
HAL Id: tel-01892395
https://theses.hal.science/tel-01892395

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-scheduling for large-scale applications : memory and
resilience
Loïc Pottier

To cite this version:
Loïc Pottier. Co-scheduling for large-scale applications : memory and resilience. Distributed, Parallel,
and Cluster Computing [cs.DC]. Université de Lyon, 2018. English. �NNT : 2018LYSEN039�. �tel-
01892395�

https://theses.hal.science/tel-01892395
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2018LYSEN039

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

présentée et soutenue publiquement le 18/09/2018, par :

Loïc POTTIER

Co-scheduling for large-scale applications:
memory and resilience

Ordonnancement concurrent d’applications à grande
échelle: mémoire et résilience

Devant le jury composé de :

Anne BENOIT Maître de Conférences, ENS de Lyon Directrice de thèse
Élisabeth BRUNET Maître de Conférences, Télécom SudParis Examinatrice
Michel DAYDÉ Professeur, IRIT, Toulouse Examinateur
Emmanuel JEANNOT Directeur de recherche, Inria, Bordeaux Rapporteur
Pierre MANNEBACK Professeur, Polytech-Mons (Belgique) Rapporteur
Yves ROBERT Professeur, ENS de Lyon Co-encadrant de thèse

ii

Introduction

In 2005, computational science has been established as the third pillar of science by the President’s
Information Technology Advisory Committee [100]. Computational science has become a critical tool
for a better understanding of major scientific challenges in numerous areas, such as weather forecasting,
climate prediction, artificial intelligence or nuclear programs. The interest of computational science is
mainly driven by the processing capabilities of supercomputers, or high performance computing (HPC)
systems, running large-scale simulations. The processing capability of a supercomputer is defined as
the number of floating point operations (FLOP) it can achieve in one second. In the example of weather
forecasting, the higher the processing capability, the more accurate the model predictions. Developing
more and more powerful HPC systems is an active research area [2, 37]. The most powerful supercom-
puters are currently running at Petascale (1015 floating point operation per second) [44]. In parallel,
several governments or institutions are now targeting the Exascale (i.e., 1018 floating point operation
per second!), and the America’s first Exascale supercomputer is expected for 2021. Recently, in January
2018, the European Commission unveiled a plan to invest one billion euros1 into a world-class Euro-
pean supercomputers and into research for future Exascale systems. Future Exascale systems will be
massively parallel, composed of hundreds of thousands processing units [2, 37, 99]. Such systems raise
a lot of challenging problems about their feasibility; hence new scientific breakthroughs are needed,
both on the hardware side (power efficient and reliable architectures) and on the software side (scalable
algorithms and software systems).

Two studies [2, 99] pointed out major issues on the road of the Exascale computing, as diverse as:
power efficiency, scalable algorithms and software, resilience and correctness, using emerging archi-
tectures and massive concurrency. This thesis deals with two prominent problems in this list, namely,
concurrency and resilience at scale. In the last part, we also start to explore the problem of scheduling
workflows on emerging architectures, like the Xeon Phi Knights Landing.

A classic scheduling strategy for HPC platforms is to execute each application on a dedicated node.
With the recent advent of many-core architectures such as chip multiprocessors (CMP), the number of
processing units by node is constantly increasing. Future Exascale platforms are expected to exhibit a
thousand times more concurrency than current Petascale systems [2]. Unless the application that runs
alone on a dedicated node is perfectly parallel, the efficiency of such massively concurrent nodes will
decrease. In 1967, Amdahl established a law to model the execution time of parallel applications [3].
According to Amdahl’s law, an application will execute, on p processors, in time

s× tseq + (1− s) tseq
p
,

where s is the fraction of sequential time and tseq is the sequential execution time. A perfectly parallel
application has a sequential fraction s equal to zero; hence a perfectly parallel application has an exe-
cution time tseq/p. In practice, because of the overhead due to communications and to the inherently

1http://europa.eu/rapid/press-release_IP-18-64_en.htm

iii

http://europa.eu/rapid/press-release_IP-18-64_en.htm

iv

sequential fraction of the application s, the parallel execution time is larger than tseq/p. According
many studies [2, 99], compute nodes at Exascale will be massively parallel, in other words, p will be
large. Under this assumption, the execution time will be bounded by the sequential fraction s (and also
by communication overheads, not taken into account by Amdahl’s law). Several solutions are available:
(i) develop scalable algorithms in order to reduce the sequential fraction, or (ii) use a co-scheduling
approach to improve node efficiency. In this manuscript, we focus on the second solution. The main
idea of co-scheduling is to execute several applications concurrently, rather than in sequence, with the
objective to increase the node efficiency. When multiple application are concurrently scheduled, or co-
scheduled, onto a platform, they will compete for shared resources, as cache memories or network and
I/O links, and create interferences, or co-run degradations. The main difficulty of co-scheduling is to
decide which applications to execute concurrently in order to reduce potential interferences and how
many resources should be assigned to each of them. We investigate this challenging problem, focusing
on interferences in the last-level cache (LLC), in Chapters 2 and 3.

While massive concurrency is a major challenge for Exascale, another critical challenge is the re-
liability of future Exascale platforms. In February 2014, the Advanced Scientific Computing Advisory
Committee (ASCAC) established a list of ten research challenges [99], resilience and correctness is one
them. The resilience is defined by the ASCAC as “ensuring correct scientific computation in face of
faults, reproducibility and algorithm verification challenges”. The mean time between failures (MTBF)
of the upcoming generations of Exascale systems is expected to be a major issue [26, 27]. Let µind be
the MTBF of an individual processor. Then, the MTBF of a platform with p identical processors is equal
to [58, Proposition 1.2]:

µp = µind
p
.

We can clearly observe how the resilience problem is directly linked to the increasing level of concur-
rency (when p increases). In Chapter 4, we study how resilience can impact co-scheduling performance
and how faults can be taken into account when we want to minimize the maximum completion time of
several co-scheduled applications.

Future Exascale systems will probably rely on new massively parallel architectures, such as many-
core systems. Recently, many TOP500 supercomputers [44] use many-core architectures to increase
their processing capabilities, such as the Intel Knights Landing (KNL). Some of these new architec-
tures exhibit also a new high-bandwidth on-package memory, and this new memory adds a new level
in the memory hierarchy. To exploit at their full potential the future Exascale platforms, building per-
formance models taking into account these new memories is essential. We further investigate this topic
in Chapter 5.

The rest of the thesis is organized as follows. In Chapter 1, we thoroughly review the context of
this thesis from parallel architectures to scheduling models, with the different problematics and contri-
butions associated. In Chapter 2, we start the study of co-scheduling applications sharing a last-level
cache. In Chapter 3, we assess the interest of cache partitioning when co-scheduling HPC workloads,
through an experimental campaign on a multiprocessor cache-partitioned system. We continue to ex-
plore co-scheduling problems in Chapter 4, where we focus on co-scheduling algorithms in a failure-
prone context. Indeed, failures can create severe imbalanced scheduled. By redistributing processors, we
show how to minimize the execution time of a given co-schedule. Finally, in Chapter 5, we are interested
into workflow scheduling and memory management on new deep-memory many-core architectures. The
main contributions of each chapter are summarized below.

v

Chapter 1: Context and contributions

In this preliminary chapter, we introduce the global context of this thesis and we detail each contribution.
Parallel architectures, at the core of actual and future supercomputers, exhibit an increasing number
of processing units (or cores). HPC applications are expected to take advantage of that amount of
available concurrency. Such applications can easily be represented as a task graph [39], also called a
workflow, where each task represents a simple computation, as for instance the multiplication of two
matrix tiles [22]. The programmers write the application and then it is the role of the scheduler to
optimize the execution of this application on a given architecture by assigning tasks to cores. With
the massive concurrency offered by several recent parallel architectures [31, 35, 61], multiple tasks
are likely to run concurrently on these platforms. The idea behind co-scheduling is to concurrently
execute applications rather than in sequence, and to use the whole platform for each task. But, in
these recent parallel architectures, some functionalities, like caches, memory controllers or buses, are
shared between compute cores. This may lead to performance degradation when multiple tasks compete
for these shared resources, these potential contention must be taken into account to obtain good co-
scheduling performance.

Chapter 2: Co-scheduling applications on cache-partitioned systems [W1, J1]

In this chapter, we study the scheduling problem of minimizing the completion time of several con-
current applications running on cache-partitioned architecture. Cache-partitioned architectures allow
subsections of the shared last-level cache (LLC) to be exclusively reserved for some applications. This
technique dramatically limits interactions between applications that are concurrently executing on a
multi-core machine. Consider n applications that execute concurrently, with the objective to minimize
the makespan, defined as the maximum completion time of the n applications. Key scheduling questions
are: (i) which proportion of cache and (ii) how many processors should be given to each application?
In this chapter, we provide answers to (i) and (ii) for Amdahl applications. Even though the problem is
shown to be NP-complete, we give key elements to determine the subset of applications that should share
the LLC (while remaining ones only use their smaller private cache). Building upon these results, we
design efficient heuristics for Amdahl applications. Extensive simulations demonstrate the usefulness of
co-scheduling when our efficient cache partitioning strategies are deployed.

Chapter 3: Co-scheduling HPC workloads on cache-partitioned CMP platforms [C3]

Based on the results obtained in Chapter 2, we pursue the study of co-scheduling algorithms with cache
partitioning techniques but, this time, using a real cache-partitioned multiprocessor to assess the interest
of cache partitioning on such platforms. In this chapter, we focus on the interferences in the last level
of cache (LLC) and use the Cache Allocation Technology (CAT) recently provided by Intel to partition
the LLC and give each co-scheduled application their own cache area. We consider m iterative HPC
applications running concurrently, and answer the following questions: (i) how to precisely model the
behavior of these applications on the cache partitioned platform? and (ii) how many cores and cache
fractions should be assigned to each application to maximize the platform efficiency? Here, platform
efficiency is defined as maximizing the performance either globally, or as guaranteeing a fixed ratio of
iterations per second for each application. Through extensive experiments using CAT, we demonstrate
the impact of cache partitioning when multiple HPC application are co-scheduled onto CMP platforms.

vi

Chapter 4: Resilient co-scheduling of malleable applications [C1, B1, J2]

After focusing on memory in Chapters 2 and 3, we now discuss how a failure-prone framework im-
pacts co-scheduling performance. Indeed, the benefits of co-scheduling several applications have been
demonstrated in a fault-free context, both in terms of performance and energy savings. However, large-
scale computer systems are confronted to frequent failures, and resilience techniques must be employed
for large applications to execute efficiently. Indeed, failures may create severe imbalance between ap-
plications, and significantly degrade performance. In this chapter, we aim at minimizing the expected
completion time of a set of co-scheduled applications. We propose to redistribute the resources assigned
to each application upon the striking of failures, and upon the completion of some applications, in order
to achieve this goal. First, we introduce a formal model and establish complexity results. The problem is
NP-complete for malleable applications, even in a fault-free context. Therefore, we design polynomial-
time heuristics that perform redistributions and account for processor failures. A fault simulator is used
to perform extensive simulations that demonstrate the usefulness of redistribution and the performance
of the proposed heuristics.

Chapter 5: A performance model to execute workflows on high-bandwidth-memory
architectures [C2]

This chapter presents a realistic performance model to execute scientific workflows on high-bandwidth-
memory architectures such as the Intel Knights Landing. We provide a detailed analysis of the execution
time on such platforms, taking into account transfers from both fast and slow memory and their overlap
with computations. We discuss several scheduling and mapping strategies: not only tasks must be
assigned to computing resources, but also one has to decide which fraction of input and output data will
reside in fast memory and which will have to stay in slow memory. We use extensive simulations to
assess the impact of the mapping strategies on performance. We also conduct experiments for a simple
1D Gauss-Seidel kernel, which assess the accuracy of the model and further demonstrate the importance
of a tuned memory management. Our model and results lay the foundations for further studies and
experiments on dual-memory systems.

Contents

Introduction iii

French summary xi

1 Context and contributions 1
1.1 Context . 1

1.1.1 Parallel architectures . 2
1.1.2 Scratchpad memory systems . 3
1.1.3 Concurrent scheduling . 4
1.1.4 Cache contention models . 5

1.2 Problematics and contributions . 7
1.2.1 Co-scheduling with cache partitioning . 7
1.2.2 Co-scheduling with resilience . 8
1.2.3 Scheduling for emerging parallel architectures 8

2 Co-scheduling applications on cache-partitioned systems 9
2.1 Related work . 10

2.1.1 Co-scheduling and interferences . 10
2.1.2 Cache partitioning techniques . 11

2.2 Model . 12
2.2.1 Architecture . 12
2.2.2 Applications . 12
2.2.3 Scheduling problem . 14

2.3 Complexity results . 14
2.3.1 All applications complete at the same time . 14
2.3.2 Intractability . 15
2.3.3 Dominance results for perfectly parallel applications 17
2.3.4 Extension of the dominance criterion for Amdahl applications 20

2.4 Heuristics . 21
2.4.1 Structure of heuristics . 21
2.4.2 Computing a dominant partition . 22
2.4.3 Integer processor assignment . 23

2.5 Simulations . 23
2.5.1 Simulation settings . 24
2.5.2 Comparison of the heuristics . 25
2.5.3 Gain with co-scheduling . 26
2.5.4 With an integer number of processors . 32

vii

viii CONTENTS

2.6 Conclusion . 36

3 Co-scheduling HPC workloads on cache-partitioned CMP platforms 37
3.1 Model and optimization problem . 38

3.1.1 Computations ti(pi) . 38
3.1.2 Cache misses effect hi(xi) . 38
3.1.3 Optimization problem . 39

3.2 Scheduling strategies . 40
3.2.1 Optimal solution to COSCHED-CACHEPART 40
3.2.2 Equal-resource assignment . 41
3.2.3 Impact of cache allocation . 41

3.3 Experimental setup . 42
3.3.1 Platform and applications . 42
3.3.2 Cache Allocation Technology . 42

3.4 Accuracy of the model . 43
3.4.1 Experimental protocol . 44
3.4.2 Accuracy of the Power Law . 44
3.4.3 Accuracy of the execution time . 45

3.5 Results . 46
3.5.1 Experimental protocol . 46
3.5.2 Impact of cache partitioning . 47
3.5.3 Co-scheduling results with two applications . 49
3.5.4 Co-scheduling results with three applications 56

3.6 Conclusion . 60

4 Resilient co-scheduling of malleable applications 61
4.1 Related work . 62

4.1.1 Parallel application models . 62
4.1.2 Resilience . 63
4.1.3 Co-scheduling algorithms . 63

4.2 Framework . 63
4.2.1 Fault model . 63
4.2.2 Execution time without redistribution . 64
4.2.3 Redistributing processors . 65
4.2.4 Objective function . 69

4.3 Complexity results . 70
4.3.1 Without redistributions . 70
4.3.2 With redistributions . 71

4.4 Heuristics . 74
4.4.1 General structure . 74
4.4.2 Redistribution when an application ends . 74
4.4.3 Redistribution when there is a failure . 78

4.5 Simulations . 78
4.5.1 Simulation settings . 78
4.5.2 Results . 81

4.6 Conclusion . 86

CONTENTS ix

5 A performance model to execute workflows on high-bandwidth-memory architectures 87
5.1 Related work . 88
5.2 Model . 89

5.2.1 Architecture . 89
5.2.2 Application . 89
5.2.3 Scheduling constraints . 90
5.2.4 Execution time . 91
5.2.5 Objective . 93

5.3 Complexity for linear chains . 93
5.4 Heuristics . 94

5.4.1 Makespan heuristics . 94
5.4.2 Scheduling policies ϕ . 95
5.4.3 Memory mapping policies τ . 96
5.4.4 Baseline heuristics . 98

5.5 Simulations . 98
5.5.1 Simulation settings . 98
5.5.2 Results . 99

5.6 Experiments . 106
5.6.1 Experimental settings . 106
5.6.2 Results . 107

5.7 Conclusion . 108

Conclusion 109

Bibliography 113

Publications 121

x CONTENTS

French summary

En 2005, les sciences numériques ont été définies comme le troisième pilier des sciences par le « Pres-
ident’s Information Technology Advisory Committee » [100]. Les sciences numériques sont devenues
un outil essentiel pour une meilleure compréhension de nombreux défis scientifiques majeurs tels que, la
météorologie, la prédiction climatique, l’intelligence artificielle, ou les programmes nucléaires. L’intérêt
des sciences numériques réside principalement dans la puissance de calcul des supercalculateurs, ou
high performance computing (HPC), exécutant des simulations à grande échelle. La puissance de calcul
d’un supercalculateur est définie comme: le nombre d’opérations en virgule flottante (FLOP) qu’il peut
effectuer en une seconde. En reprenant l’exemple de la prédictions météorologique, plus un supercal-
culateur est puissant, plus les prédictions du modèle météorologique seront précises. Développer des
supercalculateurs toujours plus puissants est une thématique de recherche très active [2, 37]. À l’heure
actuelle, les plus puissants supercalculateurs ont une puissance petaflopique (1015 opérations en virgule
flottante par seconde) [44]. En parallèle, plusieurs gouvernements et institutions de recherche commen-
cent à planifier les futurs supercalculateurs exaflopiques (i.e., 1018 opérations en virgule flottante par
seconde!), le premier supercalculateur américain est prévu pour l’horizon 2021. Récemment, en janvier
2018, la Commission Européenne a révélé un plan d’investissement d’un milliard d’euros2 pour financer
des supercalculateurs européens de classe mondiale et pour financer la recherche sur un futur système
exaflopique. Les futurs supercalculateurs de classe exaflopique seront massivement parallèle, composés
de centaines de milliers d’unités de traitements [2, 37, 99]. De tels systèmes soulèvent de nombreux
défis de faisabilité; cela requiert de nouveaux progrès scientifiques, au niveau matériel (architectures
efficaces énergétiquement et tolérantes aux pannes) ainsi qu’au niveau logiciel (algorithmes passant à
l’échelle et systèmes d’exploitations adaptés).

Deux études [2, 99] dressent une liste des problèmes les plus importants sur la route des calcula-
teurs exaflopiques, aussi divers que: efficacité énergique, algorithmes et systèmes passant à l’échelle,
résilience, utilisation de nouvelles architectures, et une concurrence massive. Cette thèse traite de deux
problèmes majeurs présents dans cette liste, la concurrence et la résilience à l’échelle. Dans la dernière
partie de cette thèse, nous explorons également le problème de l’ordonnancement d’un graphe de tâches
sur des nouvelles architectures, comme les Xeon Phi Knights Landing.

Une stratégie classique d’ordonnancement pour les systèmes HPC est d’exécuter chaque application
sur un nœud dédié. Avec le récent engouement pour les architectures massivement parallèles, type
many-core, le nombre d’unités de traitement ne cesse d’augmenter. Les futurs systèmes exaflopiques
proposeront un millier de fois plus de concurrence que les systèmes petaflopiques actuels [2]. À moins
que l’application s’exécutant seule sur le nœud de calcul ne soit parfaitement parallèle, l’efficacité d’un
nœud massivement parallèle va décroître. En 1967, Amdahl propose une loi pour modéliser le temps
d’exécution d’une application parallèle [3]. Selon la loi d’Amdahl, une application qui s’exécutera sur

2http://europa.eu/rapid/press-release_IP-18-64_en.htm

xi

http://europa.eu/rapid/press-release_IP-18-64_en.htm

xii CONTENTS

p processeurs mettra un temps

s tseq + (1− s) tseq
p
,

où s est la fraction de temps séquentielle et tseq est le temps d’exécution séquentiel. Une application
parfaitement parallèle a une fraction séquentielle s égale à zéro; par conséquent une application parfaite-
ment parallèle a un temps d’exécution tseq/p. En pratique, à cause du surcoût dû aux communications
et à la fraction séquentielle intrinsèque de l’application s, le temps d’exécution parallèle réel est plus
grand que tseq/p. Selon plusieurs études [2, 99], les nœuds de calculs exaflopiques seront massive-
ment parallèle, en d’autres termes, p va croître. Selon cette hypothèse, le temps d’exécution sera borné
par la fraction séquentielle s (ainsi que par les surcoûts de communications non pris en compte par
la loi d’Amdahl). Plusieurs solutions sont possibles: (i) concevoir des algorithmes passant à l’échelle
pour réduire la fraction séquentielle s, ou (ii) utiliser l’approche du co-ordonnancement pour améliorer
l’efficacité du nœud de calcul. Dans ce manuscrit, nous nous focalisons sur la seconde solution. L’idée
principale du co-ordonnancement est d’exécuter plusieurs applications de manière concurrente, plutôt
que de manière séquentielle, avec l’objectif d’augmenter l’efficacité du nœud de calcul. Quand plusieurs
applications sont ordonnancées de manière concurrente, ou co-ordonnancées, sur un nœud de calcul, elle
vont se disputer les ressources partagées, comme les antémémoires (mémoires caches) ou le réseau et les
systèmes d’entrées/sorties, et vont créer des interférences, aussi appelé co-run degradations. La princi-
pale difficulté du co-ordonnancement est de décider quelle application exécuter de manière concurrente
avec quelle autre, avec l’objectif de réduire les potentielles interférences, et combien de ressources
doivent être alloué à chaque application. Nous étudions ce problème, en nous focalisant sur les inter-
férences dans le dernier niveau de mémoire cache, dans les chapitres 2 et 3.

Tandis que la concurrence massive est un défi majeur pour les plates-formes exaflopiques, un autre
défi est celui de la résilience sur de telles plates-formes. En février 2014, l’Advanced Scientific Comput-
ing Advisory Committee (ASCAC) a établi une liste de dix problématiques de recherche, la résilience
est l’une d’entre elles. La résilience est définie par l’ASCAC comme « ensuring correct scientific com-
putation in face of faults, reproducibility and algorithm verification challenges ». Le temps moyen entre
chaque panne (MTBF) des prochaines générations de plates-formes exaflopiques deviendra un problème
majeur [26, 27]. Soit µind le MTBF d’un seul processeur. Alors, le MTBF d’une plate-forme avec p
processeurs identiques est égal à [58, Proposition 1.2]:

µp = µind
p
.

Nous pouvons facilement observer comment le problème de la résilience est directement lié à la con-
currence massive qui ne cesse d’augmenter (p augmente). Dans le chapitre 4, nous étudions comment
la résilience peut impacter les performances des ordonnancements concurrents et comment les pannes
peuvent être prise en compte pour minimiser le temps maximum de terminaison des applications quand
plusieurs d’entre elles sont co-ordonnancées.

Les futures plates-formes exaflopiques, seront probablement basées sur des architectures mas-
sivement parallèles, comme les systèmes many-core. Récemment, beaucoup de supercalculateurs du
TOP500 [44] utilisent les architectures many-core pour augmenter leur puissance de calcul, comme par
exemple les architectures Intel Knights Landing (KNL). Plusieurs de ces nouvelles architectures offrent
un nouveau niveau dans la hiérarchie mémoire avec une mémoire haute performance. Pour exploiter
les futurs systèmes exaflopiques, construire des modèles de performance qui prennent en compte ces
nouvelles mémoires est crucial. Nous approfondissons cette thématique dans le chapitre 5.

Le reste de cette thèse est organisée de la façon suivante. Dans le chapitre 1, nous passons en revue
le contexte autour de cette thèse des architectures parallèles aux modèles d’ordonnancements, avec les

CONTENTS xiii

différents problématiques ainsi que les contributions associées. Dans le chapitre 2, nous commençons
l’étude du co-ordonnancement d’applications partageant le dernier niveau de cache. Dans le chapitre 3,
nous évaluons l’intérêt du partitionnement de cache quand on co-ordonnance plusieurs applications
HPC, grâce à une campagne d’expérimentations sur une plate-forme multi-processeurs permettant le
partitionnement de cache. Nous continuons d’explorer les problèmes de co-ordonnancement dans le
chapitre 4. Dans ce chapitre, nous nous focalisons sur les algorithmes de co-ordonnancement dans un
contexte résilient, en effet les pannes peuvent créer des ordonnancements fortement déséquilibrés. Avec
des redistributions de processeurs, nous montrons comment minimiser le temps d’exécution d’un co-
ordonnancement donné. Dans le chapitre 5, nous nous intéressons à l’ordonnancement d’un graphe
de tâches, représentant une application complexe, ainsi qu’à la gestion mémoire sur ces nouvelles ar-
chitectures many-core avec une hiérarchie mémoire profonde. Les contributions principales de chaque
chapitre sont résumées ci-dessous.

Chapitre 1: Contexte et contributions

Dans ce chapitre introductif, nous détaillons le contexte global de cette thèse ainsi que chaque contribu-
tion. Les architectures parallèles, au cœur des supercalculateurs actuels et futurs, présentent un nombre
croissant d’unités de traitement (ou cœurs de calcul). Les applications HPC sont censées profiter de
cette quantité de concurrence disponible. De telles applications peuvent facilement être représentées
sous la forme d’un graphe de tâches [39], aussi appelé workflow, où chaque tâche représente un calcul
simple, comme la multiplication de deux blocs d’une matrice par exemple [22]. Les programmeurs
écrivent l’application et c’est ensuite le rôle de l’ordonnanceur d’optimiser l’exécution de cette appli-
cation pour une architecture donnée en assignant des tâches aux cœurs de calcul. Avec la concurrence
massive offerte par plusieurs architectures parallèles récentes [31, 35, 61], plusieurs tâches sont sus-
ceptibles de s’exécuter simultanément sur ces plates-formes. L’idée derrière le co-ordonnancement est
d’exécuter simultanément des applications plutôt que de les exécuter les unes après les autres en util-
isant la plate-forme entière pour chaque tâche. Mais, dans ces architectures parallèles récentes, certaines
fonctionnalités, comme les caches, les contrôleurs mémoire ou les bus sont partagées entre les cœurs de
calcul. Cela entraînera une dégradation des performances lorsque plusieurs tâches seront en concurrence
pour ces ressources partagées. Ces conflits potentiels doivent être pris en compte pour obtenir de bonnes
performances de co-ordonnancement.

Chapitre 2: Co-ordonnancement d’applications sur systèmes à partitionnement de
cache [W1, J1]

Dans le premier chapitre de cette thèse, nous étudions le problème d’ordonnancement consistant à
minimiser le temps de terminaison de plusieurs applications s’exécutant sur une architecture à parti-
tionnement de cache. Les architectures à partitionnement de cache permettent d’allouer des portions
du dernier niveau de cache (LLC) exclusivement réservées à certaines applications. Cette technique
permet de réduire drastiquement les interactions entre applications qui sont exécutées simultanément
sur une machine multi-cœurs. Considérons n applications exécutées simultanément avec l’objectif de
minimiser le makespan, défini comme le maximum des temps de complétions parmi les n applica-
tions. Les problèmes d’ordonnancement sont les suivants: (i) quelle proportion de cache et (ii) combien
de processeurs doivent être alloués à chaque application? Ici, nous assignons des nombres de pro-
cesseurs rationnels pour chaque application, pour qu’ils puissent être partagés parmi les applications
grâce au multi-threading. Dans ce chapitre, nous fournissons des réponses aux questions (i) et (ii) pour
des applications parfaitement parallèles. Malgré cela, le problème est prouvé être NP-complet, et nous
donnons des éléments clés pour déterminer le sous-ensemble des applications qui doivent partager le

xiv CONTENTS

dernier niveau de cache (tandis que les autres utilisent seulement leur petit cache privé). Basé sur ces
résultats, nous développons des heuristiques efficaces pour des profils d’applications généraux. Un en-
semble complet de simulations démontre l’utilité de l’ordonnancement concurrent quand les techniques
de partitionnement de cache sont mises en place.

Chapitre 3: Co-ordonnancement d’applications sur des systèmes multi-processeurs à
partitionnement de cache [R5]

Basé sur les résultats obtenus dans le chapitre 2, nous poursuivons notre étude des algorithmes de
co-ordonnancement avec partitionnement de cache mais, cette fois, en utilisant un système multi-
processeurs récent permettant le partitionnement de cache pour démontrer l’intérêt du partitionnement
de cache sur de tels systèmes. Avec l’avènement récent des architecture many-core comme par exem-
ple les systèmes multi-processeurs (CMP), le nombre d’unités de traitement communiquant avec une
mémoire globale partagée augmente constamment. Les techniques de co-ordonnancement sont utilisées
pour améliorer le débit des applications sur de telles architectures, mais partager les ressources génère
souvent des interférences importantes. Dans ce chapitre, nous nous focalisons sur les interférences
dans le dernier niveau de cache et nous utilisons une technologie appelée Cache Allocation Technol-
ogy (CAT), récemment mise à disposition par Intel, pour partitionner le dernier niveau de cache (LLC)
et donner à chaque application co-ordonnancée sa propre zone dans le cache. Nous considérons m
applications HPC itératives s’exécutant de manière concurrente et nous répondons aux questions suiv-
antes: (i) comment modéliser précisément le comportement de ces applications sur des architectures
supportant le partitionnement de cache? et (ii) combien de cœurs et de fractions de cache doivent être
assignés pour maximiser l’efficacité de la plate-forme? L’efficacité de la plate-forme est définie comme
le fait de maximiser la performance soit globalement, soit en garantissant un ratio fixe d’itérations pour
chaque application. Grâce à de nombreuses expériences utilisant la technologie CAT, nous démontrons
l’impact du partitionnement de cache quand plusieurs applications HPC sont co-ordonnancées sur des
plates-formes multi-processeurs.

Chapitre 4: Co-ordonnancement d’applications malléables dans un contexte
résilient [C1, B1, J2]

Après s’être focalisés sur des aspects mémoires dans les chapitres 2 et 3, nous étudions comment une
plate-forme sujette aux pannes peut affecter les performances du co-ordonnancement. En effet, les
bénéfices de l’ordonnancement concurrent de plusieurs applications ont été démontrés dans un contexte
sans fautes, à la fois en terme de performance et de consommation énergétique. Cependant, les plates-
formes distribuées à grande échelle sont fréquemment confrontées à des pannes, et des techniques de
résilience doivent être employées. En effet, les pannes peuvent créer des déséquilibres importants en-
tre applications et ainsi dégrader les performances. Dans cet article, nous proposons de redistribuer
les ressources allouées à chaque application à chaque fois qu’une faute survient, et quand se termine
l’exécution des premières applications, dans le but de minimiser le temps de complétion d’un ensemble
de tâches concurrentes. Dans un premier temps, nous introduisons le modèle formel et nous présen-
tons des résultats de complexité. Quand aucune redistribution n’est permise, nous pouvons minimiser
l’espérance du temps de complétion en temps polynomial, tandis que le problème devient NP-complet
lorsque les redistributions sont permises, même dans un contexte sans fautes. Par conséquent, nous pro-
posons des heuristiques polynomiales effectuant des redistributions, et prenant en compte les pannes des
processeurs. Un simulateur de fautes est utilisé pour réaliser un nombre important de simulations qui
démontrent l’utilité de la redistribution, ainsi que les performances des heuristiques proposées.

CONTENTS xv

Chapitre 5: Modèle de performance pour exécuter des graphes de tâches sur des archi-
tectures à mémoire haute performance [C2]

Ce chapitre présente un modèle de performance réaliste pour exécuter des graphes de tâches scien-
tifiques sur des architectures ayant des mémoires à bande passante élevée, comme par exemple Intel
Knights Landing. Nous fournissons une analyse détaillée du temps d’exécution sur ces plates-formes,
en tenant compte des transferts depuis deux mémoires (rapide et lente), et leur recouvrement avec les
calculs. Nous introduisons plusieurs stratégies d’ordonnancement et de placement mémoire: non seule-
ment les tâches doivent être assignées aux ressources de calcul, mais il faut aussi décider quelle fraction
des données d’entrée et de sortie va résider en mémoire rapide, alors que le reste sera en mémoire lente.
Des simulations approfondies nous permettent d’évaluer l’impact des stratégies de placement sur la per-
formance. Nous menons également des expériences réelles pour un noyau de Gauss-Seidel 1D simple,
afin d’évaluer la précision du modèle. Nous démontrons ainsi l’importance d’une gestion fine de la
mémoire sur les systèmes avec double mémoire.

xvi CONTENTS

Conclusion

Dans cette thèse, nous avons étudié deux problèmes difficiles, à savoir, la concurrence et la résilience,
qui doivent être étudiés pour les futures plates-formes exaflopiques. Dans un premier temps, sur l’aspect
concurrent, nous avons étudié le problème de réduction des interférences parmi des applications exé-
cutées de manière concurrente qui partagent le même dernier niveau de cache. Basé sur un modèle de
performance détaillé, nous avons évalué la complexité du problème et nous avons conçu des heuris-
tiques efficaces. Nous avons également évalué l’intérêt des techniques de partitionnement de cache
sur une plate-forme multi-processeurs existante le supportant. Dans un second temps, nous avons con-
struit un modèle, établi la complexité du problème et conçu des heuristiques efficaces pour s’attaquer au
problème du co-ordonnancement d’applications sur une plate-forme pouvant subir des pannes. Après
s’être focalisés sur les techniques de co-ordonnancement, nous avons commencé à étudier le problème
d’ordonnancement d’un graphe de tâches scientifique sur des architectures émergentes (tels que les
many-core) fournissant un nouveau niveau dans la hiérarchie mémoire. Avec le développement des
technologies many-core dans le calcul haute performance, ce sujet de recherche semble très prometteur.

Le travail effectué dans cette thèse peut être poursuivi dans plusieurs directions, nous discutons ici
des perspectives possibles.

Perspectives et travaux futurs.

Tout au long de cette thèse, à la fin de chaque chapitre, nous avons indiqué plusieurs futures directions
de recherches intéressantes. Nous présentons ici quelques conseils pour d’autres directions de recherche
prometteuses.

Nous avons étudié le problème du co-ordonnancement en nous concentrant sur deux aspects, à savoir
la résilience et les interférences de cache. Du côté du cache, une perspective à court terme consiste à
étendre notre analyse expérimentale à d’autres applications et à des plates-formes supportant le par-
titionnement de cache, afin de mieux étudier les gains potentiels du partitionnement de cache sur les
applications HPC. Du coté des perspectives à long terme, une première possibilité intéressante con-
siste à étendre notre analyse aux plates-formes supportant le partitionnement de bande passante, une
fonctionnalité récemment fournie par Intel. Dans les chapitres 2 et 3, nous avons seulement utilisé des
techniques de partitionnement de cache pour réduire les interférences, mais une partie non négligeable
des interférences se produit dans le bus partagé entre la mémoire principale et le cache. Une seconde
perspective serait de généraliser les expériences aux multiprocesseurs et étudier s’il y a un avantage à
déplacer des applications d’un processeur à un autre, afin d’éviter la co-location de plusieurs applica-
tions cache-intensive sur le même processeur. Une troisième perspective serait de trouver une loi plus
appropriée pour modéliser les défauts de caches pour les applications HPC. Dans les chapitres 2 et 3,
nous avons utilisé la Power Law pour modéliser le comportement des défauts de cache. Cette loi nous
donne une estimation du nombre de défauts de cache en fonction d’une taille de cache donnée, mais
nous avons montré, expérimentalement, que cette loi ne convient pas pour modéliser des applications
HPC de type memory-intensive. Il serait intéressant de valider un nouveau modèle pour modéliser les
défauts de cache.

Du côté de la résilience, que nous avons exploré dans le chapitre 4, plusieurs directions intéressantes
peuvent être envisagées. Le premier est d’étendre notre travail aux erreurs silencieuses (silent errors)
en ajoutant des mécanismes de vérification pour détecter de telles erreurs, et d’étudier le problème
d’ordonnancement avec plusieurs groupes d’applications (pack) au lieu d’un seul. La deuxième direction
est d’étendre notre analyse théorique aux problèmes d’ordonnancement sans connaissance préalable des
applications (online scheduling) dans un contexte sujet aux pannes.

CONTENTS xvii

Enfin, dans la dernière partie de cette thèse, nous avons initié une étude sur le problème de
l’ordonnancement de graphes de tâches sur des architectures multi-cœurs présentant des systèmes à
double mémoire. Nous avons commencé par étudier les approches d’ordonnancement classiques, mais
ces architectures many-core offrent souvent une concurrence massive; par conséquent, elle sont bien
adaptée aux techniques de co-ordonnancement. Une orientation de recherche prometteuse consisterait à
appliquer notre modèle de co-ordonnancement, basé sur le partitionnement du cache, à ces systèmes à
double mémoire massivement parallèles. En effet, nous pouvons considérer la mémoire rapide comme
un cache, et utiliser les schémas de partitionnement du cache que nous avons développés précédemment
sur cette mémoire rapide. Et, symétriquement aux plates-formes à partition de bande passante discutées
ci-dessus, nous pouvons envisager de partitionner la mémoire rapide et la bande passante entre toutes
les applications co-ordonnancées, afin d’optimiser l’efficacité globale de la plate-forme.

xviii CONTENTS

Chapter 1

Context and contributions

1.1 Context

In a near future, the massive concurrency of parallel architectures in HPC compute nodes is expected to
be a critical problem [99]. Parallel architectures, at the core of actual and future supercomputers, exhibit
an increasing number of processing units (or cores). HPC applications are expected to take advantage of
that amount of available concurrency. Such applications can easily be represented as a task graph [39],
also called a workflow, where each task represents a simple computation, like the multiplication of two
matrix tiles for example [22]. This paradigm is widely used by many popular task graph schedulers [8,
21, 22, 49], and the task-based approach is also the core of OpenMP 4.0 [92]. This approach has the
advantage to abstract the implementation of applications from their execution on parallel architectures.
The programmers write the application and then it is the role of the scheduler to optimize the execution
of this application on a given architecture by assigning tasks to cores. In this chapter, we use the terms
application and task. When we study co-scheduling problems in Chapters 2 to 4, we focus on a coarse-
grain approach, therefore we consider several parallel applications that obey to a given scalability law,
such as Amdahl’s law [3]. We also adopt, in the last chapter, a finer-grained approach and we study the
scheduling problem of one application composed of multiple sequential tasks.

With the massive concurrency offered by several recent parallel architectures [31, 35, 61], multiple
tasks are likely to run concurrently on these platforms. Consider for instance the Gyoukou ZettaScaler
supercomputer, currently ranked #4 in the TOP500 benchmark [44]: it uses PEZY-SC2, a 2048-core
processor chip [31], as emphasized in the introduction, with so many cores at disposal that few applica-
tions can efficiently be deployed on the entire computing platform. The idea behind co-scheduling is to
concurrently execute applications rather than in sequence and using the whole platform for each applica-
tion. But, in these recent parallel architectures, some functionalities, such as caches, memory controllers
or buses, are shared between compute cores. For example, the PEZY-SC2 platform mentioned earlier
is a many-core system where 2048 cores share a 40MB last-level cache [31], hence we can clearly see
the pressure on the LLC when multiple tasks will compete for gaining access to it. This will lead to
performance degradation when multiple tasks (or applications) will compete for these shared resources,
and these potential contentions must be taken into account to obtain good co-scheduling performance.

One of the questions at the core of this thesis is the following: from a given set of tasks that need
to be executed, either independent tasks or tasks with dependencies, how to efficiently concurrently
schedule these tasks on modern parallel architectures with different memory systems? In this thesis, we
study scheduling algorithms on hardware-managed and software-managed scratchpad memory systems.

1

2 CHAPTER 1. CONTEXT AND CONTRIBUTIONS

1.1.1 Parallel architectures

One of the first parallel architectures that appeared in the early 1960s was the symmetric multiprocessing
system (SMP) [120]. SMP architectures were composed of multiple identical processors, each of them
with its own cache, connected through a shared bus to the main memory (DRAM). In SMP architectures,
all processors are considered independent, a performance of task running on such a processor will not
be affected by other tasks running on neighbor processors.

Many studies have been conducted to schedule tasks onto SMPs [64, 66]. Scheduling on SMP
systems consists in time-sharing the execution of tasks onto available processors, in other words, to
decide when to schedule a task. But SMP architectures are poorly scalable because of the bottleneck
arising from the bus between the processors and the main memory.

