J. Allen and M. Core, Draft of DAMSL: Dialog Act Markup in Several Layers, 1997.

B. Baldwin and B. Carpenter, LingPipe. Available from World Wide Web, 2003.

P. N. Bennett and J. Carbonell, Detecting action-items in e-mail, Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, 2005.

, Feature representation for effective action-item detection, ACM SIGIR Special Interest Group on Information Retrieval, 2005.

P. N. Bennett and J. Carbonell, Combining Probability-Based Rankers for Action-Item Detection, Proc. of HLT-NAACL, 2007.

A. L. Berger, V. Pietra, and S. Pietra, A maximum entropy approach to natural language processing, Computational linguistics, vol.22, issue.1, pp.39-71, 1996.

L. Besacier, Traduction automatisée d'une oeuvre littéraire: une étude pilote, Actes de Traitement Automatique du Langage Naturel (TALN), 2014.

S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural language toolkit, 2009.

H. Blanchon, Comment définir, mesurer et améliorer la qualité, l'utilisabilité et l'utilité des systèmes de TAO de l'écrit et de l'oral. Une bataille contre le bruit, l'ambiguïté, vol.380, p.p, 2004.

C. Boitet, . Huynh-cong-phap, V. Nguyen-hong-thai, and . Bellynck, The iMAG concept: multilingual access gateway to an elected Web sites with incremental quality increase through collaborative post-edition of MT pretranslations, Proc. of TALN-2010, vol.8, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00959167

H. Bunt, The DIT++ taxonomy for functional dialogue markup, Proc. of AAMAS 2009 Workshop, Towards a Standard Markup Language for Embodied Dialogue Acts, 2009.

. Carvalho, R. Vitor, and W. Cohen, Learning to extract signature and reply lines from email, Proceedings of the Conference on Email and Anti-Spam, 2004.

, On the collective classification of email speech acts, Proceedings of the 28th annual international ACM SIGIR conference on Research and Development in Information Retrieval, 2005.

C. Chang and C. Lin, LIBSVM: a library for support vector machines, ACM transactions on intelligent systems and technology (TIST), vol.2, issue.3, p.27, 2011.

. Chanier, M. Thierry, C. Lamy, M. Reffay, M. Betbeder et al., LETEC (Learning and Teaching Corpus) Simuligne. Chanier T, 2009.

Y. Chen, Convolutional neural network for sentence classification, 2015.

Y. Chen, D. Hakkani-tür, and X. He, Detecting actionable items in meetings by convolutional deep structured semantic models, Proc. of Automatic Speech Recognition and Understanding (ASRU), 2015.

W. W. Cohen, R. Vitor, T. Carvalho, and . Mitchell, Learning to Classify Email into" Speech Acts, Proc. of EMNLP, 2004.

. Corston-oliver, E. Simon, M. Ringger, R. Gamon, and . Campbell, Taskfocused summarization of email, Proc. of ACL-04 Workshop: Text Summarization Branches Out, 2004.

C. Cortes and V. Vapnik, Support vector machine, Machine learning, vol.20, issue.3, pp.273-297, 1995.

A. Couillault, A. Vinckx, H. De-mazancourt, F. Grandry, and G. Recourcé, Rapport technique Projet Gramlab: livrable SP5. 1 Use Case Eptica/Lingway: identification d'amorces de reprises, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01066450

D. Mazancourt, A. Hugues, G. Couillault, and . Recourcé, L'anonymisation, pierre d'achoppement pour le traitement automatique des courriels, Proc. of Journée d'Etude ATALA Ethique et TAL, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01089082

M. Dehghani, A. Shakery, M. Asadpour, and A. Koushkestani, A learning approach for email conversation thread reconstruction, Journal of Information Science, vol.39, issue.6, pp.846-863, 2013.

G. Fafiotte and C. Boitet, ERIMM: a platform for supporting and collecting multimodal spontaneous bilingual dialogues, Proc. of Natural Language Processing and Knowledge Engineering, 2003.

A. Falaise, D. Rouquet, D. Schwab, H. Blanchon, and C. Boitet, Ontology-driven content extraction using interlingual annotation of texts in the OMNIA project, Proceedings of the 4th International Workshop on Cross-Lingual Information Access at COLING, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00959171

A. Farzindar and D. Inkpen, Natural language processing for social media, Synthesis Lectures on Human Language Technologies, vol.8, issue.2, pp.1-166, 2015.

