L. Berger, Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals, Journal of Physics and Chemistry of Solids, vol.35, p.22, 1974.

M. Bonfim, Micro bobines à champ pulsé: applications aux champs forts et à la dynamique de renversement de l'aimantation à l'échelle de la nanoseconde par effet Kerr et Dichroïsme Circulaire Magnétique de rayons X, p.37, 2001.

O. Boulle, J. Vogel, and H. Yang, Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures, Nature nanotechnology, vol.11, pp.83-85, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01271350

. Bruker, Good Diffraction Practice Webinar Series-X-ray Reflectometry, p.33, 2010.

P. Bruno, Physical origins and theoretical models of magnetic anisotropy, Magnetismus von Festkörpern und grenzflächen, vol.24, pp.1-28, 1993.

P. Chauve, T. Giamarchi, and P. L. Doussal, Creep and depinning in disordered media, Physical Review B, vol.62, p.51, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00138794

P. Colombi, . Agnihotri, and . Ve-asadchikov, Reproducibility in X-ray reflectometry: results from the first world-wide round-robin experiment, Journal of Applied Crystallography, vol.41, p.33, 2008.

. Fja-den-broeder, P. Hoving, and . Bloemen, Magnetic anisotropy of multilayers, Journal of magnetism and magnetic materials, vol.93, p.10, 1991.

. Ie-dzyaloshinskii, Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances, In: Soviet Physics Jetp-Ussr, vol.5, p.19, 1957.

. Ie-dzyaloshinskii, On the magneto-electrical effect in antiferromagnets, In: Soviet Physics Jetp-Ussr, vol.10, p.18, 1960.

S. Emori, E. Martinez, and K. Lee, Spin Hall torque magnetometry of Dzyaloshinskii domain walls, Physical Review B, vol.90, p.23, 2014.

M. Faraday, Experimental researches in electricity. Nineteenth series, Philosophical Transactions of the Royal Society of London, vol.136, p.35, 1846.

A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nature nanotechnology, vol.8, pp.152-156, 2013.

J. Finley and L. Liu, Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys, Physical Review Applied, vol.6, p.88, 2016.

A. Fert, . Peter, and . Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Physical Review Letters, vol.44, p.19, 1980.

S. Foner, The vibrating sample magnetometer: Experiences of a volunteer, Journal of applied physics, vol.79, p.40, 1996.

H. Garad, L. Ortega, and A. Y. Ramos, The contribution of x-ray specular reflectometry to the oxygen-induced magnetic properties in Pt/Co/AlO x, Journal of Applied Physics, vol.109, p.34, 2011.

A. P. Guimarães, Principles of nanomagnetism, vol.7, p.12, 2009.

P. Hansen, G. Clausen, . Much, K. Rosenkranz, and . Witter, Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Journal of applied physics, vol.66, pp.756-767, 1989.

M. Heide and . Bihlmayer, Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W (110), Physical Review B, vol.78, p.20, 2008.

S. Heinze, K. V. Bergmann, and M. Menzel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics, vol.7, issue.9, p.713, 2011.

A. Hrabec, N. A. Porter, and . Wells, Measuring and tailoring the DzyaloshinskiiMoriya interaction in perpendicularly magnetized thin films, Physical Review B, vol.90, p.20402, 2014.

A. Hrabec, Domain wall dynamics in magnetic nanostructures: Effect of magnetic field and electric current, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00767418

A. Hubert and R. Schäfer, Magnetic domains: the analysis of magnetic microstructures, vol.36, p.15, 2008.

D. Soong-geun-je, S. Kim, and . Yoo, Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction, Physical Review B, vol.88, p.214401, 2013.

J. Soong-geun-je, T. H. Rojas-sánchez, and . Pham, Spinorbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling, Applied Physics Letters, vol.112, p.88, 2018.

. Mt-johnson, . Bloemen, J. Fja-den-broeder, and . Vries, Magnetic anisotropy in metallic multilayers, In: Reports on Progress in Physics, vol.59, p.1409, 1996.

B. David-josephson, Possible new effects in superconductive tunnelling, Physics letters, vol.1, p.41, 1962.

R. Juge, D. Soong-geun-je, . De-souza, and . Chaves, Magnetic skyrmions in confined geometries: effect of the magnetic field and the disorder, Journal of Magnetism and Magnetic Materials, p.111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764982

T. Katayama, . Hasegawa, T. Kawanishi, and . Tsushima, Annealing effects on magnetic properties of amorphous GdCo, GdFe, and GdCoMo films, Journal of Applied Physics, vol.49, p.99, 1978.