In 1996, Olukotun et al. [91] proposed a new microprocessor design, the single-chip multiproces-
sor (CMP). The idea is to embed all computing cores and cache memories on a single chip to reduce
communication delays between cores, and to improve parallel performance. Since CMP systems consist
of multiple cores on the same package, each core shares some elements as the last-level cache or the
memory channels with the other cores. The key difference between SMP and CMP architectures lies in
the fact that CMP cores are not independent (see Figure 1.1). On an SMP platform, the performance
of a task running on a given processor is not affected by the tasks running on other processors. This is
not the case for chip multiprocessors, as critical resources are shared by every core. Alternative designs
can also be envisaged, in 2007, Vangal et al. [117] proposed a tiled approach called Intel Polaris with 80
tiles connected through a network-on-chip (NoC), where each tile has its own compute core and private
cache.

CPU1 CPU2 CPU3

LLC1 LLC2 LLC3

Main Memory (DRAM)

CPU1 CPU2 CPU3

LLC1 LLC2 LLC3

(a) Symmetric multiprocessing (SMP)

Core1 Core2 Core3

LLC

Main Memory (DRAM)

Core1 Core2 Core3

LLC

(b) Chip multiprocessor (CMP)

Figure 1.1: Comparison between SMP and CMP architectures.

Therefore, the advent of chip multiprocessors brings a new dimension in scheduling deci-
sions: space. CMP schedulers must not only decide when to schedule a task but also where, on
which core, to schedule a task. When CMPs started to be popular, many researchers used schedulers
designed for SMP systems considering that CMPs can be seen as SMPs (each core is considered to
be independent). This optimistic assumption turned out to be false, and led to severe degradations in
scheduling performance. Resource contention can happen in cache memories, memory controllers and
prefetching units [28, 74, 98]. Many studies showed that running two tasks on neighboring cores can
lead to a severe global performance degradation, compared to running each task alone, by an important
factor (up to three for worst cases!) due to resource contentions [16, 53, 109, 125]. Among resource
contentions, cache contention is prominent [125].

1.1. CONTEXT 3

Current many-core architectures [31, 61] can be considered as CMP platforms. Because these plat-
forms exhibit a higher number of cores than classical CMPs, the resource contention effect is amplified
on these platforms. To illustrate that the contention problem will not get better in the future, the best
example is the PEZY-SC2 platform: where 2048 cores (possibly 16, 384 threads!) share a 40MB last-
level cache [31]. In the worst case with 16, 384 threads, each thread has roughly access to 2KB of the
last-level cache. Besides contentions due to cache sharing, another possible source of contentions is
the new high bandwidth memories (HBM) embedded on some many-cores, as the Xeon Phi KNL [61].
These new HBM memories are scratchpad memories shared by all cores. For a given task running on
such platform and using the high-speed bandwidth, its I/0 performance will be highly correlated to the
communication pattern of other tasks running at the same time on the platform. We have addressed this
problem in the last chapter of the thesis.

In addition of these several contention issues, supercomputers composed of multiple CMPs, each of
them with hundreds of cores, are facing another challenging problem: resilience. Indeed, this increasing
number of cores implies critically severe fault-tolerance issues. This is because the mean time between
failures (MTBF) decreases linearly with the number of processors [57]. In this thesis, we address the
resilience challenge in a co-scheduling context. Taking into account resource contentions and resiliency
issues, while tasks are concurrently scheduled, is a key to maximize the efficiency and the usability of
such parallel platforms.

1.1.2 Scratchpad memory systems

The well-known cache memories belong to a larger category of memories: the scratchpad memories. In
the last chapter of this thesis, we investigate the problem of task graph scheduling on a particular CMP
platform with a software-managed scratchpad memory.

Scratchpad memories (SPM) are a category of memories that are embedded on chips, near the pro-
cessing units, in contrast to off-chip memories as DRAM that need a bus to communicate with the
processing units. This kind of memory presents the advantage of being extremely fast to access with
higher bandwidth, at the price of smaller size. A SPM can either be software or hardware controlled,
the best known hardware-managed SPM are the cache memories. Cache memories are controlled by the
hardware, a programmer cannot decide to allocate a specific data in cache. In opposition to hardware-
managed memories, software-managed SPMs, as in modern GPUs or in recent many-core architectures,
have to be managed manually by programmers. For example, the Intel Knights Landing (KNL) many-
core processor [61] proposes an high-bandwidth SPM of 16 GB. A software-managed SPM can be seen
as an addressable space by the programmer, the programmer can allocate any data in that memory at any
time.

Software-managed scratchpad memories offer several advantages over hardware-managed memo-
ries. Directly-managed SPMs remove the notion of memory interferences, hence there is no need of
using partitioning techniques to reduce interferences because a task cannot evict data of another task
in that memory, it is the responsibility of the programmers or the OS to manage the available memory.
Predicting the execution time of a task sharing a cache is challenging, but without complex replacement
policies software-managed SPMs make the execution time of a task much more predictable. In addition,
software-managed SPMs are also more energy efficient than hardware-managed SPMs like caches, be-
cause they do not use complicated hardware units. In this thesis, we explore co-scheduling and schedul-
ing problems for hardware-managed SPM (with a focus on the last-level cache) and software-managed
SPMs (focused on the KNL architecture).

To decide which data should be allocated into the scratchpad memory and which data should stay in
the main memory, the memory management unit (MMU) must be able to characterize which part of the

4 CHAPTER 1. CONTEXT AND CONTRIBUTIONS

code to prioritize. Scratchpad memory allocation strategies can be divided in two approaches: (i) static
approaches where data are allocated into the SPM once at the beginning and the allocation do not change
at runtime [4, 10], and (ii) dynamic approaches in which data allocated into the SPM may change during
the execution of the task [30, 41]. Many static approaches use compiler techniques to determinate which
are the most used code parts, hence data allocation is decided at compile time. Angiolini et al. [5] use
a static strategy, at compile time, to detect heavily used arrays in the code and allocate them into the
SPM to minimize off-ship communications. On the dynamic side, Egger et al. [42] profile tasks using
the page fault mechanism inside the MMU, and from these information decide which data should be in
the SPM, under the objective of minimizing energy consumption.

However, all these approaches are fine-grain, often focusing on code analysis, while our focus is
more on coarse-grained approaches, basically at the task level. Another problem is that SPM are mas-
sively used in the embedded world, but not so much in the HPC world. One of the first architecture
used in HPC with a software-managed scratchpad memory is the Intel KNL [61]. Perarnau et al. [97]
showed that the performance of a simple stencil benchmark on that kind of architecture can be improved
by using a scheme similar to out-of-core algorithms.

1.1.3 Concurrent scheduling

In the early 1980s, many operating systems (OS) scheduling policies were making an important assump-
tion: processes running on the platform were independent, meaning that interactions as communications
between processes, were an exception. With the advent of parallel architectures and parallel program-
ming paradigms, this assumption turned out not to hold any longer, and it led scheduling policies to
produce schedules with breaks and waiting time when processes were not independent. In 1982, to
face these changes, Ousterhout [93] has introduced a new notion, called co-scheduling. A task is co-
scheduled if all the processes (or threads) of this task, are executed simultaneously on different proces-
sors. The idea behind co-scheduling is to execute all processes of a task at the same time to minimize the
waiting time due to inter-process communications. This novel idea has been implemented by Ousterhout
et al. [94] in Medusa, an experimental operating system.

In his work [93], Ousterhout assumed independent processors. Given the period of this work, in
1982, this assumption made sense, but as discussed previously, in Section 1.1.1, current cores in CMP
architectures are not independent and share some crucial parts, like caches and memory controllers.
Thus, the scheduler must know on which cores to co-schedule each task to avoid contentions on shared
resources. A possible solution to avoid interferences is to not co-schedule tasks, in other words, only
schedule one task at a time on a CMP. As mentioned in the introduction, this solution is unrealistic
due to the inherent sequential fraction of a task that limits the scalability and thus the efficiency of this
solution. Many studies [28, 78, 83, 85, 109, 125] showed experimentally that the execution time of a
thread can vary greatly depending on which other threads are running and sharing the resources at the
same time. There are multiple sources of contentions, caches, memory controllers or prefetching units,
and modeling all these interactions is a challenging endeavor.

Before reviewing the literature on interference models in the next section, we first discuss several
co-scheduling strategies where some researchers assumed that all degradations factors are known be-
forehand. Jiang et al. [63] have proposed an interesting solution based on building a complete graph
of co-run degradations between each task. A co-run degradation between two tasks is the ratio when
both tasks share the cache compared to running solo. This study proposes an optimal co-schedule al-
gorithm that minimizes the degradations assuming that all co-run degradations are known beforehand.
A co-schedule consists in finding a mapping from threads to cores on a machine with multiple clusters
sharing a last-level cache such that the resulting degradations are minimized. Although this solution

1.1. CONTEXT 5

is interesting, it has severe limitations. Building such a complete graph of degradations is not possible
when the number of cores and the number of tasks increases. Furthermore, each task is considered se-
quential and each task has the same length, adding the assumption of parallel tasks make the problem
much more complicated.

Tian et al. [113] extended the previous theoretical study of Jiang et al. [63] by taking into account
tasks of different lengths and by adding the possibility of rescheduling a task when some cores become
available. In their work, they formulate the problem of finding an optimal co-schedule as a tree-search
problem and used A?-based approaches to prune the co-scheduling search space, which is exponential
in the number of tasks, and to approximate the optimal solution.

Snavely et al. [107, 108] have developed a symbiotic approach that does not need any knowledge
on the tasks that are going to be scheduled. The term symbiotic comes from biology and indicates the
mutual potential benefit that two biological organisms can obtain by living closely together and sharing
some resources. The idea behind symbiotic co-scheduling is to randomly perturb the set of co-scheduled
tasks and, by sampling hardware performance counters, to determinate which set of tasks maximizes the
throughput of the platform. Besides the intrinsic difficulty of scheduling problems, in order to make
co-scheduling approaches efficient, a major challenge is to find a way to model all these interactions on
shared resources.

1.1.4 Cache contention models

Several sources of resource contention, caches, memory controllers or hardware prefetching units, are
co-existing in a chip multiprocessors platform. According to several studies [51, 65, 75, 98, 111] con-
tention in the last-level cache (LLC) appears to be one of the most critical sources of contention. We
call cache contention, the fact that a task suffers from extra cache misses from other tasks running on
the same platform. Indeed, other tasks bring their own data in the shared cache and may evict data from
the original task. One first problem is that the LRU cache replacement policy, often used to manage
cache memories, is not designed for concurrent accesses [65, 109]. The LRU policy is designed to take
advantage of temporal locality by keeping in cache the most recently accessed cache lines. However,
LRU is not designed to manage multiple concurrent accesses, LRU handles all concurrent accesses (for
example from threads) uniformly, i.e., the cache policy is not aware of which thread would benefit the
most from extra cache space [62]. To mitigate resource contention, the scheduler must be able to predict
performance when multiple tasks are running at the same time and share the resources.

Many researchers have focused their efforts on finding techniques to predict the performance of
multiple tasks sharing cache and they categorize task behaviors. The best known approaches are the
stack distance profiles (SDP) [28, 50] and the miss rate curves (MRC) [110, 111]. The SDP is basically
the distribution of cache hits among the LRU stack, it captures the temporal reuse behavior of cache for
one thread at a time. An important assumption is made here: a SDP profile is assumed to be the same
with or without sharing the cache with other threads. We consider N + 1 counters, C1, . . . , CN , C>N
for a N -ways associative LRU cache where the C>N counter is for cache misses. Then, for each cache
access, one counter is incremented as follows: Ci is incremented if there is a cache hit at the ith line in
the LRU stack (hence i represents the distance in the stack). The first line in the LRU stack represents
the most recently used cache line, the last is the least recently used. From the obtained histogram,
scheduler policies are able to determinate if a thread has a good temporal behavior, i.e., if it cache
accesses often touch first lines in the LRU stack. SDPs can be obtained statically at compile time or by
running a task alone on the platform and recording each cache access for a fixed period of time. From
a SDP we can derive a miss rate curve that represents the cache miss rate for a thread as a function
of the cache size [109]. MRCs are used to characterize the behavior of tasks and provide information

6 CHAPTER 1. CONTEXT AND CONTRIBUTIONS

on how a task will benefit from extra cache memory [111]. MRCs can be efficiently computed using
hardware performance counters as showed by Tam et al. [110], although this method strongly depends
on the architecture. SDPs and MRCs are designed to be used in a single-thread context, predicting
the performance of multiple threads sharing a cache is much more challenging. Chandra et al. [28]
designed an algorithm to merge two SDPs into a single profile that quantifies the extra cache misses
when two threads share the LLC. Besides stack distance profiles and miss rate curves, another possibility
to estimate the potential benefit from additional cache is to use an analytical model. Hartstein et al. [54]
showed, with the Power Law of cache misses (or the

√
2 rule), how the cache size affects the cache

miss ratio. The Power Law states that, if for a baseline cache of size C0, the cache miss ratio is equal
to m0, then for a cache of size C, the cache miss ratio m = m0

(
C0
C

)α
, where α is usually set to 0.5.

Rogers et al. [101] used the Power Law of cache misses to model memory traffic to analyze the effect of
bandwidth scaling in CMPs.

When the scheduler is able to approximate the potential performance degradation when multiple
tasks or threads share the cache, this information can be used to build contention-aware schedules. Sev-
eral approaches are possible, the best known example is an isolation approach called cache partitioning,
where researchers partition the last-level cache into partitions such that the interferences between com-
peting threads are minimized. Indeed, a task can only allocate cache lines in its partition. Among
existing works, two major trends can be identified: studies arguing for cache partitioning or for task
classification.

Multiple cache partitioning schemes have been designed, through both hardware techniques [16, 65,
86, 98] and software techniques [51, 75, 111, 112]. Most of the hardware approaches are efficient with
a very low overhead at the execution time, but they suffer from an extra cost in terms of hardware com-
ponents. Furthermore, these hardware solutions are difficult to implement and often only tested through
simulated architectures. Qureshi et al. [98] propose hardware solution called the utility-based cache par-
titioning (UCP). UCP monitors, at runtime, the benefit of using cache (called the utility) for each task,
through a low-overhead hardware circuit. Based on this information, UCP divides the cache among tasks
to give more cache to high priority tasks. On the side of software-based solutions, the most popular is
the page coloring solution, where physical pages are selected for task allocations so that they end up
in specific sections of the cache [106]. Tam et al. [111], showed that important gains can be achieved
through a static partitioning of the L2 cache using page coloring. Besides static strategies, dynamic
cache partitioning strategies using page coloring have also been studied. In [75], the cache partition-
ing is refined and adjusted periodically at runtime, with the objective to maximize platform efficiency.
Some solutions also concentrate their efforts on latency-sensitive tasks. Mars et al. [78] designed a run-
time to improve QoS and fairness in batch scheduling for latency-sensitive tasks. This runtime handles
what they call cross-core interference with a custom solution that maximize the utilization the platform,
where utilization is the averaged ratio of effective running time of each task. Other resources can be
partitioned using the same idea, like the translation look-aside buffer (TLB) [112] or the memory chan-
nels [83]. Some researchers have proposed solutions to address the challenge of building scheduling
policies that take into account multiple resource contentions. Bitirgen et al. [15] use a machine learning
approach, through artificial neural networks (ANN), to estimate the performance of each task running
on the CMP at runtime. They propose a coordinated approach taking into account multiple contention
sources (cache, bandwidth and power management) and, by comparing with uncoordinated scheduling
policies (one contention considered) from the literature [85, 98], show that a coordinated approaches
perform better than uncoordinated one. However, the use of multiple hardware ANNs per each task
limits drastically the scalability of such approach.

Although cache partitioning solutions are known since many years, most of the previously cited
studies on cache partitioning, used custom simulators or hardware prototypes. The first commercial and

1.2. PROBLEMATICS AND CONTRIBUTIONS 7

widely available technique to partition the cache is the Cache Allocation Technology (CAT) [87] released
by Intel in 2015. CAT is a technology that can partition several shared resources among cores, such as
the LLC or the bandwidth, on the supported CPUs. This technology is the first to effectively partition the
cache without any software or hardware modifications. Recently, Lo et al. [76] used this novel technique
to isolate latency-sensitive tasks and thus obtain a safe collocation of tasks according a given Quality of
Service.

Besides cache isolation, another solution is to categorize tasks based on their memory behaviors [67,
121]. The idea is, instead of partitioning the resources, to co-locate only tasks that have compatible
behaviors. McGregor et al. [80] manage multiple threads by building pairs of threads that run together
on a CMP based on performance information collected at runtime. They co-locate a thread that is
memory-intensive with a thread that is more compute-intensive to balanced the pressure on memory
controllers and on cache accesses.

1.2 Problematics and contributions

We have reviewed the differences between several parallel architectures, some co-scheduling approaches
in the literature, and the different techniques used to model resource contention, in particular the con-
tention in the last-level cache, which is at the core of this thesis. In this thesis, we focus on co-scheduling
algorithms on CMP platforms in a high performance computing context. High performance computing
tasks obey to some particularities, as their sequential fractions or their memory behaviors, that are in-
teresting to take into account for co-scheduling algorithms. From classical CMPs that currently run
on supercomputers, to emerging many-core architectures with new memories that will power future
exascale supercomputing platforms, we take into account different memory constraints with the same
objectives of maximizing the performance of co-scheduling or classical scheduling algorithms for HPC
tasks.

1.2.1 Co-scheduling with cache partitioning

As emphasized below, several resource contentions on CMP platforms can dramatically degrade
scheduling performance. In this thesis, we exclusively focus on last-level cache (LLC) interferences,
indeed interferences in the cache are one of the most important degradations possible [125]. As we
study models, we focus on static cache partitioning and scheduling solutions. Contrarily to dynamic
schedulers, that do not know the behavior of the scheduled tasks, in this thesis we target static sched-
ulers. Static schedulers rely on task knowledge such as estimated workload, speed-up profile or cache
miss rate. We use the classic idea of cache partitioning to reduce the induced interferences, the novelty
of our work lies in proposing a tractable theoretical model to analyze the co-scheduling performance of
several (understand more than two) HPC applications sharing the last-level cache. The few theoretical
models in the literature suffer from severe limitations, mostly due to the combinatorial nature of the
problem [63]. In addition, these models often assume that interferences are known beforehand and do
not propose to quantify them. In this thesis, we propose a complete analytical model to study static
co-scheduling performance of applications on a shared LLC. The last originality of our work is to focus
on HPC tasks that obey to Amdhal’s law. Indeed very few studies on cache partitioning have adopted
an HPC focus, most of them evaluated their solutions with classical benchmarks like SPEC, that do not
exhibit HPC behaviors. Perarnau et al. [96] propose a tool to partition the cache, using page coloring,
and show that cache partitioning can greatly improve performance on a multi-grid stencil computations,
which is a widely used HPC kernel.

8 CHAPTER 1. CONTEXT AND CONTRIBUTIONS

After a theoretical contribution with a complete co-scheduling performance model, taking into ac-
count cache contentions, the second contribution of this thesis is an experimental study. Many studies
on scheduling with resource contentions evaluated their hardware or software solutions, through simu-
lators [15, 28, 65, 83, 86, 98, 112, 121]. This is mainly due to the fact that, before 2015, they were no
existing solution to easily partition the cache between concurrent tasks. A large amount of studies target
specifically scheduling problems in operating systems, hence they often modify the kernel scheduler or
the memory subsystem to verify their ideas [67, 75, 111]. However this thesis is focused on HPC tasks,
then helped by the theoretical insights gained from our first contribution, we conduct an important ex-
perimental campaign on co-scheduling algorithms on a cache partitioned platform. We take advantage
of the recent apparition of the CAT cache allocation technology [87] released by Intel, to partition the
cache without modifying the underlying hardware nor the OS. With the help of the CAT, we provide
the first, to the best of our knowledge, experimental study that clearly evaluates the impact of cache
partitioning when co-scheduling multiple widely used HPC benchmarks.

1.2.2 Co-scheduling with resilience

After studying the impact of interferences in the last-level cache for co-scheduling algorithms, we are
interested in another aspect of co-scheduling on massively parallel architectures. Indeed, the two first
contributions of this thesis deal with the impact of the high number of cores in current parallel architec-
tures from an interference point of view. The co-scheduling approach has been proved to be efficient,
but only in a fault-free context. In this thesis, we extend a previous work [9] by taking into account
the resiliency parameter. To the best of our knowledge, this third contribution is the first study on a
co-scheduling problem in a resilient context. Note that, in this work, we do not take into account any
interference phenomenon to keep the problem tractable.

1.2.3 Scheduling for emerging parallel architectures

Our last contribution aims at building a first-step study about scheduling a task graph on the emerging
many-core architectures that exhibit a new on-package high bandwidth memory (HBM). The problem
of optimizing scheduling algorithms for systems with two different memories (also called out-of-core)
is old [103]. We call a platform with a high-bandwidth memory on-chip, a deep memory platform.
Deep memory platforms are not exactly following out-of-core models, in the out-of-core model a data
must be read from the slow memory before being allocated into the fast memory, but with HBMs the
processor can read either from fast or slow memory. Chandrasekar et al. [29] discussed a runtime
method to schedule tasks with data dependencies on a dual-memory platform (i.e., a main memory and
a scratchpad memory). Unfortunately, the scheduling algorithm is limited to scheduling a task only after
all its input data has been moved to faster memory. Also, no theoretical analysis of this scheduling
heuristic was performed.

Our last contribution extends a previous work [97] by proposing a complete performance model for
task graphs scheduling on deep-memory architecture. To the best of our knowledge, no comprehensive
study has addressed memory movement and task scheduling for these new deep-memory architectures
from a performance-model standpoint.

Chapter 2

Co-scheduling applications on cache-
partitioned systems

As emphasized in the introduction, at scale, the massive concurrency and the I/O movements of high
performance computing (HPC) applications are expected to be one of the most critical problems [99].
Observations on the Intrepid machine at Argonne National Laboratory (ANL) show that I/O transfers
can be slowed down up to 70% due to congestion [47]. When ANL upgraded its house supercomputer
from Intrepid (Peak perf: 0.56 PFlops; peak I/O throughput: 88 GB/s) to Mira (Peak perf: 10 PFlops;
peak I/O throughput: 240 GB/s), the net result for an application whose I/O throughput scales linearly
(or worse) with performance was a downgrade from 160 GB/PFlop to 24 GB/PFlop!

To cope with such an imbalance (which is not expected to reduce on future platforms), a possible
approach is to develop in situ co-scheduling analysis and data preprocessing on dedicated nodes [99].
This scheme applies to data-intensive periodic workflows where data is generated by the main simula-
tion, and parallel processes are run to process this data with the constraints that output results should be
sent to disk storage before newly generated data arrives for processing. These solutions are starting to
be implemented for HPC applications. Sewell et al. [104] explain that in the case of the HACC appli-
cation (a cosmological code), petabytes of data are created to be analyzed later. The analysis is done
by multiple independent processes. The idea of their work is to minimize the amount of data copied to
I/O filesystem, by performing the analysis at the same time as HACC is running (what they call in situ).
The main constraint is that these processes are data-intensive and are handled by a dedicated machine.
Also, the execution of these processes should be done efficiently enough so that they finish before the
next batch of data arrives, hence resulting in a pipelined approach. All these frameworks motivate the
design of efficient co-scheduling strategies.

As detailed in the introduction, one main issue of co-scheduling is to evaluate co-run degradations
due to cache sharing [125]. Many studies have shown that interferences on the shared last-level cache
(LLC) can be detrimental to co-scheduled applications [73]. Previous solutions consisted in preventing
co-schedule of possibly interfering workloads, or terminating low importance applications [123]. Lo et
al. [76] recently showed experimentally that important gains could be reached by co-scheduling appli-
cations with strict cache partitioning enabled. Cache partitioning, the technique at the core of this work,
consists in reserving exclusivity of subsections of the LLC of a chip multi-processor (CMP), to some
of the applications running on this CMP. This functionality was recently introduced by Intel under the
name Cache Allocation Technology [60]. With the advent of large shared memory multi-core machines
(e.g., Sunway TaihuLight, the current #1 supercomputer uses 256-cores processor chips with a shared
memory of 32GB [35]), the design of algorithms that co-schedule applications efficiently and decide
how to partition the shared memory (seen as the cache here), is becoming critical.

9

10 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

In this chapter, we study the following problem. We are given a set of Amdahl applications, i.e.,
parallel applications obeying Amdahl’s speedup law [3] (see Equation 2.1 for details). Amdahl’s law
has had a profound impact on the evolution of HPC [56] and many scientific applications, including
most NAS Parallel Benchmarks, obey this law [25]. We are also given a multi-core processor with a
shared last-level cache LLC. How can we best partition the LLC to minimize the total execution time
(or makespan), i.e., the moment when the last application finishes its computation. For each application,
we assume that we know the number of compute operations to perform, and the miss rate on a fixed
size cache. For the multi-core processor, we know its LLC size, the cost for a cache miss, the cost for a
cache hit, the size of the cache and total number of processors. For the theoretical study, we assume that
these processors can be shared by two applications through multi-threading [68], hence we can assign
a rational number of processors to each application, and this allows us to study the intrinsic complexity
of co-scheduling with cache partitioning. Equipped with all these applications and platform parameters,
recent work [54, 68, 101] shows how to model the impact of cache misses and to accurately predict the
execution time of an application.

Main contributions. In this chapter, we show that, with rational numbers of processors, the co-
scheduling problem is NP-complete, even when applications are perfectly parallel, i.e., their speed-up
scales up linearly with the number of processors. We show several results that characterize optimal so-
lutions, and in particular that the co-scheduling cache-partitioning problem reduces to deciding which
subset of applications will share the LLC; when this subset is known, we show how to determine the op-
timal cache fractions and rational number of processors for perfectly-parallel applications. Furthermore,
we show that all applications should finish at the same time, even if they are not perfectly parallel. These
theoretical results guide the design of heuristics for Amdahl applications. We show through extensive
simulations (using both rational and integer numbers of processors) that our heuristics greatly improve
the performance of cache-partitioning algorithms, even for parallel applications obeying Amdahl’s law
with a large sequential fraction, hence with a limited speedup profile.

The rest of this chapter is organized as follows. Section 2.1 provides an overview of related
work. Section 2.2 is devoted to formally defining the framework and all model parameters. Section 2.3
gives our main theoretical contributions. The heuristics are defined in Section 2.4, and evaluated through
simulations in Section 2.5. Finally, Section 2.6 outlines our main findings and discusses directions for
future work.

2.1 Related work

In this section, we review the related work on co-scheduling and cache partitioning studies. Note that
this survey is also relevant to Chapter 3.

2.1.1 Co-scheduling and interferences

Since the advent of systems with tens of cores, co-scheduling has received considerable attention. We re-
fer to [34, 76, 83] for a survey of many approaches to co-scheduling. The main idea is to execute several
applications concurrently rather than in sequence, with the objective to increase platform throughput.
Indeed, some individual applications may well not need all available cores, or some others could use
all resources, but at the price of a dramatic performance loss. In particular, the latter case is encoun-
tered whenever application speedup becomes too low beyond a given processor count. A new trend in
large-scale simulations are in-situ and in-transit approaches, to visualize and analyze the data during the

2.1. RELATED WORK 11

simulation [38]. Basically, the idea behind these approaches is that a new dataset is generated periodi-
cally, and we need to run different applications on different parts of this dataset before the next period.
In the in-situ approach, simulation and analyzes are co-located in the same node, while in the in-transit
approach, the data analyzes are outsourced onto dedicated nodes [13]. Several studies have shown that
large-scale simulations with in-situ could benefit from co-scheduling approaches [12, 104]. The diffi-
culty consists in ensuring that the in-situ part processes the data fast enough to avoid slowing down the
main simulation, which is directly related to co-scheduling issues: how to partition the resources across
the concurrent analysis applications that share the CMP?

Indeed, when executing simultaneously, any two applications will compete for shared resources,
which will create interferences and decrease their throughput. Modeling application interference is a
challenging task. Dynamic schedulers are used when application behavior is unknown [98, 113]. Static
schedulers aim at optimizing the sharing of the resources by relying on application knowledge such as
estimated workload, speed-up profile, cache behavior, etc. One widely-used approach is to build an
interference graph whose vertices are applications and whose edges represent degradation factors [55,
63, 124]. This approach is interesting but hard to implement. Indeed, the interaction of two applications
depends on many factors, such as their size, their core count, the memory bandwidth, etc. Obtaining
the speedup profile of a single application already is difficult and requires intensive benchmarking cam-
paigns. Obtaining the degradation profile of two applications is even more difficult and can be achieved
only for regular applications. To further darken the picture, the interference graph subsumes only pair-
wise interactions, while a global picture of the processor and cache requirements for all applications is
needed by the scheduler.

Shared resources include cache, memory, I/O channels and network links, but among potential degra-
dation factors, cache accesses are prominent [126]. When several applications share the cache, they are
granted a fraction of cache lines as opposed to the whole cache, and their cache miss ratio increases
accordingly. Hartstein et al. [54] showed, with the Power Law of cache misses (or the

√
2 rule), how the

cache size affects the cache miss ratio. The Power Law states that, if for a baseline cache of size C0, the
cache miss ratio is equal to m0, then for a cache of size C, the cache miss ratio m = m0

(
C0
C

)α
, where

α is usually set to 0.5. To reduce these interferences we use, in this thesis, a technique called cache
partitioning. Cache partitioning, consists in reserving exclusivity of subsections of the last-level cache
of a chip multi-processor (CMP), to some of the applications running on this CMP.

2.1.2 Cache partitioning techniques

Multiple cache partitioning schemes have been designed, through hardware techniques [16, 65, 86, 98]
and software techniques [51, 75, 111, 112]. Most of the hardware approaches are efficient with a very
low overhead at the execution time, but they suffer from an extra cost in terms of hardware components.
In addition, hardware solutions are difficult to implement and often only tested through simulated ar-
chitectures. An interesting hardware solution is the utility-based cache partitioning (UCP) [98]. UCP
proposes to monitor, at runtime, the benefit of using cache (called utility) for each application, through a
low hardware overhead circuit. Based on these information UCP divides the cache among applications
to give more cache to high priority applications.

On the side of software-based solutions, the most popular is page coloring, where physical pages
are selected for application allocations so that they end up in specific sections of the cache. Tam et
al. [111], showed that important gains can be achieved through a static partitioning of the L2 cache
using page coloring. Besides static strategies, dynamic cache partitioning strategies using page coloring
have also been studied. In [75], the cache partitioning is refined and adjusted periodically at runtime,

12 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

with the objective to maximize platform efficiency. But recently, Intel released a new software technique
to internally partition the last level cache (LLC), called the Cache Allocation Technology (CAT) [76, 87].

In this chapter, we focus on a static allocation of LLC cache fractions, and processor numbers, to
concurrent applications as a function of several parameters (cache-miss ratio, access frequency, opera-
tion count). To the best of our knowledge, this work is the first analytical model and complexity study
for this challenging problem.

2.2 Model

This section details platform and application parameters, and formally states the optimization problem.

2.2.1 Architecture

We consider a parallel platform of p homogeneous computing elements, or processors, that share two
storage locations:

• A small storage Ss with low latency, governed by a LRU replacement policy, also called cache;

• A large storage Sl with high latency, also called memory.

More specifically, Cs (resp. Cl) denotes the size of Ss (resp. Sl), and ls (resp. ll) the latency of Ss
(resp. Sl). In this work, we assume that Cl = +∞. We have the relation ls � ll. In this work,
we consider the cache partitioning technique [60], where one can allocate a portion of the cache to
applications so that they can execute without interference from other applications.

2.2.2 Applications

There are n independent parallel applications to be scheduled on the parallel platform, whose speedup
profiles obey Amdahl’s law [3]. For an application Ti, we define several parameters:

• wi, the number of computing operations needed for Ti;

• si, the sequential fraction of Ti;

• fi, the frequency of data accesses of Ti: fi is the number of data accesses per computing operation;

• ai, the memory footprint of Ti.

We use these parameters to model the execution of each application as follows.

Parallel execution time

Let Fli(pi) be the number of operations performed by each processor for application Ti, when executed
on pi processors. According to Amdahl’s speedup profile [3], we have

Fli(pi) = siwi + (1− si)
wi
pi

(2.1)

2.2. MODEL 13

The power law of cache misses

In chip multi-processors, many authors have observed that the Power Law accurately models how the
cache size affects the miss rate [54, 68, 101]. Mathematically, the power law states that if m0 is the miss
rate of a workload for a baseline cache size C0, the miss rate m for a new cache size C can be expressed
as m = m0

(
C0
C

)α
where α is the sensitivity factor from the Power Law of Cache Misses [54, 68, 101]

and typically ranges between 0.3 and 0.7 with an average at 0.5. Note that, by definition, a rate cannot
be higher than 1, hence we extend this definition as:

m = min
(

1,m0

(
C0
C

)α)
. (2.2)

This formula can be read as follows: if the cache size allocated is too small, then the execution goes as
if no cache was allocated, and all accesses will be misses.

Computations and data movement

We use the cost model introduced by Krishna et al. [68] to evaluate the execution cost of an application
as a function of the cache fraction that it has been allocated. Specifically, for each application, we define
m0, the miss rate of application Ti with a cache of size C0 (we can also use the miss rate of applications
with a cache of another fixed size). We express the execution time of Ti as a function of pi, the number
of processors allocated to Ti, and xi, the fraction of Ss allocated to Ti (recall both are rational numbers).
Let Fli(pi) be the number of operations performed by each processor for application Ti, given that the
application is executed on pi processors. We have Fli(pi) = siwi + (1− si)wipi according to Amdahl’s
speedup profile. Finally,

Exei(pi, xi) =



Fli(pi) (1 + fi (ls + ll)) if xi = 0;

Fli(pi)

1 + fi

ls + ll ·min

1, m0(
xiCs
C0

)α
 if xiCs ≤ ai;

Fli(pi)

1 + fi

ls + ll ·min

1, m0(
ai
C0

)α
 otherwise.

(2.3)

Indeed, for each operation, we pay the cost of the computing operation, plus the cost of data ac-
cesses, and by definition we have fi accesses per operation. At each access, we pay a latency ls, and an
additional latency ll in case of cache miss (see Equation 2.2). The last case states that we cannot use a
portion of cache greater than the memory footprint ai of application Ti. This model is somewhat pes-
simistic: cache accesses to the same variable by two different processors are counted twice. We show
in Section 2.5 that despite this conservative assumption (no sharing), co-scheduling can outperform
classical approaches that sequentially deploy each application on the whole set of available resources.

Equation 2.3 calls for a few observations. For notational convenience, let di = m0
(
C0
Cs

)α
:

• It is useless to give a fraction of cache larger than ai
Cs

to application Ti;

• Because of the minimum min
(
1, di

(xi)α
)

, either xi > d
1
α
i , or xi = 0: indeed, if we give appli-

cation Ti a fraction of cache smaller than d
1
α
i , the minimum is equal to 1, and this fraction is

wasted.

14 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

Hence, we have for all i:

xi = 0 or d
1
α
i < xi ≤

ai
Cs
. (2.4)

Of course, if d
1
α
i ≥

ai
Cs

for some application Ti, then xi = 0. We denote by Exeseq
i (xi) = Exei(1, xi) the

sequential execution time of application Ti with a fraction of cache xi.

2.2.3 Scheduling problem

Given n applications T1, . . . , Tn, we aim at partitioning the shared cache and assign processors so that
the concurrent execution of these applications takes minimal time. In other words, we aim at minimizing
the execution time of the longest application, when all applications start their execution at the same time.
Formally:

Definition 2.1 (COSCHEDCACHE). Given n applications T1, . . . , Tn and a platform with p identical
processors sharing a cache of size Cs, find a schedule {(p1, x1), . . . , (pn, xn)} with

∑n
i=1 pi ≤ p, and∑n

i=1 xi ≤ 1, that minimizes
max

1≤i≤n
Exei(pi, xi).

We pay particular attention in the following to perfectly parallel applications, i.e., applications Ti
with si = 0. In this case, Exei(pi, xi) = Exei(1,xi)

pi
= Exeseq

i (xi)
pi

. The co-scheduling problem for such
applications is denoted COSCHEDCACHEPP.

2.3 Complexity results

In this section, we focus on the COSCHEDCACHE problem with rational numbers of processors in
order to study the intrinsic complexity of co-scheduling with cache partitioning. We first prove that
in an optimal execution, all applications must complete at the same time when using rational numbers
of processors (Section 2.3.1). We remind that COSCHEDCACHE is NP-complete, even for perfectly
parallel applications (Section 2.3.2), and we show several dominance results on the optimal solution
(Section 2.3.3). While some of these dominance results only hold for perfectly parallel applications,
they will guide the design of heuristics for general applications in Section 2.4.

2.3.1 All applications complete at the same time

Lemma 2.1. To minimize the makespan when using rational numbers of processors, all applications
must finish at the same time.

Proof. Consider n applications T1, . . . , Tn that obey Amdahl’s law, and a solution S = {(pi, xi)}1≤i≤n
to COSCHEDCACHE. Let DS = maxi Exei(pi, xi) be the makespan of this solution. For simplicity, we
let

Ai = 1 + fi

ls + ll ·min

1,
mi

1MBSs(
xiCs
106

)α
 ,

bi = Aiwisi,

ci = Aiwi(1− si)

2.3. COMPLEXITY RESULTS 15

Hence, Exei(pi, xi) = bi+ ci
pi

. The set of applications whose execution time is exactlyDS is denoted
by IS .

We show the result by contradiction. We consider an optimal solution S whose subset IS has mini-
mal size (i.e., for any other optimal solution So, |IS | ≤ |ISo |). Then we show that if |IS | 6= n, we can
construct a solution S ′ with either (i) a smaller makespan if |IS | = 1 (contradicting the optimality hy-
pothesis), or (ii) one less application whose execution time is exactly DS (contradicting the minimality
hypothesis).

Assume |IS | 6= n, let Ti0 ∈ IS and Ti1 /∈ IS . We have Exei1(pi1 , xi1) < Exei0(pi0 , xi0) = DS , that
is

bi1 + ci1
pi1

< bi0 + ci0
pi0

, and hence (bi1 − bi0)pi0pi1 − ci0pi1 + ci1pi0 < 0. (2.5)

We now prove that we can always find 0 < ε < pi1 s.t. Exei0(pi0 , xi0) > Exei0(pi0 + ε, xi0) >
Exei1(pi1 − ε, xi1), i.e.,

DS = bi0 + ci0
pi0

> bi0 + ci0
pi0 +ε > bi1 + ci1

pi1−ε
.

The left part of inequality bi0 + ci0
pi0

> bi0 + ci0
pi0 +ε is always true when ε > 0. For the right part of

inequality above, we have:

−(bi1 − bi0)ε2 + [(pi1 − pi0)(bi1 − bi0) + ci0 + ci1]ε+ (bi1 − bi0)pi0pi1 − ci0pi1 + ci1pi0 < 0. (2.6)

From Equation 2.5, we know that (bi1 − bi0)pi0pi1 − ci0pi1 + ci1pi0 < 0, so we can always find a
0 < ε < pi1 that could make Equation 2.6 satisfied.

Then clearly, S ′ = {(p′i, xi)}i where p′i is (i) pi if i /∈ {i0, i1}, (ii) pi0 +ε if i = i0, (iii) pi1−ε if i =
i1, is a valid solution: we have the property

∑
i p
′
i =

∑
i pi ≤ p, and

∑
i x
′
i =

∑
i xi ≤ 1.

Hence,

• If |IS | = 1, then for all i, Exei(p′i, xi) < DS , hence showing that S is not optimal;

• Else, IS′ = IS \ {i0}, and DS′ = DS , hence showing that S is not minimal.