W. Francis, H. Nelson, and . Kucera, Brown corpus manual, vol.2, 1979.

D. Gillick, Sentence boundary detection and the problem with the U.S, Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2009.

S. Green, J. Heer, and C. D. Manning, The efficacy of human postediting for language translation, Proceedings of the SIGCHI conference on human factors in computing systems, 2013.

D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks, A closer look at skip-gram modelling, Paper read at Proceedings of the 5th international Conference on Language Resources and Evaluation (LREC-2006), 2006.

S. Handschuh, K. Möller, and T. Groza, The NEPOMUK project-on the way to the social semantic desktop, Proc. of I-Semantics' 07, 2007.

N. Hernandez and S. Salim, Exploiting the human computational effort dedicated to message reply formatting for training discursive email segmenters, Proceedings of LAW VIII-The 8th Linguistic Annotation Workshop, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117477

N. Hernandez, S. Salim, and E. Clouet, Ubuntu-fr: A Large and Open Corpus for Multi-modal Analysis of Online Written Conversations, Proc. of LREC2016, 2016.

C. Huynh, Des suites de test pour la TA à un système d'exploitation de corpus alignés de documents et métadocuments multilingues, multiannotés et multimédia, 2010.

C. Huynh, C. Boitet, and H. Blanchon, SECTra_w. 1: an Online Collaborative System for Evaluating, Post-editing and Presenting MT Translation Corpora, Proc. of LREC, 2008.

T. Jackson, R. Dawson, and D. Wilson, The cost of email interruption, Journal of Systems and Information Technology, vol.5, issue.1, pp.81-92, 2001.

M. Jeong, C. Lin, and G. Lee, Semi-supervised speech act recognition in emails and forums, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol.3, 2009.

J. Jovanovic, G. Dragan, and V. Devedzic, TANGRAM: An ontologybased learning environment for intelligent information systems, Proc. of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, 2005.

A. K. Kalia, R. Hamid, C. Motahari-nezhad, M. P. Bartolini, and . Singh, Monitoring commitments in people-driven service engagements. Paper read at Services Computing (SCC), IEEE, 2013.

R. Kalitvianski, V. Bellynck, and C. Boitet, Multilingual Access to Educational Material Through Contributive Post-editing of MT Pre-translations by Foreign Students, Proc. of International Conference on Web-Based Learning, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430841

, Un outil de segmentation de courriels imbriqués en courriels individuels et en phrases, Actes de Atelier Fouille des Données Complexes @ EGC-2017, 2017.

R. Kalitvianski, C. Boitet, and V. Bellynck, Collaborative ComputerAssisted Translation Applied to Pedagogical Documents and Literary Works, 2012.

R. Kalitvianski, L. Wang, V. Bellynck, and C. Boitet, An Aligned French-Chinese corpus of 10K segments from university educational material, Proc. of NLPTEA 2016, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430828

B. Klimt and Y. Yang, The Enron corpus: A new dataset for email classification research, Machine learning: ECML, pp.217-226, 2004.

P. Koehn, H. Hoang, A. Birch, C. Callison-burch, M. Federico et al., Moses: Open source toolkit for statistical machine translation, Proceedings of the 45th annual meeting of the ACL, interactive poster and demonstration session, 2007.

A. Lampert, D. Breese, C. Paris, and R. Dale, A Tool for Capturing Context-Sensitive Judgements in Email Data, CSIRO ICT Centre Technical Report (EP092057), 2009.

A. Lampert, R. Dale, and C. Paris, The nature of requests and commitments in email messages, Proceedings of the AAAI Workshop on Enhanced Messaging, 2008.

, Requests and commitments in email are more complex than you think: Eight reasons to be cautious, Proc. of Australasian Language Technology Association Workshop, 2008.

, Segmenting email message text into zones, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol.2, 2009.

A. Lampert, R. Dale, and C. Paris, Detecting emails containing requests for action, Proc. of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010.

A. Lampert, C. Paris, and R. Dale, Can requests-for-action and commitments-to-act be reliably identified in email messages, Proceedings of the 12th Australasian Document Computing Symposium, 2007.

A. Lampert and . Thomas, Making email actionable: the identification and use of obligation acts in workplace email, 2014.