H. Kiessig, Untersuchungen zur totalreflexion von röntgenstrahlen, Annalen der Physik, vol.402, p.33, 1931.

. Kyoung-whan, H. Kim, K. Lee, M. Lee, and . Stiles, Chirality from interfacial spin-orbit coupling effects in magnetic bilayers, Physical review letters, vol.111, p.84, 2013.

K. Kim, S. Kim, and Y. Hirata, Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets, Nature materials 16, vol.12, p.110, 2017.

W. Kuch, R. Schäfer, P. Fischer, and F. U. Hillebrecht, Magnetic microscopy of layered structures, p.36, 2015.

R. Lavrijsen, . Hartmann, . Van-den, and . Brink, Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: Effect of interface engineering, Physical Review B, vol.91, p.52, 2015.

V. López-flores, . Bergeard, and . Halté, Role of critical spin fluctuations in ultrafast demagnetization of transition-metal rare-earth alloys, Physical Review B, vol.87, p.49, 2013.

A. Manchon, S. Pizzini, and J. Vogel, X-ray analysis of the magnetic influence of oxygen in Pt/ Co/ Al O x trilayers, 07A912 (cit. on pp. 67, vol.103, 2008.

A. Manchon, . Miron, and . Jungwirth, Current-induced spinorbit torques in ferromagnetic and antiferromagnetic systems, p.43, 2018.

D. K. Maurya, A. Sardarinejad, and K. Alameh, Recent developments in RF magnetron sputtered thin films for pH sensing applications-An overview, p.28

P. J. Metaxas, . Jamet, and . Mougin, Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Physical review letters 99, vol.21, p.107, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01683825

T. Ioan-mihai-miron, H. Moore, and . Szambolics, Fast currentinduced domain-wall motion controlled by the Rashba effect, Nature materials, vol.10, pp.101-103, 2011.

R. Mishra, J. Yu, and X. Qiu, Anomalous current-induced spin torques in ferrimagnets near compensation, Physical review letters, vol.118, p.88, 2017.
DOI : 10.1103/physrevlett.118.167201

URL : http://arxiv.org/pdf/1703.08263

K. Mislow, Molecular chirality". In: Top. Stereochem, vol.22, p.18, 1999.

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review, vol.120, p.18, 1960.

A. Mougin, J. P. Cormier, . Adam, J. Metaxas, and . Ferré, Domain wall mobility, stability and Walker breakdown in magnetic nanowires, EPL (Europhysics Letters), vol.78, p.16, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00267331

L. Nistor, Jonctions tunnel magnétiques à aimantation perpendiculaire: anisotropie, magnétorésistance, couplages magnétiques et renversement par couple de transfert de spin, p.9, 2011.

J. Orehotsky and . Schröder, Magnetic Properties of Amorphous Fe x Gd y Alloy Thin Films, Journal of Applied Physics, vol.43, p.91, 1972.

S. Parkin, X. Jiang, and C. Kaiser, Magnetically engineered spintronic sensors and memory, Proceedings of the IEEE 91, vol.5, pp.661-680, 2003.

M. Stuart-sp-parkin, L. Hayashi, and . Thomas, Magnetic domainwall racetrack memory, Science, vol.320, pp.190-194, 2008.

. Ssp-parkin, . Kp-roche, and . Samant, Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, Journal of Applied Physics, vol.85, pp.5828-5833, 1999.

. Lyman-g-parratt, Surface studies of solids by total reflection of X-rays, Physical review 95, vol.2, p.34, 1954.

T. Ha-pham, J. Vogel, and . Sampaio, Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction, EPL (Europhysics Letters), vol.113, p.67001, 2016.

S. Pizzini, J. Vogel, and S. Rohart, Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlO x ultrathin microstructures, Physical review letters, vol.113, p.43, 2014.

S. Parkin and S. Yang, Memory on the racetrack, Nature nanotechnology, vol.10, issue.2, pp.195-198, 2015.

N. D. Rizzo, . Houssameddine, and . Janesky, A fully functional 64 Mb DDR3 ST-MRAM built on 90 nm CMOS technology, IEEE Transactions on Magnetics, vol.49, p.22, 2013.