This shows that necessarily, |IS | = n.

2.3.2 Intractability

We prove that the problem is NP-complete, even for perfectly parallel applications. Therefore, we
formally state the decision problem associated to COSCHEDCACHEPP:

Definition 2.2 (COSCHEDCACHEPP-DEC). Given n perfectly parallel applications T1, . . . , Tn and a
platform with p identical processors sharing a cache of size Cs, and given a bound K on the makespan,
does there exist a schedule {(p1, x1), . . . , (pn, xn)}, where pi and xi are nonnegative rational numbers
with

∑n
i=1 pi ≤ p and

∑n
i=1 xi ≤ 1, such that max1≤i≤n Exei(pi, xi) ≤K?

For perfectly parallel applications, we can transform COSCHEDCACHEPP into an equivalent prob-
lem that does not depend on the number of processors but that relies simply on the cache partition-
ing strategy (Lemma 2.3 below). This result will guide processor assignment for general applications
in Section 2.4. We start with a few lemmas. The following lemma shows the optimal rational processor
assignment:

16 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

Lemma 2.2. Given n perfectly parallel applications T1, . . . , Tn and a partitioning of the cache
{x1, . . . , xn}, then the optimal number of processors for application Ti (i ∈ {1, . . . , n}) is:

pi = p
Exeseq

i (xi)∑n
j=1 Exeseq

j (xj)
.

Proof. According to Lemma 2.1, all applications finish at the same time. Given i0 ∈ {1, . . . , n}, we

have
Exeseq

i0
(xi0)

pi0
= Exeseq

i (xi)
pi

for all 1 ≤ i ≤ n. In addition, we have
∑n
i=1 pi = p: the fact that this bound

is tight in an optimal solution is due to the fact that we have perfectly parallel applications. We express
p in terms of the others variables, and we do the summation: p =

∑n
i=1 pi = pi0

Exeseq
i0

(xi0)
∑n
i=1 Exeseq

i (xi).

This directly leads to the result.

Lemmas 2.1 and 2.2 lead to the following reformulation of COSCHEDCACHEPP:

Lemma 2.3. COSCHEDCACHEPP can be rewritten as finding the optimal cache partitioning strategy
X = {x1, . . . , xn} that minimizes the completion time of an optimal solution:

1
p

n∑
i=1
Exeseq

i (xi). (2.7)

Proof. Lemma 2.2 gives us that in an optimal solution the processor distribution is uniquely determined
by the cache partitioning strategy. Furthermore, given a cache partitioning strategy, we know that all
applications finish at the same time (Lemma 2.1) and that the completion time is equal to

Exeseq
1 (x1)
p1

=
∑n
i=1 Exeseq

i (xi)
p

.

Theorem 2.1. COSCHEDCACHEPP-DEC is NP-complete.

Proof. Building upon these lemmas, we can prove Theorem 2.1 by using a reduction from KNAPSACK,
which is NP-complete [48].

COSCHEDCACHEPP-DEC is obviously in NP: given the xi’s, it is easy to verify all constraints in
linear time. We prove the completeness by a reduction from KNAPSACK, which is NP-complete [48].
Consider an arbitrary instance I1 of KNAPSACK: given n objects, each with positive integer size ui and
positive integer value vi for 1 ≤ i ≤ n, and two positive integer bounds U and V , does there exist a
subset I ⊂ {1, . . . , n} such that

∑
i∈I ui ≤ U and

∑
i∈I vi ≥ V ? Given I1, we construct the following

instance I2 of COSCHEDCACHEPP-DEC:
•We define two constants ε = 1

N(N+1) and η = 1− 1
N , where N = max(n, 2U + 1).

•We let di =
(uiη
U

)α, ei =
(
d

1
α
i + ε

)α
, ai = e

1
α
i Cs, and wifill = vi

1− di
ei

for 1 ≤ i ≤ n. Note that we

only need the value of the product wifi, and we can set one of them arbitrarily.
• The bound K is defined as:

pK =
n∑
i=1

wi(1 + fils) +
n∑
i=1

wifill − V.

To simplify notations, let zi = wifill. Letting A =
∑n
i=1wi(1 + fils) and Z =

∑n
i=1 zi, we get

pK = A + Z − V . Also, we have
∑n
i=1wi

(
1 + fi

[
ls + ll ·min

(
1, dixαi

)])
= A + B, where B =∑n

i=1 zi min(1, dixαi). Recall from Lemma 2.3 that I2 has a solution if and only if 1
p(A+B) ≤ K.

2.3. COMPLEXITY RESULTS 17

Let IC ⊆ {1, . . . , n} denote the subset of applications that are given some cache (xi 6= 0 if and only
if i ∈ IC). We also call IC the nonzero subset of I2. We have

d
1
α
i ≤ xi ≤

ai
Cs

= e
1
α
i ,

so that we can rewrite B = Z−
∑
i∈IC zi

(
1− di

xαi

)
. Given the value of the bound K, we have A+B ≤

pK if and only if ∑
i∈IC

zi(1−
di
xαi

) ≥ V.

We show that I1 has a solution if and only if I2 does. Suppose first that I1 has a solution subset

I ⊂ {1, . . . , n}. Then we let xi = e
1
α
i if i ∈ I and xi = 0 otherwise. This is a valid solution to I2 with

nonzero subset IC = I . Indeed:

• If i ∈ I , then d
1
α
i ≤ xi = e

1
α
i = ai

Cs
.

• We have ∑
i∈I

xi =
∑
i∈I

(d
1
α
i + ε) =

∑
i∈I

uiη

U
+ |I|ε.

But
∑
i∈I

uiη
U ≤ η (since we have a solution for I1), and |I|ε ≤ nε ≤ 1

N+1 , hence
∑
i∈I xi ≤

η + 1
N+1 ≤ 1.

• Finally,
∑
i∈I zi(1 − di

xαi
) =

∑
i∈I zi(1 − di

ei
) =

∑
i∈I vi ≥ V (since we have a solution for I1),

hence A+B ≤ pK.

Suppose now that I2 has a solution, and let IC be its nonzero subset. We claim that I = IC is
a solution to I1. Indeed, for i ∈ IC we have di ≤ xαi ≤ ei and

∑
i∈IC zi(1 −

di
xαi

) ≥ V . First, we

have
∑
i∈IC zi(1 −

di
xαi

) ≥
∑
i∈IC zi(1 −

di
ei

) =
∑
i∈IC vi, hence

∑
i∈IC vi ≥ V . Then

∑
i∈IC d

1
α
i ≤∑

i∈IC xi ≤ 1, and
∑
i∈IC d

1
α
i =

∑
i∈IC

uiη
U , hence

∑
i∈IC ui ≤

U
η . But Uη ≤ U + 1

2 by the choice of η,
thus

∑
i∈IC ui ≤ U + 1

2 . Because the sizes are integers,
∑
i∈IC ui ≤ U . Altogether, IC is indeed a

solution to I1. This concludes the proof.

2.3.3 Dominance results for perfectly parallel applications

In this section, we provide dominance results that will guide the design of heuristics. The dominance
results are for perfectly parallel applications (si = 0) but we give intuition on how to extend this work
for Amdahl applications in Section 2.3.4. Finally, we further assume that application memory footprints
are larger than the cache size (ai = +∞), and we assume rational numbers of processors.

The core of the previous intractability result relies on the hardness to determine the set of applications
that receive a cache fraction (denoted by IC) and those that do not (denoted by IC). In this section, we
show (i) how to determine the optimal solution when these sets IC and IC are known, and (ii) whether
one can disqualify some partitions as being sub-optimal.

In particular, we define a set of partitions of applications that we call dominant (Definition 2.4).
We show that (i) if a partition of applications IC , IC is dominant, then we can compute the minimum
execution time for this partition, and (ii) if a partition is not dominant, then we can find a better dominant
partition. We start by rewriting the problem when the partitioning IC , IC of applications is known:

18 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

Definition 2.3 (CSCPP-PART
(
IC , IC

)
). Given a set of applications T1, . . . , Tn and a partition IC , IC ,

the problem CSCPP-PART
(
IC , IC

)
(for COSCHEDCACHEPP-PART) is to find a set X = {x1, . . . , xn}

that minimizes the execution time:

1
p

∑
i∈IC

wi(1 + fi(ls + ll)) +
∑
i∈IC

wi(1 + fils + fill
di
xαi

)


under the constraints xi = 0 if i ∈ IC , xi > d

1/α
i if i ∈ IC , and

∑
1≤i≤n xi ≤ 1.

We now relax some bounds in CSCPP-PART
(
IC , IC

)
and define CSCPP-EXT

(
IC , IC

)
, which

is the same problem except that the constraints on the xi’s when i ∈ IC is relaxed: we have instead
xi ≥ 0 if i ∈ IC .

A solution of CSCPP-PART
(
IC , IC

)
is a solution of CSCPP-EXT

(
IC , IC

)
, because we simply

removed the constraints xi > d
1/α
i in the latter problem. Hence the execution time of the optimal

solution of CSCPP-EXT
(
IC , IC

)
is lower than that of CSCPP-PART

(
IC , IC

)
.

Furthermore, given a solution of CSCPP-EXT
(
IC , IC

)
, one can easily see that its execution time

in COSCHEDCACHE will be lower (the objective function is lower since it involves a minimum for all
applications in IC).

Lemma 2.4. Given a set of applications T1, . . . , Tn and a partition IC , IC , the optimal solution
to CSCPP-EXT

(
IC , IC

)
is

xi = (wifidi)1/(α+1)∑
j∈IC (wjfjdj)1/(α+1) if i ∈ IC ,

xi = 0 otherwise.

Proof. We want to compute X = {x1, . . . , xn} that minimizes the execution time. Discarding constant
factors, this reduces to minimizing

K(X) =
∑
i∈IC

wifidi
xαi

under the constraints: xi = 0 if i ∈ IC , xi ≥ 0 otherwise, and
∑
i xi ≤ 1. Clearly, one can see that this

last inequality is an equality when IC 6= ∅ (otherwise K is not minimum).
To minimize the function, we compute the partial derivatives of K:

∀i ∈ IC ,
∂K(X)
∂xi

= −αwifidi
xα+1
i

.

By setting them all to 0, we obtain the following equality for 1 ≤ i ≤ n:

−αwifidi
xα+1
i

= −αwnfndn
xα+1
n

.

Hence,

2.3. COMPLEXITY RESULTS 19

∀i ∈ IC , xi = xn
(wifidi)

1
α+1

(wnfndn)
1

α+1
;

n∑
i=1

xi = xn

(wnfndn)
1

α+1

∑
i∈IC

(wifidi)
1

α+1

= 1.

Hence, the desired result.

Definition 2.4 (Dominant partition). Given a set of applications T1, . . . , Tn, we say that a partition of
these applications IC , IC is dominant, if for all i ∈ IC ,

(wifidi)1/(α+1)∑
j∈IC (wjfjdj)1/(α+1) > d

1/α
i .

We can now state the following result:

Theorem 2.2. If a partition IC , IC is not dominant, then we can compute in polynomial time a better
solution.

Proof. Let IC , IC be a non-dominant partition.

Let i0 ∈ IC such that (wi0fi0di0)1/(α+1)∑
j∈IC

(wjfjdj)1/(α+1) ≤ d
1/α
i0

.

First we can show that there is i1 ∈ IC \ {i0}. Indeed, otherwise we would have
(wi0fi0di0)1/(α+1)∑
j∈IC

(wjfjdj)1/(α+1) = 1 ≤ d1/α
i0

, and IC , IC is not a valid partition: then CSCPP-PART
(
IC , IC

)
does

not admit any solution.
Let Te (resp. Tp) be the optimal execution time of CSCPP-EXT

(
IC , IC

)
(resp.

CSCPP-PART
(
IC , IC

)
). We know that Te ≤ Tp. Let us further denote by X = {x1, . . . , xn} the

optimal solution to CSCPP-EXT
(
IC , IC

)
. Let X̄ = {x̄1, . . . , x̄n} be such that (i) x̄i0 = 0, (ii) x̄i1 =

xi0 + xi1 , and (iii) x̄i = xi for all other i’s.
Then clearly X̄ is a solution, and we have:

Exeseq
i0

(x̄i0) ≤ wi0

(
1 + fi0 ls + fi0 ll

di0
xαi0

)
;

Exeseq
i1

(x̄i1) < wi1

(
1 + fi1 ls + fi1 ll

di0
xαi1

)
; (2.8)

Exeseq
i (x̄i) ≤ wi

(
1 + fils + fill

di
xαi

)
if i ∈ IC ;

Exeseq
i (x̄i) = wi (1 + fi(ls + ll)) if i ∈ IC .

Indeed, these results are direct consequences of the definition of Exeseq, except Equation 2.8, which we
establish as follows:

20 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

• If xi1 ≥ d
1/α
i1

, then x̄i1 > d
1/α
i1

Exeseq
i1

(x̄i1) = wi1

(
1 + fi1 ls + fi1 ll

di0
x̄αi1

)

< wi1

(
1 + fi1 ls + fi1 ll

di0
xαi1

)
.

• If xi1 < d
1/α
i1

, then for all x ∈ [0, 1], Exeseq
i1

(x) < wi1

(
1 + fi1 ls + fi1 ll

di0
xαi1

)
.

Hence:
1
p

n∑
i=1
Exeseq

i (x̄i) <
1
p

(∑
i∈IC

wi(1 + fi(ls + ll))

+
∑
i∈IC

wi(1 + fils + fill
di
xαi

)
)

= Te ≤ Tp,

which shows that X̄ is a better solution computed in polynomial time from X . Furthermore, by con-
struction of X̄ , we have strictly decreased the size of the new set IC .

We can show a second dominance result characterizing the optimal solution:

Theorem 2.3. If a partition IC , IC is dominant, then the optimal solution to CSCPP-PART
(
IC , IC

)
is:

xi = (wifidi)1/(α+1)∑
j∈IC (wjfjdj)1/(α+1) if i ∈ IC ;

xi = 0 otherwise.

Proof. This is a corollary of Lemma 2.4.
Indeed, this solution is the optimal solution to CSCPP-EXT

(
IC , IC

)
and it is a valid solution to

CSCPP-PART
(
IC , IC

)
, hence it is the optimal solution to CSCPP-PART

(
IC , IC

)
.

2.3.4 Extension of the dominance criterion for Amdahl applications

Finally, we provide extended definitions for non-perfectly parallel applications, by defining the dominant
partition of both the parallel part and the sequential part of such applications.

Definition 2.5 (Dominant partition of parallel part). Given a set of applications T1, . . . , Tn, we say that
a partition of these applications IC , IC is dominant for the parallel part if for all i ∈ IC ,

(wifidi(1− si))1/(α+1)∑
j∈IC (wjfjdj(1− sj))1/(α+1) > d

1/α
i .

Definition 2.6 (Dominant partition of sequential part). Given a set of applications T1, . . . , Tn, we say
that a partition of these applications IC , IC is dominant for the sequential part if for all i ∈ IC ,

(wifidisi)1/(α+1)∑
j∈IC (wjfjdjsj)1/(α+1) > d

1/α
i .

2.4. HEURISTICS 21

The intuition behind these two definitions is the following: recall from Lemma 2.1 that the execution
time is defined as Exei(pi, xi) = bi + ci

pi
, with

Ai = 1 + fi

ls + ll ·min

1,
mi

1MBSs(
xiCs
106

)α
 ,

bi = Aiwisi,

ci = Aiwi(1− si).

We can observe that si, the sequential fraction, is key to decide which parts bi or ci
pi

we should favor to
minimize Exei(pi, xi). If si << 1

pi
, then ci

pi
dominates the execution time, i.e., Exei(pi, xi) ≈ ci. Hence

the application could be seen as a perfectly parallel application where the new number of computing
operations to do is w̃i = wi(1− si). Then Definition 2.5 is just a consequence of applying the definition
of Dominant Partition to this new application.

Symmetrically, if si is large in front of one over the number of processors assigned to an application,
then bi dominates the execution time. Intuitively in this case, the number of processors by application
is less important (and we will have a fair balance of processors). Hence, we want to favor applications
with large values of siwifidi. We verify these intuitions experimentally in Section 2.5.

2.4 Heuristics

In this section, we aim at designing efficient heuristics for general applications that obey Amdahl’s law,
and whose memory footprints are larger than the cache size (ai = +∞). However, the COSCHED-
CACHE problem seems to be very difficult for such applications, as seen in Section 2.3.

We first explain how heuristics work, in particular to assign (rational numbers of) processors, in Sec-
tion 2.4.1. The core of the heuristic consists in building a dominant partition, and we detail different
possibilities to do so in Section 2.4.2. Finally, we propose a way to round the number of processors in
case we need an integer number of processors, for instance if no multi-threading is allowed (see Sec-
tion 2.4.3).

2.4.1 Structure of heuristics

We simplify the design of the heuristics by temporarily allocating processors as if the applications were
perfectly parallel, and then concentrating on strategies that partition the cache efficiently among some
applications (and give no cache fraction to remaining ones). In accordance with Theorem 2.2, our goal
is to compute dominant partitions. Recall that IC represents the subset of applications that receive a
fraction of the cache. Once a dominant partition is given, we obtain the schedule S = {(xi, pi)}i
as follows: first we determine the xi’s with Theorem 2.3, and then we recompute the pi’s so that all
applications complete simultaneously at time K. Indeed, while Lemma 2.2 does not hold for Amdahl
applications, we still know thanks to Lemma 2.1 that all applications should complete simultaneously.

However, there is no longer a nice analytical characterization of the makespan K, hence we use a
binary search to computeK as follows: for each application Ti, the execution time writes (si+ 1−si

pi
)ci =

K, where si is the sequential fraction, and ci = wi(1+fi(ls+ll dixαi)) if Ti ∈ IC , or ci = wi(1+fi(ls+ll))
otherwise. From

∑n
i=1 pi = p, we derive the equation

n∑
i=1

1− si
K
ci
− si

= p

22 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

Algorithm 1: DOM strategy, starting with all
applications

1 procedure DOM (I, choice) begin
2 IC ← I;
3 while ∃i ∈ IC s.t. NOTDOM(i, IC) do
4 k ← choice(IC);
5 IC ← IC \ {k};
6 if IC = ∅ then break;
7 end
8 IC ← I \ IC ;
9 return (IC , IC);

10 end

Algorithm 2: DREV strategy, starting from
empty set

1 procedure DREV (I, choice) begin
2 IC ← I; IC ← ∅;
3 k ← choice(IC);
4 I ′C ← {k};
5 while ISDOM(I ′C) do
6 IC ← I ′C ;
7 IC ← IC \ {k};
8 if IC = ∅ then break;
9 k ← choice(IC);

10 I ′C ← I ′C ∪ {k};
11 end
12 return (IC , IC);
13 end

Figure 2.1: Two strategies to build dominant partitions.

and we compute K through a binary search. A lower (resp. upper) bound for K is to assign p (resp. 1)
processor(s) to each application.

2.4.2 Computing a dominant partition

To compute dominant partitions, we use two greedy strategies:

• DOM: we start with IC = I and greedily remove some applications from IC until we have
a dominant partition (see Algorithm 1); NOTDOM(i, IC) returns true if i does not satisfy the
definition of dominant partition for IC ;

• DREV: initially IC is empty, and we greedily add applications while IC remains dominant (see Al-
gorithm 2); ISDOM(I ′C) returns true if I ′C is a dominant partition.

Both strategies come in three flavors, depending on the dominance definition that we use. From Def-
inition 2.4, we get that NOTDOM(i, IC) is true if and only if

(wifidi)1/(α+1)

d
1/α
i

≤
∑
j∈IC

(wjfjdj)1/(α+1) ,

and ISDOM(I ′C) is true if and only if

∀i ∈ I ′C ,
(wifidi)1/(α+1)

d
1/α
i

>
∑
j∈I′C

(wjfjdj)1/(α+1) ,

for strategies DOM and DREV. If we use Definition 2.6, we simply replace all wk’s by wksk (strategies
DOMS and DREVS focusing on the sequential part), while with Definition 2.5, we replace all wk’s by
wk(1− sk) (strategies DOMP and DREVP focusing on the parallel part).

For each of these strategies, the greedy criterion to select the next application is the choice function
taken from the following three alternatives:

2.5. SIMULATIONS 23

• RANDOM: choice(I) picks up randomly one application among all applications;

• MINRATIO considers the ratio that appears in Definition 2.4, Definition 2.6 or Definition 2.5
(dominant partitions), and chooses an application with a small ratio; for DOM and DREV, we
have:

choice(I) = arg min
i∈I

(
(wifidi)1/(α+1)

d
1/α
i

)
;

and we replace wi by wisi in DOMS and DREVS, or by wi(1− si) in DOMP and DREVP;

• MAXRATIO proceeds the other way round, by choosing an application with a large ratio, simply
replacing the arg min by an arg max.

The intuition behind these heuristics is the following: applications that make the solution non dom-
inant for DOM and DREV are such that (see Definition 2.4):

(wifidi)1/(α+1)

d
1/α
i

≤
∑
j∈IC

(wjfjdj)1/(α+1) .

Hence, we expect to reach dominance faster by removing from a non-dominant solution applications

with low (wifidi)1/(α+1)

d
1/α
i

(left term of the equation). Intuitively, DOM, DOMS and DOMP should work

well with the MINRATIO criterion. For symmetric reasons, we expect DREV, DREVS and DREVP to
work well with the MAXRATIO criterion. These intuitions will be experimentally confirmed in Sec-
tion 2.5.

Altogether, by combining six strategies, and with three different choice functions for each strategy,
we obtain 18 heuristics to build dominant partitions. We denote by DOM-MINRATIO the DOM strategy
using MINRATIO as a choice function, and we use a similar notation for all heuristics.

2.4.3 Integer processor assignment

Based on the rational cache allocation, we want to give an integer processor allocation in order to tackle
architectures that do not allow to share processors between applications through multi-threading. The
choice functions above are first used to build a dominant partition, then we assign cache based on that
partition to obtain the xi’s. In Algorithm 3, the set I contains all applications and x is the set that
contains all xi’s. Finally, p is the total number of processors and n the total number of applications
(i.e., n = |I|). After the cache is assigned, we initialize processor assignment by giving one processor
to each application, and the remaining processors are assigned in a greedy way: assign one processor
to the application currently with longest execution time, until all processors are assigned. It should be
noted that integer processor assignment will only work when p ≥ n, since each application needs at
least one processor.

2.5 Simulations

To assess the efficiency of the heuristics defined in Section 2.4, we have performed extensive sim-
ulations. The simulation settings are discussed in Section 2.5.1, and results are presented in Sec-
tion 2.5.2 (comparison of the 18 heuristics of Section 2.4), Section 2.5.3 (assessing the gain due to
co-scheduling), and Section 2.5.4 (with integer numbers of processors). The code is publicly available
at http://perso.ens-lyon.fr/loic.pottier/archives/cache-int.zip.

http://perso.ens-lyon.fr/loic.pottier/archives/cache-int.zip

24 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

Algorithm 3: Integer processor assignment

1 procedure INTEGERPROCESSOR (x, p, I)
2 begin
3 for i ∈ I do p′i = 1;
4 premain = p− n;
5 while premain > 0 do
6 i = arg maxk∈I (Exek(p′k, xk));
7 p′i = p′i + 1;
8 premain = premain − 1;
9 end

10 return p′i;
11 end

2.5.1 Simulation settings

We use data from applicative benchmarks to run the experiments. Table I provides a brief description of
the NAS Parallel Benchmark (NPB) suite [11], and shows the parameters for these six HPC applications.

Appi Description wi fi mi
40MBSs

CG Uses conjugate gradients method to solve a
large sparse symmetric positive definite sys-
tem of linear equations

5.70E+10 5.35E-01 6.59E-04

BT Solves multiple, independent systems of
block tridiagonal equations with a predefined
block size

2.10E+11 8.29E-01 7.31E-03

LU Solves regular sparse upper and lower trian-
gular systems

1.52E+11 7.50E-01 1.51E-03

SP Solves multiple, independent systems of
scalar pentadiagonal equations

1.38E+11 7.62E-01 1.51E-02

MG Performs a multi-grid solve on a sequence of
meshes

1.23E+10 5.40E-01 2.62E-02

FT Performs discrete 3D fast Fourier Transform 1.65E+10 5.82E-01 1.78E-02

Table I: Description and experimental values from NPB benchmarks.

We obtain the values shown in Table I by instrumenting and simulating the benchmarks (CLASS=A)
on 16 cores using PEBIL [72]. For the simulations, we use a cache configuration representing an Intel
Xeon CPU E5-2690, with a 40MB last level cache per processor of 8 cores. Since the cache miss ratio
is defined for a 40MB cache, we have di = mi

40MBSs

(
40×106

Cs

)α
.

We consider three sets of data for simulations:

• NPB-6: Limited to the six applications defined in Table I;

• NPB-SYNTH: We build synthetic applications from Table I with only varying randomly the work
wi between 1E+8 and 1E+12;

2.5. SIMULATIONS 25

• RANDOM: We build synthetic applications from Table I with varying all values randomly. The
work wi is taken between 1E+8 and 1E+12, fi between 1E-01 and 9E-01, and mi

40MBSs between
1E-02 and 9E-04.

The sequential fraction of work si is taken randomly between 1% and 15%.
For the execution platform, we consider one many-core Sunway TaihuLight [35] with 256 processors

and a shared memory of 32GB. We chose this platform because of its high core count. Strictly speaking,
this platform does not have a last level cache (LLC), but the shared memory can be seen as the LLC,
using the disk as the large memory. We have Cs = 32× 109. The large storage latency ll is set to 1. The
small storage latency ls is set to 0.17. According to the literature [69, 82, 95], the last level cache (LLC)
latency is on average four to ten times better than the DDR latency, and we enforce a ratio of 5.88 in the
simulations. We have used different ratios and they lead to similar results (see Figure 2.13). Finally, the
Power Law parameter is set to α = 0.5. We execute each heuristic 50 times and we compute the average
makespan, i.e., the longest execution time among all co-scheduled applications.

2.5.2 Comparison of the heuristics

50 100 150 200 250

#Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOM-RANDOM

DOM-MINRATIO

DOM-MAXRATIO

DREV-RANDOM

DREV-MINRATIO

DREV-MAXRATIO

DOMS-RANDOM

DOMS-MINRATIO

DOMS-MAXRATIO

DREVS-RANDOM

DREVS-MINRATIO

DREVS-MAXRATIO

DOMP-RANDOM

DOMP-MINRATIO

DOMP-MAXRATIO

DREVP-RANDOM

DREVP-MINRATIO

DREVP-MAXRATIO

Figure 2.2: Comparison of all dominant partition heuristics on 256 processors with NPB-SYNTH.

Figure 2.2 shows the normalized makespan obtained by all of the heuristics building dominant par-
titions. We set the number of processors to 256. Results are normalized with the makespan of ALL-
PROCCACHE, which is the execution without any co-scheduling: in the ALLPROCCACHE heuristic,
applications are executed sequentially, each using all processors and all the cache. We vary the number
of applications between 1 and 256. The eighteen heuristics obtain similarly good results, with a gain of
85% over ALLPROCCACHE as soon as there are at least 50 applications.

Since all eighteen variants show the same performance on the previous data sets, we investigate the
impact of the cache miss rate by varying it between 0 and 1 with a LLC of Cs = 1GB in Figure 2.3.
Results are now normalized with DOMS-MINRATIO in both figures, which enables to zoom out the
differences.

The first noticeable result from Figure 2.3 is that for all versions of the strategies that build domi-
nant strategies, MINRATIO performs better with strategies that remove applications from the IC (DOM,

26 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

0.2 0.4 0.6 0.8 1.0

Cache miss rate

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOM-RANDOM

DOM-MINRATIO

DOM-MAXRATIO

DREV-RANDOM

DREV-MINRATIO

DREV-MAXRATIO

DOMS-RANDOM

DOMS-MINRATIO

DOMS-MAXRATIO

DREVS-RANDOM

DREVS-MINRATIO

DREVS-MAXRATIO

DOMP-RANDOM

DOMP-MINRATIO

DOMP-MAXRATIO

DREVP-RANDOM

DREVP-MINRATIO

DREVP-MAXRATIO

0.2 0.4 0.6 0.8 1.0

Cache miss rate

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

N
or

m
al

iz
ed

M
ak

es
pa

n

(a) si randomly set between 0.01 and 0.15.

0.2 0.4 0.6 0.8 1.0

Cache miss rate

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

N
or

m
al

iz
ed

M
ak

es
pa

n

(b) si randomly set between 0.001 and 0.01.

Figure 2.3: Impact of the cache miss ratio mi
40MBSs with a 1GB cache and 16 applications with NPB-

SYNTH.

DOMS, DOMP), whereas MAXRATIO works better with strategies that add applications to the IC
(DREV, DREVS, DREVP). This confirms the mathematical intuition presented in Section 2.4.

Furthermore, we confirm the mathematical intuition on the influence of the Amdahl factor (si) pre-
sented in Section 2.3.4:

• We observe that in Figure 2.3a, when the sequential fraction is not negligible (si chosen uniformly
at random between 0.01 and 0.15), DOMS-MINRATIO and DREVS-MAXRATIO are always the
best (their plots overlap), with a gain from 10 to 15% with respect to the random-based heuristics
when the cache miss rate is greater than 0.5.

• On the contrary, when it is negligible (si chosen uniformly at random between 0.001 and 0.01),
then the DOMP-MINRATIO and DREVP-MAXRATIO versions perform better.

Note that overall, the observable differences between heuristics is mainly when the cache miss ratio
is large. According to current data,m40MBSs ranges from 1E-02 to 1E-04 (see Table I). In addition, these
differences are visible only with a small shared memory (1GB in the example), while our execution
platform has a 32GB shared memory. Overall, for the system used in these simulations, all heuristics
perform similarly, even though DOMS-MINRATIO and DREVS-MAXRATIO seem to perform best in all
other settings that we tried

In the following simulations, the sequential fraction will always, unless otherwise mentioned, be
taken between 1% and 15%. Therefore, for clarity, we plot only one heuristic based on dominant parti-
tions in the remaining simulations, namely DOMS-MINRATIO.

2.5.3 Gain with co-scheduling

In this section, we assess the gain due to co-scheduling by comparing DOMS-MINRATIO with ALL-
PROCCACHE and with three other heuristics:

• FAIR gives pi = p
n processors, and a fraction of cache xi = fi∑n

j=1 fj
to each application;

• 0CACHE gives no cache to any application, i.e., xi = 0 for 1 ≤ i ≤ n, and then it computes the
pi’s so that all applications finish at the same time;

• RANDOMPART randomly partitions applications with and without cache. For those in cache, the
xi’s are computed with the method used for dominant partitions. Then, the pi’s are computed so
that all applications finish at the same time.

2.5. SIMULATIONS 27

Impact of the number of applications

1 10 100
#Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

50 100 150 200 250

#Applications

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.4: Impact of the number of applications with NPB-SYNTH.

Figure 2.4 (normalized with ALLPROCCACHE on the left) shows the impact of the number of appli-
cations when the number of processors is set to 256 with NPB-SYNTH. We see that DOMS-MINRATIO

outperforms the other heuristics, hence showing the efficiency of our approach based on dominant parti-
tions. Results are also normalized with DOMS-MINRATIO (on the right), so that we can better observe
the differences between co-scheduling heuristics. FAIR exhibits good results only for a small number
of applications, when all applications can fit into cache. Otherwise, the use of dominant partitions is
much more efficient, as seen with RANDOMPART, or even 0CACHE that does not use cache but en-
sures that all applications finish at the same time. These results show the accuracy of the model and
the benefits of using dominant partitions. Also, we note the importance of cache partitioning, since the
difference between 0CACHE and DOMS-MINRATIO relies on cache allocation. Figure 2.5 (normalized
with ALLPROCCACHE and DOMS-MINRATIO) shows the impact of the number of applications when
the number of processors is set to 256 with RANDOM. We observe similar results with RANDOM
and NPB-SYNTH. Dominant partition heuristics still outperform other heuristics.

50 100 150 200 250

#Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

50 100 150 200 250

#Applications

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.5: Impact of the number of applications with RANDOM.

Impact of the number of processors

Figure 2.6 (normalized with ALLPROCCACHE on the left) shows the impact of the number of pro-
cessors when the number of applications is set to 16. When the number of processors increases, the
gain of co-scheduling increases. In both figures, DOMS-MINRATIO and outperforms other methods.
RANDOMPART, which builds a random partition instead of a dominant one, is outperformed by DOMS-
MINRATIO, and the latter is the only heuristic that surpasses ALLPROCCACHE when the number of
processors is low. So, building a dominant partition seems a good strategy to optimize the makespan.

28 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

The normalization with DOMS-MINRATIO (on the right) shows that when the number of processors
increases, FAIR becomes better, while RANDOMPART and 0CACHE are quite stable since they are based
on the same model as DOMS-MINRATIO. The only difference between 0CACHE and DOMS-MINRATIO

is the cache allocation strategy, and the gain from cleverly distributing cache fractions across applications
exceeds 20%. With more applications, we obtain the same ranking of heuristics, except that FAIR

is always the worst heuristic: since there are less processors on average per application, a good co-
scheduling policy is necessary.

50 100 150 200 250

#Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

50 100 150 200 250

#Processors

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.6: Impact of the number of processors with NPB-SYNTH.

Figure 2.7 (normalized with ALLPROCCACHE and DOMS-MINRATIO) shows the impact of the
number of processors with NPB-6. The number of applications is set to 6. We observe with less
applications that FAIR obtains better results than 0CACHE when the number of processors is bigger than
50.

50 100 150 200 250

#Processors

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

50 100 150 200 250

#Processors

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.7: Impact of the number of processors with NPB-6.

Figure 2.8 (normalized with ALLPROCCACHE and DOMS-MINRATIO) shows the impact of the
number of processors with RANDOM. The number of applications is set to 16. We obtain similar
results with RANDOM and NPB-SYNTH.

Figure 2.9a (normalized with DOMS-MINRATIO) shows the impact of the number of processors
with 64 applications. Compared to Figure 2.6, the main difference is that FAIR now obtains the worst
performance, even 0CACHE is better. This difference in performance for FAIR is due to a higher number
of applications. As each application receive a fraction of cache and a fraction of processors, each of them
obtains less resources when the number of applications increases. Figure 2.9b (normalized with ALL-
PROCCACHE and DOMS-MINRATIO) shows the impact of the number of processors with RANDOM
and 64 applications. As expected, we obtain similar results, 0CACHE and RANDOMPART show better
performance when the number of applications increases. DOMS-MINRATIO is still the best heuristic,
the number of processors does not affect relative performance.

2.5. SIMULATIONS 29

50 100 150 200 250

#Processors

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

50 100 150 200 250

#Processors

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.8: Impact of the number of processors with RANDOM.

100 150 200 250

#Processors

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

(a) NPB-SYNTH

100 150 200 250

#Processors

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

(b) RANDOM

Figure 2.9: Impact of the number of processors with 64 applications (normalized with DOMS-
MINRATIO)

Impact of the sequential fraction of work

Figure 2.10 (normalized with ALLPROCCACHE) shows the impact of the sequential part si when the
number of processors is set to 256. The number of applications is set to 16. As expected, when the
sequential fraction of work increases, all co-scheduling heuristics perform better than ALLPROCCACHE,
and DOMS-MINRATIO is always the best heuristic. It leads to a gain of more than 50% when si = 0.01.
The normalization with DOMS-MINRATIO better shows the impact of the sequential part: we observe
that when the sequential fraction of work increases, FAIR obtains results closer to DOMS-MINRATIO.

0.00 0.05 0.10 0.15

Sequential part

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

0.00 0.05 0.10 0.15

Sequential part

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.10: Impact of sequential fraction of work with NPB-SYNTH.

Figure 2.11 (normalized with ALLPROCCACHE and DOMS-MINRATIO) shows the impact of the
sequential fraction of work with NPB-6 (6 applications). We observe that the performance of FAIR

30 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

increases when the sequential fraction of work increases. Indeed, more the sequential fraction of work
is important, more the cache allocation becomes crucial.

0.00 0.05 0.10 0.15

Sequential part

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

0.00 0.05 0.10 0.15

Sequential part

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.11: Impact of sequential fraction of work with NPB-6.

Figure 2.12 (normalized with ALLPROCCACHE and DOMS-MINRATIO) shows the impact of the
sequential fraction of work with RANDOM and 16 applications. We observe similar results to the
previous one obtained with NPB-SYNTH.

0.00 0.05 0.10 0.15

Sequential part

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

0.00 0.05 0.10 0.15

Sequential part

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIO

RANDOMPART

FAIR OCACHE

Figure 2.12: Impact of sequential fraction of work with RANDOM.

Impact of the cache latency

Figure 2.13 (normalized with ALLPROCCACHE) shows the impact of the cache latency ls with NPB-
SYNTH and 16 applications (on the left) on 256 processors. The sequential fraction of work is set to
si = 0.0001 for all i. We observe that the ls cost does not have an impact on relative performance.
Right side of Figure 2.13 (normalized with ALLPROCCACHE) shows the impact of the cache latency
ls with NPB-SYNTH and 64 applications on 256 processors. The sequential fraction of work is set
to si = 0.0001 for all i. As on the previous figure, we see that the ls cost does not have an impact of
relative performance, even with 64 applications.

Impact of the cache miss rate

Figure 2.14 (normalized with DOMS-MINRATIO) shows the impact of the cache miss rate with NPB-
SYNTH and 16 applications. We vary the cache miss rate mi

40MBSs between 0 and 1. When the cache
miss rate increases, the performance of RANDOMPART and 0CACHE increases. Indeed, when the rate
of miss increases, using the cache is less important, so 0CACHE becomes competitive. But, we have to
keep in mind that, with real applications, the cache miss rate rarely exceeds 20%.

2.5. SIMULATIONS 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ls value

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ls value

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIO

RANDOMPART

FAIR

OCACHE

Figure 2.13: Impact of latency ls with NPB-SYNTH with 16 and 64 applications.

0.2 0.4 0.6 0.8 1.0

Cache miss rate

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-RANDOMINT

DOMS-MINRATIOINT

DOMS-MAXRATIOINT

DREVS-RANDOMINT

DREVS-MINRATIOINT

DREVS-MAXRATIOINT

DOMP-RANDOMINT

DOMP-MINRATIOINT

DOMP-MAXRATIOINT

DREVP-RANDOMINT

DREVP-MINRATIOINT

DREVP-MAXRATIOINT

RANDOMPARTINT

FAIRINT

OCACHEINT

Figure 2.14: Impact of cache miss rate using a 1GB LLC.

Processor and cache repartition

Figure 2.15 shows the processor repartition and cache repartition when we vary the number of applica-
tions from 1 to 256 with 256 processors with NPB-SYNTH. We use an error bar plot where the error
interval represents here the maximum and minimum number of processors (or cache fraction) allocated
to an application. As expected, we observe that the range between minimum and maximum decreases
when the number of applications increases. The processor allocation of FAIR is not interesting, the
maximum is always equal to the minimum because we allocate the same number of processors to each
application.

Since all dominant partition heuristics give the same results, we only use DOMS-MINRATIO. The
repartition of processors for 0CACHE is interesting: it turns out to be very close to the repartition obtained
with DOMS-MINRATIO, even though it is not using cache.

Figure 2.16 shows the processor repartition and cache repartition when we vary the number of ap-
plications from 1 to 256 with 256 processors with RANDOM. The results with RANDOM are very
similar to the results obtained with NPB-SYNTH. However, note that cache allocation with FAIR is
more heterogeneous when we have random application profiles.

32 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

1 10 100

#Applications

0

50

100

150

200

250

A
ve

ra
ge

n
u

m
b

er
of

p
ro

ce
ss

or
s

DomS-MinRatio Ocache RandomPart

1 10 100

#Applications

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

fr
ac

ti
on

of
ca

ch
e

DomS-MinRatio Fair RandomPart

Figure 2.15: Processor and cache repartition with 256 processors with NPB-SYNTH.

