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ABSTRACT

Thanks to the advent of functional brain-imaging technologies, cog-
nitive neuroscience is accumulating maps of neural activity responses
to speci c tasks or stimuli, or of spontaneous activity. In this work,
we consider data from functional Magnetic Resonance Imaging ( fMRI),
that we study in a machine learning setting: we learn a model of
brain activity that should generalize on unseen data. After reviewing
the standard fMRI data analysis techniques, we propose new meth-
ods and models to bene t from the recently released large fMRI data
repositories. Our goal is to learn richer representations of brain activ-
ity. We rst focus on unsupervised analysis of terabyte-scale fMRI data
acquired on subjects at rest (resting-statefMRI). We perform this anal-
ysis using matrix factorization. We present new methods for running
sparse matrix factorization/dictionary learning on hundreds of  fMRI
records in reasonable time. Our leading approach relies on introduc-
ing randomness in stochastic optimization loops and provides speed-
up of an order of magnitude on a variety of settings and datasets.
We provide an extended empirical validation of our stochastic sub-
sampling approach, for datasets from fMRI, hyperspectral imaging
and collaborative ltering. We derive convergence properties for our
algorithm, in a theoretical analysis that reaches beyond the matrix fac-
torization problem. We then turn to work with  fMRI data acquired on
subject undergoing behavioral protocols (task fMRI). We investigate
how to aggregate data from many source studies, acquired with many
different protocols, in order to learn more accurate and interpretable
decoding models, that predicts stimuli or tasks from brain maps. Our
multi-study shared-layer model learns to reduce the dimensionality
of input brain images, simultaneously to learning to decode these im-
ages from their reduced representation. This fosters transfer learning
in between studies, as we learn the undocumented cognitive com-
mon aspects that the many fMRI studies share. As a consequence,
our multi-study model performs better than single-study decoding.
Our approach identi es universally relevant representation of brain
activity, supported by a few task-optimized networks learned during
model tting.

Finally, on a related topic, we show how to use dynamic program-
ming within end-to-end trained deep networks, with applications in
natural language processing.



RESUME

Grace aux avancées technologiques dans le domaine de l'imagerie
fonctionnelle cérébrale, les neurosciences cognitives accumulent une
grande quantité de cartes spatiales décrivant de maniére quantitative
I'activité neuronale suscitée dans le cerveau humain en réponse a des
tdches ou des stimuli spéci ques, ou de maniére spontanée. Dans
cette these, nous nous intéressons plus particulierement aux données
issues de l'imagerie par résonance magnétique fonctionnelle (IRmf),
gue nous étudions dans un cadre d'apprentissage statistique. Dans ce
cadre notre objectif est d'apprendre des modeéles d'activité cérébrale
a partir des données. Nous proposons différentes nouvelles maniéres
de pro ter de la grande quantité de données IRMf disponible.

Tout d'abord, nous considérons les données d'IRMf de repos, que
nous analysons grace a des méthodes de factorisation de matrices.
L'utilisation de ce type de méthode est classique dans un contexte
d'apprentissage statistique non-supervisée. Dans le cas de I'lRM fonc-
tionnelle, l'objectif est d'extraire des données un nombre réduit de
cartes du cerveau (dites de réseaux fonctionnels) sur lesquelles les
données peuvent étre projetées avec une faible perte de signal. Les
réseaux obtenus (que nous souhaitons parcimonieux) délimitent des
régions cérébrales dans lesquelles le signal d'activation est fortement
corrélé. Malheureusement, la taille des données des nouvelles études
d'IRM fonctionnelle de repos (plusieurs millions d'image tridimen-
sionelles, qui contiennent plusieurs centaines de milliers de voxels
chacune) rend tres colteux la décomposition de ces données via une
factorisation matricielle, et donc I'extraction de réseaux fonctionnels
informés par une quantité de données inédite a ce jour.

En conséquence, nous présentons de nouvelles méthodes pour cal-
culer en un temps raisonnable une factorisation parcimonieuse d'une
matrice de donnée constituée plusieurs centaines d'enregistrements
d'Irmf. En premier lieu, nous proposons d'effectuer un prétraitement
des données d'entrée a l'aide de projections aléatoires, avant d'ap-
prendre une décomposition matricielle depuis les données réduites.
Si cette méthode nous permet de traiter en moins d'une journée des
données d'une taille de I'ordre de 50 Go, elle n'est pas adaptée pour
procéder a l'extraction de réseaux a partir de récents jeux de données
de plusieurs téra-octets, comme celui du Human Connectome Project
qui propose des enregistrements pour plus de mille sujets.

Notre méthode principale, proposée en deuxieme partie, introduit
une réduction aléatoire de la dimension des données, via un sous-
échantillonage, dans une boucle d'apprentissage en ligne qui résoud
le probleme de factorisation parcimonieuse. L'algorithme proposé con-
verge plus de 10 fois plus vite que les meilleures méthodes exis-
tantes, pour différentes con gurations et sur plusieurs jeux de don-
nées. Nous effectuons une vaste validation expérimentale de notre ap-
proche de sous-échantillonnage aléatoire. Nous proposons une étude



théorique et asymptotique des propriétés de convergence de notre al-
gorithme, dans le cadre plus général des algorithmes de majorisation-
minimisation.

Dans un troisieme temps, nous nous intéressons aux données dirRMf
d'activation. Nous démontrons comment agréger différents études
acquises suivant des protocoles distincts an d'apprendre des mo-
déles joints de décodage plus justes et interprétables. Notre modéle
multi-études apprend a réduire la dimension des images cérébrales
en entrée en méme temps qu'il apprend a les classi er, pour chacune
des études, a partir de leurs représentations réduites. Cela suscite un
transfert d'information entre les études. En conséquence, notre mo-
dele multi-étude est plus performant que les modéles de décodage
appris sur chaque étude séparément. Notre approche identi e une
représentation universellement pertinente de l'activité cérébrale, sup-
portée par un petit nombre de réseaux optimisés pour l'identi cation
de taches.

Pour nir, sur un sujet connexe, nous nous intéressons a de nou-
velles méthodes pour effectuer de la prédiction structurée, avec des
applications variées en traitement du langage naturel. Nous propo-
sons une maniére générique de relacher les algorithmes de program-
mation dynamique qui apparaissent dans les méchanismes d'infé-
rence pour la prédiction de structures (par exemple, I'étiquettage syn-
taxique d'une phrase). Cela permet d'entrainer les représentations in-
termédiaires, paramétrées par des réseaux de neurones profonds, des
données d'entrée en aval de ces méchanismes d'inférence.
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NOTATION

We denote scalars, vectors and matrices using lower-case, bold
lower-case and bold upper-case letters, e.g.,x, x and X. We denote
the elements of X by xij , its rows by x;, and its columns by x().
Depending on context, subscript will also be used to denote iteration
number, as in X¢, the value of x at iteration t of a given algorithm.
We use calligraphic font X to denote ensembles. When dealing with
approximated value and comparing them to a ground truth, we use
superscript ? to denote the non-approximated value. Finally, we of-
ten use the notation x to denote an empirical or true expected value.
Speci ¢ notations will be recalled where needed.

Notation Name De nition
[L;n]=[n] Integersfrom 1ton flp: 1 ng

kxko Vector euclidean norm ("2 norm) i”: 1 xi2) 1=2
kxkjq Vector/matrix "7 norm 5 "X

hx;yi Vector scalar product T XiYi
supp(x) Support of x in R" fi 2 [1;n]:x; 6 Og
kXk2 Matrix Frobenius norm i xﬁj 1=2
hX; Yi Frobenius scalar product 5 1 X Vi

Tr X Trace of X i 1 Xi

Diag(x) Diagonal matrix with diagonal x

XY Moore-Penrose pseudo-inverse

B 1/ 72 unitballin R"

conv(Y) Convex hull of Y b

H(q) Shannon Entropy ' gi log q;

4n (n - 1)-probability simplex f 2RP :k ky = 1g
N(; ) Normal distribution

P[A] Probability of event A P

E[X] Expected value of X A PIX = x]x




OVERVIEW

Functional MRI is a powerful brain-imaging modality: it allows to
better understand how the brain work by recording with very little in-
trusion the brain activity of an active human subject with a good time
(1s) and spatial resolution (1mm). The eld of fMRI is becoming data
intensive, as the number of publicly available studies is constantly
growing, and as several acquisition campaigns on large cohorts have
provided tens of thousand hours of brain records. This has called for
changing analysis methods, that have been shifting from inferential
statistics to statistical learning for the last 10 years. It is now consen-
sual that models of brain activity recorded in MRl should be learned
from data, and validated by performing prediction on left-out data,
which cast fMRI analysis as a machine-learning challenge. The size of
newly released fMRI data requires strong adaptation of existing ma-
chine learning techniques, given their unusual shape: they are high
dimensional (with hundreds of thousands of voxels), and come in
numerous samples with low signal-to-noise ratio. In this thesis, we
speci cally address the problem of ef ciently nding rich representa-
tion of brain activity using large-scale fMRI data repositories.

1.1 organization of the manuscript

The following work is organized around three major research di-
rections, that led to different series of publications.

1.1.1 (Matrix factorization for) functional imaging analysis

What is functional Magnetic Resonance Imaging (fMRI), how is
functional MRI data analysed today, why does the growing amount
of data requires new methods? We provide an overview of functional
MRI analysis, in both unsupervised (resting-state data) and super-
vised (task data) settings in Chapter 2, which introduces the several
data analysis formalisms we reuse throughout this work. In Chap-
ter 3, we propose a new method based on random projections (Halko
et al., 2011 Johnson and Lindenstrauss, 1984 to preprocess data and
accelerate the extraction of functional networks from resting-state
fMRI data using dictionary learning (Olshausen and Field, 1997 Varo-
quaux et al., 2011). This method is useful but hard to deploy on
datasets with thousands of fMRI acquisitions: to circumvent this is-
sue, and propose a new problem formalization, that will be central to
Part ii .
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Published work

Mensch, A., Varoquaux, G., & Thirion, B. (201&). Com-
pressed online dictionary learning for fast fMRI decompo-
sition. In Proceedings of the IEEE International Symposium on
Biomedical Imaging (ISBJ)

Dohmatob, E., Mensch, A., Varoquaux, G., & Thirion,

B. (2016. Learning brain regions via large-scale online
structured sparse dictionary learning. Advances in Neural
Information Processing Systemns

1.1.2 Huge matrix factorization

Matrix factorization plays a major role in functional MRI analysis,
especially when dealing with resting-state data, i.e. data acquired
on subjects left idle in their scanner. The size of the data produced
by fMRI studies sets new scalability challenges for this category of
pattern extraction methods. How can we factorize large (high dimen-
sional) and tall (numerous samples) matrices in reasonable time? In
Chapter 4, we propose a new exible algorithm for matrix factoriza-
tion, that is an order of magnitude faster than the fastest existing
methods (Mairal et al., 2010 on the datasets we consider. Our algo-
rithm, that we dub sowmF, is able to factorize huge, dense, and po-
tentially square matrices, into factors that may be sparse, dense and
potentially non-negative. It relies on a new optimization method that
is both random in the sample (column) and feature (row) direction.
We provide a complete theoretical analysis of the properties of SOMF
in Chapter 5, in which we extend the class of stochastic majorization-
minimization algorithms (Mairal, 2013) by perturbating their vari-
ous steps. We show that it enjoys the same convergence properties as
existing methods. We perform an empirical validation of sowmF for a
variety of domains in Chapter 6, where we discuss how it accelerates
matrix factorization for hyperspectral imaging data, collaborative I-
tering (R. M. Bell and Koren, 2007, and of course resting-state fMRI .

