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Abstract

The main aim of this thesis is to investigate the automatic quality assessment of spoken

language translation (SLT), called Confidence Estimation (CE) for SLT. Due to several

factors, SLT output having unsatisfactory quality might cause various issues for the

target users. Therefore, it is useful to know how we are confident in the tokens of

the hypothesis. Our first contribution of this thesis is a toolkit LIG-WCE which is

a customizable, flexible framework and portable platform for Word-level Confidence

Estimation (WCE) of SLT.

WCE for SLT is a relatively new task defined and formalized as a sequence tagging

problem in which each word of SLT output is marked as one of binary labels (good or

bad) in agreement with a large feature set. We propose several word confidence estima-

tors (WCE) based on our automatic evaluation of transcription (ASR) quality, transla-

tion (MT) quality, or both (combined/joint ASR+MT). We built a corpus that contains

6.7k utterances in which each quintuplet consists of ASR hypothesis, verbatim tran-

script, text translation, speech translation and post-edition of translation. We performed

several experiments for WCE using joint ASR and MT features to show that MT fea-

tures remain the most influent while ASR features can bring interesting complementary

information.

As another contribution, we propose two methods to disentangle ASR errors and MT

errors, where each word in the SLT hypothesis is tagged as good, asr_error or mt_error.

We thus explore the contributions of WCE for SLT in finding out the source of SLT

errors.

Furthermore, we propose a simple extension of WER metric in order to penalize dif-

ferently substitution errors according to their context using word embeddings. For in-

stance, the proposed metric should catch near matches (mainly morphological variants)

and penalize less this kind of error which has a more limited impact on translation per-

formance. Our experiments show that the correlation of the new proposed metric with

SLT performance is better than the one of WER. Oracle experiments are also conducted

and show the ability of our metric to find better hypotheses (to be translated) in the ASR
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N-best. Finally, we present and analyze a preliminary experiment in which ASR tuning

is applied by our new metric.

To conclude, we have proposed several prominent strategies for CE of SLT that could

have a positive impact on several applications for SLT. Robust quality estimators for

SLT output can be applied to provide feedback to the user in computer-assisted speech-

to-text scenarios or to re-score ST graphs.

Keywords: Quality estimation, Word confidence estimation (WCE), Spoken Language

Translation (SLT), Joint Features, Feature Selection.



Résumé

Le travail présenté dans cette thèse vise à estimer automatiquement la qualité de la tra-

duction de la parole (Speech Language Translation, SLT), via différentes mesures de

confiance. Le système de traduction de la parole génère des séquences de mots con-

tenant potentiellement des erreurs. Une sortie du système, avec une qualité insuffisante,

peut engendrer différents problèmes pour les utilisateurs finaux. Par conséquent, il est

est nécessaire d’identifier les zones d’incertitudes dans les hypothèses. Les mesures

confiance consistent à générer une probabilité quantifiant le niveau de confiance associé

à un mot. Cette probabilité pourra ensuite être utilisée comme seuil de décision afin de

réévaluer une hypothèse. Dans le cadre de cette thèse, notre première contribution est le

développement d’une boîte à outils flexible destinée à l’estimation de mesures confiance

au niveau des mots issus d’un système de traduction automatique de la parole.

Dans le cadre d’un système de traduction de la parole reposant sur des modules parole/-

traduction séparés, les premières erreurs sont produites au niveau des hypothèses de

la reconnaissance automatique de la parole (RAP) puis se propagent au niveau de la

traduction automatique (Machine Translation ou MT). Nous étudions ce phénomène

via l’estimation de mesures de confiance (CE) au niveau des mots. Nos mesures de

confiance se basent sur des modèles de champs aléatoires conditionnels (Conditional

Random Fields ou CRF). Cette tâche, est définie et formalisée comme un problème

d’étiquetage séquentiel dans lequel chaque mot, dans l’hypothèse du système SLT, est

annoté comme bon ou mauvais selon un ensemble des traits. Nous proposons plusieurs

outils permettant d’estimer la confiance des mots (WCE) aussi bien au niveau du sys-

tème RAP qu’au niveau du système de traduction. Enfin nous proposons des mesures

de confiance jointes entre système RAP et système MT. Ce travail de recherche est as-

socié à la production d’un corpus spécifique, contenant 6700 phrases pour lesquelles

un quintuplet a été fourni comme suit : (1) sortie du système RAP, (2) transcription is-

sue du verbatim, (3) traduction manuelle, (4) traduction automatique de la parole et (5)

post-édition manuelle de la traduction automatique. Nos multiples expérimentations,

utilisant des traits joints entre RAP et MT pour l’estimation de qualité, ont montré que
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les traits de MT demeurent les plus influents, tandis que les traits du RAP peuvent ap-

porter des informations complémentaires.

Une autre contribution s’articule autour de deux méthodes permettant de distinguer les

erreurs d’origine RAP de celles issues du système MT. Dans ces méthodes, chaque

mot en sortie du système SLT, est annoté comme bon, rap_erreur ou mt_erreur. Nous

proposons ainsi une méthode permettant d’identifier la source des erreurs au sein des

systèmes de traduction automatique de la parole.

Finalement, nous proposons une nouvelle métrique, que nous avons appelée Word Error

Rate with Embeddings (WER-E), plus adaptée à la tâche et permettant de s’appuyer plus

fortement sur des aspects sémantiques. Nos expérimentations ont ainsi montré que la

corrélation entre la nouvelle métrique et la qualité de la traduction automatique est plus

élevée par rapport à l’utilisation d’un WER classique. Cette métrique a été exploitée

pour générer de meilleures hypothèses de traduction automatique de la parole lors de la

phase d’optimisation des scores d’hypothèses issues du système.

En conclusion, les stratégies proposées pour l’estimation de mesures de confiance mon-

trent un impact positif dans plusieurs applications liées à la traduction automatique de

la parole. En perspective, ces mesures de confiance robustes pourront être utilisées

afin de ré-estimer des graphes de traduction de parole ou pour fournir des retours aux

utilisateurs dans un contexte de traduction de la parole interactive.

Mots-clés : Estimation de la qualité, Estimation de confiance au niveau des mots, Tra-

duction de la parole, mesures de confiance jointes, Sélection de traits.
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Chapter 1

Introduction

1.1 Motivation

Natural language processing (NLP) is an increasingly important area in applied linguis-

tics. NLP can lead to many applications, such as machine translation (MT), Automatic

Speech Recognition (ASR), Spoken Language Translation (SLT), Information Extrac-

tion, Summarization, etc.

However, the challenges for speech translation (such as the size of training corpus,

domain mismatch, rare words, speech dis-fluencies, etc) decrease the quality of speech

translation system. Therefore, we need a method to judge automatically the quality of

SLT system. It is called Confidence Estimation (CE) for SLT, allowing us to know if

a system produces (or not) user-acceptable outputs. Indeed, in interactive speech to

speech translation, CE helps to judge if a candidate is uncertain (and ask the speaker to

rephrase or repeat). For speech-to-text applications, CE may tell us if output translations

are worth being corrected or if they require retranslation from scratch.

In ASR or MT, there are many approaches of CE at different levels that obtained in-

teresting achievements such as document-level CE [Scarton and Specia, 2014] [Scar-

ton et al., 2016], sentence-level CE [Blatz et al., 2004] [Specia et al., 2009] [Shah

et al., 2016], phrase-level CE [Specia and Giménez, 2010] [Logachva and Specia, 2015]

[Blain et al., 2016], word-level CE [Ueffing et al., 2003a] [Ueffing and Ney, 2005]

1
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[Ueffing and Ney, 2007] [Bach et al., 2011] [Luong et al., 2013a] [Luong et al., 2013b]

[Besacier et al., 2014] [Besacier et al., 2015] [Servan et al., 2015] [Logacheva et al.,

2016] [Le et al., 2016b].

In this thesis, we focus on the word-level CE on the candidates of SLT system. We for-

malize it as a sequence labeling issue in which each word in SLT output is assigned by

a quality score or a quality label in accordance with a large feature set. We also propose

several word confidence estimators (WCE) based on our automatic evaluation of tran-

scription (ASR) quality, translation (MT) quality, or both (combined / joint ASR+MT).

Furthermore, this thesis had the following goals:

• Inheriting the published speech corpora in [Besacier et al., 2014], we extended its

size for our experimental settings and made it available to the research commu-

nity.

• Studying various types of features for CE in SLT and then proposing methods to

combine them

• Using our CE system for SLT to apply on various tasks such as re-ranking N-best

list and identifying source of SLT errors

• Studying and proposing a novel automatic metric to tune ASR in a SLT context.

1.2 Main Contributions

After presenting the goals, we can emphasize on the following contributions:

1. Extending speech corpora for a French-English speech translation task that was

initially presented in [Besacier et al., 2014].

2. Proposing an advanced features set for both ASR + MT systems and then building

WCE system for ASR as well as WCE system for SLT based on ASR features,

MT features, combined / joint ASR + MT features.
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3. Exploring the usefulness of ASR and MT features in WCE system for SLT.

4. Proposing methods to disentangle ASR and MT Errors in Speech Translation.

5. Proposing an automatic metric extending word error rate (WER) that is better

correlated with SLT performances.

1.3 Thesis Overview

The rest of this thesis is organized into two parts. In the first one (two first chapters), we

summarize the state-of-the-art techniques for Confidence Estimation (CE) in Spoken

Language Translation. In the second one (from Chapter 4 to Chapter 7), we present our

contributions.

Indeed, Chapter 2 and Chapter 3 begin by laying out the theoretical dimensions of the

research, and providing the concepts and the terminologies related to ASR, SMT and

SLT, respectively. They also provide the descriptions about relevant general themes for

CE (machine learning strategies and the metrics used to assess the CE performance).

Note that Chapter 3 is concerned with the methodology used for this study. It also

presents the conventional feature set and the metrics used in this thesis.

In Chapter 4, we illustrate the characteristics of the corpora used in this thesis. In

addition, Chapter 4 goes over the details on how to build a robust WCE system for

SLT. Then, we analyse the results of the preliminary experimentations. This chapter

also expends an initial speech corpus and presents our flexible open-source (LIG-WCE

Toolkit) used in this thesis.

In Chapter 5, we propose two methods using proposed predictor features whether to

combine ASR features with MT features or to put them into joint strategies. Moreover,

in this chapter, we also describe the feature selection technique that help us rank the

significant indicator features (ASR features or MT features) in term of performance for

CE in SLT.
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In Chapter 6, we propose two methods to disentangle ASR and MT errors in speech

translation by automatically detecting SLT errors’ origin (is it due to ASR or to MT?)

Chapter 7 proposes a novel automatic metric to evaluate ASR candidates using word

embedding.

Finally, in the conclusion section, we summarize the key contributions of the thesis as

well as potential future researches.



Chapter 2

Main Concepts in Spoken Language

Translation (SLT)

In this chapter, we introduce Spoken Language Translation (SLT), Automatic Speech

Recognition (ASR) and automatic metrics to evaluate the output of Machine Translation

(MT).

Regarding Machine Translation (MT), we review the different types of Machine Trans-

lation systems, how they are used to produce the translation hypotheses and the choice

among acceptable translation candidates. More specifically, we will discuss about the

components of a Statistical Machine Translation (SMT)1.

Concerning Automatic Speech Recognition, this chapter also gives a brief overview of

the methods and some terminologies used in this thesis.

This chapter has been divided into five sections. The first section (2.1) and the second

section (2.2) deal with a brief definition of Machine Translation and Automatic Speech

Recognition, respectively. We then present an overview of the specificities of Spoken

Language Translation in Section 2.3. In addition, some useful metrics to estimate the

quality of MT output are given in Section 2.4. Finally, Section 2.5 concludes this chap-

ter.
1Neural Machine Translation (NMT) gained more and more attention during this PhD but we did not

use it so we decided to not present it in this state-of-the-art chapter.

5
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2.1 Machine Translation (MT)

2.1.1 Introduction

Researchers have shown an increased interest in MT since the 1950s [Hutchins, 1995].

Hutchins [2007] briefly presented the historical perspectives of MT. While a variety of

definitions of the term ‘Machine Translation’ (MT) have been suggested, this thesis will

use the definition suggested by Hutchins [1995] who saw it as computerized systems

responsible for the production of translations with or without human assistance. It is

also known as automated translation that is a subfield of computational linguistics.

Due to human involvement and mechanization, there are three categories of translation,

such as traditional human translation, Machine-Aided Translation (MAT) and Auto-

matic Machine Translation [Slocum, 1985]. MAT, also called Computer-Aided Trans-

lation (CAT) can be divided into two subgroups such as Human-Aided Machine Trans-

lation (HAMT) and Machine-Aided Human Translation (MAHT).

• Human-Aided Machine Translation (HAMT) refers to a system where the

computer program generates the translation hypotheses for a given source sen-

tence. The machine translation process benefits from human assistance when

needed (for instance, asking the human translator to choose the best translation

hypothesis from proposed hypotheses by machine, or asking to determine the best

meaning for a target word/phrase).

• Machine-Aided Human Translation (MAHT) refers to a system in which the

translation hypotheses are produced by the human translator. During the process,

the translation process is aided by the computer (for example, an electronic bilin-

gual terminology is provided, a pre-translation is provided to the translator, etc.).

There are several approaches to build automated MT engines, for example linguistic-

based MT (direct, transfer, interlingual MT), computational-based MT (rule-based,

corpus-based, example-based, statistical, neuronal MT) [Nagao, 1989] [Boitet, 2008],

as discussed in the forthcoming sections.
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2.1.2 Machine Translation Approaches

2.1.2.1 Different levels of transfer

Simple
Morphological Analysis

Source Sentence Replacing phrase/word
by phrase/word

Simple Reordering

Hypothesis Target Sentence

Bilingual
Dictionary

Figure 2.1: Direct Machine Translation Diagram.

• Direct Machine Translation: This approach was used to allow systematic, sim-

ple and fast replacing of source phrase/word by target phrase/word , as shown

in Figure 2.1. Figure 2.1 shows that the direct transfer method is used at the

word/phrase level. It is efficient when there is few syntactic divergence between

source and target language (no need of in-depth analysis of morphology and syn-

tax). Moreover, it is also used for small vocabulary (and specific) tasks. So, this

strategy can be seen as a word-by-word translation approach with basic grammat-

ical adjustments.

• Transfer Machine Translation: In Transfer-Driven approach, three modules are

involved, as presented in Figure 2.2. It begins by morpho-syntactic analysis of

the source sentence. It then goes on to the application of transformation rules

(for instance, vocabulary and grammar rules) adjusting those to target language

representations. Finally, generation in the target language is performed [Arnold

and Tombe, 1987]. Note that this approach does ot take into account semantic

ambiguity of source words.

• Interlingual Machine Translation: In this strategy, we replace the notion of

"transfer" in Transfer-based MT by "interlingua". Interlingua-based MT system
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Morphological Analysis

Source Sentence

Hypothesis Target Sentence

Grammatical Rules
Source Language

Dictionary
Source Language

Source Representation

Transformation Bilingual
Dictionary

Transformation
Rules

Target Representation

Synthesis Dictionary
Target Language

Grammatical Rules
Target Language

Figure 2.2: Transfer-Driven Machine Translation Diagram.

is performed in two phases, as shown in Figure 2.3. Firstly, the source sentence is

analyzed into an abstract universal language-independent (interlingual) represen-

tation. Then, the target sentence is generated [Carbonell et al., 1992]. One of the

most difficult problem of this method is to choose the interlingua which will con-

tain semantic representation [Guerra, 2000]. The effectiveness of the interlingual

technique has been presented in a report by Hutchins [1995].

Figure 2.4 presents the differences of above three methods. It is also called as the

Vauquois Triangle [Vauquois, 1968].

As shown in Figure 2.4, there is no need of analysis and generation in the Direct MT

strategy. But it uses some simple analysis rules and some rules for direct translation.

The indirect strategies (Transfer-driven MT and Interlingual MT) differ in the depth of

analysis.
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Morphological Analysis

Source Sentence

Hypothesis Target Sentence

Grammatical Rules
Source Language

Dictionary
Source Language

Interlingual Representation

Synthesis Dictionary
Target Language

Grammatical Rules
Target Language

Syntaxtic Analysis

Semantic Analysis

Figure 2.3: Interlingual Machine Translation Diagram.

Source Sentence Hypothesis Target Sentence

Interlingua

Transfer

Direct

Ana
lys

is
Generation

Figure 2.4: Vauquois Triangle showing the differences between Direct, Trans-
fer and Interlingual MT strategies.

2.1.2.2 Different types of computation

• Rule-Based Machine Translation (RBMT) provides a conceptual theoretical

framework based on built-in linguistic rules based on the morphological, syn-

tactic and semantic analysis of both source and target sentences (see [Hutchins,

1986]). RBMT systems are conceptually indirect approaches since they use three

main processes: a string-to-tree parser (analysis phase), a rule-based tree-to-

tree transformer (transfer phase) and a tree-to-linear-string generator (systhesis

phase). RBMT systems generate translation hypotheses with reasonable quality
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if source sentence is covered by their knowledge [Carbonell et al., 2006]. How-

ever, building RBMT system is expensive and time consuming because linguistic

resources need to be hand-crafted by linguistics experts. Another important prac-

tical implication is that adding new rules or updating existed rules in this system is

not easy [Berwick and Fong, 1990]. So, it is hard to deal with ambiguity problems

as well as idiomatic expressions [Dugast et al., 2008].

• Statistical Approach to Machine Translation (SMT) is an prevalent approach

to MT based on statistical analysis in order to build the dictionaries and the trans-

lation rules contrasting with RBMT [Koehn, 2010]. In order to build them, bilin-

gual parallel corpora are used. The approach is based on statistical analysis and

extracts the translation probabilities of the words/phrases/syntax, etc. Weaver

[1949] is the first to present translation using statistical methods and informa-

tion theory. This view is extended by Brown et al. [1990] who proposed the first

models for SMT, based on Bayes theory, now called IBM models. SMT models

generate translation candidates of the source sentence and select the best one ac-

cording to a maximum likelihood decision. This approach is described in more

details in Section 2.1.3.

• Example-Based Machine Translation (EBMT) (also known as Memory-Based

Translation) is also based on empirical analysis depending on the bilingual text

corpora with differences in the matching and recombination phases. In addi-

tion, according to [Güvenir and Cicekli, 1998], EBMT can be defined as follows:

“EBMT approach basically refers to analyzing morphological and stemming”.

SMT systems essentially generate statistical parameters from the bilingual cor-

pus after preprocessing and training phases without guarantee to reproduce an

observed sample. They cannot guarantee the same hypothesis output for a given

source sentence, whereas EBMT systems can generate the same translation out-

put from a given source sentence. Nagao [1984] illustrates the three main tasks

of EBMT: analysis (matching the patterns against given bilingual corpus), trans-

fer (determining the relevant translation patterns) and generation (recombining

the related translation patterns into the output hypothesis). There are many use-

ful techniques used for matching task, such as character based matching, word
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based matching, annotated word based matching, structure based matching, etc

[Somers, 1999].

• Hybrid Machine Translation (HMT) is a method borrowing from several dif-

ferent MT strategies, for instance rule-based and statistical techniques. The major

objective of this approach is to combine the advantages of each component MT

paradigm allowing to increase the accuracy of translation candidates. Costa-jussá

and Fonollosa [2015], España-Bonet and Costa-jussà [2016] present an overview

of current trends and applications in hybrid MT.

• Neural Machine Translation According to a definition provided by Luong et al.

[2016], Neural Machine Translation (NMT) is “the approach of modeling the en-

tire MT process via one big artificial neural network”. Goldberg [2016] proposes

good tutorial of neural network models for natural language processing. NMT

systems are also known as sequence-to-sequence models or encoder-decoder net-

works [Kalchbrenner and Blunsom, 2013] [Sutskever et al., 2014]. In a nutshell,

the encoder encodes an source sentence into a fixed (compact) representation,

while the decoder generates a sequence of symbols (words or characters) given

the source sentence representation as well as the previously generated symbols.

Recurrent Neural Networks (RNNs) are generally used for encoder and decoder

components while recent approaches have proposed to use an attention mech-

anism [Bahdanau et al., 2015] (somehow equivalent to the alignment model in

SMT) in order to improve translation performance. Up to now, the research has

tended to focus on NMT as well as on HMT. Furthermore, there are several chal-

lenges to solve for future NMT [Luong et al., 2016], including NMT with low

resources which is still less efficient than SMT2.

2.1.3 Statistical Machine Translation (SMT)

This section gives a brief overview of Statistical Machine Translation (SMT) approach.