N. Roschewsky, C. Lambert, and S. Salahuddin, Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo, Physical Review B, vol.96, issue.6, p.88, 2017.

K. Ryu, L. Thomas, S. Yang, and S. Parkin, Chiral spin torque at magnetic domain walls, Nature nanotechnology, vol.8, pp.527-533, 2013.

J. Stohr and S. Anders, X-ray spectro-microscopy of complex materials and surfaces, In: IBM Journal of Research and Development, vol.44, p.42, 2000.

;. K. Sato, Y. Sato, and . Togami, J. Magn. Magn. Mater, vol.35, p.181, 1983.

M. Schott, A. Bernand-mantel, and L. Ranno, The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field, Nano letters, vol.17, p.111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639157

G. Schütz, W. Wagner, and . Wilhelm, Absorption of circularly polarized x rays in iron, Physical Review Letters, vol.58, p.42, 1987.

W. Raymond and . Simmonds, Thermal physics: quantum interference heats up, Nature, vol.492, p.41, 2012.

J. C. Slonczewski, Dynamics of magnetic domain walls, AIP Conference Proceedings, vol.5, p.15, 1972.

D. Mark, J. Stiles, and . Miltat, Spin-transfer torque and dynamics, Spin dynamics in confined magnetic structures III, p.25, 2006.

I. Soldatov and R. Schäfer, Selective sensitivity in Kerr microscopy, p.35, 2016.

J. Stöhr, Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy, Journal of Magnetism and Magnetic Materials, vol.200, pp.470-497, 1999.

S. Swann, Magnetron sputtering, Physics in technology, vol.19, p.29, 1988.

A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films, EPL (Europhysics Letters), vol.100, p.64, 2012.

P. Bt-thole, . Carra, G. Sette, and . Van-der-laan, X-ray circular dichroism as a probe of orbital magnetization, Physical Review Letters, vol.68, p.42, 1992.

K. Ueda, M. Mann, C. Pai, A. Tan, and G. Beach, Spin-orbit torques in Ta/TbxCo100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy, Applied Physics Letters, vol.109, p.88, 2016.

A. Vansteenkiste, J. Leliaert, and M. Dvornik, The design and verification of MuMax3, Aip Advances, vol.4, p.63, 2014.

M. Va?atka, J. Rojas-sánchez, and J. Vogel, Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes, In: Journal of Physics: Condensed Matter, vol.27, p.65, 2015.

G. E. Volovik and . Krusius, Chiral quantum textures, Physics, vol.5, p.18, 2012.

O. Sergio, M. Valenzuela, and . Tinkham, Direct electronic measurement of the spin Hall effect, Nature, vol.442, p.24, 2006.

K. Wasa, M. Kitabatake, and H. Adachi, Thin film materials technology: sputtering of control compound materials, p.27, 2004.

P. Weiss, L'hypothèse du champ moléculaire et la propriété ferromagnétique, J. phys. theor. appl. 6, vol.1, p.10, 1907.

P. Weinberger, John Kerr and his effects found in 1877 and 1878, Philosophical Magazine Letters, vol.88, p.35, 2008.

D. Weller, . Stöhr, and . Nakajima, Microscopic origin of magnetic anisotropy in Au/Co/Au probed with x-ray magnetic circular dichroism, Physical Review Letters, vol.75, issue.7, p.3752, 1995.

H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Anatomy of dzyaloshinskii-moriya interaction at Co/Pt interfaces, Physical review letters, vol.115, p.67, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576697

H. Yang, O. Boulle, V. Cros, A. Fert, and M. Chshiev, Controlling Dzyaloshinskii-Moriya interaction via chirality dependent layer stacking, insulator capping and electric field, p.84, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01864799

H. Yang, G. Chen, A. C. Alexandre, and . Cotta, Significant DzyaloshinskiiMoriya Interaction at Graphene-Ferromagnet Interfaces due to Rashbaeffect, p.67, 2017.

Y. Yoshimura, K. Kim, and T. Taniguchi, Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction, Nature Physics, vol.12, pp.62-64, 2016.

