 01XnoB 1 0 Xn.

for ; 2 H . This product is commutative and associative, and the spadéB f 2 H
11° = 1gforms a group for this multiplication law.

Given a real-valued random variab¥ewith all moments nite, we de ne the functional
2 H givenby x™B ,=E!X" Then 2 G!H°and therefore its inverse ! in GHCis
well de ned.

Theorem 4.1.1(Wick polynomials) WedeneW B 1?id:H! H,i.e., the linear operator

such that ~
O n
wixle=1 1 jdo x"= liyn ko yk (4.3)

Then

“W:H! Histhe only linear operator such that

wite = 1; di wW=Ww di; WixMe = ; (4.4)

foralln 1.

"W:H! Histhe onlylinear operator such that forall 0

O n
x"=1  We x"= K 1" koyyiyko:
k=0

We callWix" 2 H the Wick polynomial of degrea associated to the law of. If X
is a standard Gaussian random variable then the recurrenge éq. (4.4) showsxtlas the
Hermite polynomiaH,. Therefore eq[(4]3) gives an explicit formula for such generalised Wick
polynomials in terms of the inverse ! of the linear functional in the groupGH®.

The Wick polynomialW permits to de ne adeformationof the Hopf algebrad.

Theorem 4.1.2.The linear operatoW : H! H has aninvers&V X : H! H given by
W 1= 2 id. Ifwe de ne fornm O the product

X" xMB Wiw lixno \y liymoo,

and de ne similarly a twisted coproduct , thenH endowed with , and" B isa
bicommutative Hopf algebra. The map becomes an isomorphism of Hopf algebras. In
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particular
WixMmt ko = \p1yxMo  \p\/1y"20 WixMko:

forall ny;:::;ng 2 N.

Furthermore, we present Hopf-algebraic versions of classical multivariate formulae on
relations between moments and cumulants.

We recall that in the case of a single random variableith nite moments of all orders,
the sequenck \°, ¢ of cumulants ofX is de ned by the following formal power series relation
between exponential generating functions

O tn O tn
exp —~ n = L (4.5)
no "’ no "’
wheret is a formal variable and,, = E1X"° is thenth-order moment oK. Note that ¢ = 1 and
o = 0. Equation eq/(4]5) is equivalent to the classical recursion
@)
n 1
n= m 1 ™" m: (4.6)
m=1
In fact, equation eq[ (4.5) together with €[g. {4.6) provide the de nition of the classical Bell
polynomials, which, in turn, are closely related to the Faa di Bruno formula [105].

Then we show multivariate generalisation of the following formulae

Theorem 4.1.3.Setting; 2H, *x™B jand :x"B ,n 0, we have the relations

, © 1,
—explo="+ o an. 4.7)
ni "
5 (3 1 qon 1 5
=log’t °= - 1 "o/n. (4.8)

nl

where"1xko B 11k = Q°.

The above formulae eq. (4.7) and €q. [4.8) are Hopf-algebraic interpretations of the classical
Leonov Shiryaev relation§/8], see eq[(4.10) and ef]. (4/11) below.

4.1.2 Deformation of products

Theoren| 4.1]2 above introduces the idea of a deformed produtta polynomial algebra.
This idea is used in a very important way in the recent theory of regularity structures [15, 20,
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56], which is based oproducts of random distributionge. of generalised functions drf.

Such products are in fact ill-de ned and need torerormalisecithis operation corresponds
algebraically to a deformation of the standard pointwise product, and is achieved through a
comodule structure which extends the coproduct|eg} (4.2) to a much larger class of generalised
monomials.

In the last sections the notion of a deformed product is extended to more general comodules
and we discuss one important and instructive example, the space of decorated rooted trees
endowed with the extraction-contraction operator. This setting is relevant for branched rough
paths|[51], and constitutes a rst step towards the more complex framework of regularity structures
[15].

4.1.3 Overview

In Sectiorj 4.2 a brief review classical multivariate moment cumulants relations is given. Section
[4.3 provides an interpretation of these relations in a Hopf-algebraic context. In Secfion 4.4 the
previous approach to generalised Wick polynomials is extended. Sgctjon 4.5 is devoted to Hopf
algebra deformations, which are applied to Wick polynomials in Seftign 4.6. In Sgctjon 4.7
still another interpretation of Wick polynomials in terms of a suitable comodule structure is
introduced. Section 4.8 explains the deformation of the pointwise product on functions. Section
[4.9 addresses the problem of extending these results to Hopf algebras of non-planar decorated
rooted trees replacing monomials.

For convenience and in view of applications to scalar real-valued random variables, we x the
eld of real numbersR as ground eld. Notice however that algebraic results and constructions
in this chapter depend only on the ground eld being of characteristic zero.

This chapter is based on the preprint|[39].

4.2 Joint cumulants and moments

We start by brie y reviewing classical multivariate moment cumulant relations. Given an index
setA, we denote by 1A° the set of all nitely supported functions: A! N. For 2 M 1A°

we denote bysupp =fa2 A: 5, Ogits support. Observe that Ais itself nite, thenM 1A°
coincides with the sell” of all N-valued functions orA.

The setM 1A° is a poset under pointwise majoration, i.e. we say that if and only
if a a for all a 2 A. Moreover, it is an abelian semigroup under pointwise adition
1+ 9% = 4+ 4 Infact, itis the free commutative semigroup generated by the indicator
functions of the one-element sdtsgfor a 2 A.
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Suppose we are given a collecti®n= 1x, : a 2 A° of commuting variables. We de ne the
powersx’ B 1 and &

We also de ne, for; 2 M 1A% with ,

and more in general we let

if L:::; P2MiAaresuchthat = 1+ + P and zero otherwise. Note that for a given
2 M tA°there is only a nite number of elements M 1 A° satisfying this condition. Finally,
for 2 MIA°we let o)
jiB a<l:
a2A

4.2.1 Cumulants

If we have a nite family of random variables<,: a 2 A° such thatXy has nite moments of all
orders for everya 2 A, then the analogue of the exponential formula (4.5) holds

0 o
t a t
exp© — ®= -~ (4.9)
«2MI L 2Mip

This de nes in a unigue way the family ; 2 M1A% of joint cumulants otXy;a 2 A° once the
family of corresponding joint moments ;2 M1A%is given. When it is necessary to specify
the dependence of on1X;: a 2 A°we shall write 1X°, and similarly for

Identifying a subseB A with its indicator functionlg 2 f0;1g"® M LA°, we can use the
notation g and g for the corresponding joint cumulants and moments. The fantilig8  A°
and! g;B  A°satisfy the so-calledeonov Shiryaev relation§/8,(110]

o O

B = c (4.10)
B1ec2 5

B = jj ot @it g (4.11)
2P 1Be Cc2

where we writeP 1B for the set of all set partitions d8, namely, all collections of subsets
(blocks) of B such thaf c» C = B and elements of are pairwise disjoint; moreoverj denotes
the number of blocks of, which is nite sinceB is nite. Formulae(@.10)and(4.11)have been
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intensively studied from a combinatorial perspective, see, £.g., [100, Chapter 2]. Regarding the
properties of cumulants we refer the readef to [110].

Formula{4.10) has in fact been adopted, for instance, in [59] as a recursive de nition for
1 g;B  AC. This approach does indeed determine the cumulants uniquely by induction over the
cardinalityjBj of the nite setB. This follows from the right-hand side containing, which
is what we want to de ne, as well ag for someC with jCj < jBj, which have been already
de ned in lower order.

Although this recursive approach seems less general than the one via exponential generating
functions as in eq.9), since it forces to consider onlg fO;1g”, it turns out that they
are equivalent. Indeed, replacid¥,: a 2 A° with Yy: b 2 A N° whereY, B X, for
b=1a k2 A N,thenfor 2 M 1A°we have

1X°= glyeo B=flak’:a2 A1 Kk ad:

Now we show that the Leonov Shiryaev relations egs. (#.10) and4.11) have an elegant
Hopf-algebraic interpretation which also extends to Wick polynomials. Notice that a di erent
algebraic interpretation of eq$. (4]10) ahd (4.11) has been given in terms of Mdbius calculus
[100, 110]. Moreover, the idea of writing moment cumulant relations in terms of convolution
products is closely related to Rota's Umbral calcujus [71, 106].

4.3 From cumulants to Hopf algebras

In this section we explain how classical moment cumulant relations can be encoded using Hopf
algebra techniques. These results may be folklore among followers of Rota's combinatorial
approach to probability, and, as we already alluded at, there exist actually in the literature already
various other algebraic descriptions of moment cumulant relations (via generating series as well
as more sophisticated approaches in terms of umbral calculus, tensor algebras and set partitions).
Our approach is most suited regarding our later applications, i.e., the Hopf algebraic study of
Wick products. Since these ideas do not seem to be well-known to probabilists, we believe that
they deserve a detailed presentation.

4.3.1 Moment cumulant relations via multisets
Throughout the chapter we consider a xed collection of real-valued random variag@lea 2 A°
de ned on a common probability spaée; F;P° for an index sefA. We suppose thaX; has

nite moments of all orders for everg 2 A. Consider a collectioX = 1x,: a 2 A° of variables
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and letH B R»X¥be the commutative polynomial Hopf algebra described in Seftign 2.2

De nition 4.3.1. For every 2 M!A° we de ne the cumularE1X °inductively ovel j by
E:1Xo° = 0and else

di, O )

ElIX °= — EclX o (4.12)
n! L.::yn

n=1 L NOM1AC ! ’ i=1
Remark4.3.2 If 2 MtA°\f 0;1¢", then eq.[(4.12) reduces to the rst Leonov Shiryaev
relation eq.[(4.10), since on the right-hand side ofleq. {4.32)::; " 2 M1ACare also irf 0, 1g*
and in particular the binomial coe cient (when non-zero) is equal to 1. 4

As we will show in eq.[(4.14) below, expressi¢h1?)is equivalent to the usual formal
power series de nition of cumulants (whose exponential generating series is the logarithm of
the exponential generating series of moments). As for eq.|(4.10), exprg¢ési@hdoes indeed
determine the cumulants uniquely by induction ovgr This is because the right-hand side only
involvesE1X ©°, which is what we want to de ne, as well &X °for some withj j<]j j,
which is already de ned by the inductive hypothesis. De ne two linear functionalslon

H! R  H!I' R

4.13
X 7! 1x3B EIX © X 7! X °B EX S ( )

with 11°B land '1°B 0.

4.3.2 Exponential generating functions

Letus xa nite subsetS= fay;:::;a,g A For 2 M!S we set

&
t B 10w
i=1

wheret = 1;: i = 1;:::;p® are commuting variables. Then we de ne the exponential generating
function of 2 H as the formal series

@)
t
1,3 B - 1 02 RydYia
M
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Then from de nition[4.3.1 we get the usual exponential relation between the exponential moment
and cumulant generating functions ofind , analogous to eqg. (4.5) arnd (4.9):

O
1t1s)= _I 1 0
2M1
o] o) o) o
= i i t : 1 lo
n! L
n 0 2M1IS L N2V ,I ! i=1
®) 9) 6] i : (4.14)
= i t_ 1 o
no nt Lo n2MLISR i=1 !
~ ~ n
O 100

a
- - ' ®=exp ;5%
no v

—

From eq.[(4.14) we obtain another recursive relation between moments and cumulants. We have

IX X0 = Lo, XXt % (4.15)
1. 22M10 !

This recursion is the multivariate analogue of the one in[eg} (4.6).

4.3.3 Moment cumulant relations and Hopf algebras

Recall thatH is a graded connected Hopf algebra with product induced by the semigroup structure
onM1A°hyx x =x " .Thecoproduct :H! H H can be equally described as

(@}

X = Lo X X (4.16)

+

P

It is the unique algebra map such that the variallesre primitive. The counit is de ned by
H: x i =1 =.

Wedenote °Bid:H! H, 1B :H! H H,andforn 2
nB1 o "l:Hg1 H'M:

Proposition 4.3.3. We have

—expto="+ = M (4.17)
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Proof. By the de nitions of and "we nd that

n I"I]_A: O A o 1 .0

Bi::::Bn2M 1A 1---n

and, by eq.[(4.72), this yields the result.

Remark4.3.4 Formula eq.[(4.17) is the Hopf-algebraic analogue of the rst Leonov Shiryaev
relation eq.[(4.7)0). 4

Since e®= 0, " " 11A° vanishes whenevg\j > n. Similarly, under the same
assumptiont "9’ A0 = Q. It follows that one can handle formal series identities such as
log’lexp’t ®°= orexp’llog’t = without facing convergence issues. In particular

Proposition 4.3.5. We have

5 6 1 qon 1 5
=log’t °= 1 worh (4.18)
ni n

From Proposition 4.3]5 we obtain the formula

~

O 1 1on 1 (3 O‘
EclX °=

EiX i° (4.19)
n 1 n 150 n2M1AC 1---n
which may be considered the inverse to €q. (¢.12).

Remark4.3.6 The formula(4.18)is the Hopf-algebraic analogue of the second Leonov Shiryaev
relation eq.l). Moreover, for 2 M1A°\ f 0:1g”, then eq.9) also reduces to the second
Leonov Shiryaev relation eq[ (4.11), since on the right-hand side of €q.[(4419):; n2 M1A°
are also irf0; 1g. 4

4.3.4 A sub-coalgebra

If one prefers to work in the combinatorial framework of the Leonov Shiryaev formulag¢ eq] (4.10)-
eq. [4.11) rather than with eq. (4]12)-€q. (4.19), then one may consider the linear sptue
setfx : 2 MIA°\f 0;1g”g namely all monomials where the partial degree of each variable
IS at most one.

ThenJ is a linear subspace &f, which isnota sub-algebra dfl for the product, since for
example any single variablg 2 J butx; X5 = xg < J. The coproduct de ned in eq. (4.15)
coacts however nicely ohsince ifx 2 Jthen

~

O
X = 1 22J J:

1t 2=
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Moreover the restriction df to J de nes a counit fotJ; °. Thereforel is a sub-coalgebra d.
With a slight abuse of notation we still wrifefor the dual product od

hf ?2g;x i B hf g; xi;
forx 2 Jandf;g2J . If we denote as before

J!I' R J!I R
X 7' x°B EX?®° X 7' X °B EX S

with 10e°B land ce®B 0, then the Leonov Shiryaev relations efy. (4.10)-¢q. (#.11) can be
rewritten inJ as, respectively,

=exp’t ="+ Lo
n!
nl
and N
(O] 10n 1
— Iog?]_ 0 — 1 ||0?n:

n

n1i

4.4 \Wick Products

The theory of Wick products, as well as the related notion of chaos decomposition, play an
important role in various elds of applied probability. Both have deep structural features in
relation to the ne structure of the algebra of square integrable functions associated to one or
several random variables. The aim of this section and the following ones is to revisit the theory
on Hopf algebraic grounds. The basic observation is that the formula for the Wick product is
closely related to the recursive de nition of antipode in a connected graded Hopf algebra. This
approach seems to be new, also from the point of view of concurring approaches such as umbral
calculus|[71} 106] or set partition combinatoré&c$a Rota Wallstrom [107].

4.4.1 Wick polynomials

We are going to use extensively the notion of Wick polynomials for a collection of (not necessarily
Gaussian) random variables which is de ned as follows.

De nition 4.4.1. Given a collectiortX; : a 2 A° of random variables with nite moments of all
orders, forany 2 M1A°the Wick polynomial X : is a random variable de ned recursively
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by setting: Xp: = 1 and postulating that

O
X = EIX 10X, (4.20)
5 oo2miae 12

As for cumulants, eq[ (4.20) is su cient to de neX : by recursion ovej j. Indeed, the
term with > = s precisely the quantity we want to de ne, and all other terms only involve
Wick polynomials: X :,for 2 M1A°withj j<j j.

It is now clear that formula ed. (4.R0) can be liftedHcas

~

O
X = EX 10:x ,:; (4.21)
b o22mae b2

and written in Hopf algebraic terms as follows
X =172 Wolx ©=1 WO x ; (4.22)

for A2 M1A°. We have se?W : H! H,Wx °B :x : and callW the Wick product map
(see Theorerm 4.5.4 for a justi cation of the terminology). Notice that it depends on the joint
distribution of theXss. Formuld 4.22 is the Hopf algebraic analogue of the de nition of the
Wick polynomial : Xg: used in references [5D, |82]. Moreover, introducing the algebra map
ev:x 7! X fromH tothe algebra of random variables generateédyy. a 2 A°, one gets

by a recursion over jthatevi:x :°=:X : (for that reason, from now on we will call slightly
abusively both: x : and the random variableX : the Wick polynomial associated t0).

4.4.2 A Hopf algebraic construction

We want to present now a closed Hopf algebraic formula for the Wick polynomials introduced in
De nition #.4.7. We de ne the seG'H°B f 2 H : 11°= 1g Then itis well known that
GtH°is a group for th&-product. Indeed, any 2 GtH° has an inverse ! in GtH° given by

= o (4.23)

As usual, this in nite sum de nes an elementbf since, evaluated on any monomial 2 H, it
reduces to a nite number of terms.

Theorem 4.4.2.Let 2 G'H° be given by *x ° = E!X °andWx ° = :x :, then for all
2 M1AC

x o=t lojdex o=1 1 ojdo x : (4.24)
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Proof. The identity follows from eq[(4.22) and from the associativity of 2heroduct.

From eq.[(4.23) and eq. (4]24) we obtain

Proposition 4.4.3. Wick polynomials have the explicit expansion

O O O
X =X + 10" 1y 10 1x nOx :
n i 2MIA° 1 n2MLAC Lo

4.5 Hopf algebra deformations

The groupGtH°=f 2 H : 11°= 1gequipped with th€ product acts canonically ad by
means ofthemap :H! H

‘1 0B 1 ido x (4.25)

for 2 G!H° and a monomiak 2 H. In other words,’ = ? id = id? , since is
cocommutative. This is a group action since one checks easily using the coassociativibaof

so that in particular

These maps$ , being invertible, allow to de nedeformationsof the standard productin
H, as well as of the coproduct de ned in eq. [(4.15) and of the counit. Namely we de ne
:H H! H, :H! H Hand" by

x x B' 1 ixor 1xo00
x B1r 1 v lor . (4.26)

H :xi BH;" Ix°%=h; xi:

Although" = |, we nd it useful to introduce the notatich to feature the new role of as a
counit.

Notice that, as; 1i =1, we have 11°=landx 1= x . Dually,

Mo jde Ix o=1" ' 40 " Ix O=x:

Then we have
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Theorem 4.5.1.Forany 2 G'H¢, the quintupléH; ;1, ;" °de nes a Hopf algebra. The
map
B HEELE A & E

Is an isomorphism of Hopf algebras.

Proof. Although the Theorem follows directly from the properties of conjugacy, we detail the
proof. Associativity of and coassociativity of follow directly. First,

1X X (0] X = ' 11' 1X o ! 1X o ! 1X 00 — X lX X 0;

which shows associativity. Coassociativity is simple to see as well

1 ide x =+ 1 1 + log ide ' x
—1 1 1 1olid o'y
= 1id ° X :

We check now the compatibility relation betweerand

1 yxo0 1 o—1 1 + lo 1 oy 1 oy
=1 1 v 1o ¢ X0 1' xo
- 1! 1 1 lo 1 X 1 X
= x x°
Finally, we check that 1:H; ;1 :"°!® H; :1. ;" °is a bialgebra morphism:
vliy xo=r liyo  hiyo
o1 v 1o X = 1 lX
We have proved until now that 1 is a isomorphism of bialgebras. Sindé; ;1; ;" °isa

graded connected bialgebra, it has an antipode. Since moreover the antipode of a Hopf algebra is
unique, we obtain that * preserves the antipode as well.

Remark4.5.2 The construction of eqd. (4.26) and Theorlem 4.5.1 works also if we replasdth
any linear invertible map : H! H such that 1° = 1. Indeed, in the above considerations we
have never used the formula €q. (4.25) which de hes 4

Remark4.5.3 There is nothing particular about the structuretbfused in the proof of
Theoren{ 4.5]1, so the same proof works more generally for any Hopf algtlral linear
invertible map' : H! H preserving the unit. 4
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In the particular case of = , where is the moment functional de ned in eq. (4]13), we
obtain by Theorer 4.4.2 and Theorem 4.5.1:

Theorem 4.5.4.The Wick product mapVix © = :x : is equal to' i. ThereforeW :
H;;1, ;"°!* H; ;1; ;" °isaHopfalgebraisomorphism, in particular

for all monomialsx ;x 2 H.

More generally, we obtain for anys;:::; , 2 M*A° that
X tox o =ox ot TX N (4.27)
We notice at last an interesting additional result expressing abstractly compatibility relations
between the two Hopf algebra structurestbrisee also Propositign 4.7.3 below). We recall

that a linear spac# is a left comodule over the coalgebid; ;"° if there is linear map
:M! H M such that

L idy® =tdy ©; M"idpy® =idw: (4.28)
A left comodule endomorphism &fl is then a linearmap : M! M such that
f=1lidy f°:
In particular the coalgebrfdd; ;"°is a left comodule over itself, with =

Proposition 4.5.5. If we consideH as a left comodule over itself, thén is a left comodule
morphism for all linear : H! R, namely

©oztd oo (4.29)

In particular the Wick product may is a left comodule endomorphismisf; ;"°.

Proof. We have
o=t id id°id ©
=1 id idot id°
= 1d idot id°
= 1jd idotid  ©
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where we have used, in this order, coassociativity, cocommutativity and then coassociativity
again.