This approach is based on three main components (Language Model, Translation Model

and Search Process) and it is derived from the analysis of bilingual text corpora.
2see for instance https://duyvuleo.github.io/ws17mt/
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2.1.3.1 Language Modeling

One of the standard Language Modeling model used in Machine Translation is the N-

gram model. This model represents the probability of generating the word at position n

given the previous n−1 words, so-called the history.

Using the chain rule of probability [Jurafsky and Martin, 2000], we could have the

probabiliy of a sentence P(W ) where W = (w1,w2,w3, ...,wn) = wn
1 , wi is the ith word

in sentence W , 1≤ i≤ n,

P(W ) = P(wn
1) = P(w1,w2,w3, ...,wn)

= P(w1)P(w2|w1)P
(
w3|w2

1
)
...P
(
wn|wn−1

1
)

=
n

∏
i=1

P
(
wi|wi−1

1
)

(2.1)

The above chain rule is used to measure the probability of a sentence and estimate the

conditional probability of word at position ith with given all of previous words. How-

ever, it is not possible to calculate the probability of a word with given a sequence of

previous words, P
(
wn|wn−1

1
)
. Thus, we use Markov assumption to assess the probabil-

ity of a word depending only on a short history (2-gram to 5-gram). For example, in the

bigram assumption, the probability of each word in Equation 2.1 is defined as,

P(W ) = P(wn
1)≈

n

∏
i=1

P(wi|wi−1) (2.2)

where a particular bigram probability P(wi|wi−1) is computed as,

P(wi|wi−1) =
C (wi−1wi)

C (wi−1)
(2.3)

where C is a count function. Therefore, using the N-gram assumption for the probability

of each word, we have the equation:

P(W ) = P(wn
1) = P(w1,w2,w3, ...,wn)

= P(w1)P(w2|w1)P
(
w3|w2

1
)
...P
(
wn|wn−1

1
)

≈ P(w1)P(w2|w1) ...P
(
wN−1|wN−2

1
) n

∏
i=N

P
(
wi|wN−1

i−N+1
)

(2.4)

Language model (LM) is usually generated from a given set of words that are called

the in-vocabulary words. The other words are considered as Out-Of-Vocabulary (OOV)
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words. One problem is that the LM may give a probability 0 to OOV words. To avoid

this issue, a variety of smoothing methods allow to generate probabilities for unseen to-

kens such as Additive smoothing, Good-Turing estimate [Good, 1953], Jelinek-Mercer

smoothing (interpolation) [Jelinek and Mercer, 1980], Katz smoothing (backoff) [Katz,

1987], Witten-Bell smoothing [Witten and Bell, 1991], Kneser-Ney smoothing [Kneser

and Ney, 1995]. A summary of the main findings and of the principal issues is provided

in [Chen and Goodman, 1996], [MacCartney, 2005] and [Koehn, 2010].

2.1.3.2 Translation Modeling

a. Word-based Translation Modeling

This subsection focuses on word-based translation and in particular on IBM translation

models.

In general, statistical translation models are based on the concept of word alignments

from bilingual corpora during training phase. The following notations are needed to

mathematically define word-based TM:

• f k ∈
{

f (1), f (2), ..., f (n)
}

is the kth sentence in source corpus having n sentences.

• ek ∈
{

e(1),e(2), ...,e(n)
}

is the kth sentence in target corpus having n sentences

and is aligned to f k.

• ak ∈
{

a(1),a(2), ...,a(n)
}

is the kth word alignment set between f k and ek.

• f = ( f1, f2, ..., fm), where m is the length of the source sentence and fi, i ∈

{1,2, ...,m} is the ith word in the source sentence f .

• e = (e1,e2, ...,el), where l is the length of the target sentence and e j, j ∈

{1,2, ..., l} is the jth word in the target sentence f .

• a = (a1,a2, ...,am), where ai, i ∈ {1,2, ...,m} is one alignment information for

source word fi, each alignment information take any value from 0 to l. For exam-

ple, if there is alignment between fi and e j, ai = j. Especially, we define that e0
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is a special target word, also called NULL. In other words, ai = 0 if source word

fi is aligned to NULL word.

• F , E are a finite set of source words and target words, respectively.

• M,L are the maximum lengths of source and target sentences, respectively.

• p( f |e), fi ∈ F ,e j ∈ E ∪ {NULL} is the conditional probability for translating

from source sentence f to candidate sentence e.

• q( j|i, l,m) is the probability of alignment ai = j with given the length of source

sentence m and target sentence l, where l ∈ {1,2, ...,L}, m ∈ {1,2, ...,M}, i ∈

{1,2, ...,m}, j ∈ {1,2, ..., l}.

We now turn to the problem of modeling the conditional probability p( f |e):

p( f |e) = p( f1... fm|e1...el) = p( f1... fm|e1...el,m) (2.5)

This probability can be estimated with increasingly complex models that take into ac-

count lexical translation, word-reordering and word fertility that are presented in five

IBM models and trained using Expectation Maximization (EM) algorithm [Dempster

et al., 1977] or hidden Markov Model (HMM) algorithm [Rabiner, 1990].

* Model 1 - Lexical Translation Probability

IBM Model 1 is estimated:

q( j|i, l,m) =
1

l +1
(2.6)

Note that, it is possible that j = 0, when the source word fi is aligned to e0 = NULL.

Thus,

p(a|e) = 1
(l +1)m (2.7)

In addition, the probability of target sentence is computed:

p( f |e,a) =
m

∏
i=1

t( fi|eai) (2.8)
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Therefore, Equation 2.5 is presented as follows,

p( f |e) = ∑
a

p( f ,a|e) = ∑
a

p( f |e,a)∗ p(a|e) = ∑
a

1
(l +1)m

m

∏
i=1

t( fi|eai) (2.9)

Using this model to find the best word alignment between source sentence f and target

sentence e, the best alignment is found:

â = argmax
a

p( f ,a|e) = argmax
a

1
(l +1)m

m

∏
i=1

t( fi|eai) = argmax
a

m

∏
i=1

t( fi|eai) (2.10)

where i ∈ {1,2, ...,m}.

* Model 2 - Addditional Distorsion Model Probability

As presented in IBM model 1, the alignment probability distribution is not used. IBM

model 2 addresses this problem as follows,

p( f ,a|e) =
l

∑
a1=0

l

∑
a2=0

...
l

∑
am=0

p( f1... fm,a1...am|e1...el)

=
l

∑
a1=0

l

∑
a2=0

...
l

∑
am=0

m

∏
i=1

q(ai|i, l,m)t( fi|eai) (2.11)

* Model 3 - Fertility Probability

This model focuses on the “fertility” problem. It means that one source word can be

translated into a specific number of candidate words, for example 0, 1 or more [Koehn,

2010].

* Model 4 - Additional Relative Alignment Probability

This model integrates a finer distorsion model which is not described here. The math-

ematical equations of this model are presented in [Brown et al., 1993] and [Koehn,

2010].

* Model 5 - Fixing Deficiency Problem

In IBM model 3,4, the position of source word generated by target word NULL is not

modeled. Thus, IBM model 5 addresses this issue [Brown et al., 1993].
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b. Phrase-based Translation Modeling

To reduce the limitations of word-based models, another approach is used for modeling

TM, called phrased-based translation modeling. In this strategy, p( f |e) is defined as

follows [Koehn et al., 2003]:

p( f |e) = ∏
i

ϕ

(
f
′
i |e
′
i

)
d(ai,bi−1) (2.12)

where

• ϕ

(
f
′
i |e
′
i

)
denotes the translation propability for producing the ith hypothesis

phrase (word sequence) e
′
i with given ith phrase f

′
i of source sentence f .

• d(ai,bi−1) denotes the relative distribution probability of distortion, ai and bi−1

are the begin position of source phrase translated into ith hypothesis phrase and

the end position of source phrase translated into (i− 1)th hypothesis phrase, re-

spectively.

2.1.3.3 Search Process

The objectives of search are to determine the most probable candidate in target language

with given source sentence. The algorithms solving this task are often Greedy Hill-

Climbing Decoding, A* Search, Beam Seach [Koehn, 2010].

Figure 2.5: Pseudo-code for the stack decoding heuristic (taken from [Koehn,
2010]).
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Beam search algorithm is briefly presented in Figure 2.5. It uses stacks in order to

contain the possible hypotheses and each stack holds only a beam of one candidate.

In addition, the hypothesis sentence is generated from left to right within the partial

translation.

2.2 Automatic Speech Recognition (ASR)

2.2.1 Introduction

The purpose of this section is to review the literature on Automatic Speech Recognition

(ASR). It begins by the brief introduction of the methods and terminologies (in ASR)

used in this thesis.

Speech Recognition (also known as Automatic Speech Recognition - ASR) is the ability

of a system to transcribe a speech signal input into a textual representation correspond-

ing to the spoken word sequence.

2.2.2 ASR Architecture

General architecture of the state-of-the-art Statistical Speech Recognition system (hid-

den Markov model-based) is presented in Figure 2.6 and is based on 4 main modules:

acoustic model, lexical model, language model and decoding algorithm.

The following sections will discuss these components in more detail.

2.2.3 Decoder

Given the observation sequence X extracted from a speech signal, in order to find the

best sequence of words Ŵ , the ASR problem is defined as:

Ŵ = argmax
W
{P(W |X)} (2.13)
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Feature Extraction

Speech Corpus
Training

Text Corpus
Training

Acoustic Model

Lexicon

Decoder

Speech Signal
W

Feature Vector

X

P(X|W)

Language Model

P(W)

Recognition Hypothesis
W

Figure 2.6: Statistical Speech Recognition state-of-the-art architecture inte-
grating the three main components.

After using Bayes’ rule, equation becomes,

Ŵ = argmax
W

{
P(X |W )P(W )

P(X)

}
= argmax

W
{P(X |W )P(W )} (2.14)

where the term P(X) is ignored since it is a constant across the various word sequences

W .

In Equation 2.14, the first term P(X |W ), also called the likelihood of the data, is deter-

mined by an acoustic model and lexical model. And its second term P(W ) is typically

modeled by a language model.

2.2.4 Feature Extraction

During feature extraction phase, speech waveforms are transformed into the observation

vectors used to train the hidden Markov models [Rabiner, 1990]. The techniques used in

this phase are Mel-Frequency Cepstral Coefficients (MFCCs) [Davis and Mermelstein,

1980] and Perceptual Linear Prediction (PLP) [Hermansky, 1990]. Another type of

spectral analysis often used is Linear Predictive Coding (LPC) [Rabiner, 1990].
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2.2.5 Language Modeling

As presented in Subsection 2.1.3.1, we often use trigram method in Language Modeling

of Speech Recognition system. It is formulated as,

P(W ) = P(wn
1)≈ P(w1)P(w2|w1)

n

∏
i=3

P
(
wi|w2

i−2
)

(2.15)

P
(
wi|w2

i−2
)

= P(wi|wi−2,wi−1) =
C (wi−2wi−1wi)

C (wi−2wi−1)
(2.16)

More recently, Recurrent Neural Networks (RNNs) for language modeling were intro-

duced by [Elman, 1990] and are now state-of-the-art [Mikolov et al., 2010] [Jalalvand

et al., 2016]. However, we do not detail them since these RNNs were not used in our

thesis.

2.2.6 Acoustic Modeling

2.2.6.1 Hidden Markov Model (HMM)

Note that each speech waveform W in Equation 2.14 is determined by a sequence of

frames generated from a sequence of hidden states S represented by a subword/phonetic

segmentation.

Therefore, Equation 2.14 becomes,

Ŵ = argmax
W
{P(W )P(X ,S|W )} (2.17)

where the term P(X ,S|W ) is in statistical speech system that can be modeled by hidden

Markov model. It is illustrated in Figure 2.7.

In order to define an HMM completely [Rabiner, 1990], we have the following nota-

tions:

S = {s1,s2, ...,sN}: a set of N hidden states of the model

Π0 = {πi = P(si = 0)}: a set of transition probabilities of the initial states, where p(si =

0) denotes the probability of the ith state (si) at initial time (t = 0),
N
∑

i=1
πi = 1
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s1 s4s2 s3
a12 a23

a22 a33 a44

s5
a34 a45

b1(x) b2(x) b3(x)

Figure 2.7: A three-state left-to-right HMM model.

X = {x1,x2, ...,xK}: a set of K observation symbols

A = {ai j}, 1≤ i, j ≤ N: a set of state transition probabilities, where ai j = P(s j = t|si =

t− 1) denotes the transition probability from state i to state j. It is noted that ai j ≥ 0

and
N
∑
j=1

ai j = 1,1≤ i≤ N

B = {b j(k)},1 ≤ k ≤ K,1 ≤ j ≤ N: a set of the probabilistic distribution in each of

the states, where b j(k) = p(xk|s j = t) denotes the probability of the kth observation (xk)

from a state s j at time t. It is noted that b j(k)≥ 0 and
K
∑

k=1
b j(k) = 1,1≤ j ≤ N

Therefore, we can build the following compact notation to denote an HMM with dis-

crete probability distributions:

Λ = (A,B,Π) (2.18)

Given the above definition of HMM, there are three fundamental problems of interest:

1. Evaluation: the parameters of the HMM acoustic model A,B,Π are measured by

the Forward-Backward methods [Rabiner and Juang, 1993]. Hence, it may be used to

calculate the probability of the observation set given the model Λ, p(X |Λ).

2. Decoding: Viterbi algorithm [Viterbi, 1967] [Forney, 1973] can be used to find the

one-best state sequence (path) given observation set. More detailed information can be

found in [Rabiner and Juang, 1993].
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3. Learning: an alternative method for modifying the parameters of HMM A,B that

maximizes the probability of X is by using Baum-Welch algorithm (Expectation-

Maximization (EM) method [Dempster et al., 1977]) or using gradient approaches

[Levinson et al., 1983]:

Λ̂ = argmax
Λ

p(X |Λ) (2.19)

Using the above theory and the Markov assumption for Equation 2.20, we have:

Ŵ = argmax
W

{
P(W )∑

S
P(X |S)P(S|W )

}

= argmax
W

{
P(W )∑

S
∏

t
P(xt |st)P(S|W )

}
(2.20)

where xt , st denote the observation and hidden state at time t, respectively. The term

P(xt |st) is determined by the acoustic model while the term P(S|W ) is estimated by the

lexicon model that provides a probability of a mapping between words and subwords/-

phonemes.

Moreover, Gaussian Mixture Models, Subspace Gaussian Mixture Models and Deep

Neural Networks can be used to compute the probability density B in Equation 2.18.

The following sections describe in more details how this probability density function B

can be estimated.

2.2.6.2 Gaussian Mixture Models (GMM)

A Gaussian Mixture Model is represented by a weighted sum of M Gaussian compo-

nents, defined by the equation,

P(x|s) =
M

∑
i=1

wi θ (x|µi,Σi) (2.21)

where x denotes a D-dimensional continuous measurements or features vector, wi are the

mixture weights and their total value is 1, θ (x|µi,Σi) denotes the Gaussian component
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densities and each of them is a D-variate Gaussian function as given by the equation,

θ (x|µi,Σi) =
1

(2π)D/2 |Σi|1/2
exp

[
−1

2
(x−µi)

T
−1

∑
i

x−µi

]
(2.22)

And the notation presents the complete GMM from the mean vectors µi, covariance

matrices Σi and mixture weights from all of the component densities, where 1≤ i≤M,

Λ = {wi,µi,Σi} (2.23)

Also, the maximum likelihood estimations of the parameters of GMMs are obtained

from training data using the conventional expectation-maximization (EM) algorithm

[Dempster et al., 1977] from the well-trained prior-model.

2.2.6.3 Subspace Gaussian Mixture Models (SGMM)

Subspace Gaussian Mixture Model (SGMM) is an acoustic modeling based on reducing

the dimension of vector (also called subspace) that contains parameters of the mixture

weights and means of a shared Gaussian mixture model [Povey et al., 2011a]. The

probability model P(x|s), mean µ ji and mixture weights w ji for each state s of a HMM

can be expressed by the following equations,

P(x|s) =
I

∑
i=1

w jiθ
(
x|µ ji,Σi

)
(2.24)

µ ji = Meaniv j (2.25)

w ji =
exp
(
wT

i v j
)

I
∑

i′=1
exp
(
wT

i′ v j
) (2.26)

where i is the index of component Gaussian, I is the number of Gaussians for each state

or substate, Meani denotes the mean of projection matrix of the ith component Gaussian,

v j is the distinct state and v j ∈ RS (S is the given phonetic subspace dimension), wi is

the weight projection vector.
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Using the substates, the above equations could be extended as follows,

P(x|s) =
M j

∑
m=1

c jm

I

∑
i=1

w jmiθ
(
x|µ jmi,Σi

)
(2.27)

µ jmi = Meaniv jm (2.28)

w jmi =
exp
(
wT

i v jm
)

I
∑

i′=1
exp
(
wT

i′ v jm
) (2.29)

where m is the index of substate, M j is the number of substates of state s, v jm is the

specific substate in the subspace vector and v jm ∈ RS and the substate weights should

satisfy the next constraint,

M j

∑
m=1

c jm = 1 (2.30)

SGMMs have shown better performance than conventional GMM-based in various

speech recognition tasks [Lu et al., 2011].

2.2.6.4 Deep Neural Networks (DNN)

Conventional ASR systems have used GMM or SGMM based on HMM (abbreviated

by HMM/GMM or HMM/SGMM) to produce the sequential structure of speech sig-

nals. However, the above models suffer from several major drawbacks in representing

complex, non-linear relationships between the acoustic features and generation input of

speech. Seide et al. [2011], Dahl et al. [2012], Hinton et al. [2012] showed that using

DNN for acoustic modeling improves the performance of ASR systems. In this ap-

proach (HMM/DNN), GMM or SGMM are replaced by DNN for assessing and fitting

between the frame of acoustic observations and each HMM state.

DNN architecture is a conventional feed-forward artificial neural network, also called

Multi-Layer Perceptron (MLP) [Rosenblatt, 1962] with many hidden layers. The HM-

M/DNN architecture for large-vocabulary speech recognition having a L-hidden-layer

DNN is illustrated in Figure 2.8. While HMM represents the sequential features of

speech signal, DNN models the observations likelihood of all the senones (tied tri-phone

states directly) [Dahl et al., 2012].
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Figure 2.8: HMM/DNN architecture having L-hidden-layer DNN for large-
vocabulary speech recognition .

Mathematically, each unit (hidden state) jth in hidden layer lth could be determined as

h(l)j = g

(
b(l)j +∑

i
h(l−1)

i w(l)
i j

)
(2.31)

where 1≤ l ≤ L+1, g(.) denotes a sigmoid function, g(a) = (1+ exp(−a))−1 (applied

element-wise on vector a), b(l)j denotes the bias of the jth hidden unit in layer lth, w(l)
i j

is the weight of the relation between h(l−1)
j and h(l)j . Note that, h(0), also called “input

layer” stands for input features. And, the last layer, h(L+1), also called “output layer”

typically uses a softmax function for multi-class classification task or it uses a linear

activation function for regression task.

Each unit in each hidden layer is typically assigned to the weighted sum of its inputs

from the previous layer to a deterministic value using highly non-linear and varying
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functions such as a sigmoid function, tanh, etc. Deep networks can be trained with

gradient descent method. This method is sensitive to the initialisation data and back-

propagation technique is often trapped in poor local minima [Hochreiter et al., 2001].

Moreover, DNN using supervised training could cause overfitting [Ling et al., 2015].

To avoid this problem, Hinton [2010] presented an unsupervised pre-training strategy

by stacking Restricted Boltzmann Machine (RBM) model and then fine-tuning with

back-propagation method. This unsupervised approach is also named as Deep Belief

Network (DBN) [Hinton et al., 2006].

Furthermore, in HMM/DNN, the probability model to estimate the observation proba-

bilities could be determined as:

P(xt |st) =
P(st |xt)P(xt)

P(st)
(2.32)

where P(st |xt) denotes the hidden state (senone) posterior probability computed from

DNN, P(xt) is an constant and thus could be ignored, P(st) is prior probability of each

state computed from training corpora.

2.3 Specificities of Speech Translation

According to Tree [1995], speech disfluencies can be defined as follows: “phenomena

that interrupt the flow of speech and do not add propositional content to an utterance”.

In addition to the combination of sound and tone, there are other language auxiliaries

such as gestures of the speaker. Moreover, words in spoken language are used in several

ways: slang, local words, idiom, etc.

Schachter et al. [1991], Rao et al. [2007] and Segal et al. [2015] discussed about the

undesired impact of disfluencies on Machine Translation and about the impacts of the

errors of ASR on the performance of MT system. For instance, the speaker repeats

syllables in the sentence or the speaker adds some non-lexical utterances such as “huh”,

“uh”, “um”, etc.
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There are also consistency issues between general expected written inputs for translation

(MT) and produced outputs by speech transcription (ASR).