, Illustration of magnetic anisotropies in two often found cases. a. In multilayer systems consisting of alternating magnetic and non-magneticlayers, the magnetization may be out-of-plane. b. In magnetic films with the thickness exceeding about 2nm the easy magnetization direction is typically found to be in-plane

, Anisotropy orbital moment in a thin layer

. , Magnetization measurements in the case of the samples with out of the plane magnetization

. , Magnetic anisotropic energy times Co layer thickness versus Co layer thickness of Co/Pd multilayer

. , Diagram showing the rotation of magnetic moments through a. 180 ? domain wall b. 90 ? domain wall

, Bloch domain wall, with rotation of the magnetization in the plane parallel to the plane of DW: side view (top) and top view (bottom), p.12

, Néel domain wall, with rotation of the magnetization in the plane perpendicular to the plane of DW: side view (top) and top view (bottom, p.12

. , Predicted domain wall velocity versus magnetic field of a Bloch wall showing steady and precessional flow regime in thin films without pinning (1D model)

. , Theoretical velocity-field curves for systems real showing depinning , creep and flow regime

, Schematic of a DMI between the neighboring spins that results from indirect exchange mechanism for the triangle composed of two atomic spins and an atom with a strong SOC

. , chiral Néel domain wall

. , Velocity vs. out-of-plane field for Pt/Co/AlOx with different values of D. Image adapted from [Thi+12]

. .. Fields, 39 3.13 DC SQUID, a superconducting loop contains two Josephson junctions (the insulator part in yellow) sandwiched between two superconductors (blue and red).(Image adapted from [Sim12]), p.41

. , Experimental set up for XMCD measurements b. Illustration the size of magnetic dichroism effects

, Stacks of a.symmetric trilayer Pt/Co/Pt b.non-centrosymmetric trilayer

. .. Pt/co/gdox-c-;-/gd, 44 4.2 a. XRR data (black curve) and fit (red curve) for Pt/Co/Pt sample b. results of the fit the data

. , Magnetization vs temperature normalized to a 1 nm thickness, measured by VSM-SQUID for Pt/Co/GdOx sample

. , Magnetization vs temperature normalized to a 1 nm thickness, measured by VSM-SQUID for Pt/Co/Gd sample

, XAS (blue line) and XMCD (red line) measurements of Pt/Co/Gd sample at 4K and in an applied magnetic field of 1T for a, vol.2

. , 49 4.9 Sketch of the DW magnetization direction (arrow) and width (blue area) for chiral Néel (a,b) and Bloch domain walls (c,d) respectively with H x = 0 and an applied in-plane field, XAS (blue line) and XMCD (red line) measurements of Pt/Co/Gd sample at 300K and in an applied magnetic field of 1T for a, vol.2

. , After saturating the film magnetization with a positive out-of-plane field (black contrast) a. nucleation of a bubble with the opposite negative magnetic field pulse (white contrast) b. Differential image illustrating the DW displacement after the application of positive magnetic field pulse. In the sketch, the vertical arrows represent the magnetization direction within the domains. The horizontal arrows the magnetization direction at the center of the chiral Néel walls

, Differential Kerr images showing the expansion of a domain during the pplication of an out-of-plane field B z whithout and with the simultaneous application of an in-plane field for Pt/Co/Pt sample, p.53

, DW speed vs in plane field H x for the Pt/Co/Pt sample, measured for up/down and down/up DW propagation in ± direction

. , The differential Kerr images represent larger expansion for up/down for B z = 150mT, larger for down/up for B z = +150mT. From this, one can deduce the magnetization direction within the two DWs, therefore the left handed chirality

. , DW speed vs in-plane magnetic field H x , measured for up/down and down/up DW propagating in ± direction, driven by 20ns long B z pulses of 88mT in 2cm position

. , DW speed vs in-plane magnetic field H x , measured for up/down and down/up DW propagating in ± direction, driven by 20ns long B z pulses of 88mT in 3.5cm position

. , DW speed vs applied magnetic field H z. The line shows the linear fit to high field for Pt/Co/Pt sample

, Dw speed vs. H z field measured for Pt/Co/GdOx sample, p.59

. , 60 4.19 Speed of down/up DW vs H z in the Pt/Co/Gd sample in the presence of different fixed in-plane fields H x, p.61

. , 64 5.1 a. Hall effect cycles (EHE) as a function of the applied field for Pt/Co/AlOx after oxidation with different exposure times b. X-ray photoelectron spectroscopy (XPS) of Co 2p edges in Pt/Co/AlOx for various plasma oxidation times from 15 to 60s, Simulated DW dynamics with the Pt/Co/GdOx: A = 16 pJ/m, M s = 1.26 MA/m, D = 1.5 mJ.m ?2 , K u = 1.44 MJ.m ?3. a. perfect sample b. disordered