4.6 Wick products as Hopf algebra deformations

Leta 2 A. We de ne now the functional, : H! R givenbyh g;x i = lifandonlyifx = Xj.
Then we de ne the operat@®@ : H! Has@B ,?id=" |, inthe notation eq[(4.25), namely

@x =14 id° x:

It is simple to see tha@® acts as a formal partial derivation with respeckipnamely it satis es
for ; 2MA°anda;b2 A

@Xp = Lig=pel; @x X°=@Xx°x +x @x¢

since g satises 311°=0and 'x X %= X °H;x i+ H;X i g'x ° namely 4 is an
in nitesimal character.

Then the following result is a reformulation in our setting|of|[82, Proposition 3.4].

Theorem 4.6.1.The family of polynomials: x :; 2 M!A s the only collection such that
:1: =1andforallnon-null 2 M1A°anda?2 A

@:x :=:@ : and h;:x :i=0: (4.30)

Proof. Since 2 G'H° equation eq[(4.24) implies
h: :x :i=h 2:xi=H:xi:
Using eq.[(4.2P) for = 5 we obtain
@=1td @° :
We conclude from eq[ (4.24) that
@:x : =1,? l72idaxo=1 172 _2idux °=:@x :

by the associativity and commutativity ®f Therefore: x : satis es eq.[(4.30). The converse
follows from the fact that eq[ (4.80) de nes by recurrence a unique family.

76



4.6.1 Back to simple subsets

As in Subsectiof 4.3/4, we can restrict the whole discussion to Wick polynomials associated to
nite sets 2 M1A°\f 0;1g” and their linear spad. Indeed, if 2 Jthen:x : = W!x °also
belongs tal and is de ned by the recursion

~

O
X = EIX 10: X,

1+ 2=
As in Theorenj 4.4]2, we haW/ = 1?idandid= ? W, and, as in Propositidn 4.4.3,

Xyl =X+, ~
O O O

+ 1 1on 14y o+ =0 1y 10 1y nOy
n 1l 2M1A° ;i n2M1AOnfOg

forall 2 MAC\f 0;1g™

However, as we have sees in Secfior) 4.5 above, it is more interesting to work on the bialgebra
H than on the coalgebrd see in particular Theorem 4.5.4.

4.7 On the inverse of unital functionals

As we have seenin Theor4.2, the element2 GtHP plays an important role in the Hopf
algebraic representation ey. (4.24) of Wick products. Fronf eq.|(4.23) we obtain a general way to
compute 1. We discuss now another way to represerit by means of a comodule structure,
which is directly inspired by [15, 20], see Secton 4.10.

Let us consider now a linear functional H! R which is also an unital algebra morphism
(or characte), namely such thatlce®= 1and 1x * ©= 1x © ix °forall ; 2 MAC. Then
we have a simpler way to compute its inverse: namely as= S, whereS: H! Histhe
antipodeg i.e. the only linear map such that

S?id=id?S=1"

wherel is the unit and' the counit ofH.

However, this does not seem to help in the computation gince moments are notoriously
not multiplicative in general. This problem is circumvented by extending a character*
de ned on a larger Hopf algebtd which is constructed frorii, such that the inversé 1 will
be computed via the antipode 4

De nition 4.7.1. Let H be the free commutative unital algebra (the algebra of polynomials)
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generated byH. We denote by the product in} and we de ne the coproduét: H! ¥ #
givenby™1x °=1  ©° x and

N N AN N
1y 1 x 2 X N0 =17y 10 1 "'y 20 1 XnO;

where : H! His the canonical injection (which we will omit whenever this does not cause
confusion). The unitdff is 1and the counitis de ned bftx 1 x 2 X n0= "1y 10 "1y nO

SinceH is a polynomial algebré is well-de ned by specifying its action on the elements of
M1AC, and requiring it to be multiplicative. It turns the spaéeénto a connected graded Hopf
algebra, where the grading is

jx1t x? X"Bji+j2g+ +j

The antipode5: B! K of ¥ can be computed by recurrence with the classical formula

~

@)
Sx = x Sxt xz
1 22MiAnfog L 2

where we dropped the injectiorior notational convenience. A closed formula #follows

Sx = x + 110 1 2 . (4.31)

We denote byC1H®° the set of characters dff. This is a group for thé convolution, dual to".

Proposition 4.7.2. The restriction mapR : C!H° I G!H°, R" B "ju de nes a group
isomorphism.

Proof. The map is clearly bijective, since a charactetbis uniquely determined by its values
onH, and every 2 GH° gives rise in this way to & 2 C1H° such thaR" =

It remains to show thaR is a group morphism. This follows from
RLAD Mory 0 =1/ Moy :1/]H /\jHo X = 1R"? 1RMo1y o
where & 2 CiH°andx 2 H.
Forall 2 GtH°we call “the only character oi which is mapped to by the isomorphism
R. By the previous proposition we obtain, in particular, th@ 1jy = 1forall 2 GiHe.
Since"is a character o, we havet™ 1= * & Therefore

=17 Goj: (4.32)
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This formula can be used speci cally to compute the inverskof the functional in eq. [4.24).

4.7.1 A comodule structure

The above considerations suggest that we can introduce the following additional structure: if we
dene :H! B H, Bt id ,where :H! Histhe canonical injection of De nition
[4.7.1, therH is turned into deft comoduleover H, namely we have

1 idye =tidy  ©; idy = 1™ idyO° ; (4.33)

see eq.[(4.28) above. Note that ¢g. (#.33) is in fact just the coassociativitgroH in disguise.

Then we can rewrite the Hopf algebraic representation eq.|(4.24) of Wick polynomials as
follows:
X =18 8 jde x (4.34)

for a monomialx 2 H, whereis the -multiplicative extension of from H to H. Expanding
this formula by means of the closed formula $rone recovers, by di erent means, Proposition
4.4.3.

From Proposition 4.5]5 above, we obtain

Proposition 4.7.3.We de ne the action o£*H° onH by
AtHIDOH; Ax 0=1" jdo x ; "2 CiH;
for x 2 H. Then ~is comodule morphism for alt 2 CH°, namely

NS ldy

4.8 Deformation of pointwise multiplication

We show now that the ideas of the previous sections can be generalised and used to de ne
deformations of other products. The main example for us is the pointwise product on functions
f :RY! R, and we explain in the next sections how these ideas appear in regularity structures.

Let us consider the vector spaddreely generated by a family = ;1 2 I°. We denote by
T the free commutative monoid dn with neutral elemente 2T nT. We de ne alsa'C; ;0e°
as the unital free commutative algebra generated;liizenC is the vector space freely generated
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by T and we have a canonical embedding

v,! C:

We suppose thaE is a left-comodule over a Hopf algebté: ;e ";"°, with coaction
:C! C C satisfying the analogue @#.33) We stress that the coactioris not supposed
to be multiplicative with respect to the product inC.

We saythat : ! Risunitalifitis a linear functional such thatlce®= 1. Then we de ne,
as in the previous section,

C! C B1 ide: (4.35)
for every unital : C'! R. Itis easy to see that
0= ? 0

where? is the convolution product with respect to the coproduciC! & €. We then de ne
the product onC as

B » o1 oy - 2(C (4.36)

where 1= i1and 1:C&! Ristheinverse of with respectto thé convolution product.

It is easy to see that the product is associative and commutative, arguing as in the proof of
Theorenj 4.5]1. Since we have not supposed the coactiobe multiplicative with respect to
the productinC, the product isin general di erent from .

De nition 4.8.1. Themap = :is called the generalized Wickproduct map.

We denote byC B C!RY the space of continuous functiofis R4! R, fora xedd 1;
we endowC with the associative commutative produgiven by the pointwise multiplication.
We consider the spacémV; C° andLin'C; C° of linear functionals fronV, respectivelyC, to
C. One can think te.inV; C°as a space af-indexed functions: this is typically what happens in
perturbative expansions indexed by combinatorial objects (sequences, in usual Taylor expansions
or in Lyons' classical theory of geometric rough paths, or more complex objects such as trees
or forests, as in Gubinelli's theory of non-geometric rough paths or in the theory of regularity
structures, for example).

For 2 LintV;C%and 2 LinlC;C°we use the notation

10=h;i2C; 2V,
10=h: i2C; 2C:

80



De nition 4.8.2. For every 2 LinC;C°we denote by the vector space freely generated by
f 1 6 2Tg The canonical map frodd to C is called the evaluation map and is writte.

Notice thatV is not in general embedded @ (the evaluation map is not injective): we view
here the * °as forming a basis of although, as elements Gf they could possibly satisfy
linear relations. One should think of thé °'s asT-indexed functions: the constructions we will
perform on them will depend also on their indexing. To avoid ambiguities, we reserve from now
on the notation * °to denote elements & and the notatiom ; i to denote elements iG.

De nition 4.8.3. We call every 2 LinC;C°ageneralised produanT. If 2 Lin'C;C°is
an algebra unital morphism froAC; °© to1C; °, namely if

h;cei=1; h;: 1 ni=h; 1  h;ogi; (4.37)

for 1;:::;n2T,n 1, then is called acanonical produgtwhere is the pointwise
multiplication onC.

A generalised product is therefore a very general concept since we assume a priori no relation
betweenh ; i andh; % for ; 92 Tand , ©° However we are mainly interested in
deformations of canonical products, see below.

Lemma4.8.4.Forevery 2 Lin'V;C°there exists a unique canonical prodiRt 2 Lin1C;C°
such that
h,;, i=mR; i 8 2T:

Proof. The property[(4.37) allows to construgt uniquely by recursion.

Now we show that a generalised producallows to de ne a genuine commutative and
associative product on the space

De nition 4.8.5. For every 2 Lin'C;C°we de ne the commutative and associative product
M onV
MllO;lOOB 1 0; 8, 2C

ThenV ;M ;h ;cei®is a commutative unital algebra and, by the very de nition,'C; °!
IV ;M °is an algebra isomorphism. In particular, for every? Lin*V;C° R :1C; °!
IVk ;MR ©is an algebra morphism aMr is mapped by the evaluation map to the canonical
pointwise product ort.

We want now to de nedeformation®f the products of De nitior 4.8]5, taking inspiration
from Sectioi 4.b.
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De nition 4.8.6. For every 2 Lin!C;C°and every unital : ¢! R we can de ne a product
M onV by
M1t10o 10pB 1 o 8; 2C; (4.38)

suchthat :1C; ©°!1 V ;M Cisan algebraisomorphism.

We say thaM isa -deformation oM |, since in the caseis the counit*of C, the coaction
property(@.33)of implies thatM~ is the identity map o€, henceM ™" coincides withM . In
particular we have

De nition 4.8.7. For every 2 Lin'V;C°we can de ne a -deformation B M_ of the
canonical producMr onVg , such that

140 !P°BR 1 n% (4.39)

We stress again that, unlike the pointwise multiplicaticthe -deformation is not de ned
on C but rather, for every xed 2 LinV;C®° onVgr . As stated below De nitiof 4.8]6, the
deformationv 'Q coincides with the canonical pointwise product\gq .

Lemma 4.8.8.For every unital : ¢! Rand 2 Lin'C;C°the map
B 12 Linic;ce (4.40)
de nes an algebra isomorphism frot@; © toV ;M ©°.

Proof. By eq. [4.38)

and the claim follows.
In particular for = R we obtain by eq[(4.39)
140 1B 1 n% (4.41)

which is reminiscent of eq|. (4.27).

Example4.8.9 In the setting of the previous sections, we can considerA, so that in this case
V = RA, C = H andC = H. Then the most natural choice of 2 LinV; C!RA® s given by
Xa B ta, Wheret, : RA 1 R is the evaluation of tha-component, an® :H! Cis

PR ;X ii:X,,1 Bty ta,; ap;iiian 2 A
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Then eq.[(4.4]1) is the analogue of €q. (4.27) in this context, whil¢ eq] (4.39) de nes a deformation

section.

4.9 Wick products of trees

We now discuss the main example we have in mind of the general construction in $edtion 4.8,
namely rooted trees, that are a generalisation of classical monomials as we show below. With
the application to rough paths in mind [51], we denotéltghe set of all non-planar non-empty
rooted trees with edges (not nodes) decorated with letters from a nite alpfigbet ;dg. We

stress that all trees ifi have at least one node, the root.

The sefT is a commutative monoid under the associative and commutadiegroduct
given by the identi cations of the roots, e.g.

DA T N I (4.42)

see also [15, De nition 4.7].

The rooted tree with a single node and no edge is the neutral element for this product. The
set of monomials id commuting variableX;; : : :; Xy can be embedded ih as follows: every
primitive monomialX; is identi ed with l and the product of monomials with the tree product.
In this way every monomial is identi ed with a decorated corolla, for instance

X X X ! '\i\I/k/': (4.43)

See the discussion around Lemima 4.9.3 below for more on this identi cation.

We denote by T the set of all non-plangslantedrooted trees. We recall that a rooted
tree is planted if its root belongs to a single edge, called the trunk. For example, in the left-hand
side of eq.[(4.42), the rst tree is not planted, while the second is.

We also denote bl the set of non-planar rooted forests with edges (not nodes) decorated
with letters from the nite alphabdtl;: : :;dg, such that every non-empty connected component
has at least one edge. On this space we de ne the prodgigen by the disjoint union, with
neutral element the empty forest

We perform the identi cation
e =@ (4.44)

between the rooted tree2 T and the empty forese 2F. Then we obtain canonical embeddings
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T) T) F (4.45)

and moreover

A

1T: © js the free commutative monoid dn

A

1F; © js the free commutative monoid dn
In both cases the element ceis the neutral element. We denote by

~ V the vector space generated freelyThy
" C the vector space generated freelyThy

~ Cthe vector space generated freelyrby

Then we have

A

1C; © is the free commutative unital algebra generated by

A~

1 © is the free commutative unital algebra generated by

and again in both cases the element ceis the neutral element. Finally, by e{]. (4.44) and
eq. [4.45) we also have canonical embeddings

v c! ¢& (4.46)

OnC we also de ne the coproduét, given by the extraction-contraction operator of arbitrary
subforests [17]: ~

= . 2 F; (4.47)

where a subforest 2 F of is determined by a (possibly empty) subset of the set of edges of
and < isthe tree obtained by contracting each connected componentaod single node. We

recall that by eq](4.44) the empty forest and the tree reduced to a single node are identi ed and
calledce For example,

i _ L I N N

p= e 2 21+ o sty i2 i3 + i iy iz + i3

il i3 i1 i3 il i3 ‘ \0/ * V ‘ 1
4 4

e

* * * s
i3 + i i3 i1]
® ® ° °

+
=
&
~—5-e
+
- S-e- G -e
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If n: €1 Risthe linear functional such that °= 11 = ce%or 2 F,theniC: e’ "Cis
a Hopf algebra [17].

Note that, unlikeH; “in Sectiod 4.F2C; “°is not co-commutative; moreover the canonical
embeddingC ! Cineq. ) is not an algebra morphism fré@) © to 1 °. We could
also endowC with a coproduct ¢ (the extraction-contraction operator of a subtree at the root,
which plays an important role in [15] and is isomorphic to the classical Butcher Connes Kreimer
coproduct), but we do not need this for what comes next.

We now go back to the construction of Secfior] 4.8. With the embedlihg C, the coaction
B :c7tC C

makesC a left-comodule ove€ by an analogue of Propositi.s. Then we can de ne
:C! Casin eq.5), for : ¢! R unital, and a deformed product onC as in

eq. [4.36). As discussed before De nitipn 4]8.1, the coactigsnot multiplicative with respect

to and therefore isin generaltruly di erent from .

For 2Lin;C°and B R 2Lin'C;C°asinLemma4.8]4,themap =R °©
de nes by Lemma 4.8]8 an algebra isomorphism fr@n© toV ;M ©, so that in particular
we have the analogue of ef]. (4.41).

This idea is very important in regularity structures, where the pointwise product of explicit
(random) distributions is ill-de ned, while a suitable deformed product is well-de ned as a
(random) distribution. The above construction allows to recover a precise algebraic structure of
such deformed pointwise products, in the same spirit as Theorem 4.5.4. See [Secjion 4.10 below
for a discussion.

We show now how these ideas can be implemented concretely, that is how a chacaater
be constructed in practice in some interesting situation, generalising the construction of Wick
polynomials in the previous sections of this chapter.

Let us now consider hintV; C°valued random variabl¥, such that

" hX;oei=1,
" X is stationary, i.e.bX; it + x°has the same law &X; i forallx2R%and 2T

~ hX; it0°has nite moments of any order for all2 T.

Then we can de ne
C! R; 1 0B EIMRX: itQ°; (4.48)
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There is a unique extension ofto a linear”: ¢! R which is a character dfC; © and we
denote by? 1: &1 R its inverse with respect to ti&convolution product.

Theorem 4.9.1.Let X be as above. The only characteon'C: © such that
EIRRX, 110 =0 8 2Tnfeceg

is equal to” L.

Proof. We note rst that for every characteron'C, °© we have
EIRRX;  jtx®0=1 o =1 2 o 8 2T:

In particular
ERX, a1 itx0=1A1l % =0 8 2Tnfeeg

On the other hand, sinceand " are characters ot€: ©,ifforall 2T
1 '9 rn o =11 = (E?

then the same formula holds by multiplicativity for alR F and we obtain that = ~ 1.

Remark4.9.2 By stationarity, the functio®X Ma 1 2 LinC;C° has the additional property
EIRRX Ma1 itx°=0; 8 2Tnfegx2R%:
In other wordsRX Ma:1:C! C gives acentreddeformed product. 4

We now show that the construction on decorated rooted trees generalises in a very precise
sense the Wick products of Section]4.4. We use the identi cation between monomdhls in
commuting variableXy; : : :;Xq and corollas decorated with letters frdify : : : ;dgthat we have
explained in eq[(4.43). ChoosimgB f1;:::;dgwe obtain a canonical embeddingléf! C,
whereH is the polynomial algebra de ned in Sectipn 4]3.1; we €r the image oH in C by
this embedding. Then a simple veri cation shows that

Lemma 4.9.3. The embeddingi | C is a Hopf algebra isomorphism betwed; ;1; ;"°
andCor; ;e; ", where” is de ned in eq(4.47)

We obtain that every deformation for aunital : ¢! R is a product orCor which is
isomorphic to the deformed product de ned in €q. (4.26) by restrictingCor ! R.
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4.10 Connection with regularity structures

It would go beyond the scope of this work to introduce and explain the algebraic and combinatorial
aspects of the seminal theory of Regularity Structures [56]; we want at least to explain how the
concept ofrenormalisation which plays such a prominent role there, is intimately related to the
deformationof the standard pointwise product described in the previous sections. These ideas
can also be found in the theory mugh pathg50, 51,86 8/7], which has largely inspired the
theory of regularity structures.

The recent papers [15, 20] introduce a Hopf algéfirmgether with a linear spadé, which
is moreover a left-comodule ovét with coaction : H! H H. This framework is then
used to describe in a compact way a number of complicated algebraic operations, related to
the concept ofenormalisation The spaceH in [15] is an expanded version of the span of
decorated rooted tre&sde ned in Sectiorj 4.9 above; more precisely it is the free vector space
on a more complicated set of decorated rooted trees, which is aimed at representing monomials
of generalised Taylor expansions. The spéde [15] is a Hopf algebra of decorated forests
with a condition ofnegative homogeneity

In [15,/20], the linear spadd codes random distributions, which depend on a regularisation
parameter > 0. As one removes the regularisation by lettiny 0, these random distributions
do not converge in general. More precisely, we have (random) linear functionsi | D®Rd°
which are well de ned for all > 0, but for which there is in general no limitad 0. In fact,
weevenhave :H! C!RY and is constructed in a multiplicative way as in Lem@].8.4
above. Indeed, althoudH is not an algebra, it is endowed wittpartial product i.e., some but
not all pairs of its elements are supposed to be multiplied. We try to make this idea more precise
in the next

De nition 4.10.1. A partial produconH is a pairM; S whereS H H is alinear space
andM : S! Hisalinear function.

Therefore, if and are elements oH, their productM? s well de ned if and
only if 2 S. For example, in regularity structures one has an eleméht such that
= B , where is a white noise ofR? (a random distribution iD%R9) and* °.q

is a family of molli ers. Although! © is well-de ned as a pointwise product @R, as
I Othere is no limit inD®RY° and indeed, we do not expect to multiplyy itself in DAR e,
We express this by imposing that < S.

The divergences that arise in this context are due to ill-de ned products; this is already clear
in the example of and! °2. Another more subtle example is the following: we consider

B again, and a (possibly random) functiébn: R4! Rwhich,as ! 0, tendsto a
non-smooth functiorf. Then the pointwise produdt  does not converge in general, since the
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productf isill-de ned in D@RY, However a proper deformation of this pointwise product
may still be well de ned in the limit.

Let ;i 21° H be afamily that freely generatétas a linear space. We can now give the
following

De nition 4.10.2. Let :H! D2%RY pe alinear map andM; S a partial product onH. We
de neV as the vector space freely generatedby; ii : i 2 Igasin De nition[4.8.2. Then we
de ne a partial product orV as follows:

S V VvV .Bf O 10 2Sg, *°B h ;i

'\M S | V’Mllo 1 oopg 1M1 00

We stress that this de nition allows to de ne partial products of distributions in a very general
setting. We are clearly inspired by the construction of the previous sections, by realising that we
can even work on distributions rather than on continuous functions.