Also, in continuous speech, there is no word boundary information. Thus, output of au-

tomatic transcription will generate the word sequences without punctuation marks, case,

special characters, compound words, digit-numbers, etc. Thus, when translating speech

from source language to target language, it is important to recover, at least partially, the

above informations (or format) since MT systems are trained on (well-formed) texts.

In the scope of this thesis, we focus on the following consistencies in corpora:

• We should be able to transform back-and-forth every natural number (cardinal

number), ordinal number, Roman numerals into their letter version. For example,

“10”↔ “dix”; “10e”↔ “dixième”; “X”↔ “dixième”

• We should be able to add/remove (back-and-forth) punctuation (ASR should be

evaluated without punctuation, while MT is taking advantage of - and should be

evaluated with - punctuation). For example, “les chirurgiens de los angeles ont

dit qu’ils étaient outrés, a déclaré camus.” ↔ “les chirurgiens de los angeles ont

dit qu’ils étaient outrés a déclaré camus”

• We should be able to add/remove (back-and-forth) abbreviations and special

characters. For example, “m camus” ↔ “monsieur camus”; “mme piegza” ↔

“madame piegza”; “%”↔ “pourcent”; “e”↔ “euro”

2.4 Evaluation

In this section, we focus on the metrics used to measure the of language models (LM),

transcription (ASR) and translation (MT).
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2.4.1 Language Model Performance (Perplexity)

One metric for estimating LMs is perplexity that is computed on heldout dataset

[Rosenfeld, 2000], defined as,

perplexity(W ) = 2
− 1

M

N
∑

i=1
log2 P(Wi)

(2.33)

where M and N is the number of words and the number of sentences in heldout dataset,

respectively, P(Wi) is the probability of the ith sentence evaluated by the model.

2.4.2 Transcription Performance - Word Error Rate (WER)

One of the most used quality estimation for speech recognition is Word Error Rate

(WER) measurement methodology, defined as following:

WER =
#Ins+#Sub+#Del

#Total of Tokens in the Reference
× 100% (2.34)

where #Ins denotes the number of aligned tokens that are added in the ASR hypothesis,

#Sub is the number of words in reference that are replaced by the aligned words in the

hypothesis, #Del is the number of words that are missed out from the reference.

Let #Corr be the number of words that appear on both hypothesis sentence and associ-

ated reference sentence, then WER can be also defined as:

WER =
#Ins+#Sub+#Del

#Corr+#Sub+#Del
× 100% (2.35)

Note that WER could be larger than 100% when #Ins > #Corr.

2.4.3 Translation Performance

2.4.3.1 Bilingual Evaluation Understudy (BLEU)

Bilingual Evaluation Understudy (BLEU) is a method to assess the quality of a machine

translation hypothesis. Papineni et al. [2002] proposed this metric and presented some
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correct correlation with human evaluation of MT. However, this controversial feature

was more discussed later on [Callison-Burch et al., 2006].

We define p1, p2, p3, ...pN as (respectively) unigram precision (proportion of correct

words among all candidate words), bigram precision (proportion of correct bigrams

among all candidate bigrams), trigram precision (proportion of correct trigrams among

all candidate trigrams), etc. Then we put all precisions together by computing the geo-

metric mean of the given ratios as following:

Gmean =

(
N

∏
i=1

pi

)1/N

= exp

loge

( N

∏
i=1

pi

)1/N


= exp

(
1
N

N

∑
i=1

loge (pi)

)
(2.36)

Next, we introduce the brevity penalty (BP) that computes from the reference length r

and from the hypothesis translation length c as:

BP =

1 if c > r

exp
(
1− r

c

)
otherwise

(2.37)

Finally, BLEU is defined as following:

BLEU = BP× exp

(
1
N

N

∑
i=1

loge (pi)

)
(2.38)

2.4.3.2 Translation Error Rate (TER)

Translation Error Rate (TER) [Snover et al., 2006] is an automated metric that counts the

number of editing operations (substitution (#SUB), deletion (#DEL), insertion (#INS) of

a word, as well as shifts (#SHF) of a word or of adjacent words, needed to transform a

MT hypothesis into a reference translation. TER is given by the next equation:

TER =
number of editing operations
average length of references

=
#SUB+#DEL+#INS+#SHF

average length of references
(2.39)
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2.4.3.3 Human-mediated Translation Error Rate (HTER)

Human-mediated Translation Error Rate (HTER) [Snover et al., 2006] is a semi-

automatic (edit-distance) metric that is also used to estimate the quality of MT system.

It depends on skilled monolingual human editors that correct MT hypotheses in order to

convey the original meaning of the source sentence. HTER can be seen as TER where

references have been generated by humans who post-edited the MT output itself.

2.4.3.4 Metric for Evaluation of Translation with Explicit ORdering (METEOR)

Metric for Evaluation of Translation with Explicit ORdering (METEOR) [Banerjee and

Lavie, 2005] was proposed to better correlate with human judgements by using more

than word-to-word alignments between a hypothesis and some references. The align-

ment is made according to three modules: the first stage uses exact match between word

surface forms, the second one compares word stems and the third one uses synonyms

from a lexical resource such as WordNet.

Mathematically, METEOR score uses Fmeasure
3 and an additional Penalty factor as fol-

lows:

F-measure =
precision× recall

α×precision+(1−α)× recall
(2.40)

Penalty = γ×
(

number of chunks
number of matches

)β

(2.41)

METEOR score = (1−Penalty)×F-measure (2.42)

2.5 Conclusion

In this chapter, we described the basic concepts of machine translation (MT) and auto-

matic speech recognition (ASR), as well as the specificities of spoken language trans-

lation (SLT). Finally, metrics used to assess ASR, MT and SLT performance were pre-

sented.
3precision, recall and F-measure will be discussed in more detail in Subsection 3.6.1.
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In the next chapter, we will review the specific approaches used in Confidence Estima-

tion (CE) which is the main subject of this thesis.



Chapter 3

Main Concepts in Confidence

Estimation (CE)

This chapter provides the background on Confidence Estimation (CE) in Spoken Lan-

guage Translation (SLT), Machine Learning (ML) techniques and automatic metrics

used in Confidence Estimation. First, existing approaches for various levels of CE in

SLT are summarized. Second, we focus more on Word level Confidence Estimation

system for SLT. We also present the WCE methods and performance metrics.

The overall structure of this chapter takes the form of seven sections. This chapter be-

gins by a brief overview of automatic quality assessment of spoken language translation

in Section 3.1. Section 3.2 explains that CE can be estimated at several levels to predict

the quality of speech translation output. Then, we formalize the problem in Section

3.3. Section 3.4 presents the set of features used for WCE in SLT. Whereas Section 3.5

presents varying techniques to train / to label / to optimize the performance of CE sys-

tem, in Section 3.6 we explain how to evaluate the performance of CE system. Finally,

a conclusion gives a brief summary of this chapter.

31
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3.1 Introduction

Automatic quality assessment of spoken language translation (SLT), also named con-

fidence estimation (CE) or quality estimation (QE), is an important topic because it

allows to know if a system produces (or not) user-acceptable outputs. In interactive

speech to speech translation, CE helps to judge if a translated turn is uncertain. For

speech-to-text applications, CE may tell us if output translations are worth being cor-

rected or if they require new translation from scratch. Moreover, an accurate CE can

also help to improve SLT itself through a second-pass N-best list re-ranking or search

graph re-decoding [Bach et al., 2011] [Luong et al., 2014a] [Besacier et al., 2015]. Con-

sequently, building a method which is able to point out the correct parts as well as detect

the errors in a speech translated output is crucial to tackle above issues. Basing on the

use-cases, we use CE in several levels such as document-level CE, sentence-level CE,

phrase-level CE, word-level CE which will be presented in the next section.

Indeed, the first works about confidence estimation for MT [Ueffing et al., 2003b] [Blatz

et al., 2004] were inspired by work done in automatic speech recognition [Wessel et al.,

2001]. The combination of internal and external features was used in these systems.

Later on, Xiong et al. [2010] integrated POS tagging and other external features. In the

same way, Felice and Specia [2012] proposed 70 linguistic features for quality estima-

tion at sentence level.

Recent workshops proposed some shared evaluation tasks of WCE systems, in which

several attempts of participants to mix internal and external features were successful.

The estimation of the confidence score uses mainly classifiers like Conditional Random

Fields [Han et al., 2013] [Luong et al., 2014b], Support Vector Machines [Langlois

et al., 2012] or Perceptron [Bicici, 2013].

Further, some investigations were conducted to determine which feature seems to be

the most relevant. Langlois et al. [2012] proposed to filter features using a forward-

backward algorithm to discard linearly correlated features. Using Boosting as learning

algorithm, Luong et al. [2015] was able to take advantage of the most significant fea-

tures.
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Finally, several toolkits for WCE were recently proposed: TranscRater for ASR [Jalal-

vand et al., 2016] 1, Marmot for MT2 as well as WCE toolkit [Servan et al., 2015] 3 that

will be presented in more details in the next chapter.

3.2 Granularity of Confidence Estimation (CE)

Confidence Estimation (CE) is the task used to predict the quality of Machine Transla-

tion hypotheses given the source sentences. There are various levels in CE depending

on the use-cases and the applications such as word-based level CE, phrase-based level

CE, sentence-based level CE and document-based level CE that are defined as follows:

• Word-based level Confidence Estimation (WCE): in this task, the aim is to mea-

sure the confidence score which is the probability of each word in MT candidates

to be a correct translation. In other words, the purpose of this task is to predict

the word-level errors in MT hypotheses.

• Phrase-based level Confidence Estimation, also named as Segment-based level

CE: the purpose is to measure the quality of distinct phrases in MT output. These

phrases could be Noun Phrase, Verb Phrase, Adverbial Phrase, etc.

• Sentence-based level Confidence Estimation: its purpose is to measure the quality

of the whole hypothesis sentence of MT output.

• Document-based level Confidence Estimation: its goal is to predict quality of

units larger than sentences (entire documents).
1https://github.com/hlt-mt/TranscRater
2https://github.com/qe-team/marmot
3https://github.com/besacier/WCE-LIG

https://github.com/hlt-mt/TranscRater
https://github.com/qe-team/marmot
https://github.com/besacier/WCE-LIG
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3.3 WCE System for SLT

Given signal x f in the source language, spoken language translation (SLT) consists in

finding the most probable target language sequence ê = (e1,e2, ...,eN) so that

ê = argmax
e
{p(e|x f , f )} (3.1)

where f = ( f1, f2, ..., fM) is the transcription of x f . Now, if we perform confidence

estimation at the “words” level, this problem is also named as Word-level Confidence

Estimation (WCE) and we can represent this information as a sequence q (same length

N of ê) where q = (q1,q2, ...,qN) and qi ∈ {good,bad}4.

Then, integrating automatic quality assessment in our SLT process can be done as fol-

lowing:

ê = argmax
e

∑
q

p(e,q|x f , f ) (3.2)

ê = argmax
e

∑
q

p(q|x f , f ,e)∗ p(e|x f , f ) (3.3)

ê ≈ argmax
e
{max

q
{p(q|x f , f ,e)∗ p(e|x f , f )}} (3.4)

In the product of 3.4, the SLT component p(e|x f , f ) and the WCE component

p(q|x f , f ,e) contribute together to find the best translation output ê. In previous work,

WCE has been treated separately in ASR or MT contexts.

3.4 Features Set for WCE in SLT

In this section, we will present a discussion of various state-of-the-art features described

in previous works and then inherited in our proposed list of extracted features whose

detailed analysis will follow in Section 4.3.

Generally, the features for Word-level Confidence Estimation (WCE) can be classified

in two types regarding their origins: the “internal features” and the “external features”

4qi could be also more than 2 labels, or even scores but this paper mostly deals with error detection
(binary set of labels), with the exception of Chapter 6 where three labels are considered.
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[Servan et al., 2015]. On the one hand, internal features are extracted from the AS-

R/SMT system itself like language model, alignment table, N-best list, word graph, etc.

On the other hand, external features mainly come from linguistic knowledge sources

like Part-Of-Speech (POS) Tagger (TreeTagger [Schmid, 1994]), semantic parser (such

as DBnary API [Sérasset, 2014] or BabelNet API [Navigli and Ponzetto, 2012]), etc.

3.4.1 WCE Features for Speech Transcription (ASR)

Recent works in regarding effective confidence measures have tried to detect errors

on ASR outputs. Confidence measures are introduced for Out-Of-Vocabulary (OOV)

detection by Asadi et al. [1990].

Young [1994] introduces the use of word posterior probability (WPP) as a confidence

measure for speech recognition. It is computed by dividing the total of the posterior

probabilities of all hypotheses of the word lattice containing the given word by the total

of the posterior probabilities of all word lattice hypotheses in lattice-base search graph

[Wessel et al., 2001] [Alabau et al., 2007].

Mauclair et al. [2006] proposed a combination of WPP with Backoff behavior of N-

gram. The experimental results of this paper showed a significant improvement of CE

on the correctness of recognized words.

Also, more recent approaches [Lecouteux et al., 2009] for OOV detection use side-

information extracted from the recognizer: hypothesis density, normalized likelihoods

(WPP), decoding process behavior, linguistic features, acoustic features (acoustic sta-

bility, duration features) and semantic features.

Jalalvand et al. [2016]5 proposed one of the prominent external features for ASR Quality

Estimation: Part-Of-Speech (Lexical Features) which indicates grammatical property

of each token. Part-Of-Speech (POS) is also named as word class, lexical class, or

lexical category. For instance, English POS are verb, pronoun, noun, adjective, adverb,

pronoun, preposition, etc.

5https://github.com/hlt-mt/TranscRater

https://github.com/hlt-mt/TranscRater
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3.4.2 WCE Features for Machine Translation (MT)

3.4.2.1 Internal Features

Xiong et al. [2010] also proposed to use the information of the target token itself and the

information of the bigram sequence and the trigram sequence. Moreover, Luong et al.

[2013b] proposed the source word features that are the source context aligned to the

target token in IOB format (short for Inside, Outside, Beginning). In some cases, one

source word could be aligned to many target words. Thus, “B-” prefix and “I-” prefix

will be added to the first context of aligned word and the remaining context of aligned

words, respectively. “O-” prefix will be added to the context of source word that have

no any alignment to any target word.

f B-je B-verrai I-verrai B-peter B-demain

e i will see peter tomorrow

Table 3.1: Example for IOB format.

Han et al. [2013] focused on various N-gram combinations of target words. Raybaud

et al. [2011] described Backoff behaviour of the N-gram (using a target language model)

that concentrated on several cases of the occurrences of the previous words depending

on the language model.

Moreover, Bach et al. [2011] proposed another internal feature corresponding to the

collocations of the target words and source words, also named as the alignment context

feature. Table 3.2 presents an example of the alignment context feature in which French,

English are the source language and the target language, respectively.

f les chirurgiens de los angeles ont dit

e surgeons in los angeles have said

Table 3.2: Example for the Collocations of target tokens and source tokens.

It can be seen from the data in Table 3.2 that source word “angeles” is aligned to target

word “angeles”. We have thus the values of the source alignment context features (1-

word context) such as “angeles/los”, “angeles/angeles”, “angeles/ont” and the values
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of the target alignment context features (2-word context) such as “angeles/in”, “ange-

les/los”, “angeles/angeles”, “angeles/have”, “angeles/said”.

Ueffing et al. [2003a] presented Word Posterior Probability (WPP), a probability dis-

tribution of each target word in the best hypothesis. WPP could be calculated by word

graph, N-best list.

In addition, Blatz et al. [2004] presented WPP “any” and WPP “exact”. WPP “any” of a

word in the best hypothesis is conditional probability distribution on all MT candidates

containing this word in any position. Its WPP “exact” is calculated by the condition on

MT candidates having this word in the same position. Blatz et al. [2004] also showed

that the combination of WPP “any” and WPP “exact” has better performance than all

the other single features, including heuristic and semantic features.

3.4.2.2 External Features

Blatz et al. [2004], Bach et al. [2011] proposed a lexical feature for MT Confidence

Estimation based on Part-Of-Speech (POS). In addition, POS could be tagged by sev-

eral POS taggers such as TreeTagger [Schmid, 1994], Stanford POS Tagger [Toutanova

et al., 2003], Trigrams’n’Tags [Brants, 2000], etc.

Bicici [2013] presented the most dominant among several word feature types: “common

cover links” (Concerning subtree structure of syntactic tree, the links part from this leaf

node of word to other leaf nodes).

Furthermore, Luong et al. [2013b], Bojar et al. [2015] integrated a number of new

indicators relying on pseudo reference, syntactic behavior (constituent label, distance

to the semantic tree root) and polysemy characteristic. Furthermore, the authors also

proposed lexical features whether target token is a stopword, a punctuation mark, a

proper noun, a number and semantic feature such as the number of senses of the target

and source tokens in WordNet [Miller, 1995].
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3.5 Machine Learning Methods

In this section, we will describe a set of effective algorithms to tackle WCE as Naïve

Bayes methods, Decision Tree method, Conditional Random Fields (CRFs) technique

and Boosting method (concentrating on AdaBoost technique).

3.5.1 Naïve Bayes

Naïve Bayes methods are a set of supervised learning techniques based on Bayes theo-

rem with “naïve” independence assumption between each pair of input features. Naïve

Bayes methods have several practical applications such as multi-class prediction [Rish,

2001], text classification [McCallum and Nigam, 1998] [Frank and Bouckaert, 2006],

spam filtering [Metsis and et al., 2006], sentiment analysis [Pang et al., 2002] [Trous-

sas et al., 2013], real-time prediction [Stella and Amer, 2012], recommendation system

[Miyahara and Pazzani, 2000] [Wang and Tan, 2011].

Mathematically, given a possible class outcomes y and a dependent input feature vec-

tor x = 〈x1,x2,x3, ...,xn〉. Using Bayes’ theorem, the conditional probability could be

expressed as follows:

P(y|x) = P(y|x1,x2, ...,xn) =
P(x1,x2, ...,xn|y)P(y)

P(x1,x2, ...,xn)
(3.5)

Applying the following “naïve” independence assumption for all xi ∈ x:

P(xi|y,x1,x2, ...,xi−1,xi+1, ...,xn) = P(xi|y) (3.6)

to equation 3.5, we have:

P(y|x) = P(y|x1,x2, ...,xn) =

P(y)
n
∏
i=1

P(xi|y)

P(x1,x2, ...,xn)
(3.7)

The goal is to train a classifier P(y|x) that computes the probability distribution over

possible value of y given x. In other words, it combines the prior probability with

observed data [Mitchell, 1997].
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Given a new instance x = 〈x1,x2,x3, ...,xn〉, we can find the most probable candidate of

y using the naïve Bayes classification rule:

ŷ = argmax
y

P(y)
n
∏
i=1

P(xi|y)

P(x1,x2, ...,xn)
= argmax

y
P(y)

n

∏
i=1

P(xi|y) (3.8)

Here P(x1,x2, ...,xn) is constant given the input, thus could be ignored; P(y) denotes the

relative frequency of y in given training corpora; the likelihood of the features P(xi|y)

could be generated by different models such as a Normal distribution, also called Gaus-

sian naïve Bayes:

P(xi|y) =
1√

2πσ2
y

exp

(
−
(xi−µy)

2

2σ2
y

)
(3.9)

where σy and µy are standard deviation and mean varying from feature to feature, re-

spectively.

3.5.2 Decision Tree

Decision Tree method [Quinlan, 1986] is one of the methods commonly used in data

mining, statistics, machine learning and natural language processing domains. It is

represented by a tree structure in which each internal node corresponds to an attribute,

each branch from a node denotes a value of an attribute, the topmost node represents

the root node of the tree. For instance, Figure 3.1 shows a decision tree representation.

Outlook

Humidity Wind

Sunny Rain

No Yes

High Normal

Yes No

Weak Strong

Figure 3.1: An Example of Decision Tree Technique.
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In addition, given training data is represented in records of the following form:

(x,Y ) = (x1,x2, ...,xn,Y ) (3.10)

where x = (x1,x2, ...,xn) is an instance of the set of possible instances X .

For example, in Figure 3.1, we have x = 〈Outlook=“Sunny”, Humidity=“High”〉;

(x,Y ) = 〈Outlook=“Sunny”, Humidity=“High”, PlayTennis=“No”〉.

Moreover, we could have the set of function that illustrate the hypotheses:

T = {t|t : X → Y} (3.11)

where Y is a set of discrete values or a set of continuous values; each hypothesis t is

denoted by a decision tree.