1 10 100

#Applications

0

50

100

150

200

250

A
ve

ra
ge

n
u

m
b

er
of

p
ro

ce
ss

or
s

DomS-MinRatio Ocache RandomPart

1 10 100

#Applications

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g
e

fr
ac

ti
o
n

of
ca

ch
e

DomS-MinRatio Fair RandomPart

Figure 2.16: Processor and cache repartition with 256 processors with RANDOM.

Summary

To summarize, all heuristics based on dominant partitions are very efficient, especially when compared
to the classical heuristics FAIR (which shares the cache fairly between applications) and ALLPROC-
CACHE (which does no co-scheduling). The unexpected result that can be observed is that the gain
brought by our heuristics comes even with very low sequential time (below 0.01)! This is unexpected
since the natural intuition would be a behavior such as the one observed on FAIR: a makespan up to 1.9
times longer than ALLPROCCACHE with low sequential time.

We show that the ratio processors/applications has a significant impact on performance: when many
processors are available for a few applications, it is less crucial to use efficient cache-partitioning and
all applications can share the cache, hence FAIR obtains good results, close to DOMS-MINRATIO. Oth-
erwise, RANDOMPART is the second best heuristic. A surprising information that also confirms the
strength of our partition based heuristics is that natural heuristics such as FAIR and ALLPROCCACHE

perform worse than 0CACHE our implementation with no usage of cache.
All heuristics run within a very small time (less than ten seconds in the worst of the settings used,

to be compared with a typical application execution time in hours or days), hence they can be used in
practice with a very light overhead.

2.5.4 With an integer number of processors

In this section, we study the impact of rounding the number of processors to an integer number on
heuristics. We focus again mainly on DOMS-MINRATIO, and we add the suffix INT to heuristic names
to denote the fact that we use Algorithm 3 to compute an integer processor allocation.

2.5. SIMULATIONS 33

50 100 150 200 250

#Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT

OCACHEINT

50 100 150 200 250

#Applications

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT OCACHEINT

Figure 2.17: Impact of the number of applications with NPB-SYNTH.

Impact of the number of applications

In this simulation, we vary the number of applications from 1 to 256 on 256 processors. Figure 2.17 is
normalized with ALLPROCCACHE (on the left), and heuristics obtain a similar relative performance as
in Section 2.5.3, with a gain of 90% over ALLPROCCACHE as soon as there are at least 50 applications.
The right side of Figure 2.17 shows the performance of the same heuristics but normalized with DOMS-
MINRATIOINT. As expected, 0CACHEINT is the worst, and RANDOMPARTINT performs always in
the middle between 0CACHEINT and FAIRINT. As we use the same algorithm to round the rational
processor allocation, the differences in performance mostly rely on cache allocation.

The fact that FAIRINT and DOMS-MINRATIOINT give similar results show that the cache allocation
of DOMS-MINRATIOINT must not be far from the fair distribution of FAIRINT. However, contrarily to
FAIR, processors are not equally shared between applications but distributed according to their needs,
hence the much better performance of FAIRINT compared to FAIR.

Simulations showing the impact of the number of processors and of the sequential fraction of work
give similar results, with FAIRINT and DOMS-MINRATIOINT overlapping and beating other heuristics.

Impact of the number of processors

Figure 2.18 shows the impact of the number of processors when the number of application is set to
16 and the number of processor very between 16 and 256. The left figure is normalized with ALL-
PROCCACHE and the right figure is normalized with DOMS-MINRATIOINT. As for previous results, all
heuristics outperform ALLPROCCACHE, the performance of heuristic methods does not get better with
the growth of processor number when the processor number get bigger than 24. However, all heuristics
obtain a gain of 60% on average. The right figure helps us to zoom on details, DOMS-MINRATIOINT

and FAIRINT are overlapping. All heuristics get better with the increasing of the processor number,
and perform almost as good as DOMS-MINRATIOINT and FAIRINT when the number of processors
reach 100. From Figure 2.17, we can find out that average number of processors per application is one
of the most critical parameter to obtain good performance.

Impact of the sequential fraction and the cache miss rate

As DOMS-MINRATIOINT and FAIRINT show the same performance, we study the impact of the se-
quential fraction and the cache miss rate, as we did in Section 2.5.2 (Figure 2.19). The number of
applications is set to 16 and the number of processors to 256 with a LLC of Cs = 1GB. The results
are normalized with DOMS-MINRATIOINT. On the left side of Figure 2.19, we compare all dominant
partition heuristics by varying the sequential fraction when the cache miss rate is set to 0.8 in order

34 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

50 100 150 200 250

#Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT

OCACHEINT

50 100 150 200 250

#Processors

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT OCACHEINT

Figure 2.18: Impact of the number of processors.

to see differences between heuristics. We note that the dominant partition heuristics favoring the se-
quential part outperform the others, especially the ones favoring the parallel part. DOM-MINRATIOINT

and DREV-MAXRATIOINT overlap with DOMS-MINRATIOINT. All variants using RANDOM criterion
perform on average around 1.10. As expected, giving more cache to applications with bigger sequential
fractions is better. In the right figure, we vary the cache miss rate between 0 and 1 This figure is inter-
esting due to the difference of performance between DOMS-MINRATIOINT and FAIRINT. Clearly, the
difference of performance between heuristics when we use integer processors rely on cache allocation.
When the cache miss ratio increases, the performance of DOMS-MINRATIOINT becomes better. When
the cache miss rate is larger than 0.01, DOMS-MINRATIOINT outperforms all other heuristics, and we
obtain an average gain of 10% on FAIRINT. The performance of 0CACHEINT becomes better when the
cache miss rate increases.

0.0 0.1 0.2 0.3 0.4

Sequential part

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-RANDOMINT

DOMS-MINRATIOINT

DOMS-MAXRATIOINT

DREVS-RANDOMINT

DREVS-MINRATIOINT

DREVS-MAXRATIOINT

DOMP-RANDOMINT

DOMP-MINRATIOINT

DOMP-MAXRATIOINT

DREVP-RANDOMINT

DREVP-MINRATIOINT

DREVP-MAXRATIOINT

DOM-RANDOMINT

DOM-MINRATIOINT

DOM-MAXRATIOINT

DREV-RANDOMINT

DREV-MINRATIOINT

DREV-MAXRATIOINT

0.2 0.4 0.6 0.8 1.0

Cache miss rate

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT OCACHEINT

Figure 2.19: Impact of the sequential fraction and the cache miss rate with NPB-SYNTH.

Figure 2.20 shows the performance obtained when the sequential fraction of work vary. The number
of applications is set to 16 and the number of processor is set to 256. The left figure is normalized with
ALLPROCCACHE and the right one is normalized with DOMS-MINRATIOINT. We can see from both
figures that DOMS-MINRATIOINT and FAIRINT overlaps, and both of them outperform other heuristic
methods.

2.5. SIMULATIONS 35

0.00 0.05 0.10 0.15

Sequential part

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

M
ak

es
pa

n

ALLPROCCACHE

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT

OCACHEINT

0.00 0.05 0.10 0.15

Sequential part

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

M
ak

es
pa

n

DOMS-MINRATIOINT

RANDOMPARTINT

FAIRINT OCACHEINT

Figure 2.20: Impact of sequential fraction with NPB-SYNTH.

Summary

To summarize, when we use integer processors, all heuristics based on dominant partitions are still very
efficient, but those that favor either the sequential part or none of them perform better. The main differ-
ence between results with rational and integer processor assignments is that DOMS-MINRATIOINT and
FAIRINT overlap if the cache miss rate is low (less than 1%), because of the better processor assignment
for FAIRINT. We show that the cache miss rate has a significant impact on performance: when many
cache misses occur, it is more crucial to use efficient cache-partitioning and all applications can share the
cache, hence DOMS-MINRATIOINT outperforms FAIRINT when the cache miss rate is larger than 10%.
As expected, DOMS-MINRATIOINT performs better when the cache miss rate increases. Otherwise,
RANDOMPARTINT is the third best heuristic, followed by 0CACHEINT that does not use the cache.

36 CHAPTER 2. CO-SCHEDULING APPLICATIONS ON CACHE-PARTITIONED SYSTEMS

2.6 Conclusion

In this chapter, we have provided a preliminary study on co-scheduling algorithms for cache-partitioned
systems, building upon a theoretical study. The two key scheduling questions are (i) which proportion
of cache and (ii) how many processors should be given to each application. For rational numbers of
processors, we proved that the problem is NP-complete, but we have been able to characterize optimal
solutions for perfectly parallel applications by introducing the concept of dominant partitions: for such
applications, we have computed the optimal proportion of cache to give to each application in the parti-
tion. Furthermore, we have provided explicit formulas to express the number of processors to assign to
each application.

Several polynomial-time heuristics focusing on Amdahl’s applications have been built upon these
results, both for rational and integer numbers of processors. Extensive simulation results demonstrate
that the use of dominant partitions always leads to better results than more naive approaches, as soon
as there is a small sequential fraction of work in application speedup profiles. The concept of sharing
the cache only between a subset of applications seems highly relevant, since even an approach with a
random selection of applications that share the cache leads to good results. Also, a clever partitioning
of the cache pays off quite well, since our heuristics lead to a significant gain compared to an approach
where no cache is given to applications. Overall, the heuristics appear to be very useful for general
applications, even though their cache allocation strategy rely mainly on simulating a perfectly parallel
profile.

For future work, on the theoretical side, we plan to focus on the problem with integer numbers of
processors and we hope to derive interesting results that could help design even more efficient heuristics.
On the practical side, Chapter 3 presents real experiments done on a cache-partitioned system with a high
core count, hence validating the accuracy of the model and confirming the impact of these promising
results.

Chapter 3

Co-scheduling HPC workloads on cache-
partitioned CMP platforms

Based on the results obtained in Chapter 2, we pursue the study of co-scheduling algorithms with cache
partitioning techniques but, this time, using a real cache-partitioned multiprocessor (Intel Xeon) to assess
the interest of cache partitioning on such platforms. Intel recently introduced a new hardware feature
for cache partitioning called Cache Allocation Technology (CAT) [87]. CAT allows the programmer to
reserve cache subsections, so that when several applications execute concurrently, each of them has its
own cache area. Using CAT, Lo et al. [76] showed experimentally that important gains could be reached
by co-scheduling latency-sensitive applications with a strict cache partitioning.

In this chapter, we also use CAT to partition the LLC into several areas when co-scheduling applica-
tions, but with the objective of optimizing the throughput of in-situ or in-transit analysis for large-scale
simulations. Indeed, in such simulations, data is generated at each iteration and periodically analyzed
by parallel processes on dedicated nodes, concurrently of the main simulation [104]. If these dedicated
nodes belong to the main simulation platform (thereby reducing the number of available cores for sim-
ulation), we speak of in-situ processing, while if they belong to an auxiliary platform, we speak of of
in-transit processing [13]. In both cases, several applications (various kernels for analysis) have to run
concurrently to analyze the data in parallel of the current simulation step. The constraint is to achieve a
prescribed throughput for each application, because the outcome of the analysis drives the next steps of
the simulation. In the simplest case, each application will have to complete within the time of a simula-
tion step, hence we need to achieve the same throughput for each application, and maximize that value.
In other situations, some applications may be needed only every k simulation steps, with a different
value of k per application [77]. This calls for achieving a weighted throughput per application, and for
maximizing the minimum value of these weighted throughputs, which dictates the global rate at which
the analysis can progress.

Note that in Chapter 2, we were only considering the makespan of the co-schedule, while we aim
here at maximizing a weighted throughput. Indeed, this new objective better fits the target applications
that we execute on the platform. A second difference, besides doing actual experiments, is to specialize
our study on iterative HPC kernels, instead of general applications obeying Amdahl’s law as in Chapter 2.
Finally, we focus exclusively on integer numbers of cache fractions and processors, since fractions
cannot be assigned on the Intel Xeon.

Main contributions. The first major contribution of this chapter is to introduce a model that char-
acterizes application performance. Next, we provide strategies to decide how many cores and which
cache fraction should be assigned to each application, in order to maximize the weighted throughput. A

37

38
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

dynamic programming algorithm provides an optimal strategy, according to the model. The last major
contribution is to provide an extensive set of experiments conducted on the Intel Xeon, which assesses
the gains achieved by our optimal resource allocation strategy. We therefore demonstrate that cache-
partitioning strategies can lead to gains in performance for in-situ analysis for large-scale simulations.

The rest of the chapter is organized as follows. Section 3.1 details the main framework and all appli-
cation/platform parameters, as well as the optimization problem. Section 3.2 presents five co-scheduling
strategies, including a dynamic programming approach that provides an optimal resource assignment
(according to the model). Section 3.3 describes the real cache partitioned platform used to perform the
experiments. Section 3.4 assesses the accuracy of the model. Section 3.5 reports extensive experi-
ments. Finally, Section 3.6 summarizes our main contributions and discusses directions for future work.
A review of the related work on co-scheduling and cache partitioning techniques can be found in Chap-
ter 2, Section 2.1.

3.1 Model and optimization problem

The objective is to execute m iterative applications A1, . . . , Am on P identical cores. The applications
are sharing a cache of size C, which can be divided into X different fractions. For instance, if X = 20,
we can give several fractions of 5% of the cache to each application.

Let pi be the number of cores on which application Ai is executed, and let xi be the number of
fractions of cache assigned to Ai, for 1 ≤ i ≤ m. Hence, Ai uses a cache of size xi

XC. We must have∑m
i=1 pi = P and

∑m
i=1 xi = X , i.e., all the cores and the cache fractions are partitioned across the

applications.
Given pi and xi, an application Ai executes one iteration in time T reali (pi, xi). On a given platform,

all these values can be measured, and we aim at providing a model that characterizes these values. In
the model, we use the following formula:

Ti(pi, xi) = ti(pi) (1 + hi(xi)) , (3.1)

where ti(pi) represents the computation cost and hi(xi) the slowdown induced by cache misses in the
LLC. Intuitively, the computation cost decreases when pi increases, and similarly, the slowdown de-
creases when xi increases, i.e., ti(pi) and hi(xi) are non-increasing functions. In this formula, we
assume that the slowdown incurred by cache misses does not depend on the number of cores assigned to
the application. While this assumption may not be true in practice, we will discuss the model accuracy
in Section 3.4, where we measure cache misses and refine the model.

We now detail the model for ti(pi) and hi(xi).

3.1.1 Computations ti(pi)

We assume that all applications obey Amdahl’s law [3]: ti(pi) = siT
seq
i + (1− si)

T seqi
pi

, where T seqi is
the sequential time of the application executed with 100% of the cache, and si is the sequential fraction
of the application.

3.1.2 Cache misses effect hi(xi)

The most challenging part is to model the slowdown factor hi(xi). In chip multiprocessors (CMP),
many studies have observed that cache miss ratio follows the Power Law, also called the

√
2 rule [54,

3.1. MODEL AND OPTIMIZATION PROBLEM 39

68, 101]. The Power Law of cache misses states that for a cache of size Cact, the cache miss ratio r can
be expressed as

r = r0

(
C0
Cact

)α
, (3.2)

where r0 represents the cache miss ratio for a baseline cache of size C0, and α is a parameter ranging
from 0.3 to 0.7, with an average at 0.5. We consider α = 0.5 in the following.

We slightly generalize the Power Law formula (with α = 0.5) to avoid side effects, and define the
slowdown as follows:

hi(xi) = ai + bi√
xi
, (3.3)

where ai and bi are constants depending on the application Ai. From Equation 3.2 with α = 0.5, we
have bi = r0

√
C0X
C (since Cact = xi

XC), and ai is a constant added to avoid side effects. In Section 3.4,
we determine ai and bi by interpolation, from experimentally measured cache misses, see Table II.

Overall, when assigning pi cores and a fraction xi of the cache, and letting ci = 1 + ai, an
application Ai executes one iteration in time:

Ti(pi, xi) = ti(pi)
(
ci + bi√

xi

)
. (3.4)

3.1.3 Optimization problem

As stated in the introduction of this chapter, the goal is to maximize a weighted throughput, since
analysis applications may be required at different rates, from every simulation step to every tenth (or
more) step [77]. We let βi denote the weight of application Ai for 1 ≤ i ≤ m. Intuitively, βi represents
the number of times that we should execute application Ai at each iteration step. These priority values
are not absolute but relative: for m = 2 applications, having β1 = 1

4 and β2 = 1 means we execute four
times A2 (at each step) while executing A1 only once (every fourth step). This is equivalent to having
β1 = 1 and β2 = 4 if we change the granularity of the simulation steps. In fact, what matters is the
relative number of executions of each Ai that is required, hence we aim at maximizing the weighted
throughput. The throughput achieved when executing βi instances of application Ai is 1

βiTi(pi,xi) , and
the objective is to partition the shared cache and assign cores such that the total time taken by the slowest
application is minimal, i.e., the lowest weighted throughput is maximal. The weighted throughput allows
us to ensure some fairness between applications, and to enforce a better analysis rate of the simulation
results whenever the bottleneck is the slowest application. Note that letting βi = 1 leads to maximizing

40
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

the rate of the analysis when all applications are needed at the same frequency. The optimization problem
is formally expressed below:

Definition 3.1 (COSCHED-CACHEPART). Given m iterative applications with priorities
(A1, β1), . . . , (Am, βm) and a platform with P identical cores sharing a memory of size C
with X fractions of cache, the COSCHED-CACHEPART problem consists in finding a schedule
{(p1, x1), . . . , (pm, xm)} such that

MAXIMIZE min
1≤i≤m

{
1

βiTi(pi,xi)

}

SUBJECT TO


∑m
i=1 pi = P,∑m
i=1 xi = X.

3.2 Scheduling strategies

In this section, we introduce several co-scheduling strategies that we will compare via experiments on
the Intel Xeon. We start with a (theoretically) optimal schedule, and then present simple heuristics that
we use for comparison.

3.2.1 Optimal solution to COSCHED-CACHEPART

Given the time to execute one iteration of application Ai with pi cores and a fraction xi of the cache
Ti(pi, xi), we can solve the COSCHED-CACHEPART problem optimally, with a dynamic programming
algorithm.

Theorem 3.1. COSCHED-CACHEPART can be solved in time O(mPX), where m is the number of
applications, P is the number of processors, and X is the number of different possible cache fractions.

Proof. Let T (i, q, c) be the maximum weighted throughput that can be obtained with applications
A1, . . . , Ai, using q cores and c fractions of cache. The goal is to find T (m,P,X). We compute
T (i, q, c) as follows:

T (i, q, c) =



max
1≤q1≤q
1≤c1≤c

1
β1T1(q1,c1) if i = 1,

max
1≤qi<q
1≤ci<c

{
min

{
T (i− 1, q − qi, c− ci),

1
βiTi(qi,ci)

}}
otherwise.

The base case i = 1, for one application, takes the best out of all possible allocations (in terms
of number of processors and number of cache fractions). Note that for most execution time profile,
the execution time in this case is obtained by T (1, q, c) = 1

β1T1(q,c) , since using less processors or
less fractions of cache would only increase the execution time, but we write the general expression to
encompass any execution time profile, and not only the one given by Equation 3.4.

In the recurrence, we try all possible number of processors and number of cache fractions for appli-
cation i, and re-use the optimal solution for the i − 1 other applications. If we did not use the optimal

3.2. SCHEDULING STRATEGIES 41

solution, we would be able to create a better solution, hence it is easy to see that the problem has an
optimal substructure property and can be solved with a dynamic programming algorithm.

There are mPX values to compute, and they can each be obtained in constant time, except for the
generalized base case, where we need to perform a maximum over PX values. Overall, with the exe-
cution profile of our model, we can compute all values in time O(mPX), and the complexity becomes
O(mP 2X2) in the general case. In practice on the Intel Xeon, we have m ≤ P = 14, and X = 20,
hence the dynamic programming algorithm executes almost instantaneously in all the experiments.

This optimal algorithm provides us with our first strategy to schedule applications, and it is called
DP-CP (Dynamic Programming with Cache Partitioning). Checking the behavior of this strategy in
practice will assess the accuracy of the performance model, when using the values of Ti(pi, xi) obtained
with the model of Section 3.1.

3.2.2 Equal-resource assignment

To evaluate the global efficiency of the optimal solution for DP-CP, we compare it to EQ-CP, a simple
strategy that allocates the same number of cores and the same number of cache fractions to each appli-
cation. The algorithm is the following: we start to give xi =

⌊
X
m

⌋
and pi =

⌊
P
m

⌋
for all i, then, we give

the P mod m extra cores one by one to the first P mod m applications, and we give the X mod m
extra cache fractions one by one to the last X mod m applications. Doing this, we forbid the case
where an application receives an extra core plus an extra fraction of cache, thereby avoiding a totally
unbalanced equal assignment.

3.2.3 Impact of cache allocation

In order to isolate the impact of cache partitioning on performance, we introduce some variants where
only the cache allocation is modified:

• DP-EQUAL uses the number of cores returned by the dynamic programming algorithm, hence the
same as for DP-CP, but shares the cache equally across applications, as done by EQ-CP.

• We also consider strategies that do not enforce any cache partitioning, but only decide on the
number of cores for each application. DP-NOCP uses the same number of cores as DP-CP, and
EQ-NOCP uses an equal-resource assignment as in EQ-CP. However, for these two strategies, all
applications share the whole cache, i.e., CAT is disabled.

Algorithm 4: Equal allocation with cache partitioning

1 EQ-CP (m,P,X) begin
2 for i = 1 to m do pi ←

⌊
P
m

⌋
; xi ←

⌊
X
m

⌋
;

3 for i = 1 to P mod m do pi ← pi + 1 ;
4 for i = 1 to X mod m do xm+1−i ← xm+1−i + 1 ;
5 end

42
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

3.3 Experimental setup

In this section, we first describe the platform and the benchmark applications in Section 3.3.1. Then
in Section 3.3.2, we explain in details the Cache Allocation Technology CAT.

3.3.1 Platform and applications

The experimental platform is composed of a Dell PowerEdge R730 server with two Intel Xeon E5-2650L
v4 processors (Broadwell microarchitecture). Each processor contains P = 14 cores (with Hyper-
Threading disabled) sharing a 35MB last-level cache (Cluster-on-Die disabled), divided into X = 20
slices (or fractions). Nodes run a vanilla 4.11.0 Linux kernel with cache partitioning enabled.

Only one processor (with 14 cores) is used for the experiments, since the LLC is not shared across
processors. It matches standard practice because users who co-schedule real-applications often place
each application inside a single processor to benefit from the shared cache. Batch schedulers also allocate
cores of the same processor whenever possible. Hence our work focuses on co-scheduling the subset of
applications that are assigned to a single processor by the user or by the batch scheduler.

Cache experiments are very sensitive to perturbations, so we take great care to ensure that all ex-
periments are fully reproducible. To avoid perturbations: (i) we average values obtained (like cache
misses) over 20 (in Section 3.4) or 5 (in Section 3.5) identical runs; (ii) we flush the last-level cache
entirely between runs; and (iii) experiments run on a dedicated processor while the program launching
and monitoring them runs on the other processor. All the data presented in this chapter (cache misses,
number of floating operations, etc), is obtained with PAPI [24].

For validations and performance evaluation, we use six HPC workloads from the NAS bench-
marks [11] (see Table I). We consider only NAS benchmarks from class A, as detailed in Table I.

App Description

CG Uses conjugate gradients method to solve a large sparse symmetric positive
definite system of linear equations

BT Solves multiple, independent systems of block tridiagonal equations with a
predefined block size

LU Solves regular sparse upper and lower triangular systems

SP Solves multiple, independent systems of scalar pentadiagonal equations

MG Performs a multi-grid solve on a sequence of meshes

FT Performs discrete 3D fast Fourier Transform

Table I: Description of the NAS parallel benchmarks.

3.3.2 Cache Allocation Technology

The Cache Allocation Technology (CAT) [87] is part of a larger set of Intel technologies that are called
the Resource Director Technology (RDT) and supported since the Haswell architecture. RDT lets the
operating system group applications into classes of service (COS). Each class of service describes the
amount of resources, in particular cache, that assigned applications can use (see Figure 3.1). Monitoring
of current use of these resources may also be available. Currently, resources can be either an amount

3.4. ACCURACY OF THE MODEL 43

of cache or memory bandwidth. In this chapter we will only focus on cache resources (CAT), which
implements cache partitioning.

The CAT divides the LLC into X slices of cache. Each COS has a set of slices that applications can
use: When reading or writing memory requires to fetch a cache line in the LLC, that cache line must
be allocated in the slices available to the class of the current application. However applications may
read/modify cache lines that are already available in other slices, for instance when sharing memory
between programs in different classes (each cache line can only exist once in the entire cache).

Each slice may only be used by a single class. By default, applications are placed in the default
class (COS0) which contains slices not used by any other class. The set of slices available to a class is
a capacity bit-mask (CBM) of length X . With X = 20, if COS1 has access to the last 4 slices (the top
20% of the LLC), CBM1 would be set to 0xf0000.

However, CAT has some technical restrictions:

• Number of slices (CBM length) and classes are architecture dependent (20 and 16 on our plat-
form);

• A CBM cannot be empty (each class of applications must have at least one fraction of cache);

• Bits set in a CBM must be contiguous;

• Slices are not distributed geographically in the LLC. Address hashing ensures spreading of slices
over the entire LLC. In other words, 0x10000 and 0x00001 CBM should behave exactly the
same with respect to locality; there are no NUCA effects (Non Uniform Cache Access).

In this work, we consider a strict cache partitioning, hence each COS contains only one application (and
each cache slice is available to a single application).

LLC

CBM1 = 1110 CBM2 = 0001

p1 p2

COS1

p3

COS2

Figure 3.1: CAT example with 2 classes of service, 3 cores and a 4-bit capacity mask (CBM). First COS
has 2 cores and 75% of the LLC, the second class of service has the remaining resources.

3.4 Accuracy of the model

In this section, we assess the precision of the model developed in Section 3.1. First, we detail the exper-
imental protocol and explain how to obtain the model parameters for each application in Section 3.4.1.
Then, we study in Section 3.4.2 the behavior of cache misses on the platform described in Section 3.3.1,
so as to verify whether the Power Law holds for HPC workloads on such architectures. Finally, we study
in Section 3.4.3 the accuracy of the model proposed in Section 3.1 by comparing the expected execution
time from Equation 3.4 to the measured one.

44
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

3.4.1 Experimental protocol

To instantiate the model and check its accuracy, we need to find for each application the value of three
parameters used in Equation 3.4: si (sequential fraction), ai (or equivalently ci = ai + 1), and bi
(cache slowdown). To this purpose, we monitor each application with PAPI [24] and use multiple
interpolations on the produced data to find the desired constants. More precisely, we proceed as follows.
Each application Ai executes alone on a dedicated processor. First, we give 100% of the cache to the
application Ai and vary the number of cores from 1 to 14 to derive the sequential fraction si. Then,
for each cache fraction xi ranging from 15% to 85%, we record the number of cache misses when pi
ranges from 1 to 14 and derive values for ci and bi. Finally, we put the pieces together, keeping the
value of si while scaling ci and bi by a constant factor, thereby deriving the final values for Ti(pi, xi) in
Equation 3.4.

As a side note, we point out that this complicated (and definitely not scalable) approach was nec-
essary because the least-square interpolation program would not converge when fed directly with 80%
of the 280 experimental values for each application (14 processors, and 16 values of x out of 20). We
expect it will be even more challenging to instantiate the model for future platforms where the number of
cores will be higher. Note that the Power Law with α = 0.5 suits well the behavior of compute-intensive
benchmarks such as CG, but struggles to model memory/communication-intensive applications such as
MG and FT. The results for each application are displayed in Table II.

Appi ai bi si

BT -0.0026 0.0287 0.010

CG -0.0379 0.0474 0

FT 0.0092 0.0129 0.016

LU -0.0247 0.0275 0.020

MG 0.0460 0.0073 0.065

SP -0.0110 0.0254 0.018

Table II: si, ai and bi obtained by interpolation from the data produced by measurements .

3.4.2 Accuracy of the Power Law

Figure 3.2 shows the evolution of cache miss ratios for the six applications depending on the number of
cores and cache fraction. We observe that for most applications, the cache miss ratio increases with the
number of cores for small cache fractions, while it does not vary significantly with the number of cores
for higher cache fractions. Therefore, these results verify the assumption about the relation between
number of cores and cache misses.

On Figure 3.3, we study the evolution of cache miss ratios for each considered application, running
alone with a single core. We do not look at cache fractions below x = 3 (or 15%) because, according
to our experiments, it shows irrelevant results due to cache contention. We observe that the Power Law
with α = 0.5 suits well the behavior of compute-intensive benchmarks CG, BT, LU and SP, but struggles
to model memory/communication-intensive applications like MG and FT.

3.4. ACCURACY OF THE MODEL 45

LU MG SP

BT CG FT

5 25 50 75 100 5 25 50 75 100 5 25 50 75 100

5 25 50 75 100 5 25 50 75 100 5 25 50 75 100

0.2

0.4

0.6

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.4

0.5

0.6

0.7

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

Fraction of cache (%)

C
ac
h
e
m
is
s
ra
ti
o

1

5

10

14
Cores

Figure 3.2: Evolution of cache miss ratio when the cache fraction xi is ranging from 1 to 20 (i.e., from
5% to 100%) and the number of cores pi is ranging from 1 (blue) to 14 (red).

3.4.3 Accuracy of the execution time

Finally, we aim at verifying the accuracy of the execution time predicted by the model. Figure 3.4
shows, for each application, the comparison between the measured execution time and the model, when
the application runs alone on the platform (no co-scheduling here). In Figure 3.4, the number of cores
varies from 1 to 14 while the cache fraction is fixed at x = 3 (or 15%).

Figure 3.5 shows the relative error between predictions and the real data. The relative error is defined
as

Ei(pi, xi) =

∣∣∣Ti(pi, xi)− T reali (pi, xi)
∣∣∣

T reali (pi, xi)
,

where T reali (pi, xi) is the measured execution time on the cache partitioned platform for application Ai
with pi cores and xi fractions of cache. We observe that our model predicts execution times rather well
for CG and MG, with less than 25% of error for worst cases. For FT, the model is accurate for xi ≥ 6
(30%) and pi ≤ 10, with a relative error below 15%, but the model loses accuracy for small cache
fractions and high number of cores. This is due to a specific behavior of FT: its execution time tends
to become constant after a certain core threshold (see Figure 3.4), while the model expects a strictly
decreasing execution time. This constant plateau is not due to Amdahl’s law (FT is parallel enough to
scale up to 14 cores), hence a contention effect (either from the cache or the memory bandwidth) is
probably behind this constant level in performance. Another reason to explain these mis-predictions
when the number of cores increases, is that the model assumes that the number of cores does not impact
LLC cache misses, which is not always true in practice, as seen in Figure 3.2.

46
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

LU (α = 1.146) MG (α = 0.084) SP (α = 0.485)

BT (α = 0.446) CG (α = 0.795) FT (α = 0.019)

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

0.12

0.16

0.20

0.24

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

Fraction of cache (%)

C
ac
h
e
m
is
s
ra
ti
o

Experimental data Interpolation Model α = 0.5

Figure 3.3: Comparison between the predicted cache miss ratio given by the Power Law with α = 0.5
in red, the best found α parameter in blue and the measured cache miss ratio in black. Applications run
alone on the platform with 1 core.

3.5 Results

To assess the performance of the scheduling strategies of Section 3.2 and to evaluate the impact of cache
partitioning on co-scheduling performance, we conduct an extensive campaign of experiments using a
real cache partitioned system.

3.5.1 Experimental protocol

The platform and the applications used for all the experiments are described in Section 3.3. Recall
that we consider iterative applications, hence we have modified their main loop such that each of them
computes for a duration T . We choose a value for T large enough to ensure that each application reaches
the steady state with enough iterations (for instance, T = 3 minutes for small applications like CG, FT,
MG and T = 10 minutes for the others). If a co-schedule contains both small and big applications, we
use T = 10 minutes for all applications. In addition, for all the following experiments, we use 12 cores
out of the 14 available, to avoid rounding effects when we co-schedule a number of applications that is
not divisible by the number of cores. Similar results were obtained when co-scheduling applications on
all 14 cores, in particular with two applications that could use seven cores each.

Evaluation framework. To study the performance of the different algorithms in terms of weighted
throughput, we measure the time for one iteration of Ai: Ti = T

#iteri
, where #iteri is the number

of iterations of application Ai during T . Then, we compute mini 1
βiTi

. We are then interested by the
relative speed of each application with respect to the others. Indeed, recall that for all i, j, the goal is

3.5. RESULTS 47

LU MG SP

BT CG FT

1 5 10 14 1 5 10 14 1 5 10 14

1 5 10 14 1 5 10 14 1 5 10 14

1

2

3

4

5

10

20

30

40

0.5

1.0

1.5

0.4

0.8

1.2

20

40

60

80

10

20

30

40

50

Number of cores

E
x
ec
u
ti
o
n
ti
m
e
(s
)

Measured Data Model

Figure 3.4: Comparison between predicted execution time by the model and measured execution time,
when varying the number of cores up to 14 and with a cache fraction set to 15%.

to have βiTi = βjTj , by definition of the β’s. Hence, we further study the following fairness criterion,
representing the distance to the optimal fairness, ∆fairness:

∆fairness =
∑
i 6=j

∣∣∣∣∣ βiTiβjTj
− 1

∣∣∣∣∣ . (3.5)

In addition to studying the maximum weighted throughput that can be obtained with the applications,
we also report the value of ∆fairness in the experiments, so as to assess whether the heuristics are
ensuring that the correct number of iterations of each application is performed during a given amount of
time. The goal is to have ∆fairness as close to 0 as possible.

3.5.2 Impact of cache partitioning

The first step is to assess the impact of cache partitioning (CP) on performance. To this purpose, we co-
schedule two applications, so we have three combinations (CG+MG, CG+FT, FT+MG). For all i, j, we
set the number of cores forAi andAj to six, and we vary the fraction of cache allocated toAi from 5% to
95% while, at the same time, the cache fraction of Aj is varying from 95% to 5%. The y-axis represents
the aggregated number of iterations executed by all applications. We run the applications both with CP
enabled, and CP not enabled. Figure 3.6 shows the impact of CP for CG+MG: we can see that when
CG has more than 35% of the cache, CP outperforms the version without CP. The impact of CP lies in
the behavior of each application, more specifically their data access pattern. CG is a compute intensive
application with an irregular memory access pattern, while MG is a memory intensive application. More
specifically, MG does not take a great benefit for more cache after 35%, while the performance of CG

48
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

LU MG SP

BT CG FT

0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15 0 5 10 15

25

50

75

25

50

75

25

50

75

25

50

75

25

50

75

25

50

75

Number of cores

F
ra
ct
io
n
o
f
ca
ch
e
(%

)

0.2

0.4

0.6
Error

Figure 3.5: Heat-map of the relative error between the model predictions and the measured execution
times when the cache fraction is varying from 15% to 85% and the number of cores from 1 to 14.

greatly depends on the cache size (for more details on application behaviors, see Figure 3.2). Without
a cache partitioning scheme, by reading/writing a lot of different cache lines, MG will often evict CG
cache lines, resulting into a performance degradation of both applications.

Figure 3.7b shows the impact of CP for CG+FT. In this case, we note a small improvement when
CG has 80% of the cache. The reason behind this improvement is that FT is more communication
intensive (all-to-all communication) than strictly memory intensive, hence the gain obtained by CP is
less important than for CG+MG. Since we consider only one processor, the applications that run are the
shared memory version (OpenMP), and in that context, the impact of cache on communications is small.

Finally, Figure 3.7a presents the result for the last combination FT+MG. The cache partitioning
is not efficient for that combination of two memory and communication intensive applications. If FT
has 25% and MG has 75%, then CP can almost achieve the same performance as without CP. This
inefficiency is mostly due to the memory intensive and communication intensive behaviors of both ap-
plications involved, none of them needs a strict cache partitioning, since their use of the cache varies
during iterations.

Summary. The cache partitioning is very interesting when compute-intensive and memory-intensive
application are co-scheduled (important gain, up to 25%, for CG+MG, small gain for CG+FT). On
the contrary, FT and MG together perform badly with the cache partitioning enabled, these applications
do not benefit from the cache to improve their execution time by iteration. Hence, the behavior of
applications has a strong impact on the global performance of cache partitioning, and in general, co-
scheduling applications with the same behavior results in degraded global performance when using CP.

3.5. RESULTS 49

800

900

1000

1100

1200

5% 25% 35% 50% 75% 95%
Fraction of cache

T
ot
al

n
u
m
b
er

of
it
er
at
io
n
s

Cache partitioning Without cache partitioning

Figure 3.6: CG and MG with 6 cores each, CG has 5% of the cache while MG has the remaining 95%,
then CG has 10% and MG 90% and so forth.

3.5.3 Co-scheduling results with two applications

Now that we have demonstrated the interest of cache partitioning, we study the performance of the
scheduling strategies of Section 3.2. Recall that the COSCHED-CACHEPART optimization problem aims
at maximizing the minimum weighted throughput among co-scheduled applications. Considering two
applications (Ai, Aj), for βi iterations of Ai, we aim at performing βj iterations of Aj . To avoid some
cache effects that appear when the cache area is too small, we set the minimum cache fraction allocated
to each application to three (each application has at least 15% of the cache), while the minimum number
of cores per application is set to one. We use three different ways to present the result for each studied
combination: (i) the objective we want to maximize (minimum weighted throughput), (ii) the ratio of
iterations done, and (iii) the ∆fairness defined in Equation 3.5.

CG+MG. On Figure 3.8a, we see what is the minimum throughput achieved by each method for
CG+MG. The weight β associated to MG varies from 0.25 to 4. The algorithms based on dynamic pro-
gramming DP-CP, DP-EQUAL and DP-NOCP outperform both equal-resource assignment heuristics
EQ-CP and EQ-NOCP. In this scenario, the cache partitioning provides a good performance improve-
ment, since on average DP-CP outperforms DP-NOCP. On the same figure, we also depict the model
prediction, which reports the (analytical) minimum throughput computed from Ti(pi, xi) values with pi
and xi derived from the optimal algorithm DP-CP. We observe that the model is accurate enough to
satisfactorily fit the performance of DP-CP obtained on the experimental platform.

Figure 3.8b shows the ratio of iterations for CG+MG. Ideally, we would like to obtain βCGTCG =
βMGTMG, the solid black line represents that optimal iteration ratio. First, note that EQ-CP and EQ-
NOCP show constant results because they do not depend on weight, but EQ-CP performs better (even
without a clever algorithm, cache partitioning helps). Second, we observe that DP-CP is the closest (on
average) to the ideal line, hence the cache partitioning really helps here.

50
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

600

650

700

750

5% 25% 35% 50% 75% 95%
Fraction of cache

T
ot
al

n
u
m
b
er

of
it
er
at
io
n
s

Cache partitioning Without cache partitioning

(a) FT and MG

600

800

1000

5% 25% 35% 50% 75% 95%
Fraction of cache

T
ot
al

n
u
m
b
er

of
it
er
at
io
n
s

Cache partitioning Without cache partitioning

(b) CG and FT

Figure 3.7: CG co-scheduled with MG or FT, with 6 cores each.

Finally, Figure 3.8c presents the ∆fairness, as defined in Equation 3.5. We observe that DP-CP,
DP-NOCP and DP-EQUAL exhibit the same ∆fairness, near to zero, while EQ-CP and EQ-NOCP are
far from the optimal fairness.