However the construction of interesting: H! D®%RY may not be simple. The method
which is successfully used in a large class of applications in [15, 20, 56] is the following. We
start fromalinear :H'! CRY which iscanonicalin the sense that

h M1 %=h ;i h ;i 8 2S

where is the standard pointwise product@RY. In order to obtain a convergent limit as
| 0, we try to deform this pointwise product, using the comodule structuké fer . For
all unital multiplicative and linear : #! Rwedene :H! H asineq.[(4.35)and then

we set as in eq| (4.40)
tog 1 lo 2 H:

Then we can de ne the deformed partial producton:
M 1 1 0; 1 00 B 1 0; 2 S:

If = ischoseninsuchawaythat convergestoawellde nedlinearmdp: H! D%RY,
then we can de ne oW the partial product

A A A
Ma1"1 0 %1 copg M1 o 2S

which is the analogue of eq. (4]41) in this setting. We note that in general neithesr
converge; indeed, diverges exactly in a way that compensates the divergence,ah such a
way that  converges.
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The fact that the above construction can indeed be implemented in a large number of
interesting situations is the result of [15,/ 20]. Those papers consider random mapth
suitable properties which resemble thoseXah Theorenj 4.9]1, namely is supposed to be
stationary and to possess nite moments of all orders. Then, as in Théoremn 4.9.1, it is possible to
choose a speci c element : B! R which yields acentredfamily of functions 1, see
[15, Theorem 6.17]. Under very general conditions, this special choice produces a converging
familyas ! 0[20].

Therefore the renormalised (converging) random distributions eeatredversion of the
original (non-converging) ones. The speci ¢ functional isequalto  A,where :H! R
is an expectation with respect to as in eq.[(4.48), and is atwisted antipodgethe functional

A plays the role which is played by  in Theoren] 4.9]1.

Remark4.10.3 We stress that the centred family 1 can not be in general reduced to the
Wick polynomials of Theorerh 4.4.2. This is because the coactiod ! H H in this context
is signi cantly more complex than ed. (4]16) and €q. (4.47). 4
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Chapter 5

Modifying Rough Paths

5.1 Introduction

The theory of Rough Paths has been introduced by Terry Lyons in the '90s with the aim of giving
an alternative construction of stochastic integrations and stochastic di erential equations. More
recently, it has been expanded by Martin Hairer to cover stochastic partial di erential equations,
with the invention of regularity structures.

A rough path and anodelof a regularity structure are mathematical objects which must
satisfy some algebraic and analytical constraints. For instance, a rough path can be described as
a Holder function de ned on an interval and taking values in a non-linear nite-dimensional Lie
group; models of regularity structures are a generalisation of this idea. A crucial ingredient of
regularity structures is thenormalisation proceduregiven a family of models depending on
a parametet > 0, which fails to converge in an appropriate topology ds 0, one wants to
modify it in a such a way that the algebraic and analytical constraints are still satis ed and the
modi ed version converges. This procedure has been obtainédlin [1L5, 20] for a general class of
situations with astationary character

The same question could have been asked much earlier about rough paths. Maybe this has not
happened because the motivation was less compelling; although one can construct examples of
rough paths depending on a paramé&ter O which do not converge ds! 0, this phenomenon
is the exception rather than the rule. However the problem of characterizing the automorphisms
of the space of rough paths is clearly of interest; one example is the transformation from It0 to
Stratonovich integration, but our aim is to put this example in a much larger context.

We recall that there are several possible notions of rough paths; in particular wgeloavetric
RPs andranchedRPs, two notions de ned respectively by Terry Lyons|[86] and Massimiliano
Gubinelli [51], see Sectiorjs 5.3 apd 5.4 below. These two notions are intimately related to
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each other, as shown by Hairer and Kelly|[57], see Seftign 5.4 below. We note that regularity
structures|[56] are a natural and far-reaching generalisation of branched RPs.

In this paper we concentrate on the automorphisms of the space of branched RPs, see remark
[5.1.17 for a discussion of the geometric case.H &k the collection of all non-planar rooted
forests with nodes decorated b, : : : ;dg, see Sectioh 5|4 below, and also Secfion 2.5. For
instance the following forest

o

is an element oF . We callT  F the set ofrooted treesnamely of non-empty forests with a
single connected component. We grade eleme$ by the numbej j of their nodes.

Let nowH be the linear span d%¥. It is possible to endowd with a product and a coproduct
:H! H H which make it a Hopf algebra, also known as the Butcher-Connes-Kreimer Hopf
algebra. We leG denote the set of atlharactersoverH, that is, elements d& are functionals
X 2 H that are also multiplicative in the sense that

hX: 1 =hX; ihX; i

for all forests (and in particular trees) 2 F. Furthermore, the s& can be endowed with a
product , dual to the coproduct, de ned pointwise bX Y; i = hX Y; i:See Sectioh 2|5
for further details. We work on the compact inters@l1vdor simplicity, and all results can be
proved without di culty on »0; T¥or anyT 0.

De nition 5.1.1. Given 2 1» a branched -rough path is a pattX : »0;1%! G such that
Xit =", it satis es Chen's rule

Xsu Xut = Xsty sut 20,14

and the analytical condition
i dj . gt s

Settingx! 1= hXg;«ii, t 2 »0;1%we say thatX is a branched -rough path over the path

Our main result is that we obtain a transitive action of an additive group of functions on
branched rough paths, allowing to translate any given branched rough path into any other
branched rough path by modifying its components. For a xe2l%0; 1» we de neN := b ‘c.

For instance, if 2%e3;1+2¥thenN = 2. LetC be the set of all collections of functions
g : 2T:jj Neindexedbyrooted treeswithfewerthbimodes, suchthat 2 C | 10; 1v/°
the classical space of real-valued Hélder functionsGi/with Holder exponent j j. Clearly
this set is an abelian group under pointwise addition.

Theorem 5.1.2.There is a transitive action &€ on branched -rough pathsg; X° 7! gX such
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that for eachg; @2 C and branched -rough pathX the identityg®gX° = 1g+ g®X holds. For
every pair of branched-rough pathsX and X°there existg) 2 C such thaigX = X°

The importance of Theorejn 5.1.2 resides in the following remark. Chen's rule states that for
any tree 2 T the identityhXsy Xu; | = hXg; 1 holds. By introducing theeduced coproduct
0B 1 1 and the functiorfF,; = hXgt; i this identity may we rewritten as

Fout= Msu  Xuts Oj:

where F, ;B F,; Fg, F, isthe second order nite increment considered by Gubinelli [SO0].
Therefore, ifX and X are two branched rough paths above the same basepa2h@ , and

= ! we obtain that

Fout = WXsu  Xugs 0 =1x Xé()lx'i[ Xhoz Fsut (5.1)

whereF is obviously de ned.

The nite increment operator has the following property: iF : ;14! R is such that
F = Othen there exist$ : ;1% ! R such thatrs; = f; fs. The proof of this fact is an easy
exercise, and we remark that the functibrs unique up to an additive constant shift, see also
[51], formula (5)]. Thus, by this fundamental property there exists a fungtian0; 1% ! R
such that

Fse=Fee+ 0 Os! (5.2)

Moreover, since botk andF satisfyjFgj . jt sj?> we have thay is actually2 -Hélder.
Hence the rstlevel xes the second up to the increment @f aHolder function.

The same argument applies for any tresuch tha2 j j N := b lc. Indeed, the
reduced coproduct® is a sum of tensor products of trees with strictly less nodes, and therefore
the values ohXg; | andhXg; i dieronly by the increment of a j j-Holder functiong . As
soonag j N+ 1, then by Gubinelli'sSewing Lemm§b0] the function!s;t°® 7! hXg; i is
uniquely determined by the values Xfon trees with strictly less thaN nodes. More explicitly,
the Sewing Lemma is aexistence and uniqueness reshlbwever, forj j N + 1 we have no
uniqueness, as we have already seen, and existence is not trivial.

For instance, suppose thdt 2, namely 1+ 2; suppose we have a branchedough
pathX and functionggy 2 C 1 | for every tree 2 T with at mostN nodes. We set

hXsgeii := hXsgeii + Gf' Q2
We need now to de néwXs; /i . By Chen's rule this must satisfy
W i sut = e o1 oii
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and the analytical condition requires thBXs;2'ij . jt sj? . In this setting the Sewing Lemma
does not apply and therefore does not give existence of a funietigr}'i with the required
properties, so that a di erent approach is necessary. The same problem applies for allZrees
with at mostN nodes. We note that, " 2 CN 0;1%.or alli 2 f1;:::;dg, we have one and
only one choice fohX;]'i given by

1
t

Wi = WXl + hXggeii g + g5 g2 odx], (5.3)
S
where the integrals are well-de ned in the Young sense, Isele [50, section 3]. However for
g" 2 C 10;1%°which is our assumption, the Young integral is not de ned and any choice of
hXs;1'i can be used to give a weak de nition of the integral in the right hand side. Therefore this
shows that our discussion involves algebraic and analytical considerations, as it is often the case
for rough paths.

This above discussion shows that Theofem 5.1.2 yields the following

Theorem 5.1.3.Given a branched -rough pathX, the mapg! gX yields a bijection between
C and the set of branchedrough paths.

Therefore Theorein 5.1.3 yields a complete parametrisation of the space of branched rough
paths. This result is somewhat surprising, since rough paths form a non-linear space, in particular
because of the Chen relation; however Thedremp.1.3 yields a natural bijection between the space
of branched -rough paths and the linear space.

Moreover, the fact that the above Young integrals are not well de ned shows why existence
of the mapX ! gX s not trivial.

Theorenj 5.1]3 also gives a complete answer to the question of existence and characterization
of branched -rough paths over a-Hdlder pathx. Unsurprisingly, for our construction we
start from a result of T. Lyons and N. B. Victoir's [B8] of 2007, which was the rst general
theorem of existence of a geometrigough path over a-Holder pathx, see our discussion of
Theorem 5.1}4 below.

5.1.1 Outline of the results

A canonical choice of a geometric rough pa¥iover smoothx is given by itssignature[23,

86]. Other cases where geometric rough paths have been constructed are Brownian motion and
fractional Brownian motion (see [27] for thé > %1 case and [96] for the general case) among
others. However, until T. Lyons and N. B. Victoir's paper|[88] in 2007, this question remained
largely open in the general case. The precise result is as follows
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Theorem 5.1.4(Lyons Victoir extension) If p 2 »;1°n Nand := 1lep, a -Hdlder path
x 1 ;1% ! RY can be lifted to a geometric-rough path. Foranyp 1land" 2 » a
-Hélder path can be lifted to a geometfic " °-rough path.

The construction of a geometricrough path requires to satisfy at the same time analytical
and algebraic constraints: on one hand, the algebraic conditions demand that at each step Chen's
rule and the multiplicativity of the rough path with respect to the shu e product must hold, and
on the other hand the path so obtained should-b#lder continuous with respect to a suitable
metric, see De nitiori 5.3]1.

We follow this approach, using an explicit form of the Baker Campbell Hausdor formula
by Reutenauef [103] (formul®.9)), as well as on analytic techniques akin to Gubinelli's Sewing
Lemma [50], exploiting the fact that the group of characters over the shu e Hopf algebra is in
fact a Lie group whose topology may be metrized in various ways.

We now give a heuristic argument of how this construction works: a geometric rough path
is a two-parameter family taking values in the character gi®Utp of the truncated shu e
Hopf algebratH™N"; :  ° over an alphabeA, subject to algebraic and analytical conditions (see
De nition p.3.1] below). Here the cuto leveN is given in terms of the regularity of the
underlying path adl B b !¢, i.e. itis the largest positive integer such thit 1. We also
recall that the spacg™N’ spanned by the nitesimal charactersover H forms a Lie algebra
under the usual commutator bracket for the convolution product and that there is an exponential
mapexpy : gV ! GN° which is a bijection with inverstogy : GN°!  g'N° de ned by the
usual power series. The reader is referred to Seftign 2.4 for further details.

De nition 5.1.5. A geometric rough path is a famitXs% st 1 such thatXs; 2 GN, X = " the
counit ofH. This family also satis es Chen's rulés; = Xg,? Xyt and the analytical estimate
jhiXsgwij . jt s ™ for each wordw 2 H with length™tw®  N.

Therefore, for eacld st 1 we can nd an appropriate logarithiog; = logy*Xst®,
and the familylLs% st 1 is such thalLg 2 g™°, Ly = 0. Moreover, by Chen's rule and the
Baker Campbell Hausdor formula, sed (5]7) below, we also have that

Lst = 100*Xsy? Xut® = Lsu+ Lyt + BCHLgy; Lit®

whereBCH!A, B° denotes the remaining terms in the BCH expansidogexptA° ? expB°.
This last equality might be rewritten as the condition

LsutB Lst Lsu Lut = BCH'Lgy Lut®
which is reminiscent of Gubinelli's Sewing Lemma. The analytical condition in De nition $.1.5

95



translates into the bound

. .. é’\lo 1 2k .. . .10
jhlst; Wij Eji‘b(s't;wu . Jto s :
k=1
Observe also that the conditidXs; ai = x2 x& also xes the rst level of the logarithm as

hLspai = x2  x&. Therefore, constructing the logarithrhsshould be equivalent modulo some
technical considerations to constructing the geometric rough gath

We will also make use of the following observation: the constraintimposed by Chen's relation
allows us to reduce the two-parameter fani#g% st 1 to a one-parameter famil% ¢ 1.
In fact, we have that sinck; is the neutral element i6'N°, equating two of the parametrs in
Chen's rule we obtain thdt = Xg; ? Xis, 1.€8. Xgt = X{Sl. Moreover, settingl = 0 in the same
equation we nd thatXs; = Xgp ? Xot = X051’? Xot, hence itsu cesto nd X B Xg with Xg = ".
Since we are considering group-valued paths, the chardgter X, 1 ? X; naturally plays the
role of the increments of the pathy! X;.

In their article, Lyons and Victoir use the fact that the BCH formula is easy to handle in some
speci c cases in order to provide a direct proof of their theorem, which we now shortly review.
Take a paitx}; x%° of -Holder paths witht < 3 so thatN = 2. We look for a logarithm
Lst 2 g% satisfying the conditions detailed above, with a xed rst level. In this case, the second
order BCH formula is fully explicit

1 1
Lst= Lsu+t Lut + E»Lsu; Lut#& Lsy+ Lut + Ell—su? Lut  Lut? Ls®
thus the second level componeis = h_;iji must satisfyz' = 0,z = Zz/' and
1
Zia= 8 Za ZiT 5w 6O X I U g (5.4)

The right-hand side of this identity is bounded above by a constant fimag ju sj . Then,

eq. ) can be used, making some choices, to de ne the actual valZg oh the dyadic
partition of>0; 1%and this will satisfy the bouniZ2?j . 2 ™ whenevess = k2 Mandt = k2 ™

are two consecutive dyadics, as a consequeng®.4j. In particular, we must choose the initial
valuezgf, and there is also some freedom in the choic&4f since one can modify it by adding

the increment of &2 -Holder function without a ecting(5.4) as in(5.1)-(5.2). In any case, the
construction depends heavily on these choices and thus the constructed object will neither unique
nor canonical. Nevertheless in our later applications this will not be of great importance (see

Theoreni 5.1)2).

With this, we can build the charactég = exp,'Lst° on each pair oEonsecutivelyadics,
and then extend the de nition to arbitrary pairs by Chen's rule. In some way, this is as if we
were doing a telescopic sum on the gro@™N’. Finally, one makes use of the following result,
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found in [88], to obtain a geometric rough pathas an extension of to arbitrarys;t 2 »0; 1%

Lemma 5.1.6.LetE; °be a complete metric space and §et ft'B k2 ™:m Ok =
0:::;2" 19 Supposg : D! Eis a path satisfying the boundym; yim ©. 2 ™ for some
2 10;1° Then, there exists a-Holder pathx : »0;1% ! E such thatxjp = y.

The application of this lemma requires us to have a suitable notion of met@¢?dsuch that
the estimate satis ed b2 translates into the appropriate boundYorand such that the Holder
property ofX with respect to this metric implies the desired analytic bounds in De nftion 5.1.5.

In fact, we have the following result

Proposition 5.1.7. There is a metric oG such that the analytical requirement in De nitipn 5.8.1
Is equivalent to the fact that7! X; is -Holder with respect to.

It has now become more apparent why one should have an explicit form of the terms appearing
in the BCH expansion if one hopes to generalise this argument to arbitrary levels. In the above
argument, some of the second level components were xed by the rst level, and in general some
of the leveln components will be given by linear combinations of the preceding ones. It turns out
that in order to iterate this procedure, we must have an explicit enough BCH formula allowing us
to prove estimates on the increment appearing in the right-hand side of Eq{iatjon (5.4), which
then translate into the correct bounds for the application of Lemmg 5.1.6.

Using the same idea we extend this construction to the case where the cofteétian ;x40
is allowed to have di erent regularities in each component, which weasafiotropic (geometric)
rough paths (aGRP)

Theorem 5.1.8.Let x%;:: ;x4 be a collection of real-valued paths such thats j-Hoélder.
There exists an anisotropic rough pathsuch thatXs;6i = X xLforalli = 1;:::;d.

The following property also holds: given a collection of functighg C i, letx! = x! + g|
and denote bgX the anisotropic geometric rough path above the path
a
X = Xe:
i=1

Then, for any two such functiogsand g°we have thag®gXx° = 1g + g®X.

This kind of extension to rough paths has already been explored in the papers [7, 52] in the
context of isomorphisms between geometric and branched rough paths. It turns out that the
additional property obtained by our method enables us to explicitly describe the propagation of
suitable modi cations from lower to higher levels. As a corollary, we devise a way to enlarge a
given rough path by adding components to the base path.
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Corollary 5.1.9. Let*x! : i = 1;:::;d° be a collection of real-valued paths such tixa2 C i,
and letX be the anisotropic geometric rough path abéx& : : ::x9°. If X0 2 C ¢ is another

Then, the restriction 0K to V equalsX.

We then go on to describe the interpretation of the above results in the context of branched
rough paths. We provide, in Proposition 5|6.5, an alternate description of the Hairer Kelly map
as a sum over a suitable set of partitions of the given tree, as opposed to the original iterative
de nition, which we then use to give a way to encode branched rough paths as anisotropic
geometric rough paths, along the same lines aslin [7].

Theorem 5.1.10.Let X be a branched -rough path. There exists an anisotropic geometric rough
path X indexed by words on trees, with exponentss | j, and such thahX; i = hx; 1 9,
where is the Hairer Kelly map.

The main di erence of this result with [57, Theorem 1.9] is that we obtain an anisotropic
geometric rough path instead of a classical geometric rough path. This means that we do not
construct unneeded components, i.e. components with high regularity, and we also obtain the
right Holder estimates in terms of the size of the indexing tree. This addresses two problems
mentioned in Hairer and Kelly's work, namely Remarks 4.14 and 5.9 in [57].

Our approach also does not make use of Foissy's and Chapoton's Hopf-algebra isomorphism
[21,/43] between the Grossman Larson Hopf algebra and the free algebra over a complicated set
| of trees as is done in|[7]. This allows us to construct an actionlafger group on the set of
branched rough paths; indeed, using the above isomorphism one would obtain a transformation
group parametrised By © , wherel it the abovementioned set of trees and2 C ! I; on the
other hand our approach yields a transformation group parametrisgd®yr whereT is the
set of all trees with at mo$t nodes. With the smaller séttransitivity of the actiorg 7! gX
would be lost.

Remark5.1.11 A similar argument cannot be used to give the analogous result for geometric

rough paths. In the case of branched rough paths, constructing the furgtisnsnough since,

by the freeness of the Connes Kreimer Hopf algebra, this xes the valudégXf i for all

forests . On the contrary, the shu e algebra ®ot free over the vector space spanned by words,

but over a smaller subset callegndon words Therefore, xing functiongg™ for all wordsw

might give an inconsistent objegK in the sense that it might not respect the character property.
4

Another conclusion that might be drawn from this remark is the following. Sihcenot
free over the vector space spanned by the free mavié&P over the alphabed, if we want to
de ne acharacteX 2 H is su ces to de ne its valueshX; wi for all Lyndon words. As stated
above, trying to de ne the value ¢iX;wi for all w 2 M1A° might result in a linear map that is
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not multiplicative. The point is that the shu e product imposes additional relations on these
values that must be taken into consideration. For example, if we are trying to t¥;@d for a
two-letter wordab 2 M1 A° and we know the values &iX;ai for all a 2 A, we have to consider
the fact that

hX;aihX;bi = hX;abi + hX;bai

asat b= ab+ ba, so knowing one ohX;ahi or hX;bai already xes the other value given that

we knowhX;ai andhX;bi. In [57] Hairer and Kelly introduce a geometric rough path as a path
taking values in the full grouf of characters ovef, as opposed to the truncated group as we
have done above which is the original de nition by Lyons (c.f. De nitjon 5]3.1). In a subsequent
remark they claim that these de nitions are equivalent by invoking [86, Theorem 2.2.1]. This
theorem states that a multiplicative functional @iN° satisfying certain analytical conditions
(those of the de nition of a geometric rough path) can be extended in a unique way tdzll of
The fact is that there is a confusion in the terminology used by both sets of authors, since what
Lyons calls a multiplicative functional in fact refers to Chen's rule and to the character property,
which he calls group-like (in reference to Propositipbn 2]4.6). Therefore, Lyons' extension
theorem is about linear maps satisfying only Chen's rule and the analytical bound and does not
take care of the character property. We address this issue and we prove that

Theorem 5.1.12.Let X be a geometric -rough path. There exists a paf: »0;1%4! G such
that Xt = ", satisfying Chen's rule and the analytic estimate with the additional property that its
restriction to words of length less than or equalNo= b 1c equalsX.

Outline. We start by reviewing all the theoretical concepts needed to make the exposition in
this section formal. In Sectidn 5.3 we state and prove the main result of this chapter, namely
we give an explicit construction of a geometric rough path above any giverxpath RY.