Note that, if Y takes discrete values (a finite set of values), we call decision tree mod-

els as “classification tree” using the metrics entropy and information gain to find the

“best” decision attribute such as ID3 (Iterative Dichotomiser 3) [Quinlan, 1986], C4.5

[Quinlan, 1993], C5.0 (an evolved version of C4.5). And if Y takes continuous values,

they are called by “regression tree” using the metrics Gini impurity to find the “best”

decision attribute such as CART (Classification And Regression Trees) [Breiman et al.,

1984].

In practice, in order to construct more than one decision tree, we could use the following

strategies:

• Random decision forests classifier [Ho, 1995, 1998]

• Boosted tree technique that emphasizes the training instances of previous ‘weak

learners’, such as Adaptive Boosting (Adaboost) that will be detailed in Subsec-

tion 3.5.4

• Bagging decision tree [Breiman, 1996].

Moreover, to reduce the size of decision trees, we could use “pruning” technique [Man-

sour, 1997]. In other words, this technique is used to remove nodes of the decision tree
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that provides little supplementary information. There are several techniques to prune

the sub-trees beginning from the root of the decision tree or starting at its leaf such

as Reduced Error Pruning [Quinlan, 1987], Cost Complexity Pruning [Breiman et al.,

1984], Error-based Pruning [Quinlan, 1993].

3.5.3 Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) [Lafferty et al., 2001] are the discriminative prob-

abilistic undirected graphical models used to measure the conditional probability of a

label sequence given the observation sequence.

Mathematically, let X = x1,x2,x3, ...,xn and Y = y1,y2,y3, ...,yn denote the observation

sequence and the label sequence, respectively.

Let G = (V,E) be a probabilistic graph.

Let V = X ∪Y be the set of the probability distributions of the nodes (vertices) that

denote the set of the cliques C in the graph G.

Let E ⊆V ×V denote the set of the edges of the graph G.

Therefore, a CRF defines the conditional probability of the random variable y ∈ Y con-

ditioned on X as follows,

P(y|x) = 1
Z(x) ∏

c∈C
exp

(
∑
k

λk fk (yc,xc)

)
(3.12)

Here,

• fk are the feature functions or sufficient statistics on any subset of random variable

in the pair (yc,xc) ∈ (Y,X)

• λk are the real-valued parameter vectors, also known as the trained weights for

each feature function. This parameter estimation is typically calculated by max-

imizing the likelihood function of training data using by gradient descent algo-

rithms or quasi-Newton techniques such as BFGS [Bertsekas, 1999]
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• Z(x) denotes the observation-dependent normalization term over all possible state

sequence:

Z(x) = ∑
y

∏
c∈C

exp

(
∑
k

λk fk (yc,xc)

)
(3.13)

More details of CRF-based models and the relationship between CRF-based models

(such as linear-chain CRF, general CRF), naïve Bayes, logistic regression and hidden

Markov models are described in [Sutton and McCallum, 2012].

3.5.4 Boosting Method

The main purpose of boosting method [Kearns and Valiant, 1989] [Schapire, 1990]

[Freund, 1995] is to build a robust learning technique that is an ensemble of given

‘weak’ learning algorithms for improving the prediction accuracy.

Algorithm 1 AdaBoost algorithm combining K ‘weak’ learners rules. D denotes the set
of all training data and Hk,1≤ k≤K is the learner function at each step of the algorithm
[Freund and Schapire, 1999].

Initialize the weighted for training corpus: wi =
1
N , i = 1,2,3, ...,N

while k ≤ K do
Finding ‘weak’ classifier Hk on given training data Dk after applying current

weights wi.
Calculating the error rate of current classifier: εk = Pdi∼Dk [Hk(xi) 6= yi]
Updating the weighted training corpus with the weighted contribution of current

classifier αk =
1
2 ln
(

1−εk
εk

)
and Zk denotes the normalization constant

Dk+1(i) =

{
1
Zk

Dk(i) exp(−αk) if yi = Hk(xi),
1
Zk

Dk(i) exp(αk) otherwise

end while
Generating the final classifier that combines above ‘weak’ classifiers:

H(x) = sign

(
K

∑
k=1

αkHk(x)

)

In our work, we use AdaBoost (Adaptive Boosting) [Freund and Schapire, 1996] that is

one of the most well-known boosting methods. The differences between AdaBoost and
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other boosting methods are that the ‘weak’ classifiers are learned on weighted training

data whose weights are generated from previous classifier or the initialized weights.

AdaBoost is described by Algorithm 1 with given training data D = {d1,d2, ...,dN} =

{(x1,y1),(x2,y2), ...,(xN ,yN)}, K is the maximum number of classifiers in ensemble

method.

In summary, when finding the learner rules, whereas boosting method uses random sub-

set training data, AdaBoost utilizes the weighted training data [Ferreira and Figueiredo,

2012].

3.6 Evaluation

This section presents automatic performance metrics for classification (binary label or

multi-label) in pattern recognition and information retrieval [Rijsbergen, 1979] that are

recall (also called as sensitivity), precision (so-called as positive predictive value) and

F-measure (harmonic mean of recall and precision) used for this thesis. We also de-

scribe briefly other metrics such as Mean Absolute Error (MAE)and Root Mean Square

Error (RMSE).

3.6.1 Precision, Recall, F-measure

In this study, recall and precision of label "G" are given as follows,

precision =
|{relevant tokens}∩{retrieved tokens}|

{retrieved tokens}
× 100% (3.14)

recall =
|{relevant tokens}∩{retrieved tokens}|

{relevant tokens}
× 100% (3.15)

While {retrieved tokens} is the number of tokens predicted as "G", {relevant tokens}

denotes the number of tokens whose oracle labels are "G". It is noted that the numerators

in two Equations 3.14 and 3.15 denote the number of tokens that both its oracle label

and real label assigned by the classification system are "G".
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Therefore, precision illustrates how many returned labels are correct while recall shows

how many relevant labels the model could return.

Generally, used as a mean of ratios, harmonic mean is defined as follows,

Hmean =
N

N
∑

i=1

1
mi

× 100% (3.16)

When N = 2, m1 = precision and m2 = recall, thus, we have:

Hmean =
2

1
precision +

1
recall

× 100%

=
2×precision× recall

precision+ recall
× 100% (3.17)

Hmean also known as F-measure [Rijsbergen, 1979] should satisfy the constraint,

0≤ F-measure≤ 100% (3.18)

So, to assess F-measure, we could use the next formula,

F-measure =
2×precision× recall

precision+ recall
× 100% (3.19)

Similarly, to estimate the performance metrics (precision, recall and F-measure) of

other labels (for example, label "B"), we could reuse the Equations 3.14, 3.15 and 3.19.

3.6.2 Mean Absolute Error (MAE), Root Mean Square Error

(RMSE)

To estimate the quality of the performance of sentence-level CE system, we could use

two of the most common metrics: Mean Absolute Error (MAE), Root Mean Square

Error (RMSE).

The mean absolute error (MAE) is a metric used to assess how far prediction scores

differ from oracle scores.

The root mean square error (RMSE), also called the root mean square deviation

(RMSD), measures the average difference between prediction scores and oracle scores.
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Mathematically, let y = (y1,y2, ...,yN) and ŷ = (ŷ1, ŷ2, ..., ŷN) denote the prediction

scores and the oracle scores of the test corpora having N sentences, respectively.

MAE = N−1
N

∑
t=1
|et |= N−1

N

∑
t=1
|yt− ŷt | (3.20)

RMSE =

√
N−1

N

∑
t=1

e2
t =

√
N−1

N

∑
t=1

(yt− ŷt)
2 (3.21)

Furthermore, both MAE and RMSE estimate the mean of forecast error in distributions

of variable in test sample using negatively oriented scores. It means that lower values

are better. [Willmott and Matsuura, 2005] presented the clear comparisons between

MAE and RMSE in assessing average model performance.

3.7 Conclusion

In this chapter, we described an overview of quality estimation in spoken language trans-

lation. We described several CE approaches. We began exploring several conventional

features (also named as ‘prediction indicators’). They are proposed for the quality esti-

mation of both Automatic Speech Recognition system and Machine Translation system

and inheriting thus in our proposed list of features for SLT in the following chapter.

Next, we reviewed a few ML techniques used to solve WCE problems for SLT and to

optimize models with the aim of improving the prediction performance. Performance

metrics for WCE were also introduced.

In the next chapter, we present the main methods used in our investigation. Furthermore,

we will also propose our LIG-WCE Toolkit which is a complete out-of-the-box WCE

system for SLT and we will show the preliminary results as well.





Chapter 4

An Evaluation Framework for

Confidence Estimation in Spoken

Language Translation

4.1 Motivation

In this chapter, we focus on presenting the experimental setup and the main components

of WCE system for SLT to build preliminary results as well. We propose both the

formalization of WCE system for SLT and a complete out-of-the-box WCE system,

as well as home made corpus. This represents a complete evaluation framework for

reproducible experiments in SLT confidence estimation.

The remainder of this chapter is structured as follows. Section 4.2 describes speech cor-

pus (distributed to the research community1) dedicated to WCE for SLT and presents

the experimental setup as well. In Section 4.3, we propose our LIG-WCE toolkit to

predict the quality of Spoken Language Translation output that integrates several exist-

ing libraries / toolkits to extract the list of novel features for SLT system inherited the

conventional ones presented in Chapter 3. We then detail and analyze the preliminary

1https://github.com/besacier/WCE-SLT-LIG
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results using only MT features or only ASR features in Section 4.4. Finally, Section 4.5

concludes this chapter2.

4.2 Dataset, ASR and MT Modules

4.2.1 Dataset

4.2.1.1 Starting Point: MT Post-Edited Corpus

We applied our SMT system for French-English translation task. It generates from

10881 French sentences (News corpora of evaluation campaign from 2006 to 2010 in

Workshop on Machine Translation) to English hypotheses. The baseline SMT system

will be presented in subsection 4.2.3. Post-edition corpus was collected by a crowd-

sourcing platform (Amazon’s Mechanical Turk) [Potet et al., 2012]. Note that Potet

et al. [2012] showed that more than 87% of collected post-editions was judged to im-

prove the hypotheses and more than 94% of the crowdsourced post-editions was as-

sessed at least of professional quality.

To label each target word, we used TERp-A toolkit [Snover et al., 2008]. Table 4.1

presents the labels obtained using TERp-A toolkit for one reference (post-edition) and

hypothesis pair. Each phrase or word in hypothesis is aligned to a phrase of word of

the reference with various types such as substitution(“S”), phrasal substitution (“P”),

insertion (“I”), stem matches (“T”) and synonym matches (“Y”). Moreover, to mark an

exact match, we used symbol “E”. Therefore, to apply binary classifiers (good/bad), we

separate above symbols into 2-label set: Y, T, E belong to good label set while I, P, S

belong to bad label set.

2Many of the findings observed in this chapter were published in [Le et al., 2016a] and in [Servan
et al., 2015]
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Reference The consequence of the fundamentalist

E S E E S

Hyp After Shift The result of the hard-line

Reference movement also has its importance .

Y I E D P E

Hyp After Shift trend is also important .

Table 4.1: Example of labels extracted by TERp-A toolkit.

4.2.1.2 Extending the Corpus with Speech Recordings and Transcripts

The dev set and tst set of this corpus were recorded by french native speakers. Each

sentence was uttered by 3 speakers, leading to 2643 and 4050 speech recordings for dev

set and tst set, respectively. For each speech utterance, a quintuplet containing: ASR

output ( fhyp), verbatim transcript ( fre f ), English text translation output (ehypmt ), speech

translation output (ehypslt ) and post-edition of translation (ere f ), was made available.

This corpus is available on a github repository3. More details are given in Table 4.2. The

total length of the dev and tst speech corpora obtained are 16h52, since some utterances

were pretty long. Next sections detail how this quintuplet was obtained using ASR and

MT.

Corpus #sentences #speech recordings #speakers Duration

dev 881 2643 15 ( 9 women + 6 men) 5h51
tst 1350 4050 27 (11 women + 16 men) 11h01

Table 4.2: Details on our dev and tst corpora for SLT.

4.2.2 ASR Systems

To obtain the speech transcripts ( fhyp), we built a French ASR system based on KALDI

toolkit [Povey et al., 2011b]. Acoustic models are trained using several corpora (ES-

TER, REPERE, ETAPE and BREF120) representing more than 600 hours of french

transcribed speech.

3https://github.com/besacier/WCE-SLT-LIG/

https://github.com/besacier/WCE-SLT-LIG/
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LM 1-gram 2-grams 3-grams

small (ASR1) 62K 1M 59M

big (ASR2) 95K 49M 301M

Table 4.3: Details on language models (LM) used in our two ASR systems.

The baseline GMM-HMM system is based on mel-frequency cepstral coefficient

(MFCC) acoustic features (13 coefficients expanded with delta and double delta fea-

tures and energy: 40 features) with various feature transformations including linear

discriminant analysis (LDA), maximum likelihood linear transformation (MLLT), and

feature space maximum likelihood linear regression (fMLLR) with speaker adaptive

training (SAT). The GMM acoustic model makes initial phoneme alignments of the

training data set for the following DNN acoustic model training.

The speech transcription process is carried out in two passes: an automatic transcript is

generated with a GMM-HMM model of 43182 states and 250000 Gaussians. Then word

graphs outputs obtained during the first pass are used to compute a fMLLR-SAT trans-

form on each speaker. The second pass is performed using DNN acoustic model trained

on acoustic features normalized with the fMLLR matrix. CD-DNN-HMM acoustic

models are trained (43182 context-dependent states) using GMM-HMM topology.

We propose to use two 3-gram language models trained on French ESTER corpus [Gal-

liano et al., 2006] as well as on French Gigaword (vocabulary size are respectively 62k

and 95k). The ASR systems LM weight parameters are tuned through WER on the dev

corpus. Details on these two language models can be found in Table 4.3.

In our experiments, we propose two ASR systems based on the previously described

language models. The first system (ASR1) uses the small language model allowing a

fast ASR system (about 2x Real Time), while in the second system lattices are rescored

with a big language model (about 10x Real Time) during a third pass.

Table 4.4 presents the performances obtained by two above ASR systems.

These WER may appear as rather high according to the task (transcribing read news).
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Task dev set tst set

ASR1 21.86% 17.37%
ASR2 16.90% 12.50%

Table 4.4: ASR performance (WER) on our dev and tst set for the two different
ASR systems.

A deeper analysis shows that these news contain several foreign-named entities, espe-

cially in our dev set. This part of the data is extracted from French medias dealing

with european economy in EU. This could also explain why the scores are significantly

different between dev and tst sets. In addition, automatic post-processing is applied to

ASR output in order to match requirements of standard input for MT system.

4.2.3 SMT System

We use Moses toolkit, phrase-based translation system, [Koehn et al., 2007] to translate

French ASR into English (ehyp). We also use some scripts, given by Moses toolkit, to

lowercase, to normalize, to tokenize, to calculate BLEU score such as lowercase.perl,

normalize-punctuation.perl, tokenizer.perl, multi-bleu.perl, respectively.

To train our target language model, we use SRI Language Modeling (SRILM) Toolkit

[Stolcke, 2002] on News monolingual corpus (48653884 sentences). We use News

and Europarl parallel corpus (1638440 sentences) using for WMT evaluation campaign

2010 to train our target translation model. In addition, we also keep the values of default

configuration when running Moses toolkit: log-linear model with 15 weighted compo-

nent scores, including that 6 lexical reordering, 1 distortion, 1 language model, 1 word

penalty, 1 phrase penalty, 4 translation model, 1 unknown word penalty [Potet et al.,

2010].

In the decoder phase, we used the following options to generate the information of both

source and target languages such as N-best hypotheses of SMT system, word alignment

information in N-best list:



Chapter 4. An Evaluation Framework for CE in Spoken Language Translation 52

• -include-segmentation-in-n-best and -print-alignment-info-in-n-best: extract the

information of word-to-word alignments in the N-best list; noted that word-to-

word alignments are excluded from the phrase table.

• -n-best-list PATH_OF_FILE SIZE [distinct]: extract an N-best hypotheses of size

SIZE to the path of file PATH_OF_FILE.

4.2.4 Obtaining Quality Assessment Labels for SLT

After building an ASR system, we have a novel factor of quintuple: ASR hypothesis

fhyp. Its reference version is our verbatim transcript called fre f . After translating ASR

output ( fhyp) by the same SMT system (already mentioned in subsection 4.2.3), we have

new translation output, called ehypslt . Note that ehypslt is a degraded version of translation

of fre f (ehypmt ).

To obtain word label setting for WCE, we used TERp-A toolkit [Snover et al., 2008] be-

tween speech translation output (ehypslt ) and post-editions obtained from the text trans-

lation task (ere f ). Therefore, we re-used initial post-edition to infer labels of a SLT task.

Table 4.7 and Table 4.8 present MT and SLT performances on our corpus.

The above-mentioned remark makes the value of this corpus. For example, we can ob-

tain a quintuplet (ASR hypothesis, verbatim transcript, MT hypothesis, target transla-

tion and SLT hypothesis) from TED corpus. However, there are two differences: firstly,

to deal with speaker variability and different ASR hypotheses for a specific sentence,

each sentence is recorded by three different speakers; secondly, the target translation of

TED is not post-editing version of an automatic translation because it is a manual trans-

lation of prior subtitles and it is not possible to guarantee that good/bad labels generated

from this would be reliable for WCE [Besacier et al., 2014].

4.2.5 Summary Statistics of Corpus

Table 4.5 presented the summary statistics of our corpus. In which, we show how to

obtain WCE labels. To evaluate WCE for 3 tasks, we have all data:
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• ASR: generate good/bad labels by calculating WER between fhyp and fre f ,

• MT: generate good/bad labels by calculating TERp-A between ehypmt and ere f ,

• SLT: generate good/bad labels by calculating TERp-A between ehypslt and ere f .

Data # dev utt # tst utt # dev words # tst words method to obtain
WCE labels

fre f 881 1350 21988 36404
fhyp1 881*3 1350*3 66435 108332 wer( fhyp1, fre f )
fhyp2 881*3 1350*3 66834 108598 wer( fhyp2, fre f )

ehypmt 881 1350 22340 35213 terpa(ehypmt , ere f )
ehypslt1 881*3 1350*3 61787 97977 terpa(ehypslt1 , ere f )
ehypslt2 881*3 1350*3 62213 97804 terpa(ehypslt2 , ere f )
ere f 881 1350 22342 34880

Table 4.5: Overview of Post-edited Corpus for SLT.

Table 4.6 gives an example of quintuplet in our corpus. While fhyp1 (transcript) has

1 error, fhyp2 has 4. Therefore, this points out 2 bad labels (ehypslt1) and 4 bad labels

(ehypslt2) in speech translation hypothesis while ehypmt has only 1 bad label.

fre f quand notre cerveau chauffe

fhyp1 comme notre cerveau chauffe
labels ASR B G G G
fhyp2 qu’ entre serbes au chauffe
labels ASR B B B B G

ehypmt when our brains chauffe
labels MT G G G B

ehypslt1 as our brains chauffe
labels SLT B G G B
ehypslt2 between serbs in chauffe
labels SLT B B B B

ere f when our brain heats up

Table 4.6: Example of quintuplet with associated labels.

Table 4.7 and Table 4.8 summarize baseline ASR, MT and SLT performances on our

corpus as well as the distribution of the binary labels (good, bad) extracted for both

tasks. Normally, in same condition, percentage of bad labels is decreased from SLT to

MT task.
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Task ASR (WER) MT (BLEU) % G (good) % B (bad)

MT 0% 49.13% 76.93% 23.07%

SLT (ASR1) 21.86% 26.73% 62.03% 37.97%

SLT (ASR2) 16.90% 28.89% 63.87% 36.13%

Table 4.7: MT and SLT performances on our dev set.

Task ASR (WER) MT (BLEU) % G (good) % B (bad)

MT 0% 57.87% 81.58% 18.42%

SLT (ASR1) 17.37% 36.21% 70.59% 29.41%

SLT (ASR2) 12.50% 38.97% 72.61% 27.39%

Table 4.8: MT and SLT performances on our tst set.

4.3 LIG-WCE Toolkit

4.3.1 Motivation

Recently, a growing need of Confidence Estimation (CE) for both Statistical Machine

Translation (SMT) systems and Automatic Speech Recognition (ASR) system in Com-

puter Aided Translation (CAT), interactive speech to speech translation, was observed.

However, most of CE toolkits are optimized for a single target language (mainly En-

glish) and, as far as we know, none of them are dedicated to this specific task and freely

available.

Our experience in participating in task 2 (WCE - shared task of the WMT (Workshop on

Machine Translation)) leads us to the following observation: while feature processing

is very important to achieve good performance, it requires to call a set of heterogeneous

Natural Language Processing tools (for lexical, syntactic, semantic analyses).