Published work

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2016). Dictionary learning for massive matrix factoriza-
tion. Proceedings of the International Conference on Machine
Learning (ICML),

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(201&). Stochastic Subsampling for factorizing huge ma-
trices. IEEE Transactions on Signal Processirdf(1), 113-
128

1.1.3 Deeper and richer models for task fMRI and structured data

For a bird's-eye view, functional MRI data is available in two ma-
jor forms: a few large-scale studies (e.g., Sudlow et al., 2015 Van
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Essen et al., 2012, that perform resting-state and generic task pro-
tocols over hundreds to thousands of subjects; hundreds of smaller
task fMRI studies, that explore speci ¢ aspects of cognition by apply-
ing carefully designed but disparate experimental protocols on a few
dozens of subjects, who are asked to execute some tasks or stimulated
in various ways.

The statistical power of data analysis methods for these smaller
studies is limited by their sample size (Button et al., 2013. On the
other hand, large efforts have been recently made to gather many
small iMRI in the same public repositories (Poldrack et al., 2013.
Can aggregating data from many small size sources and leverag-
ing the large-size datasets allow us to learn more powerful models ?
Many task fMRI studies indeed share some common cognitive aspects,
which should allow to increase the effective classi cation power of
learned models. Yet a major challenge for this approach lies in the
fact that the relationships between various studies are undocumented.
In Chapter 7, we design a new multi-layer model that performs de-
coding over dozens of studies aggregated together. The multi-layer,
shared-parameter structure of our model allows to learn the relation-
ship between protocols and permits effective transfer learning. In
other words, it ensures that the information learned from classifying
each study benets the other studies. Our model has higher pre-
diction performance than single-study decoders; it produces cogni-
tive representation of brain activity over multi-study task-optimized net-
works that form a universal and interpretable basis for inter-subject
decoding.

Published work

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., & Varo-
guaux, G. (2017. Learning neural representations of hu-
man cognition across many fMRI studies. Advances in Neu-
ral Information Processing Systems

1.1.4 New algorithmic layers for deep structure prediction

This last part, that may be considered as an appendix, was pre-
pared during an internship at NTT Communication Science Labs, Ky-
oto, Japan. In Chapter 8, we depart from fMRI and linger on the
idea, already present in Chapter 7, of introducing new components
to existing models and train them in an end-to-end fashion. More
precisely, we provide a general approach for introducing dynamic
programming mechanisms within deep networks, and show how to
make these mechanisms differentiable and therefore suitable for back-
propagation training. Our approach, based on smoothing techniques
(Nesterov, 2009, allows to perform dense or sparse inference within
(simple) graphical models and backpropagate through it. We show
how to apply it in natural language processing settings (neural ma-
chine translation, named entity recognition), and audio-to-score align-
ment.
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Published work

Mensch, A., & Blondel, M. (2018. Differentiable dy-
namic programming for structured prediction and atten-
tion. Proceedings of the International Conference on Machine
Learning (ICML).

1.1.5 Software

We developed several Pythonpackages for reproducibility and reuse
of the work presented in this dissertation. The detailed list is pro-
vided in Chapter 9.

1.2 a note on chapter ordering

Appendices may be skipped at rst read as they are not essential
for understanding the overall story. The reader more interested in
more theoretical machine learning and optimization would rst go
for chapters 4, 5 and 8. In contrast, chapters 3, 6 and 7 are more
speci cally focused on machine learning for fMRI.



Part i

(MATRIX FACTORIZATION FOR)
FUNCTIONAL NEURO-IMAGING



NEURO-IMAGING BACKGROUND

In this chapter, we introduce the general goals and the type of data
that were studied in this thesis. This is useful to understand the var-
ious directions that we took. The general objective of this thesis was
the analysis of large-scale functional Functional magnetic resonance
imaging (fMRI) data. Its driving motivation could be stated as such:
we wish to handle at reasonable cost the numerous studies that are
now publicly available, in order bring more precise and general sta-
tistical representation of brain activity. Yet new methods and models
have to be developed to 1) handle the size of data that ambitious data
acquisition projects are now producing and 2) handle the protocol
variability of past and future functional MRI studies, by increasing
model complexity.

In this chapter, we provide a synthetic overview (Section 2.1) of the
purpose of functional MRI in cognitive science, so as to make clearer
the nal interest of the presented methods to the reader. We refer to
e.g.,Poldrack et al. (2011) for more in-depth reference. Functional MRI
protocols come in two major avors, task and resting-state, that were
both studied in this thesis. We will present their general principles
and their associated analysis techniques in Section2.2 and 2.3.

This chapter is focused on neuroimaging rather than mathematical
formulations: we delay the introduction of models and methods and
their inscription within a larger machine-learning/signal processing
literature to the relevant following chapters.

2.1 studying the brain through functional mri

Let us rst recall the basis of neuro-imaging, before focusing on
functional MRI principles and technical aspects.

2.1.1 Neuro-imaging

Neuro-imaging sciences endeavor to measure brain activity from
human or animal subjects and relate it to experimental conditions
and behavior observations. It is founded on the observation ! that cog-
nition has measurable effects on the brain, that are somehow shared
across subjects, and to some extent across species. In theory, this
should allow to mapthe cognitive functions onto the physical brain
and describe cognitive processes implementation in quantitative ways,
that should reasonably generalize across subjects.

Means of signal acquisition are various and in constant evolution.
Table 2.1 describes some of them. Modalities may be considered from
different point of views: they vary in their level of intrusion, their
spatial resolution, their temporal resolution and their level of noise.

1 Neuroscience can
be traced back to
Ancient Egypt
medicine, that
already observed
relations between
brain trauma
localisation and
behavior (Kandel
et al.,1981).
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Modality  Principles S.res. T.res. Intrusiveness
Electric eld evoked i

ECOG o . . Imm 10ms Surglcal .
inside the implanted brain intervention

Electric/Magnetic eld
evoked from surfaceactivity

fMRI BOLD signal (whole brain) 2mm 1s High B eld

EEG/ MEG lcm 10ms Harmless

Table 2.1 — Examples of neuro-imaging modalities: all varies in resolution
and intrusiveness. fMRI is often a good compromise.

Similarly, experimental protocols vary in how much they are close

to day-to-day cognitive tasks (looking at blinking dots versuslooking
at a movie) and in the level of the cognitive functions they recruit

(hearing beeps versusmaking complex risk-taking decisions).

2.1.2 Functional Magnetic Resonance Imaging (fMRI)

In this work, we focus on fMRI, a modality introduced by Ogawa
et al. (1990. This mean of observation, which is performed in an MR
scanner, is hon intrusive yet it provides a satisfying temporal and spa-
tial resolution. Unlike Electro-encephalography ( EEG) and Magneto-
encephalography (MEG), functional MRI does not directly measure
electric of magnetic eld that are stemmed by neurons in activity.
In contrast, it leverages Magnetic Resonance Imaging (VRI, Lauter-
bur, 19732 to measure the variation in the level of oxygenated and
deoxygenated blood within the blood vessels that irrigate neurons.
As spiking neurons require hemoglobin-provided di-oxygen to pro-
duce energy, a neuronal activity increase in any volume of the brain
is followed within ve second by an increase of oxygenated blood

in this volume and by an undershoot that lasts roughly 30 seconds.

These oxygen-dependent variations are detectable through Magnetic
resonance imaging (MRI), and are extracted as the Blood-oxygen-level
dependant (BOLD) signal.

modelisation . The biological phenomena at stake are modelled
as such: the observedBoOLD signal is the result of convoluting the
neuronal activity in the volume of interest with an Hemodynamic-
response function (HRF), that models delay, amplitude and under-
shoot of the level of oxygenated blood within this volume. Namely,
writing xy and Xy : [0; T]! R, the continuous BOLD and neuronal ac-
tivity that we wish to measure within voxel v, we assume that there
isafunction :R* ! R such that

xv(f) = (% )(1) 8t2]0;T] (2.1)

where  has either an established form (seee.g., Lindquist et al.,
2009, or may be estimated from data (Makni et al., 2008 Pedregosa
et al., 2015. This modelling is fundamentally linear, in the sense that
the BOLD signal is assumed to be proportional to the neuronal activ-
ity. It will be central in task fMRI analysis (see Section2.3). At the

2 in itself a powerful
modality to discern
in between biological
tissues with various
magnetic properties
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end of the fMRI acquisition, we obtain a sequence of brain images,
i.e. one time-series per voxel that records the intensity of the neural
activity, convoluted by the hemodynamic response, within this voxel,
plus noise from various sources. Typically, these time-series have a
period of 0.8to 3 seconds, and the space resolution {. e. the volume of
each voxel) varies from 1 mm? to 27 mm?, depending on the spatial
resolution that the scanner allows. Note that these volumes contain
millions of neurons: although functional MRI has a good spatial res-
olution compared to other non intrusive modalities, it is still many
orders of magnitude above the cellular level.

preprocessing . fMRI raw data must typically be corrected for vari-
ous noise sources that deteriorate the signal-to-noise ratio of the BOLD
time series. Most importantly, subject head motion is recorded and re-
gressed through within-record registration, as are physiological con-
ditions (heart-beat, respiration). The physical artifacts related to the
scanning process €. g.,the fact that slices are recorded one after an-
other, causing time jitter, and the non-uniformity of the base magnetic
eld) are also monitored and compensated in preprocessing steps.
Typically, the public datasets on which we developed new techniques
are already provided as pre-processed time series for which physio-
logical and physical confounds have already been regressed.

group -level analysis . In most functional MRI studies, the same
acquisition protocol is performed on different subjects and potentially
several times on each subject. Analysis of the BOLD signal may then
be performed at a subject-levelor at the group-level Depending on our
goals, we may choose to model differently the inter and intra-subject
variability of records. To perform group analysis, single-subject brain
images are typically registered to a common template (the MNI space,
introduced in Evans et al., 1993, so as to reduce the variability in
brain shape. Even though this leads to a loss in anatomical informa-
tion, this approach is motivated by the fact that brain networks are
often located within well de ned anatomic regions that are shared
across subjects, modulo some non-rigid transformation. This work
does not focus on inter-subject variability, and will assume that brain
images arise from a distribution that is shared across subjects, once
they have been registered to the MNI space.