Next, in Sectiorj 5)5 we extend this result to the wider class of anisotropic geometric rough
paths. Finally, in Section 5.4 we connect our construction with M. Gubinelli's branched rough
paths, and we extend M. Hairer and D. Kelly's work in Secfion $.6.1. We also explore possible
connections with renormalisation in Sectjon 56.2 by studying how our construction behaves
under modi cation of the underlying paths. Then, we connect this approach with a recent work
by Bruned, Chevyrev, Friz and Pre|y [13] in Sectjon 5.6.3 who borrowed ideas from the theory
of Regularity Structures [15, 56] and proposed a renormalisation procedure for geometric and
branched rough paths [13] based on pre-Lie morphisms.

The main di erence between our result and the BCFP procedure is that they consider
translation only by time-independent factors, whereas under reasonable hypotheses we are also
able to handle general translations depending on the time parameter. We also mention that some
further algebraic aspects of renormalisation in rough paths have been recently developed in [14].
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5.2 Preliminaries

For the rest of this section we x a locally nite graded connected Hopf algébréhat is,H
is a vector space endowed with a prodoctH H! Handacoproduct :H! H H
satisfying certain compatibility assumtions. There is also alifiitH, a counit' 2 H and an
antipodeS: H! H such that

mid S x="x°1=mS id° x

for all x 2 H. As usual we will denote the imagetx y° = xy in order to reduce notation. The
fact thatH is locally nite graded connected means that it can be decomposed as a direct sum
=1
H= Han
n=0

with Hige = R1, eachH10 is nite-dimensional and

A

E
mtH 10 H 1moo H 1N+ mPs H 10 = H 1po H 1qo:
p+ta=n

The reader is referred to Chapigr 2 for further details. Each eleménH can thus be
decomposed as a sum 5
X = Xn
n=0
with x, 2 Hi where only a nite number of the summands are non-zero. We call gaitte
homogeneous part of degraef x, and elements dfl. are said to be homogeneous of degree
n. In this case we writ¢x,j = n. From now on the gradingH.e : n 2 N° will be called the

standard grading

The grading property dfl implies in particular that for homogeneous elemen&H:. the
coproduct can be written as
x=x 1+1 x+ %

where £

O 2 Hip Higp (5.5)

p+a=n
pa 1

is known as theeduced coproductFurthermore, the coassociativity oallows to unambiguously
de neitsiterates ,: H! H ™™ by setting

o= id; ,=1td n 1°
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and we have, for a homogenenous elemeftH.» of degreem

X=X 1 1+1 x 1 1+ +1 x+ 2x
where now g
0
nX 2 Hlplo Hlpn+1°
P11+ Pre1=m
pi 1

Remark5.2.1 These facts about the iterated coproduct imply that the bialgébra® is
conilpotent that is, for each homogeneox® Hi,p there is an integan 1 such that 9x = 0
and we see that in fact= m. 4

Remark5.2.2 From the above discusion we obtain in particular the inclusion

110,
H

0
n H in+1° 110 y

that is, then-fold reduced coproduct of a homogeneous element of dagtekis a sum of
In + 1°fold tensor products of homogeneous elements of degree 1. 4

We recall that in general the dual sp&tecarries an algebra structure given by the convolution
product?, dual to the coproduct, de ned by

WX?Y:xi =hX Y, xi;

but in generaH cannot be made into a coalgebra by dualising the product. In partiellas,
commutative if and only iH is cocommutative. For a sequence of mXps ::; Xk 2 H we
have the formula

X1?  ?Xc=m'k T X© K 1 (5.6)

A characteronH is alinear mapX : H! R such that
hX; xyi = hX; xihX;yi

for all x;y 2 H. An in nitesimal character(or derivation) orH isalinearmap : H! R such
that

h; xyi = h; xih";yi + H'; xih;y i:
We observe thatX;1li = 1andh; 1i = O0forall X2 Gand 2g.

It is a known fact that the s&® of characters ofd is a group with unit' and inverses
X 1= 8 X=X S The spacg of in nitesimal characters ot is a Lie algebra under the
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bracket»; Y& ? ? . Moreover, there is an exponential mexp :g! G

QO -

expl °B W
n=0

which is a bijection and its inverse isthemlag : G! ¢

~

@
logtxeB 1Mt

n=1

1X no?n

n

Remark5.2.3 The above maps are actually de ned over bigger spaces. These de nitions make
sense for maps 2 ¢ andX 2 G, whereg is the Lie algebra of linear maps mappihg 0 and
G is the group of linear maps mappidg 1. In fact,g is a sub-Lie algebra @f andG is a
sub-Lie group ofG. 4

Remark5.2.4 The conilpotency ofH; °©implies that for each homogeneous elemetH:o
the above series de ningxpandlog terminate after a nite number of terms (preciselyin
fact). Therefore, for a general elemen2 H and 2 gthe value oftrexpt © xi is made up of a
nite sum of nite sums, so there are no convergence issues involved whatsoever. 4

The grading orH induces a grading og by restriction toH:0 SO we can write

&
g= Wh;

n=1

i.e. the elements ajf correspond to formal series

()

where , = jHlno 2 W,.

Remarks.2.5 The elements af correspond to in nite formal series and cannot in general be
reduced to nite sums. The same goes for elements of the character @ran@ more in general
for arbitrary elements of the dual spdde. This is one of the reasons why it is not possible to
dualise the product oH to induce a coproduct oA . 4

The Baker Campbell Hausdor formula below describes the group law®im terms of the
Lie bracketing org via the exponential map. See [60] for a proof.

Theorem 5.2.6(Baker Campbell Hausdor ). Let ; 2 g, thenloglexpgt °? expt ®° 2g.
We de nethe maBCH:g g! gby
BCH!; °©°B logtexp °? expt ° (5.7)
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The main point of this theorem is that, even if one can compute explicitly all the terms appearing
in the series de nindogtexpt °7? expt °°itis not immediately clear that each of these terms
can be rewritten in terms of iterated commutators as the de nitiaprefjuires. Another way

to interpret this theorem is to say that there exists an elemenBCH!; © 2 g such that

expt °? expt °=exp °.

More can be said about the Lie ser@SH*; © 2 g given by the previous theorem. In fact,
it is possible to show that each term of the series is formed by iterated Lie bracketndf ,
where the rstterms are
BCH!; °= + + %»; Ya 1i2»; »; 1/4V41i2>>; », Yaa

and the following terms are explicit but di cult to compute. Nevertheless, fully explicit formulas
have been known since 1947 by DynKin|[[35].

A more tractable description of the terms appearing in this series was given by Reutenauer in
terms of permutation$ [103] and a proof in terms of Hopf algebras was given by Lloday [80]. Let
k:H ° K1 H bethe linear map

(@}

kl 1 ko = a 110 ? ? 1Ko (5.8)
2%

. 1 qodt © 1.
where S denotes the symmetric group of orderanda B 1T (',‘1 1 " is a constant

depending only on thdescent numbeof the permutation 2 §. One can then show that
ki k°2gif g0 k29, and that
@)

1 . .
BCHlkOl ; 0= ﬁ kl : lo 2 Wk (59)
ek !
where ~
a
BCH!; °= BCHyol; °2g:
k=1
For example, we have thag! °= |, 5! °= %1 ? ? ©and (omitting the?
product)

1 1 1

31 2 3025123 61213+ 132+ 231+ 312°+§3211

Playing with these expressions we can observe that in fdct °= %»; Yand
1 1
st1 2 3= g L2 31/41/46» 3» 1, 2Ya%a
and then we recover the rst three terms above after summation. This factorization can be
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formalized by means of the Dynkin operator and the Dynkin Specht Wever thedrem [66]. The
Dynkin operatoD : H ! gisde nedas

D1x; XK© = X0 Xk 15 Xk Ve Va

for Xq;:: 1%k 2 Hijo and the DSW theorem asserts that a homogeneous elmmko isin

g if and only if D1X° = kX. A nice short proof of this fact in terms of Hopf algebras can be
found in [118]. Since this is the case for eaghwhen evaluated in elements @five can replace

every monomiaX; ?  ? Xy by %»xl; DXk 1 XkVa: i Ya At this point there is still some more
cancelling to be done using the antisymmetry of the Lie bracket and the Jacobi identity, but this
already makes clear the connection between the two formulas. In any case, we will not use this
and will only work with Reutenauer's formula.

From all these considerations we obtain

Lemma 5.2.7.Let x be a homogeneous element of dedeeseich that

K 1X= X110 Xiko 2 H11|§

Then

h it KO X = a h 1o Xajoi :

Proof. This follows directly from the de nition of « in eq. [5.8) together with ed. (5.6) and the
fact that since ;11° = 0 we can write

_ otk 10
1?7 ? x=m 1 K k1

instead.

5.2.1 Nilpotent Lie algebras

From eq.[(5.p) we have

Lemma 5.2.8.For anyN 2 N the subspace

EN
Hn B Hiyo H
k=0

Is a counital subcoalgebra éH; ;"° The canonical projectiony : H! Hy is coalgebra
epimorphism.
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It follows that we can consider the dual algebirg;?," °© and the corresponding truncated
Lie algebra

EN
g" = W
k=1
and Lie groupGN = expigN°. There is a canonical injection, B : Hy ! H such
thathyX;xi = 0 if jxj > N so when working with elements &t or gN we will always
assume that they satisfy this property. There are also restricted exponential and logarithm maps

expy - gN! GNandlogy : GN! gN de ned by the truncated sums

o ?n CN 1X no?n

expyt °B W; logytX°B 1 10”+1T: (5.10)
n=0 n=1

Proposition 5.2.9. The orthogonal subspace
KNBHL=fX2H :hX;xi =0,8x2Hng

is an ideal of the algebraH ;?;"°. In particular, the quotient algebréd <K N is isomorphic to

Hy 2"

Remark5.2.10 The canonical inclusiory is an algebra monomorphism, being the dual map to
a coalgebra epimorphism. Moreover, itis such th&if: H ! H is the canonical projection
then$ny N = idn . Note however thaty does not masN into G or any subgroup of it. In
fact, we see thaiy mapsGN to G andg to ¢ de ned inside Remark 5.2.3. Regardigl see
however the following proposition. 4

Proposition 5.2.11.The canonical inclusiony mapsg\ to g.

Proof. We already know thaty : g\ ! @ so it only su ces to check that given 2 gN we have
that y is anin nitesimal character. Let;y 2 H, then

hyn ' Xyl = h; NIXy©

& & |
= h; Xjyn ji
n=0 j=0
(o)
= th; xjih";yn ji + H; xjih;y g ji°
n=0 j=0
a

= th; xpih"; yoi + H'; Xoih;y pi®
n=0
=h; nxih"yi+H;xih; yyi;

hencen 20.
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Remark5.2.12 A similar statement cannot hold f@N. For instance tak& 2 GN and an
elementx 2 Hy n f1gsuch thathX; xi , 0. Without loss of generality we may suppose thas
homogeneous. TaKelarge enough so th&jxj N+ 1. Then

0= hNX;x"i . hxik:

4

Remark5.2.13 All the above considerations work, with minor modi cations, if linear maps are
allowed to take values in an arbitrary commutative algebra instead of the ground eld (in this
caseR). That is, we may consider instead of the dual sgdcgthe spacéd. H; A° of linear

maps fromH to a commutative unital algebra Even though this level of generality may seem
super uous, it could be interesting since the added structure may reveal some further connections
with renormalisation via the Birkho decomposition of characters. Since our aim is to de ne
paths taking values in the gro@" satisfying some extra properties, for example, we could
make them depend on an extra paraméterO and A then could be taken to be the algebra of
Laurent series in this extra parameter. $ee [89] for further details. 4

Regarding the properties of the Lie algegfawe can show that

Proposition 5.2.14.The nite-dimensional Lie algebrg" is stepN nilpotent.

Proof. We recall from Chaptéf 2 that nilpotency means that the lower central sgriesy)
de ned inductivelyg) B gV, oi',; B »g™;gl'V4erminates after a nite number of steps, that is,
there exist¥o 2 N such thag’lz‘ = fOgforallk Kkg. The smallest number such that this happens
is called the nilpotency step @Y. Thus, we have to show tha}, , = fOgbutgy , fOg.

We rst prove thatdWi; W% Wi+j. Take 2 W; 2 W, and an elememnt 2 H. Then

@)
h»; 1/;/4X| =h , Xi = h, Xlloih; X120i h ; X110ih; X120i
1y0

where the only surviving terms are those wjikyoj = k andjXuxj = j Or jXipoj = j andjXipj = K.
In any case this is only possiblexfis homogeneous of degréer .

Now, observe that using this fact and induction one can show that

thusgy Wy andgy,, = fOg.

As a by-product of this proposition we obtain
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Corollary 5.2.15. The centre ogN is Wy.

Finally we remark that the Baker Campbell Hausdor is also validgh with the additional
property that the sum is now nite due to the nilpotency. We de ne an opef@iy :

gN gV! gNby

~

O
BCHN!; °B  BCHiel; © (5.11)
k=1

whereBCHuy. 2 W is was de ned in eq(5]9).

5.2.2 Homogeneous norms

Let L be a nite-dimensional Lie algebra. A family of dilations danis a family® %q of
automorphisms ok such that , s = s. A homogeneous group is a connected simply
connected Lie group whose Lie algebra is endowed with a family of dilationss i a
homogeneous group, the magp  logis a group automorphism & and we also call them
dilations.

De nition 5.2.16. The elemenX 2 L is said to be an eigenvector of the dilationwith
eigenvalue 2Rif (X =r Xforallr > 0. For an eigenvalue 2 R the eigenspack is the
subspace of spanned by all the eigenvectors ofwith eigenvalue .

Since , is a Lie homomorphism we have th&t ;E ¥4 E + .
Lemma 5.2.17.A family of operators ,°is a dilation if and only if , = €°97°A for some
matrix A.

Proof. It su ces to observe thatfIr° B ¢ satisesflr + = fir® fig0,

Thus, a dilation can only have a nite number of eigenvalues which correspond to eigenvalues
of the matrixA. In the sequel we order the spectrum ofor A) increasingly, i.e. 1 n
wheren = dimL. Since if is a dilation then™ = | is also a dilation, we may and do
suppose that; 1.

In the following, we assume the matrito be diagonalizable. In this case, we may x a

requiring that this basis is orthonormal.

De nition 5.2.18. Ahomogeneous norm on a homogeneous gf@igpa continuous function
j j:G! R4 whichisof clas€! onG nflgand such thaiX j = jXj, andj Xj = rjXj.
The homogeneous normj is said to be sub-additive jXY] | Xj+ jY].
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In case the homogeneous norm is sub-additive, we can induce a left-invariant me&igyon
setting X;Y°=jY 1Xi].

Lemma 5.2.19([45]). Supposé&s is a homogeneous group with Lie algetira Then there exist
constant<C;; C, > 0 such that

CiklogXk jXj CoklogXk® n

forall X 2 GwithjXj 1

A simple consequence of this lemma is the following
Corollary 5.2.20. All homogeneous norms @hare equivalent.

We can build a dilation ogN as follows: forx 2 Huye set x = r¥x and transpose this map
toH by settingh  X;xi = hX; xi.

Proposition 5.2.21.The maps ; are algebra automorphisms éf .

Proof. The map . is a coalgebra morphism &f. Indeed,
1 rX0=rij x=1 r rOX
by Equation|(5.p).

In fact, the maps  are bialgebra automorphismsidf hence Hopf algebra automorphisms.
Therefore, we obtain a dilation @ by simple restriction, and we remark that the spabdksct
as eigenspaces for, with k as the associated eigenvalue.

product in the sense that
X ? Yilinem WX iniY liim (5.12)

forall X 2 H, ,andY 2 H, .. We obtain a homogeneous norm @GN by setting

iXj B max k! fiXii; (5.13)
where ~
o
X="+ X
k=1

The following formula for the components of the convolution product between two linear
maps follows directly from eq[ (5.5).
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Lemma 5.2.22.Given linear maps<;Y 2 H, write

a a
X="4+ Xi; Y="+ Y
k=1 k=1
Then N
A &
X?2Y="+ Xi? Yk j:
k=1 j=1

Proposition 5.2.23.The grouptGN;j j°is homogeneous with j sub-additive.

Proof. We only need to prove that the norm de ned in Equation (b.13) is sub-additive, the other

properties being clear. By Lemrfia 5.2.22 and the compatibility of the n@rig)we have that

wes ase (h'}
JitX 2 YOjijk X|

whence the result.

In particular we obtain a metricy on GN which is left-invariant and such that the metric
spaceGN; \°is complete. This distance may be explicitly computed by Equ(5.13) as
1 1ok
NIX:Ye= max k! 1y -2 X° K
k=1;:::N
Remark5.2.24 In view of Corollary[5.2.2D we may obtain bounds over the distange;Y°
by bounding rstptY 1? X°for any homgeneous normon G. The importance of jresides

in that we know it to be sub-additive by Propositjon 5.2.23 so we obtain a distance. On some

concrete cases there might be other sub-additive homogenenous norms de@&dathwe

choose to work with the one de ned in eff. (5.13) since itis closely related to rough paths, see

De nition p.3.1] and Proposition 5.4.3 4

5.3 Construction of Rough paths

As in the previous section, we x a locally- nite graded connected Hopf algébrdVithout loss
of generality we assume thdimH:;0 = d and we x a linear basi$ey;: : :;eggof it. We also x
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anumber 230;1»and letN B b 1cbe the biggest integer such thét 1.

De nition 5.3.1. A -rough pathis a pathX : »0;1% ! GN such thatxo =" which is -Hélder
with respect to the metricy de ned by the homogeneous norm in ¢ ) Settingxl = hXy; gi
we say thaX is a -rough path ovetx?;: ::;xd,

Remarks.3.2 By specializing this de nition to di erent values dfl we recover botlgeometric
rough pathd86] whereH is the shu e Hopf algebra over an alphabet abdinched rough paths
[51] whereH is the Butcher Connes Kreimer Hopf algebra on decorated non-planar rooted
trees. 4

Remark5.3.3 The classical de nitions of rough paths of various types consider functions
X :0;1%! G with values in an appropriate group, satisfying Chen's rule

Xsu Xut = Xst

and an analytical estimate. It turns out that one can redutoea one-variable pati : »0;1%! G

by noting that the above equation implies that = 1Xo® 1 Xor. The analytical estimate can be
seen to be equivalent to requiring that the resulting pate Xq is -Holder with respect to the
corresponding homogeneous metrig. 4

We now come to the problem of existence. Our construction of a rough path in the sense of
De nition - over an arbitrary collection of-Holder pathgx?; : : : ;xd° relies in the following
extension theorem. We note that the proof follows very closely the approach of Lyons-Victoir
[88].

Theorem 5.3.4(Character extensionpetl n N land 2% 1»suchthatn+1° < 1.
Suppose we have aHdlder pathX :»0;1v4 ! 1 G"; °. There is a -Holder pathX : »0; 14 !
1™ 1% extendingX, i.e. such thatk b, = X

Proof. The construction oK is made in two steps.

Step 1. LetD = ft" B 2 "k j m 2 No;k = 0;:::;2Mg be the dyadics in0;1% Set
Xst = 1X° 12 X' 2 G" andLg; = log,tXs? 2 g" wherelog, was de ned in eq[(5.10). Then,
the BCH formula eq[(5.11) and Chen's rule imply that

Lst BCHnlLsu, Lut - Lsu + Lut + BCH Lsu, Lut (5.14)

We look for Zs; 2 Wh.1 such that the exponentid™ = exp,, 12 n1Lst + Zs© still satis es
Chen's rule. To this e ect, we rst de neZ on the dyadics, starting from a xed element
w 2 Wi+ 1 putting Zp1 = wand

1

Ztgl]<;tgll<+l - Zt2k+l Lok+2 Ztm Lm 2 BCHips 0! n+lLt£?< e n+1I't2k+1 k2

(5.15)
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where .1 is the canonical inclusion and we have used Proposgition 5.2.11 so that the right-hand
side is well de ned. To ease notation in the following we identifyith ,.1L where appropriate.
Note that with thisZs; 2 Wi+ for each pair of consecutive dyadics.

We now look to extend this de nition to more general pairs of dyadi¢cs2 D. Set
Yo1 B exp.qtlor + WO If s= 1, u =t} , andt] . are consecutive dyadics then we de ne
YsuB eXphiqtlsut Zsu’ Yot B expheqtlut + Zu®

and note that by eq. (5.]L5) we have

l0gn+1"Ysu? Yut® = Lsu+ Lut + BCHﬂﬂl Lsu Lut® + Zsu+ Zut

= Lsy+ Lyt + BCHglLsu; Lut® + Zst
= Lst + Zst
by eq. [5.1#), so that
Ysu? Yut = Yet:
We have also used the fact that; is an algebra morphism for tfeproduct and thaéV+1 is in

the centre o™ by Corollary| 5.2.15. Therefore, we may set

Yirem B Yimgm 2 ¥im gm 7 2 Ym g

k+1 k+17k+2 i1

so that the identity’tim;tjm ? Ytjm;t;p = Ytim;tp isvalidforany0 i< j<k 2M

Step 2. In order to have a-rough path, De nitior] 5.3]1 requires us to construct-bldlder
path with values irG™?, and for this we will use Lemnfa 5.1.6. Set

[o]
an B 2™ max  Zmm :
k=0p2m 1 K7k+l g

Then, if is a basis element iH:n.10 we have by Lemmpa 5.2.7 and €g. (5.9), $or t7, u = t;]}

k+1
andt =t} ,, that
. .. 6 O 1 0 . .O . .. 631. ..
JIBCHupi 10t Lsyy L% ] o ja ] jhsy  pij jhhus  aeij:
10 j+j=n+l ) 2S+1 p=1 g=i+1

JhLsy ajel] X Xshi el 2™ ol
k=1 k=1
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for some coe cients 1"jo 2 R, and we have a similar estimate foy; instead ofLg,. Therefore
we obtain that

BCHuns1otLsy Lut® ,, C2 ™™Y
where the constant
O o) 1 o) &1 01
. . ke
C = max |'_| ja ) J vl
10 j+j=n+l a5 25+1 kiiiikne1=1 =1

Therefore, from eq[ (5.15) we get

1 100+ 10 min+1° min+1° |
2 2 + C2

Am+1

hence there is another const&nt O such that
01

2 ji1t n+10 o:
j=0

Since we are in the regime whéire+ 1° < 1 we obtain that

supanm S
mo ™ 2 gwr

To conclude, we observe that
ey lek
L70 i
k=1
de nes a norm orH,,, thus by Lemm@ 5.2.19 there's a const@atsuch that

jiiLsiiic K Lsg® j* X20 12 XPjk = @XHXpk  c2 ™

forallk = 1;:::;nands = tjm, t= tjnjrl sinceX"is -Holder with respect to,. This and the

previous estimate provide the bound

Nmgm j 2™

jorj+l

By Chen'srule, the patN : D! G"™!de ned bthim B Yo;tjm satis es
1t Yem; Ygm © 2

thus by Lemma 5.1]6 we obtain a pagtt »0;1% ! G™1,

Remark5.3.5 Our construction depends on a nite number of choices, namely the elemvents
used to start the recursion in eg. (5.15). Di erent choices gaveriori, di erent outcomes. 4
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Corollary 5.3.6. Given 2%; 1»and a collection of -Holder pathsx' : »0; 1% | R, there exists
a -rough pathX overix;::::x9in the sense of De nitioh 5.3/ 1.