CG+FT. In Figure 3.9a, we observe that DP-CP, DP-EQUAL and DP-NOCP outperform EQ-CP and
EQ-NOCP when βFT is larger than 0.5. Only, DP-NOCP outperforms EQ-NOCP all the time. When
βFT is smaller than 0.5, the two variants without cache partitioning perform better than the two versions
with cache partitioning. As explained in Section 3.5.2, due to its communication-intensive behavior, FT
will not benefit a lot from cache partitioning techniques. Figure 3.9b presents the iteration ratio (i.e.,
the fairness among co-scheduled applications) when we co-schedule CG+FT: DP-CP, DP-EQUAL and
DP-NOCP exhibit good performance, and we are very close to the black line that represents the ideal
iteration ratio to reach. On Figure 3.9c, we observe the fairness criterion: EQ-CP and EQ-NOCP show
an important ∆fairness as expected, and DP-CP, DP-EQUAL and DP-NOCP show the same good
performance, very close to zero. As for CG+MG, for this case we notice that the model is close enough
of the performance of DP-CP.

MG+FT. Figure 3.10a presents the results obtained for MG+FT. DP-CP, DP-EQUAL and DP-NOCP
outperform EQ-CP and EQ-NOCP, except for βFT lower than 0.50. For both DP-CP and EQ-CP, the
cache partitioning does not bring a important improvement. The main reason is that co-scheduling one
memory and one communication intensive application is not very efficient (see Section 3.5.2). Fig-
ure 3.10b shows that DP-CP, DP-EQUAL and DP-NOCP perform well, very close to the ideal iteration
ratio (the solid black line). On Figure 3.10c, we note that the ∆fairness is close to zero for DP-CP,
DP-EQUAL and DP-NOCP, while (logically) the ∆fairness is larger for EQ-CP and EQ-NOCP.

BT, LU, SP co-scheduled with MG. Figures 3.11 to 3.13 show the minimum throughput (on
the left) and the error norm (on the right) obtained by co-scheduling, respectively, BT+MG, LU+MG
and SP+MG. For the minimal throughput (on the left of each figure), both results are quite similar, all
variants based on our algorithm DP-CP outperform EQ-CP and EQ-NOCP. The cache partitioning does
not bring a significant gain in this scenario, but DP-CP is always better than DP-NOCP. We observe
that DP-EQUAL perform always worst than DP-CP and DP-NOCP, which means that doing a naive
cache partitioning (an equal one in that case) can lead to important performance degradations. For this

3.5. RESULTS 51

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

T
c
g

T
m
g

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is better).

0

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Relative error from the objective (lower is better).

Figure 3.8: CG and MG when βMG is varying from 0.25 to 4.

scenario, because of the high values of the ∆fairness (respectively 0.25 and 0.4 for the best cases), we
only present the fairness criterion ∆fairness. Indeed, BT, LU and SP are much larger than MG in terms
of number of operations (by roughly 103), hence it is impossible to do, for example, four times more
iterations of LU than iterations of MG without a very large value of T .

Special case: CG and MG when each application has six cores. We are now interested into
a special case: how the cache will affect co-scheduling performance. All applications have the same
number of cores (six in our case), so only the cache is available to increase performance. Figure 3.14a
shows the global performance of all methods. Obviously, only DP-CP takes advantage of this scenario
because only this method can choose how to partition the cache. If βMG is smaller than 1, it means
that we have to compute more CG than MG, and in that case, the cache has a strong effect (up to 25%
improvement with cache partitioning enabled). We also observe that the model prediction is pretty close

52
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

T
c
g

T
f
t

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is better).

0.0

2.5

5.0

7.5

10.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Relative error from the objective (lower is better).

Figure 3.9: CG and FT when βFT is varying from 0.25 to 4.

to the experimental results. With this scenario, we are able to isolate which part of performance relies
on cache effect. Figure 3.14b depicts the iteration ratio achieved with an equal number of cores for each
application. We observe that with only the cache, it is hard to enforce the required ratio of the number of
iterations, according to the values of the βi. Figure 3.14c represents the fairness criterion∆fairness be-
tween the ideal iteration ratio and the iteration ratio obtained with each method. Note that the ∆fairness

is high for every method, but the error of DP-CP is the smallest.

Summary. The model is accurate enough to enforce that the corresponding optimal DP algorithm
performs well: in most cases, DP-CP, DP-EQUAL and DP-NOCP outperform EQ-CP and EQ-NOCP.
On the cache partitioning side, when co-scheduling CG and MG, the cache partitioning is really inter-
esting to isolate applications that pollute the cache, such as MG. Figure 3.14a clearly shows the impact
of cache on performance when the number of cores is set for each application. In the worst cases, for

3.5. RESULTS 53

1

2

3

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

1

2

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

T
m
g

T
f
t

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is better).

0.0

2.5

5.0

7.5

10.0

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Relative error from the objective (lower is better).

Figure 3.10: MG and FT when βFT is varying from 0.25 to 4.

instance with FT and MG, the cache partitioning does not improve performance, but does not degrade it
either.

54
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

0.08

0.10

0.12

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.4

0.6

0.8

1.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.11: Minimum throughput and ∆fairness for BT+MG.

0.100

0.125

0.150

0.175

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.25

0.50

0.75

1.00

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.12: Minimum throughput and ∆fairness for LU+MG.

0.09

0.12

0.15

0.18

0.21

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.4

0.6

0.8

1.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.13: Minimum throughput and ∆fairness for SP+MG.

3.5. RESULTS 55

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

T
c
g

T
m
g

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Relative error from the objective (lower is better).

Figure 3.14: CG and MG when βMG is varying from 0.25 to 4 and when both applications have six cores.

56
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

3.5.4 Co-scheduling results with three applications

In this section, we present the results with three co-scheduled applications. Similarly to the case with two
applications, with three applications (A1, A2, A3), only β3 is ranging from 0.25 to 4, while β1 = β2 = 1.
First, we focus only on co-schedules with CG and MG, because they are very interesting applications to
study. Second, we study all combinations of co-scheduling with CG, FT and MG. We do not look at the
iteration ratio in this section, but focus on minimum throughput and the ∆fairness.

2CG+MG. Figure 3.15 shows the minimum throughput obtained when we co-schedule 2CG+MG,
while the weight associated to MG is ranging from 0.25 to 4. Note that it It is interesting to co-schedule
multiple copies of the same application (two CGs in this scenario) in order to to improve the global
efficiency, when this application exhibits a speedup profile with limited gain from adding extra cores
and/or extra fractions of caches. We observe that the scheduling strategies building on the dynamic
programming algorithm DP-CP, DP-EQUAL and DP-NOCP outperform EQ-CP and EQ-NOCP. In
addition, cache partitioning shows a great interest here: DP-CP exhibits a gain around 15% on average
over DP-NOCP and DP-EQUAL. The ∆fairness is also depicted on the right. Recall that ideally, we
would like to have βiTi = βjTj for all i, j (see Equation 3.5). We observe that the method that is the
closest to zero is DP-CP, confirming the strong interest of cache partitioning.

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.15: Minimum throughput and ∆fairness for 2CG+MG.

2MG+{CG, BT, LU, SP}. Figure 3.16 presents the minimal throughput obtained by each method
when we co-schedule 2MG+CG, where the weight of CG is ranging from 0.25 to 4. Again, the DP-
based strategies DP-CP, DP-EQUAL and DP-NOCP exhibit good performance for βCG smaller than
0.50, but they suffer from a lack of performance when βCG is between 0.50 and 1. When βCG is larger
than 1, DP-CP becomes the best method again. On the right of Figure 3.16, we can see the confirmation
that the proposed dynamic programming algorithm is the method that minimizes the best ∆fairness,
even though the cache partitioning with DP-CP and DP-EQUAL does not bring any clear advantage in
this scenario. This is mainly due to the fact that the application with the varying weight is a compute-
intensive application, co-scheduled with two memory-intensive applications. According to our exper-
iments, when compute-intensive applications are outnumbered by memory-intensive applications, the
cache partitioning is often less efficient.

Figures 3.17 to 3.19 also presents, the minimal throughput obtained when we co-schedule, respec-
tively, 2MG+BT, 2MG+LU and 2MG+SP. 2MG co-scheduled with BT, LU or SP lead to the same
behavior for the minimum throughput and the ∆fairness, the variants based on our dynamic algorithm

3.5. RESULTS 57

0.5

1.0

1.5

2.0

2.5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βCG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

2

4

6

8

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βcg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.16: Minimum throughput and ∆fairness for 2MG+CG.

DP-CP, DP-EQUAL and DP-NOCP perform better than EQ-CP and EQ-NOCP. The error norm, for
the three cases, is very important. The reason behind the important values of the error norm is that MG
is very small compared to LU, BT and SP.

0.0

0.1

0.2

0.3

0.4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βBT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

300

400

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βbt

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.17: Minimum throughput and ∆fairness for 2MG+BT.

CG+MG+FT. Figure 3.20 shows the minimum throughput obtained when co-scheduling the three
different applications, while varying only the weight βFT of FT. We observe that the performance of the
three DP-based algorithms is close to the performance obtained with the equal-resource assignment for
βFT smaller than 0.5, but for the other cases, DP-CP and all its variants outperform EQ-CP and EQ-
NOCP. ∆fairness leads to the same conclusion: DP-CP, DP-NOCP and DP-EQUAL are much closer
to zero than EQ-CP and EQ-NOCP, especially when βFT is larger than 0.5.

Next, Figure 3.21 is the counterpart of Figure 3.20 when varying only the weight βMG of MG.
The results obtained by the DP-based algorithms are very good with an average gain around 50% over
the EQ-CP variants, especially when βMG is below 1. We note that the cache partitioning does not
take advantage of this scenario, DP-CP shows degraded performance compared to DP-NOCP. For the
∆fairness, the method that performs best is DP-CP, close to DP-NOCP and DP-EQUAL though.

Finally, Figure 3.22 is the counterpart of Figure 3.20 and Figure 3.21 when varying only βCG. The
behavior of all DP-CP variants is interesting: for 0.25 ≤ βCG ≤ 0.44, the resource allocation, both for
cores and cache, does not change, resulting into the decreasing of the minimum weighted throughput
when βCG is increasing (so 1

βCGTCG
, which is actually the minimum here, is decreasing). At βCG =

58
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

0.0

0.2

0.4

0.6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βLU

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

300

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βlu

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.18: Minimum throughput and ∆fairness for 2MG+LU.

0.0

0.2

0.4

0.6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βSP

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βsp

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.19: Minimum throughput and ∆fairness for 2MG+SP.

0.5, the allocation of resources changes for DP-CP variants (more and more resources are allocated to
CG, in order to fit the increasing requirement). We observe that DP-CP, DP-EQUAL and DP-NOCP
logically outperform EQ-CP and EQ-NOCP to maximize the minimum weighted throughput among
the co-scheduled applications. However, the cache partitioning does not help in this scenario, mainly
because we vary the weight of the only compute-intensive application. In terms of ∆fairness, obviously
DP-CP, DP-EQUAL and DP-NOCP perform better than EQ-CP and EQ-NOCP. Among DP-CP, DP-
EQUAL and DP-NOCP, we see that the cache partitioning version is the best method to minimize the
∆fairness.

Summary. Overall, we showed that we can obtain important gains using cache partitioning (CP)
when co-scheduling three applications, but it is not always the case. The difficulty of obtaining some
gain with CP increases with the number of applications involved. The first reason lies in the cache size,
often too small to be efficiently partitioned between the applications. The second reason is related to
the behavior of the co-scheduled applications. The results show that co-scheduling one or two compute-
intensive applications, such as CG, plus one memory-intensive application, such as MG, is a good way
to achieve significant improvements with CP. CG is a compute-intensive kernel that performs a lot of
irregular memory accesses, while MG is a memory-intensive kernel, hence if we co-schedule one CG
and one MG, MG will evict very often cache lines belonging to CG, which will slow down its execution.

3.5. RESULTS 59

0.5

1.0

1.5

2.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

5

10

15

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.20: Minimum throughput and ∆fairness for CG, MG and FT.

0.50

0.75

1.00

1.25

1.50

1.75

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.21: Minimum throughput and ∆fairness for CG, FT and MG.

0.50

0.75

1.00

1.25

1.50

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βCG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βcg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 3.22: Minimum throughput and ∆fairness for MG, FT and CG.

60
CHAPTER 3. CO-SCHEDULING HPC WORKLOADS ON CACHE-PARTITIONED CMP

PLATFORMS

3.6 Conclusion

We have investigated the problem of co-scheduling iterative HPC applications, using the CAT technol-
ogy provided by Intel to partition the cache. We have proposed a model for the execution time of each
application, given a number of cores and a fraction of cache, and we have shown how to instantiate
the model on applications coming from the NAS benchmarks. The model turns out to be accurate, as
shown in the experiments where we compare the execution time predicted by the model to the real exe-
cution time. Several scheduling strategies have been designed, with the goal to maximize the minimum
weighted throughput of each application. In particular, we have introduced an optimal strategy for the
model, based upon a dynamic programming algorithm. The results demonstrate that in practice, the
optimal strategy often leads to better results than a naive strategy sharing equally the resources between
applications. Also, we have determined which combinations of applications benefit most from cache
partitioning, and demonstrated the usefulness of cache partitioning.

Future work will be devoted to extending this experimental study. We hope to get access to platforms
with larger shared caches, so that we could scale up the experiments and confirm the usefulness of cache
partitioning techniques. The first research direction is to design a better interpolation strategy, capable of
retro-fitting a subset of the experimental data (execution times for each application, with each processor
number and cache fraction) into a simple formula like Equation 3.4, and with good precision. We will
also generalize the experiments to multiprocessors and see if there is a benefit in moving applications
from one processor to another, in order to avoid co-locating several cache-intensive applications on the
same processor. Another interesting direction would be to consider the Universal Scalability Law [52]
instead of Amdahl’s law, thereby generalizing the model in order to account for contentions.

Chapter 4

Resilient co-scheduling of malleable applica-
tions

In Chapters 2 and 3, we have been focusing on co-scheduling with memory aspects (last-level cache).
In this chapter, we focus on another challenge that must be addressed at scale: resilience. To the best
of our knowledge, co-scheduling has been investigated so far only in the context of fault-free platforms.
However, large-scale platforms are prone to failures. Indeed, for a platform with p processors, even if
each node has an individual MTBF (Mean Time Between Failures) of 120 years, we expect a failure to
strike every 120/p years, for instance every hour for a platform with p = 106 nodes. Failures are likely
to destroy the load-balancing achieved by co-scheduling algorithms: if all applications were assigned
resources by the co-scheduler so as to complete their execution approximately at the same time, the
occurrence of a failure will significantly delay the completion time of the corresponding application.
In turn, several failures may well create severe imbalance among the applications, thereby significantly
degrading performance.

To cope with failures, the de-facto general-purpose error recovery technique in HPC is checkpoint
and rollback recovery [43]. The idea consists in periodically saving the state of the application, so that
when an error strikes, the application can be restored into one of its former states. The most widely used
protocol is coordinated checkpointing, where all processes periodically stop computing and synchronize
to write critical application data onto stable storage. The frequency at which checkpoints are taken
should be carefully tuned, so that the overhead in a fault-free execution is not too important, but also so
that the price to pay in case of failure remains reasonable. Young and Daly provide good approximations
of the optimal checkpointing interval [33, 122].

This chapter investigates co-scheduling on failure-prone platforms. Checkpointing helps to mitigate
the impact of a failure on a given application, but it must be complemented by redistributions to re-
balance the load among applications. Co-scheduling usually involves partitioning the applications into
packs, and then scheduling each pack in sequence, as efficiently as possible. We focus on co-scheduling
a given pack of applications that execute in parallel, and leave the partitioning for further work. This is
because scheduling a given pack becomes a difficult endeavor with failures (and redistributions), while
it was of linear complexity without failures. Also, designing efficient pack scheduling algorithms is
needed whenever there are relatively few applications that can be all scheduled simultaneously, and it
is a prerequisite before tackling the general problem. Given a pack, i.e., a set of parallel applications
that start execution simultaneously, there are two main opportunities for redistributing processors. First,
when an application completes, the applications that are still running can claim its processors. Second,
when a failure strikes an application, that application is delayed. By adding more resources to it, we can
reduce its final completion time. However, we have to be careful, because each redistribution has a cost,

61

62 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

which depends on the volume of data that is exchanged, and on the number of processors involved in
redistribution. In addition, adding processors to an application increases its probability to fail, so there
is a trade-off to achieve in order to minimize the expected completion time of the pack.

Main contributions. In this chapter, we provide the design of a detailed and comprehensive model
for scheduling a pack of applications on a failure-prone platform. We prove that the problem is NP-
complete for malleable applications, even in a fault-free context. Therefore, we design polynomial-time
heuristics that perform redistributions and account for processor failures. A fault simulator is used to
perform extensive simulations that demonstrate the usefulness of redistribution and the performance of
the proposed heuristics.

The rest of the chapter is organized as follows. First, we discuss related work in Section 4.1. The
model and the optimization problem are formally defined in Section 4.2. In Section 4.3, we expose the
complexity results. We introduce some polynomial-time heuristics in Section 4.4, which are assessed
through simulations using a fault generator in Section 4.5. Finally, we conclude and provide directions
for future work in Section 4.6.

4.1 Related work

4.1.1 Parallel application models

A parallel application is an application that may use several processors during its execution. Note that the
scheduling literature uses the term parallel tasks rather than parallel application. Many parallel applica-
tion models have been developed, and several types of applications have been defined. In 1986, with the
development of multiprocessor systems, Błażewicz et al.[17] have modeled the problem of scheduling
a set of independent parallel applications on identical processors. The number of processors assigned to
each application was fixed during the execution. They showed that the problem is NP-complete when the
number of processors is not fixed. An application that has a fixed number of processors is called rigid.
In 1989, Du and Leung [40] have developed a model called the Parallel Task System, where an applica-
tion is executed by one or more processors at the same time, but the number of processors assigned to
one application cannot exceed a certain threshold. Contrarily to the Błażewicz’s model, the number of
processors is not fixed in advance, but once it is determined (between one and the threshold), it remains
fixed during the execution. Such applications are called moldable. Finally, a malleable application can
have its number of allocated processors vary during the execution. Błażewicz et al. [18] have designed
approximation algorithms to solve the problem of scheduling independent malleable applications. Mal-
leable applications are more flexible than rigid and moldable applications, and they can be implemented
with data redistribution techniques (the technique used in this chapter) or work stealing. In practice,
changing the number of processors at runtime requires specific tools, frameworks and even dedicated
programming languages like Cilk [46]. Martín et al. [79] have developed an MPI extension, called Flex-
MPI, which introduces malleability in MPI. Flex-MPI can achieve a load balancing among applications
through a prediction model. The prediction model in Flex-MPI does not take into account resilience
aspects.

One contribution of this work is to develop a complete model taking into account resilience aspects.
We also provide heuristics able to re-assign processors to applications that need them. We also show
that the problem of finding a schedule that minimizes the execution time with fixed redistribution costs
and without failures is NP-complete (in the strong sense).

4.2. FRAMEWORK 63

4.1.2 Resilience

One of the most used technique to handle fail-stop errors in HPC is checkpoint and rollback recov-
ery [43]. The idea is to periodically save the system state, or the application memory footprint onto
a stable storage. Then, after a downtime and a recovery time, the system can be restored into a for-
mer valid state (rollback step). Another technique to dealing with fail-stop errors is process replication,
which consists in replicating a process and even replicate communications. For instance, the project
RedMPI [45] implements a process replication mechanism and quadruplicates each communication.

In this chapter, we use a light-weight checkpointing protocol called the double checkpointing algo-
rithm [36, 88]. This is an in-memory checkpointing protocol, which avoids the high overhead of disk
checkpoints. Processors are paired: each processor has an associated processor called its buddy proces-
sor. When a processor stores its checkpoint file in its own memory, it also sends this file to its buddy,
and the buddy does the same. Therefore, each processor stores two checkpoints, its own and that of its
buddy. When a failure occurs, the faulty processor looses these two checkpoint files, and the buddy must
re-send both checkpoints to the faulty node. If a second failure hits the buddy during this recovery period
(which happens with very low probability), we have a fatal failure and the system cannot be recovered.

4.1.3 Co-scheduling algorithms

This chapter provides an important extension to a previous work on co-schedules [9], which already
demonstrated that sharing the platform between two or more applications can lead to significant per-
formance and energy savings [105]. To the best of our knowledge, it is the first work to consider
co-schedules and failures, and hence to use malleable applications to allow redistributions of processors
between applications. However, we point out that co-scheduling with packs can be seen as the static
counterpart of batch scheduling techniques, where jobs are dynamically partitioned into batches as they
are submitted to the system (see [84] and the references therein). Batch scheduling is a complex online
problem, where jobs have release times and deadlines, and where only partial information on the whole
workload is known when taking scheduling decisions. On the contrary, co-scheduling applies to a set of
applications that are all ready for execution. In this chapter, as already mentioned, we restrict to a single
pack, because scheduling already becomes difficult for a single pack with failures and redistributions.

Contrarily to Chapters 2 and 3, in this chapter we do not consider interferences induced by co-
scheduled applications. A more detailed survey on co-scheduling techniques can be found in Chap-
ter 2, Section 2.1.

4.2 Framework

We consider a pack of n independent malleable applications {T1, . . . , Tn}, and an execution platform
with p identical processors subject to failures. We assume n ≤ 2p due to the use of the double check-
pointing model. The objective is to minimize the expected completion time of the last application. First,
we define the fault model in Section 4.2.1. Then, we show how to compute the execution time of an
application in Section 4.2.2, assuming that no redistribution has occurred. The redistribution mecha-
nism and its associated cost are discussed in Section 4.2.3. Finally, the objective function is detailed
in Section 4.2.4.

4.2.1 Fault model

We consider fail-stop errors, which are detected instantaneously. To model the rate at which faults occur
on one processor, we use an exponential probability law of parameter λ. The mean (or MTBF) of this

64 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

law is µ = 1
λ . The MTBF of an application depends upon the number of processors it is using, hence

changes whenever a redistribution occurs. Specifically, if application Ti is (currently) executed on j
processors, its MTBF is µi,j = µ

j (see [58, Proposition 1.2] for a proof). To recover from fail-stop
errors, we use the double checkpointing scheme, or buddy algorithm [36, 88] (see Figure 4.1).

Processor 2

Processor 1

Barrier

C2

C1

Local checkpoint (C1)
Distance checkpoint (C2)

Checkpoints done

W

W

Figure 4.1: Double checkpointing scheme example.

Therefore, the number of processors assigned to each application must be even. We enforce periodic
checkpointing for each application. Formally, if application Ti is executed on j processors, there is a
checkpoint every period of length τi,j , with a cost Ci,j .

We now explain how to compute the cost Ci,j of a checkpoint when application Ti executes with
j processors. Recall that we use in-memory checkpointing. Let mi be the memory footprint (total
data size) of application Ti. Each of the j processors holds mi

j data, which it must send to its buddy
processor. The time to communicate a message of size s is β + s

τ , where β is a start-up latency and τ
the link bandwidth. We derive that

Ci,j = mi

jτ
+ β.

As for the checkpointing period τi,j , we use Young’s formula [122] and let

τi,j =
√

2µi,jCi,j + Ci,j . (4.1)

Because τi,j is a first order approximation, the formula is valid only if Ci,j � µi,j . When a fault strikes,
there is first a downtime of duration D, and then a recovery period of duration Ri,j . We assume that
Ri,j = Ci,j , while the downtime value D is platform-dependent and not application-dependent.

4.2.2 Execution time without redistribution

To compute the expected execution time of a schedule, we first have to compute the expected execution
time of an application Ti executed on j processors subject to failures. We first consider the case without
redistribution (but taking failures into account). Let ti,j be the execution time of application Ti on j
processors in a fault-free scenario. Let tRi,j(α) be the expected time required to compute a fraction α of
the total work for application Ti on j processors, with 0 ≤ α ≤ 1. We need to consider such a partial
execution of Ti on j processors to prepare for the case with redistributions.

Recall that the execution of application Ti is periodic, and that the period τi,j depends only on the
number of processors, but not on the remaining execution time (see Equation 4.1). After a work of

4.2. FRAMEWORK 65

duration τi,j −Ci,j , there is a checkpoint of duration Ci,j . In a fault-free execution, the time required to
execute the fraction of work α is αti,j , hence a total number of checkpoints of

N ff
i,j(α) =

⌊
αti,j

τi,j − Ci,j

⌋
. (4.2)

Next, we have to estimate the expected execution time for each period of work between checkpoints.
We are able to calculate the expectation of one period of work according to an MTBF value and a number
of processors. The expected time to execute successfully during T units of time with j processors (there
are T −C units of work and C units of checkpoint, where T is the period) is equal to

(
1
λj +D

)
(eλjT −

1) [58]. Therefore, in order to compute tRi,j(α), we compute the sum of the expected time for each
period, plus the expected time for the last (possibly incomplete) period. This last period is denoted as
τlast(α) and defined as τlast(α) = αti,j −N ff

i,j(α)(τi,j − Ci,j).
The first N ff

i,j(α) periods are equal (of length τi,j), hence have the same expected time. Finally, we
obtain:

tRi,j(α) = eλjRi,j
(1
λj

+D
)(
N ff
i,j(α)(eλjτi,j−1) + (eλjτlast(α)−1)

)
. (4.3)

In a fault-free environment, it is natural to assume that the execution time is non-increasing with the
number of processors. Here, this assumption would translate into the condition:

tRi,j+1(α) ≤ tRi,j(α) for 1 ≤ i ≤ n, 1 ≤ j < p, 0 ≤ α ≤ 1. (4.4)

However, when we allocate more processors to an application, even though the work is further par-
allelized, the probability of failures increases, and the corresponding waste increases as well. Therefore,
adding resources to an application is useful up to a threshold. After this threshold, we have tRi,j+1 ≥ tRi,j .
In order to satisfy Equation 4.4, we restrict the number of processors assigned to each application, and
never assign more processors than the previous threshold. In other words, if Ti is already assigned j
processors, we consider assigning more processors to it only if tRi,j+1 ≤ tRi,j . Formally, this defines a
maximum number of processors, jmax(i), for each application Ti:

jmax(i) = min
1≤j≤p

{j such that tRi,k ≥ tRi,j for all k > j}, (4.5)

and we assume that tRi,j+1 ≤ tRi,j for all j < jmax(i).
Another common assumption for malleable applications is that the work is non-decreasing when

the number of processors increases [18]: this amounts to say that no super-linear speed-up is possible.
Hence, we assume here that for 1 ≤ i ≤ n, 1 ≤ j < p and 0 ≤ α ≤ 1, (j+1)× tRi,j+1(α) ≥ j× tRi,j(α).

For convenience, we denote by tUi the current expected finish time of application Ti at any point of
the execution. Initially, if application Ti is allocated to j processors, we have tUi = tRi,j(1).

4.2.3 Redistributing processors

There are two major cases for which it may be useful to redistribute processors: (1) in a fault-free sce-
nario, when an application ends, it releases processors that can be used to accelerate other applications,
and (2) when an error strikes, we may want to force the release of processors, so that we can assign
more processors to the application that has been slowed down by the error. We first consider a fault-free
scenario, and then we account for the checkpoint costs and for redistribution after failures. Finally, we
discuss the case of consecutive redistributions.

66 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

Fault-free scenario

We first consider a simplified scenario without checkpoint (nor failure), in order to explain how redis-
tribution works. Consider for instance that q processors are released when application T2 ends. We can
allocate q1 new processors to application T1, and q3 new processors to application T3, where q1 +q3 = q
(see Figure 4.2). This redistribution will take some time (redistribution cost RCi, detailed below), after
which T1 and T3 will resume execution, and we first need to compute the new expected completion time
for their remaining fraction of work.

time0

processors

T3

RC3 T3

T2

T1
RC1 T1

q

q1

q3

Figure 4.2: Redistribution at the end of an application, where RCi represents the redistribution cost for
task Ti.

Consider that a redistribution is conducted at time te (the end time of an application), and that
application Ti, initially with j processors, now has k = j+q > j processors. What will be the new finish
time of Ti? The fraction of work already executed for Ti is te

ti,j
, because the application was supposed to

finish at time ti,j (see Figure 4.3). The remaining fraction of work is α = 1− te
ti,j

, and the time required

to complete this work with k processors is t′, where t′

ti,k
= α, hence t′ = αti,k =

(
1− te

ti,j

)
ti,k.

Wdone = te
ti,j Wtodo = α

j
k

t′

time0 te te + t′
ti,j

Figure 4.3: Work representation for application Ti at time te.

Furthermore, we need to add a redistribution cost: when moving from j to k = j + q processors,
the application Ti must redistribute its data across the processors. The application keeps its initial j
processors, which now hold too much data, and enrolls q = k − j new processors, which have no data
yet. Recall that mi is the memory footprint (total data size) of application Ti. Each of the original j
processors initially holds mi

j data and will keep only mi
k after the redistribution; it sends mi

jk data to each
of the newly enrolled q processors, thereby keeping mi

j − (k − j)mijk = mi
k data. In turn, each new

processor receives mi
jk data from j processors and duly gets mi

k data in the end.
What is the best schedule for such a redistribution, and what time does it require? We first account

for a constant start-up overhead S, paid for initiating the redistribution call. Then we adopt a realistic
one-port communication model [14] where a processor can send and receive at most one message at

4.2. FRAMEWORK 67

any time-step. Independent communications, involving distinct sender/receiver pairs, can take place in
parallel: however, two messages sent by the same processor will be serialized. Recall that the time
to communicate a message of size s is β + s

τ . To schedule the redistribution, we build a bipartite
graph G with j nodes on the left and q nodes on the right. In the one-port model, there can be up
to j simultaneous communications (each of size mi

jk) involving j distinct processor pairs. Let us call
a round such a set of simultaneous (independent) communications. How many rounds are required
to schedule the redistribution? We transform this problem into an edge coloring problem, with one
color for one round (see Figure 4.4). The number of rounds required is equal to the edge chromatic
number χ′(G). Konig’s theorem [19] states that this edge chromatic number is equal to the maximum
degree in G so χ′(G) = ∆(G) when G is bipartite. Clearly, we have here ∆(G) = max(j, k − j).
Therefore, the number of rounds is equal to max(j, k − j), and the redistribution cost is RCj→ki =
S + max(j, k − j)×

(
mi
jkτ + β

)
.

Needless to say, we would perform a redistribution if the cost of redistribution is lower than the
benefit of allocating new processors to the application, i.e., if ti,j − (te + t′) > RCj→ki .

j1

j2

j3

j4

q5

q6

j q = k − j

Figure 4.4: Bipartite graph G representing a redistribution from j = 4 to k = 6 processors, with each
communication round colored. We have χ′(G) = ∆(G) = 4.

Accounting for failures

When struck by a fault, an application needs to recover from the failure and to re-execute some work.
While the application loads were well-balanced initially in order to minimize total execution time, now
the faulty application is likely to exceed its expected execution time. If it becomes the longest appli-
cation of the schedule, we try to assign it more processors so as to reduce its completion time, hence
redistributing processors.

Because we use the double checkpointing algorithm as resilience model, we consider processors by
pairs. We aim at redistributing pairs of processors either when an application is finished, at time te (as
in the fault-free scenario discussed in Section 4.2.3), or when a failure occurs, say at time tf . In each
case, we need to compute the remaining work, and the new expected completion time of the applications
that have been affected by the event. Given an application Ti, we keep track of the time when the last
redistribution or failure occurred for this application, denoted as tlastRi . At time t (corresponding to
the end of an application or to a failure), we know exactly how many checkpoints have been taken by
application Ti executed on j processors since tlastRi , and we let this number be Ni,j :

Ni,j =
⌊
t− tlastRi

τi,j

⌋
. (4.6)

68 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

We begin with the case of an application completion: consider that an application finishes its exe-
cution at time te, hence releasing some processors. We consider assigning some of these processors to
an application Ti currently running on j processors. The fraction of work executed by Ti since the last
redistribution is

te−tlastRi−Ni,jCi,j
ti,j

, because we have to remove the cost of the checkpoints, during which
the application did not execute useful work.

We apply the same reasoning for the second case, when a fault occurs. In this case, we need to
consider the application Ti where the failure stroke, and other applications Ti′ from which we would
remove some processors (in order to give them to Ti).

• Consider that application Ti is running on j processors and subject to a failure at time tf . There-
fore, Ti needs to recover from its last valid checkpoint, and the fraction of work executed by Ti cor-
responds to the number of entire periods completed since the last failure or redistribution tlastRi ,
each followed by a checkpoint. We can express it as Ni,j×(τi,j−Ci,j)

ti,j
.

• At time tf , consider application Ti′ , on which we perform a redistribution, moving from j′ to j′−q
processors, with q > 0. The fraction of work executed by Ti′ can be computed as in the application

ending case scenario: it is
tf−tlastRi′−Ni′,j′Ci′,j′

ti′,j′
.

Finally, for any application subject to a redistribution or a failure, let αi be the remaining fraction of
work to be executed by Ti, that is 1 minus the sum of the fraction of work executed before tlastRi and
the fraction of work expressed above (computed between tlastRi and t).

Similarly to the fault-free scenario, RCj→ki denotes the redistribution cost for application Ti when
moving from j to k processors. Redistribution can now add (k > j) or remove (k < j) processors to
application Ti, and the cost is expressed as:

RCj→ki = S + max(min(j, k), |k − j|)×
(
mi

kjτ
+ β

)
. (4.7)

We are now ready to compute the new values of tlastRi for all applications subject to a failure or
a redistribution, and we illustrate the different scenarios in Figure 4.5. Let t be the time of the event
(end of application t = te, or failure t = tf), and consider that a redistribution is done either for a
faulty application Ti or for another application Ti′ . After a redistribution, we always start by taking
a checkpoint before computing with the new period. Therefore, if a fault occurs, we do not have to
redistribute again.

For the faulty application Ti, the new value of tlastRi hence becomes tlastRi = t + D + Ri,j +
RCj→ki + Ci,k (we need to account for the downtime and recovery). However, if Ti′ is performing a
redistribution but it was not struck by a failure, it can start the redistribution at time t: either it is getting
new processors that are available following the end of an application, or is is using less processors and
can perform its redistribution. In all cases, we have tlastRi′ = t + RCj

′→k′
i′ + Ci′,k′ . Note that we

can have processors involved simultaneously in two redistributions, as they will only receive data from
the other processors of the faulty application Ti, and send data to the other processors of the non-faulty
application Ti′ . We assume that sends and receives can be done in parallel without slowdown.

Finally, the expected finish time of an application Ti for which we have updated tlastRi becomes
tUi = tlastRi + tRi,k(αi), where k is the new number of processors on which Ti is executed, and αi
the remaining fraction of work. Similarly to the fault-free scenario, we give extra processors to an
application only if the new expected finish time tUi is lower than the one with no redistribution.

4.2. FRAMEWORK 69

timetlastRi′′ = 0

processors

Ci,j Ci,j

Fault
t

D Ri,j RCj→j+q
i

Ci,j+q

tlastRi

Ti

Ci′,j′ Ci′,j′ RCj
′→j′−q
i′

Ci′,j′−qTi′

tlastRi′

Ci′′,j′′ Ci′′,j′′Ti′′

Figure 4.5: Example of redistribution when a fault strikes application Ti. The colored rectangles corre-
spond to useful work done by Ti and Ti′ before the failure. Ti′′ is not affected by the failure as it does
not perform a redistribution.

When multiple redistributions overlap

Here, we deal with the problem of chaining redistributions. If another event (application completion
or fault) occurs during the current redistribution, we cannot enroll the processors that have not yet
finished the current redistribution. On Figure 4.6, at the end of the application T3, there are no available
applications to whom we may try to give its processors. T1 will be able to start a new redistribution at
time-step t1, and T2 at time-step r2.

D R1,6 RC6→8
1 C1,8

RC12→10
2

C2,10

r2

W2

W1

W3

W1

W2

time

processors

0 fault T3 ends r1

T3

T2

T1

Figure 4.6: Illustration of two consecutive events.

4.2.4 Objective function

We can now state the objective function: Given n malleable applications {T1, . . . , Tn}, their speedup
profiles, and an execution platform with p identical processors subject to failures with individual rate λ,
COSCHED aims at minimizing the maximum of the expected completion times of the applications.
Redistributions are allowed only when an application completes execution or is struck by a failure (with
a cost specified in Section 4.2.3).

70 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

4.3 Complexity results

We first consider the COSCHED problem without redistributions and provide an optimal polynomial-
time algorithm. Then, we prove that the problem becomes NP-complete with redistributions, even in a
fault-free scenario.

4.3.1 Without redistributions

Aupy et al. [9] designed a greedy algorithm to solve the problem with no redistribution, in a fault-
free scenario. Their algorithm (called OPTIMAL-1-PACK-SCHEDULE) therefore works with ti,j values
instead of tRi,j , and minimizes the execution time of the applications. As a minor detail, it does not
take into account the fact that the number of processors assigned to an application must always be even
in our setting, because we use the double checkpointing algorithm. It is not difficult to extend this
algorithm to solve the problem with failures, but still without redistributions: the idea is to give initially
two processors per applications, to sort them by expected execution time, and to greedily give two extra
processors to the longest application, if it decreases its expected execution time. This algorithm is called
OPT-NOREDISTRIB. We can therefore prove the following theorem.

Theorem 4.1. The COSCHED problem without redistributions can be solved in polynomial time O(n),
where n is the number of applications.

Proof. We define a function σ such that
n∑
i=1

σ(i) ≤ p, where σ(i) is the number of processors assigned

to Ti. A schedule with no redistribution corresponds to a unique function σ, because the number of
processors remains identical throughout the whole execution. The fraction of work that each application
must compute is α = 1, and we use the notation Ti 4R

σ Tj if tRi,σ(i)(1) ≤ tRj,σ(j)(1). Then, Algorithm 5
returns in polynomial time a schedule that minimizes the expected execution time. It greedily allocates
processors to the longest application while its expected execution time can be decreased. If we cannot
decrease the expected execution time of the longest application, then we cannot decrease the overall
expected execution time, which is the maximum of the expected execution times of all applications.

Algorithm 5: Optimal schedule with no redistribution.

1 procedure OPT-NOREDISTRIB (n, p) begin
2 for i = 1 to n do σ(i) := 2 ;
3 Let L be the list of applications sorted in non-increasing values of 4R

σ ;
4 pavailable := p− 2n;
5 while pavailable ≥ 2 do
6 Ti? := head(L);
7 L := tail(L);
8 if σ(i?) < jmax(i?) then
9 σ(i?) := σ(i?) + 2;

10 L := Insert Ti? in L according to its 4R
σ value;

11 pavailable := pavailable − 2;
12 else pavailable := 0;
13 end
14 return σ;
15 end

4.3. COMPLEXITY RESULTS 71

T1

T2

0 6 9
T2

0 6 8

T1

(a) OPT-NOREDISTRIB uses largest execution
time to allocate processors

T1

T2

0 3 10

T2

0 3 7.2

T1

(b) GREEDYSPEEDUPPROFILE uses best
speedup profile to allocate processors

Figure 4.7: Examples: coordinates are execution time (x-axis) and processors (y-axis).

The proof that this algorithm returns an optimal cost schedule is similar to the proof in [9]. We
replace ti,j by tRi,j(1), and instead of adding processors one-by-one, we add them two-by-two. Conse-
quently, there are at most (p− 2n)/2 iterations. The complexity of Algorithm 5 is O(p× log(n)).

Note that we added a test in Line 8 to check whether there is a hope to decrease the expected execu-
tion time of the longest application. If Ti? has reached its maximum enrollment with σ(i?) processors
(according to the threshold jmax(i?) defined with Equation 4.5), then we cannot decrease its expected
execution time. In the following, in such situations, we aim at making good use of extra processors
through redistributions.