2.2 resting -state functional mri
Resting-state fMRI data are central in modern fMRI analysis as it is

cheap to acquire and contains much intrinsic information about brain
functioning — we review it brie y, as it is central in this thesis.

2.2.1 Protocol description

The simplest way to obtain functional MRI data is indeed to follow
the resting-state protocol. As its name indicates, it consists in acquir-
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ing the BOLD signal from a subject that has been asked torestin the
scanner, namely to do nothing in particular. No stimuli nor speci c
task is provided. This data acquisition process yields unlabelled data
in the sense that nothing is known as to the thought process that is
going on in the subject mind. These data may be thought as brain
movies with 1 image per second, and in between 50,000 to 200000
voxels per image. Resting-state protocol is the cheapest way to ac-
quire fMRI data: as such, it is widely available: the Human Connec-
tome Project (HCP, Van Essen et al.,2012 provides 4,000records of 15
minutes acquired across 1,000 subjects, while the UK BioBank (UKBB)
initiative (Sudlow et al., 20195 endeavors to gather data for 100000
subjects.

2.2.2 Scienti ¢ purpose

Resting-state data contain interesting information regarding the
subject brain. They allow to identify various functional networksthat
correspond to spatial regions that tend to activate together. With
these networks at hand, we hope to reduce the dimensionality of
the signal from 10° voxels to a few hundreds components without
loosing cognitive information. Uncovering these functional networks
at scale is the driving motivation of a part of this thesis (Chapter 3
and 4), while we show how to use these networks in new decoding
pipelines (see Section2.3) in Chapter 7.

Historically, the functional networks uncovered from resting-state
data have rst been used to construct bio-markers for certain diseases:
Alzeimer disease (Greicius, 2008, Parkinson disease (Wu et al.,2009,
autism spectrum disorder (Abraham et al., 2017 Weng et al., 2010,
Attention De cit Hyperactivity Disorder (  ADHD , Yu-Feng et al., 2007).
It has also been shown to be related to behavior, e. g., uid intelligence
(S. M. Smith et al., 2015. More precisely, the time correlation struc-
ture between the various functional networks is often of interest to
better understand how the brain of a single subject functions. These
correlations can be estimated in the framework of functional connec-
tivity (Biswal et al., 1995 Fox and Raichle, 2007), that is still being
re ned ( e.g., Rahim et al., 2017).

Recently, many studies have also demonstrated the interest of us-
ing resting-state data to better frame inter-subject variability in more
complex protocols involving controlled stimuli (Sabuncu et al., 2009
S. M. Smith et al., 2009. At a more fundamental level, resting-state
analysis is central to better understand the role of functional networks
in cognition, e.g.,the default-mode network (Greicius et al., 2003,
a pre-eminent network in resting-state that tends to activate during
mind-wandering, or amygdala (Roy et al., 2009, a brain region partly
responsible for emotional responses.
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Figure 2.1 — Modelling of the brain signal in resting-state fMRI. The data
matrix writes as a product of two matrices that yield spatial
and temporal information respectfully.

2.2.3 Linear modeling and functional networks

Due to their very indirect nature, BOLD images are very noisy: it is
estimated that cognitive tasks that subjects undertake only explains
5% of the variance of the voxel time-series (Raichle and Mintun, 2006).
When trying to use BOLD data to learn a statistical model of the brain,
we thus have to come up with models of reasonable complexity. Un-
covering functional networksfrom resting-state images is thus often
performed using the simplest model possible: brain images are as-
sumed to be the linear combination of spatial functional networks
(that can be seen template brain images), that are xed across time.
Mathematically, this can be written as follow: brain images contain-
ing the bold signal form a sequence in RP, that we denote (Xt )t2[n1.
where n is the number of single frames and p the number of voxels.
We assume that the images from this sequence are approximately a
linear combination of k spatial maps in RP — the functional networks,
written (dj)j2 k], SO that

X
Xt = t;j dj + ¢, (2.2)
=1

where 2 R¥ denotes the loadings at time t, associated with the net-
works (d;); and 2 RP is a residual term. The spatial maps, gath-
ered in a matrix D 2 RP Kk, will be estimatedfrom data X 2 RP N,
so as to minimize residuals and enforce some meaningful properties
over D. The model is illustrated in Figure 2.1. Estimating D will be
the purpose of Chapter 3 and 6.

Once again, in multi-subjects studies, we may choose whether or
not to model inter-subject variability or consider it as a confound.
Typically, we may choose to estimate a different dictionary D g for
each subijects, or simply consider each brain image from each subject
as a linear combination of the same dictionary D . We follow the latter
path in this work, as it is more readily amenable to recent datasets
with thousands of subjects.

21
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2.3 task fmri data analysis

Functional MRI may also be acquired with more complex protocols,
that involve presenting sensitive stimuli or ask the acquired subject to
perform a task. Performing such taskivRI study typically requires to
design of an experimental protocol that will be presented to the sub-
ject several time during acquistion. The objective of this approach is
to relate the presented stimuli or the observed reactions of the subject
(i. e. experimental base conditionto the subject's brain activity — this
is known as encoding Reversely, we may wish to predict base condi-
tions from brain images, namely to decodé¢he brain into experimental
conditions.

2.3.1 Encoding stimuli into the brain: standartrl analysis

Encoding tries to relate a base conditiorsequence €.d.,sequences
of different images presented to the subject) to brain activity. For
this, we once again use alinear model, in what is known as the
General linear model (GLM) in the literature (Friston et al., 1994). Typ-
ically, conditions can be modelled as multi-dimensional time-series
x 1 [0;T] ! RX, where k is the number of different stimuli that are
presented to the subject during the acquisition and T is the length of
the experiment. For example, Haxby et al. (2001b) present images of
faces, cats, and scissors to the subject: in this case, the three time se-
ries V1, ¥» and {3 corresponds to the onsets of face, cat and scissors
visualization, respectively. Similarly, functional localizer protocols
(e.g., Pinel et al., 2007) show a variety of stimuli to subjects, that are
known to recruit localized parts of the cortex. Base conditions include
visual and auditory stimuli, computation and motor commands.

2.3.1.1 The General Linear Model

We assume that these stimuli immediately trigger a neuronal re-
sponse X, within each voxel v of the subject brain, and that this re-
sponse is the sum of the response of this voxel to each stimulus y; for
i 2 [k]. Namely, there exists 2 RX and an i.i.d. noise time-series
such that, for all t 2 [0;T],

X
Xy (t) = vi Vi(t)+ “y(t); and thus, convoluting with
i=1

xy (t) = vi Yi(t)+ y(t); where (t) N (0; 2 (2.3)
i=1

where we used the HRF model (2.1) to recover a model relating the
BOLD signal xy to the convoluted signals (yi , Vi )i« Each voxel
is thus associated with a vector , that contains the linear suscepti-
bility of that voxel to each condition presented in the protocol. Fig-
ure 2.2 illustrates the standard model ( 2.3) for a single voxel v.

We estimate the ( )y from data using linear regression. Namely,
we dene X 2 R" P the discretized matrix of BOLD time-series and
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Figure 2.2 — The General Linear Model relates the BoLD signal in each voxel
v to the base conditions (yi);2 k] of the experiments, convo-
luted by the HRF at this voxel. Those form the design matrix Y.
Adapted from Pedregosa (2015.

Y 2 R" K the discretized matrix of HRF-convoluted stimuli (y;), —

known as the design matriX. We compute B = YYX 2 RX P (the - 3 For coherence with
maps), that solve ming, g« » KX - BYkZ2. These maps may be either ~ Pprevious and next
computed for a single subject, or at the group-level (concatenating zf:ti':\?;fe:w:t
experiments for different subject across time). classical notations in
linear regressionX

2.3.1.2 Statistical maps is transposed W.I.t.
Section2.2.

To provide a statistical interpretation of the B maps, those are typi-
cally transformed into z-scoremaps. We wish to know how much the
susceptibility of voxel v to the condition i differs from zero, compared
to the noise in the estimation of regressors. For this, we compute the
following t-statistic for each voxel:

tvi = 35— Where V. ("vi)=(YY)'" 0 (29
\ v ( vii )
and "2 = kxy - YK3=(n- k) is estimated from data. Then, t-
statistics are converted to z-statistics by applying an Student to Gaus-
sian transform. We thus obtain a set of maps Z 2 RP X: these maps
forms the systematic output of task fMRI studies, analysed from an
univariate point-of-view. Z-maps may be used to select voxels of inter-
est for a given stimuli. For example, we may want to select the vox-
els of the map t; 2 RP that differ from zero with associated p-value
p < 0.05. We thus obtain a selection of voxels that are triggered prefer-
entially by condition i, and alocalizationof the brain regions recruited
by this condition. This localization is best represented as a thresholded
statistical map. We display in Figure 2.3a and 2.3b the z-maps associ-
ated with video stimuli and audio stimuli, from a single-subject func-
tional localizer analysis. We may also use non-thresholded z-maps as
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(a) Auditory stimulus

(b) Video stimulus

(c) Audio-video contrast

(d) Video-audio contrast

Figure 2.3 — Base condition and contrast z-maps for a single subject analysis
of the functional localizer protocol. Thresholded z-maps outline
brain functional regions. Adapted from Nistats documentation,
with data from Pinel et al., 2007

inputs of a decodingask, as they constitute a summary of the effect of
each base conditions on each subject brain — non thresholded maps
will be the input data in Chapter 7.

2.3.1.3 Contrasts

Neuroscientists often prefer to estimate the z-statistic associated
with some contrastbetween regressors, e. g., Av;l - Av;z for face-vs-
cats in Haxby et al. (2001b) experiment. This approach, known as
cognitive subtraction (Petersen et al., 1989, is typically useful to com-
pare two base conditions that share some common aspects (both stim-
uli are images in previous example) but differs in others (the content
of images differs). Contrasting regressors then allow to narrow the
condition whose effect is measured — e. g.,identify face recognition
brain regions. Back to the functional localizer protocol, we also plot
the audio-videaand video-audiaontrast z-maps in Figure 2.3. The con-
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trast z-maps better outline the visual and auditory cortex than base
condition z-maps — and are indeed preferred for discussion. Formu-
las to derive z-maps for contrasts are easily adapted from equation
(2.4).1

2.3.2 Decoding brain images into stimuli

We turn to presenting decoding for task fMRI, as this will pro-
vide background for Chapter 7, where we classify z-maps from many
maps and subjects.

The standard analysis presented in Section2.3.1 handles each voxel
separately (in a mass univariate setting). It thus captures how differ-
ent regions of the brain may interact for a speci ¢ task, and misses
some information (Cox and Savoy, 2003 Haxby et al., 2001b).

Decoding infers more information by identifying task/conditions
using whole brain imagess input. Those brain images should al-
ready summarize brain activation either at the subject or the group
level, and are typically the z-maps or -maps obtained running the
GLM (Mumford et al., 2012. Decoding thus performs multi-variate pat-
tern analysisof voxel activation (see Haynes, 2015 for a review), and
provides new information on the relation between brain patterns and
stimuli.