Proof. We start with the following observation: for = 1, the groupG?! H.,, is abelian,
and isomorphic to the additive group, .. Indeed, letX;Y 2 Gl andx 2 Hipe. Then, as
x=x 1+1 xbythe grading, we have that

hWX?Y:xi = hX;xi +hY;xi;

thatis,X?Y = X +Y. Moreover, inH; the producxy = 0. Therefore, we may séX;gi B x{
wherefey;:: :;eqqgis a basis oH:;0 and this path is -H6lder with respect to ;.

By Theoren| 5.3/4 there is a-Holder pathX? : »0;1% ! 1 G% ,° extendingX?® so in
particularhX?; i = x{ also. Continuing in this way we obtain succesivéltlder extensions
X3:::::XN and we seX B XN.

The following result already appeared has already been proved in the case where the underlying
Hopf algebreH is combinatorialby Curry, Ebrahimi-Fard, Manchon and Munthe-Kaas in [28].
We remark that their proof works without modi cations in our context so we have

Theorem 5.3.7.Let X be a -rough path. There exists a patf : »0;1% ! G such that
RI2 Xxi . jt s M.

Remark5.3.8 The proof of this theorem is similar to that of Theorem 5.3.4. The main di erence
is that in the case of the components of lower regularity the sum de Aiagpove does not
converge ing so this path has to be de ned some other way, and this is the content of the proof of
Theoreni5.34. 4

Remark5.3.9 In view of Theoren 5.3]7 we can replace the truncated group in De riition]5.3.1
by the full group of characters. What this means is thatrough paths are uniquely de ned
once we X the rst N levels and sincél is locally nite, this amounts to a nite number of
choices. 4

5.4 Applications

We now apply Theorein 5.3.4 to various kinds of Hopf algebras in order to link this results with
the contexts already existing in the literature.
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5.4.1 Geometric rough paths

linear span of théree monoidVI1A° generated byA. The product orH is the shu e product
t :H H! Hdenedrecursivelybylt v=vt 1=vforallv2H,wherel2 M*A°is the
unit for the monoid operation, and

laut bvwe=alut bvw+ btaut W

forallu;v 2 H anda;b 2 A, whereau andbv denote the product of the letteash with the words
u;vin M1AC,

The coproduct : H! H H is obtained bydeconcatenationf words,

®1
lay, a’=ar an 1+1 & ant+ @& a ak+1  an:
k=1
It turns out thatH; ; °is a commutative unital Hopf algebra, ahd; °is the cofree coalgebra
over the linear span dA. The antipode is the linear m&: H! H given by

Sa; a°=1 1%a,:::a;:

Finally, we recall thatH is graded by the lengtia; a,° = nand it is also connected. The
homogeneous componeriigy are spanned by the séta  a, : a 2 Ag. See Chaptér2 for
further details.

De nition p.3.7] specialises in this case geometric rough path€GRP) as de ned in [57]
(see just below for the precise de nition) and Theofem 5.3.4 coincides with [88, Theorem 6].

De nition 5.4.1. Let 2% 1»and setN B b 1c. A geometric rough patis a mapX :
;1% GN such thatX; = ", it satis es Chen's rule

Xst = Xsu? Xut

for all s;u;t 2 »0; 1¥and the analytic bouniiXs; vij . jt sj " forall v 2 Hy.

Remarkb.4.2 We note that in De nitior] 5.3]1 the patk (or ratherX = Xq) takes values in the
truncated character groi@" and not the full grou. This is in contrast with the de nition of
branched rough paths (De nitign 5.4.4 below) where paths take values on the full Butcher group.

In [57] this de nition is stated withG replacing the truncated gro@" and then it is said
that in fact this is equivalent to De nition 5.3.1 (specialisedHpby invoking an extension
theorem in [86]. The fact is that there is a confusion in terminology since what Lyons calls a
multiplicative functional refers to Chen's rule and not the character property de @gvhich
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he calls group-like elements (sée [[86, De nition 2.1.1, De nition 2.1.2]). In other words, Lyons
shows that a collection of linear maps Bl satisfying Chen's rule can be uniquely extended to

a familiy of linear functionals o keeping this identity. This is clearly weaker than what is
required for the previous equivalence to be true since the extension given by Lyons may fail to lie
in G. We correct this in Theorem5.3.7. 4

Proposition 5.4.3.A path X : ;14! GN is a geometric rough path if and onlyXf; B Xo is
a rough path in the sense of De nitipn 5.8.1.

5.4.2 Branched rough paths

Let T be the collection of all non-planar non-empty rooted trees with nodes decorated by
f1;:::;dg. Elements ofl are written a®-tuples = 1T;c® whereT is a non-planar tree with
node sefNtr and edge sefer, andc : Ny !' f  1;:::;dgis a function. Edges iir are oriented
away from the root, but this is not re ected in our graphical representation. Examples of elements

of T include the following
SHED GV \k{'/m:

For 2T writej j= #Ny for its number of nodes. Also, given an edge 1x; y° 2 Er we
setsle® = x andt!e® = y. There is a natural partial order relation N wherex y if and only
if there is a path i from the root toy containingx.

We denote by the collection of decorated rooted forests and welleienote the vector space
spanned by. There is a natural commutative and associative produ€t given by disjoint
union of forests, where the empty fordsacts as the unit. Thei is the free commutative
algebra over (the vector space spannedlbwhich is graded by 1 k=]t +]«k-
Given alabel 2 f1;:::;dgand a forest = 1 k We denote by ; kYathe tree obtained

»iYa= 1 mielfa= N6

The decorated Connes Kreimer coproduct|[24, 51] is the unique algebra morphigm!
F F such that
» Y= » Yy 1+d » UL

This coproduct admits a representation in termswié An admissible cuC of a treeT is a
non-empty subset d&r such that any path from any vertex of the tree to the root contains at most
one edge fronC; we denote byA1T° the set of all admissible cuts of the trée Any admissible
cutC containingk edges maps a trdeto a forestC'T°=T;  Tk+1 obtained by removing each

of the edges ifC. Observe that only one of the remaining tré@gs : : ;Tx+1 contains the root
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of T, which we denote byR°1T?; the forest formed by the othé&rfactors is denoted bp©iTo.
This naturally induces a map on decorated trees by considering cuts of the underlying tree, and
restriction of the decoration map to each of the rooted subTrges: ;Tx+1. Then,

~

= 1+1 + PC1 o RC1 o
C2AL ©

This, together with the counitmdp: F ! R suchthat't °=1ifand only if = 1 endowsF
with a connected graded commutative non-cocommutative bialgebra structure, hence a Hopf
algebra structure [89].

As before we denote by the linear dual oH which is an algebra via the convolution
producthX ?Y; i = hX Y; i and we denote b the set of characters dth, that is, linear
functionalsX 2 H such thathX; i = hX; ihX; i. Foreacm 2 N the nite-dimensional
vector spacél, spanned by the sé&t, of forests with at mosh nodes is a subcoalgebraldf
hence its dual is an algebra under the convolution product, and V@& le¢ the set of characters
onH,. Likewise, we denote b3 the vector space spannedbyand for eacn 2 N we denote
by B , the nite-dimensional vector space spanned by thelgatf trees with at mosh edges.

We recall the de nition of branched rough paths frgm|[51].

De nition 5.4.4. Fix > OandletN = b 1c. Abranched rough paibamapX : »0;1%! Gy
such thatXy = " for all t 2 >0; 1%4it satis es Chen's rule

Xst = Xsu? Xut

for all s;u;t 2 »0; 1¥and the analytic bounihXs; ij . jt sj/iforall 2 Hy.

As stated in Remark 5.3.3 by passing to the one parameteiXpah Xy we can see this
de nition to be equivalent to De nitiorj 5.3]1.

Remarlks.4.5 To our knowledge the branched version of the Extension Theorem Thgorein 5.3.4 is
new. However, a version Theorém 5]3.7 was already shown to hold (speci cally for the branched
case) by Gubinelli in[51] by means of his Sewing Map.

In this regard, the situation is di erent from that of geometric rough paths. The Butcher
Connes Kreimer Hopf algebra is free as an algebra over the set of trees so de ning characters
over it is signi cantly easier than in the geometric case. To de ne an eleideh it su ces to
give the value$X; i for all trees 2 T; by freeness there is a unique multiplicative extension to
all of H. This is not at all the case for geometric rough paths: the algelabove isnot free
over the linear span of words so if one is willing to de ne a character bivétere are additional
algebraic constraints that the valug§ wi on words must satisfy. See Remark 5.1.11 and the
dicussion thereatfter. 4
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As in the previous section we have

Proposition 5.4.6. A pathX : ;1% ! Gy is a branched rough path if and only if it is a rough
path in the sense of De nitign 5.3.1.

5.5 Anisotropic rough paths

We now apply our results to another class of rough paths which wamiglbtropic geometric

denote byM1A° the free monoid generated By Let! 5 : a2 A°be a sequence of real numbers
suchthaD< 4 < 1foralla, and let® = minga 4. FOrawordv=a; ax of lengthk de ne

PN
o= _2 " & _

whereng\V° = jfj . vj = agj, and observe that is additive in the sense thhtuv® = ! 1u°+1 1\
for each pair of wordsi; v 2 M*A°. Given > O, the set

L Bfv2MiA: e  Alg
is nite;if N = b ~ IcthenL Hy and

dVo1

#HL :
d 1

In analogy with Lemm@a 5.2,8, the additivity bfimplies
Lemmab5.5.1.Fix > 0. The subspackl H spanned by. is a subcoalgebra diH; ;"°.
Consequently, we will consider the dual algehta;?;" °. In this case, wele ne g, to be
the space of in nitesimal characters &h and letG, = exp'g,° As before, there is a canonical

injection :H ! H sowe suppose th&iX;vi =0forall X2 H andv<L . We gradeH
by word length and we observe that since® " 1\° we have that

SinceH is cofree over the span & for each > Othere is a unique coalgebra automorphism
:H! Hsuchthat a= =2"aforalla2 A Ina similar way as before we have that
1 0, is aone-parameter family of automorphismd-bf There are also homogeneous norms

iXj B max” 1ol jhX; vijolt v (5.16)

and
kXk = maxijHog X;vij Lt e (5.17)
V.
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These homogeneous norms are symmetric, but neither is sub-additive thus they do not generate a
metric onG,.

Signatures

In order to have a useful metric @, we considesignaturesof smooth paths. We now assume
that l1sothatA L .Letx=1x%:a2 A°be a collection of (piecewise) smooth paths, and
de neamapStx°:»0;1%! H by

1 1 1

t Sk 2

0 __-\ji Vi Vi 1 Vi,
hS'x%;vi B dXg dxg, | dxg;:
S S S

In his seminal work|[23], K. T. Chen showed tH&ix° is a multiplicative functional, that is,
Stx%t 2 G,. In particularlog Stx%; 2 g thus its restriction tA is in g, and so we can consider
S'x° also as an element &, .

Consider the metridstX;Y° = ! a2alX  Y;aij™ 2 on H,,0, where we recall thatho is
the vector space spanned By The anisotropic lengthof a smooth curve : »0;1% ! H,;
is de ned to be its length with respect to this metric and will be denoted $y°. Observe
that sinced,r X, Y°= ditX;Y°we have that,! ©°= Lgt ° We now de ne another
homogeneous norijj jjj : G, ! R4, called theanisotropic Carnot Carathéodory norirby
setting

jiXjii B inffLatx®: x2 2 C;Six%1 = Xg;
Since curve length is invariant under reparametrization in any metric space we obtain, as in [46]

Proposition 5.5.2. The in mum de ning the anisotropic Carnot Carathéodory norm is nite
and attained at some minimizing path

Proposition 5.5.3. The anisotropic Carnot Carathéodory norm is homogeneous, that is,
I Xiji = 1.

Proof. Let % be the curve such thgiXjjj = La%°. Forany > Oand wordv 2 L we have

11

S X% Vi = hS X%, Vi
=h Slﬂoo;l;\/i
=h Xw;

thusjj Xjj Lat X0 = LgR° = jjX]j. The reverse inequality is obtained by noting that
X=1 oX.

The anisotropic Carnot Carathéodory norm can also be seen to be symmetric and sub-additive,
hence it induces a left-invariant metric on G, .
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De nition 5.5.4. An anisotropic geometric -rough path with =1 5 a 2 A° is a map
X ;0 1% | G% such that 1.X;¢ = ", 2. it satis es Chen's ruleXs, ? Xyt = Xgt for all
15 u;t° 2 0;1%, and 3.jhX;vij . jt sj" Yforallv2 Lt

Proposition 5.5.5. Anisotropic geometric -rough paths are in one-to-one correspondence with
A-Holder pathsX : »0; 1% 1 1 GL, 1°.

Proof. Let X be an anisotropic geometricrough path ande a word. By de nition we have that
iXsgvij . jt si" ™, hencgXsj . jt  sj". The equivalence betwegnj andjjj jij implies that

12X X° = jiiXstjii - jt  Sj”, hencet 7! X is 1-Holder with respect to;. The other direction
follows in a similar manner.

Proceeding as in the proof of Theorgm 5].3.4 we can show

i
Theorem 5.5.6.Let* 5: a2 A°be real numbers such thag 2 '0;1°and1< o aN, and
set" = minga a. Letx®: a2 A°be a collection of real-valued paths such tix&tis 5-Hdolder.
There exists an anisotropic rough pathsuch thatXs;ai = x2  xZforalla2 A

The following property also holds: given a collection of functidgfs: a 2 A°withg? 2 C 2,
let x2 = x + g2 and denote bgX the anisotropic geometric-rough path above the path

~

O
Xt = x¢a 2 Hy:
a2A

Then, for any two such functiogsand g° we have thag®gX° = 1g + g®X.

Proof. The only di erence in the proof of this theorem is in the analytical step, because now we
have to show that

V. m.m © m~
1MYymgm €. 2

in order to apply Lemma 2 of [88]. We recall that the metric sp&&l¥ 1° only considers the
regularity of the componentsX;vi where the weight v° < 1 by the very de nition of the
homogeneous norms in egs. (5.16) gnd (5.17). Looking at the proof of Thgoreim 5.3.4 we see
that this bound comes from the bound®8H:p 10tLg,; L{},° provided by Lemma5.2[7. In this
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case we have, for awond2 L* of lengthn+ 1ands = tJr"%, u =t andt = t)*'3,

~

. 06 14060 O AN }
JIBCHup 10t LS, L% €] — jaj  jhgpv wpol) jhLgs u ol
p+q:n+1 pq 231+1 r]_:l r2:p+1
_ O 1 O . . O .V irq° \ g Gl .V 1r 50 \ rp0.
= — i it ox i % j
p+tg=n+1 bq 25+ ri=1 rp=p+l
0 1 O . .C"P . . o1 . .
— jaj ju sve ot
ptg=n+1 PG 251 ri=1 rp=p+1
l H H mt \ o V 1 00
- A
p+tg=n+1 2541
.2 mh e

This implies that at each stage we hdmekn;tmlk . 2 ™" as before, and the equivalence of norms
implies the desired bound. The rest of the proof follows through.

Now let g; ® be two collections of functions as in the statement of the theorem. We have the
identity

hggXxeysai = higXe;ai + 17 = x¢ + of + 1g%F = h»g¥+ g°XYfsai:

Since bottg®gX° andg®+ g°X are constructed iteratively by adding at each step a fun@ion
satisfying eq.5) on the dyadics, if we It andL" denote the logarithms corresponding to
g%gXe andtg®+ g°X, Lemmd5.2.]7 and the previous identity imply that

BCHp+1? Lgu; LStO = BCHn+11L2u; LSto

and sog2gX° = 1g%+ g°X.

Corollary 5.5.7. Let1x? : a 2 A° be a collection of real-valued paths such tk&t2 C =, and

let X be the anisotropic geometricrough path orG! given by Theorein 5.5.6. if< Ais a new
letter, giver0 < , < 1andxP 2 C v is another path, lefA? = A[f bgand X be the anisotropic
geometric rough path on ovér? : a 2 A% given by Theore.6. Then, the restrictionX8f
to words fromM*A° coincides withX.

Proof. If L" andL" denote the logarithms used in the constructioiX@ndX° respectively, and
v 2 M1ACis a word not containingy, the BCH formula gives

0 0 e &1
1 \' 1rq° \% %9 \% rp°

N.pNou
MBCHup4 10t Lsu1 Luto, \ ﬁ a Xy Xs 1Xt
pro=n+1 7 2541 =l r2=p+l

PBCHupns+ 10t LY, L% Vi

\" %0
Xu
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Therefore, at each step in the proof of Theofem 5.5.6 the péttasidX%" are such that for
wordsv 2 M1A° one has

hiX % vi = hXZ; vi

for all s;t 2 »0; 1Y

5.6 More on branched rough paths

5.6.1 The Hairer Kelly map

We recall the following result from [57].

Lemma 5.6.1. There exists a graded morphism of Hopf algebrasH ! T¢B ° satisfying
1o0= + .t °forall 2T, where , ;denotes the projection of ontoT*B , 1°.

Observe that since is a Hopf algebra morphism, in particular a coalgebra morphism, then

forall 2 B, since trees are primitive elementsTiftB °. In fact, from the proof in[5]7] we are
able to see that in fact, 1 is given by the recursion, 1 =1 ide ©

Example5.6.2 Here are some examples of the action adn some trees:

140 =

leaep? = 1eaOy leghpO = ea ep + ob ea
1° =12+ ea

gfb :Rg/b+-b £g+-d \C/;d+l‘ﬂ I2+-d oC Ig+-d o I ten ed I°
a a a

+ Ig ebh ea + eb Ig ea + od eC eb ea + od b oC eod + obh od eC -a:

In order to describe the image ofwe introduce the following extended labels on the nodes.
Recall that a labeled forest is a pair 1F;c® whereF is a non-planar forest: EF ' f 1;:::;dg
is a function. Anextended labelks a functiono : Ng ! N, and we call a tripléF;c;o° an
extended labelled foresive also use the notatior? in order to stress the extended label. In
particular, if °is an extended labelled forest we denote the underlying labelled forest by

De nition 5.6.3. An extended label on a forest is said todmmissiblaf
1. 0'Ng%is an interval containing., we letm = my B maxo'Ng° | j;
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2. the functioro is increasing, that isp'x° o'y° whenevex vy, and

3. foreachl j mthesetO; =fx2 Ng:o'x°= jgspans asubtreej0 °,

Note that condition (2) implies tha must be increasing in each factor since nodes from
di erent trees are not comparable, and condition (3) implies that labels must not appear twice in
di erent factors since each s€j must span aubtreeand not a subforest. We denote®y °
the collection of all the admissible extended labels on the forelitis fairly clear that for each
admissible extended label the tregdorm a partition of into m, disjoint subtrees.

Let F be a forest. FOA F a subforest we denote by
@A="fe2 Er:se® 2 Npjtle® < Nag

theboundaryof Ain F.

Lemma 5.6.4.LetF be a forestp 2 O'F° an admissible extended label &nand letT; be the
subtree spanned ; as in De nition[5.6.3. Ther@T; is an admissible cut.

Proof. Denote by the subforest oF spanned by alk 2 Nk n Ng; such thaty < x for some
y 2 Tj. If x < F then the unique path from the root xodoes not contain edges @T;.

If x 2 Fs, suppose that the unique path from the rook toontains two or more edges from
@T;. Pick any two distinct such edgeg e; 2 Er; and lety; = s'e,% y2 = s'&;,° 2 Ny;. Then,
the paths going from the root tothroughy; and throughy, form a cycle inF, which is a
contradiction.

Proposition 5.6.5. We have the following representation:

1 o= m 1 (5.18)
0201 °

In particular, each term in this expansion satisggj > 0Oandj 1j+ + ] mj=] J.

As an example, observe that the following extended labellings are admissible:

id; 2° d; 3
ela; 1%b; 2°; ic;1° elb; 3"; ic;1° elb; 2°;
a; 1° a; 1°

whereas the following are not:

1d; 5° 1d; 20 1d; 20
ela; 1°-1b;l°; ic;1° 1b;3°; ic; 10 1b;2°; @%;l":
a; 1° a; 1° a; 1°

Observe that the two terms in the rst example give exactly the terms

C.
a’

C

ool :

and e e ]
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in Examplg 5.6.2.