Therefore, the main purpose of LIG-WCE Toolkit is to unify the feature processing, to-

gether with the call of machine learning algorithms, to facilitate the design of confidence

estimation systems. In other words, we propose a method that could point out both cor-

rect and incorrect parts in SLT output. In addition, we propose LIG-WCE Toolkit, as an

open-source toolkit for forecasting the words’ quality of SLT hypothesis, whose novel
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contributions are (i) support for various target languages, (ii) handle a number of fea-

tures of different types (system-based, lexical, syntactic and semantic) of both SMT

system and ASR system. Our toolkit also integrates a wide variety of NLP or ML tools

to pre-process data, extract features and estimate confidence at word-level. Features

for Word-level Confidence Estimation (WCE) can be easily added / removed using a

configuration file.

4.3.2 Formalization

We propose to build an efficient quality assessment (WCE) system with the goal of

assessing the quality estimation (or error detection) component in speech translation by

the following equation:

q̂ = argmax
q
{pSLT (q|x f , f , ê)} (4.1)

where x f is the given signal in the source language; ê4 = (e1,e2, ...,eN) is the most

probable target language sequence from the spoken language translation (SLT) process

; f = ( f1, f2, ..., fM) is the transcription of x f ; q = (q1,q2, ...,qN) is a sequence of error

labels on the target language and qi ∈{good,bad}5. This is a sequence labeling task that

can be solved with several machine learning techniques such as Conditional Random

Fields (CRF) [Lafferty et al., 2001]. However, for that, we need a large amount of

training data for which a quadruplet (x f , f ,e,q) is available.

As it is much easier to obtain data containing either the triplet (x f , f ,q) (ASR output

+ manual references and error labels inferred from WER) or the triplet ( f ,e,q) (MT

output + manual post-editions and error labels inferred using tools such as TERp-A

[Snover et al., 2008]) we can also recast error detection with the following equation:

q̂ = argmax
q
{pASR(q|x f , f )α ∗ pMT (q|e, f )1−α} (4.2)

where α is a weight giving more or less importance to error detector on transcription

WCEASR (quality assessment on transcription) compared to error detector on translation

4written simply e for convenience in any other equations.
5at this point qi takes two values (G/B) but will evolve to 3 labels later on in Chapter 6.
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WCEMT (quality assessment on translation). It is important to note that pASR(q|x f , f )

corresponds to the quality estimation of the words in the target language based on

features calculated on the source language (ASR). For that, what we do is projecting

source quality scores to the target using word alignment information between e and f

sequences. This alternative approach (Equation 4.2) will be also evaluated in this work

even if it corresponds to a different optimization problem than Equation 4.1.

In both approaches – joint (pSLT (q|x f , f ,e)) and combined (pASR(q|x f , f ) +

pMT (q|e, f )) – some features need to be extracted from ASR and MT modules. They

are more precisely detailed in next subsections.

4.3.3 WCE Features for Speech Transcription (ASR)

In this task, we generate various categories of features which are extracted from scores

of language model, from syntactic or morphological analysis, from ASR graph. They

are described below:

• Acoustic features: word duration (F-dur).

• Graph features (extracted from the ASR word confusion networks): number of

alternative (F-alt) paths between two nodes; word posterior probability (F-post).

• Linguistic features (based on probabilities by the language model): word itself

(F-word), 3-gram probability (F-3g), log probability (F-log), back-off level of

the word (F-back), as proposed in [Fayolle et al., 2010],

• Lexical Features: Part-Of-Speech (POS) of the word (F-POS),

• Context Features: Part-Of-Speech tags in the neighborhood of a given word (F-

context). Note that F-context features are formed by its content (F-word) and

one POS before (left F-POS) or one POS after (right F-POS) the source word.

With the example presented in Table 4.9, F-POS of the source word “indépen-

dance” (F-word) is “NOUN”. Therefore, its F-context features are “indépen-

dance/DET:ART”, “indépendance/NOUN” and “indépendance/VERB”.
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F-word la nature de l’ indépendance octroyée ...
F-POS DET:ART NOUN PRP DET:ART NOUN VERB ...

Table 4.9: Example of F-context where source words are aligned to POS.

For each word in the ASR hypothesis, we estimate the 9 features (F-Word; F-3g; F-back;

F-log; F-alt; F-post; F-dur; F-POS; F-context) previously described.

In a preliminary experiment, we will evaluate these features for quality assessment in

ASR only (WCEASR task). Two different classifiers will be used: a variant of boosting

classification algorithm called bonzaiboost [Laurent et al., 2014a] (implementing the

boosting algorithm Adaboost.MH over deeper trees) and the Conditional Random Fields

[Lafferty et al., 2001].

4.3.4 WCE Features for Machine Translation (MT)

Several knowledge sources are employed for generating features, in a total of 24 fea-

tures, see Table 4.10.

These features were chosen because of their relevance in previous Word-level Confi-

dence Estimation tasks [Callison-Burch et al., 2012] [Bojar et al., 2013] [Bojar et al.,

2014]. Some of them are already described in detail in some previous papers [Wessel

et al., 2001] [Ueffing et al., 2003b] [Blatz et al., 2004] [Xiong et al., 2010] [Langlois

et al., 2012] [Luong et al., 2015] [Raybaud et al., 2011]. Consequently, the novel fea-

tures, which we added into our current toolkit, are in “bold” in Table 4.10. Also, the

features in “italic” are conventional features but extracted using a new approach.

The feature list could be extended (by us or by other contributors) in the future, since the

toolkit is made available to the research community. For instance, we plan to integrate

the use of monolingual or bilingual word embeddings following the works of Mikolov

et al. [2013b].

It is important to note that we extract features regarding tokens in the translated hypoth-

esis (MT or SLT). In other words, one feature is extracted for each token in the MT

output. So, in the Table 4.10, target refers to the feature coming from the translated
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1 Proper Name 10 Stop Word 19 WPP max
2 Unknown Stem 11 Word context Alignments 20 Nodes
3 Num. of Word Occ. 12 POS context Alignments 21 Constituent Label
4 Num. of Stem Occ. 13 Stem context Alignments 22 Distance To Root
5 Polysemy Count – Target 14 Longest Target N-gram Length 23 Numeric
6 Backoff Behaviour – Target 15 Longest Source N-gram Length 24 Punctuation
7 Alignment Features 16 WPP Exact
8 Occur in Google Translate 17 WPP Any
9 Occur in Bing Translator 18 WPP min

Table 4.10: Features extracted by the toolkit: highlights in bold are the new
features we propose, the other features are those classically extracted - we put
in italic those for which we proposed a new extraction method compared to our
previous work.

hypothesis and source refers to a feature extracted from the source word aligned to the

considered target word. More details on some of these features are given in the next

subsections.

4.3.4.1 Internal Features

These features are given by the Machine Translation system, which outputs additional

data like N-best list, word graph.

• Alignment context features: these features (#11-13 in Table 4.10) are based

on collocations and proposed by Bach et al. [2011]. Collocations could be an

indicator to estimate when a target word is aligned by a specific source word. We

also apply the reverse, the collocations regarding the source side (#7 in Table 4.10

- simply called Alignment Features):

� Features of target alignment context: the combinations of one source word,

one target word (with which it is aligned), and one target word before and

one target word after.

� Features of source alignment context: the combinations of one target word,

the source word (with which it is aligned), and one source word before and

one source word after (left and right contexts, respectively).
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With the example presented in Table 4.11, the target word “of” is aligned with

“de”. The source context extracted corresponds to the two words around “de”,

which are “nature” and “l’ ”. The source alignment context features are “of/na-

ture”, “of/de” and “of/l’ ” In the same way, he target alignment context features

of “de” are: “de/nature”, “de/of” and “de/the”.

We applied the same context extraction for Part-of-Speech and Stems.

Target the nature of the independence granted ...
Source la nature de l’ indépendance octroyée ...

Table 4.11: Example of parallel sentence where words are aligned one-to-one.

• Longest Target (or Source) N-gram Length: we seek to get the length (n+ 1)

of the longest left sequence (wi−n) concerned by the current word (wi) and known

by the language model (LM) concerned (source and target sides). For example,

if the sequence of words wi−2wi−1wi occurs in the target LM, the longest target

N-gram value for wi will be 3. This value ranges from 0 to the max order of

the LM concerned. We also extract a redundant feature called Backoff Behavior

Target [Raybaud et al., 2011]. In fact, we extract the backoff behavior features of

LM from the backward sequences of each target word. Our toolkit extracts how

often, for each word in the target sentence, the LM has to back off to assign a

probability to the sentence.

• Word Posterior Probability (WPP) and Nodes features are extracted from a

confusion network, which comes from the output of the Machine Translation N-

best list. WPP Exact is the WPP value for each word concerned at the exact same

position in the graph. WPP Any extracts the same information at any position in

the graph. WPP Min gives the smallest WPP value concerned by the transition

and WPP Max its maximum.

In the example shown in Figure 4.1, the target word “function” gets a WPP Exact

at 0.2, WPP Min at 0.1 and WPP max at 0.4.
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0 1this/0.7
that/0.3

2tactic/1 3

may/0.6

might/0.3

could/0.1
4be/1 5

working/0.4

operating/0.3
function/0.2

running/0.1

Figure 4.1: Example of Confusion Network

4.3.4.2 External Features

Below is the list of the external features used:

• Proper Name: indicates if a word is a proper name (same binary features are

extracted to know if a token is Numerical, Punctuation or Stop Word).

• Unknown Stem: informs whether the stem of the considered word is known or

not.

• Number of Word/Stem Occurrences: counts the occurrences of a word/stem in

the sentence.

• The target word’s constituent label (Constituent Label) and its depth in the con-

stituent tree (Distance to Root) are extracted using a syntactic parser, Figure 4.2

illustrates the distance between a word and its root in the tree. In the case of

“working”, the Constituent Label is VBG and the Distance to Root value is 6.

Depth

0

1

2

3

4

5

6

Figure 4.2: Example of constituent tree.
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• Target Polysemy Count: we extract the polysemy count, which is the number of

meanings of a word in a given language.

• Occurences in Google Translate and Occurences in Bing Translator: in the

translation hypothesis, we (optionally) test the presence of the target word in on-

line translations given respectively by Google Translate and Bing Translator6.

In this thesis, we will use Conditional Random Fields (CRFs) [Lafferty et al., 2001] as

our machine learning technique. Also, we apply WAPITI toolkit [Lavergne et al., 2010]

to train our WCE estimator based on both MT and ASR features.

4.3.5 Our Proposed Toolkit

In this section, we detail our toolkit, which is a complete out-of-the-box Word-level

Confidence Estimation (WCE) system. It is a customizable, flexible, and portable plat-

form.

4.3.5.1 Pipeline Overview

Our toolkit is described in Figure 4.3. It contains three essential components: prepro-

cessing, feature extraction and training / labeling. It integrates several existing Natural

Language Processing (NLP) tools and API. It is developed in Python 3 to use efficiently

existing libraries/toolkits as well as being object-oriented designed.

The source code is available on a GitHub repository7 and provided with ready-made

scripts to run reproducible experiments on a French–English WCE task (for which the

data is also made available).
6Using this kind of feature is controversial, however we observed that such features are available in

general use case scenarios, so we decided to include them in our experiments. Contrastive results without
these 2 features will be also given later on.

7https://github.com/besacier/WCE-LIG

https://github.com/besacier/WCE-LIG
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Threshold optimization & 
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(tokenization, 

POS tagging, etc.)
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Phase

Figure 4.3: Pipeline of our Word-level Confidence Estimation tool.

4.3.5.2 System Design

The first steps are the preprocessing and the feature extraction during which the toolkit

processes and adds information to the initial corpora available. Then, the most important

step consists of training a classifier using the features extracted (training phase) or in

the labelling of the test corpus (decoding phase).

We also added a threshold optimization and a feature selection phase which are later

described (see Sections 5.1 and 5.2 respectively for threshold optimization and feature

selection).

All these phases can be parameterized using a single configuration file.

4.3.5.3 System Configuration

A configuration file gathers the main WCE parameters. It is stored in YAML8 format.

The main configuration parameters concern the source and target languages involved

and the path to the input corpus and its translation.

4.3.5.4 Preprocessing Phase

Preprocessing consists of obtaining POS tags, word alignments and all needed analyses

from the available parallel corpus (the target being a MT output made up of raw text –

1-best and N-best of MT). First, input data is lowercased and/or tokenized if necessary.

8http://www.yaml.org/

http://www.yaml.org/
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Then, TreeTagger toolkit [Schmid, 1995] is applied to get the Part-Of-Speech (POS)

tags and stem of each word in both source and target languages. The different POS

extracted are normalized. Finally, word alignments are obtained using GIZA++ [Och

and Ney, 2003].

4.3.5.5 Features Extraction

As said before, the internal features come from the output of the Statistical Machine

Translation (SMT) system. In this part we mainly focus on the extraction of the external

features, given by toolkits which are not part of the SMT system.

The TreeTagger toolkit [Schmid, 1995] is involved in the extraction of the following fea-

tures: “Proper Names”, “Unknown Stems” and “Source/Target Stem”. GIZA++ [Och

and Ney, 2003] helps us to extract the context alignment features for POS, Word and

Stems. To compute the features “Longest Target N-gram Length” and “Longest Source

N-gram Length” we use the SRILM toolkit [Stolcke, 2002]. The word’s constituent

label (“Constituent Label”) and its depth in the constituent tree (“Distance to Root”) are

also extracted using Bonsai (for French) [Laurent et al., 2014b], [Candito et al., 2010] or

Berkeley parser (for other languages) [Petrov and Klein, 2007]. To represent hierarchi-

cal structures and extract the two features, the Natural Language ToolKit (NLTK) [Bird

et al., 2009] in Python is used. The BabelNet [Navigli and Ponzetto, 2012] API and

DBnary API [Sérasset, 2014] are used to extract the feature “Target polysemy count”.

Finally, the features “Occurences in Google Translate” and “Occurences in Bing Trans-

lator” are extracted by using the Google Translate and Bing Translator API, respec-

tively.

4.3.5.6 Training / Decoding Phase

Once the final feature extraction stage has been completed, we use Conditionnal Ran-

dom Fields (CRF) as machine learning technique through the Wapiti toolkit [Lavergne

et al., 2010].
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The classifier uses all the chosen features and it is trained on a preliminary labelled

French–English corpus (see next section for example of corpora directly usable with our

toolkit). During decoding phase, the classifier determines, from a test corpus, whether

a word should be labelled as “correct” or “incorrect” (respectively Good or Bad).

4.3.5.7 Adaptation to a New Language Pair

To evaluate our toolkit on another language pair (English–Spanish), we used the official

data from WMT 2014 shared task on WCE.

One of the strength of our toolkit is the easiness to adapt it to another language pair

within the (so-far) supported languages which are French, English, and Spanish. Thus,

a few configuration parameters were changed to move from the French–English (fr–en)

to English–Spanish (en–es), which are mainly the source language, the target language,

and paths associated to input files.

Consequently, our WCE toolkit process en–es task in the same way as for fr–en task, but

some features may not be extracted due to language-pair specificities: unavailable tools,

no N-best, etc. For instance, for the en–es task, since the N-best list is not available, we

cannot extract the five following internal features: “WPP Exact”, “WPP Any”, “Nodes”,

“WPP Min” and “WPP Max”.

4.3.5.8 Integrating Other Toolkits: NLTK, YAML, NumPy, Scikit-learn, Pan-

das, Matplotlib, GIZA++, SRILM, Terp-A, TreeTagger, Berkeley Parser,

bonsai-v3.2, BabelNet, DBnary, Wapiti, bonzaiboost

Our open-source LIG-WCE Toolkit is developed in Python 3 and integrated several effi-

cient existing libraries / toolkits as follows:

• Natural Language ToolKit (NLTK)9 [Bird et al., 2009]: to represent hierarchi-

cal structures and to have various text processing libraries such as tokenization,

stemming, tagging, parsing, etc.
9http://www.nltk.org/

http://www.nltk.org/
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• YAML10: to control the parameters configuration.

• Scikit-learn11, NumPy12, Pandas13, Matplotlib14: these efficient libraries are used

to some tasks such as pre-processing, cross-validation, scientific computing, data

analysis and visualization.

• GIZA++ [Och and Ney, 2003]: to extract the context alignment features for POS,

Word and Stems.

• SRILM toolkit [Stolcke, 2002]: to extract the features corresponding to Language

Model.

• TERp-A toolkit [Snover et al., 2008]: to annotate automatically the errors with

binary word-level labels by comparing hypotheses and given references.

• TreeTagger toolkit [Schmid, 1995]: to annotate the tokens with POS and lemma

information.

• Bonsai15 (for French) [Laurent et al., 2014b] [Candito et al., 2010] or Berkeley

Parser16 (for other languages) [Petrov and Klein, 2007]: to parse the tree contain-

ing syntactic annotations.

• The BabelNet17 [Navigli and Ponzetto, 2012] API and DBnary API18 [Sérasset,

2014]: to extract the features relating to the semantic information.

• Wapiti19 [Lafferty et al., 2001]: to implement the Conditional Random Fields

algorithm.

• bonzaiboost20 [Laurent et al., 2014a]: to implement the boosting algorithm Ad-

aboost.MH (over deeper trees).
10http://pyyaml.org/
11http://scikit-learn.org
12http://www.numpy.org/
13http://pandas.pydata.org/
14https://matplotlib.org/
15https://alpage.inria.fr/statgram/frdep/fr_stat_dep_bky.html
16https://github.com/slavpetrov/berkeleyparser
17http://babelnet.org/
18http://kaiko.getalp.org/about-dbnary/
19https://wapiti.limsi.fr/
20http://bonzaiboost.gforge.inria.fr/

http://pyyaml.org/
http://scikit-learn.org
http://www.numpy.org/
http://pandas.pydata.org/
https://matplotlib.org/
https://alpage.inria.fr/statgram/frdep/fr_stat_dep_bky.html
https://github.com/slavpetrov/berkeleyparser
http://babelnet.org/
http://kaiko.getalp.org/about-dbnary/
https://wapiti.limsi.fr/
http://bonzaiboost.gforge.inria.fr/
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4.4 Preliminary Results Using Only MT or Only ASR

Features

In a preliminary experiment, we will evaluate these features for quality assessment in

ASR only or MT only. In WCEASR task, two different classifiers will be used: a variant

of boosting classification algorithm called bonzaiboost [Laurent et al., 2014a] (imple-

menting the boosting algorithm Adaboost.MH over deeper trees) and the Conditional

Random Fields [Lafferty et al., 2001].

We first report in Table 4.12 the baseline WCE results obtained using MT or ASR fea-

tures separately. In short, we evaluate the performance of 4 WCE systems for different

tasks:

• The first and second systems (WCE for ASR / ASR feat.) use ASR features

described in Section 4.3.3 with two different classifiers (CRF or Boosting).

• The third system (WCE for SLT / MT feat.) uses only MT features described in

Section 4.3.4 with CRF classifier.

• The fourth system (WCE for SLT / ASR feat.) uses only ASR features described

in Section 4.3.3 with CRF classifier. The information of word-based alignment

between fhyp and ehyp is used to generate WCE scores for both ASR and SLT

hypothesis.

In all experiments reported in this paper, we evaluate the performance of our classifiers

by using the average between the F-measure for good labels and the F-measure for bad

labels that are calculated by the common evaluation metrics: Precision, Recall and F-

measure for good/bad labels. Since two ASR systems are available, F-mes1 is obtained

for SLT based on ASR1 whereas F-mes2 is obtained for SLT based on ASR2. For the

results of Table 4.12, the classifier is evaluated on the tst part of our corpus and trained

on the dev part.

Concerning WCE for ASR, we observe that F-measure decreases when ASR WER is

lower (F-mes2<F-mes1 while WERASR2 < WERASR1). So quality assessment in ASR
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task WCE for ASR WCE for ASR WCE for SLT WCE for SLT
feat. type ASR feat. ASR feat. MT feat. ASR feat.

p(q|x f , f ) p(q|x f , f ) p(q| f ,e) pASR(q|x f , f )
(CRFs) (Boosting) projected to e

F-mes1 68.71% 64.27% 64.69%* 53.85%
F-mes2 59.83% 62.61% 64.48%* 48.67%

Table 4.12: WCE performance with different feature sets for tst set (training
is made on dev set) - *for MT feat, removing OccurInGoogleTranslate and
OccurInBingTranslate features lead to 63.09% and 62.33% for F-mes1 and F-
mes2, respectively.

seems to become harder as the ASR system improves. This could be due to the fact

that the ASR1 errors recovered by bigger LM in ASR2 system were easier to detect.