, 69 5.3 a. XRR data (black curve) with fit (red curve) using Brucker's LEPTOS software b. Table showing the parameters found with the fit in a

.. .. Pt/co/alox-sample-in-0cm, 70 5.4 a. XRR data (black curve) with fit (red curve) using Brucker's LEPTOS software b. Table showing the values found with the fit in a

.. .. Pt/co/alox-sample-in-2cm, 5 a. XRR data (black curve) with fit (red curve) using Brucker's LEPTOS software b. Table showing the values found with the fit in a. for

. .. Pt/co/gdox-sample-in-0cm, Hysteresis loops measured by magneto-optical Kerr effect in different positions of the sample Pt(15)/Co/AlOx wedge b. curve of coercive field of the same sample

, as a function of Co content (1 ? x). The range of the Co composition is between to 0.77 and 0.81 the dependence was linearized by ?T comp = 44 ± 1K/at.% (red line).Image from, p.91

]. .. Han+89, Temperature dependence of the saturation magnetization for Gd 1?x Co x in different concentration of Co. Image from, p.91

. , Side view showing how the gradient composition works in relation to the target. Our Si substrates are 8 cm long, and the sample positions used in the text are indicated in the figure

. Gdco, Unit surface magnetization measured at 300K at different sample positions in the GdCo(4nm) sample. The two measurements for-1.5 cm were taken at different times, after different thermal treatment needed for patterning. b. Table of the values found for different positions of GdCo(4nm) for unit surface magnetization M s t and effective anisotropy field µ 0 H k. The results of the measurements carried out for some of the GdCo(4.8nm) sample positions are also reported in the Table. c. Magnetization vs temperature curve for the GdCo(4.8nm) sample for two different positions

. .. , 96 6.9 DW speed vs. in-plane magnetic field H x , measured in the position-1.5cm for up/down and down/up DW propagating in ± direction, driven by 20ns long H z pulses of 77, p.97

, Example Pt/ GdCo(4nm)/ Ta sample with a 5ns pulses ×10

, J =, vol.1, issue.5

. , 97 6.11 a. Current-driven DW speed (J = 1.57 × 10 12 A/m 2 ) measured for up/down and down/up DW as a function on H x field amplitude applied parallel to the strips for the GdCo(4nm) sample in position-1.5cm. b. Differential Kerr images indicating the DW motion, black contrast corresponds to up magnetization

. , 101 6.14 a. Speed vs current density for Pt/Co (1nm)/Gd and GdOx b. Image from Miron et al. [Mir+11] for speed vs current density for Pt/Co (0.6nm), Kerr differential image of Pt/Co/Gd Sample driven by current pulses of density J = 1.4 × 10 12 A/m

. .. , 103 6.16 a. Hysteresis loops measured by magneto-optical Kerr effect in different positions of the sample GdCo (4nm). b. curve of coercive field of the same sample, Speed vs current density a. for GdCo(4nm) in position-1.5cm and +1.5cm b. for GdCo(2nm) in position 0cm and-1.5cm

. , Kerr microscopy images of the GdCo wires and sketch of the corresponding Gd and Co magnetic moments. Image taken after application of a 500 mT positive magnetic field. The compensation interface becomes visible. Image from ??

. .. , 110 7.2 Stripe domains observed at remanence in Pt/Co/TbOx a. transform into skyrmionic bubbles for very weak fields b. Images are taken with Kerr microscopy, Field-driven DW velocity for a. fixed D = 1.5 mJ/m 2 , K eff = 1.44 MJ/m 3 and varying saturation magnetization. b

. , MgO trilayers transform into bubbles in the presence of small out-of-plane fields. These images have been taken using a XMCD-PEEM microscope at the CIRCE beamline of the Alba synchrotron in Barcelona, Domains in 500 nm wide stripes in Pt/Co(1nm)

, For DWs lying perpendicular to the X-ray beam direction, thin white and black lines can be seen, corresponding to the magnetization being aligned antiparallel and parallel to the photon beam respectively. b. Line scan of the magnetic contrast corresponding to the dotted white line in (a), chiral Néel structure of domain walls using XMCD-PEEM magnetic microscopy, vol.113

. , XMCD-PEEM image of a 420 nm square dot (indicated by the dotted line) and b. line scan along the dotted black line (black line). The line scan has been averaged perpendicularly to the linescan over 30 nm