Proof of Proposition 5.6]5The proof is by induction on the number of edges pthe base case
being trivial (see Example 5.6.2).

Suppose identity eqd. (5.[L8) is true for all forests with at mostiges, and let be a tree
with k + 1 edges. LeA * °= At °[foeg whereA is the set of admissible cuts of and set
R® o=  P% o= 1 By de nition

~

O
10= 1pC1 o0 RC1 o
C2A 10
and by the induction hypothesis
0 0
1 0= m 1 RC1 o

C2A 1 °9201pC1 00

Given 2 A ! °ando 2 O!PCt @ there is a unique extended latgeR O! ° such that
1 = R°1 °, This extended label is de ned l§x° = 1if x 2 Ngc: o andetx® = o'x° + 1 if
X 2 N nNgc: o. Conversely, givem2 O! °we have that@, 2 A ° and the extended label
such thab'x® = e*x° 1for x2 N nN , belongs tadO1P¢t %, Therefore we have the identity

The next theorem can be seen as an improvement of Theorem 4.10 in [57].

Theorem 5.6.6.Let X be a branched -rough path, and seN = b 1c. There exists an
anisotropic geometric rough patk indexed byTy with exponents = | j, and such that
hX; 1 =hX; 19,

Proof. We construciX iteratively as follows. LeX'?” be the (anisotropic) geometric rough path
indexed byT; = fe1;:: :=agover the pathdxi B hX;«ii :i = 1;:::;d° given by Theorerj 5.5/6
(alternatively we could use have used Theorem b.3.4 since all the exponents are equal).

Suppose we have constructed anisotropic geometrics roughX&theach indexed by
over the pathsx, : 2 T ®such thaty  Xg = hXep @ h Xgt ¥ 1 % fork = L:::5n.

1n0.

This is true fom = 1 by the previous paragraph. If we [Ef; = hXs;, i andGg = hXg;; nt ©i
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for 2 T,+1 we have, by Chen's rule, that

Since is in particular a coalgebra morphism betwékln ©and'H; °we obtain the identity

Foue= XY X; © 1 o, which then, by Lemmia 5.6.1 becomes

_ 1o e, o 10 — .
Fsut_ thu xut ' n I = C':‘sut-

Therefore there is a path such thatx, X =F; Gg andthen
X ihXeg i+ Xt ]
Cjt sl
since nt °©preserves the number of nodes by Proposition 5.6.5.

We let X1 be the anisotropic geometric rough path ober : 2 Tp.1° given by
Theorenj 5.5J6 and observe that they coincidd g@nFinally notice that if is a tree then

n+10, oj = 3j jo, yjo,

i oo 1 o
t g0 LA S

=% Xt sy 01X X°

= WX

and the corresponding identity for arbitrary forests follows by multiplicativity. The anisotropic
geometric rough path sought for¥s= X"N°.

5.6.2 Modi cation

In this section we prove Theorgm 5.]1.2.

Given > 0,letN = b !canddenote b the set of functiong : Ty »0;1% ! R such
thatgt; °2 Cllandg!; 0°=Oforall 2 Ty. Itis easy to see thal is a group under
pointwise addition int, that is,

1g+gQ)l;t0= gl’t0+g0.|.1t0

As a consequence of Theorém 5|3 X° 7! gX is an action ofC on the space of anisotropic
geometric rough paths.
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We use the map in Lemmg5.6.]L to induce an action©f on branched rough paths. Given
a branched rough patk andg 2 C we letgX be the branched rough path de ned by

hgXst; | = hgXst; * ©i:

whereX is the anisotropic geometric rough path given by The5.6.6. As a simple consequence
of Theoreni 5.5J6 we obtain

Corollary 5.6.7. We haveg®gX° = 1g°+ g°X for all g;¢°2 C .

Theorem 5.6.8.The action ofC on branched -rough paths is transitive: for every pair of
branched -rough pathsX and X°there existg) 2 C such thaigX = X°

Proof. We de neg 2 C inductively by imposing the desired identity. For tree® T =
fe1;:::eagwe setg! ; t° = hx&; i h Xy 12 C sothat

hgX; i =hgX; 19
=hgX; |
=h i+gtte gt s
=S i

Suppose we have already de ngdl; °for all 2 T, for somen 1, satisfying the
constraints in the de nition o€ . For atree withj j=n+ 1we de ne
Fq=MX& i h Xt i hgXsg nt O

and then

Faur= X X% %1 hgXew gXup © ot O
=hXg, X% %1 hgXew Xy Ot O
=X X% %P hgXsy  gXa ;O
=txQ, X% i hgXsu OXus O

by the induction hypothesis. Hence thergis °: ;1% ! R such thag!; 0°= O and
gt;t0 gt =hXY i h Xsg i hgXsg nt
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whenceg 2 C 1 J; by construction

hgX; i =hgX; 19
= hgX; i +hgX; pt °
=hX i+gtt gt 2+ hgX, ot O
=hx? i:

5.6.3 The BCFP renormalisation

In [13] a di erent kind of modi cation is proposed. There, a new label 0 is considered so rough
paths branched and geometric are over paths taking valugiit. Recall that since branched
rough paths are seen as Holder paths taking values in the character group of the Connes Kreimer
Hopf algebra, we may think of them as an in nite forest series of the form

~

O
Xst=  hXgp i (5.19)
2F
where we regard as a linear functional okl'R%*1°, such thah; i = 1if = and zero

else. The aforementioned modi cation procedure then acts as a translation of thefsd8¢s
Speci cally, for each collectiorv = vp;:::;\° 2 B °*1 an operatoM, : HRY*1o |
H1RY*1o js de ned, such that for a-branched rough pathM,X%; B M1 Xs is a *N-
branched rough path.

In the particular case whexg = 0 except forv, the action of this operator can be described
in terms of an extraction/contraction nifhp : HtRY*101 HiRd*lo  HiRd*1o This map acts
on atree by extracting subforests and placing them in the left factor; the right factor is obtained
by contracting the extracted forest labelling the resulting node with 0. As an example, consider

WPO=1 Nte kae Yhreao NO+D K+l D
+ oiej \O/O'k + eiek \1/0'0 + ojek Ovio + Iij-k Ig + Iiktj Ig + \j/ik °0;

Extendingv=v 2 B toallofH as an algebra morphism it is shown that
hiMy X%, 1 = hWXg;tv id® 1 9 (5.20)

Furthermore, in this cadd, X is a -branched rough path if coe cients corresponding to trees

1In [13] this map is named but we choose to call it in order to avoid confusion with the operator de ned here.
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with label zero are required to satisfy the stronger analytical condition

J st ]
SUp —

1; (5.21)

wherej jo counts the times the label O appears irEssentially, this condition imposes that the
components corresponding to the zero label be Lipschitz on the diagenal

We now show how this setting can be recovered from the results of Sgction 5.6.2.blech
-branched rough path dR¥** satisfying(5.21) SinceM, X is again a -branched rough path,
by Theorenj 5.6]8 there exists a collection of functigBC such thagX = MyX. Moreover,
this collection is the unique one satisfying

gt t° gt P =hXgplv id® T % h Xsy | hgXsy jj 1t ©

for all 2 T*RY*1° where we have used ed. (5/20) in order to expidgX in terms of
Theorem 28 in [13] ensures that the rst term on the right-hand side@%‘id henceg is actually
in C 1] as required.

The approach of [13] is based on pre-Lie morphisms and cruciallyooméeraction property
which has been explored by [17], see in particdlar [13, Lemma 18]. The cointeraction property
can be used faime-independennodi cations, indeed note that the functionain [13] always
constant.

Let us see why this is the case. The approach df [13] is based on a cointeraction property
studied by|[15, 17, 42] between the Connes-Kreimer coproduct and aeathesction-contraction
coproduct :H! H H. The formulais the following

lid ° = M]_;gl o

Let us consider now a character2 H . If we multiply both sides byv id id° and set
M, = id° :H! H asin[13, Proposition 17], then we obtain

MV = 1MV IVIVO ,

namely M, is a coalgebra morphism dA. Then one can de ne a modi ed rough path as
vX = MyX = X M,. The crucial Chen property is still satis ed since

WX%t = Xg® =W Ky Xy©tid °

=1y Xo, Xu°M 1;31 0 =1y X v X,° 0 =11yXOo, 1 yX9,°

However this does not work if : »0;1%4! H is a time-dependent character. Indeed in this case
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we setlvX®; ;= lvg; 1d° and we obtain
WXO%;t = gt Xst® =Wt Xeu  Xytld °
=Wt Xou  Xut™™ 13t O =Tvgr Kol Vet Xyt °

but we can not conclude that this is equat®aX®, * vX9;:° . Our construction, as explained
after formula(5.3), is not purely algebraic but is based on a (non-canonical) choice of genealised
Young integrals with respect to the rough path

Moreover our transformation group, in nite-dimensional, is much larger than that nite-
dimensional group studied in [13].
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Chapter 6

Directed Polymers

6.1 Introduction

In this section we review the theory of directed polymers and their relation with the domain
of Stochastic Partial Di erential Equations (SPDEs). We summarise some of the recent
developments in the study of the Kardar Parisi Zhang (KPZ) equation and universality class.
For the general theory of SPDES the reader is referred to the book by Da Prato and Zabczyk [29].

The Kardar Parisi Zhang equation, rst de ned in/ [73], describes the evolution of a
randomly growing interface. It is the simplest non-linear local model exhibiting di usive
behaviour describing the growth of an interface applicable to processes such as vapor deposition.
The equation describing this model in one spatial dimension, known as the KPZ equation, is
given by

@h= @h+ El@ho2 + (6.1)

where is a space-time white noise, that is, a random Gaussian distribution with formal covariance
structure
E» it;x° s y°%& 1y x° 1t <% (6.2)

The parameters 0 appearing in eq[ (6] 1) describe relaxation of the interface by surface
tension and latteral growth due to material deposition, respectively. A formal computation (valid
for example when is replaced by a smooth potential) shows thattogf Cole transformation
Z t;x° = exp - h't;x° maps solutions to e.1) to solutions to the Stochastic Heat Equation

@ = @z t>Z (6.3)

Observe that contrary to the case of the KPZ equation[ eg. (6.3) is linear, hence one can
attempt to nd solutions even whenis as irregular as space-time white noise. For simplicity,
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we chose = % and = 1. It can be argued that the Hopf Cole solutib#t; x° = log*Z 1t; X is

the (only) physically meaningful solution in that it has the correct properties expected from the
situations it models.

The importance of eq[ (6.1) is that it is in some sense universal. The precise meaning of this
statement is somewhat involved, but in a very loose sense it means that there is a wide class of
physical models both discrete and continuous where some quantities of interest converge under
an appropriate scaling limit to a solution to €q. {6.1), independently of the precise structure of
the model. That is to say that for each model in a certain class, calléPBeainiversality class
depending on some parameters, one can rescale those parameters in such a way so that what one
obtains in the limit can be identi ed as a solution to the KPZ equation. Another interesting feature
of this equation in this situation is that the models exhibit non-Gaussian uctuations, meaning
that convergence to a non-trivial limit happens on a di erent scale than that of what we are used
to in the Gaussian setting, and the limiting distributions are not Gaussian in general. Take the
Central Limit Theorem as an example: in this case, if we have a colleeipnn 2 N° of i.i.d.
random variables with meanand nite variance 2, then the partial sum&, = X¢ +  + Xy,
properly rescaled as

—p—ﬁ!Z

whereZ is a normally distributed random variable with meaand variance 2. That is to say,
the non-trivial uctuations ofS, are Gaussian at the scalergf?, i.e.

S n +pﬁZ:

Now the universality statement can be made a bit more precise: it is expected that for spatial
dimensiond = 1, models belonging to the KPZ universality class have stochastic uctuations of
the form

hit;t>3xe  t+t1"3z (6.4)

where the exact distribution &f depends on the class of the initial condition but not on the
details of the model. There are 4 such types or classes of initial conditions, which are detailed
and examined i [101].

Evidence of why this should be true can be obtained by examining ho ef. (6.1) rescales. Let
h be a solution to eqf (6.1) and letit;x° = Pht %; 1x°. Space-time white noise satis es the

formal scaling relation? 2t; Ix02 212 1t:xo the details of this equality are explained in

sectior] 6.2]1 below. Then, applying the chain rule giveshhattis es
@h = 1‘ 2 Z@h +} 2z bl@h02+ btz 1%2 .
2 2 '

Since one expects the initial conditions to be locally Brownian, this fdnce% and then one
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should takez = % in order to avoid divergence of the non-linear term. Thus, one should see
non-trivial behaviour at the scale bfit;x° = 12nt  22t; 1xoor, taking =t 23, at the
scales appearing in eg. (6.4).

The rst model shown to be in the KPZ universality class waswieakly asymmetric simple
exclusion proces@VASEP). In 1999, L. Bertini and G. Giacomin showed that an appropriately
rescaled height function converges to the Hopf Cole solution to[eg} (6.1). They also show that if
one smooths out the space-time white noisgpearing on the right-hand side of €q.6.1) in
space this is essentially to keep Itd's formula by performing stochastic convolution against a
suitable smooth molli er, then the resulting solutions converge weakly to a well-de ned stochastic
process which is then identi ed as a Hopf Cole solution to the KPZ equation. More precisely,
let J be a symmetric smooth function with compact supportand fet® = h;J 1x 9 2 ct.

The, ifZ is the solution to eq[ (6] 3) with replaced with  which is a classical solution and
if h =log'Z °then by Itd's formula

@n = %@h +%»1@h 2 C v +o0u0

where the constar@@ > 0 depends only on the molli er. Observe that the non-linear term has
changed. This is a simple instanceVbick renormalisation The new non-linear term is in fact
the Wick square :@h % := :@h 2 E!@h °. Other models belonging to this class are the
ballistic aggregation modednd theEden model

Finally, we describe the connection witirected random polymer® discrete polymer path

is a nearest-neighbour up-right path o8, started at the origin. Givemm 2 N, denote by n
the collection of all polymer paths ending'at; n°; clearly this set is nite. Suppose we are given
a collectiont! ;;;%;; o of i.i.d random variables. The weight of a patl?2 1, is de ned as

n

Hmn! °B e

k=1
Let Py denote the uniform measure om,,. Given a parameter> 0, known as theénverse
temperatureof the model, de ne the discrete polymer measure

Pt ©B L e opr o
nm
where the normalizing constant
Zmn B g Fimn® ®

2 m:n

is known as thepartition function In the case = 0 the polymer measur‘néom;n corresponds
to the simple random walk and so it should exhibit di usive behaviour. On the contrary, in

131



thelimit !1 the measure concentrates on the single path maximizing the edgydy°

and this maximum value plays the role of the free energy of the polymer; this model is known
aslast passage percolationln some particular cases when the distribution of the random
weights is known, the model becomes exactly solvable, meaning that some quantities key for
the analysis become can be explicity computed: this is the case Whes a geometric or

an exponential random variable. In 2000, K. Johansson showed that under this assumption the
maximal weight chosen b‘?ﬁ;m has the conjectureéi uctuation exponent and that its properly
rescaled uctuations converge to the GUE Tracy Widom distribution [68].

Some years later, T. Seppaldinen introduced the log-Gamma polymer which xes a speci c
distribution for the weights the Gamma distribution, so teati has the log-Gamma distribution
[109]. The model exactly solvable in this case and in that same article Seppaldinen shows
that the partition function has right uctuation exponent. Later, A. Borodin, I. Corwin and D.
Remenik also proved that the random variable giving the uctuations has the GUE Tracy-Widom
distribution under the same scaling [8]. Finally, T. Alberts, K. Khanin and J. Quastel prove
that there is another interesting regime, ititermediate disorder regime&vhere the size of the
disorder is scaled alongside the polymer and where one can obtain results that are independent
of the distribution of the weight$ [3]. In particular, they show that if the inverse temperature is
rescaled as, B n ** the free energy uctuates as

logZ,n nt°+Z
whereZ is a solution to sectio@A. They proved, among other things, the following

Theorem 6.1.1(Alberts Khanin Quastel) Assume the weights ;;j%; o are i.i.d. and such
10 - . 1n 14 o 1.4
thate' °B Ee' < 1 forall > 0. Then, the rescaled partition functi@en" e er,‘;n

converges in distribution to a random variatie

In the same paper a heuristic explanation of whyrth&* scaling should be the correct one.
Using the rough approximaticef 1+ x one obtains that, after performing a suitable change of
coordinates, that

~ ~

o O
Znp 1+ n 4 xP§ = x°
i=1 x2Z
where the~are still i.i.d, centred and with variance one, &g a simple random walk under
P. Then, it follows that the right-hand side converges in distribution to a zero mean Gaussian

. . . 2
random variable with variancg—.

In a subsequent work, the same authors identi ed the limiting random variable with the
partition function of a model they called tle®ntinuum random polymd@]. This polymer
model is such that its partition function is given by the solution to the Stochastic Heat Equation
evaluated at a point. Essentially, given a realisation of the driving space-time white ndisg
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use the solution to e.3) to construct a family of measiBres/er continuous paths de ned on

»0; 1%which turn out to be singular with respect to the standard Wiener meas@e@i%or

each > Oand almost all . Nonetheless, the measu@eldxd °B P 1dx°Pid ° coincides with

the Wiener measure for = 0. Moreover, the measur&s are a.s. supported onHolder paths

forall < % and paths chosen und@r have»X¥= t as their quadratic variation. This indicates
that polymer path measu€@ should be just Brownian motion with a drift; this is more or less
true, save for the fact that the drift is not in the Cameron Martin class (hence the singularity of
Q w.r.t. Qo). Again, this is indication that there is need fenormalisation as indicated above.

In his breakthrough paper [55], M. Hairer made sense of this interpretation by using the theory of
Rough Paths (see Chapjtér 5), and explicitly computes the required renormalisation constants in
order to make sense of the (solution to the) KPZ equatiorj eqg. (6.1) as the limit of (the solutions
to) classical PDEs. The same work would lead him to build his theory of Regularity Structures
[57] a few years later, and for which he was awarded a Fields medal in 2014.

Using the same idea of the proof of Theorem 8.1.1, J. Quastel, G. Moreno-Flores and D.
Remenik showed that a similar result holds true for a related model [93], calleghiediscrete
directed polymer in a Brownian environmeirttroduced by N. O'Connell and M. Yor in 2001
[99]. In this model, the grid? is replaced with the ensemble of linRs N (hence time is
continuous but space is discrete) and polymer paths are now replaced by the paths of a Poisson
process with rate 1, starting Aat time0 and ending alN at a xed timeT > 0. The collection
of such paths is denoted byT?, and can be identi ed with the set of increasifg 1°-tuples
O0<t < <tn 1 <T. The environment is replaced by a countable collect®K : k 2 N°
of independent standard Brownian motions and the weight of a semi-discrete polymer path is
now de ned as

~

O‘ 1|0
HnTit°B Bk U 1t°
k=1

with the conventiong = 0, ty = T. Then, for a given > 0 one de nes the Gibbs measure

1 140
Pyridt° B ——e vT Tt
NT
where 1
Zy B e T qt (6.5)
! N1To

Is the partition function of the model. Then one has

Theorem 6.1.2(Quastel Moreno-Flores Remenik)AsN ! 1 the partition function

p_— p— 2. P— 104
Ne Nt+ Nx 2Y Nt XOZN - 4 1t, X0
Nt =~ NxNt

in L2, uniformly on compact sets &;1° R.
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In order to further study the properties of the solution tofeq] (6.1), I. Corwin and A. Hammond
introduced, in 2013, a multi-layer extension of the KPZ equation which they calle&kiéline
ensemblg25], mainly motivated by a similar construction made one year earlier by O'Connell
and Warren|[98], thenultilayer Stochastic Heat Equatipdiscussed in sectign 6.4.1. This
construction relies on the result by Moreno-Flores Quastel Remenik (Theprem 6.1.2), as well as
formulas and results by O'Connell [97], and G. Amir, I. Corwin and J. Quéstel [4]. The KPZ line
ensemble consists on a collection of continuous cut@s: n 2 N° such thath™ has the same
distribution as the solution to the KPZ equation, the entire ensemble has a resampling invariance
over nite intervals which they call the Brownian Gibbs property , aht¥’ when properly
rescaled are uniformly absolutely continuous with respect to Brownian bridgdslas. The
multilayer extension to the SHE introduced by O'Connell and Warren is introduced by means of
its chaos expansion

@ 1 1 I
4. . yon k LT, Kiq e
Z "1;x°B pit;x°" 1+ RISy tx° 1ds,dy® (6.6)
k=1 K10 RK
Currently, it is not known whether Corwin and Hammond's KPZ line ensemble or O'Connell and
Warren's multilayer SHE are solutions to some SPDEs although there are some guesses in the
latter case. In the same paper it is conjectured, among other things, that there is a relation between
the KPZ line ensemble and the multilayer SHE in the spirit of the Hopf Cole transformation.
To state this conjecture, Corwin and Hammond introduce a semi-discrete analogue of the
O'Connell Warren multilayer SHE which they call tH@'Connell Yor polymer partition function
line ensembl@nd state a scaling under which this process should converge to the multilayer SHE,
thus giving a multilayer analogue of Theorem 6.]L.2. In particular, this would imply that the

processesh™t;x°: n 2 N;x 2 R°and log ZZ T n2N:x2R are equal for each xed

n l°1t;xo
t O

This chapter presents a proof of this conjecture which is based on the ideas of Moreno-Flores,
Quastel and Remenik. Concretely we prove that

Theorem 6.1.3.Let Z ™1T; N° be the point-to-point-layer semi-discrete polymer partition
function and leZ ™1t; x° be the random eld de ned in e). Then,

1 2 \1e2 110 110
g "N 2 N2 aN-Net  z ™M11:00

N 14

in distribution.