Anyway, this conclusion should be considered with caution since both results (F-mes1

and F-mes2) are not directly comparable because they are evaluated on different refer-

ences (proportion of good/bad labels differ as ASR system differ). The effect of the

classifier (CRF or Boosting) is not conclusive since CRF is better for F-mes1 and worse

for F-mes2. Anyway, we decide to use CRF for all our future experiments since this is

the classifier integrated in our WCE-LIG toolkit [Servan et al., 2015].

To assess WCE for SLT, the observed F-measure is better using MT features rather than

ASR features (quality assessment for SLT more dependent of MT features than ASR

features). Again, F-measure decreases when ASR WER is lower (F-mes2<F-mes1

while WERASR2 < WERASR1). For MT features, removing OccurInGoogleTranslate

and OccurInBingTranslate features lead to 63.09% and 62.33% for F-mes1 and F-mes2

respectively.

4.5 Conclusion

In this chapter, we introduced a new quality assessment task: word confidence estima-

tion (WCE) for spoken language translation (SLT) with the following contributions:
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• A specific corpus, distributed to the research community21 was built for this pur-

pose.

• We formalized WCE for SLT and proposed several approaches based on several

types of features: Machine Translation (MT) based features, Automatic Speech

Recognition (ASR) based features, as well as combined or joint features using

ASR and MT information that will be detailed in the next chapter.

• For reproducible research, most features 22 and algorithms used in this paper

are available through our toolkit called LIG-WCE Toolkit. This package is made

available on a GitHub repository23 under the licence GPL V3.

• The preliminary results on quality assessment were based on two separate WCE

classifiers (one for quality assessment in ASR and one for quality assessment in

MT).

• We also experiment with two ASR systems that have different performances in or-

der to analyze the behaviors of our SLT quality assessment algorithms at different

levels of word error rate (WER).

In the next chapter, we will propose a unique joint model based on different feature types

(ASR and MT features). It is noticeable that we will propose and compare combined

features model versus joint features model. We will further operate feature selection

using this joint model and analyzing which features (from ASR or MT) are the most

prominent for quality assessment in speech translation.

21https://github.com/besacier/WCE-SLT-LIG
22MT features already available, ASR features available soon.
23https://github.com/besacier/WCE-LIG

https://github.com/besacier/WCE-SLT-LIG
https://github.com/besacier/WCE-LIG


Chapter 5

Joint ASR and MT Features for

Confidence Estimation

5.1 Combined Features versus Joint Features

5.1.1 Motivation

In the previous chapter, we described two strategies to assess WCE system for SLT us-

ing either ASR features or MT features and analysed the preliminary results on quality

assessment of two separate WCE classifiers applying two ASR systems. However, we

might not investigate the impact of both ASR features and MT features on the perfor-

mance of WCE system for SLT.

Therefore, this chapter begins by presenting two proposed methods using SLT features

(both ASR features and MT features), namely a unique joint features model and a com-

bined features model. It will then go on to operate feature selection strategy using joint

features model and analyse which features (from ASR or MT) are the most prominent

for quality assessment in speech translation1. Note that we will reuse the experimental

settings presented in Section 4.2 for the experiments of this chapter.

1Many findings in this chapter were published in [Le et al., 2016a].
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5.1.2 Proposed Methods

We now report in Table 5.2 WCE for SLT results obtained using both MT and ASR

features. More precisely we evaluate two different approaches (combination and joint):

• The first system (WCE for SLT / MT+ASR feat.) combines the output of two

separate classifiers based on ASR and MT features. In this approach, ASR-based

confidence score of source side is projected to target SLT output and combined

with MT-based confidence score as shown in Equation 6 (we did not tune the

coefficient α and we set it to 0.5).

• The second system (joint feat.) trains a single WCE system for SLT (evaluating

p(q|x f , f ,e) as in Equation 4.1 using joint ASR features and MT features. All

ASR features are projected to the target words using automatic word alignments.

However, a problem occurs when a target word does not have any source word

aligned to it. In this case, we decide to duplicate the ASR features of its previous

target word. Another problem occurs when a target word is aligned to more than

one source word. In that case, there are several strategies to infer the 9 ASR

features: average or max over numerical values, selection or concatenation over

symbolic values (for F-word and F-POS), etc. Three different variants of these

strategies (shown in Table 5.1) are evaluated here.

ASR Feat Joint 1 Joint 2 Joint 3

F-post avg(F-post1, F-post2) avg(F-post1, F-post2) avg(F-post1, F-post2)
F-log avg(F-log1, F-log2) avg(F-log1, F-log2) avg(F-log1, F-log2)
F-back avg(F-back1, F-back2) avg(F-back1, F-back2) avg(F-back1, F-back2)
F-dur max(F-dur1, F-dur2) max(F-dur1, F-dur2) max(F-dur1, F-dur2)
F-3g max(F-3g1, F-3g2) max(F-3g1, F-3g2) max(F-3g1, F-3g2)
F-alt max(F-alt1, F-alt2) max(F-alt1, F-alt2) max(F-alt1, F-alt2)
F-word F-word1 F-word2 F-word1_F-word2
F-POS F-POS1 F-POS2 F-POS1_F-POS2
F-context F-context* F-context* F-context*

Table 5.1: Different strategies to project ASR features to a target word when
it is aligned to more than one source word. *It should be noted that F-context
features are the combinations of the source word (F-word) and one POS of
source word (F-POS) before or one POS of source word (F-POS) after.
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5.1.3 Results and Analysis

The results of Table 5.2 show that joint ASR and MT features only slightly improves

WCE performance: F-mes1 is slightly better than one of Table 4.12 (WCE for SLT /

MT features only).

task WCE for SLT WCE for SLT WCE for SLT WCE for SLT
feat. type MT+ASR feat. Joint feat. 1 Joint feat. 2 Joint feat. 3

pASR(q|x f , f )α p(q|x f , f ,e) p(q|x f , f ,e) p(q|x f , f ,e)
∗pMT (q|e, f )1−α

F-mes1 58.07% 64.90%* 64.84% 64.86%
F-mes2 53.66% 64.17%* 64.11% 63.87%

Table 5.2: WCE performance with combination (MT+ASR) or joint (MT,
ASR) feature sets for tst set (training is made on dev set) - * For Joint 1 feat,
removing OccurInGoogleTranslate and OccurInBingTranslate features lead to
63.31% and 62.16% for F-mes1 and F-mes2, respectively.

We also observe that simple combination (MT+ASR) degrades the WCE performance.

This latter observation may be due to different behaviors of WCEMT and WCEASR clas-

sifiers which makes the weighted combination ineffective. The relatively disappointing

performance of our joint classifier may be due to an insufficient training set (only 2643

utterances in dev!). Finally, removing OccurInGoogleTranslate and OccurInBingTrans-

late features for Joint lowered F-mes between 1% and 2%.

These observations lead us to investigate the behaviour of our WCE approaches for a

large range of good/bad decision threshold.

While the previous tables provided WCE performance for a single point of interest

(good/bad decision threshold set to 0.5), the curves of figures 5.1 and 5.2 show the

full picture of our WCE systems (for SLT) using speech transcriptions systems ASR1

and ASR2, respectively. We observe that the classifier based on ASR features has a

very different behaviour than the classifier based on MT features which explains why

their simple combination (MT+ASR) does not work very well for the default decision

threshold (0.5). However, for threshold above 0.75, the use of joint ASR and MT fea-

tures is slightly beneficial compared to MT features only. This is interesting because

higher thresholds improves the F-measure on bad labels (so improves error detection).
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Figure 5.1: Evolution of system performance (y-axis - F-mes1 - ASR1) for tst
corpus (4050 utt) along decision threshold variation (x-axis) - training is made
on dev corpus (2643 utt).

Both curves are similar whatever the ASR system used. These results suggest that with

enough development data for appropriate threshold tuning (which we do not have for

this very new task), the use of both ASR and MT features should improve error de-

tection in speech translation (blue and red curves are above the green curve for higher

decision threshold2). We also analyzed the F-measure curves for bad and good labels

separately: if we consider, for instance ASR1 system, for decision threshold equals to

0.75, the F-measure on bad labels is equivalent (52%) for 3 systems (Joint, MT+ASR

2Corresponding to optimization of the F-measure on bad labels (errors).
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Figure 5.2: Evolution of system performance (y-axis - F-mes2 - ASR2) for tst
corpus (4050 utt) along decision threshold variation (x-axis) - training is made
on dev corpus (2643 utt).

and MT) while the F-measure on good labels is 76% when using MT features only,

78% when using Joint features and 77% when using MT+ASR features. In other words,

for a fixed performance on bad labels, the F-measure on good labels is improved using

all information available (ASR and MT features). Finally, if we focus on Joint versus

MT+ASR, we notice that the range of the threshold where performance are stable is

larger for Joint than for MT+ASR.
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5.2 Feature Selection

5.2.1 Motivation

As discussed in the above section, we could see that WCE performances using joint

classifier given different SLT systems are dependent on their good/bad decision thresh-

olds.

Therefore, in this section, we try to better understand the contribution of each (ASR

or MT) feature by applying feature selection on our joint WCE classifier. In these

experiments, we decide to keep two prominent MT features (OccurInGoogleTranslate,

OccurInBingTranslate features) and the default decision threshold (0.5).

5.2.2 Proposed Methods

We choose the Sequential Backward Selection (SBS) algorithm which is a top-down

algorithm starting from a feature set noted Yk (which denotes the set of all features) and

sequentially removing the most irrelevant one (x) that maximizes the Mean F-Measure,

MF(Yk − x). In our work, we examine until the set Yk contains only one remaining

feature. Algorithm 2 summarizes the whole process.

Algorithm 2 Sequential Backward Selection (SBS) algorithm for feature selection. Yk
denotes the set of all features and x is the feature removed at each step of the algorithm.

while size of Yk > 0 do
maxval = 0
for x ∈ Yk do

if maxval < MF(Yk− x) then
maxval←MF(Yk− x)
worst f eat← x

end if
end for
remove worst f eat from Yk

end while
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5.2.3 Results and Analysis

The results of the SBS algorithm can be found in Table 5.3 which ranks all joint features

used in WCE for SLT by order of importance after applying the algorithm on dev. We

can see that the SBS algorithm is not very stable and is clearly influenced by the ASR

system (ASR1 or ASR2) considered in SLT. Anyway, if we focus on the features that are

in the top-10 best in both cases, we find that the most relevant ones are:

• Alignment Features (source and target collocations features)

• Occur in Google Translate and Occur in Bing Translate (diagnostic from other

MT systems),

• Longest Source N-gram Length, Target Backoff Behaviour (source or target N-

gram features),

• Word Posterior Probability Max (WPP Max) (graph topology feature)

Rank Rank Feature Rank Rank Feature
ASR1 ASR2 ASR1 ASR2

1 1 Alignment Features 18 20 Unknown Stem
2 2 Occur in Bing Translate 19 29 Number of Word Occurrences
3 4 Longest Source N-gram Length 20 28 Polysemy Count - Target
4 3 WPP Max 21 19 F-dur
5 6 Occur in Google Translate 22 12 Punctuation
6 24 F-back 23 21 Constituent Label
7 11 F-context 24 25 F-word
8 27 F-alt 25 23 Longest Target N-gram Length
9 7 Target Backoff Behaviour 26 10 POS Context Alignment

10 5 Word Context Alignment 27 26 WPP Exact
11 30 Stem Context Alignment 28 18 WPP Any
12 31 Numeric 29 22 Proper Name
13 13 Distance to Root 30 8 Number of Stem Occurrences
14 9 F-3g 31 16 F-POS
15 17 Stop Word 32 33 F-post
16 15 Nodes 33 32 F-log
17 14 WPP Min

Table 5.3: Rank of each feature according to the Sequential Backward Selec-
tion algorithm - WCE for SLT task - Joint (ASR,MT) features used - Feature
selection applied to dev corpus for both ASR1 and ASR2 - ASR features are in
bold.



Chapter 5. Joint ASR and MT Features for Confidence Estimation 76

05101520253035

Number of the Best Features ranked by Feature Selection process on dev corpus

55

56

57

58

59

60

61

62

63

64

65

66

67
F
a
v
g
(a
ll

)

selection for dev application on tst

Figure 5.3: Evolution of WCE performance for dev (features selected) and
tst corpora when feature selection using SBS algorithm is made on dev (ASR1
system).

We also observe that the most relevant ASR features (in bold in Table 5.3) are F-back,

F-3g and F-context (linguistic and context features) whereas ASR lexical, acoustic and

graph based features are among the worst (F-POS, F-dur and F-post). So, in our exper-

imental setting, it seems that MT features are more influent than ASR features. Inter-

estingly, “source and target collocations features” (Alignment Features) and “Occur in

Bing Translate” are the most prominent features (rank 1 and rank 2, respectively) when

applied to dev corpus for both ASR1 and ASR2. Besides, the graph topology feature

extracted from a confusion network WPP Max outperforms the others such as Nodes

and WPP Min. Nevertheless, two other features including WPP Exact and WPP any are

proven to be weak in accordance with their bottom-most positions against the two above
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Figure 5.4: Evolution of WCE performance for dev (features selected) and
tst corpora when feature selection using SBS algorithm is made on dev (ASR2
system).

systems whereas we were expecting to see them among the top features (as shown in

[Luong et al., 2015] where WPP Any is among the best features for WCE in MT).

Figure 5.3 and Figure 5.4 present the evolution of WCE performance for dev and tst

corpora when feature selection using SBS algorithm is made on dev, for ASR1 and

ASR2 systems, respectively. In other words, for these two figures, we apply our SBS

algorithm on dev which means that feature selection is done on dev with classifiers

trained on tst. After that, the best feature subsets (using 33, 32, 31 until 1 feature only)

are applied to tst corpus (with classifiers trained on dev)3.

33 data sets would have been needed to (a) train classifiers, (b) apply feature selection, (c) evaluate
WCE performance. Since we only have a dev and a tst set, we found this procedure acceptable.
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On both figures, we observe that half of the features only contribute to the WCE process

since best performances are observed with 15 to 25 features only. We also notice that

optimal WCE performance is not necessarily obtained with the full feature set but it can

be obtained with a subset of it.

5.3 Conclusion

In this chapter, we proposed a unique joint model based on different feature types (ASR

and MT features). Note that we proposed and analyzed combined features model versus

joint features model. In addition, we operated feature selection using this joint model

and analyzing which features (from ASR or MT) are the most important for quality

assessment in speech translation.

The proposition of a unique joint classifier based on different feature types (ASR and

MT features) allowed us to operate feature selection and analyze which features (from

ASR or MT) are the most efficient for quality assessment in speech translation. Our ex-

periments have shown that MT features remain the most influential while ASR features

can bring interesting complementary information. In all our experiments, we system-

atically evaluated with two ASR systems that have different performance in order to

analyze the behavior of our quality assessment algorithms at different levels of word

error rate (WER). This allowed us to observe that WCE performance decreases as ASR

system improves.

In the next chapter, we will propose to disentangle ASR and MT errors and recast WCE

for SLT as a 3-label setting problem.



Chapter 6

Disentangling ASR and MT Errors in

Speech Translation

6.1 Motivation

In Chapter 4 and Chapter 5, we proposed and analysed various SLT quality assessment

approaches based on word-level. Those classifiers assessed a 2-class (good/bad) prob-

lem. So, we might not identify the dominant error which is due to transcription (ASR)

or to translation (MT) modules.

Therefore, this chapter addresses a relatively new quality assessment task: error de-

tection in spoken language translation (SLT) using both automatic speech recognition

(ASR) features and machine translation (MT) features. Its goal is also to extend error

detection to a 3-class problem (good/badASR/badMT ) where we try to find the source of

the SLT errors. Moreover, the 3-class problem necessitates to disentangle ASR and MT

errors in the speech translation output and we propose two label extraction methods for

this non trivial step. This enables - as a by-product - qualitative analysis on the SLT

errors and their origin (are they due to transcription or to translation step?) on our large

in-house corpus for French-to-English speech translation.

The outline of this chapter goes simply as follows: section 6.2 presents our experimen-

tal setup. Section 6.3 proposes two methods to disentangle ASR and MT errors in SLT
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output. Section 6.4 describes the example with 3-label setting and Section 6.5 presents

the statistics on a large French-English corpus. Section 6.6 gives some qualitative anal-

ysis of SLT errors. Section 6.7 presents our 2-class and 3-class error detection results

while Section 6.8 concludes this work and gives some perspectives1.

6.2 Dataset, ASR and MT Modules

The experimental settings contain the same configuration as in Chapter 4 and Chapter

5. We just recall them briefly here.

6.2.1 Dataset

In this chapter, we use our in-house corpus made available on a github repository2

for reproductibility. The dev set and tst set of this corpus were recorded by french

native speakers. Each sentence was uttered by 3 speakers, leading to 2643 and 4050

speech recordings for dev set and tst set, respectively. For each speech utterance, a

quintuplet containing: ASR output ( fhyp), verbatim transcript ( fre f ), text translation

output (ehypmt ), speech translation output (ehypslt ) and post-edition of translation (ere f ) is

available. The total length of the union of dev and tst is 16h52 (42 speakers - 5h51 for

dev and 11h01 for tst).

6.2.2 ASR and MT Systems

To obtain the speech transcripts ( fhyp), we built a French ASR system based on KALDI

toolkit [Povey et al., 2011b]. Acoustic models are trained using several corpora (ES-

TER, REPERE, ETAPE and BREF120) representing more than 600 hours of french

transcribed speech. We use two 3-gram language models trained on French ESTER

1Most of our key findings in this chapter were published in [Le et al., 2017].
2https://github.com/besacier/WCE-SLT-LIG/

https://github.com/besacier/WCE-SLT-LIG/
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corpus [Galliano et al., 2006] as well as on French Gigaword (vocabulary size are re-

spectively 62k and 95k). ASR systems LM weight parameters are tuned through WER

on dev corpus. Table 6.1 presents the performances obtained by both ASR systems.

In addition, we used moses phrase-based translation toolkit [Koehn et al., 2007] to trans-

late French ASR into English (ehyp). This medium-size system was trained using a sub-

set of data provided for IWSLT 2012 evaluation [Federico et al., 2012]: Europarl, Ted

and News-Commentary corpora. The total amount is about 60M words. We used an

adapted target language model trained on specific data (News Crawled corpora) similar

to our evaluation corpus (see [Potet et al., 2010]).

6.2.3 Obtaining Error Labels for SLT

To infer the quality (G, B) labels of our speech translation output ehypslt , we use TERp-A

toolkit [Snover et al., 2008] between ehypslt and ere f (more details can be found in our

former paper [Besacier et al., 2015]). Table 6.1 summarizes baseline ASR, MT and SLT

performances obtained on our corpora, as well as the distribution of the binary labels

(good, bad) inferred for both tasks.

Task ASR (WER) MT (BLEU) % G (good)) % B (bad)
dev set tst set dev set tst set dev set tst set dev set tst set

MT 49.13% 57.87% 76.93% 81.58% 23.07% 18.42%

SLT (ASR1) 21.86% 17.37% 26.73% 36.21% 62.03% 70.59% 37.97% 29.41%

SLT (ASR2) 16.90% 12.50% 28.89% 38.97% 63.87% 72.61% 36.13% 27.39%

Table 6.1: ASR, MT and SLT performances on our dev and tst set.

6.3 Disentangling ASR and MT Errors

In previous chapter, we only extract good/bad labels from the SLT output while it might

be interesting to move from a 2-class problem to a 3-class problem in order to label our

SLT hypotheses with one of the 3 following labels: good (G), asr-error (B_ASR) and

mt-error (B_MT). Before training automatic systems for error detection, we need to set
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such 3-class labels on our dev and test corpora. For that, we propose, in the next sub-

sections, two slightly different methods to extract them. The first one is based on word

alignments between SLT and MT and the second one is based on a simpler SLT-MT

error subtraction.

6.3.1 Method 1 - Word Alignments between MT and SLT

From this simple definition, we derive our first way (Method 1) to generate 3-class

annotations.

Let êslt = (e1,e2, . . . ,en): the set of SLT hypotheses (ehypslt ); ek j denotes the jth word in

the sentence ek, where 1≤ k ≤ n

Let êmt = (e′1,e
′
2, . . . ,e

′
m): the set of MT hypotheses (ehypmt ); e′ki

denotes the ith word in

the sentence e′k, where 1≤ k ≤ n

Let L = (l1, l2, . . . , ln): the set of the word alignments from sentences in ehypslt to related

sentences in ehypmt , where lk contains the word alignments from sentence ek to relevant

sentence e′k, 1≤ k ≤ n; (ek j ,e
′
ki
) = True, if there is one word alignment between ek j and

e′ki
; (ek j ,e

′
ki
) = False, otherwise.