4.3.2 With redistributions

We show through a few examples the difficulty of COSCHED when redistributions are allowed, even
when there are no failures. The first example shows that the previous algorithm OPT-NOREDISTRIB is
no longer optimal. Consider two applications T1 and T2 and three processors, and further assume that
there is no cost for redistribution. We use the following speedup profiles:

T1 =

 t1,1 = 10, w1,1 = 10
t1,2 = 9, w1,2 = 18
t1,3 = 6, w1,3 = 18

T2 =
{
t2,1 = 6, w2,1 = 6
t2,2 = 3, w2,2 = 6

where wi,j represents the work for application i with j processors, i.e., wi,j = j × ti,j .
OPT-NOREDISTRIB initially assigns one processor to each application, and then the remaining

one to the longest application T1. At time 6, when T2 finishes and releases its processor, we redis-
tribute T1 over the three processors. At time 6, the application T1 has done 2/3 of its work, it remains
1/3 × t1,3 = 1/3 × 6 = 2 time units with 3 processors, therefore T1 ends at time 6 + 2 = 8 (see Fig-
ure 4.7a). We obtain a smaller makespan if we do not use OPT-NOREDISTRIB but instead the vari-
ant GREEDYSPEEDUPPROFILE, where remaining processors are allocated to the application with the
best speedup profile. In the example, GREEDYSPEEDUPPROFILE initially allocates the third proces-
sor to T2 because the execution time with two processors is divided by two, i.e., perfect speedup with
w2,2/w2,1 = 1. Then T2 finishes at time 3. At this time, T1 has still to complete 7/10 of its load, so
the remaining time for T1 is equal to 7/10 × t1,3 = 7/10 × 6 = 4.2. The makespan in this second
configuration becomes 3 + 4.2 = 7.2, which is better!

Since OPT-NOREDISTRIB is no longer optimal, a natural question is whether GREEDYSPEEDUP-
PROFILE is optimal. The following example answers negatively. Consider the following speedup profiles

72 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

(with two applications and three processors as before):

T1 =

 t1,1 = 10, w1,1 = 10
t1,2 = 6, w1,2 = 12
t1,3 = 5, w1,3 = 15

T2 =
{
t2,1 = 6, w2,1 = 6
t2,2 = 3, w2,2 = 6

GREEDYSPEEDUPPROFILE allocates two processors to T2 (best speedup profile) and one processor to
T1. So at time 3, the application T2 completes and its two processors are given to T1. The execution
time for T1 is 3 + 7/10× 5 = 6.5. But if we allocate two processors to T1 and one to T2, we finish both
applications at time 6 without any redistribution!

Intuitively, these little examples show that COSCHED seems to be of combinatorial nature when
redistributions are taken into account, even with zero cost.

To establish the complexity of the problem with redistributions, we consider the simple case with no
failures. Therefore, redistributions occur only at the end of an application, and any application changes at
most n times its number of processors, where n is the total number of applications. We further consider
that the redistribution cost is a constant equal to S, i.e., we let β = 0 and τ = +∞ in Equation 4.7.
Even in this simplified scenario, the problem is NP-complete:

Theorem 4.2. With constant redistribution costs and without failures, COSCHED is NP-complete (in the
strong sense).

Proof. We consider the associated decision problem: given a bound on the execution time D, is there a
schedule whose expected execution time does not exceed D? The problem is obviously in NP: with n
applications, there are at most n − 1 redistributions, hence n intervals during which processor assign-
ment remains constant for all applications. Given a schedule and the list of resources assigned to each
application within these n intervals, it is easy to check in polynomial time that it is valid and that its
execution time does not exceed the bound D.

To establish the completeness, we use a reduction from 3-PARTITION [48] with distinct inte-
gers (which still remains strongly NP-complete [59, Corollary 7]). We consider an instance I1 of
3-PARTITION: given an integer B and 3m distinct positive integers a1, a2, . . . , a3m such that for
all i ∈ {1, . . . , 3m}, B/4 < ai < B/2 and with

∑3m
i=1 ai = mB, does there exist a partition

I1, . . . , Im of {1, . . . , 3m} such that for all j ∈ {1, . . . ,m}, |Ij | = 3 and
∑
i∈Ij ai = B? Letting

M = max1≤i≤3m(ai), we can assume w.lo.g. that B ≤ 3M , otherwise there is no solution to I1.
We build an instance I2 of our problem, with n = 4m applications and p = n processors. We

let D = 3M + 2 be the bound on the execution time. For each redistribution, each application whose
processor number changes, simply pays the constant overhead S = 1

9m < 1 (communication costs are
set to zero). For 1 ≤ i ≤ 3m, we have the following execution times: ti,1 = ai, and ti,j = 3ai

4 for
j > 1 (these are small applications, and the work is strictly larger when using more than one processor).
The last m applications are identical, with the following execution times: for 3m + 1 ≤ i ≤ 4m,
ti,j = 4D−B−9S

j for 1 ≤ j ≤ 4, and ti,j = 2
9(4D − B − 9S) for j > 4 (these are large applications

with a total work equal to 4D−B− 9S for 1 ≤ j ≤ 4, and a strictly larger work when using more than
four processors). It is easy to check that the execution times are non-increasing with j, and that the work
j × ti,j is non-decreasing with j for all applications. Note that 4D −B − 9S > D. Clearly, the size of
I2 is polynomial in the size of I1. We now show that instance I1 has a solution if and only if instance
I2 does.

Suppose first that I1 has a solution. Let Ik = {a′1,k, a′2,k, a′3,k}, for k ∈ {1, . . . ,m}. We build
the following schedule for I2: initially, each application has a single processor. When an application
Ti finishes its execution (at time ai), with 1 ≤ i ≤ 3m, its processor is redistributed to application
T3m+k, given that ai ∈ Ik. Both the single processor of Ti and each currently enrolled processor of

4.3. COMPLEXITY RESULTS 73

a1

a2

· · ·
a′1,k S T3m+kS S

· · ·
a′2,k S T3m+k

· · ·
a′3,k T3m+kSS

· · ·
a3m

· · ·
S S S T3m+k

· · ·

3S
3m small applications

m large applications

D

Figure 4.8: Illustration for the proof of Theorem 4.2.

T3m+k pay a time overhead S for this redistribution, see Figure 4.8 for an illustration. Because the
ai’s are all distinct, the successive redistributions occur at different time-steps, and the redistribution
intervals of size S do not overlap. Each application T3m+k starts with 1 processor and proceeds first
with 2 processors (then paying an overhead S for its single processor before the redistribution), then
with 3 processors (then paying an overhead S for each of its two processors before the redistribution),
and finally with 4 processors (then paying an overhead S for each of its three processors before the
redistribution) for some time in the end of its execution, because M + S < D. The total overhead
due to the redistributions involving the three small tasks giving resources to T3m+k is therefore 9S.
Now, each application T3m+k always executes with an optimal work profile, and actually completes its
execution in time D. Indeed, the 4 processors finally assigned to T3m+k have to complete a total work
of a′1,k +a′2,k +a′3,k + 4D−B−9S = 4D−9S, and there are exactly 3(D−S) +D−6S = 4D−9S
time slots available for computations. Again, because M +S < D, all small applications also complete
before the deadline, and we have a solution to I2.

Suppose now that I2 has a solution. Initially, we have one processor per application, because there
are exactly n processors and n applications. We first show that each small application Ti terminates
before the end of the schedule, and that its processor must be redistributed. Indeed, ai ≤M < D, and if
we do not redistribute the processor assigned to Ti when it completes, then this processor stays idle for
D− ai > D−M time steps. But the total work to execute is at least

∑3m
i=1 ai +m× (4D−B− 9S) =

m(4D − 9S), assuming perfect parallelism. If the remaining n − 1 processors work all the time, they
contribute for (n − 1)D. If the processor assigned to Ti works at most M time-steps, we must have
m(4D − 9S) ≤ (n − 1)D + M , or equivalently 9mS ≥ D −M . But D −M > 2, and 9mS ≤ 1 by
definition of S, a contradiction.

Because the ai’s are distinct, the 3m redistributions at the end of the 3m small tasks do not overlap.
The first m redistributions involve at least another application running on one processor, which also
looses S time-steps. The next m redistributions involve at least another application running on two
processors, which costs 2S work units, and finally the last m redistributions involve at least another
application running on three processors, hence costing 3S work units. Altogether, we have at least
9mS work units for redistribution costs. But the total work is at least nD − 9mS, and the area of the
computing window is nD. This means that we pay exactly 9mS for redistributions, and that all the work
is perfectly parallel. We now draw two consequences:

74 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

• When a small task completes, the redistribution of its processor involves a single other application
(otherwise we would end with strictly more than 9mS redistribution overhead).

• This processor is redistributed to a large application, because all the work is perfectly parallel.

There are 3m processors to redistribute to m large applications, and none of them can receive more
than 3 processors, again because all the work is perfectly parallel. Hence, each large application is
assigned exactly 3 new processors throughout its execution. Formally, for 1 ≤ k ≤ m, the large
application T3m+k receives processors from 3 small applications Ti with i ∈ Ik = {a′1,k, a′2,k, a′3,k}, for
k ∈ {1, . . . ,m}. The total work of these four processors is 4D−B− 9S + a′1,k + a′2,k + a′3,k and there
are 4D − 9S available time-steps for them. Hence a′1,k + a′2,k + a′3,k ≤ B. This is true for all triplets
of small applications, and because

∑3m
i=1 ai = mB, we must have an equality for each triplet, hence the

solution to I1.

We conjecture that COSCHED remains NP-complete with zero redistribution cost. This is because
of the combinatorial exploration suggested by the examples. But this remains an open problem!

4.4 Heuristics

In this section, we introduce polynomial-time heuristics to solve the general COSCHED problem with
both failures and redistributions. Before performing any redistribution, we need to choose an initial
allocation of the p processors to the n applications. We use the optimal algorithm without redistribution
discussed in Section 4.3 (OPT-NOREDISTRIB).

We first discuss the general structure of the heuristics. Then, we explain how to redistribute available
processors, and the two strategies to redistribute when failures occur.

4.4.1 General structure

All heuristics share the same skeleton (see Algorithm 6): we iterate over each event (either a failure or an
application termination) until total remaining work is equal to zero. If some applications are still working
for a previous redistribution, (i.e., the current time t is smaller than tlastRi for these applications), then
we exclude them for the next redistribution (Line 15), and add them back into the list of applications
after the current redistribution is completed. If an application ends, we redistribute available processors
as will be discussed in Section 4.4.2. Then, if there is a failure, we calculate the new expected execution
time of the faulty application (Line 26). Also, we remove from the list the applications that end before
tlastRf , and we release their processors (Line 28).

Afterwards, we have to choose between trying to redistribute or do nothing. If the faulty application
is not the longest application, the total execution time has not changed since the last redistribution.
Therefore, because it is the best execution time that we could reach, there is no need to try to improve it.
However, if the faulty application is the longest application (Line 30), we apply a heuristic to redistribute
processors (see below).

4.4.2 Redistribution when an application ends

When an application ends, the idea is to redistribute the processors that it releases in order to decrease
the expected execution time. The easiest way to proceed consists in adding processors greedily to
the application with the longest execution time, as was done in OPT-NOREDISTRIB to compute an
optimal schedule. This time, we further account for the redistribution cost, and update the values of αi,

4.4. HEURISTICS 75

Algorithm 6: Algorithmic skeleton

1 procedure Main(n, p)
2 begin
3 α and tlastR are considered as global variables;
4 /* Initial schedule */;
5 σ := OPT-NOREDISTRIB (n, p);
6 for i = 1 to n do
7 αi = 1; tlastRi = 0;
8 tUi = tRi,σ(i)(1);
9 end

10 Let L be the list of applications sorted in non-increasing values of tUi ;
11 /* While it remains work */;
12 while

∑n
i=1 αi > 0 do

13 k := p−
∑n
i=1 σ(i) /* There are k unused processors */;

14 t := next incoming event;
15 for i = 1 to n do if t ≤ tlastRi then Remove temporarily Ti from L;
16 ;
17 if t is the end of application Te then
18 αe := 0 ;
19 Remove Te from the list of applications L;
20 σ := REDISTRIB-AVAILABLE-PROCS(L, t, k + σ(e), σ);
21 else if t is a failure striking application Tf then
22 /* Updating information about the faulty application Tf */

23 j := σ(f); Nf,j =
⌊
(t− tlastRf)/τf,j

⌋
;

24 αf := αf −Nf,j(τf,j − Cf,j)/tf,j ;
25 tlastRf := t+D +Rf,j ;
26 tUf := tlastRf + tRf,j(αf);
27 Update the position of Tf in the list L according to its new tUf value;
28 for i = 1 to n do if Ti finishes before tlastRf then Remove Ti and release σ(i)

processors;
29 ;
30 if tUf = max1≤i≤n t

U
i then

31 σ := APPLY-HEURISTIC(L, t, f, σ);
32 end
33 end
34 ;
35 Put back the previously removed applications into L;
36 end
37 end

76 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

tlastRi and tUi for each application i that encountered a redistribution. Therefore, this heuristic, called
ENDLOCAL (see Algorithm 7), returns a new distribution of processors.

Algorithm 7: ENDLOCAL

1 procedure ENDLOCAL (L, t, k, σ)
2 begin
3 σinit := σ;
4 while k ≥ 2 do
5 Ti := head(L); L := tail(L);
6 j := σinit(i);
7 Ni,j = b(t− tlastRi)/τi,jc;
8 αti := αi − (t− tlastRi −Ni,jCi,j)/ti,j ;
9 /* We first check whether Ti can be improved */

10 if σ(i) < jmax(i) then
11 σ(i) := σ(i) + 2;

12 tUi := t+RC
j→σ(i)
i + Ci,σ(i) + tRi,σ(i)(α

t
i);

13 L := Insert Ti in L according to its tUi value;
14 k := k − 2;
15 end
16 end
17 /* Updating αi and tlastRi if needed */

18 for i = 1 to n do
19 j := σinit(i);
20 if σ(i) 6= j then
21 Ni,j = b(t− tlastRi)/τi,jc;
22 αi := αi − (t− tlastRi −Ni,jCi,j)/ti,j ;
23 tlastRi := t+RC

j→σ(i)
i + Ci,σ(i);

24 end
25 end
26 return σ;
27 end

Rather than using only local decisions to redistribute available processors at time t, it is possible to
recompute an entirely new schedule, using OPT-NOREDISTRIB again, but further accounting for the cost
of redistributions. This heuristic is called ENDGREEDY (see Algorithm 8). Now, we need to compute
the remaining fraction of work for each application, and we obtain an estimation of the expected finish
time when each application is mapped on two processors. Similarly to OPT-NOREDISTRIB, we then add
two processors to the longest application while we can improve it, accounting for redistribution costs.

Note that we effectively update the values of αi and tlastRi for application Ti only if a redistribution
was conducted for this application. It may happen that the algorithm assigns the same number of pro-
cessors as was used before. Therefore, we keep the updated value of the fraction of work in a temporary
variable αti and update it whenever needed at the end of the procedure.

4.4. HEURISTICS 77

Algorithm 8: ENDGREEDY

1 procedure ENDGREEDY (L, t, k, σ)
2 begin
3 σinit := σ;
4 for i = 1 to n do
5 Ni,j = b(t− tlastRi)/τi,jc;
6 αti := αi − (t− tlastRi −Ni,jCi,j)/ti,j ;
7 σ(i)← 2;
8 if σ(i) 6= σinit(i) then tUi = t+RC

σinit→σ(i)
i + Ci,σ(i) + tRi,σ(i)(αti);

9 end
10 Let L be the list of applications sorted in non-increasing values of tUi ;
11 pavailable := p− 2n;
12 while pavailable ≥ 2 do
13 Ti := head(L); L := tail(L);
14 improvable := false; q := 2;
15 while σ(i) + q < jmax(i) do
16 if σ(i) + q = σinit(i) then tE := tlastRi + tRi,σ(i)+q(αi);

17 else tE := t+ tRi,σ(i)+q(αti) +RC
σinit(i)→σ(i)+q
i + Ci,σ(i)+q;

18 if tE < tUi then improvable := true; q := jmax(i);
19 else q := q + 2;
20 end
21 if improvable then
22 σ(i) := σ(i) + 2;
23 if σ(i) = σinit(i) then tUi := tlastRi + tRi,σ(i)(αi);
24 else
25 tUi := t+RC

σinit→σ(i)
i + Ci,σ(i) + tRi,σ(i)(αti);

26 end
27 L := Insert Ti in L according to its tUi value;
28 pavailable := pavailable − 2;
29 end
30 else pavailable := 0;
31 end
32 /* Updating tlastRi and αi if needed */
33 for i = 1 to n do
34 if σ(i) 6= σinit(i) then
35 αi := αti;
36 tlastRi := t+RC

σinit(i)→σ(i)
i + Ci,σ(i);

37 end
38 end
39 return σ;
40 end

78 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

4.4.3 Redistribution when there is a failure

Similarly to the case of an application ending, we propose two heuristics to redistribute in case of
failures. The first one, SHORTESTAPPLICATIONSFIRST, takes only local decisions. First, we allocate
the k available processors (if any) to the faulty application if that application is improvable. Then, if the
faulty application is still improvable, we try to take processors from shortest applications (denoted Ts) in
the schedule, and give these processors to the faulty application, until the faulty application is no longer
improvable, or there are no more processors to take from other applications. We take processors from
an application only if its new execution time is smaller than the execution time of the faulty application
(see Algorithm 9).

The second heuristic, ITERATEDGREEDY, uses a modified version of the greedy algorithm that ini-
tializes the schedule (OPT-NOREDISTRIB) each time there is a failure, while accounting for the cost of
redistributions. This is done similarly to the redistribution of ENDGREEDY explained above, except that
we need to handle the faulty application differently to update the values of αf and tlastRf (see Algo-
rithm 10).

4.5 Simulations

To assess the efficiency of the heuristics defined in Section 4.4, we have performed extensive simula-
tions. The simulation settings are discussed in Section 4.5.1, and results are presented in Section 4.5.2.
Note that the code is publicly available at http://graal.ens-lyon.fr/~abenoit/code/
redistrib, so that interested readers can experiment with their own parameters.

4.5.1 Simulation settings

To evaluate the quality of the heuristics, we conduct several simulations, using realistic parameters. The
first step is to generate a fault distribution: we use an existing fault simulator developed in [20, 23]. In
our case, we use this simulator with an exponential law of parameter λ. The second step is to generate
a fault-free execution time for each application (the ti,j value). We use a synthetic model to generate
the execution profiles in order to represent a large set of scientific applications. The application model
that we use is a classical one, similar to the one used in [9]. For a problem of size m, we define the
sequential time: t(m, 1) = 2 × m × log2(m). Then we can define the parallel execution time on q
processors:

t(m, q) = f × t(m, 1) + (1− f) t(m, 1)
q

+ m

q
log2(m). (4.8)

The parameter f is the sequential fraction of time, we fix it to f = 0.08. So 92% of time is considered
as parallel. The factor mq log2(m) represents the overhead due to communications and synchronizations.
Finally, we have ti,j(mi) = t(mi, j) where ti,j(mi) is the execution time for application Ti with a
problem of size mi on j identical processors.

Finally, we assign to each application Ti a random value for the number of datami such that: minf ≤
mi ≤ msup. If minf � msup then the data distribution between applications is very heterogeneous.
On the contrary, if minf is close to msup, the data distribution is homogeneous, in other words all
applications have (almost) the same execution time. Unless stated otherwise, we set minf = 1, 500, 000
and msup = 2, 500, 000 to have execution times long enough so that several failures are likely to strike
during execution. With such a value for msup, the longest execution time in a fault-free execution is
around 100 days. We also consider two different data distribution cases, (i) very heterogeneous with
minf = 1, 500, and (ii) homogeneous with minf = 2, 499, 000.

http://graal.ens-lyon.fr/~abenoit/code/redistrib
http://graal.ens-lyon.fr/~abenoit/code/redistrib

4.5. SIMULATIONS 79

Algorithm 9: SHORTESTAPPLICATIONSFIRST

1 procedure SHORTESTAPPLICATIONSFIRST (L, t, f , σ) begin
2 σinit := σ;
3 /* Compute αti */

4 for i = 1 to n do
5 if i 6= f then αti := αi − (t− tlastRi −

⌊
(t− tlastRi)/τi,σ(i)

⌋
Ci,σ(i))/ti,σ(i) ;

6 else αtf := αf ;
7 end
8 k := p−

∑n
i=1 σ(i) /* There are k available processors */;

9 if σ(f) + k < jmax(f) then
10 σ(f) := σ(f) + k; improvable := true;
11 else σ(f) := jmax(f); improvable := false ;

12 tUf := t+RC
σinit(f)→σ(f)
f + Cf,σ(f) + tRf,σ(f)(αf);

13 /* Taking processors from shortest application */;
14 while improvable do
15 Let Ts be the shortest application such that σ(s) ≥ 4; improvable := false; q := 2;
16 while q ≤ σ(s)− 2 do
17 tEf := t+RC

σinit(f)→σ(f)+q
f + Cf,σ(f)+q + tRf,σ(f)+q(αf);

18 tEs := t+RC
σinit(s)→σ(s)−q
s + Cs,σ(s)−q + tRs,σ(s)−q(α

t
s);

19 if tEf < tUf and tEs < tUf then improvable := true; q := σ(s) + 1;
20 else q := q + 2;
21 end
22 if improvable then
23 σ(f) := σ(f) + 2; σ(s) := σ(s)− 2;

24 tUf := t+RC
σinit(f)→σ(f)
f + Cf,σ(f) + tRf,σ(f)(αf);

25 tUs := t+RC
σinit(s)→σ(s)
s + Cs,σ(s) + tRs,σ(s)(α

t
s);

26 if tUs > tUf then improvable := false;
27 end
28 end
29 /* Updating αi and tlastRi if needed */

30 for i = 1 to n do
31 if σ(i) 6= σinit(i) then
32 αi := αti;

33 tlastRi := t+RC
σinit(i)→σ(i)
i + Ci,σ(i);

34 end
35 end
36 return σ;
37 end

80 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

Algorithm 10: ITERATEDGREEDY

1 procedure ITERATEDGREEDY (L, t, f , σ) begin
2 σinit := σ;
3 for i = 1 to n do
4 if i 6= f then αti := αi − (t− tlastRi −

⌊
(t− tlastRi)/τi,σ(i)

⌋
Ci,σ(i))/ti,σ(i) ;

5 αtf := αf ;
6 σ(i)← 2;
7 if σ(i) 6= σinit(i) then tUi = t+RC

σinit→σ(i)
i + Ci,σ(i) + tRi,σ(i)(αti);

8 end
9 Let L be the list of applications sorted in non-increasing values of tUi ;

10 pavailable := p− 2n;
11 while pavailable ≥ 2 do
12 Ti := head(L); L := tail(L);
13 improvable := false; q := 2;
14 while σ(i) + q < jmax(i) do
15 if σ(i) + q = σinit(i) then tE := tlastRi + tRi,σ(i)+q(αi);

16 else tE := t+ tRi,σ(i)+q(αti) +RC
σinit(i)→σ(i)+q
i + Ci,σ(i)+q;

17 if tE < tUi then improvable := true; q := jmax(i);
18 else q := q + 2;
19 end
20 if improvable then
21 σ(i) := σ(i) + 2;
22 if σ(i) = σinit(i) then tUi := tlastRi + tRi,σ(i)(αi);
23 else
24 tUi := t+RC

σinit→σ(i)
i + Ci,σ(i) + tRi,σ(i)(αti);

25 end
26 L := Insert Ti in L according to its tUi value;
27 pavailable := pavailable − 2;
28 end
29 else pavailable := 0;
30 end
31 /* Updating tlastRi and αi if needed */
32 for i = 1 to n do
33 if σ(i) 6= σinit(i) then
34 αi := αti;
35 tlastRi := t+RC

σinit(i)→σ(i)
i + Ci,σ(i);

36 end
37 end
38 return σ;
39 end

4.5. SIMULATIONS 81

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.9: Performance of redistribution in a fault-free context with msup = 2500000.

The cost of checkpoints for an application Ti with j processors is Ci,j = Ci/j, where Ci is propor-
tional to the memory footprint of the application. We have Ci = mi × c, where c is the time needed to
checkpoint one data unit ofmi. The default value is c = 1 , unless stated otherwise. The synchronisation
cost value S is fixed to S = 0 for all following experiments. Finally, the MTBF of a single processor is
fixed to 100 years, unless stated otherwise.

In the following section, we vary the number of processors, the number of applications, the check-
pointing cost and the data distribution, in order to study their impact on performance. Note that we
assume that a failure can strike during checkpoints but not during downtime, recovery and while the
processor is performing some redistribution.

4.5.2 Results

To evaluate the heuristics, we execute each heuristic x = 50 times and we compute the average
makespan, i.e., the longest execution time in the pack. We compare the makespan obtained by the
heuristics to the makespan (i) in a faulty context without any redistribution (worst case), and (ii) in a
fault-free context with redistributions (best case). We normalize the results by the makespan obtained
in a faulty context without any redistribution, which is expected to be the worst case. The execution in
a fault-free setting provides us an optimistic value of the execution of the application in the ideal case
where no failures occur.

We consider four heuristics: ITERATEDGREEDY-ENDGREEDY where we greedily recompute a new
schedule at each application termination and each failure; ITERATEDGREEDY-ENDLOCAL where we
use ENDLOCAL at each application termination, but ITERATEDGREEDY in case of failures; SHORT-
ESTAPPLICATIONSFIRST-ENDGREEDY where we greedily recompute a new schedule at each applica-
tion termination, but use SHORTESTAPPLICATIONSFIRST in case of failures; and SHORTESTAPPLICA-
TIONSFIRST-ENDLOCAL where we only use the local variants.

Performance in a fault-free context Figure 4.9 shows the impact of redistribution in a fault-free
context with 100 applications, where we vary the number of processors from 200 to 2000. In this
case, we compare ENDLOCAL with ENDGREEDY (see Section 4.4.2). The two heuristics have a very
similar behavior, leading to a gain of a least 20% with less than 500 processors, and a slightly better
gain for the ENDGREEDY global heuristic. When the number of processors increases, the efficiency of
both heuristics decreases to converge to the performance without redistribution. Indeed, there are then
enough processors so that each application does not make use of the extra processors released by ending
applications. In the heterogeneous context (with minf = 1500), the gain due to redistribution is even
larger.

82 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.10: Performance of redistribution in a fault-free context with msup = 2500000.

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.11: Impact of n with p = 5000 processors.

Figure 4.10 shows the impact of redistribution in a fault-free context with 1000 applications, we vary
the number of processors from 2000 to 10000. We compare ENDLOCAL with ENDGREEDY, the two
heuristics have a similar behavior. As showed in Figure 4.9, the redistribution is more efficient in the
heterogeneous context (with minf = 1500).

In the homogeneous case (Figure 4.10c), the results clearly show how the number of processors is
directly linked to the efficiency of redistribution. If p/n is even, as each application has almost the same
size, we assign p/n processors to each application. Consequently each application will finish at the same
time and redistributions have very limited use. When p is not divisible by n or if p/n is odd, at least one
application will have more processors than the others. So, at least one application will finish before the
others and the redistribution will be more efficient. We note that the redistribution has a larger impact
when few processors are involved, this is due to the fact that the speedup is better with fewer processors
(sublinear speedup). In other words, it is more useful to upgrade from 2 processors to 4 processors rather
than from 500 to 502, in terms of speedup.

Impact of n Figure 4.11 shows the impact of the number of applications n when the number of
processors is fixed to 5000. The results show that having more applications increases the efficiency of
both heuristics. With n = 1000, we obtain a gain of more than 40% due to redistributions. The reason is
that when n increases, the number of processors assigned to each application decreases, then heuristics
have more flexibility to redistribute.

Note that, as expected, ITERATEDGREEDY is better than SHORTESTAPPLICATIONSFIRST, because
it recomputes a complete new schedule at each fault, instead of just allocating available processors from
shortest applications to the faulty application. Using ENDGREEDY with ITERATEDGREEDY does not
improve the performance, while ENDGREEDY is useful with SHORTESTAPPLICATIONSFIRST, hence
showing that complete redistributions are useful, even when only performed at the end of an application.

4.5. SIMULATIONS 83

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.12: Impact of p with n = 100 applications and msup = 2500000.

 1.6x107

 1.8x107
 2x107

 2.2x107

 2.4x107

 2.6x107
 2.8x107

 3x107

 0 2x10 6
 4x10 6

 6x10 6
 8x10 6

 1x10 7
 1.2x10 7

 1.4x10 7

 1.6x10 7

 1.8x10 7

 2x10 7

M
ak

es
pa

n
(s

)

Date of faults (s)

No ReDistrib
IteratedGreedy+EndLocal

ShortestApplicationsFirst+EndLocal

(a) Makespan at each failure dealt with.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0 381870

474815

734087

1.58388e+06

1.72119e+06

4.30732e+06

4.86924e+06

8.12083e+06

1.0241e+07

1.14072e+07

1.17525e+07

1.2509e+07

1.34763e+07

1.47022e+07

1.48639e+07

1.58775e+07

1.96085e+07

1.977e+07
#p

ro
ce

ss
or

s

Date of faults (s)

No ReDistrib
IteratedGreedy+EndLocal

ShortestApplicationsFirst+EndLocal

(b) Standard deviation at each failure dealt with.

Figure 4.13: Heuristic behaviors with n = 100, p = 1000, MTBF of 50 years, for a single execution.

We also observe that results in the heterogeneous cases are slightly better than in the homogeneous
case, but the difference in the homogeneous case when n = 1000 is very tiny due to the large number of
applications (i.e., fewer processors allocated to applications so the redistribution is more efficient).

Impact of p Figure 4.12 shows the impact of the number of processors p when the number of applica-
tions is fixed. We vary p between 200 and 5000 processors. The results show that having more processors
decreases the efficiency of both heuristics, but, in the heterogeneous cases, there is always a gain of at
least 10% thanks to redistributions. As noted in the fault-free case, the redistribution is more efficient
when the data distribution is very heterogeneous (Figure 4.12a). On the contrary, in the homogeneous
case (Figure 4.12c) the redistribution is less efficient (gain around 10%). The same observations hold,
i.e., the use of ENDGREEDY vs ENDLOCAL impacts only SHORTESTAPPLICATIONSFIRST. In average,
with ITERATEDGREEDY, we obtain a gain of 25%, while SHORTESTAPPLICATIONSFIRST provides a
gain around 15% when it is not combined with ENDGREEDY. This figure also allows us to observe the
impact of the MTBF on performance. Indeed, the MTBF is set to 100 years for each processor, but the
overall MTBF for an application (µi,j value) decreases when the number of processors increases, so the
gain obtained by the heuristics decreases due to the increasing number of failures.

Heuristic behaviors Figure 4.13 compares ITERATEDGREEDY and SHORTESTAPPLICATIONS-
FIRST, when combined with ENDLOCAL, on a single execution. We depict both the evolution of the
makespan (see Figure 4.13a) and the standard deviation, in terms of number of processors (see Fig-
ure 4.13b). ITERATEDGREEDY is clearly superior in terms of makespan, and this can be explained by
the fact that it allocates more processors to the longest application, earlier in time than SHORTESTAP-
PLICATIONSFIRST, hence resulting in a larger standard deviation. Because SHORTESTAPPLICATIONS-
FIRST takes only local decisions, it takes more time before enough processors are given to the longest
application.

84 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.14: Impact of MTBF with n = 100, p = 1000, and msup = 2500000.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.15: Impact of MTBF with n = 100, p = 5000, and msup = 2500000.

Impact of MTBF Figures 4.14 and 4.15 show the impact of the MTBF on the performance of redis-
tributions. We vary the MTBF of a single processor between 5 years and 125 years. When the MTBF
decreases, the number of failures increases, consequently the performance of both heuristics decreases.
In Figure 4.14, the performance of ITERATEDGREEDY is closely linked to the MTBF value. Indeed, it
tends to favor a heterogeneous distribution of processors (i.e., applications with many processors and
applications with few processors). If an application is executed on many processors, its MTBF becomes
very small and this application will be hit by more failures, hence it becomes even worse than without
redistribution!

We observe the same result in Figure 4.15, especially in the homogeneous case (Figure 4.15c). This
effect is even amplified due the number of processors (p = 5000) which directly decreases the MTBF
and deteriorate the performance (increasing number of faults).

Impact of checkpointing cost Figure 4.16 shows the impact of the checkpointing cost on a plat-
form with 100 applications and 1000 processors. To do so, we multiply the checkpointing cost by c
in Figure 4.16 (recall that c is the time needed to checkpoint one data unit). When c decreases, the
performance of the heuristics increases and the gap between the execution time in a fault-free context
and a fault context becomes small. Indeed, if checkpoints are cheap, a lot of checkpoints can be taken,
and the average time lost due to failures decreases. We observe that when the checkpointing cost c tends
to 1, the checkpointing costs are more important and the redistribution (specially ITERATEDGREEDY)
becomes more unstable. This effect is amplified in a homogeneous context, because applications and
checkpoints are larger than in a heterogeneous context. We see the same effect on Figure 4.17.

Impact of the sequential fraction of time Figure 4.18 shows the impact of the sequential fraction
of time. We vary f from 0 (applications are fully parallel) to 0.5 (50% of the time is sequential). The
results show that when applications are more parallel, the redistribution is more efficient. This result
is expected, because if applications are not parallel, there is less gain when trying to allocate more
processors to help them complete.

4.5. SIMULATIONS 85

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.16: Impact of checkpointing cost.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) Original checkpoint cost c = 1.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) Checkpoint cost c = 0.1.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) Checkpoint cost c = 0.01.

Figure 4.17: Impact of checkpointing cost with n = 100, p = 1000, and minf = 1500000.

In the homogeneous case (Figure 4.18c), the ITERATEDGREEDY heuristic is worse than the result
without redistribution when f is greater than 0.3. It is due to the fact that all applications are large and
not fully parallel, so when we greedily recompute a new schedule at each fault, we might deteriorate the
performance.

Summary To conclude, we note that ITERATEDGREEDY achieves better performance than SHORT-
ESTAPPLICATIONSFIRST, mainly because it rebuilds a complete schedule at each fault, which is very
efficient but also costly. Nevertheless, when the MTBF is low (around 10 years or less), SHORTESTAP-
PLICATIONSFIRST becomes better than ITERATEDGREEDY. In a faulty context, we gain flexibility from
the failures and we can achieve a better load balance. We observe that the ratio between the number of
applications and the number of processors plays an important role, because having too many processors
for few applications leads to a deterioration of performance (especially in a homogeneous context).

About the data distributions, we observe that the best context to take advantage of redistributions is
a heterogeneous context with large and short applications. In the homogeneous context, when we assign
the same weight to each application, redistributions become much less interesting. We also show that
the cost of checkpointing and the fraction of sequential time have a significant impact on performance.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 4.18: Impact of the sequential fraction of time with n = 100 and p = 1000 when 0 ≤ f ≤ 0.5.

86 CHAPTER 4. RESILIENT CO-SCHEDULING OF MALLEABLE APPLICATIONS

Finally, we point out that all four heuristics run within a few seconds, while the total execution
time of the application takes several days, hence even the more costly combination ITERATEDGREEDY-
ENDGREEDY incurs a negligible overhead.

4.6 Conclusion

In this chapter, we have designed a detailed and comprehensive model for scheduling a pack of ap-
plications on a failure-prone platform, with processor redistributions. We have introduced a greedy
polynomial-time algorithm that returns the optimal solution when there are failures but no processor
redistribution is allowed. We have shown that the problem of finding a schedule that minimizes the exe-
cution time when accounting for redistributions is NP-complete in the strong sense, even with constant
redistribution costs and no failures. Finally, we have provided several polynomial-time heuristics to
redistribute efficiently processors at each failure or when an application ends its execution and releases
processors. The heuristics are tested through extensive simulations, and the results demonstrate their
usefulness: a significant improvement of the execution time can be achieved thanks to the redistribu-
tions.

Further work will consider partitioning the applications into several consecutive packs (rather than
one) and conduct further simulations in this context. We also plan to investigate the complexity of the
online redistribution algorithms in terms of competitiveness. It would also be interesting to deal not only
with fail-stop errors, but also with silent errors. This would require adding verification mechanisms to
detect such errors.

Chapter 5

A performance model to execute workflows on
high-bandwidth-memory architectures

Recently, many TOP500 supercomputers [44] use many-core architectures to increase their processing
capabilities, such as the Intel Knights Landing (KNL) [61] or some custom many-core architectures [31,
35]. Among these many-core architectures, some systems add a new level in the memory hierarchy:
a byte-addressable, high-bandwidth, on-package memory. One of the first widely available systems to
exhibit this kind of new memory is the KNL [6, 61, 118]. Its on-package memory (called multi-channel
dynamic random access memory, or MCDRAM) of 16 GB has a bandwidth five times larger than the
classic double data rate (DDR) memory. At boot, a user can decide to use this on-package memory in
three modes:

• Cache mode: In cache mode, MCDRAM is used by the hardware as a large last-level direct-
mapped cache. In this configuration, cache misses are expensive; indeed, all data will follow the
path DDR→ MCDRAM→ L2 caches.

• Flat mode: In flat mode, the MCDRAM is manually managed by programmers. It is a new fast
addressable space exposed as a NUMA node to the operating system.

• Hybrid mode: This mode mixes both previous modes. A configurable ratio of the memory is
used in cache mode; the other part is configured in flat mode.

While Intel promotes the cache mode, the flat mode may be more interesting in some cases. The goal
of this work is to demonstrate, theoretically and experimentally, that the flat mode can obtain better
performance with particular workloads (for instance, bandwidth-bound applications). Unlike GPU and
classic out-of-core models, with high-bandwidth-memory systems there is no need to transfer the whole
data needed for computations into the on-package memory before execution and then to transfer back
the data to the DDR after the computation. An application can start its computations using data residing
in both memories at the same time.

In this chapter, we build a detailed performance model accounting for the new dual-memory sys-
tem and the associated constraints. We focus our study on scientific workflows and provide a detailed
analysis of the execution time on such platforms, taking into account transfers from both fast and slow
memory and their overlap with computations. The problem can be stated as follows: given (i) an ap-
plication represented as a directed acyclic graph (DAG), and (ii) a many-core platform with P identical
processors sharing two memories, a large slow memory and a small fast memory, how should this DAG
be scheduled (which processor should execute which task and in which order) and which memory map-

87

88
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

ping should be used (which data should reside in which memory) in order to minimize the total execution
time, or makespan.

Main contributions. In this chapter, we build a detailed performance model to analyze the execution
of workflows on high-bandwidth systems, and we design several scheduling and mapping strategies. We
conduct extensive simulations to assess the impact of these strategies on performance. We also conduct
experiments for a simple 1D Gauss-Seidel kernel, which establish the accuracy of the model and further
demonstrate the importance of a tuned memory management.

The rest of the chapter is organized as follows. Section 5.1 provides an overview of related work. Sec-
tion 5.2 formally defines the performance model with all its parameters, as well as the target architecture.
Section 5.3 discusses the complexity of a particular problem instance, namely, linear workflows. Map-
ping and scheduling heuristics are introduced in Section 5.4 and evaluated through simulations in Sec-
tion 5.5. The experiments with the 1D Gauss-Seidel kernel are reported in Section 5.6. Section 5.7
summarizes our conclusions and provides ideas for future work.

5.1 Related work

Deep memory architectures have become widely available only in the last couple of years, and studies
focusing on them are rare. Furthermore, since vendors recommend to make use of them as another
level of hardware-managed cache, few works make the case for explicit management of these memories.
Among existing works, two major trends can be identified: studies arguing for data placement or for
data migration.

Data placement [116] addresses the issue of distributing data among all available memories only
once, usually at allocation time. Several efforts in this direction aim at simplifying the APIs available
for placement, similarly to work on general NUMA architectures: memkind [32], the Simplified Inter-
face for Complex Memory [70] and Hexe [90]. These libraries provide applications with intent-based
allocation policies, letting users specify bandwidth-bound data or latency-sensitive data, for example.
Other works [102, 119] focus instead on tracing the application behavior to optimize data placement on
later runs.