Remark6.1.4 While this results were being developed in the context of this thesis, M. Nica came
up with a proof of the same result using similar techniques [95]. In fact, his approach relies in a
coupling between the driving noise in Equatipn [6.3) and the Brownian motions appearing in
Equation|[(6.5), as well as a shear transformation introduced jn [93]. 4
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Outline. In the rest of this chapter we rst review in brief detail some of the technical
prerequisites needed for stating the main results presented. In Section 6.2 we present the basic
theory of space-time white noise and its associated stochastic integration. In $edtion 6.3 we
introduce the theory of determinantal processes and state some facts about how they may be
analysed. Next, in Sectiops 6.B.2 and §.3.3 we review the construction of bridge processes of a
given stochastic process via Doolbigransform. In Sectiop 6|4 we use these facts to describe

the solutions to the Stochastic Heat Equation as a chaos expansion with respect to space-time
white noise and in Sectign 6.4.1 we present the multilayer extension of the SHE, introduced by N.
O'Connell and J. Warren [98]. Finally, in the remaining sections we state and prove the main
results of this chapter.

6.2 White noise

As stated before, space-time white noise is a Gaussian random distribution with covariance
eq. [6.2). In this section, we describe one way to make this formal. Since it will be enough for
our purposes, we restrict ourselves to the case of one spatial dimension.

Let S denote the Schwartz space of rapidly decreasing real-valued functions as de ned and
studied in Sectiop 3.2.2. Without entering into too much detail, white noise can be realised as a

continuousS-valued Gaussian process :t  0° such that

1
1

E»ht; thg iY4=t"s 1x0 1x0(dx (6.7)
1
forall ; 2 S. Here we use the notatidm™ s B minft;sg. In particular, for each 2 S
the process 7! k kLzlh t; 1 is a standard Brownian Motion. Thus, the stochastic process
can be regarded as an in nite-dimensional analogue of Brownian Motion. More generally, if
: R+ ! Sisapredictable process with respect to an appropriate Itration,se€ [101, Section

2] for further details such that

1
1

E k sk’ ds <1
0

then standard martingale techniques allow us to de ne a stochastic integral

1
t

h ¢d o (6.8)

such that 1 1
E hgdsd =E kkids: (6.9)
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Note that the right-hand side of ef]. (6.9) can be more explicitly written as

1 1
t 1

X% dxds;
0o 1

hence by abuse of notation we will write the integral in €q./(6.8) as

1 1
t

ls; XO ldS’ dxo
0 R

so eq.[(6.P) reads

2
E t 15 x° 1dsdx® = E t 15 x°2 dx ds
0 R 0 R

which is reminiscent of the classical Itd isometry property of the usual stochastic integral.
Moreover, this isometry property allows us to extend the stochastic integral to functions

2 L250;1° R;dsdx® by a density argument since the Schwartz space is deriseviith
respect to thé.2 norm. Finally, we stress that the procésd Ot _ 15 x° idsdx®is anl?
martingale with quadratic variatiorat R S x%2 dsdx again by eq9). In particular, for any

2 L250;1°  R;dsdx?, the stochastic integrdl; i is bounded in_?, hence it has an almost
sure limit.

One way to explicitly construct the process to take a collectioh ,, : n 2 N°of independent
standard real-valued Brownian Motions &g : n 2 N° an orthonormal basis df?!R; dx°.
Then, the series o)

t= n'té
n2N
de nes a Wiener process with covariance ¢q.](6.7). Hgr@enotes the Fourier transform ef.

6.2.1 Scaling and stochastic convolutions

Given > 0, b;x 2 R and a Schwartz function 2 S we denote by j(b 2 Sthe function de ned
by Prye= b1 11y xo0 Opserve that by de nitiork ;°k.= 1 2k k.forallb; > 0
andx 2 R.

Now, for given > 0andzb;x 2 R and a space-time white noisale ne a newS%valued
stochastic procegs, ®*:t  0°byh % i B h z; (%. Then,
1
Erh, % ih (P2 = 2421 g g ] 1x0 1xodx:
Hence, since Gaussian processes are characterised by their covariance kernels, we ha that
has the same distribution asvhenevetb = 1z+ 1°2. This can be written informally by saying

136



that Z1%2 1 7 o0& 1p-xoforallz > 0.

Let be a smooth compactly supported function de nedRn R, and de ne the function
tX1gyoB 1t sx YO Thestochastic convolutiohetween and is the smooth function

1

t
t:x°B  h'Xig o g (6.10)
0

By de nition the collection® 1t; x°: 1;x° 2 Ry RCis a Gaussian process with covariance

1 1
t"s

E» 1;x° 15 yoUf it LPx y®1s Py y®dsdy®
0 R

6.2.2 Chaos expansions

In this section we adopt the point of view 0f [101]. By construction the stochastic integral de ned
in eq. [6.8) is progressively measurable, so one can consider iterated stochastic integrals of the

type

1ds;dx°  2ids;dx° B 1s1: S0 X1 X020 1dsy; dx;1° 1dsp; dxo°
O<s<t R2 0 0 R2

for an appropriate class of (random) functionsR? R?! R.

Fora xedt > Oand anintegek 1, let
e B t=1t1;:::;tk°2RJ'§:O<t1< <te<t: (6.11)

In the casé = 1 we simply write .

The above construction can be iterated to de ne multiple integrals of the form
1 1

It % B s Kids; dx°
Kt° R

such that
E |k1 Oljl 0 =1 0|_21 K Rkolk:j (612)
and they spai.?t ;P°. In this way one obtains an isometry betwde# ;P° and
EL
Hi B L% Rk

k=0

where the sum is to be understood in the Hilbert space sense, i.e. it is the completion of the
algebraic direct sum with respect to the inner product on the right-hand side pfeq. (6.12).
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The above isometry implies the following characterization of elemenit$in®: for each
F 2 L% ©°there exists a sequence of functiérig: n  1°with f, 2 L2 , R"such that
a
F=EF+ Int o (6.13)
n=1

Moreover, the orthogonality of the iterated integrals implies that
a
B EWF%=  kfk?, R’ (6.14)
n=1
The representation in ed. (6]13) is called Wiener chaos decompositiofi F. Observe that by
de nition, a random variablé is in Hy if and only if the series in eq. (6.]14) converges.

6.3 Determinantal processes

In this section we summarise the principal results in the theory of determinantal processes needed
for the following sections. Generally speaking, a determinantal process is a stochastic process
whose distribution is characterised by the determinant of a xed kernel. A well studied of such

a process is the collection eigenvalues of a random matrix drawn from the Gaussian Unitary

Ensemble.

con gurationsx 2 SL”O asx = lx} ci=L:onj =10 :ko. Given two functions,  : S?!

R we de ne their convolution with respect to a measurever S by
1

voaxye Y122 izy° dz
s

rs rr+l r+1r+2 s 1Is
and de ne' ;s to be the zero function  r. Fix two con gurationsxg; Xk+1 2 S" and consider

the weight of a con guratiorx 2 SL”O to be

& S oon
| 1x0 det' rpe1 XX, . (6.15)
r=0 w
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We assume that the partition function

1
1n0 1
k 1n!ok

I 150 M14y0
Rkn k

IS non-vanishing. Here we used the notatic}jffldx° ~ kN dxie,

The correlation function is de ned to be
1n0 1 1 1 ' O an
X7 %l —m—m—/ — —— I 1x° 1dx° (6.16)
Rk 1 K 11n 10!0kzk” Rin 1% =1

where this time "1dxe  ~ L ldxio, that is, we integrate out all but the rst variable of each
vector con guration.

Let Abe then nmatrix with entriesAjj = 0;k+11xi0; xlj(+1°. It can be shown) [69] thatetA =
Z:(”o S0 our assumptions imply thatis invertible. De ne akerneK'™ : 1f1;:::;kg R%! R
by ~

@) ) )
KX sy = ' rstX Y+ ' 1™ X 1 OPA 19" gstX) Yo (6.17)
ij=1

Proposition 6.3.1. Suppose that ;.s'X; y°]  ¢s'x%bystyeforallr;s 2 f0;:::;k+ 1gand some
positive functiong; s 2 LP*R° andbys 2 L tR°. Then, there exists a constadt> 0 such that

) & &
KR kpr ko CKkKZP 2 KCrskp (6.18)

r=1s=1

Proof. First note that the hypothesis implies there exists a conBtanO such that

JKIr;x;s;y°j  DctxOobtye: (6.19)
Indeed, by de nition

.1, 100 . . . @] . i 1 i .
KIS Y J Yo+ ket X %A 195 oG YO

i;j=1
o O L
Cris™X%Dr;styo- 1 + Psk+ 11X|J(+ 1A 7% Cor 1X(l)o®
« hiFl -

= Dctxty®°

Let B = tK™1r; % s xsoof.szl. Then, by Hadamard's inequality we have that there is another
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constantC > 0 such that

Rll(”olxl;:::;xk": detB
o 1.
& & p
JK™rs % s x0)P

r=1 s=1

& &

Ckkk'p Cr_slxrop:
r=1 s=1

Hence L .
1 0O 0

R Mxq; %0 Kdxo  CkPkkZ2 P Kerskb:

r=1s=1

Next we cite a very general theorem from|[[70].

Theorem 6.3.2.Let Ag; Ag; @ @ Am A1 be subsets dR, ' 1410 A ! Ar+q be given functions
and , a measure ord\. Letx®? 2 Aj andxk+1 2 AR, | be given vectors. Far < sde ne

1

"rstX Yl = "X 21 raer+2'Z2 %000 s 18'z s 13 Y° r+1%021°: 00 5 11z s 1@
(6.20)
Consider the probability measure & A, with density given by
1 01 ' r. r+1loon 1o Mo
T det’ ry11x; DX %% =1 1dx 0 kdx™e: (6.21)
m r=0
Then, thek-point correlation function of this probability measure is givendetKnm'z; z; °°i'fj:1
where the kerneK,, is given by
¢
Kam; XS y° = ' rslX yo+ " rmtX; XimOIA loij ' 0;slxjo; y° (6.22)
ij=1

whereAj = ' gmtx%; xnoon ;.
Remark6.3.3 We observe that the kernel in eg. (6.22) is not unique. In fact, we may multiply
it by glt; y°egls, x° for an arbitrary non-zero function and obtain the same correlation function.
This is so because we can factor out each of these factors inside the determinant and they will

cancel out in the end. 4

Finally, we state the Karlin MacGregor formula [74], which can be seen as a generalisation of
the inclusion-exclusion formula for probabilities. Giver2 N, let , denote théVeyl chamber

nBfX2R":x1< < X0 (6.23)

140



Theorem 6.3.4(Karlin MacGregor). Let X be a Markov process with transition kerrgland
considem independent copieX®;:::;X" of X. Foranyt > 0andx 2 ,we have that

PxXt 2dys;:: X 2dynj > to=detpit;x;yi® [y, dyr  dyn (6.24)

where is the hitting time of the boundar@ .

6.3.1 Correlation functions

For the following we xintegersn  2andN n,andseg= N n+ 1. Consider an ensemble
of n non-intersecting Poisson proces3eandn non-intersecting Brownian bridg&8. Given
ank-tuple of indices 2 n1;noX, semi-discrete space-time points= ty; j1%: Uk = i jk° 2
R+ N and space-time pointg = 1;x1%:::;z = t; x° 2 R+ R, aterminal timel > 0
and starting and ending vectarsv 2 Ry  Nandx;y 2 R: R, de ne the functions

o #

Mg ue Toupve = Ey P P Xr=v (6.25)
‘=1 *

Finally, de ne L”o and R:(”o as the sum over all 2 n1;noX of ?”0 and I}.lno respectively. Note

that ?“0 vanishes ifu; = u; for somei , j; also note that the product inside the expectation is
non-vanishingifandonly j+ N n+i

6.3.2 Dyson's Brownian motion

Before we can present the multilayer extension of this equation, we must give a brief review of
the construction of non-intersecting Brownian bridges. Let fx 2 R": x; < < Xhgbe
then-dimensional Weyl chamber. De ne the functior” as

T1t; x; y© = det pit; x; y;° ir?jzl: (6.26)
A Brownian motion started at some poxt2 | and killed when it rst enters § is known

asDyson's Brownian motionThis is a homogeneous Markov process with transition densities
given by

™1t x; yo1 21X Y5, (6.27)

. n
wherehx® = det xiJ ! _ is the Vandermonde determinant, which is the solution to Laplace's
: L= .
equation h  0on ,with zero boundary condition.
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As the next proposition shows, it is also possible to start this process from points of the form
1x;:::;x° 2 R". This result is relatively well known but we give a proof as a way to introduce
some techniques that will be useful later. For convenience wiedetl;: : :;1° 2 R".

Proposition 6.3.5. The transition densities in e6.27)converge pointwise, as! X1, to

(j]
anolt; Xl, yO — Cn;t h1y02 plt, X, ylol n1y0

where 1
((?nln 1° 01 . a
Cnt = -1 2 I'®
« =1 5

Proof. The Harish-Chandra ltzykson Zuber formula|[62, 64] allows us to rewri(6.27)as an

integral over theJnitary GroupU?n®,
1
02 e Z Y UXU @ 4
uin®

10 1
N"14. v+ /O =
QXY=

n
toz

Cn;t hl y

for any pair ofn by n matricesX andY with spectra 1X°= x and Y°=y. In particular, we
may chooseX andY to be diagonal. In this case, the bound

QL 2
Yi X
sup e 2 trtY UXU ©2 e~

u2une i1
found in [94] shows that the integrand remains uniformly bounded b¥a?. Hence, the
point-wise convergence

Y UXU 92| 2y X%

e e

i=1

asx ! x1is enough to show the point-wise convergenc®df.

Given a nal timet > 0 and initial and nal pointsx;y 2 ,, there exists a canonical way
[19,/41] of constructing a Markovian bridge, that is to say, one can nd a probability measure
Pgéy over the space of continuous paths on the intex@al/such that under it, the canonical
processXs on Ch0;t¥Pis a Markov process and

PIYix = x0 =PI, = yo= 1

Moreover, the transition densities of this new process can be computed explicitly and are given
by
anols; X, ZOanolt S, Z, yOl

Mgzt %,y° =
S’ y anolt; X; yo n

170 (6.28)
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Another object which is useful in the study of this process is kimint correlation

functionde ned as follows. Fix anintegek 1 and a multi-indexXiy;:::;ik° 2 f1;::: ;ngk.

- o
Rkn szt X y° = i tS 2o 1 X YO (6.29)

i1;ik=1

This de nes a determinantal process, thaﬁg‘,o can be expressed as a determinant of a xed
kernelK which was explicitly calculated in [70].

Theorem 6.3.6. There exists a kern&}” such thaﬂ?;r'ol ; ;1 X; y°is given by the determinant

110 . k
R'1s 7t % y° = det Ky'1s;7; 5;2° it (6.30)

The explicit form of this kernel is given by

2 u <°

él 1 Slt uo J'Zr f 1z on 1y ZQJZ
= Hilrlg0lz  x00H:1r1y01 7000 e T

it ut 2wt Y
(6.31)

where r
t
risd =

sit <°
andH; is thej-th Hermite polynomial.

6.3.3 The Poisson bridge and the Sawtooth walk

copies ofX. It was shown in[[75] that the Vandermonde determinant is harmoniX fon the

Weyl chamber ,,. We can thus de ne the process conditioned (in the sense of Doob) to stay in
the interior |, and started from any 2 |, via its h-transform which we still denote by. We

have then, by the Karlin McGregor formula [4], that for aryy 2 |, andt > 0

Px*Xt =y

h . .
= det — . ] AV) o 6.32
” e X.Ny X ( )

In some special cases this determinant can be explicitly computed. For example, if we set
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X =11;2;:::;n°then it was shown in [75] that

Q) i
ty
Py IX = y°= cyhty®e ™

i=1

vl (6.33)

1
wherecy =t ™ ¥*2 ~ 0 il . We will also need the fact thatif =N n+1;:::;N°for
someN > nthen X

D1 O N«

Px!Xi =y °=cne "jIe 1N Xi0|: (6.34)
«=0 4=l '
In particular, from any of these two formulas we deduce that
T
Py IX;=y 0= MM\ 1 i (6.35)

iz IN ol

Givena xedN nas above, consider the shear transformation

tt X .t X

CMixo= —iiptliiiiitp
N ™ N’ PN’ ’PN

which is the multidimensional analogue of the one introduced in [93]. Mbkilayer sawtooth
processS is obtained as the image undql\lfo. It is a Markov process with transition function
given by

NIS Xt YO B PIS =y j Sg= Xx0= PestXpi = $1°

where we have introduced the notati®h= 1(PNX1 +Ns::: ;cPNx” + Nse°

Forj 2 NandO< s<tlet I,l\}'ols; t° denotehthe image of the rectqn@]e 1; )% s tYunder
' N. Foru 2 »se N:te NVihe intervalsl,l\folu° B #ﬁl pNu;pjﬁ Nu are such that

| 11015; t0 = 2 | 1jolu0-
N N '
u2>se N;te NY4

Observe that these intervals are such #¥at | if and only if x 2 I,l\{olsO. We also have that
119 = N *2foralls> 0andj 2 Z.

From this process we can build a Markovian bridge between to given con guratigh® |,
over the intervalQ; T°. That is, we can construct a probability measlaié( over paths such that

PyY18 = x°= P, Y187 = yo = 1;

the procesSis stilla Markov process undé’frx;y and moreover, its nite-dimensional distributions
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are .
1 SE

v T o Nt 16X 1t X° (6.36)
NlOIX)TyyO le

T, oyt — —
PX;[)\/|18[1 - Xl!""Stk - Xko_

where for convenience we have $gt 0, txs1 = T andXg = X, Xk+1 = Y. We consider the

rescaled distributions -
Nk'Z &1

N0 XL y° N6 X) 1t x° (6.37)
1 b i j:l

where we have takeh = 1 for simplicity. There's also an associated correlation function
%{.‘Lls; x; L u;ve B NK2 L”°11N S AP0 11 AN S %O, 1 0% oo (6.38)

fors2 11°andx 2 Rk,

Now we derive a formula for the kernel describing €q. (5.38) as a determinant. Consider a
sequence of time@ < t; < < tx < 1and con gurationsxy;:::;Xk 2 . Then, eqs](6.32)
to (6.3%) imply that in the case where we take = plﬁ;:::;p”ﬁ andby = BZ1::::50 so

thataﬁI = x and b\lN =y ,eq.(6.3F) becomes an expression of the form|eq.|(6.21) provided
that we set

yr i+l a1 glr

' . — p_ t10 1 . ' v \/0 — p_ltr+1 troy

oa';y°="Ng 1'y* W, rr+1tY° = N gt ROl (6.39)
IN G j4 1oL goN X '

N -
"ke1? j0= T Ney 1240

IN ol

for some families of monic polynomiatg; &; such thatletq;® = dede;° = j. This is so because
it is a standard fact (which follows by making row manipulations) thatan be written as
hix° = detq; 11x'°°for any such family.

Lemma6.3.7.Foreachl r <s kandxy 2R we have that

P_itg o %
! r'SlX; yO: NL
' 1915 R 0]

Proof. We prove this formula by inductionam=s r 2f1;:::;k 1g, the casen = 1being
true by de nition. For the induction step, consider
1
"rsrtX Y0 = dZ X2 s’z YO

R

=N ¥ S e i Ao

1t troz‘s Rl Yoy tsoy‘sﬂ 2‘5.
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Observe that for each xed > 0the union

g lkO
|10 = R:
k2z

Without loss of generality we may also assume that 1,2, andy 2 1 %s.1° for some
a b2 Z. Therefore,

. . P~ 1 @O poa K a b k
rs+1tX Y0 = Nlb e K alts o Usry L0
k=a
p_—_1t ob a
- N st+1 tr
1p a°
P—1tgq offs+1 X
B 1y15+1 Xl 0]

which ends the proof.

To compute the matriXA whose inverse appears in the expression for the kernel if eq} (6.17),
we have to require some structure on the polynontgakendg;. It turns out that the correct
family is given by theKrawtchouk polynomials/hich we now de ne.

GivenN 2 N andp;q 2 10;1° such thaip + q = 1, consider the binomial weight

jixe = l)\(lpxll peN X x=0;1;:::N:

with respect to the weight They may be obtained by means of their generating fundtion [114]

~

O _n
GIx;z N; p° %qnlx; N;po=11+q211 p2N X (6.40)
n=0

Note the symmetrg,!N  x;N;1  p°=1 1%gyx; N; p°® which follows from eq.[(6.40).

Lemma 6.3.8.Fixr;s> Osuch that% > pandy;n 2 f0;:::;Ng, then

~

o

s n r+s
y ery anlx; N’ pO — 1r + Soy - qn y, N,p_ :
S+r s
x=0
Proof. Consider the sum
o y N sq rp v s r+s
SrY XGix;zz N;pe =11 p2" ¥ 1+ z2——— 1541 = Is+rG y; Z N;p :

=0 S+r r+s S



On the other hand, this sum equals
O a0

n!
n=0 n: x=0 X

srY Xgnix; N; p°
so the result follows by comparing the coe cients gt on both sides.

By a similar technique we may also obtain

Lemma 6.3.9.Fix r;s> O such that:< > pandy;n 2 f0;:: :;Ng, then

o

n +
N Y gy XN x;N;pe=1r +s¥ —— ¢, N y;N;pr—S .
L Xy S+ r
x=y
Furthermore, these polynomials satisfy the orthogonality condition
o N
antX; N; pPgmtX; N; p°jix° = 0 1p®” hm (6.41)

x=0

which follows again from eq] (6.40) by a similar argument.