Our algorithm for Method 1 is defined as Algorithm 3. This method relies on word

alignments and uses MT labels. We also propose a simpler method in the next section.

6.3.2 Method 2 - Subtraction between SLT and MT Errors

Our second way to extract 3-class labels (Method 2) focuses on the differences between

SLT hypothesis (ehypslt ) and MT hypothesis (ehypmt ). We call it subtraction between SLT

and MT errors because we simply consider that errors present in SLT and not present in

MT are due to ASR. This method has a main difference with the previous one: it does

not rely on the extracted labels for MT.
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Algorithm 3 Method 1 - Using word alignments between MT and SLT
list_labels_result← empty_list
for each sentence ek ∈ êslt do

list_labels_sent← empty_list
for j← 1 to NumberO fWords(ek) do

if label(ek j) = ‘G’ then
add ‘G’ to list_labels_sent

else if Existed Word Alignment (ek j ,e
′
ki
) and label(e′ki

)=‘B’ then
add ‘B_MT ’ to list_labels_sent

else
add ‘B_ASR’ to list_labels_sent

end if
end for
add list_labels_sent to list_labels_result

end for

Our intuition is that the number of mt-errors estimated will be slightly lower than for

Method 1 since we first estimate the number of asr-errors and the rest is considered -

by default - as mt-errors.

With the same notations of Method 1, but highlighting that L = (l1, l2, . . . , ln) is the set

of alignments through edit distance between ehypslt and ehypmt , where lki corresponds

to “Insertion” (I), “Substitution” (S), “Deletion” (D) or “Exact” (E). Our algorithm for

Method 2 is defined as Algorithm 4.

Algorithm 4 Method 2 - Subtraction between SLT and MT errors
list_labels_result← empty_list
for each sentence ek ∈ êslt do

list_labels_sent← empty_list
for j← 1 to NumberO fWords(ek) do

if label(ek j) = ‘G’ then
add ‘G’ to list_labels_sent

else if NameO fWordAlignment(lki) is ‘I’ OR ‘S’ then
add ‘B_ASR’ to list_labels_sent

else
add ‘B_MT ’ to list_labels_sent

end if
end for
add list_labels_sent to list_labels_result

end for
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6.4 Example with 3-label Setting

Table 6.2 gives the edit distance between a SLT and MT hypothesis while table 6.3

shows how Method 1 and Method 2 set 3-class labels to the SLT hypothesis. One tran-

script ( fhyp) has 1 error. This drives 3 B labels on SLT output (ehypslt ), while ehypmt has

only 2 B labels. As can be seen in the cases of Method 1 and Method 2, we respectively

have (1 B_ASR, 2 B_MT) and (2 B_ASR, 1 B_MT).

ehypslt surgeons in los angeles it is said

ehypmt surgeons in los angeles ** have said

edit op. E E E E I S E

Table 6.2: Example of edit distance between SLT and MT.

fre f les chirurgiens de los angeles ont dit

fhyp les chirurgiens de los angeles on dit
labels ASR G G G G G B G

ehypmt surgeons in los angeles have said
labels MT G B G G B G

ehypslt surgeons in los angeles it is said
labels SLT (2-label) G B G G B B G
labels SLT (Method 1) G B_MT G G B_ASR B_MT G
labels SLT (Method 2) G B_MT G G B_ASR B_ASR G

ere f the surgeons of los angeles said

Table 6.3: Example of quintuplet with 2-label and 3-label.

These differences are due to slightly different algorithms for label extraction. As Table

6.3 presents, “is” (SLT hypothesis) is aligned to “have” (MT hypothesis) and “have”

(MT hypothesis) is labeled by “B”. It can therefore be assumed that “is” (SLT hy-

pothesis) should be annotated with word-level labels by B_MT according to Method 1.

However, using Method 2, “is” (SLT hypothesis) could be labeled by B_ASR because

the type of word alignment between “is” (SLT hypothesis) and “have” (MT hypothesis)

is substitution (S), as shown in Table 6.2.
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6.5 Statistics with 3-label Setting on the Whole Corpus

Table 6.4 presents the summary statistics for the distribution of good (G), asr-error

(B_ASR) and mt-error (B_MT) labels obtained with both label extraction methods. We

see that both methods give similar statistics but slightly different rates of B_ASR and

B_MT.

Task - ASR1 dev set tst set
%G %B_ASR %B_MT %G %B_ASR %B_MT

label/m1:Method 1 62.03 19.09 18.89 70.59 14.50 14.91
label/m2:Method 2 62.03 22.49 15.49 70.59 16.62 12.79
label/same(m1, m2) 62.03 18.09 14.49 70.59 13.58 11.88
label/diff(m1, m2) 0 1.00 4.40 0 0.92 3.03

Task - ASR2 dev set tst set
%G %B_ASR %B_MT %G %B_ASR %B_MT

label/m1:Method 1 63.87 16.89 19.23 72.61 11.92 15.47
label/m2:Method 2 63.87 19.78 16.34 72.61 13.58 13.81
label/same(m1, m2) 63.87 16.05 15.50 72.61 11.12 13.01
label/diff(m1, m2) 0 0.84 3.73 0 0.80 2.46

Table 6.4: Statistics with 3-label setting for ASR1 and ASR2.

As can be seen from Table 6.4, it is interesting to note that while ASR system improves

from ASR1 to ASR2, the rate of B_ASR labels logically decreases by more than 2 points,

while the rate of B_MT remains almost stable (less than 1 point difference) which makes

sense since the MT system is the same in both ASR1 and ASR2. These statistics show

that intersection between both methods is probably a good estimation of disentangled

ASR and MT errors in SLT.

6.6 Qualitative Analysis of SLT Errors

Our new 3-label setting procedure allows us to analyze the behavior of our SLT system.

We can observe sentences presented in Table 6.5 presents, as an example, few ASR and

MT errors leading to many SLT errors. Indeed, this is a good way of detecting flaws

in the SLT pipeline such as bad post-processing of the SLT output (numerical or text

dates, for instance).



Chapter 6. Disentangling ASR and MT Errors in Speech Translation 86

fre f peter frey est né le quatre août mille neuf cent cinquante sept à bingen
fhyp1 pierre ferait aimé le quatre août mille neuf cent cinquante sept à big m
fhyp2 pierre frey est né le quatre août mille neuf cent cinquante sept à big m
ehypmt peter frey was born on 4 august 1957 to bingen .
ehypslt1 pierre would liked the four august thousand nine hundred and fifty

seven to big m
ehypslt2 pierre frey is born the four august thousand nine hundred and fifty

seven to big m
ere f peter frey was born on august 4th 1957 in bingen .

Table 6.5: Example 1 - SLT hypothesis annotated with two methods - having
a few asr-errors, a few mt-errors and many slt-errors such as 5 B_ASR1, 3
B_ASR2, 2 B_MT, 14 B_SLT1, 12 B_SLT2.

fre f malheureusement le système européen de financement gouvernemental
direct est

fhyp1 malheureusement le système européen financement gouvernementale
directe et

fhyp2 malheureusement le système européen de financement gouvernemental
direct est

ehypmt unfortunately , the european system of direct government funding is
ehypslt1 unfortunately the european system direct government funding
ehypslt2 unfortunately the european system of direct government funding is
ere f unfortunately , the european system of direct government funding is

fre f victime de la croissance économique européenne lente et des déficits
budgétaires

fhyp1 victimes de la croissance économique européenne venant de déficit
budgétaire

fhyp2 victime de la croissance économique européenne venant des déficits
budgétaires

ehypmt a victim of european economic growth slow and budget deficits .
ehypslt1 and victims of european economic growth from budget deficit
ehypslt2 a victim of european economic growth from the budget deficits
ere f a victim of slow european economic growth and budget deficits .

Table 6.6: Example 2 - SLT hypothesis annotated with two methods - having
many asr-errors, a few mt-errors and a few slt-errors such as 8 B_ASR1, 1
B_ASR2, 1 B_MT, 2 B_SLT1, 2 B_SLT2.

As shown in Table 6.6, on the contrary, there are many ASR errors leading to few SLT

errors (ASR errors with few consequences such as morphological substitutions - for

instance in French: de/des, déficit/déficits, budgétaire/budgétaires).

Moreover, ASR errors as presented in Table 6.7 have different consequences on SLT

quality (on a sample sentence, 2 ASR errors of system 1 and 2 lead to 14 and 9 SLT

errors, respectively).
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fre f nous ne comprenons pas ce qui se passe chez les jeunes pour qu’
ils trouvent

fhyp1 nous ne comprenons pas ceux qui se passe chez les jeunes pour
qu’ ils trouvent

fhyp2 nous ne comprenons pas ce qui se passe chez les jeunes pour qu’
il trouve

ehypmt we do not understand what is happening among young people for
that

ehypslt1 we do not understand those who happens among young people
for that

ehypslt2 we do not understand what is happening among young people
ere f we do not understand what is happening in young people ’s mind

for them

fre f amusant de maltraiter gratuitement un animal sans défense qui
nous donne

fhyp1 amusant de maltraité gratuitement un animal sans défense qui
nous

fhyp2 amusant de maltraiter gratuitement un animal sans défense qui
nous donne

ehypmt they are fun to mistreat free a defenceless animal
ehypslt1 they find fun free mistreated a defenceless animal
ehypslt2 to find it amusing to mistreat free a defenceless animal
ere f to find amusing to mistreat defenceless animals without reason ,

fre f de l’ affection de l’ amitié et nous tient compagnie
fhyp1 de l’ affection de l’ amitié nous tient compagnie
fhyp2 de l’ affection de l’ amitié nous tient compagnie
ehypmt which gives us the affection , friendship and keeps us airline .
ehypslt1 which we affection of friendship we takes company
ehypslt2 which gives us the affection of friendship we takes company
ere f which gives us love , friendship and companionship .

Table 6.7: Example 3 - SLT hypothesis annotated with two methods - having
the same number of asr-errors, but the different number of slt-errors extracted
from ASR1 and ASR2 such as 2 B_ASR1, 2 B_ASR2, 12 B_MT, 14 B_SLT1, 9
B_SLT2.
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Figure 6.1: Example of the rate (%) of ASR errors (x-axis) versus (%) MT
errors (y-axis) - for dev/ASR1 and tst/ASR2.

In addition, Figure 6.1 shows how our speech utterances are distributed in the two-

dimensional (BASR, BMT ) error space.

6.7 Results and Analysis

We report in Table 6.8 our first attempt to build an error detection system in SLT as a

3-class problem (joint approach only). We made our experiment by training and eval-

uating the model on Intersection(m1, m2) which corresponds to high confidence in the

labels3.

We compared two different approaches: One-Step is a single classifier for the 3-class

problem while Two-Step first applies the 2 class (G/B) system and a second classifier

distinguishes BASR and BMT errors. Not much difference in F-measure is observed

between both approaches. Table 6.9 also presents the confusion matrix between BASR

and BMT for the correctly detected (true) errors. Despite the relatively low F-scores of

3However, we observed (results not reported here) that the use of different label sets (Method 1,
Method 2, Intersection(Method 1, Method 2) does not have a strong influence on the results.
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table 6.8, we see that our 3-labels classifier obtains encouraging confusion matrices in

order to automatically disentangle BASR and BMT on true errors.

2-class 3-class
Full Corpus Intersection Corpus (m1, m2)

One-Step Two-Step
ASR1 ASR2 ASR1 ASR2 ASR1 ASR2

FG 81.79 83.17 FG 85.00 85.00 84.00 85.00
FB 48.00 45.17 FB_ASR 44.00 42.00 44.00 42.00

FB_MT 14.00 15.00 16.00 17.00
Favg 64.90 64.17 Favg 47.67 47.33 48.00 48.00

Table 6.8: Error Detection Performance (2-label vs 3-label) on SLT output for
tst set (training is made on dev set).

(1) Ref \ Hyp ASR1 ASR2
B_ASR B_MT B_ASR B_MT

B_ASR 85.75% 14.25% 81.57% 18.43%
B_MT 44.46% 55.54% 34.53% 65.47%

(2) Ref \ Hyp ASR1 ASR2
B_ASR B_MT B_ASR B_MT

B_ASR 83.14% 16.86% 80.02% 19.98%
B_MT 49.41% 50.59% 41.49% 58.51%

Table 6.9: Confusion Matrix on Correctly Detected Errors Subset for 3-class
(1) One-Step; (2) Two-Step.

6.8 Conclusion

In conclusion, we proposed two methods to disentangle ASR and MT errors in speech

translation. The binary error detection problem was recast as a 3-class labeling problem

(good, asr-error, mt-error). Firstly, two methods were proposed for the non trivial label

setting and it was shown that both give consistent results. Secondly, automatic detection

of error types, using joint ASR and MT features, was evaluated and encouraging results

were displayed on a French-English speech translation task. We believe that such a new

task (not only detecting errors but also their cause) is interesting to build better informed

speech translation systems, especially in interactive speech translation use cases.





Chapter 7

Better Evaluation of ASR in Speech

Translation Context Using Word

Embeddings

7.1 Motivation

In spoken language translation (SLT), the ability of Word Error Rate (WER) metric to

evaluate the real impact of the ASR module on the whole SLT pipeline is often ques-

tioned. This was investigated in past studies where researchers tried to propose a better

evaluation of ASR in speech translation scenarios. Dixon et al. [2011] investigated how

SLT performed as they changed speech decoder parameters. It was shown that sub-

optimal WER values could give comparable BLEU scores at faster decoding speeds.

The authors of [Bechet et al., 2015] analyzed ASR error segments that have a high neg-

ative impact on SLT performance and demonstrated that removing such segments prior

to translation can improve SLT. The same year, Ruiz and Federico [2015] proposed

a Phonetically-Oriented Word Error Rate (POWER) for speech recognition evaluation

which incorporates the alignment of phonemes to better trace the impact of Levenshtein

error types in speech recognition on downstream tasks (such as information retrieval,

91
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spoken language understanding, speech translation, etc.). Moreover, the need to evalu-

ate ASR when its output is used by human subjects (predict how useful that ASR output

would be to humans) was also highlighted by Favre et al. [2013]. Finally, while some

authors [He et al., 2011] proposed an end-to-end BLEU-oriented global optimization

of ASR system parameters in order to improve translation quality, such an end-to-end

optimization is not always possible in practical applications where a same ASR system

is designed for several downstream uses. Thus, we believe that a better evaluation of

the ASR module itself should be investigated.

This chapter rests upon the above papers as well as on the former research of [Vilar

et al., 2006] who noticed that many ASR substitution errors (the most frequent type of

ASR error) are due to slight morphological changes (such as plural/singular substitu-

tion), limiting the impact on SLT performance. We have also noticed this in section 6.6

of previous chapter. Thus, the current WER metric – which gives the same weight to any

substitution – is probably sub-optimal for evaluating ASR module in a SLT framework.

We propose a simple extension of WER in order to penalize differently substitution

errors according to their context using word embeddings. For instance, the proposed

metric should penalize less morphological changes that have a smaller impact on SLT.

We show that the new proposed metric is better correlated with SLT performances.

Oracle experiments are also conducted to show the ability of our metric to find better

hypotheses (to be translated) in the ASR N-best. Finally, we propose a preliminary ex-

periment where ASR tuning is based on our new metric. For reproducible experiments,

code allowing to call our modified WER and corpora used are made available to the

research community.

The rest of the chapter goes simply as follows: section 2 summarizes related works on

evaluation metrics that use word embeddings. Section 3 presents our modified WER

metric which allows to consider near matches in substitution errors. Section 4 details

the experimental settings and section 5 presents our results. Section 6 concludes this

work1.
1Many of the findings described in this chapter were published in [Le et al., 2016c]. The code of the

new metric was designed in collaboration with C. Servan (Post-doc at GETALP).
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7.2 Word Error Rate with Embeddings (WER-E)

The Word Error Rate is the main metric applied to Automatic Speech Recognition eval-

uation. Its estimation is based on the Levenshtein distance, which is defined as the

minimum number of editing steps needed to match an hypothesis and a reference.

7.2.1 Running Example

un no
rd

w
es

tp
ha

lie

un d’ en
ga

ge
m

en
t

pa
rm

i

de na
tio

n

so
uv

er
ai

ne

un 0 1 2 3 4 5 6 7 8 9
ordre 1 1 2 3 4 5 6 7 8 9

westphalien 2 2 2 3 4 5 6 7 8 9
d’ 3 3 3 3 3 4 5 6 7 8

engagements 4 4 4 4 4 4 5 6 7 8
parmi 5 5 5 5 5 5 4 5 6 7

des 6 6 6 6 6 6 5 5 6 7
nations 7 7 7 7 7 7 6 6 6 7

souveraines 8 8 8 8 8 8 7 7 7 7

Alignment: A I S S A S A S S S
Cost: 0 1 1 1 0 1 0 1 1 1

Table 7.1: Example (in French) of the Word Error Rate estimation between a
hypothesis (on the top) and a reference (on the left).

In table 7.1, we compare an hypothesis (on the top) and a reference (on the left): the

score is defined as the lowest-cost alignment path (in grey) from the beginning of both

sentences (top left corner) to the end of both sentences (on the lower-right corner). The

intensity of the colour in the alignment path indicates the match level: lighter grey for

matches, mid-dark grey for substitutions and dark grey for insertions and deletions.

The score sums the number of insertions, deletions and substitutions. Then, this sum is

normalized by the length of the reference. In our example, the WER is calculated as the

following:

WER =
#Ins+#Sub+#Del

#Total of words in the reference
=

1+6
9
≈ 0.78 (7.1)
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7.2.2 Adding Word Embeddings

The main drawback of WER is that it does not gives credit to near matches. For in-

stance, in table 7.1, the hypothesis contains the word “souveraine”, which is close to the

word “souveraines” in the reference. Both are morphological variants of a same word

and WER considers this difference as a Substitution, while their cosine distance in the

continuous space of our word embeddings is only 0.43.

un no
rd

w
es

tp
ha

lie

un d’ en
ga

ge
m

en
t

pa
rm
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de na
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n
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un 0 1 2 3 4 5 6 7 8 9
ordre 1 1.01 2.07 2.93 4.15 4.89 6.07 7.03 8.05 9.01

westphalien 2 1.79 1.73 2.83 3.93 5.38 5.80 6.90 7.75 8.85
d’ 3 3.05 2.97 2.21 2.83 3.83 4.83 5.83 6.83 7.83

engagements 4 3.94 4.02 4.15 3.41 3.30 5.01 5.91 6.92 7.81
parmi 5 4.77 4.80 5.13 5.15 4.61 3.30 4.30 5.30 6.30

des 6 6.04 5.85 5.80 5.61 6.24 4.30 3.64 5.49 6.12
nations 7 6.87 6.83 6.77 6.85 6.55 5.30 5.26 4.42 6.43

souveraines 8 7.92 7.71 7.99 7.71 7.82 6.30 6.15 6.10 4.85

Alignment: A I S S A S A S S S
Cost: 0 1 1.07 0.75 0 0.47 0 0.35 0.78 0.43

Table 7.2: WER-E estimation with word embeddings. Substitution score is
replaced by a cosine distance, without questionning the best alignment.

Our main idea is to find a way to include near matches in the metric without using

lexico-semantic data such as Wordnet. Since word embeddings can model syntactic

and semantic proximity [Mikolov et al., 2013a,c], we use them to estimate a cosine

similarity between two words in a substitution. This cosine similarity (Sc in [-1,1]) is

used to compute a cosine distance (Dc) (see equation 7.2). The substitution score (0 or

1) is replaced by the cosine distance between two words (continuous value in [0,2]).

Dc(W1,W2) = 1−Sc(W1,W2) (7.2)

From this, two variants of the metric are possible. Firstly, in table 7.2, we apply the WER

alignment algorithm with classical substitution cost (we do not modify the alignment

path of table 7.1) and we replace only the substitution scores by the cosine distance. We
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call it “WER with embeddings” (WER-E). Secondly, in table 7.3, we propose to replace

substitution cost by the cosine distance to compute the best alignment path. We call

this last WER variant “WER soft” (WER-S). Therefore, from table 7.2 and table 7.3, we

calculate WER-E and WER-S as the following:

WER-E =
Cost(#Ins)+Cost(#Sub)+Cost(#Del)

#Total of words in the reference

=
1+(1.07+0.75+0.47+0.35+0.78+0.43)

9
≈ 0.54 (7.3)

WER-S =
Cost(#Ins)+Cost(#Sub)+Cost(#Del)

#Total of words in the reference

=
1+(1.01+0.73+0.47+0.35+0.78+0.43)

9
= 0.53 (7.4)

In the first case (table 7.2), we can observe a WER-E score (0.54) lower than the classical

WER estimation (0.78). Since we do not question the alignment path in this case, we do

not obtain the lowest score possible. The second case, presented in table 7.3, enables us

to get another alignment path, and thus gets the lowest score possible (0.53).