Data migration addresses the issue of moving data dynamically across memories during the execu-
tion of the application. Preliminary work [97] on this approach showcased that performance of a simple
stencil benchmark can be improved by migration, using a scheme similar to out-of-core algorithms,
when the compute-density of the application kernel is high enough to provide compute/migration over-
lapping. Closer to the focus of this chapter, another study [29] discussed a runtime method to schedule
tasks with data dependencies on a deep memory platform. Unfortunately, the scheduling algorithm is
limited to scheduling a task only after all its input data has been moved to faster memory. Also, no
theoretical analysis of this scheduling heuristic was performed.

We also mention the more general field of heterogeneous computing, usually focusing on CPU-GPU
architectures. Until recently, these architectures were limited to separated memories: to schedule a task
on a GPU, one had to move all of its data to GPU memory. Task scheduling for such architectures is a
more popular research area [1, 7, 8, 49]. Unfortunately, the scheduling heuristics for this framework are
poorly applicable to our case because we can schedule tasks without moving data first. More recent GPU
architectures support accessing main memory (DDR) from GPU code, for example by using unified
memory since CUDA 6 [71, 89]. To the best of our knowledge, however no comprehensive study
has addressed memory movement and task scheduling for these new GPUs from a performance-model
standpoint.

5.2. MODEL 89

5.2 Model

This section describes the performance model: architecture in Section 5.2.1, the target application
in Section 5.2.2, scheduling constraints in Section 5.2.3, execution time in Section 5.2.4, and optimiza-
tion objective in Section 5.2.5.

5.2.1 Architecture

We consider a deep-memory many-core architecture with two main memories: a large slow-bandwidth
memory, Ms, and a small high-bandwidth memory, Mf . This two-unit memory system models that of
the Xeon Phi (KNL) architecture [61, 118].

Let Ss denote the size and βs the bandwidth of the memory Ms. We express memory size in terms
of the number of data blocks that can be stored. A data block is any unit convenient for describing the
application (e.g. bytes or words). Accordingly, bandwidths are expressed in data blocks per second.
Similarly, let Sf denote the size and βf the bandwidth of the memory Mf .

Both memories have access to the same P identical processing units, called processors in the fol-
lowing. Each processor computes at speed s. Figure 5.1 illustrates this architecture, where the fast
MCDRAM corresponds to Mf and the slow DDR memory corresponds to Ms.

On-package

P
processors

at speed s

Mf

Multi-Channel
DRAM

Ms

DDR

βf

βs

Figure 5.1: Target memory hierarchy.

5.2.2 Application

The target application is a scientific workflow represented by a directed acyclic graph G = (V,E).
Nodes in the graph are computation tasks, and edges are dependencies among these computation tasks.
Let V = {v1, . . . , vn} be the set of tasks. Let E ⊆ V 2 be the set of edges. If (vi, vj) ∈ E, task vi must
complete its execution before vj can start. Each task vi ∈ V is weighted with the number of computing
operations needed, wi. Each edge (vi, vj) ∈ E is weighted with the number of data blocks shared
between tasks, vi and vj . Let ei,j be the number of shared (i.e., read or write) data blocks between vi
and vj . We consider disjoint blocks; hence each ei,j is specific to the task pair (vi, vj). For each task,
input edges represent data blocks that are read and output edges data blocks that are written. Hence, in
the example of Figure 5.2, task v2 reads e1,2 blocks and writes e2,3 blocks.

v1
w1

v2
w2

v3
w3

e1,2 e2,3

Figure 5.2: Simple DAG example.

We define succ(vi) = {vk | (vi, vk) ∈ E} (resp. pred(vi) = {vk | (vk, vi) ∈ E}) to be the
successors (resp. predecessors) of task vi ∈ V . Note that if G has multiple entry nodes (i.e., nodes

90
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

without any predecessor), then we add a dummy node v0 toG. We setw0 = 0, and v0 has no predecessor.
Finally, v0 is connected with edges representing the initial input to each entry node of G.

5.2.3 Scheduling constraints

Data blocks. At schedule time, we have to choose from which memory data blocks will be read
and written. We define a variable for each edge, efi,j , which represents the number of data blocks into
the fast memory Mf . Symmetrically, let esi,j be for each edge the number of data blocks into the slow
memory, Ms, defined as esi,j = ei,j − efi,j .

We define infi =
∑
vj∈pred(vi) e

f
j,i as the total number of blocks read from Mf by task vi. Similarly,

we define outfi =
∑
vj∈succ(vi) e

f
i,j as the total number of blocks written to Mf by task vi. For the slow

memory, Ms, we similarly define insi and outsi .

Events To compute the execution time and to express scheduling constraints, we define two events,
{σ1(i), σ2(i)}, for each task vi. These events are time steps that define the starting time and the ending
time for each task. With n tasks, there are at most 2n such time steps (this is an upper bound since some
events may coincide). A chunk is a period of time between two consecutive events. We denote by chunk
k the period of time between events tk and tk+1, with 1 ≤ k ≤ 2n − 1. Let tσ1(i) be the beginning

and tσ2(i) be the end of task vi (see Figure 5.3). Let S(k)
f be the number of blocks allocated to the fast

memory, Mf , during chunk k. At the beginning, no blocks are allocated; hence we set S(0)
f = 0. At

the start of a new chunk k, we first initialize S(k)
f = S(k−1)

f and then update this value depending on the
events of starting or ending a task. For task vi, we consider two events (see Figure 5.3):

• At time step tσ1(i): Before vi begins its execution, the schedule decides which output blocks will
be written in fast memory, hence what is the value of efi,j , for each successor vj ∈ succ(vi). It

must ensure that S(σ1(i))
f + outfi ≤ Sf . Thus at time step tσ1(i), out

f
i blocks are reserved in Mf ,

hence S(σ1(i))
f ← S(σ1(i))

f + outfi .

• At time step tσ2(i): After computation, we want to evict useless blocks. Since we have disjoint

blocks, all read blocks in fast memory are useless after computation; hence S(σ2(i))
f ← S(σ2(i))

f −
infi . We do not need to transfer these blocks to Ms thanks to the disjoint blocks assumption.

t1 t2 t3 t4

tasks

time

t
σ1(1) t

σ2(1)t
σ1(2) t

σ2(2)

v2

v1

Figure 5.3: Events with two tasks.

5.2. MODEL 91

To ensure that a task vi starts only if all its predecessors have finished, we enforce the following
constraint:

∀(vi, vj) ∈ E, tσ2(i) ≤ tσ1(j). (5.1)

Also, we have to ensure that, at any time, the number of blocks allocated in the fast memory, Mf ,
does not exceed Sf :

∀1 ≤ k ≤ 2n− 1, S(k)
f ≤ Sf . (5.2)

However, we must ensure that no more than P tasks are executing in parallel (no more than one task
per processor at any time). Accordingly, we bound the number of executing tasks at each time step t:

∣∣ {vi | tσ1(i) ≤ t < tσ2(i)
} ∣∣ ≤ P. (5.3)

We have at most 2n events in total, and we have to define a processing order on these events in order
to allocate and free memory. We sort the events by nondecreasing date. If two different types of events,
σ1(i) and σ2(j), happen simultaneously (tσ1(i) = tσ2(j)), then we process σ2(j) first.

5.2.4 Execution time

We aim at deriving a realistic model where communications overlap with computations, which is the
case in most state-of-the-art multithreaded environments. We envision a scenario where communications
from both memories are uniformly distributed across the whole execution time of each task, meaning
that an amount of communication volume from either memory proportional to the execution progress
will take place during each chunk, that is, in between two consecutive events, as explained below.

We aim at providing a formula forw(k)
i , the number of operations executed by task vi during chunk k,

that is, between time steps tk and tk+1. If the task vi does not compute at chunk k, then w(k)
i = 0.

Otherwise, we have to express three quantities: (i) computations; (ii) communications from and to fast
memory, Mf ; and (iii) communications from and to slow memory, Ms. We assume that the available
bandwidths βf and βs are equally partitioned among all tasks currently being executed by the system.
Let β(k)

f (resp. β(k)
s) be the available bandwidth during chunk k for memory Mf (resp. Ms) for each task

executing during that chunk. Let N (k)
f (resp. N (k)

s) be the set of tasks that perform operations using the

fast (resp. slow) memory bandwidth. Hence, we have β(k)
f = βf

|N(k)
f
|

and β(k)
s = βs

|N(k)
s |

.

Computations are expressed as the number of operations divided by the speed of the resource used,

hence w
(k)
i
s for vi. The task vi needs to read or write infi +outfi blocks in total at speed β(k)

f . We want to

express the communication time between tk and tk+1 also in terms ofw(k)
i . The number of data accesses

in fast memory per computing operations for task vi can be expressed as infi +outfi
wi

. The communication

time is obtained by multiplying this ratio by the number of operations done during this chunk, w(k)
i , and

by dividing it by the available bandwidth.
Since each task can perform communications and compute in parallel, we are limited by one bottle-

neck out of three; computations, or communications from Mf or communications from Ms. Hence, for

92
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

each chunk k with 1 ≤ k ≤ 2n− 1, we have

w
(k)
i

s
≤ tk+1 − tk, (5.4)

w
(k)
i (infi + outfi)

wiβ
(k)
f

≤ tk+1 − tk, (5.5)

w
(k)
i (insi + outsi)

wiβ
(k)
s

≤ tk+1 − tk. (5.6)

Note that a more conservative (and less realistic model) would assume no overlap and replace Equa-
tions 5.4 to 5.6 by

w
(k)
i

s
+ w

(k)
i (infi + outfi)

wiβ
(k)
f

+ w
(k)
i (insi + outsi)

wiβ
(k)
s

≤ tk+1 − tk. (5.7)

An important assumption is made here: we assume that the number of flops computed with one data

block remains constant. In other words, the computation time w
(k)
i
s does not depend on the data schedul-

ing (into either fast or slow memory).
From the previous equation, we can derive the expression for w(k)

i :

w
(k)
i = (tk+1 − tk) min

s, β
(k)
f wi

infi + outfi
,

β
(k)
s wi

insi + outsi

 . (5.8)

Finally, we need to compute the time step tk+1 for the beginning of the next chunk. We express the
time E(k)

i for a task i to finish its execution if there are no events after tk. We call this time the esti-
mated execution time, since we do not know whether there will be an event that could modify available
bandwidths and change progress rate for the execution of the task:

E
(k)
i = tk +

wi −
k−1∑

k′=σ1(i)
w

(k′)
i

min
(
s,

β
(k)
f
wi

infi +outfi
, β

(k)
s wi

insi+out
s
i

) . (5.9)

Hence, the time step of the next event tk+1 is

tk+1 = min
vi∈V

E
(k)
i , (5.10)

Note that the task that achieves the minimum is not impacted by any event and completes its execu-
tion at time step tk+1. We point out that despite the simplifications we made, we still have a complicated
model to compute execution time. The reason is that the partitioning of input and output data of each
task into fast and slow memory has an impact on the execution of many other tasks, since it imposes
constraints on available bandwidth for both memories and remaining space in the fast memory.

There remains to ensure that all tasks perform all their operations and communications. We have the
following constraint:

2n−1∑
k=1

w
(k)
i = wi. (5.11)

5.3. COMPLEXITY FOR LINEAR CHAINS 93

Indeed, Equation 5.8 guarantees that the communications corresponding to an amount of work w(k)
i

can effectively be done during chunk k, since we assume that communications from both memories
are uniformly distributed during execution time. Therefore, Equation 5.11 is enough to validate the

correctness of computations. Let inf(k)
i = w

(k)
i
wi
infi be the number of read operations performed at

chunk k by vi from Mf . We have the following constraint on communications:

2n−1∑
k=1

in
f(k)
i = infi . (5.12)

Thanks to Equation 5.11, we ensure that the previous constraint is respected. We have the same type of
constraints on insi , out

f
i , and outsi . To compute the total execution time of a schedule, we have

T = max
vi∈V

tσ2(i). (5.13)

5.2.5 Objective

Given a directed acyclic graph G = (V,E), our goal is to find a task memory mapping between the
small high-bandwidth memory and the large slow-bandwidth memory, in order to minimize the time to
execute the critical path of G. More formally, we have the following:

Definition 5.1 (MEMDAG). Given an acyclic graph G = (V,E) and a platform with P identical pro-
cessors sharing a two-level memory hierarchy, a large slow-bandwidth memory Ms and a small high-
bandwidth memory Mf , find a memory mapping X = {efi,j}(vi,vj)∈E and a schedule {tσ1(i), tσ2(i)}vi∈V
satisfying all the above constraints and minimizing

max
vi∈V

tσ2(i).

5.3 Complexity for linear chains

MEMDAG is NP-complete in the strong sense. To show this, we remove the memory size constraints
and assume an unlimited fast memory with infinite bandwidth. We now have the classical scheduling
problem with n = 3P independent tasks to be mapped on P processors, which is equivalent to the 3-
partition problem [48]. Since the problem is NP-hard for independent tasks, deriving complexity results
for special classes of dependence graphs seems out of reach.

Still, we have partial results for workflows whose graph is a linear chain, as detailed hereafter.
Consider a linear chain of tasks

v1
e1,2→ v2 → · · · → vi

ei,i+1→ vi+1 → · · · → vn,

94
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

and let e0,1 denote the input size and en,n+1 the output size. Because of the dependences, each task exe-
cutes in sequence. Partitioning ei,i+1 = esi,i+1 +efi,i+1 into slow and fast memory, we aim at minimizing
the makespan as follows:

MINIMIZE
∑n
i=1mi

SUBJECT TO



ei,i+1 = esi,i+1 + efi,i+1 for 0 ≤ i ≤ n
wi
s ≤ mi for 1 ≤ i ≤ n
esi−1,i+e

s
i,i+1

βs
≤ mi for 1 ≤ i ≤ n

efi−1,i+e
f
i,i+1

βf
≤ mi for 1 ≤ i ≤ n

efi−1,i + efi,i+1 ≤ Sf for 1 ≤ i ≤ n

(5.14)

Equation 5.14 captures all the constraints for the problem. There are 3n+ 2 unknowns, the n values
mi and the 2n+ 2 values esi,i+1 and efi,i+1. Of course, we can replace one of the latter values, say esi,i+1,

by ei,i+1 − efi,i+1, so there are only 2n + 1 unknowns, but the linear program reads better in the above
form.

To solve Equation 5.14, we look for integer values, so we have an integer linear program (ILP).
We attempted to design several greedy algorithms to solve Equation 5.14 but failed to come up with
a polynomial-time algorithm for an exact solution. We also point out that it is not difficult to derive a
pseudo-polynomial dynamic programming algorithm to solve Equation 5.14, using the size Sf of the fast
memory as a parameter of the algorithm. Furthermore, on the practical side, we can solve Equation 5.14
as a linear program with rational unknowns and round up the solution to derive a feasible schedule.

Still, the complexity of the problem for linear workflows remains open. At the least, this negative
outcome for a simple problem instance, fully evidences the complexity of MEMDAG.

5.4 Heuristics

Since MEMDAG is NP-complete, we derive polynomial-time heuristics to tackle this challenging prob-
lem. We have two types of heuristics: (i) processor allocation heuristics that compute a schedule S,
defined as a mapping and ordering on the tasks onto the processors and (ii) memory mapping heuristics
that compute a memory mapping X = {efi,j | (vi, vj) ∈ E}. Recall that when a task finishes its execu-
tion, the memory used is released. Therefore, memory mapping is strongly affected by the scheduling
decisions. We aim to design heuristics that consider both aspects and minimize the global makespan T .

In Section 5.4.1, we introduce the general algorithm that computes the makespan according to
scheduling and memory-mapping policies. Then we present scheduling policies in Section 5.4.2 and
memory-mapping policies in Section 5.4.3.

5.4.1 Makespan heuristics

We outline the algorithm to compute the makespan of a task graph according to (i) a processor-
scheduling policy called ϕ and (ii) a memory mapping policy called τ . Let L(k) be the list of ready
tasks at time step k. A task is called ready when all its predecessors have completed their execution.
The scheduling policy, ϕ, sorts the list of tasks L(k) according to its priority criterion, so that the task
in first position in L(k) will be scheduled first. The memory-mapping policy, τ , returns the number of
blocks in fast memory for each successor of a task, according to the size of the fast memory available

5.4. HEURISTICS 95

for this chunk, namely, Sf − S(k)
f . In other words, τ(vi) returns all efi,j with vj ∈ succ(vi). Algo-

rithm 11 computes the makespan of a task graph G, given a number of processors P, a fast memory of
size Sf , and two policies: ϕ for processors and τ for the memory. The scheduling algorithm is based
on a modified version of the list scheduling algorithm [81]. The idea of list scheduling is to build, at
each time step k, an ordered list L(k) of tasks that are ready to be executed. Then, the algorithm greedily
chooses the first task in the list if one resource is available at this time step, and so on. The key of list
scheduling algorithms lies in the sorting function used to keep the ordered list L(k). We detail several
variants in Section 5.4.2. Since we have homogeneous computing resources, we do not need to define
a function that sorts computing resources, in order to use the most appropriate one. We simply choose
any computing resource available at time-step k.

We now detail the core of the algorithm. At Line 7, we iterate until the list of tasks to execute is
empty, in other words until the workflow G has been completely executed. At Line 13, we sort the
list of ready tasks at time-step k according to the scheduling policy. At Line 9, we release processors
for each task ending at chunk k. At Line 14, we try to schedule all available tasks at time step k, and
at Line 17 we choose the memory allocation for each task scheduled. At Line 22, we compute the set
of tasks finishing at k + 1; recall that E(k)

i computes the estimated finishing time of task vi at chunk k
(see Equation 5.10). At Line 25, we compute the list of tasks ready to execute at time step k + 1.

5.4.2 Scheduling policies ϕ

The function ϕ(L(k)) aims at sorting the list L(k) that contains the ready tasks at step k, in order to
decide which tasks should be scheduled first. We define several scheduling policies to schedule tasks
onto processors.

Critical path The first heuristic, called critical path (CP), is derived from the well-known algorithm
heterogeneous earliest finish time (HEFT) [115]. The HEFT algorithm chooses the task with the highest
critical path at each step and schedules this task to a processor that minimizes its earliest finish time.
In our model, we consider homogeneous processors; hence we select the first available processor. We
define the critical path CPi of task vi as the maximum time to execute, without fast memory, any chain
of tasks between vi and an exit task. Formally,

CPi = max
(
wi
s
,
ini + outi

βs

)
+ max
j∈succ(vi)

CPj . (5.15)

CP sorts the list of ready tasks according to their critical paths (in nonincreasing order of CPi).

Gain graph With this heuristic, we avoid short-term decisions that could lead to bad scheduling
choices, we take into consideration the potential gain of using fast memory. To estimate the potential
gain of a node vi, we estimate the potential gain of the subgraph rooted at vi, called Gi.

Definition 5.2 (Rooted subgraph). Let Gx = (Vx, Ex) be the subgraph rooted at vx, with vx ∈ V . The
set of vertices Vx ⊆ V contains all nodes in V reachable from vx. An edge is in Ex ⊆ E if and only if
both of its endpoints are in Vx. Formally,

(vi, vj) ∈ Ex ⇔ vi ∈ Vx and vj ∈ Vx.

The gain of using fast memory for a graph is defined as

gain(Gi) = Blf (Gi)
Bls(Gi)

, (5.16)

96
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

Algorithm 11: Compute the makespan of G

1 procedure MAKESPAN (G, ϕ, τ , Sf , P) begin
2 k ← 1 ;

3 S(0)
f ← 0 ;

4 L(k) ← {vi s.t pred(vi) = 0} ; // Roots of G

5 p← P ; // Available processors

6 foreach vi ∈ V do σ1(i)← +∞ ; σ2(i)← +∞ ;
7 while L(k) 6= ∅ do
8 S(k)

f ← S(k−1)
f ;

9 foreach vi ∈ V s.t. σ2(i) = k do
10 S(k)

f ← S(k)
f − in

f
i ; // Release input blocks

11 p← p+ 1 ;
12 end
13 L(k) = ϕ(L(k)) ; // Sort tasks according scheduling policy

14 while p > 0 and L(k) 6= ∅ do
15 vi ← head(L(k)) ;
16 L(k) ← tail(L(k)) ;
17 {efi,j | j ∈ succ(vi)} ← τ(vi) ; // Allocate each efi,j

18 S(k)
f ← S(k)

f + outfi ; // Allocate output blocks

19 p← p− 1 ;
20 σ1(i)← k ;
21 end
22 i← arg min

σ1(j)≤k<σ2(j)
E

(k)
j ; // Finishing task

23 σ2(i)← k + 1;

24 tσ2(i) ← E
(k)
i ;

25 L(k+1) ← {vi | ∀vj ∈ pred(vi) s.t. σ2(j) ≤ k + 1 < σ1(i)} ; // Ready tasks for

next time-step

26 k ← k + 1 ;
27 end
28 return max

vi∈V
tσ2(i) ;

29 end

where Blf (Gi) is the makespan of Gi with an infinite number of processors and with an infinite fast
memory and Bls(Gi) is the makespan using only slow memory. If gain(Gi) = 1, then Gi is compute
bound, and using fast memory might not improve efficiently its execution time. The gain graph (GG)
heuristic sorts the list of tasks in nondecreasing order of potential gains using fast memory gain(Gi).

5.4.3 Memory mapping policies τ

In addition to scheduling policies with function ϕ, we need to compute a memory mapping for tasks
ready to be scheduled. Recall that the function τ(vi) aims at computing the amount of data in fast
memory, efi,j , for each successor of vi. We propose three heuristics returning a memory mapping.

5.4. HEURISTICS 97

MEMCP and MEMGG The idea behind these two heuristics is to greedily give the maximum amount
of memory to each successor of the task vi that is going to be scheduled. The difference lies in the
criterion used to order the successors. The MEMCP heuristic uses the critical path to choose which
successors to handle first (see Algorithm 12), while MEMGG sorts the list of successors in increasing
order of their potential gains using fast memory.

Algorithm 12: Heuristic MEMCP

1 procedure MEMCP (vi) begin
2 Let U be the set of vi’s successors ordered by CPi ;
3 X ← ∅ ;
4 foreach j ∈ U do
5 efi,j ← min

(
Sf − S(k)

f , ei,j
)

;

6 X ← X ∪ {efi,j} ;

7 S(k)
f ← S(k)

f + efi,j ;
8 end
9 return X ;

10 end

MEMFAIR The previous greedy heuristics MEMCP and MEMGG give as much as possible to the first
tasks according to their criterion. The idea of MEMFAIR is to greedily give data blocks in fast memory
to the tasks, according to their amount of computations, but accounting for other successors. Recall that
Sf − S(k)

f is the number of blocks available at chunk k. MEMFAIR spreads blocks from fast memory
across the successors of the scheduled tasks: each successor has at most a number of blocks equal to
Sf − S(k)

f divided by the number of successors. Algorithm 13 details this heuristic.

Algorithm 13: Heuristic MEMFAIR

1 procedure MEMFAIR (vi) begin
2 Let U be the set of vi’s successors ordered by wi ;
3 X ← ∅ ;
4 foreach j ∈ U do

5 efi,j ← min
(⌊

Sf−S(k)
f

| succ(vi) |

⌋
, ei,j

)
;

6 X ← X ∪ {efi,j} ;

7 S(k)
f ← S(k)

f + efi,j ;
8 end
9 return X ;

10 end

By combining two heuristics for processor scheduling and three heuristics for memory mapping, we
obtain a total of six heuristics.

98
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

5.4.4 Baseline heuristics

For comparison and evaluation purposes, we define three different baseline heuristics for memory map-
ping.

CP+NOFAST and CP+INFFAST NOFAST considers that no fast memory is available, while INF-
FAST uses a fast memory of infinite size (but still with a finite bandwidth, βf).

CP+CCMODE This baseline heuristic is more complicated. Recall that our target architecture is the
Xeon Phi KNL, which proposes two principal modes to manage the fast memory: the cache mode and
the flat mode [118]. In the cache mode, the fast memory is managed by the system as a large cache. Our
memory-mapping heuristic CCMODE aims at imitating the KNL cache mode behavior. In CCMODE,
we divide the fast memory into P slices, where P is the total number of processors and each processor
has access only to its own slice into the fast memory. When a node vi is scheduled onto a processor,
all its output blocks are allocated, if possible, to fast memory. If the slice into fast memory is too small
to contain the output blocks of each successor, we consider the successors in nondecreasing index order
(vj−1 is handled before vj). CCMODE aims at providing a more realistic comparison baseline than does
NOFAST.

5.5 Simulations

To assess the efficiency of the heuristics defined in Section 5.4, we have conducted extensive simulations.
Simulation settings are discussed in Section 5.5.1, and results are presented in Section 5.5.2. The sim-
ulator is publicly available at https://perso.ens-lyon.fr/loic.pottier/archives/
simu-deepmemory.zip so that interested readers can instantiate their preferred scenarios and re-
peat the same simulations for reproducibility purpose.

5.5.1 Simulation settings

To evaluate the efficiency of the proposed heuristics, we conduct simulations using parameters corre-
sponding to those of the Xeon Phi KNL architecture. Unless stated otherwise, the bandwidth of the
slow memory, βs, is set to 90 GB/s, while the fast memory is considered to be five times faster, at 450
GB/s [118]. The processor speed, s, is set to 1.4 GHz (indeed the processor speed of KNL cores ranges
from 1.3 to 1.5 with the Turbo mode activated [61]). The size of the fast memory is set to 16 GB unless
stated otherwise, and the slow memory is considered infinitely large.

To instantiate the simulations, we use random directed acyclic graphs from the Standard Tasks
Graphs (STG) set [114]. The STG set provides 180 randomly generated DAGs with different sizes
ranging from 50 to 5, 000 nodes. We select two sizes: 50 and 100 nodes. This leads us to two sets of 180
same-size graphs. For these two sets, we further distinguish between sparse and dense graphs. Recall
that the density of a graphG = (V,E) is defined as |E|

|V |(|V |−1) ; hence the density is 0 for a graph without
edges and 1 for a complete graph. We consider two different subsets of each set: (i) the 20 graphs,
over the 180 available for each set, that exhibit the lower densities and (ii) the 20 graphs with the higher
densities in the set. Note that, for practical reasons, we consider only dense graphs of 50 nodes .

We need to set the number of computing operations, wi, for each node, vi, in the DAG and the
number of data blocks, ei,j (i.e., number of bytes) on each edge. One of the key metrics in task graph
scheduling with multiple memory levels is the computation-to-communication ratio (CCR). In our

https://perso.ens-lyon.fr/loic.pottier/archives/simu-deepmemory.zip
https://perso.ens-lyon.fr/loic.pottier/archives/simu-deepmemory.zip

5.5. SIMULATIONS 99

framework, for a node vi and an edge ei,j , the CCR is the ratio of the time required to compute wi op-
erations over the time required to transfer ei,j blocks to slow memory:

CCR = wi
s

/ei,j
βs
.

We let the CCR vary in our experiments and we instantiate the graphs as follows. For the computing
part, we choose wi uniformly between wmin

i = 104 and wmax
i = 106 flops: since the processor speed s

is set to 1.4 GHz, the computing part of each node is comprised between 10−3 and 10−5 seconds. For
data transfers, we randomly and uniformly pick ei,j in the interval[

wmin
i × βs
s× CCR

,
wmax
i × βs
s× CCR

]
.

5.5.2 Results

To evaluate the heuristics, we execute each heuristic 50 times with different random weights on the 20
graphs from each STG subset; hence each point is the average of 1, 000 executions. Then, we compute
the average makespan over all the runs. All makespans are normalized with the baseline without fast
memory, CP+NOFAST. The standard deviation is represented as error bars. We study the impact of
the number of processors, the size of fast memory, and the fast memory bandwidth, by varying these
parameters in the simulations.

Impact of the number of processors

Sparse case. Figure 5.4a presents the normalized makespan of graphs of 50 nodes, and with 1 GB
fast memory, when we vary the CCR from 0.1 to 10 and the number of processors from 8 to 64 with
the scheduling policy CP combined with each memory mapping. Figure 5.4b presents the same results
but for the scheduling policy GG. All heuristics exhibit good performance in comparison to the two
baselines CP+NOFAST and CP+CCMODE, but only GG +MEMFAIR and CP+MEMFAIR clearly
outperform other heuristics, with an average gain around 50% over the baseline CP+NOFAST. CP and
GG present similar trends; the difference between heuristics performance lies in the memory mapping.
With the approaches MEMCP and MEMGG, we give the maximum number of blocks possible to the
successors (according to the heuristic rules). Several nodes might be strongly accelerated but likely at
the expense of other nodes in the graph. On the contrary, MEMFAIR aims at giving a fair amount of fast
memory to each successor of the scheduled task. As a result, the usage of fast memory is more balanced
across tasks in the graph than for mappings produced by MEMCP and MEMGG.

When the CCR decreases, the number of data blocks on the edges increases, and the graph no
longer fits into fast memory. On the contrary, when the CCR increases, the number of data blocks on
the edges decreases, so that the graph fits, at some point, into the fast memory, but then computations
become the bottleneck, and the benefits of the high-bandwidth memory are less important. For small
values of P , MEMCP and MEMGG show almost the same behavior with noticeable improvements over
the case without fast memory NOFAST, but are close to the cache mode CCMODE. When the number
of processors increases, the performance of CCMODE decreases, mainly because when P increases, the
size of each fast memory slice decreases.

Figure 5.5 presents the normalized makespan of graphs with 100 nodes, and with 1GB fast memory,
when we vary the CCR from 0.1 to 10 and the number of processors from 8 to 64.The results are similar
to the case with 50 nodes (see the Figure 5.4), the impact of the size of graphs is not strong, mainly
because the performance are strongly linked to the CCR .

100
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.4: Impact of the number of processors with 50 nodes and Sf = 1 GB fast memory for CP and
GG scheduling heuristicsfor the sparse case.

Dense case. Figure 5.6a presents the normalized makespan of dense graphs of 50 nodes, and with
1GB fast memory, when we vary the CCR from 0.1 to 10 and the number of processors from 8 to
64.Compared to the sparse case (see Figure 5.4) all heuristics shows degraded performance, mainly
due to the fact that dense graphs are larger than sparse graphs, in terms of memory usage. But, global
performance are very good, with an average gain around 50% for the best combination.

Impact of fast memory size

Sparse case. Figure 5.7 presents the results for graphs with 50 nodes, with 8 processors when we
vary the fast memory size and the CCR. As always, we vary the CCR from 0.1 to 10 and the size of fast
memory from 200MB to 16GB. Recall that, the fast memory bandwidth is set to 450 GB/s (five times
faster). Both scheduling heuristics CP and GG show similar performance. Clearly, when the size of the
memory is increasing, the global performance of heuristics converges to the baseline CP+INFFAST. All
proposed heuristics perform better than the cache mode CCMODE, and MEMFAIR outperforms other
memory mappings with an average gain around 25%, when the size of fast memory is small enough so
that all data do not fit in fast memory. We observe that the CCR for which all heuristics reach the lower
baseline INFFAST decreases when the fast memory size increases.

Figure 5.8 presents the results for graphs with 100 nodes, with 8 processors when we vary the fast
memory size and the CCR. The results with 100 nodes are similar to the results with 50 nodes, the
memory mapping MEMFAIR performs better with 100 nodes.

Dense case. Figure 5.9 presents the results for dense graphs with 50 nodes, with 8 processors when
we vary the fast memory size and the CCR. The results between dense and sparse case show similar
trends. The memory-mapping heuristic is more important with dense graphs, mainly because a limited
part of a dense graphs can fit in the fast memory; hence the mapping has a strong impact on performance.

Impact of fast memory bandwidth

Sparse case. Figure 5.10 presents the results for graphs with 50 nodes, with 8 processors and 1GB
fast memory. The bandwidth of the fast memory is ranging from 2 times up to 16 times the slow mem-

5.5. SIMULATIONS 101

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.5: Impact of the number of processors with 100 nodes and Sf = 1 GB fast memory for CP and
GG scheduling heuristicsfor the sparse case.

ory bandwidth. Both scheduling heuristics CP and GG exhibit similar performance when we vary the
fast memory bandwidth. We observe that for small bandwidths, the memory mapping MEMFAIR out-
performs the baseline INFFAST. Recall that the fast memory bandwidth is the same for every memory
heuristic, so INFFAST has a infinite fast memory with a finite bandwidth. When the bandwidth is too
small compared to the slow memory bandwidth, saturating the fast memory leads to decreased perfor-
mance because the fast memory bandwidth is shared by the number of tasks concurrently trying to gain
access to it.

Figure 5.11 presents the results for graphs with 100 nodes, with 8 processors and 1 GB fast memory.
The bandwidth of the fast memory is ranging from 2 times up to 16 times the slow memory band-
width. Results with 100 nodes and with 50 nodes present similar trends, the key point is when the CCR
increases the graph no longer fits into the fast memory memory

Dense case. Figure 5.12 presents the results for dense graphs with 50 nodes, with 8 processors and
1 GB fast memory. The bandwidth of the fast memory is ranging from 2 times up to 16 times the slow
memory bandwidth. We observe similar trends between dense and sparse case, when the CCR increases
the performance of all heuristics increase as well. The combinations with MEMFAIR perform the best,
with an average gain around 50%.

Summary

All heuristics are efficient compared with the baseline without fast memory. But only two combina-
tions, CP+MEMFAIR and GG +MEMFAIR, clearly outperform the baseline CP+CCMODE. Recall
that CCMODE aims at imitating KNL’s behavior when the system manages the fast memory as a cache.
Therefore, obtaining better performance than this mode demonstrates the importance of a fine-tuned
memory management when dealing with deep-memory architectures.

102
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

P= 32 P= 64

P= 8 P= 16

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.6: Impact of the number of processors with 50 nodes and Sf = 1GB fast memory for CP and
GG scheduling heuristics for dense case.

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 5e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 5e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.7: Impact of fast memory size with 50 nodes and 8 processors for CP and GG scheduling
heuristicsfor the sparse case.

5.5. SIMULATIONS 103

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 2e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 2e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.8: Impact of fast memory size with 100 nodes and 8 processors for CP and GG scheduling
heuristicsfor the sparse case.

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 2e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

Sf = 1.6e+ 10 Byte Sf = 3.2e+ 10 Byte

Sf = 4e+ 09 Byte Sf = 8e+ 09 Byte

Sf = 2e+ 08 Byte Sf = 2e+ 09 Byte

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.9: Impact of fast memory size with 50 nodes and 8 processors for CP and GG scheduling
heuristics for the dense case.

104
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.10: Impact of fast memory bandwidth with 50 nodes, 8 processors, and Sf = 1 GB for CP and
GG scheduling heuristicsfor the sparse case.

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
o
rm

a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.11: Impact of fast memory bandwidth with 100 nodes, 8 processors, and Sf = 1 GB for CP
and GG scheduling heuristicsfor the sparse case.

5.5. SIMULATIONS 105

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

CP+MemCp

CP+MemFair

CP+MemGg

(a) CP

βf = 8× βs βf = 16× βs

βf = 2× βs βf = 4× βs

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.1 0.2 0.5 1 2 5 10 0.1 0.2 0.5 1 2 5 10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Computation to Communication Ratio (CCR)

N
or
m
a
li
ze
d
m
ak

es
p
an

CP+NoFast

CP+CcMode

CP+InfFast

GG+MemCp

GG+MemFair

GG+MemGg

(b) GG

Figure 5.12: Impact of fast memory bandwidth with 50 nodes, 8 processors, and Sf = 1 GB for CP and
GG scheduling heuristics for the dense case.

106
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

5.6 Experiments

In this section, we assess the accuracy of the model by running both simulations and actual experiments
for a 1D Gauss-Seidel computational kernel, using data movement between the slow and fast memo-
ries. We detail experimental settings in Section 5.6.1, and present results in Section 5.6.2. The code is
available at https://gitlab.com/perarnau/knl/.

5.6.1 Experimental settings

Application data is partitioned into rectangular tiles and iteratively updated as shown in Algorithm 14,
where Tileti denotes tile i at iteration t.

Algorithm 14: 1D Gauss-Seidel algorithm

1 procedure 1D-GS(array) begin
2 for t = 1 to . . . do
3 for i = 1 to . . . do
4 Tileti ← Gauss-Seidel

(
Tileti−1,Tilet−1

i ,Tilet−1
i+1

)
;

5 end
6 end
7 end

At each step of the procedure 1D-GS, Tileti is computed as a combination of three tiles: (i) Tileti−1,
its left neighbor that has just been updated at iteration t; (ii) Tilet−1

i , its current value from iteration
t − 1; and (iii) Tilet−1

i+1, its right neighbor from iteration t − 1. Each tile is extended with phantom
borders whose size depends on the updating mask of the Gauss-Seidel kernel (usually we need one or
two columns on each vertical border), so that each tile works on a single file of size m.

Rt
0

Ct
0

W t
0

Rt
i−1

Ct
i−1

W t
i−1

Rt
i

Ct
i

W t
i

Rt
i+1

Ct
i+1

W t
i+1

Rt
n

Ct
n

W t
n

. . .

. . .

. . .

. . .

. . .

. . .

Rt+1
0

Ct+1
0

W t+1
0

Rt+1
i−1

Ct+1
i−1

W t+1
i−1

Rt+1
i

Ct+1
i

W t+1
i

Rt+1
i+1

Ct+1
i+1

W t+1
i+1

Rt+1
n

Ct+1
n

W t+1
n

. . .

. . .

. . .

. . .

. . .

. . .

m m m m m

0

0

0

0

0

0

0

0

0

0

0

0

m m

Figure 5.13: 1D stencil task graph, where t is the iteration index, i is the tile index, and m is the size of
one tile.

Our model currently does not allow for data movements between the slow and fast memories, so we
decompose the update of each tile Tileti into three sequential tasks: (i) task Rti transfers the tile from

https://gitlab.com/perarnau/knl/

5.6. EXPERIMENTS 107

slow memory to fast memory; (ii) task Cti computes the tile in fast memory; and (iii) task Wt
i writes the

updated tile back into slow memory. This leads to the task graph shown in Figure 5.13. We use this graph
as input for the simulations and run the scheduling and mapping heuristics presented in Section 5.4.

For the experiments, we extend the previous study developed for parallel stencil applications in [97]
and provide a deep-memory implementation of the 1D Gauss-Seidel kernel for the KNL architecture.
First, we copy tiles to migrate input and output data between slow and fast memory. Then, migration
tasks and work tasks are pipelined, so that for a given iteration, three batches of tasks are executing
concurrently: prefetching of future tiles in fast memory, computing on tiles already prefetched, and
flushing of computed tiles back into slow memory. This scheme corresponds to executing tasks Rti+1,
Cti and W t

i−1 in parallel, as in the classical wavefront execution of the dependence graph in Figure 5.13.
For the experiments, the parameters of the benchmark were the following: (i) input array of 64

GB; (ii) tiles of size 32 MB: (iii) 64 cores at 1.4 GHz; and (iv) 64 threads used. We vary the CCR by
increasing the number of operations done per tile.

5.6.2 Results

For the benchmark runs, the platform runs CentOS 7.2, and experiments were repeated 10 times for
accuracy. Figure 5.14a gives the performance of the benchmark against a baseline running entirely in
slow memory with 64 threads. Figure 5.14b reports the results of the simulations for the same task graph,
using the best heuristic, CP+MEMFAIR, on 64 threads.

P= 64

10210.7
0.4

0.6

0.8

1.0

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e

Migration Slow

(a) KNL platform

P= 64

0.1 0.5 1 1.5 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Computation to Communication Ratio (CCR)

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e

Migration Slow

(b) Model

Figure 5.14: Performance of a 1D stencil with 64 threads.