Lemma 6.3.10(Binomial local limit theorem) GivenN 2 N, p 2 10;1° and x 2 R let
R= oPNx+ Npe. Then

N ';l pfi1 peN X1 p1:e 3
2p

Proof. Let W be a random variable having a binomial distribution with parameteasd p
de ned on some probability spaée ;F;P°. For# 2 R, the characteristic function'#° B
Ed*W =11 p+ pd#oNis periodic sincaV 2 N so that
1
jix0 = PIW = x°= Zi 11 p+ pei#oNe X
1 p—
1 N o N

= —p— 1 + pe
2 N PR peP

e PN X gy

Taylor expanS|on up to order two of the complex exponential gives there is a fuigé#én

such thag "™ = 1+ mi §N + gi#° andg# I Oas#! 0. Asimilar argument gives that
i N _ N #o.
1 p+pen =¢ P e’
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Without loss of generality we may assumethpPN x t1 popﬁso that® 2 f0;:::;Ng.
Therefore,

1 pP—
p_. 1 N pez 1
Njee o= e e X gy | p—=e &:
p

In view of these properties we sgt = q;y; N;t;eT°ande; = gj*N  x;N;1  t° We have

Lemma 6.3.11.Foranyx;y 2 f1;:::;Ngandr;s 2 f1;:::;kg,

W i+1

Lortiiye= .W e % Y NS
) pP_1N 4+ 10117 tON XS j+1
serixjo= NAT N R g 1N RSNt

Proof. Without loss of generality we may assume tha | N 1t.r°for someb 2 Z. By de nition
1
tortiiye= dz a7 1tz
R
p_O’ tlf i+1 1, t]_ob k
= N —0 1 k N t]_ W

ol 1K

and by Lemma@ 6.3]8 this equals

b i+l
iy = PN g e
Or I’y b|1| 10| ql 1Y, » U
P A
= N 10[,19 "N;t,°:

A similar computation gives the second identity, using Lemima6.3.9.

Lemma 6.3.12.Foranyx;y 2 f1;:::;Ng,
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Proof. Using the identities from the two previous Lemmas we get

1

"okt 0= dz ' okt 2 kk+1'z )°
R

p—(Dl tk i+1 IN j 10111 t.ON k j+1
= N 550 kN J k
i 19K! 1IN kol
D k=0 N
Nt 100 1N j+190 O N _
= 1k N t.90: <1k N t.0i1kO
VTR Y A R VS G 1K NIty 1'K; NStk
le 10 1

> 1017

g N K N;1 t,°

In particular, Lemma 6.3.12 implies that the mathixs diagonal so its inverse is trivial to
compute. Hence the rescaled kernel for the Sawtooth bridge is given explicitly by

p_it, o X

KNn Ir: x; S;yO: NW:LX y

®1p—1N o1 trON % itgs ! 1t o 1yt (o] (6.42)
+ N ||1N %ro! ytsl ql k\raN,tr ql 9S1N1t5a
i=0
that is, y
N' 2ot x: La; bu® = det K sixi sixg®

In order to relate this kernel with the extended Hermite kernel appearing in eq. (6.31) we will
need the following

Lemma6.3.13.Fixx 2 Rand0O< t < 1. Then
I

. . X
N "2gig Njto! 11l o9 %H; p—
tl t°

Proof. Let Ly!x; 22 = IogGlex + Nt; z-pN; N;t° where G is the generating function in
eq. [6.40). Then, by Taylor expanding the logarithm up to second order we have

2
V4
Lnix zt9= xz  t1l tOE + ot1°;

Thus, since 0
eLle;z;t° Glx: ze N; N: to eLle;z°11 + Q11090
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2
o>

we get that
p_
GiXize N;N;t°! expxz tl
from where we deduce the result by identifying the limit as the generating function of the Hermite

polynomials.

Then we have,
Theorem 6.3.14.Forall 0 < s< tandx;y 2 R we have
sx;tye !l Ki%sx tye

e Nt soNpﬁly xo+ N1t SOK,l\lnol

Proof. A simple computation using eq. (6]42) yields
PS 100
e VTN NYOENT S Mg xit;ye = Ay + By + 0110

_ pN Nt so)Nlt SO% x°
- gt ROl

where
AN
and
By = Ol iy joieN PRe M1 N NN * PRe Nuntef N 2 Nis N 2 gh N;to
N = o NN++12 1IN gsol g 11 o ti
The local limit theorem for Poisson random variables implies that
Av! p ex :
N T P 2t 9
By Stirling's approximation we also have that
IN joeN O NN p—
N 1 N N+L 2
j=0 N™2
and an application of Lemnja 6.3]13 gives that
~ . !
0L o Aver g1 o 2 X y
P Hi p—— H p——
sl <° t11 o

1
By !
Vit 21 et 9

which is precisely eq[ (6.31) evaluated at the appropriate points.
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Finally, as a consequence we obtain

Theorem 6.3.15.The rescaled correlation functions of the sawtooth walk converge to the
correlation function of Dyson's Brownian motion; that is, for &2 N, s2  andx 2 RK the
convergence

%:‘Lls;x; N; an; bn®! Rlinols;x; 1;0;0°

holds, wherea,, = 11-pN; L ;n-pN0 andby, = 111 no-pN; D00,

Proof. Following Remark 6.3]3 we may write
7n° Nis s° lex. %° Nis §O°p n° k
NatS X Lan;bye=dete ™3 N TS K IS S)5 X0
, i;j=1

thus Theorer 6.3.14 gives the result.

6.4 The Stochastic Heat Equation

Consider the classicatultiplicative stochastic heat equatianinverse temperature> 0

NI =

@ =5 yZ + Z ; ZWxy'= xy°
where is a space-time white noise In+ 1 dimensions. We considenild solutionsto this
equation which are given by

Z itxy0= pit;x YO+ Pt syAyZ 1sxy® tdsdy® (6.43)
0 R
whereptt; x; y° = 921=t exp Aly x% 1g10%°is the heat kernel associated to sec 6.4.
Upon iteration of eq.[(6.43) it is possible to obtain a closed expression for the solution to
sectior] 6.4 as a polynomial chaos expansion,

|

O 1 1 H

Z ;X y°=pixy° 1+ K o Rls x°  KidsdxO : (6.44)
k 1 klO

In this identity we de ned the set,t°= s2RK:0< s < < s <t andR is thek-point
correlation function of the Brownian bridge betwé@nx® andt; y°,

pisy; X X1°PtSy  S1y X1 Xo%iiiptt Sk X YO,
pit; X; y° '

Rkls; X©

By using standard analysis tools, the series in6.44) can be shown to be convekgéRe in
[2] so this is a meaningful solution.
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This suggests the interpretation of the solution of se¢tion 6.4 as the partition function for the
continuum random polymer in a random environment given by the white noise

1
t

Z ;X y° = pi; X YOE: exp : 15, Xds
0

whereX is a Brownian bridge undé? (andE is the associated expectation), going frarat
timeOto y at timey. The appearance of thwick exponential exp: is, roughly, due to the
time ordering of the iterated integrals appearing in the chaos expaftsi®}) Although not
rigorous, this suggests a relationship between solutions of a SPDE and the partition function of a
polymer model (the Albert Khanin Quastel continuum random polymer): in this model, one
can think of Brownian paths as polymer paths to which one assigns the wgtig’rrt Xds, that
IS, space-time white noise acts as the environment.

The random eldZ enjoys several properties, some of which are listed below.

Theorem 6.4.1.Let > 0. The random eldZ , which is the mild solution to secti@A
satis es:

1. Z hasregularity3 in space and; in time [101],
2. Z 4;x;y° has the same distribution & t;0;y  X°,

3. Z ;0;y° has the same distribution &;* 2t;0; y°

6.4.1 The multilayer extension of the SHE

In [98] the following extension of eq| (6.44) is considered. Fix a paramete0 and de ne, for

each integen 1the random eld

& 1 1 !

Z ™1t % yo B pit;x; vy 1+ K Rll(”ols;x;t;x; yo  Kidsdxo : (6.45)
K 1 K1te Rk

We can interpret this de nition formally as follows: as in the= 1 case, the series appearing on
the right-hand side can be seen as the Wick exponential

see Section 6.3.2.

It can be shown [93, 98] that this series is convergerit?h © so this is a well de ned object,
called themultilayer extension of the (solution @B.4). It is immediate to check that'’ =7 .
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It can be shown [84] that™ has a jointly continuous version which is positive fortatt 0 and
X;y 2 R almost surely.

Sometimes, it is more useful to consider the followintgrmediate objectsDe ne
!

] 1 1
1ino 100 O 110
K Mitx;ye  Mixy© 1+ K R'sztxy® *dsdz (6.46)
K 1 K10 RK
and -
o K it x; y©
s v v 0 .
M 1t, X3y W (647)
Here, ™ is the transition kernel of a collection afBrownian bridges startig from and ending

at y, coditioned to non-intersection over the inters@lt% This will be carefully de ned in
Sectior] 6.3.2 below. The el&k ™ corresponds to a multilayer polymer where the starting and

end points are separated. Then, it can be showrkifats again well de ned|[98] and/ ™ has
a continuous version such that

M ™t x; yo 1 ez it e be (6.48)

asx! alandy! bl In[83], C.H.LunandJ. Warren further show tZat™ has a continuous
version which is a.s. positive for all> 0 andx;y 2 R.

At present it is not known whether the proceszé%0 satisfy a SPDE. However, some partial
results have been obtained in this direction.| In [98] it is proven that, at least wiseeplaced

ino

by a smooth function : Ry R"! Rthe ratiosu™ ST satisfy

ln 10
10 1 10 © ((% aa ;.o 110
@ané yut+ 2+ log- pn1®8u”; u"ioxye= ly x° (6.49)
« « -

Furthermore, the proces$ ™ the process satis es the mild equation

1 1
ino
R t

1n0 . . Q) 1n0 . . 0 . 00
hixohtye 1n 10 Rnint S Y;y°M "1sx;y°dy” dsdy;

M 1t x; yo =

wheredy® = dy  dyJandQ™ is the kernel de ned in eq[ (6.27). In view of efy. (6/48), taking
the limit in this formulation should provide us with a mild formulation of the stochastic version of

eq. [6.49), but to our knowledge this has not been carried out. Finally, we also have that for each
n 1landx 2R, the collectiontz *1t;x; ©::::Z ™it;x; ©:t  O°is aCR"-valued Markov
process||84].
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6.5 Multilayer semi-discrete directed polymers

We now describe the multilayer version of the O'Connell Yor directed polymer introduced by
Corwin and Hammond in [25]. As data we are given a countable colle&Bbn: i 2 N° of
independent standard Brownian motions de ned on a common probability spaeeP°. Given
integersl n N, and a xed timeT > O consider the set

For a xed set of timegt!:::::tho 2 1,\'1101To and a realizatioh of the Brownian motions, de ne
the Hamiltonian

oy GNL

L+ )04l 4l

Hy tth::tB B, O
i=1 j=0

and the quenched Gibbs measure

P'dt*  dt"B —lnol e IV F™ gl g
Z"T; No

where the normalizing constant

Z™T;N°B dtl  dt"e RNt

1no.
1TO
N T

(6.50)

is the polymer partition function. We also consider the annealed polymerme@rﬂﬁé\'oldt1 dt"d! °B
P'1dt!  dthopid! ©,

It is possible to identify the set:l‘olT0 with the event times of a collection of non-intersecting

eventf Xt = y gwherey B IN n+ 1;:::;N° We use this interpretation to compute the
measure of the setj\rl‘olTO.

Lemma 6.5.1.Let!TL;: :::T" be the event times of an ensembla abn-intersecting Poisson
paths starting frontl;2;:::;n° Then, conditionally on the evehKt =N n+ 1;:::;N°,
this vector is uniformly distributed onmolTO.

Proof. We rst note that ifx 2 R" is any vector such thag < < X, then the matrix

O ox n
e Sg'Xj X°
Pisx0= —2 1
! ly. 0] i Xd
Xj o X irj=1

is upper triangular with diagonal entries equaktd. Then, the Karlin McGregor formula
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implies that the probability
Py1Xs= X°=detPlsx°=¢e "

which is independent of. Next, x an indexk 2 f1;:::;ngand pick a vectok 2 R" such that
X1 < < X andxyg + 1< Xerg < < Xp. Then, the matrix

e SgXi+ ki X° n
x;°! Iix x+ g
' i;j=1

Qu's; x° =
RN

is again upper triangular with 1 diagonal entries equal ® ° and thek-th diagonal entry
equal tose 5. Again, the Karlin McGregor formula implies that the probability

Py1Xs = X + fy° = detQyls x° = se "®

which is again independent afandk. Here, fy is thek-th canonical basis vector R".

Fix avectofitl;::::tho 2 L"olTo and real numbeﬂsﬂj such that all the intervalér 1 t};t} +h‘j A
are disjoint. The probability

P« Tj 21 foralli;jjXr=y

can be rewritten as the probability that there is one event (belonging to somergbaities) in

each interval} and no events elsewhere, dividedPy 1 X1 = y °. By the preceding paragraph,

we can disregard to which path each of these events belong because the probability does not
depend on the index. Thus, as this last probability equals

nTn'N n"(.f)1 j'
e T I
j:olN 1 jo
the former equals
QO a2 Ol g o
- h; @ B rE—

«i=1 =1 j=0 J!
Hence, dividing by the product of tm% variables and taking the limit as they all go to 0, we
obtain that the density of the vectdF!;: : : ;T"is constant and equal to
21 .
T MmN n° 0 IN 1 JO' :

=0
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Corollary 6.5.2. The Lebesgue measure of the SE?1T° Is equal to

o1 _
TN n°® J!

N1

6.5.1 An heuristic argument

We now describe a heuristic argument in order to guess what the right scaling for the partition
function (6.50)should be. The argument is based in the one in the proof of thgorem 6.1.2, which
is itself based on the argument by Alberts, Khanin and Quastel described in $ecftion 6.1.

Recall the de nition of then-layer point-to-point semi-discrete directed polymer partition

function at inverse temperature> 0
1

Z'™iT;Ne = dtt  dtn e M
1’\?011-0
where the Hamiltonian &
Hitl:::.thog Hjit'
i=1
and we have de ned 5
NOv 1 N
Hit° B B+ j5t+1°
j=0

fort 2 N pTC
Making the approximatioe* 1+ x we can see tha ™ behaves, up to rst order, like

1 ~

100 1100 01 Né] 1 . . . .
ZMTNe oo+ dtt dt” Bt ,°
NCTO i=1 j=0
thus 1 L
1n0 1n0 1n0 1 n O] NO1 l _+_ . .
. L+ )O140 . 4l
CNZTTING 1+ ey dtt o dt Bt
NCT i=1 j=0

where the value of the normalising conste,lf[!‘iI =j :\TolT°j ! has been already computed in
Corollary[6.5.2. According to Lemnja 6.5.1 the integral on the right is exactly the conditional
expectation over a Poisson bridge conditioned ending atTimgpositionsy , so that
1n° 1P @] NC~)1 ! h P40 i i I
CrnZ TINe 1+ Ex B™ITT,° Xr=y (6.51)
i=1 j=0
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Consider the shear transformatiog : R+ R! R:! Rgivenby nit;x°= L;§d

N
and, forj 2 NandO < s<tletl 1510 denot%the image of the recta}ng»]e 1 j¥Ya sstYunder
N. Foru 2 >se N;te NVihe mtervalsl RET:! b— °N Nu pﬁ °N Nu are such that
1;0 Q 1j0
Iy is;to= I e

u2>se N;te NVa

and since an easy computation gi\ylgl\gls;toj =N ®21t s°we have that the processes

1
teN

Wy o= N3% e, gid i
0 N
form a countable collection of independent standard Brownian motions. Thus, replacing these
processes into ed. (6]51) we obtain that, in distribution, the rescaled partition function behaves

approximately as

C’rnN Z™T:Ne 14+ N34 0 Ex lixizi+jg XT=Y lIl,d'olsolx0 tds; dx°:
i=1 =0

Recalling the correlation function from e{j. (6/25) we see that

. PrenG N1
CPZTITNe 14 N ST ITIXY Py s dx
0 i=1 j=0 N

We also recall the Sawtooth walk and its rescaled correlation function de ned in Sectidn 6.3.3.
Since by de nition this rescaled version equals its unscaled counterpart in eachlﬁ?luhﬂa
we have HaS the union of the |nt|ervat|l\$J 1P overj = 0;: n 1 equals the interval

1

3, 1° B ls— Nsﬁé“— pNs,that

1 1

N O
n° 1% \jo 14 %y cxr vy 01 oo 130 1de (w0
CrnZ 'TEN® 1+ N , - NS X TeN XN; Yy 13;',"150)‘ ds; dx
i=1

But the probabilities de ning the correlation kernqlfl‘:; vanishes ifx < J,l\ilolsO hence the
above approximation becomes
TN

TN 1+ I‘,:ls;x;T-N;xN;yN° 1ds; dx°:
0 R

1n0 1n0
2
; N

Therefore, by the convergence in Theofem 6J3.14, we see that at least to rst order the partition
properly rescaled partition function converges to the series de ning the multilayer SHE process,
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thus obtaining Theorem 6.1.3.

6.6 Wick products

In order to turn this argument into an actual proof we have to obtain a description of the multilayer
semi-discrete partition function as a series iand prove that each of the coe cients of this
series, when properly rescaled, converges appropriately to the stochastic integral appearing in

eq. [6.4%).

To achieve this, following Moreno-Flores, Quastel and Remenik we introduce the following
modi ed version of the partition function,

1 .
Z'™TNe = ¢y at o e B (6.52)
: N jrri+l '
n T i=1 j=0
which is a polynomial in of degreentN n°, such that the coe cient of the linear part is
precisely the one appearing in €. (6.51). It is possible to show that the higher order coe cients
admit similar expressions as ordered sums of nested products of the Brownian motions, and
which can be related to the rescaleghoint correlation function of the sawtooth process just as
we have done in the previous section. Therefore, at this stage Theorem 6.3.14 still applies and
one can showthatd$! 1 the coe cient accompanying K in the expansion of the double
product in eq.[(6.52) converges to the corresponding iterated stochastic integralin €q. (6.45).
We note however that this process is complicated as it involves expanding a double product of
monomials with intertwined coe cients.

The next step is to relate the convergence of an appropriate resca]lrlfﬁ tf the convergence
of the actual partition functioZ ™. In [93] this is done by considering an auxiliary collection of
processes

. 1.4' 1jo .
Ull\llols; tO B N e N 1-4WN igto TZN 121t L 1 (653)
so that
1 . .
1n0 ﬁNlcz 1IN|- o— 1no 1 n @ ’\01 ! 1e4 1i+j01 i el o .
Cun€ 2 Z 14NN = CyN . Odt dt 1+ N Uy tj,tj+1 :
n N i=1 j=0
(6.54)

This expression has the same form of €q. (6.52) so that the same techniques apply and one can
obtain a similar convergence result over the coe cients of the polynomial appearing as the
expansion of this new double product. At this stage some additional care has to be taken since
both the coe cients of the polynomial and the degree of the polynomial itself are changing
with N. Technically, what has to be done is that one should show convergence of the individual
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coe cients plus some uniform estimates M for this to work.

But, if we observe the de nition ob)* °1s;t° we can see that actually the term appearing
above is, save for the indices, equal to

1°0 2
1+ N 1.4U1‘ols;t0: e N 1-4WN igto 7N 1-21t SO:

The random variableN 1"‘W,l\‘lols; t0is centred Gaussian with variancéN "2t <°so that
the exponential above is actually thiiéick exponentiat exp: N 1“‘W,l\;ols; t° . Moreover,
these variables are centred independent for di erent valuesaofl disjoint time intervalss; t°.
Hence, the product appearing in €q. (6.54) is the Wick product

. © 10 O H+j0ui i oo - . 1e4p 4Py 1. . . . 0

cexp:- N W, "t %®=texp:r N TUH e

jrhi+l
« i=1 j=0

—

whereH_" is the Hamiltonian in eq| (6.50). Again by independert¢g, can be seen to have a

centred Gaussian distribution with variamee® N for each | *N°. Therefore,

o 2P
. 1n0 led 4t _N
cexp: N 14H,\Tltl;:::;tno =e N THy "

and this also explains the exponential factor in pq. (6.54). As a consequence, we get that
1

N . 110
ez ZT LANGNe=  odtt o dt" cexpr N TAHRh e
N 1N0
. 1°0
On the other hand, the increment§ *s;t°® may be expressed as
1 1
1°0 t 1°0 N 1°0
Wy iste= dW u°= Ligtotu® dWj *U°
S 0
thus
= 1
N 15 N
H;to = 1)11 tj+101uod\Nl+J 10
j=0
1
N 1Xlijo
= dw " e
0

endingatN n+ 1;:::;N°attimeN. Therefore, the Wick exponential bf,l\lno is given by the
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chaos series

~ ~ ~ " #
@ k k ' O O ()( 1i.0 1j, 0
N 2 . Ex 1fxéi=j«g d\NNJ1 1G,0 dVVNJk 15,0:
k=0 KN onnok j2nN nok =0
De ne
~ ~ " #
' O O (} 1j o 1j o
JIN° B . Ex 1ins‘;=jkg XnN=Y dVVNl 15,0 d\NNk 15,0
KN ook j2nN nok =1
so that ~
10 O k
expilHy O= Py o Xn=y % KN a3 IN:
k=0
Theorem 6.6.1.For eachk 1 the convergence
1 1
N k4J1No 1 Ri(”ols;x; 1,0,0° *ids dx°
k1]_0 Rk
holds.
Proof. Using the de nition of\N,l\iols; t° we get that
1 1
N k*4J2N° = k %gr.‘ole;x; N:an;bn®  Kids dx©
(o Rk

whence the result follows after an application of Theofem 6]3.15 and astimate found in
[95].
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