This new feature takes into account near matches between words. For instance, words

“westphalie” and “westphalien” are close enough to have a low distance. In the align-

ment proposed in table 7.3, the alignment changed and we got a lower score.

7.3 Experimental Setup

The experimental settings contain the same configuration as in Chapter 4 and Chapter

5. For ASR output, the N-best lists (N=1000) were also generated for each utterance.

Table 7.4 gives 2 examples of SLT output obtained. Table 7.5 summarizes baseline

ASR, MT and SLT performances obtained on our corpora. We score translations ob-

tained with the following automatic metrics: TER [Snover et al., 2006], BLEU [Pa-

pineni et al., 2002] and METEOR [Banerjee and Lavie, 2005] using post-edition ref-

erences (ere f ). Note that we used the option lm-scale = 10 when generating N-best

hypotheses from ASR system (N = 1000) instead of applying lm-scale = 12 for SLT
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un 0 1 2 3 4 5 6 7 8 9
ordre 1 1.01 2.01 2.93 3.93 4.89 5.89 6.89 7.89 8.89

westphalien 2 1.79 1.74 2.74 3.74 4.74 5.74 6.72 7.61 8.61
d’ 3 2.79 2.74 2.21 2.74 3.74 4.74 5.74 6.74 7.74

engagements 4 3.79 3.74 3.21 3.42 3.21 4.21 5.21 6.21 7.21
parmi 5 4.77 4.65 4.21 4.21 4.21 3.21 4.21 5.21 6.21

des 6 5.77 5.65 5.21 4.68 5.21 4.21 3.55 4.55 5.55
nations 7 6.77 6.57 6.21 5.68 5.63 5.21 4.55 4.34 5.34

souveraines 8 7.77 7.57 7.21 6.68 6.63 6.21 5.55 5.34 4.76

Alignment: A S S I A S A S S S
Cost: 0 1.01 0.73 1 0 0.47 0 0.35 0.78 0.43

Table 7.3: WER-S estimation with word embeddings. Substitution score is
replaced by a cosine distance and we recalculate the best alignment.

REF ASR ce serait intéressant de voir un ordinateur présentant ce même système WER WER-E WER-S
OptWER ce sera intéressant de voir un ordinateur présentant ce même système 9.09 2.43 2.43
OptWER-E ce serait intéressant de voir un ordinateur présentant ce même système 0.00 0.00 0.00

REF SLT it would be interesting to see a computer with this same system TER SentBLEU METEOR
OptWER - SLT this will be interesting to see a computer with the same system 33.33 62.63 49.33
OptWER-E - SLT it would be interesting to see a computer with the same system 16.67 79.11 92.73

REF ASR en bref ils craignent que tous les sacrifices entrepris pour stabiliser les prix aient été vains WER WER-E WER-S
OptWER en bref il craignait que tous les sacrifices ces entreprises pour stabiliser les prix et était vingt 43.75 34.65 33.26
OptWER-E en bref ils craignent que tous les sacrifices ces entreprises pour stabiliser les prix et était vingt 31.25 26.80 25.41

REF SLT in short they fear that all the sacrifices made to stabilize prices have been fruitless TER SentBLEU METEOR
OptWER - SLT in short it feared that all the sacrifices these companies to stabilise prices and was 20 60.00 26.22 34.84
OptWER-E - SLT in short they fear that all the sacrifices these companies to stabilise prices and was 20 46.67 50.44 40.08

Table 7.4: ASR and SLT examples (explanations given in section 7.4.5).

(ASR1) system presented in subsection 4.2.2 of chapter 4. Therefore, the scores WER

for the tasks dev and test in table 7.5 and SLT (ASR1) in table 4.4 are nearly equal.

Tasks metrics ASR Ref. ASR 1-best

dev
WER – 21.92
TER 38.84 55.64
BLEU 43.05 30.81
METEOR 40.73 34.02

test
WER – 17.46
TER 45.64 58.70
BLEU 44.71 34.27
METEOR 39.10 34.27

Table 7.5: Baseline ASR, MT and SLT performance on our dev and test sets -
translations are scored w/o punctuation.
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7.4 Results and Analysis

This section first presents the results obtained in ASR, according to our new metrics.

Then, we analyze the correlation of the ASR metrics (WER, WER-E, WER-S) with

SLT performances. After that, Oracle experiments are conducted to compare the ASR

metrics in their ability to find (before translation) promising hypotheses in the ASR N-

best. Finally, we present a preliminary experiment to tune ASR output based on our

proposed metric. For all the experiments, the MT system never changes and is the one

described in section 4.2.3 of chapter 4.

Tasks metrics
ASR Oracle from N-best
1-best WER WER-E WER-S

dev
WER 21.92 12.01 12.16 12.15
WER-E 18.10 10.45 9.98 10.04
WER-S 17.41 10.19 9.79 9.75

test
WER 17.46 7.38 7.53 7.52
WER-E 13.13 5.86 5.43 5.48
WER-S 12.53 5.65 5.29 5.25

Table 7.6: Speech Recognition (ASR) performances - ASR Oracle is obtained
from 1000-best list by selecting hypothesis that minimizes WER, WER-E or
WER-S.

7.4.1 ASR Results

Table 7.6 presents the performances obtained by the ASR system described in section

4.2.2 of chapter 4. The columns correspond to four settings: the best output according

to the ASR system, and three oracles extracted from the N-best list. The oracle ASR

performances are obtained by sorting the N-best hypotheses according to WER, WER-

E or WER-S. The results show that the oracle hypotheses selected by WER, WER-E

and WER-S can be different. In other words, optimizing the ASR according to the new

metrics proposed can degrade WER but improve WER-E or WER-S. In this case, better

ASR outputs in term of near matches are selected. Overall, whatever the metric used,

Oracle hypotheses contain approximately 50% of the initial errors found in the 1-best.
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Tasks metrics
Pearson Correlation

WER WER-E WER-S

dev
TER 0.732 0.767 0.773
BLEU -0.677 -0.708 -0.710
METEOR -0.753 -0.799 -0.797

tst
TER 0.457 0.457 0.441
BLEU -0.624 -0.661 -0.606
METEOR -0.672 -0.692 -0.678

Table 7.7: Pearson Correlation between ASR metrics (WER, WER-E or WER-
S) and SLT performances (TER, BLEU, METEOR) - each point measured on
blocks of 100 sentences.

7.4.2 Correlation between ASR Metrics and SLT Performance

In this section, we investigate if our new metrics WER-E and WER-S are better cor-

related with speech translation (SLT) performance. Table 7.7 shows the correlation

(Pearson) between ASR metrics (WER, WER-E or WER-S) and SLT performances

(TER, BLEU, METEOR). Since BLEU and METEOR are not very efficient to eval-

uate translations at the sentence level, we decided to group our sentences by blocks

of 100 (in order to have relevant measure points for correlation analysis). We end up

with 27 blocks on dev and 41 blocks on test for evaluating correlation. The reading of

the TER score is “the lower the better”, and BLEU and METEOR are “the higher the

better” which explains the different signs of the correlation values. The results show

clearly a better correlation of the proposed metrics (WER-E and WER-S) with SLT per-

formances, compared to classical WER. Also, we notice that all ASR metrics are better

correlated with METEOR (itself known to be better correlated with human judgements),

while ASR metrics are less correlated with BLEU.

7.4.3 Oracle Analysis

In this section, we verify if the hypotheses selected by WER-E and WER-S are more

promising for translation. Our Oracle analysis is presented in Table 7.8. Similarly

to Table 7.6, the columns correspond to four settings: the best output according to the

ASR system is translated, and three oracles are scored by translating the most promising

hypotheses according to WER, WER-E or WER-S. Even if there are not big differences
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Tasks metrics
ASR Oracle from N-best
1-best WER WER-E WER-S

dev
TER 55.64 50.62 50.52 50.45
BLEU 30.81 35.29 35.37 35.41
METEOR 34.02 36.37 36.42 36.44

test
TER 58.70 54.13 54.01 54.03
BLEU 34.27 39.34 39.43 39.42
METEOR 34.27 36.55 36.64 36.64

Table 7.8: Speech Translation (SLT) performances - Oracle is obtained from
1000-best list by translating hypothesis that minimizes WER, WER-E or WER-
S.

Tasks Comparison TER BLEU METEOR

Dev
O. WER-E best 255 310 321
O. WER best 190 271 315
Ties 2198 2062 2007

Test
O. WER-E best 341 451 510
O. WER best 264 381 399
Ties 3445 3218 3141

Table 7.9: Comparison of SLT performances of the Oracle WER vs. the Oracle
WER-E by counting the number of sentences which obtain a better MT score
according to TER, Sentence BLEU and METEOR.

in SLT performance, the results show the ability of our metric to find slightly better

hypotheses (to be translated) in the ASR N-best. For instance, when the WER-S score is

used to select the best ASR hypothesis, the TER, BLEU and METEOR are improved by

respectively 0.18, 0.12, and 0.06 points on the dev corpus. However, these differences

are rather small.

We also analyzed how often the Oracle (according to WER-E) system obtains better

results at the sentence level compared to the Oracle (according to WER). Table 7.9

shows this comparison for the three MT metrics (TER, sentenceBLEU and METEOR).

Even if we logically observe a majority of ties where Oracle (according to WER-E) and

Oracle (according to WER) lead to the same SLT output, for the other cases the analysis

shows a preference of the translation metrics for the Oracle (according to WER-E). This

result confirms the trend observed in table 7.8.
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Tasks metrics
ASR optimized ASR optimized

with WER with WER-E

dev
TER 55.64 55.52
BLEU 30.81 30.84
METEOR 34.02 34.00

test
TER 58.71 58.56
BLEU 34.27 34.38
METEOR 34.27 34.26

Table 7.10: Speech Translation (SLT) scores obtained with 2 ASR systems
optimized with WER or WER-E.

7.4.4 ASR Optimization for SLT

This section investigates if the tuning of an ASR system using the new metrics proposed

can lead to real (and not oracle) improvements. This experiment is preliminary since

we only optimize the LM weight parameter (to minimize WER or WER-E2) on the dev

corpus.

The results are given in table 7.10 but they are not very convincing: we observe small

gains for TER and BLEU evaluation but not improvement of METEOR. Our explana-

tion is that there were too few free parameters investigated to tune the ASR system.

In addition, translation evaluation metrics are themselves unperfect to evaluate transla-

tion quality. The next section proposes to analyze a few translation examples to better

understand the differences of both SLT systems.

7.4.5 Translation Examples

In table 7.4 are presented some translation examples related to the ASR optimization.

We can observe in these example that both ASR systems (OptWER and OptWER-E) are

very close. For instance, in the first example, the ASR hypothesis is different only on

one word (“sera” vs. “serait”). Both are the same verb at the right agreement with the

pronoun but not at the same tense. These are two examples where the ASR optimized

according to WER-E lead to better translation (SLT) hypotheses than WER. What it

means is simply the fact that ASR system is optimized according to a metric which

2WER-S lead to the same optimized ASR system than WER-E
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penalizes less substitutions between “morphologically similar” words. We believe that

for optimizing ASR systems along a larger number of meta-parameters, the modififed

metrics proposed in this chapter could be more useful.

7.5 Conclusion

In brief, we proposed an extension of WER in order to penalize differently substitution

errors regarding the context.

Our experiments, made on a French-English speech translation task, have shown that

the new proposed metric is better correlated with SLT performances. Oracle experi-

ments have also shown a trend: the ability of our metric to find better hypotheses (to

be translated) in the ASR N-best. This opens possibilities to optimize ASR using met-

rics clever than WER. For reproducible experiments, code allowing to call our modified

WER has been made available on github in collaboration with C.Servan (Post-doc at

LIG during this work)3.

3https://github.com/cservan/tercpp-embeddings

https://github.com/cservan/tercpp-embeddings




Chapter 8

Conclusions and Perspectives

8.1 Conclusions

The objective of this thesis was mainly to study a new quality assessment task: word

confidence estimation (WCE) for spoken language translation (SLT) that is a sub-field

of Confidence Estimation. We proposed several strategies based on several types of fea-

tures: Machine Translation (MT) based features, Automatic Speech Recognition (ASR)

based features, as well as combined or joint features using ASR and MT information.

In addition to the provision of some directions for future research, this thesis has made

several contributions to the literature on WCE system for SLT.

First, we extended a speech corpus for a French-English speech translation task. This

corpus, which was distributed to the research community1, now contains 6693 speech

recordings (its extension from 2643 to 6693 speech utterances). Duration is 16 hours

52 minutes and it has 42 speakers.

Second, we inherited the conventional ASR and MT features for WCE. We then ex-

tracted the full-feature set including new features. We also formalized WCE for SLT,

proposed a pipeline of WCE system and developed a complete out-of-the-box toolkit:

LIG-WCE Toolkit used in this thesis.
1https://github.com/besacier/WCE-SLT-LIG
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Third, we proposed two novel models, which are combined model and joint model

based on SLT features. Those results showed that joint model slightly outperforms a

model based on MT features only when employing an optimal decision threshold.

Fourth, the results of experiments using joint model carried out in this work suggest

that there are some redundant predictor features in the full-featured set. This motivate

us to employ the “Sequential Backward Selection” (SBS) approach on WCE system

for SLT applying joint model. When considering the result of feature selection, we

could conclude that the most useful are MT features while interesting complementary

information can be brought by ASR features.

Fifth, we also experimented with two ASR systems having different performances. The

results suggested that WCE performance decreases as ASR system improves.

Sixth, to find out the source of SLT errors, we proposed two methods to disentangle ASR

and MT errors in spoken language translation. This was addressed by transforming a 2-

class problem into a 3-class problem when labelling our SLT hypotheses. We observed

that the task is difficult. But, we hope that the findings of our study could attract the

attention of other researchers (not only detecting errors but also their cause).

Finally, in our investigation of tuning SLT output, we proposed a novel metric, called

Word Error Rate with Embeddings (WER-E), that could penalize differently substitu-

tion errors according to their context using word embeddings. Our experiments showed

that ASR hypotheses (N-best) optimized with WER-E could help SLT system gener-

ate the better candidates. The outcome material of this thesis (corpus, toolkit) can be

definitely used to address such a new problem.

8.2 Perspectives

Firstly, we could extend the speech corpora recorded by french native speakers. This

task could be important to train robust joint WCE systems for SLT. In addition, more

investigation needs to be done in order to disentangle ASR and MT errors in SLT. It

is also worth investigating to exploit more in-depth SLT features based on word-level
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such as the grammatical content of the word, the relation of the word to the syntactic

structure. There are also important directions of potential research that this thesis does

not address such as Confidence Estimation (CE) at sentence-level or phrase-level (that

are presented in shared task: Quality Estimation of WMT2).

As an extension of our proposed Word Error Rate with Embeddings (WER-E) metric,

we could replace or augment the word embeddings with lexico-semantic data such as

Wordnet or DBnary.

In addition to re-decode SLT graphs, our quality assessment system can be used in sce-

narios of interactive spoken language translation for example subtitling for lectures, to

improve human translator productivity by giving him/her feedback on automatic tran-

scription and translation quality. Another application would be the adaptation of our

WCE system to interactive speech-to-speech translation scenarios where feedback on

transcription and translation modules is needed to improve communication. Further-

more, we tend to apply some other techniques such as deep learning [Rikters and Fishel,

2017] [Goodfellow et al., 2016] [Lecun et al., 2015] or other ensemble techniques (bag-

ging, voting) to learn and to use the WCE features.

2http://www.statmt.org/wmt17/quality-estimation-task.html

http://www.statmt.org/wmt17/quality-estimation-task.html




Appendix A

Extended Summary in French

Les systèmes de traduction de la parole état de l’art commencent à atteindre des per-

formances leur permettant d’être exploités dans des situations réelles. Cependant, ils

sont encore confrontés à certaines limites dès que le domaine d’application change des

données d’apprentissage. Les mots peu observés ou hors vocabulaire ainsi que les dis-

fluences peuvent avoir des impacts négatifs sur ces systèmes.

Il peut donc être intéressant de pouvoir estimer automatiquement la qualité des sorties

d’un système afin d’en extraire des zones de confiance. Cette thèse s’insère donc dans

le cadre de l’estimation de mesures de confiance pour la traduction automatique de la

parole. Ces travaux pourront ainsi trouver un cadre d’application dans la traduction

assistée par ordinateur ou encore la traduction interactive de la parole.

Que ce soit en reconnaissance automatique de la parole ou traduction automatique, il ex-

iste de nombreuses approches visant à estimer des mesures de confiance. Elles peuvent

être extraites à différentes granularités : au niveau du document [Scarton and Specia,

2014] [Scarton et al., 2016], de la phrase [Blatz et al., 2004] [Specia et al., 2009] [Shah

et al., 2016], de segments de mots [Specia and Giménez, 2010] [Logachva and Specia,

2015] [Blain et al., 2016] ou encore au niveau des mots [Ueffing et al., 2003a] [Ueff-

ing and Ney, 2005] [Ueffing and Ney, 2007] [Bach et al., 2011] [Luong et al., 2013a]

[Luong et al., 2013b] [Besacier et al., 2014] [Besacier et al., 2015] [Servan et al., 2015]

[Logacheva et al., 2016] [Le et al., 2016b].
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En raison des causes évoquées précédemment, les sorties d’un système de traduction au-

tomatique de la parole peuvent être de qualité insuffisante pour l’utilisation finale. Il est

alors nécessaire d’identifier les zones où le système se trompe. Une première contribu-

tion de cette thèse est axée autour d’une boîte à outils "LIG-WCE" permettant d’extraire

des mesures de confiance au niveau mot. Cette boîte à outils a été faite de manière à

être modulable et personnalisable (l’utilisateur peut rajouter des traits supplémentaires

facilement).

Bien que les mesures de confiance aient été explorées pour les systèmes de traduction ou

de reconnaissance de la parole, peu de travaux ont abordé les mesures de confiance pour

la cascade de ces deux types de systèmes. Dans cette thèse, nous formalisons cette tâche

comme l’étiquetage de séquence de mots issus du système de traduction automatique

de la parole avec des labels "bon" ou "mauvais". Cet étiquetage se fait à l’aide d’un

classifieur basé sur des champs aléatoires conditionnels, ayant pour entrée un ensemble

de traits internes et externes au système.

Nous proposons plusieurs approches, dans la première nous séparons les estimations de

confiance : nous en calculons pour le système de reconnaissance puis pour le système

de traduction. Enfin, nous proposons une approche jointe des mesures issues des deux

systèmes.

Afin de réaliser nos expériences, nous proposons un corpus contenant 6700 phrases

prononcées par différents locuteurs et pour lesquelles sont associés des quintuplets com-

posés de : l’hypothèse du système de reconnaissance, la transcription manuelle, la tra-

duction du verbatim, la traduction du discours et enfin une post-édition de la traduction.

Il ressort de ces expériences que les traits issus du système de traduction automatique

sont les plus utiles, tandis que ceux issus du système de reconnaissance automatique de

la parole peuvent parfois apporter des informations complémentaires.

Ensuite, nous nous sommes intéressés à identifier automatiquement la provenance des

erreurs (parole ou traduction). Nous avons formalisé cette partie en rajoutant des labels

"ASR_erreur" et "MT_erreur". Cela nous permet d’identifier l’origine de l’erreur, afin

de la corriger en conséquence.
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Une dernière contribution est axée sur la proposition d’une nouvelle métrique. Cette

dernière propose d’étendre le WER classique afin d’introduire une notion de séman-

tique : en effet, certaines erreurs de reconnaissance ont peu d’impact sur la traduction

car elles restent proches sémantiquement. Cette métrique est basée sur un plongement

des mots, qui permet d’identifier les erreurs ayant peu d’impact sémantique. Nous

avons notamment réalisé des expériences qui ont montré une forte corrélation entre

notre métrique et la qualité du système de traduction de la parole. Les mesures oracles

montrent également qu’en se basant sur notre métrique, il est possible de faire remonter

de meilleures hypothèses parmi les N-best.

Finalement, nous proposons d’utiliser cette mesure afin d’optimiser notre système de

traduction automatique de la parole. Nos expériences montrent un gain significatif grace

à ce nouvel estimateur.

En conclusion, nous avons proposé plusieurs stratégies permettant d’extraire des

mesures de confiance pour un système de traduction automatique de la parole. Nous

avons montré qu’il était possible d’extraire des estimateurs robustes, permettant

d’envisager des scénarios de traduction assistée par l’utilisateur (où ce dernier est guidé

par les mesures) ou encore de réestimation de graphes de traduction automatique de la

parole.
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