2.3.2.1 Statistical learning formulation

The problem of task identi cation is cast as a classi cationor regres-
sion problem we wish to learn a model that can detect or predict a
speci ¢ task from a (group or individual) summary of the effect of
several tasks on the brain. Mathematically, this is formulated as fol-
lows: we wish to assign a target (stimuli/behavior) y 2 f0; kgto each
brain activation maps (typically, z-maps) X 2 RP, using a model f ,
that is tted to train data (X; ;yi)iZ[n]' For example, in the Haxby et
al. (2001b) experiment, the target corresponds to the category of the
visual stimuli presented to the subject. The statistical learningframe-
work (see e.g., Bishop, 1995 demands that the performance of mod-
els be tested on left-out data (e. g.,depending on the target discovery,
left-out groups, subjects, records). If the model f performs well on
left-out brain images, we may introspect it and study its classi cation
boundaries. Those boundaries contain information regarding which
brain region is selectively recruited by the studied stimuli.

Although learned models may be chosen arbitrarily, the fMRI com-
munity widely prefers linear classi cation/regression models, that
seem to provide the best performances. Starting from the seminal
work of Cox and Savoy (2003, Support Vector Machines (SvM/ SVR,
Hearst et al., 1998 have been very popular in the eld, as well as
Linear Discriminant Analysis ( LDA, Fisher, 1939. For instance, Fig-
ure 2.4 shows the brain map that discriminates face from cat visual

1. In Chapter 7, we will poll statistical maps from many studies and avoid using
complex contrasts, as designing those requires in-depth knowledge of each protocol
and hardly scales-up to large repository analysis.
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Figure 2.4 — Classi cation map for decoding face vs cat stimuli in the Haxby
et al. (2001b) experiment. Taken from Nilearn documentation.

stimuli. It is computed by tting a linear svm classi er to z-maps
associated with face and cat stimuli. We observe that the Fusiform
face area EFA) region possesses very high coef cients, as expected: it
is known to be crucial for face recognition (Kanwisher et al., 1997).

2.3.2.2 Handling scarse high dimensional data

Decoding in fMRI is a typical hard learning setting. The avail-
able data are relatively scarce: each recorded subject provides as
much statistical maps as tested conditions. Even in very large stud-
ies like HcP, that costed more than $40 millions, we may only work
with 43; 000statistical maps, that corresponds to 18 base conditions
recorded twice on 1200subjects. Although we can hope to increase
the size of the datasets by considering the raw BOLD time-series and
increase performance by performing decoding in the time domain
(Loula et al., 2017, decoding from statistical maps remains a strong
baseline. Morally, we thus own little data with high signal.

On the other hand, the data to decode (i.e. classify or use for re-
gression) are very high dimensional, as they live in the whole brain
space, of typically p = 200; 000voxels. Estimating models, even lin-
ear ones, without over tting requires some care. Several approaches
have been used for this, that may be combined together. They may
roughly be categorized in four categories.

— Feature selection We may perform decoding from a reduced
voxel spaceRY. It may found by searching the brain space with
a small sliding window ( SearchlightKriegeskorte et al., 2006, or
by simple univariate feature selection (Pereira et al., 2009, e.g.,
using analysis of variance.

— Region-of-interest selectionWe may restrict the voxel space in
which decoding is performed to brain regions which we assume
to contain the relevant signal (see e.g., Etzel et al., 2009 for a
review). Selection should be performed beforehand if we wish
to avoid biasing relevance results. It typically relies on man-
ually de ned regions based on anatomical landmarks (Devlin
and Poldrack, 2007, or on regions obtained using functional
localizers (Saxe et al.,2000.

— Dimension reduction We project the input brain signal onto a
lower dimensional space, using parcellation or brain decomposi-
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tion obtained beforehand (see Mourdo-Miranda et al., 2005 for
seminal work in fMRI). Parcellation or base brain vectors may be
obtained from anatomical atlases (e. g., Desikan et al., 2006, or
through data-driven analysis (S. M. Smith et al., 2009 Yeo et al.,
2011, typically using resting-state data as in Section 2.2.

— Regularization We may regularize the decoding linear models
to inject priors on the classi cation maps we wish to obtain.
Regularization includes sparsifying penalties — e. g.,Lasso (Tib-
shirani, 1996 Yamashita et al., 2008 or Group-Lasso regres-
sion (Ng and Abugharbieh, 2011, Yuan and Lin, 2006 if we wish
the sparsity patterns to be shared across maps — and structure
inducing penalties such as total variation norms (Michel et al.,
201D).

Note that increasing the amount of data available allows to reduce
the amount of regularization to be injected, as we will see reviewing
Dohmatob et al. (2019 work in Chapter 3. It also allows to work
in higher dimension. This is the starting point of Chapter 7, where
we endeavor to gather multiple studies to increase the number of
statistical maps usable to estimate decoding models.

24 conclusion

We have reviewed the three essentials blocks of iMRI analysis from
a statistical learning point of views: resting-state analysis with unsu-
pervised methods, encoding methods (a.k.a. standard analysis) for
univariate voxel activity analysis, and decoding methods, meant to
perform multi-variate pattern recognition in voxel space. In this the-
sis, we will start working on resting-state data (Chapter 3 and Part ii),
before moving to the development of new models for task fMRI analy-
sis (Partiii ). The following Chapter 3introduces matrix-factorization
methods for resting-state analysis, and proposes new approaches to
handle large fMRI datasets.
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DICTIONARY LEARNING FOR FMRI: DATA
COMPRESSION, MODEL TRANSPOSITION

In this chapter, we rst review how resting-state functional MRI
time-series can be analysed through sparse or dense matrix factor-
ization techniques, and the computational issues of existing formu-
lations. We then introduce a new approach based on random pro-
jections to handle these computational issues for sparse matrix fac-
torization of medium-scale datasets. This approach was presented
in

Mensch, A., Varoquaux, G., & Thirion, B. ( 201&). Com-
pressed online dictionary learning for fast fMRI decom-
position. Proceedings of the IEEE International Symposium on
Biomedical Imaging (ISB))

It is easy to implement and reasonably ef cient, and was thus
promptly proposed in Nilearn (Abraham et al., 2014, an end-user
fMRI analysis software for neuroscientists. We linger on the valida-
tion methods developed in the context of this work, as they outline
the hard problem of validation and parameter selection in matrix fac-
torization applications.

Finally, we analyse the practical limitations of the above approach,
and show how we can reformulate sparse matrix factorization for
fMRI in @ more convenient way. This reformulation will be used ex-
tensively in the experimental section of Chapter 4.

3.1 matrix factorization for resting -state fmri

As presented in Section 2.2, resting-state fMRI data analysis implies,
as an initial step, to decompose a set of 3D records (Xs)s (BOLD time-
series sampled in a volumic voxel grid) into a sum ( 2.2) of spatially
located functional networkghat isolate parts of the brain signal. Func-
tional networks should form a relevant basis for the experimental
signals, i. e. represent these signals in a low-dimensional space, and
explain the time-series variation with low residuals. As such, func-
tional networks have been successfully used for feature extraction
before performing statistical learning — decoding, biomarker extrac-
tion, etc.

3.1.1 Model and data

Mathematically, multi-record resting-state fMRI data constitute a set
of matrices (X®)spng in (R™ P)', with p voxels per volume 4 ns tem-
poral samples per record, and N subjects. Rewriting (2.2) with matrix

4 Recall that we
have attened theD
brain images using a
binary brain mask.
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product, we seek to decompose subjects records on k base compo-
nents:

8s2 [N]; X5 ASDS with DS2RK P;AS2R" k. (31
We are especially interested in (DS)s, which contain the functional
networks for subject s. Existing decomposition techniques vary in
the criterion they optimize, and on the hierarchical model they rely
on at the group level. In the following, we will work with the most
simple hierarchical model, that consists in performing time concate-
nation of the records — rst proposed by Calhoun et al. ( 2007) for ICA.
Namely, we extract a single set D 2 Rk P of functiBnaI networks for
all subjects,i.e. DS = D for all s. We denoten , sNs, A 2R" k
and X 2 R" P the vertical concatenation of (AS)s and (X%)s, and
seek to decomposeX asX AD.

3.1.2 Existing decomposition methods

While performing Principal component analysis ( PCA) on brain
images has been the rst method to be proposed to extract basis
components from fMRI data, Independent Component Analysis ( ICA,
A. J. Bell and Sejnowski, 1995 Hyvarinen and Oja, 2000 is presently
the most popular decomposition technigue in the eld (Calhoun et
al., 2001, McKeown et al., 19998. It involves nding a spatial basis
D 2 RP K that is closest to a set of spatially independentsources.
Works preceding this thesis (Varoquaux et al., 2011) have shown that
good results can be obtained imposing sparsity rather than indepen-
denceover the spatial components D. They rely on the dictionary
learning formulation, rst introduced by Olshausen and Field, 1997,
following seminal work on sparsity (Tibshirani, 1996. Like Iica, dic-
tionary learning permits to extract functional networks that are repro-
ducible across subjects, and that match regions extracted from task
fMRI studies. We will focus on this method in the following.

3.1.3 Computational caveats

All the aforementioned decomposition techniques suffer from their
lack of scalability, as they were initially designed to be applied to
small datasets. The recent increase in publicly available dataset size
like HCP (Van Essen et al.,2012 has revealed their limits in terms of
memory usage and computational time. Consequently, efforts have
been made to make decomposition methods available for large-scale
studies, possibly with several groups. They involve using a more
complex hierarchical model for dictionary learning (Varoquaux et al.,
2017 or incremental PCA techniques (S. M. Smith et al., 2014. How-
ever, the latter only proposes PCA and ICA based decomposition meth-
ods, which do not naturally yield sparse maps, and the former suffers
from its computational complexity. As of 2015 running a standard de-
composition algorithm with 200 components on the full HCP dataset
(4 TB) required more than a week of of computation on a very large
workstation.
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3.2 dictionary learning for resting -state fmri

In this chapter, we focus on dictionary learning methods for fMRI,
and show how to make them more scalable in both time and memory.
Let us start by reviewing the use of dictionary learning in the context
of fMRI.

3.2.1 Sparse brain map extraction with dictionary learning

A good spatial decomposition of X 2 R" P should allow a good
reconstruction of data and the components it contains should be spa-
tially localized To that effect, we seek to nd a dictionary D sparse
in voxel space, hoping that sparsity translates into maps with a few
small connected regions. Such a decomposition setting can be for-
malized in the Dictionary learning ( DL) optimization framework, that
combines a sparsity inducing penalty to a reconstruction loss. We
seek to nd k densetemporalatoms A, i.e. base time-series, that will
constitute loadings for k sparse spatial mapsD, with good signal re-
covery. This leads to the following optimization problem, similar to
the original formulation ° of Olshausen and Field (1997):

1 . -
min  -kX- ADkZ+ kDk; s.t 8j2 [kl;kalk, 6 1 (3.2)
A2R" kp; 2

D2R

For a given solution (A;D) of (3.2), every row d; of D contains the
loadings related to the j-th temporal atoms al. In this case, D corre-
sponds to a spatial codeand A to a temporal dictionary?. Thanks to the
"1 penalty on D, we expect each row to be sparse(Tibshirani, 1996).
The constraint on the columns of A simply prevent D from becoming
arbitrarily small, which would cancel out the ", penalty effect.