A. Lascarides and N. Asher, Segmented discourse representation theory: Dynamic semantics with discourse structure, Computing meaning, 2008.
DOI : 10.1007/978-1-4020-5958-2_5

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard et al., The Standford CoreNLP Natural Language Processing Toolkit. Proc. of ACL, 2014.
DOI : 10.3115/v1/p14-5010

URL : https://doi.org/10.3115/v1/p14-5010

L. Maranget, On using HEVEA, a fast LATEX to html translator. Eutypon, proceedings of the Greek TeX friends group, 2003.

M. P. Marcus, B. Mary-ann-marcinkiewicz, and . Santorini, Building a large annotated corpus of English: The Penn Treebank, Computational linguistics, vol.19, issue.2, pp.313-330, 1993.

C. Mattmann and J. Zitting, Tika in action, 2011.

W. Styler, The EnronSent Corpus, 2011.

J. Tang, H. Li, Y. Cao, and Z. Tang, Email data cleaning, Proc. of Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, 2005.

D. Tarasowa, A. Khalili, and S. Auer, Crowdlearn: Crowd-sourcing the creation of highly-structured e-learning content, International Journal of Engineering Pedagogy (iJEP), vol.5, issue.4, pp.47-54, 2015.

M. Tavafi, Y. Mehdad, R. Shafiq, G. Joty, R. Carenini et al., Dialogue Act Recognition in Synchronous and Asynchronous Conversations, Proc. of SIGDIAL Conference, 2013.

M. Tomokiyo, Analyse discursive de dialogues oraux en français, japonais et anglais: élaboration et validation par anlayse comparative de corpus réels, 2000.

G. Tur, A. Stolcke, L. Voss, J. Dowding, B. Favre et al., The CALO meeting speech recognition and understanding system, Proc. of Spoken Language Technology Workshop, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01194293

H. Uchida, M. Zhu, and T. G. Senta, UNL: Universal Networking Language: UNDL Foundation, 2006.

J. Ulrich, G. Murray, and G. Carenini, A publicly available annotated corpus for supervised email summarization, Proc. of AAAI Email-2008 Workshop, 2008.

, Token pt = tokensByPling.get(j)

, de") || (Objects.equals(pt.getForm().toLowerCase(), "d'"))) { if ((j > 0 && (Objects.equals(tokensByPling.get(j-1) .getForm() .toLowerCase(

. Objects, equals(tokensByPling.get(j-1).getForm().toLowerCase(), "remercions") ||

, remercie"))) || (j > 1 && Objects.equals(tokensByPling.get(j-1) .getForm() .toLowerCase(), "donc") && (Objects.equals(tokensByPling.get(j-2) .getForm() .toLowerCase(), "merci") || Objects.equals(tokensByPling.get(j-2) .getForm() .toLowerCase(, Objects.equals(tokensByPling.get(j-1).getForm().toLowerCase(

, VINF") || Objects.equals(tokensByPling.get(k).getPos(, if (Objects.equals(tokensByPling.get(k).getPos(

, Le tableau ci-dessous montre des règles ajoutées à P-LING pour extraire certaines expressions temporelles comme des dates limites. Cela revient à ajouter l'attribut Max à l'entité nommée Time

, else if (tokensMatchLookahead(sentence, idToken+1, dernierDelai) && sentence.getToken(idToken).getType().contains, Time")){ Candidate candidate=new Candidate(

, Time>expression")

, candidate.setType(sentence.getToken(idToken).getType()+">Max")

, sentence.getToken(idToken).addCandidate(candidate)

, Phrase phrase=new Phrase(

, phrase.setId(idToken

, Phrase phrase=new Phrase(

, phrase.setId(idToken

, sentence.getToken(idToken+2).addPhrase(phrase)

}. ,

, sentence, idToken, dIci) || (tokensMatchLookbehind(sentence, idToken, dIciLe) || tokensMatchLookbehind(sentence, idToken, dIciALa)) && (sentence.getToken(idToken+1).getType().contains, Time")))){ Candidate candidate=new Candidate(

, Time>expression")

, candidate.setType(sentence.getToken(idToken+1).getType()+">Max")

, sentence.getToken(idToken+1).addCandidate(candidate)

, Phrase phrase=new Phrase(

, phrase.setId(idToken

, sentence.getToken(idToken+1).addPhrase(phrase)

, equals("avant") && (sentence.getToken(idToken+1).getForm().toLowerCase().matches("le|la") && sentence.getToken(idToken+2).getType().contains, Time"))){ Candidate candidate=new Candidate(

, Time>expression")

, candidate.setType(sentence.getToken(idToken+2).getType()+">Max")

, sentence.getToken(idToken+2).addCandidate(candidate)

, Phrase phrase=new Phrase(

, phrase.setId(idToken

, sentence.getToken(idToken+2).addPhrase(phrase)