We observe a good concordance between the experiments and the simulations. In both cases, the
performance of the application is greatly increased when using the overlapping scheme and fast memory
access. For small values of the CCR, the execution time is divided by half. Then the gain starts to
decrease when the CCR reaches the value 2, until reaching a threshold where there is no gain left. This
is expected: the threshold is reached when the cost of computations becomes higher than the transfer
time of a whole tile from slow memory. We have a discrepancy here since the threshold value is 10 for
the experiments and 5 for the simulations. Still, both plots nicely demonstrate the impact of the CCR
and the possibility of gaining performance when the CCR is low, hence when access to slow memory is
the bottleneck.

108
CHAPTER 5. A PERFORMANCE MODEL TO EXECUTE WORKFLOWS ON

HIGH-BANDWIDTH-MEMORY ARCHITECTURES

5.7 Conclusion

In this chapter, we address the problem of scheduling task graphs onto deep-memory architectures such
as the Intel KNL. In addition to the traditional problems of ordering the tasks and mapping them onto
processors, a key decision in the scheduling process is what proportion of fast memory should be as-
signed to each task. We provide a complete and realistic performance model for the execution of work-
flows on dual-memory systems, as well as several polynomial-time heuristics for both scheduling and
memory mapping. These heuristics have been tested through extensive simulations and were shown to
outperform the baseline strategies, thereby demonstrating the importance of a good memory-mapping
policy. These results also demonstrate that the KNL cache mode can be outperformed by a customized
memory mapping. We also conducted experiments on a KNL platform with a 1D Gauss-Seidel compu-
tational kernel and compared the performance of a tuned memory mapping with that of the heuristics in
simulation, thereby demonstrating the accuracy of the model and bringing another practical proof of the
importance of a fine-tuned memory management of the fast memory.

Future work will be devoted to extending simulations on other kinds of workflow graphs, such as
fork-join graphs, and extending the model in order to allow for moving data across both memory types.
This is a challenging endeavor, because it requires deciding which data blocks to move, and when to
move them, while other tasks are executing. Also, we would like to conduct additional experiments
with more complicated workflows, such as those arising from dense or sparse linear factorizations in
numerical linear algebra. All this future work will rely on the model and results of this chapter, which
represent a first, yet crucial, step toward a full understanding of scheduling problems on deep-memory
architectures.

Conclusion

In this thesis, we have studied two challenging problems, namely, concurrency and resilience, that must
be addressed to cope with future Exascale platforms. In a first time, on the concurrency aspect, we
have dealt with the problem of reducing interferences among applications that concurrently use the
same last-level cache. Based on a detailed performance model, we have assessed the complexity of
the problem and we have designed efficient heuristics. We also have investigated the interest of cache-
partitioning techniques on real cache-partitioned multiprocessors platform. In a second time, we have
built a model, established the problem complexity and designed efficient heuristics to tackle the problem
of co-scheduling applications into a failure-prone context. After focusing on co-scheduling techniques,
we have started to investigate the problem of scheduling a workflow on emerging architectures (e.g.,
many-core) providing a new level of memory. With the advent of the many-core technology in high
performance computing, this research topic appears to be quite promising.

Our main contributions in each chapter are summarized in the following paragraphs.

Co-scheduling applications on cache-partitioned systems

In this chapter, we have provided a preliminary work on co-scheduling algorithms for cache-partitioned
systems, building upon a theoretical study. The two key scheduling questions are (i) which proportion
of cache and (ii) how many processors should be given to each application. For rational numbers of
processors, we proved that the problem is NP-complete, but we have been able to characterize opti-
mal solutions for perfectly parallel applications by introducing the concept of dominant partitions: for
such applications, we have computed the optimal proportion of cache to give to each application in the
partition. Furthermore, we have provided explicit formulas to express the number of processors to as-
sign to each application. Several polynomial-time heuristics focusing on Amdahl’s applications have
been built upon these results, both for rational and integer numbers of processors. Extensive simulation
results demonstrate that the use of dominant partitions always leads to better results than more naive
approaches, as soon as there is a small sequential fraction of work in application speedup profiles. The
concept of sharing the cache only between a subset of applications seems highly relevant, since even an
approach with a random selection of applications that share the cache leads to good results.

Co-scheduling HPC workloads on cache-partitioned CMP platforms

Then, from co-scheduling general applications, we have investigated the problem of co-scheduling it-
erative HPC applications, using the CAT technology provided by Intel to partition the cache. We have
proposed a model for the execution time of each application, given a number of cores and a fraction of
cache, and we have shown how to instantiate the model on applications coming from the NAS bench-
marks. The model turns out to be accurate, as shown in the experiments where we compare the execution
time predicted by the model to the real execution time. Several scheduling strategies have been designed,
with the goal to maximize the minimum weighted throughput of each application. In particular, we have

109

110 Conclusion

introduced an optimal strategy for the model, based upon a dynamic programming algorithm. The re-
sults demonstrate that in practice, the optimal strategy often leads to better results than a naive strategy
sharing equally the resources between applications. Also, we have determined which combinations of
applications benefit most from cache partitioning, and demonstrated the usefulness of cache partitioning.

Resilient co-scheduling of malleable applications

The second main theme of this thesis is resilience. This chapter has addressed the design of a detailed and
comprehensive model for scheduling a pack of applications on a failure-prone platform, with processor
redistributions. We have introduced a greedy polynomial-time algorithm that returns the optimal solution
when there are failures but no processor redistribution is allowed. We have shown that the problem
of finding a schedule that minimizes the execution time when accounting for redistributions is NP-
complete in the strong sense, even with constant redistribution costs and no failures. Finally, we have
provided several polynomial-time heuristics to redistribute efficiently processors at each failure or when
an application ends its execution and releases processors. The heuristics are tested through extensive
simulations, and the results demonstrate their usefulness: a significant improvement of the execution
time can be achieved thanks to the redistributions.

A performance model to execute workflows on high-bandwidth-memory architectures

The last contribution of this thesis is related to the problem of scheduling task graphs onto deep-memory
architectures such as the Intel KNL. In addition to the traditional problems of ordering the tasks and
mapping them onto processors, a key decision in the scheduling process is what proportion of fast
memory should be assigned to each task. We provide a complete and realistic performance model for
the execution of workflows on dual-memory systems, as well as several polynomial-time heuristics for
both scheduling and memory mapping. These heuristics have been tested through extensive simulations
and were shown to outperform the baseline strategies, thereby demonstrating the importance of a good
memory-mapping policy. These results also demonstrate that the KNL cache mode can be outperformed
by a customized memory mapping. We also conducted experiments on a KNL platform with a 1D Gauss-
Seidel computational kernel and compared the performance of a tuned memory mapping with that of the
heuristics in simulation, thereby demonstrating the accuracy of the model and bringing another practical
proof of the importance of a fine-tuned memory management of the fast memory.

The work conducted in this thesis can be pursued in multiple directions, we discuss here some
perspectives.

Perspectives and future work.

Throughout this thesis, at the end of each chapter, we have pointed out several interesting future direc-
tions. We present here some hints for further promising research directions.

We have studied the problem of co-scheduling focusing on two aspects, namely, resilience and cache
interferences. On the cache side, a short-term perspective is to extend our experimental analysis to
other applications and cache-partitioned platforms, to further investigate the potential gains of cache-
partitioning on HPC workloads. About long-term perspectives, a first interesting possibility is to extend
our analysis to bandwidth-partitioned platforms, a feature recently provided by Intel. In Chapters 2
and 3, we only used cache-partitioning techniques to reduce interferences, but a non negligible part of
the interferences occurs in the shared bus between the main memory and the cache. With bandwidth-
partitioning, we will be able to strictly restrict the access of both cache and bandwidth to an application

111

that generates a lot of interferences that slow down other applications. A second perspective is to gen-
eralize the experiments to multiprocessors and see if there is a benefit in moving applications from one
processor to another, in order to avoid co-locating several cache-intensive applications on the same pro-
cessor. A third perspective is to find a more suitable law to model caches misses for HPC applications.
In Chapters 2 and 3, we used the Power law cache misses to model cache misses behavior. This law gives
us an estimation of the number of cache misses given a cache size, but we have showed, experimentally,
that this law struggles to model memory-intensive applications. It might be very interesting to validate
a new model for cache misses.

On the resilience side, that we explored in Chapter 4, several interesting directions can be considered.
The first one is to extend our work to silent-errors, by adding verification mechanisms to detect such
errors, and to study the problem with multiple packs instead of one. The second direction is to extend
our theoretical analysis to online scheduling problems in a failure-prone context.

Finally, in the last part of this thesis, we initiated a study on the problem of scheduling task-graphs on
many-core architectures exhibiting a dual-memory systems. We started by studying classical scheduling
approaches, but these many-core architectures often offer a massive concurrency; hence there are well
adapted for co-scheduling. Therefore, a very promising research direction would be to apply our co-
scheduling model, based on cache partitioning, to these massively parallel dual-memory systems. Indeed
we can consider the fast memory as a cache, and use the cache partitioning schemes we have developed
on that memory. And, similarly to the bandwidth-partitioned platforms discussed above, we can consider
to partition the fast memory and the bandwidth among all concurrent applications, in order to optimize
the global platform efficiency.

112 Conclusion

Bibliography

[1] M. A. Aba, L. Zaourar, and A. Munier. “Approximation Algorithm for Scheduling a Chain of
Tasks on Heterogeneous Systems.” In: European Conference on Parallel Processing. Springer.
2017, pp. 353–365.

[2] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy, M. Hall, R. Har-
rison, W. Harrod, K. Hill, et al. “Exascale software study: Software challenges in extreme scale
systems.” In: DARPA IPTO, Air Force Research Labs, Tech. Rep (2009), pp. 1–153.

[3] G. Amdahl. “The validity of the single processor approach to achieving large scale computing
capabilities.” In: AFIPS Conference Proceedings. 1967, pp. 483–485.

[4] F. Angiolini, L. Benini, and A. Caprara. “Polynomial-time algorithm for on-chip scratchpad
memory partitioning.” In: Proceedings of the 2003 international conference on Compilers, ar-
chitecture and synthesis for embedded systems. ACM. 2003, pp. 318–326.

[5] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. “A post-compiler approach
to scratchpad mapping of code.” In: Proceedings of the 2004 international conference on Com-
pilers, architecture, and synthesis for embedded systems. ACM. 2004, pp. 259–267.

[6] R. Asai. Clustering Modes in Knights Landing Processors: Developer’s Guide. Tech. rep. Colfax
International, May 2016.

[7] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst. “Data-Aware Task Scheduling on
Multi-accelerator Based Platforms.” In: IEEE Int. Conf. on Parallel and Distributed Systems.
Dec. 2010, pp. 291–298.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures.” In: Concurrency and Computation:
Practice and Experience 23.2 (2011), pp. 187–198.

[9] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, and P. Raghavan. “Co-scheduling algorithms for
high-throughput workload execution.” In: Journal of Scheduling 19.6 (2016), pp. 627–640.

[10] O. Avissar, R. Barua, and D. Stewart. “An optimal memory allocation scheme for scratch-pad-
based embedded systems.” In: ACM Transactions on Embedded Computing Systems (TECS) 1.1
(2002), pp. 6–26.

[11] D. H. Bailey et al. “The NAS Parallel Benchmarks - Summary and Preliminary Results.” In:
Proc. of the 1991 ACM/IEEE Conf. on Supercomputing. Albuquerque, New Mexico, USA, 1991.
ISBN: 0-89791-459-7.

[12] S. Bao, Y. Huo, P. Parvathaneni, A. J. Plassard, C. Bermudez, Y. Yao, I. Llyu, A. Gokhale, and
B. A. Landman. “A Data Colocation Grid Framework for Big Data Medical Image Processing-
Backend Design.” In: arXiv preprint arXiv:1712.08634 (2017).

[13] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, P. O’Leary, V.
Vishwanath, B. Whitlock, et al. “In situ methods, infrastructures, and applications on high per-
formance computing platforms.” In: Computer Graphics Forum. Vol. 35. Wiley Online Library.
2016, pp. 577–597.

113

114 APPENDIX . BIBLIOGRAPHY

[14] P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna. “Efficient collective communication in dis-
tributed heterogeneous systems.” In: Journal of Parallel and Distributed Computing 63.3 (2003),
pp. 251–263.

[15] R. Bitirgen, E. Ipek, and J. F. Martinez. “Coordinated management of multiple interacting re-
sources in chip multiprocessors: A machine learning approach.” In: Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium on. IEEE. 2008, pp. 318–329.

[16] S. Blagodurov, S. Zhuravlev, and A. Fedorova. “Contention-Aware Scheduling on Multicore
Systems.” In: ACM Trans. Comput. Syst. 28.4 (2010), 8:1–8:45.

[17] J. Blazewicz, M. Drabowski, and J. Weglarz. “Scheduling Multiprocessor Tasks to Minimize
Schedule Length.” In: Computers, IEEE Transactions on C-35.5 (May 1986), pp. 389–393. ISSN:
0018-9340.

[18] J. Blazewicz, M. Machowiak, G. Mounié, and D. Trystram. “Approximation Algorithms for
Scheduling Independent Malleable Tasks.” English. In: Euro-Par 2001 Parallel Processing. Ed.
by R. Sakellariou, J. Gurd, L. Freeman, and J. Keane. Vol. 2150. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2001, pp. 191–197. ISBN: 978-3-540-42495-6.

[19] J. A. Bondy and U. S. R. Murty. Graph theory with applications. North Holland, 1976.

[20] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche, T. Herault,
Y. Robert, F. Vivien, and D. Zaidouni. “Unified model for assessing checkpointing protocols
at extreme-scale.” In: Concurrency and Computation: Practice and Experience 26.17 (2014),
pp. 2772–2791. ISSN: 1532-0634.

[21] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra. “PaRSEC:
Exploiting heterogeneity for enhancing scalability.” In: Computing in Science & Engineering
15.6 (2013), pp. 36–45.

[22] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra. “DAGuE: A
generic distributed DAG engine for high performance computing.” In: Parallel Computing 38.1-
2 (2012), pp. 37–51.

[23] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. “Checkpointing strategies for
parallel jobs.” In: High Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for. Nov. 2011, pp. 1–11.

[24] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. “A portable programming interface
for performance evaluation on modern processors.” In: The international journal of high perfor-
mance computing applications 14.3 (2000), pp. 189–204.

[25] F. Cappello and D. Etiemble. “MPI Versus MPI+OpenMP on IBM SP for the NAS Benchmarks.”
In: SC ’00. Washington, DC, USA: IEEE Computer Society, 2000.

[26] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. “Toward exascale re-
silience.” In: The International Journal of High Performance Computing Applications 23.4
(2009), pp. 374–388.

[27] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward exascale resilience:
2014 update.” In: Supercomputing frontiers and innovations 1.1 (2014), pp. 5–28.

[28] D. Chandra, F. Guo, S. Kim, and Y. Solihin. “Predicting inter-thread cache contention on a chip
multi-processor architecture.” In: High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on. IEEE. 2005, pp. 340–351.

115

[29] K. Chandrasekar, X. Ni, and L. V. Kalé. “A Memory Heterogeneity-Aware Runtime System
for Bandwidth-Sensitive HPC Applications.” In: IEEE Int. Parallel and Distributed Processing
Symposium Workshops, Orlando, FL, USA. 2017, pp. 1293–1300.

[30] H. Cho, B. Egger, J. Lee, and H. Shin. “Dynamic data scratchpad memory management for
a memory subsystem with an MMU.” In: ACM SIGPLAN Notices. Vol. 42. 7. ACM. 2007,
pp. 195–206.

[31] P. Computing. ZettaScaler-2.0 Configurable Liquid Immersion Cooling System. 2017.

[32] I. Corporation. Memkind: A User Extensible Heap Manager. 2018.

[33] J. T. Daly. “A higher order estimate of the optimum checkpoint interval for restart dumps.” In:
FGCS 22.3 (2004), pp. 303–312.

[34] D. Dauwe, E. Jonardi, R. Friese, S. Pasricha, A. A. Maciejewski, D. A. Bader, and H. J. Siegel.
“A Methodology for Co-Location Aware Application Performance Modeling in Multicore Com-
puting.” In: Parallel and Distributed Processing Symposium Workshop (IPDPSW). IEEE, 2015,
pp. 434–443.

[35] J. Dongarra. “Report on the Sunway TaihuLight system.” In: PDF). www. netlib. org. Retrieved
June 20 (2016).

[36] J. Dongarra, T. Hérault, and Y. Robert. “Performance and reliability trade-offs for the double
checkpointing algorithm.” In: International Journal of Networking and Computing 4.1 (2014),
pp. 23–41. ISSN: 2185-2847.

[37] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina, T. Moore,
R. Stevens, A. Trefethen, et al. “The international exascale software project: a call to coopera-
tive action by the global high-performance community.” In: The International Journal of High
Performance Computing Applications 23.4 (2009), pp. 309–322.

[38] M. Dreher and B. Raffin. “A Flexible Framework for Asynchronous In Situ and In Transit An-
alytics for Scientific Simulations.” In: 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. Chicago, United States: IEEE Computer Science Press, May 2014.

[39] M. Drozdowski. “Scheduling Parallel Tasks – Algorithms and Complexity.” In: Handbook of
Scheduling. Ed. by J. Leung. Chapman and Hall/CRC, 2004. ISBN: 1584883979.

[40] J. Du and J. Y.-T. Leung. “Complexity of Scheduling Parallel Task Systems.” In: SIAM Journal
on Discrete Mathematics 2.4 (1989), pp. 473–487.

[41] B. Egger, J. Lee, and H. Shin. “Dynamic scratchpad memory management for code in portable
systems with an MMU.” In: ACM Transactions on Embedded Computing Systems (TECS) 7.2
(2008), p. 11.

[42] B. Egger, J. Lee, and H. Shin. “Scratchpad memory management for portable systems with a
memory management unit.” In: Proceedings of the 6th ACM & IEEE International conference
on Embedded software. ACM. 2006, pp. 321–330.

[43] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. “A Survey of Rollback-recovery Pro-
tocols in Message-passing Systems.” In: ACM Comput. Surv. 34.3 (Sept. 2002), pp. 375–408.
ISSN: 0360-0300.

[44] Erich Strohmaier et al. The TOP500 benchmark. https://www.top500.org/. 2017.

https://www.top500.org/

116 APPENDIX . BIBLIOGRAPHY

[45] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. “Detection and
Correction of Silent Data Corruption for Large-scale High-performance Computing.” In: Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012, 78:1–78:12.
ISBN: 978-1-4673-0804-5.

[46] M. Frigo, C. E. Leiserson, and K. H. Randall. “The Implementation of the Cilk-5 Multithreaded
Language.” In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation. PLDI ’98. Montreal, Quebec, Canada: ACM, 1998, pp. 212–223.
ISBN: 0-89791-987-4.

[47] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. “Scheduling the I/O of HPC
applications under congestion.” In: IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS). 2015, pp. 1013–1022.

[48] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[49] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin. “XKaapi: A Runtime System for Data-
Flow Task Programming on Heterogeneous Architectures.” In: 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. May 2013, pp. 1299–1308.

[50] J. Gecsei, D. Slutz, and I. Traiger. “Evaluation techniques for storage hierarchies.” In: IBM
Systems journal 9.2 (1970), pp. 78–117.

[51] N. Guan, M. Stigge, W. Yi, and G. Yu. “Cache-aware Scheduling and Analysis for Multicores.”
In: Proc. 7th ACM Int. Conf. Embedded Software. EMSOFT ’09. ACM, 2009, pp. 245–254.

[52] N. J. Gunther. Guerrilla capacity planning - a tactical approach to planning for highly scalable
applications and services. Springer, 2007.

[53] T. Harris, M. Maas, and V. J. Marathe. “Callisto: co-scheduling parallel runtime systems.” In:
Proceedings of the Ninth European Conference on Computer Systems. ACM. 2014, p. 24.

[54] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma. “On the nature of cache miss behavior: Is it√
2.” In: The Journal of Instruction-Level Parallelism 10 (2008), pp. 1–22.

[55] L. He, H. Zhu, and S. A. Jarvis. “Developing Graph-Based Co-Scheduling Algorithms on Mul-
ticore Computers.” In: IEEE Trans. Parallel Distributed Systems 27.6 (2016), pp. 1617–1632.

[56] M. T. Heath. “A tale of two laws.” In: Int. J. High Performance Computing Applications 29.3
(2015), pp. 320–330.

[57] T. Herault and Y. Robert. Fault-Tolerance Techniques for High-Performance Computing.
Springer International Publishing, 2015.

[58] T. Herault and Y. Robert. Fault-tolerance techniques for high-performance computing. Springer,
2016.

[59] H. Hulett, T. G. Will, and G. J. Woeginger. “Multigraph realizations of degree sequences: Max-
imization is easy, minimization is hard.” In: Operations Research Letters 36.5 (2008), pp. 594–
596.

[60] Intel. “Intel 64 and IA-32 Architectures Software Developer’s Manual.” In: Part 2 3B: System
Programming Guide (2014).

[61] Intel. Intel Xeon Phi Processor: Performance Monitoring Reference Manual – Volume 1: Regis-
ters. Tech. rep. Intel, Mar. 2017.

117

[62] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely Jr, and J. Emer. “Adaptive insertion
policies for managing shared caches.” In: Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM. 2008, pp. 208–219.

[63] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. “Analysis and Approximation of Optimal Co-
scheduling on Chip Multiprocessors.” In: Proc. 17th Int. Conf. Parallel Architectures Compi-
lation Techniques. PACT ’08. ACM, 2008, pp. 220–229.

[64] O.-H. Kang and D. P. Agrawal. “Scalable scheduling for symmetric multiprocessors (smp).” In:
Journal of parallel and distributed computing 63.3 (2003), pp. 273–285.

[65] S. Kim, D. Chandra, and Y. Solihin. “Fair cache sharing and partitioning in a chip multiprocessor
architecture.” In: Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques. IEEE Computer Society. 2004, pp. 111–122.

[66] S. Kim and J. Browne. “A general approach to mapping of parallel computation upon multi-
processor architectures.” In: International conference on parallel processing. Vol. 3. 1. 1988,
p. 8.

[67] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. “Using OS observations to improve per-
formance in multicore systems.” In: IEEE micro 28.3 (2008).

[68] A. Krishna, A. Samih, and Y. Solihin. “Data sharing in multi-threaded applications and its impact
on chip design.” In: Int. Symp. Performance Analysis of Systems and Software (ISPASS). IEEE,
2012, pp. 125–134.

[69] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. “Evaluating STT-RAM as an
energy-efficient main memory alternative.” In: IEEE Int. Symp. on Performance Analysis of Sys-
tems and Software (ISPASS). Apr. 2013, pp. 256–267.

[70] L. A. N. Laboratory. Simplified Interface to Complex Memory. 2017.

[71] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt. “An investigation of Unified Memory
Access performance in CUDA.” In: 2014 IEEE High Performance Extreme Computing Confer-
ence (HPEC). Sept. 2014, pp. 1–6.

[72] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. “PEBIL: Efficient static binary
instrumentation for Linux.” In: IEEE Int. Symp. on Performance Analysis of Systems Software
(ISPASS). Mar. 2010, pp. 175–183.

[73] J. Leverich and C. Kozyrakis. “Reconciling high server utilization and sub-millisecond quality-
of-service.” In: 9th European Conf. on Computer Systems. 2014.

[74] J. Liedtke, H. Hartig, and M. Hohmuth. “OS-controlled cache predictability for real-time sys-
tems.” In: Real-Time Technology and Applications Symposium, 1997. Proceedings., Third IEEE.
IEEE. 1997, pp. 213–224.

[75] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. “Gaining insights into multi-
core cache partitioning: Bridging the gap between simulation and real systems.” In: High Per-
formance Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on.
IEEE. 2008, pp. 367–378.

[76] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. “Improving resource effi-
ciency at scale with Heracles.” In: ACM Transactions on Computer Systems (TOCS) 34.2 (2016).

[77] P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyffer, and M. E. Papka.
“Optimal scheduling of in-situ analysis for large-scale scientific simulations.” In: Proc. of the
Int. Conf. for High Performance Computing, Networking, Storage and Analysis, SC’15. 2015.

118 APPENDIX . BIBLIOGRAPHY

[78] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. “Contention aware execution: online con-
tention detection and response.” In: Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM. 2010, pp. 257–265.

[79] G. Martín, D. E. Singh, M.-C. Marinescu, and J. Carretero. “Enhancing the performance of
malleable MPI applications by using performance-aware dynamic reconfiguration.” In: Parallel
Computing 46 (2015), pp. 60–77. ISSN: 0167-8191.

[80] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos. “Scheduling algorithms for ef-
fective thread pairing on hybrid multiprocessors.” In: Parallel and Distributed Processing Sym-
posium, 2005. Proceedings. 19th IEEE International. IEEE. 2005, 10–pp.

[81] G. D. Micheli. Synthesis and Optimization of Digital Circuits. 1st. McGraw-Hill Higher Educa-
tion, 1994. ISBN: 0070163332.

[82] D. Molka, D. Hackenberg, R. Schone, and W. E. Nagel. “Cache Coherence Protocol and Memory
Performance of the Intel Haswell-EP Architecture.” In: Int. Conf. on Parallel Processing (ICPP).
Sept. 2015, pp. 739–748.

[83] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. “Reducing
Memory Interference in Multicore Systems via Application-aware Memory Channel Partition-
ing.” In: Proc. 44th IEEE/ACM Int. Sym. Microarchitecture. MICRO-44. ACM, 2011, pp. 374–
385.

[84] N. Muthuvelu, I. Chai, E. Chikkannan, and R. Buyya. “Batch Resizing Policies and Techniques
for Fine-Grain Grid Tasks: The Nuts and Bolts.” In: J. Information Processing Systems 7.2
(2011).

[85] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. “Fair queuing memory systems.” In: Pro-
ceedings of the 39th Annual IEEE/ACM international Symposium on Microarchitecture. IEEE
Computer Society. 2006, pp. 208–222.

[86] K. J. Nesbit, J. Laudon, and J. E. Smith. “Virtual private caches.” In: ACM SIGARCH Computer
Architecture News 35.2 (2007), pp. 57–68.

[87] K. T. Nguyen. Introduction to Cache Allocation Technology in the Intel R© Xeon R© Processor E5
v4 Family. Feb. 2016.

[88] X. Ni, E. Meneses, and L. Kale. “Hiding Checkpoint Overhead in HPC Applications with a
Semi-Blocking Algorithm.” In: Cluster Computing (CLUSTER), 2012 IEEE International Con-
ference on. Sept. 2012, pp. 364–372.

[89] NVIDIA. CUDA: Unified Memory Programming. 2018.

[90] L. Oden and P. Balaji. “Hexe: A Toolkit for Heterogeneous Memory Management.” In: IEEE
International Conference on Parallel and Distributed Systems (ICPADS). 2017.

[91] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. “The case for a single-chip
multiprocessor.” In: ACM Sigplan Notices. Vol. 31. 9. ACM. 1996, pp. 2–11.

[92] OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 4.0. July
2013.

[93] J. K. Ousterhout et al. “Scheduling Techniques for Concurrent Systems.” In: ICDCS. Vol. 82.
1982, pp. 22–30.

[94] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. “Medusa: an experiment in distributed operating
system structure.” In: Communications of the ACM 23.2 (1980), pp. 92–105.

119

[95] A. J. Pena and P. Balaji. “Toward the efficient use of multiple explicitly managed memory sub-
systems.” In: IEEE Int. Conf. on Cluster Computing (CLUSTER). Sept. 2014, pp. 123–131.

[96] S. Perarnau, M. Tchiboukdjian, and G. Huard. “Controlling Cache Utilization of HPC Applica-
tions.” In: International Conference on Supercomputing (ICS). 2011.

[97] S. Perarnau, J. A. Zounmevo, B. Gerofi, K. Iskra, and P. Beckman. “Exploring Data Migration
for Future Deep-Memory Many-Core Systems.” In: IEEE Cluster. 2016.

[98] M. K. Qureshi and Y. N. Patt. “Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches.” In: Microarchitecture, 2006.
MICRO-39. 39th Annual IEEE/ACM International Symposium on. IEEE. 2006, pp. 423–432.

[99] Advanced Scientific Computing Advisory Committee (ASCAC). Ten technical approaches to
address the challenges of Exascale computing. 2014.

[100] D. A. Reed, R. Bajcsy, M. A. Fernandez, J.-M. Griffiths, R. D. Mott, J. Dongarra, C. R. John-
son, A. S. Inouye, W. Miner, M. K. Matzke, et al. Computational science: Ensuring America’s
competitiveness. Tech. rep. President’s Information Technology Advisory Committee Arlington
VA, 2005.

[101] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. “Scaling the bandwidth
wall: challenges in and avenues for CMP scaling.” In: ACM SIGARCH Computer Architecture
News 37.3 (2009), pp. 371–382.

[102] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. Hoppe, and J. Labarta. “Automating the Appli-
cation Data Placement in Hybrid Memory Systems.” In: 2017 IEEE International Conference
on Cluster Computing, CLUSTER 2017, Honolulu, HI, USA, September 5-8. 2017, pp. 126–136.

[103] R. Sethi and J. D. Ullman. “The generation of optimal code for arithmetic expressions.” In:
Journal of the ACM (JACM) 17.4 (1970), pp. 715–728.

[104] C. Sewell et al. “Large-scale compute-intensive analysis via a combined in-situ and co-
scheduling workflow approach.” In: Proc. of the Int. Conf. for High Perf. Computing, Network-
ing, Storage and Analysis, SC’15. 2015.

[105] M. Shantharam, Y. Youn, and P. Raghavan. “Speedup-aware co-schedules for efficient workload
management.” In: Parallel Processing Letters 23.02 (2013), p. 1340001.

[106] T. Sherwood, B. Calder, and J. Emer. “Reducing cache misses using hardware and software page
placement.” In: Proceedings of the 13th international conference on Supercomputing. ACM.
1999, pp. 155–164.

[107] A. Snavely, N. Mitchell, L. Carter, J. Ferrante, and D. Tullsen. “Explorations in symbiosis on
two multithreaded architectures.” In: Workshop on Multi-Threaded Execution, Architecture, and
Compilers. 1999.

[108] A. Snavely and D. M. Tullsen. “Symbiotic jobscheduling for a simultaneous mutlithreading
processor.” In: ACM SIGPLAN Notices 35.11 (2000), pp. 234–244.

[109] G. E. Suh, L. Rudolph, and S. Devadas. “Effects of memory performance on parallel job
scheduling.” In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2001,
pp. 116–132.

[110] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm. “RapidMRC: approximating L2 miss rate
curves on commodity systems for online optimizations.” In: ACM SIGARCH Computer Archi-
tecture News. Vol. 37. 1. ACM. 2009, pp. 121–132.

120 APPENDIX . BIBLIOGRAPHY

[111] D. Tam, R. Azimi, L. Soares, and M. Stumm. “Managing shared L2 caches on multicore sys-
tems in software.” In: Workshop on the Interaction between Operating Systems and Computer
Architecture. Citeseer. 2007, pp. 26–33.

[112] G. Taylor, P. Davies, and M. Farmwald. “The TLB slice-a low-cost high-speed address trans-
lation mechanism.” In: Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on. IEEE. 1990, pp. 355–363.

[113] K. Tian, Y. Jiang, and X. Shen. “A Study on Optimally Co-scheduling Jobs of Different Lengths
on Chip Multiprocessors.” In: Proc. 6th ACM Conf. Computing Frontiers. CF ’09. ACM, 2009,
pp. 41–50.

[114] T. Tobita and H. Kasahara. “A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms.” In: Journal of Scheduling 5.5 (2002), pp. 379–394.

[115] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-effective and low-complexity task
scheduling for heterogeneous computing.” In: IEEE Transactions on Parallel and Distributed
Systems 13.3 (Mar. 2002), pp. 260–274. ISSN: 1045-9219.

[116] D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. D. (Editors), et al. Programming Abstractions for
Data Locality. Tech. rep. Lugano, Switzerland, Apr. 2014.

[117] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T.
Jacob, et al. “An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS.” In: IEEE International
Solid-State Circuits Conference, ISSCC 2007, Digest of Technical Papers, San Francisco, CA,
USA. IEEE. 2007, pp. 98–99.

[118] A. Vladimirov and R. Asai. MCDRAM as High-Bandwith Memory (HBM) in Knights Landing
Processors: Developer’s Guide. Tech. rep. Colfax International, May 2016.

[119] G. Voskuilen, A. F. Rodrigues, and S. D. Hammond. “Analyzing allocation behavior for multi-
level memory.” In: Proceedings of the Second International Symposium on Memory Systems,
MEMSYS 2016, Alexandria, VA, USA, October 3-6, 2016. 2016, pp. 204–207.

[120] G. V. Wilson. “The history of the development of parallel computing.” In: URL:
http://ei.cs.vt.edu/history/Parallel.html (1994).

[121] Y. Xie and G. Loh. “Dynamic classification of program memory behaviors in CMPs.” In: the
2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects. 2008.

[122] J. W. Young. “A First Order Approximation to the Optimum Checkpoint Interval.” In: Commun.
ACM 17.9 (Sept. 1974), pp. 530–531. ISSN: 0001-0782.

[123] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. “Smite: Precise QOS prediction on real-
system SMT processors to improve utilization in warehouse scale computers.” In: Proc. of the
47th Int. Symp. on Microarchitecture. 2014, pp. 406–418.

[124] H. Zhu, L. He, B. Gao, K. Li, J. Sun, H. Chen, and K. Li. “Modelling and Developing Co-
scheduling Strategies on Multicore Processors.” In: 44th Int. Conf. Parallel Processing (ICPP).
IEEE Computer Society, 2015, pp. 220–229.

[125] S. Zhuravlev, S. Blagodurov, and A. Fedorova. “Addressing shared resource contention in mul-
ticore processors via scheduling.” In: ACM Sigplan Notices 45.3 (2010), pp. 129–142.

[126] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. “Survey of scheduling
techniques for addressing shared resources in multicore processors.” In: ACM Computing Sur-
veys (CSUR) 45.1 (2012), p. 4.

List of publications1

Book Chapters

[B1] G. Aupy, A. Benoit, L. Pottier, P. Raghavan, Y. Robert, and M. Shantharam. “Co-scheduling
high-performance computing applications.” In: Big Data Management and Processing. Ed. by
K.-C. Li, H. Jiang, and A. Zomaya. Chapman and Hall/CRC Press, 2017. Chap. 5.

Articles in International Refereed Journals

[J1] G. Aupy, A. Benoit, S. Dai, L. Pottier, P. Raghavan, Y. Robert, and M. Shantharam. “Co-
scheduling Amdahl applications on cache-partitioned systems.” In: International Journal of
High Performance Computing and Applications (2017).

[J2] A. Benoit, L. Pottier, and Y. Robert. “Resilient co-scheduling of malleable applications.” In:
International Journal of High Performance Computing and Applications (2017).

Articles in International Refereed Conferences

[C1] A. Benoit, L. Pottier, and Y. Robert. “Resilient application co-scheduling with processor redis-
tribution.” In: 45th International Conference on Parallel Processing, ICPP 2016, Philadelphia,
USA, August 16-19. Aug. 2016.

[C2] A. Benoit, S. Perarnau, L. Pottier, and Y. Robert. “A performance model to execute workflows
on high-bandwidth-memory architectures.” In: 47th International Conference on Parallel Pro-
cessing, ICPP 2018, Eugene, USA, August 13-16. Aug. 2018.

[C3] G. Aupy, A. Benoit, B. Goglin, L. Pottier, and Y. Robert. “Co-scheduling HPC workloads on
cache-partitioned CMP platforms.” In: IEEE International Conference on Cluster Computing,
CLUSTER 2018, Belfast, UK, September 10-13. IEEE. Sept. 2018.

Articles in International Refereed Workshops

[W1] G. Aupy, A. Benoit, L. Pottier, P. Raghavan, Y. Robert, and M. Shantharam. “Co-scheduling
algorithms for cache-partitioned systems.” In: 19th Workshop on Advances in Parallel and Dis-
tributed Computational Models APDCM 2017. IEEE Computer Society Press, 2017.

1Authors are listed in alphabetical order.

121

122 APPENDIX . PUBLICATIONS

Research Reports

[R1] A. Benoit, L. Pottier, and Y. Robert. Resilient application co-scheduling with processor redistri-
bution. Research Report RR-8795. INRIA Grenoble - Rhone-Alpes ; ENS de Lyon, Oct. 2015.

[R2] G. Aupy, A. Benoit, L. Pottier, P. Raghavan, Y. Robert, and M. Shantharam. Co-scheduling
algorithms for cache-partitioned systems. Research Report RR-8965. INRIA Grenoble - Rhone-
Alpes ; ENS de Lyon, Nov. 2016, p. 28.

[R3] G. Aupy, A. Benoit, S. Dai, L. Pottier, P. Raghavan, Y. Robert, and M. Shantharam. Co-
scheduling Amdahl applications on cache-partitioned systems. Research Report RR-9021. IN-
RIA Grenoble - Rhone-Alpes ; ENS de Lyon, Feb. 2017, p. 33.

[R4] A. Benoit, S. Perarnau, L. Pottier, and Y. Robert. A performance model to execute workflows on
high-bandwidth memory architectures. Research Report RR-9165. ENS Lyon ; Inria Grenoble
Rhône-Alpes ; University of Tennessee Knoxville ; Georgia Institute of Technology ; Argonne
National Laboratory, Apr. 2018, pp. 1–28.

[R5] G. Aupy, A. Benoit, B. Goglin, L. Pottier, and Y. Robert. Co-scheduling HPC workloads on
cache-partitioned CMP platforms. Research Report RR-9154. Inria, Feb. 2018.

	Introduction
	French summary
	Context and contributions
	Context
	Parallel architectures
	Scratchpad memory systems
	Concurrent scheduling
	Cache contention models

	Problematics and contributions
	Co-scheduling with cache partitioning
	Co-scheduling with resilience
	Scheduling for emerging parallel architectures

	Co-scheduling applications on cache-partitioned systems
	Related work
	Co-scheduling and interferences
	Cache partitioning techniques

	Model
	Architecture
	Applications
	Scheduling problem

	Complexity results
	All applications complete at the same time
	Intractability
	Dominance results for perfectly parallel applications
	Extension of the dominance criterion for Amdahl applications

	Heuristics
	Structure of heuristics
	Computing a dominant partition
	Integer processor assignment

	Simulations
	Simulation settings
	Comparison of the heuristics
	Gain with co-scheduling
	With an integer number of processors

	Conclusion

	Co-scheduling HPC workloads on cache-partitioned CMP platforms
	Model and optimization problem
	Computations computation
	Cache misses effect slowdown
	Optimization problem

	Scheduling strategies
	 Optimal solution to CoSched-CachePart
	Equal-resource assignment
	Impact of cache allocation

	Experimental setup
	Platform and applications
	Cache Allocation Technology

	Accuracy of the model
	Experimental protocol
	Accuracy of the Power Law
	Accuracy of the execution time

	Results
	Experimental protocol
	Impact of cache partitioning
	Co-scheduling results with two applications
	Co-scheduling results with three applications

	Conclusion

	Resilient co-scheduling of malleable applications
	Related work
	Parallel application models
	Resilience
	Co-scheduling algorithms

	Framework
	Fault model
	Execution time without redistribution
	Redistributing processors
	Objective function

	Complexity results
	Without redistributions
	With redistributions

	Heuristics
	General structure
	Redistribution when an application ends
	Redistribution when there is a failure

	Simulations
	Simulation settings
	Results

	Conclusion

	A performance model to execute workflows on high-bandwidth-memory architectures
	Related work
	Model
	Architecture
	Application
	Scheduling constraints
	Execution time
	Objective

	Complexity for linear chains
	Heuristics
	Makespan heuristics
	Scheduling policies rank
	Memory mapping policies iorank
	Baseline heuristics

	Simulations
	Simulation settings
	Results

	Experiments
	Experimental settings
	Results

	Conclusion

	Conclusion
	Bibliography
	Publications