Mairal et al., 2010introduce an ef cient online algorithm to solve
(3.2). In our case, it streams voxel time-seried. e. streams columns of
X, to progressively learn A. We will thoroughly present and extend
this algorithm in Chapter 4. For now, it suf ces to know that under
conditions satis ed in neuro-imaging, the algorithm nds (asymptot-
ically) a matrix A that is a stationary point of the following objective,
equivalent to (3.2),

min kX - AD (A)k2 st 8 2 [k];kallk, 6 1; where
A2RN

1

D(A), argmin 2

D2Rk P
although it never materializes the full matrix D, and only solve the
Lasso problem (3.3) for small fractions of X columns, which form
mini-batchesof voxels. The nal spatial components that we are inter-
ested in are then obtained solving the nal Lasso problem

kX- AD kZ+ kDky; (3.3)

D = argmin Lo AD kZ+ kDKj.
D2Rk P
A good initialization for temporal atoms is required to obtain an ex-
ploitable solution as the dictionary learning objective ( 3.2) is not con-
vex. It can typically be obtained by computing time-series associated

30

5 that used a smooth
version of the
penalty.

6 The terminology
code/dictionary is
here transposed
compared to the
usual computer
vision DL problem.
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with an initial guess on activation maps Dj,, €.d., obtained from
known anatomical brain networks. The initial temporal atoms  Ajnit
are then computed by solving min 5 kX - AD jnit ké.

3.2.2 Scalability challenge

Following Mairal et al. ( 2010, online dictionary learning has an
overall complexity of O(npk?), as convergence is typically reached
within few epochs on resting-state fMRI data. In theory, the dictio-
nary learning problem therefore scales linearly in the size of the data.
However, on large rest fMRI datasets, online dictionary learning faces
two main challenges that make wall-clock processing time grow faster
than data size.

out -of -core requirements . For datasets like HCP (n = 4 10°,
p = 2 10°), typical computers are unable to hold all data in memory.
It is thus necessary to stream the data from disk, which is only rea-
sonably ef cient if the data are stored in the same direction as they
are accessed. Yet onlineDL algorithms require to pass 3 times over
data, during which samples are accessed in different directions (row-
wise for initialization, columnwise for DL and nal Lasso regression),
while fMRI images are naturally stored row-wise in our formalism.
For the sake of ef ciency, storage copy and manipulation is required,
which is a serious issue for neuroscientists dealing with over 1TB
datasets. Going out-of-core sets a large performance gap between
small datasets and large datasets.

grid search . The sparsity of the maps obtained depends critically
on parameter , that scales non trivially with n. It is therefore impos-
sible to set it independently from the spatial resolution, and several
runs must be performed to obtain the most interesting maps, relative
to their neurological relevance or a supervised validation criterion.
Grid search should be run in parallel for ef ciency, which is a serious
issue when doing out-of-core computation, as simultaneous access to
the disk from different processes makes the pipeline 10-bound. Re-
ducing the dataset size therefore reduces disk and memory usage,
which permits the ef cient use of more CPUs.

Both issues suggest to reduce memory usage by reducing the size
of the dataset while keeping the essential part of its signal. Being able
to keep data in memory indeed avoids drastic loss in performance,
while reducing the dataset size should also bring a quasi-linear im-
provement in theoretical complexity. We will rst address this dimen-
sion reduction idea using random projections.

3.3 time-compressed dictionary learning

It is possible to obtain reasonably exploitable components from a
40 record dataset with a total of 6;000samples. This drove us to in-
vestigate how large datasets, that provide more than 10° samples, can
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be reduced to t in memory before performing dictionary learning,
with controlled perturbation compared to DL on non-reduced data.

3.3.1 Reducing the temporal dimension before learning the dictionary

Resting-state brain images are not uniformly scattered in voxel
space, and should exhibit some low dimension structure: we expect
them to be scattered close to some low rank subspace ofRP, spanned
by a set of mg vector X; 2 R™s P. We thus perform a hierarchi-
calrank reduction: X% is rst approximated by a rank mg surrogate
matrix PsX?, where Pg is a matrix of R™s "s. A nal rank k de-
composition is computed over concatenated data. We show that such
reduction preserves enough signal to allow good map extraction. Ge-
ometrically, we project X onto a low rank subset of R"s P de ning

PS, argmin kXS- P”PXSkZ; XS, PSXS. (3.4)
P2RMs ns
We may then write X% = P~ X? + ES, where E® is a residual full rank
noise matrix. We approximate X° with X7 at subjectlevel to retain
subject variability. We Igjenote X; 2 R™ P the vertical concatenation
of (X?)s, where m = . ms. Replacing X by X, in (3.2), we obtain
the reducedlictionary learning objective

. 1 : -
min kX - AD ki+ kDk; st 8j2[k];kalky 6 1 (3.5)
A2RM k.
D2RK P
The dimensionality of the solution A/ is changed compared to (3.2),
whereas the size of D remains the same, as no reduction has been
performed in voxel space. Any solution D, that we recover solving

D, = argmin }er - A, DkZ+ kDky
D 2Rk P
can therefore still be interpreted as spatial functional networks. Im-
portantly, we must have m > k so that X, is at least of rank k to
recover k sparse activation maps. On the other hand, we show that
using (X$)s matrices with mg <k still provides good results.

When applying the online dictionary learning algorithm to com-
pressed dataX;, time and memory complexity are reduced by a factor

= -, where m should typically be of the same order than k. This
speed-up becomes supra-linear when reduction allows to go from
out-of-core to in-core computation. Of course, compression comes
with an additional cost, namely the time required for matrix reduc-
tion — we analyse this cost further on.

While (3.4) can be seen as another way of decomposing(X®)s, let
us stress that this decomposition is performed in voxel space, in con-
trast with dictionary learning itself, that identi es a good basis in
time space. The objective is to quickly nd a good summaryof each
(X%)s prior to applying dictionary learning, so as to reduce the di-
mensionality of the dictionary learning problem. We summarize the
compressedDL approch in Figure 3.1.
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Figure 3.1: Summary of the compressed dictionary learning approach for fast sparse spatial maps extraction.

3.3.2 Time compression methods

We compare two approaches for performing temporal dimension
reduction:

range -finding approach X? can be computed so as to exactly
minimize kEsk,Z: with truncated Singular value decomposition ( SvD),
following Eckart-Young-Mirsky theorem ( 1936. However, exact SVD
computation is typically performed in  O(pn?), which is above the
complexity of dictionary learning and makes prior data reduction
useless when trying to reduce both computation time and memory
usage. Fortunately, we show that we do not need to work with the
exact best ranking approximation of X to obtain a satisfying V. Fol-
lowing Halko et al. ( 2011), we seekP® 2 R™s "s sych that

kXS - PS> PSXSke min KESk2 = kXS - YSk2

rank(Ys$)6 m

In Alg. 4.4, Halko et al. (2011 propose a fast, randomized algo-
rithm to compute such PS, with high probability control 7 of the resid-
ual error KES - ESkg, where Es, XS- PS> PSXS. We use the output
of this algorithm to set X7, P®X®, and proceed to solving (3.5)

For a single subject, the randomized range nding (rf) algorithm
has aO(npmyg) complexity, which is typically much lower than the
complexity of dictionary learning, provided mg k2. Dimension
reduction may be performed in parallel for all subjects, or sequen-
tially if few cCPuUs are available. Respectively, computation gain are
expected if maxs(ms) k% orm k2, which will be the case for
datasets of reasonable size. In practice, we show in Section3.4.2 that
the cost of reduction becomes negligible with respect to the reduction
of dictionary learning cost, when the reduction ratio is high enough.

subsampling . In a more straightforward way, we can set X? to
contains a subset of X® rows, of size mg. This category of reduction
includes time subsampling (ss)(e.g.,taking 1 frame every 5 seconds)

7 Due to Johnson
and Lindenstrauss
(1984 lemma.
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of resting-state fMRI records. In this case, kES;- ESkg cannot be con-
trolled, and is expected to be larger than kES - ESke. Subsampling,
for example, is expected to alias high frequency signal in records, pre-
venting the recovery of activation maps with high frequency tempo-
ral loadings dictionary learning on reduced data. This approach will
serve as a baseline for measuring the bene ts of the range- nding
approach.

3.4 validation and results of compressed dictionary learn
ing

Assessing the validity of compression before dictionary learning
is in itself a challenge as it requires to compare sets of spatial maps
that are obtained with a stochasticalgorithm. We design a metric to
assess the overlap between two sets of functional networks despite
this property. We then demonstrate the ef ciency of our compression
approach on two resting-state fMRI datasets.

3.4.1 Validation

comparing sets of maps . Validation of dictionary learning meth-
ods for resting-state fMRI is challenging, as there is no ground truth
to assess the quality of resulting maps. However, we can assess how
much a set of maps D, obtained on a reduced dataset X, from (3.5) is
comparable to a set of maps D obtained on X solving (3.2). The met-
ric used between b two sets of maps D and D, should be invariant
to map ordering and map scaling. To enforce this invariance, we nd
the best one-to-one coupling between maps of D and D, and com-
pute the mean correlation between all best assignedouple of maps.
Formally,

S CTOVCITOY
1 kdgykakdr gy ko

d(D;D Tr C );
( 1 I’)! mzas)i r )1

where S is the set of permutation matrices of RK K. C holds the ab-
solute cosine similarities between each pair of maps of D and D,
while d(D;D,) is the mean correlation between all best assigned
maps. can be computed ef ciently using the Hungarian algo-
rithm (Kuhn, 1956, ask remains reasonably small (k < 1000).

handling random results . (3.2) and (3.5) admits many local
minima that depend on the online DL algorithm initialization, and on
the order used for streaming the matrix columns. We index the differ-
ent runs of DL with an integer that represents the seedused for this
algorithm. For every compressed/non-compressed matrix Y obtain
from X, we expect the maps D (Y; ) output by dictionary learning
to capture the same neurological/physical phenomena, regardless of
the seed . We wish to be capable of measuring the effect of compres-
sion on the quality of the output spatial maps, despite the stochastic
confounders inherent to the nature of the online DL algorithm. For
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this, we perform | = 10different runs of online DL algorithm with dif-
ferent seeds( )i}, sampled randomly, as in Himberg et al. ( 2004).

catenation of the output maps using matrix Y and consider the metric
di(X;Y), d Di(X);Di(Y) . (3.6)

As | grows, d|(X;X;) becomes the ideal metric for measuring the
effect of compressing X into X, over the quality of the DL output,
as its variance over selecting seeds reduces. In practice, we may yet
only work with a nite number of runs. To circumvent this issue,
we compare d; (X;X) to d;(X;Y), where the seeds used to produce
the left and right matrices D, in (3.6) are sampled differently. The
latter metric should be close to the former if the compression does
not destroy too much information — in other word, we compare the
deviation of solutions due to data compression to their variance due
to randomness.

3.4.2 Results

We validate our reduction framework over two different datasets
with different size: the ADHD dataset, with 40 records, n = 150time
steps per record (2 GB); a subset of HCP dataset, using 40 subjects, 2
records per subject, andn = 400 (25 GB).

Dictionary learning output depends on its initialization, and the
problem of choosing the bestnumber of components k is very ill-
posed. We bypass these problems by choosingk = 70 for HCcP, k= 20
for ADHD dataset, and use referencelCA-based mapsRSN20 and RSN70
from S. M. Smith et al. (2009 for initialization.

For benchmarking, we measure cpPU time only, i.e. ignore 10 tim-
ings as they are very platform dependent. Note that our method is
also bene cial for 10 as it has a lower memory footprint than full-scale
dictionary learning and may thus avoid out-of-core computation. We
use scikit-learnfor computation, along with the Nilearn neuro-imaging
library. Code for the methods and experiments is available online.

metric validity . We perform the following experiment. We rst
choose to obtain little overlapping maps when running dictionary
learning on the non-compressed matrix X. Then, we compute d,; (Y; X)
with Y = £X; (X )et:m 5 (X )ssm g for various m 2 [n=40;n]. As the re-
lationship between and a given level of sparsity depends on m, we
run DL on Y on arange of so as to nd the value that matches best
the reference run.

Figure 3.2 shows the behavior of d;(X;Y) as| increases. Observ-
ing d; (X; X) (blue curve), we see that running DL several times does
produce sets of maps that overlap more and more" d, (X; X) increases
and its variance across seeds decrease. This suggest that our indica-
tor does cater for randomness in DL algorithms and is a principled
approach for comparing compressed and uncompressed dictionary
learning.
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reduction ratio: 0.05.  — Non-reduced

‘6 —_— Dnngn nder

Subsampling

rfeducti(:)n ratio:: 0.205

Correspondence with ref. di(X;Y)

1 2 3 4 5 6 7 8 9 10
Number of concatenated result sets in V(Y )

Figure 3.2 — Correspondence between compressed DL map-set and non-
compressed bL map-set. We use different compression meth-
ods and ratios and increase the number of runs to show d, sta-
bilization; variance over runs computed using 4 different seed
sequences; ADHD dataset.

guantitative performance . For > .025 and| > 2, Figure 3.2
shows that the distance between DL maps and compressedDL maps is
comparable, asd; (X; X;) d;(X;X). Maps from D, (X) and D, (X;),
respectively obtained with or without compression, have therefore
the same quality for neuroscientists — it is not possible to tease them
apart more than we can tease apart the results of DL obtained with
different seeds. For large compression factors, typically < .1 on
ADHD and < .05on HCP, range- nding reduction performs signi -
cantly better than subsampling. Both methods perform similarly for
small compression factors, which shows that subsampling already
provides good low-rank approximation of X for large m. Using the
range- nding algorithm for the proposed hierarchical compression
model is therefore useful when drastically reducing data size, typi-
cally when loading very large datasets in memory.

qualitative accuracy . We validate qualitatively our results, as
this is crucial in DL decomposition: maps obtained from reduced data
should capture the same underlying neurological networks as refer-
ence maps. In Fig.3.3, we display matched maps when comparing
two map-sets. For this, we nd matchings between the maps D, (X)
and D (X;), and we display the maps corresponding to the median-
value of this matching. Maps are strongly alike from a neurological
perspective. In particular, maps do not differ more between our re-
duced dictionary learning approach and the reference algorithm than
across two runs of the reference algorithm with different seeds.

time and quality tradeoff . For ef cient neuroimaging data
analysis, the important quantity is the tradeoff between quality of the
results and computation time. On Figure 3.4, we plot d(D (X); D, (Y))
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Figure 3.3 — Median-aligned maps with various compression methods. Sub-
set of the HCP dataset; reduction ratio = .025

against computational CPU time, for various Y. Using range- nding

algorithm and to a lesser extent time subsampling on data before
map decomposition does not signi cantly deteriorate results up to

large reduction factor, while allowing large gains in time and mem-
ory. Compression can be higher for larger datasets: we can compress
the HcP-derived dataset up to 40 times, and the ADHD dataset up to
20times, keeping d, (X; X;) within the standard deviation of d, (X; X).
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Figure 3.4 — Time/quality trade-off using range- nder projectors and sub-
sampling before DL; blue stripe recalls correspondence of re-
sults when performing different runs of DL on the full matrix X.
| = 10; 3 for ADHD , HCP; variance over runs computed using 4
distinct sequences of seeds.

The range- nder algorithm adds a time overhead that shift the per-
formance curve towards the right for large compression ratios. How-
ever, it allows 4 times lower memory usage than subsampling for
equivalent quality and time budget. It thus provides a higher overall
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CPU Time Overlap d; (X;Y)

Dataset Ratio Reduced Non-red. RedY = X; Non-red Y=X

HCP .025 849s 7425s 703 .141 .628 .105
ADHD . 05 71s 186s .796 .020 .801 .016

Table 3.1 — Time/quality trade-off of compressed dictionary learning, com-
pared to reference dictionary learning, for good trade-off com-
pression ratios

ef ciency when considering 10 timings. Note that benchmarks were
performed on a single core, while reduction can be parallellized over
subjects to reduce its overhead — range- nding should therefore al-
ways be preferred to trivial subsampling.

We outline good time/quality trade-off reduction ratios in Fig. 3.4
and provide numerical values in Table 3.1. Those ratios depend on
the number of functional networks k and on the input dataset, but
any reasonably low reduction ratio (typically, setting mg- K) is likely
to produce good results with little quality loss. Following this strat-
egy, we set = .025and performed the entire processing of a subset
of 100 subjects of the HCP dataset (384 GB) on a single workstation
(with 64 GB RAM) in less than 7 hours, obtaining usable functional
networks. Note that the following Chapters 6 and 7 instead consider
full Hcp releases (with 500, then 900 subjects), which do not t in
memory even with drastic compression.

3.4.3 Discussion

In the previous sections, we introduced the use of a randomized
range nding algorithm to reduce large scale datasets before per-
forming dictionary learning and extracting spatial maps. To prove
ef ciency of time reduction before dictionary learning, we have de-
signed a meaningful indicator to measure result maps correspondence
and have demonstrated that fMRI time samples have a low rank struc-
ture that allows range nding projection to be more ef cient than
simple subsampling. This approach enables a 40-fold data reduction
upon loading each record.

Unfortunately, this approach has strong limitations when it comes
to handling datasets with thousands of subjects. First, as fMRI datasets
are acquired and thus stored time-wise i. e. row-wise in our formal-
ism, the compressed matrix X; ultimately needs to be materialized
in memory (an out-of-core approach would require to transpose X,
on disk, an operation that would become the bottleneck of the entire
pipeline). This is only possible if X, remains of reasonable size. For
4T B datasets like HCP, even with a compression factor of 40, this re-
quires 100GBof memory per compressed DL process, and is therefore
beyond the capacity of regular machines.
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Secondly, the temporal dictionary learning approach suffers from
its three-phase nature: initialization from known spatial components
learning of temporal atomssparse regression into spatial components
We would hope to be able to learn spatial components D in a single
pass over data.

Finally, the idea of using temporal time-series as sampledor online
dictionary has two major drawbacks. First, it makes the selection of
the sparsity parameter  dependent on the dimensionality of sam-
ples n. This implies that a good depends on the number and length
of records in a study. As a consequence, must be recomputed using
grid-search for new studies, or if the study size increases. It would
be much more convenient if the parameter depended on the spatial
resolution of the scanner. Furthermore, the present approach does
not permit to re ne a trained dictionaries using new records from
new subjects. Building on this discussion, we now propose a refor-
mulation of the data decomposition problem that will prove much
more convenient.

3.5 changing model and going beyond

The crux of the limitations above lies in the fact that the online
dictionary learning algorithm focuses on learning the left-side factor
of the matrix factorization X = AD . In our formalism, the left-side
factor A corresponds to temporal componentsvhereas we are actually
interested in recovering spatial componentsThis forces us to 1) stream
arti cial temporal samplesvhereas the data are presented in the form
of spatial sampleand 2) to compute the right side factor at the end of
the dictionary learning loop. We therefore propose to transpose the
matrix factorization problem ( 3.1), so as to learn directly the spatial
components on the left-side factor. The dictionary learning problem
requires to be adapted to enforce sparsity on this factor. We will see
that the new problem offers further exibility for enforcing structure
over spatial maps. More importantly, it will allow the use of a much
faster algorithm presented in Chapter 4.

3.5.1 Transposed problem

We may choose to stack brain images acquired during resting-state
protocols columnwise instead of columnwise, and obtain matrices
Xs 2 RP " where p is the number of acquired voxels and n the
number of time samples. Similar to ( 3.1), we wish to nd a dictionary
DS 2 RP X of sparse spatial components (functional networks) and
acodeAs 2 Rk " of temporal loadings:

X% DA°® atsubject level, X DA atgroup level. (3.7)

Like before, we assume that all records are decomposed on the same
spatial dictionary D, and X and A are formed of horizontal concate-
nation of (X%)s and (AS)s. Note that, compared to (3.1), the spatial
components D are now found on the left-side factor in (3.7).
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This is by design: the online dictionary learning algorithm is pre-
cisely designed to nd such left-side factor by streaming the columns
of X. We have to adapt the penalties and constraints used for our
purpose: we want to nd a sparse dictionary D, and a dense codeA.
Inspired by Mairal et al. ( 2010, we consider the following objective
function

min  SkX- DA kZ+ KkAKZ st 8j2[kl;kdWk, 6 1. (3.8)

D2RP k; 2

A2RK N
We have replaced the “, ball constraints on the atoms of the dictio-
nary by "1 ball constraints. Such constraint has a similar sparsifying
effect as the "1 -penalty had on previous DL formulation. For A xed,
minimizing ( 3.8) over D amounts to minimizing a quadratic function
over a polytope with vertices: the solution D tends to be located at
the edges of this polytope, which corresponds to sparse (dj)j. The
"5 penalty plays a similar role as the *, ball constraint in ( 3.2), and
ensures that the constraints over D are well saturated. The sparsity of
solutions D increases with . This setting bears some similarity with
the original Sparse principal component analysis ( sSPcA) formulation
from Zou et al. (2006. Compared to their formulation, no orthogonal-
ity constraint is enforced on D. This is better suited to our purpose
we typically want to capture components that explain different but
comparablaspect of the variance of brain images.

Online dictionary learning constructs a sequence (D¢); that con-

verges toward a critical point of the objective function

min kX - DA (D)kZ st 8j 2 [k];kdWk; 6 1; where
D 2RP

A(D), argmin - pa kZ+ kAKS (3.9)
A2RKk n 2

by streaming mini-batches of b samplesx; 2 RP P, and solving small
ridge regression problems

1
¢ = argmin Zkx; - Dy.1 kZ+ k k3
2Rk b
at each iteration. Asymptotically, we obtain a dictionary D that
solves (3.8). Through this reformulation, we tackle the three limi-
tations of the original DL formulation discussed above:

— It allows to learn D in one phase only, starting from a known
dictionary Dyt and streaming columns of X.

— It requires to stream brain images, which is how fMRI data are
acquired and stored — typically, we may retrain a dictionary
with new data easily.

— Its regularization parameter  should be adapted to p but not to
n, which is less cumbersome when adapting pipelines to new
studies with different number of samples.

To learn the spatial maps D 2 RP K, we are yet confronted to
the same high dimensionality problem that existed when learning

40



3.5 changing model and going beyond 41

A 2 R"™ K in the original problem: p is typically of the order of 10°,
while n ranges from 10* to 10° in Section 3.3 and 3.4. Tackling the
computational cost created by the high dimensionality of data will
be the full purpose of Chapter 4. The approach will differ radically
from Section 3.4 as we are now interested in the left-sideterm of X
factorization, and can perform online compression.

Before closing this chapter, we explore a rst extension that ( 3.8)
reformulation permits: enforcing structured penalties over the spa-
tial dictionary D by slightly modifying the online dictionary learning
algorithm of Mairal et al. ( 2010.

3.5.2 Complex spatial regularization for brain maps

The current constraint set C = fD 2 RP k: kd(Wk; 6 18j 2 [k]g
used in (3.8) over D enforces sparsity over the dictionary D.

In neuro-imaging, we may wish to obtain function networks whose
regularity goes beyond simple sparsity. Interpretable and ef cient
functional networks should 1) have only a few non-zero voxels 2)
these voxels should form well de ned, small connex components.
This may improve the interpretability of functional networks in the
light of known anatomical structure. For this reason, Dohmatob, M.,
et al. (2019 proposed to augment the objective (3.9) with a further
penalty on the dictionary, and to solve

P .
min kX- DA (D)k+  kr d0)K> (3.10)
D2RP k =1

st. 8 2 [k];kdWk, 6 1; where

A(D), argmin - pa kZ+ KkAKS
A2Rk n

where kr d(j)k,zz is known as a GraphNetpenalty in neuro-imaging
(Grosenick et al., 2013. It penalizes the spatial variations of the dic-
tionary component d{) 2 RP, viewed as a 3 dimensional image. By
pushing the dictionary components to have little spatial variation, we
force the learned brain components to be more focal and to exhibits
well localized connected components (i. e. spatial “blobs”).

In the formulation above, we view the spatial discrete derivative op-
erators @y..; - RP ! RP, and the spatial discrete gradient operator
r :RP!I RP 3. [@;@; @] as linear operators on the space of3D
brain images. The new introduced penalty is smooth, and requires
minimal modi cations of the online matrix factorization algorithm to
run. We simply need to evaluate the its gradient for each component
j: a classical derivation shows that it is 2 d{), where the linear
operator :RP P computes the discrete Laplacian of d). This gra-
dient is computable in a time proportional to the number of voxels;
introducing the GraphNet penalty in the objective ( 3.10) only slows
down online matrix factorization iterations by a constant factor 3.

Introducing the supplementary GraphNet penalty in the problem
(3.10) improves the quality of nal brain components when learning
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Figure 3.5 — Introducing a GraphNet penalty over the spatial dictionary in
the matrix factorization objective improves the quality of output
sparse spatial maps (top), compared to simply relying on the "1
constraints of (3.9) (bottom). Extracted from (Dohmatob et al.,
20106, courtesy of its rst author.

from small datasets, as illustrated in Figure 3.5. On the other hand,

it introduces a further hyperparameter  that needs to be tuned. The

interest of the method decreases as we move to larger datasets such
as HCp, as the sparse maps that we learn from these datasets are
naturally focal and well localized, without tailored modi cation of

the objective (3.9) beyond the "; ball constraints.
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Part ii

HUGE MATRIX FACTORIZATION



STOCHASTIC SUBSAMPLING FOR HUGE
MATRIX FACTORIZATION

Part Il is the most mathematically heavy of this thesis. We depart
from fMRI analysis to dig deeper into the core of matrix factorization
algorithms.

4.1 overview of part ii

As discussed in Chapter 3, existing approaches for matrix factor-
ization are not readily usable to extract base sparse or sparsifying
components from terabyte scale datasets. We therefore designed a
matrix-factorization algorithm, called subsampled online matrix factor-
ization (SoMF), that scales to input matrices with both huge number
of rows and columns.

SOMF can learn factors sparse or dense and/or non-negative, which
makes it suitable for dictionary learning, sparse component analysis,
and non-negative matrix factorization. In brief, SowmF streams ma-
trix columns while subsampling them to iteratively learn the matrix
factors. At each iteration, the row dimension of a new sample is re-
duced by subsampling, resulting in lower time complexity compared
to a simple streaming algorithm. We present SOMF in detail in this
chapter. Beforehand, we provide context on matrix factorization in
machine learning and signal processing. We review some algorithms
that were proposed, and detail online matrix factorization (  OMF), on
which somF is based.

Our method comes with convergence guarantees to reach a station-
ary point of the matrix-factorization problem. The convergence analy-
sis is based on analyzing the robustness to perturbation of a wider cat-
egory of algorithm, known as stochastic majorization-minimization
algorithms (Mairal, 2013). We present the generalized stochastic ap-
proximate majorization-minimizatiorframework and the convergence
analysis of soMF in Chapter 5.

In Chapter 6, we demonstrate the ef ciency of SOMF on massive
functional Magnetic Resonance Imaging data (2 TB of resting-state
data, that corresponds to the release of500subjects of the HCP study),
and on patches extracted from hyperspectral images (103 GB). For
both problems, in which we use different penalties on rows and
columns, we obtain signi cant speed-ups compared to state-of-the-
art algorithms. Finally, we present a adaptation of our algorithm
to explicit collaborative Itering which provides large speed-ups com-
pared to the fastest methods available for models relying on matrix
factorization.



4.2 background and proposed approach

This part is based on a line of two publications. In

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2016). Dictionary learning for massive matrix factoriza-
tion. Proceedings of the International Conference on Machine
Learning (ICML),

we provide a rst version of the sowmF algorithm, with a large em-
pirical study of its performance on resting-state VMRl data and on
collaborative lItering. In an extended journal version

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(201&). Stochastic Subsampling for factorizing huge ma-
trices. IEEE Transactions on Signal Processirgf(1), 113-
128

we modify the somF algorithm to be able to establish some asymptotic
convergence guarantees. We provide a full analysis of SOMF asymp-
totic behavior, based on a larger theoretical framework. We validate

our method on hyperspectral images, and on fMRI data.

4.2 background and proposed approach
4.2.1 Matrix factorization in machine learning

Matrix factorization is a exible approach to uncover latent factors
in low-rank or sparse models. With sparse factors, it is used in dictio-
nary learning, and has proven very effective for denoising and visual
feature encoding in signal and computer vision (see e.g., Mairal et al.,
2014). When the data admit a low-rank structure, matrix factorization
has proven very powerful for various tasks such as matrix completion
(Candes and Recht,2009 Srebro et al.,2004), word embedding (Levy
and Goldberg, 2014 Pennington et al., 2014), or network models (Y.
Zhang et al., 2009. Itis exible enough to accommodate a large set of
constraints and regularizations, and has gained signi cant attention
in scienti c domains where interpretability is a key aspect, such as
genetics (H. Kim and Park, 2007 and of course neuro-imaging, as we
discussed in Chapter 3. In this chapter, our goal is to adapt matrix-
factorization techniques to huge-dimensional datasets, i.e., with large
number of columns n and large number of rows p. Speci cally, our
work is motivated by the rapid increase in sensor resolution, for ex-
ample in hyperspectral imaging or fMRI, and the challenge that the
resulting high-dimensional signals pose to current algorithms.

As a widely-used model, the literature on matrix factorization is
very rich and two main classes of formulations have emerged. The
rst one addresses a convex-optimization problem with a penalty pro-
moting low-rank structures, such as the trace or max norms (Srebro
et al., 2004). This formulation has strong theoretical guarantees (Can-
dés and Recht, 2009, but lacks scalability for huge datasets or sparse
factors. For these reasons, we focus on a second type of approach,
which relies on non-convex optimization. Stochastic (or online) opti-
mization methods have been developed in this setting. Unlike classi-
cal alternate minimization procedures, they learn matrix decomposi-
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tions by observing a single matrix column (or row) at each iteration.
In other words, they stream data along one matrix dimension. Their
cost per iteration is signi cantly reduced, leading to faster conver-
gence in various practical contexts. More precisely, two approaches
have been particularly successful: stochastic gradient descent (Bot-
tou, 2010 and stochastic majorization-minimization methods (Mairal,
2013%; Razaviyayn et al.,, 2013. The former has been widely used
for matrix completion (see R. M. Bell and Koren, 2007 Burer and
Monteiro, 2004 Recht and Ré, 2013 and references therein), while
the latter has been used for dictionary learning with sparse and/or
structured regularization (Mairal et al., 2010. Despite those efforts,
stochastic algorithms are currently unable to deal ef ciently with ma-
trices that are large in both dimensions.

4.2.2 Proposed approach: leveraging stochastic optimization and random-
ization

We propose a new matrix-factorization algorithm that can handle
such matrices. It builds upon the stochastic majorization minimiza-
tion framework of Mairal ( 2013), which we generalize for our prob-
lem. In this framework, the objective function is minimized by itera-
tively improving an upper-bound surrogate of the function ( majoriza-
tion step) and minimizing it to obtain new estimates ( minimization
step). The core idea of our algorithm is to approximate these steps to
perform them faster. We carefully introduce and control approxima-
tions, so to extend convergence results of Mairal (2013) when neither
the majorization nor the minimization step is performed exactly.

For this purpose, we borrow ideas from randomizedmethods in
machine learning and signal processing. Indeed, quite orthogonally
to stochastic optimization, ef cient approaches to tackle the growth
of dataset dimension have exploited random projections (Bingham
and Mannila, 2003, Johnson and Lindenstrauss, 1984 or sampling,
reducing data dimension while preserving signal content. Large-
scale datasets often have an intrinsic dimension which is signi cantly
smaller than their ambient dimension. Good examples are biological
datasets (McKeown et al., 1998 and physical acquisitions with an un-
derlying sparse structure enabling compressed sensing (Candés and
Tao, 2006. In this context, models can be learned using only random
data summaries, also called sketches. For instance, randomized meth-
ods (see Halko et al., 2011, for a review) are ef cient to compute PCA
(Rokhlin et al., 2009, a classic matrix-factorization approach, and to
solve constrained or penalized least-square problems (Lu et al., 2013
Sarlos, 2009. On a theoretical level, recent works on sketching(Pi-
lanci and M. Wainwright, 2015 Raskutti and Mahoney, 2015 have
provided bounds on the risk of using random summaries in learning.

Using random projections as a pre-processing step is not appeal-
ing in our applicative context since factors learned on reduced data
are not interpretable. On the other hand, it is possible to exploit ran-
dom samplingo approximate the steps of online matrix factorization.
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Factors are learned in the original space whereas the dimension of
each iteration is reduced together with the computational cost per
iteration.

Notation

We recall that matrices are written using bold capital letters and
vectors using bold small letters (e.g., X, ). We use superscript to
specify the column (sample or component) number, and write X =

in X;. The oating bar, as in g, is used to stress that a given value
is an average over iterations, or an expectation. The superscript *
is used to denote an exact value, when it has to be compared to an
inexact value, e.g., to compare { (exact)to  (approximation).

4.3 prior art : online matrix factorization

We rst clarify the matrix factorization problem of interest, that
generalizes the one we came across in Chapter3. We recall a spe-
ci ¢ stochastic algorithm to solve it observing one column (or a mini-
batch) at every iteration. In Chapter 5, we cast this algorithm in
the stochastic majorization-minimization framework (Mairal, 2013),
which we will use in the convergence analysis.

4.3.1 Problem statement

In our setting, the goal of matrix factorization is to decompose a
matrix X 2 RP " — typically n signals of dimension p — as a prod-
uct of two smaller matrices:

X DA with D2RP ¥andA 2 RK

with potential sparsity or structure requirements on D and A. In
signal processing, sparsity is often enforced on the code A. As pre-
viously discussed in Chapter 3, this problem is known as dictionary
learning (Olshausen and Field, 1997. In such a case, the matrixD is
called the “dictionary” and A the sparse code. We use this terminol-
ogy throughout this work.

Generalizing (3.8), learning the factorization is typically performed
by minimizing a quadratic data- tting term, with constraints and/or
penalties over the code and the dictionary:

mn Lo p 02 ( y; (4.1)
p2c .2 2 ' '
AZRk n i=1
where A, [ (U;:::; (M] Cis a column-wise separable convex set
of RP ¥ and : RP I R is a penalty over the code. Both con-

straint set and penalty may enforce structure or sparsity, though C
has traditionally been used as a technical requirement to ensure that
the penalty on A does not vanish with D growing arbitrarily large.
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Two choices of Cand  are of particular interest. The problem of
dictionary learning sets C as the ", ball for each atom and  to be
the "1 norm. Due to the sparsifying effect of “; penalty (Tibshirani,
1996, the dataset admits a sparserepresentation in the dictionary. On
the opposite, nding a sparse sah which to represent a given dataset,
with a goal akin to sparse PCA (Zou et al., 2006, requires to set as the
"1 ball for each atom and  to be the "> norm. Our work considers
the elastic-netconstraints and penalties (Zou and Hastie, 2005, which
encompass both special cases. Fixing and in [0;1], we denote by
() and k k the elastic-net penalty in RP and RK:

(), (1- )k k1+§k k3 (4.2)
C, D2RP k=kdWk, (1 )kd(”k1+§kd(”k§6 1

Following Mairal et al. ( 2010, we can also enforce the positivity of D
and/or A by replacing R by R* in C, and adding positivity con-
straints on A in (4.1), as in non-negative sparse coding (Hoyer, 2004).
We rewrite (4.1) as an empirical risk minimization problem depend-
ing on the dictionary only. The matrix D solution of (4.1) is indeed
obtained by minimizing the empirical risk f

_ X )
D 2 argmin (D), 1 f(D;x1) (4.3)
D2C n._,

1
where f(D;x), min = x- D §+ ()
2Rk 2

and the matrix A is obtained by solving the linear regression

w02, ¢ )y
A2RK 0.2 2 '

The problem (4.1) is non-convex in the parameters (D ;A), and hence
(4.3) is not convex. However, the problem ( 4.1) is convex in both D
and A when xing one variable and optimizing with respect to the
other. As such, it is naturally solved by alternate minimization over
D and A, which asymptotically provides a stationary point of ( 4.3).
Yet, X has typically to be observed hundred of times before obtaining
a good dictionary. Alternate minimization is therefore not adapted to
datasets with many samples.

4.3.2 Online matrix factorization

When X has a large number of columns but a limited number of
rows, the stochastic optimization method of Mairal et al. ( 2010 out-
puts a good dictionary much more rapidly than alternated minimiza-
tion. In this setting (see Bottou et al., 201§ for a review), learning the
dictionary is naturally formalized as an expected risk minimization

min (D), ExIf(D;x)L; (4.4)
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Algorithm 1 Online matrix factorization (Mairal et al., 201Q OMF )
Input: Initial iterate Do, sample stream (X )..o , number of itera-
tions T.
for t from 1to T do

Draw x; P.
Compute ¢ = argmin , 5, 3 Xt - Do 1 §+ ().
Update the parameter®f aggregated surrogate g :

~ 1 - 1
Co= 1- 7 Gt oot
4.7)
— 1 - 1 >
B = 1- f Bi. 1+ th t -

Compute (using block coordinate descent):

1 - —
D = argmin =Tr (D> DCy)- Tr (D~ By).
p2c 2

Output: Final iterate D .

where x is drawn from the data distribution and forms an i.i.d. stream
(X¢)t. In the nite-sample setting, ( 4.4) reduces to (4.3) when X; is
drawn uniformly at random from  fx();i 2 [1;n]g We then write i
the sample number selected at time t.

The online matrix factorization algorithm proposed by Mairal et al.
(2010 is summarized in Algorithm 1. It draws a sample x; at each
iteration, and uses it to improve the current iterate D:. ;. For this, it
rst computes the code  associated tox; on the current dictionary:

1
¢, argmin Zkx; - D1 K3+ (). (4.5)
2Rk 2
Then, it updates D to make it optimal in reconstructing past samples
(Xs)set from previously computed codes ( s)s6t:

X 2

D; 2 argmin §;(D), Xs- D s o+ (s). (46

D2C to,2
Importantly, minimizing g is equivalent to minimizing the quadratic
function

1 — —
D! ST (D7DCY)- Tr(D”By);

where B; and C; are small matrices that summarize previously seen
samples and codes:

_ 1 X _ 1 X
Bt = —
t

s=1 s=1
As the constraints C have a separable structure per atom, Mairal et al.
(2010 uses projected block coordinate descent to minimize g¢. The
function gradient writes r g;(D) = DC; - B¢, and it is therefore
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enough to maintain I§t and Et in memory to solve ( 4.6). I§t and 5t
are updated online, using the rules (4.7) (Algorithm 1).

The function g; is an upper-bound surrogate of the true current
empirical risk, whose de nition involves the regression minima com-
puted on current dictionary D:

X 2

@), ¢ mnZx-D 2+ ()6G(D). @9

Using empirical processes theory (Van der Vaart, 2000, it is possible
to show that minimizing f; at each iteration asymptotically yields a
stationary point of the expected risk ( 4.4). Unfortunately, minimizing
(4.8) is expensive as it involves the computation of optimal current
codes for every previously seen sample at each iteration, which boils
down to naive alternate-minimization.

In contrast, g; is much cheaper to minimize than fi, using block
coordinate descent. It is possible to show that g; converges towards
a locally tight upper-bound of the objective f; and that minimizing
g¢ at each iteration also asymptotically yields a stationary point of
the expected risk (4.4). This establishes the correctness of theonline
matrix factorizationalgorithm ( OMF). In practice, the omMF algorithm
performs a single pass of block coordinate descent: the minimization
step is inexact. This heuristic will be justi ed as one of our theoretical
contribution in Chapter 5.

Mini-batches and learning weights

For ef ciency, it is essential to use mini-batches fxs; s 2 T;gof size

instead of single samples in the iterations (Mairal et al., 2010. The
surrogate parameters B¢, C; are then updated by the mean value
of f(Xs 3; s 2)G2T, over the batch. The optimal size of the mini-
batches is usually close tok. (4.7) uses the sequence of weights(%)t
to update parameters B; and C;. Mairal et al. (2010 replaces these
weights with a sequence (w¢ ), , which can decay more slowly to give
more importance to recent samples in g;. These weights will prove
important in our analysis.

We turn to introduce the new matrix factorization algorithm at the
core of our contribution.

4.4 algorithm outline . stochastic subsampling for
high dimensional data decomposition

The online algorithm presented in Section 4.3 is very ef cient to
factorize matrices that have a large number of columns (i.e., with a
large number of samples n), but a reasonable number of rows — the
dataset is not very high dimensional. However, it is not designed to
deal with very high number of rows: the cost of a single iteration
depends linearly on p. On terabyte-scale datasets from fMRI with
p = 2 10° features, the original online algorithm requires one week
to reach convergence. This is a major motivation for designing new
matrix factorization algorithms that scale in both directions

50
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Figure 4.1 — Stochastic subsamplinigirther improves online matrix factoriza-
tion to handle datasets with large number of columns and rows.
Xisthe input p n matrix, D{ and A are respectively the dic-
tionary and code at time t.

In the large-sample regime p k, the underlying dimensionality
of columns may be much lower than the actual p: the rows of a sin-
gle column drawn at random are therefore correlated and redundant.
This guides us on how to scale online matrix factorization with regard
to the number of rows:

— The online algorithm oOMF uses a single column of (or mini-
batch) of X at each iteration to enrich the average surrogate and
update the wholedictionary.

— We go a step beyond and use afraction of a single column of X
to re ne a fraction of the dictionary.

More precisely, we draw a column and observe only someof its rows
at each iteration, to re ne these rows of the dictionary, as illustrated
in Figure 4.1. To take into account all features from the dataset, rows
are selected at random at each iteration: we call this technique stochas-
tic subsampling Stochastic subsampling reduces the ef ciency of the
dictionary update per iteration as less information is incorporated in
the current iterate D{. On the other hand, with a correct design, the
cost of a single iteration can be considerably reduced, as it grows with
the number of observed features. Section6.1 shows that the proposed
algorithm is an order of magnitude faster than the original oOMF on
large and redundant datasets.

First, we formalize the idea of working with a fraction of the p
rows at a single iteration. We adapt the online matrix factorization
algorithm, to reduce the iteration cost by a factor close to the ratio of
selected rows. This de nes a new online algorithm, called subsampled
online matrix factorization(SOMF). At each iteration, it uses q rows of
the column Xx; to update the sequence of iterates(D); .
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45 subsampled online matrix factorization

Formally, as in online matrix factorization, we consider a sample
stream (x¢), in RP that cycles onto a nite sample set fx(1);i 2 [1;n]g
and minimize the empirical risk ( 4.3). Note that we solve the fully
observed problem despite the use of subsampled data, unlike other
recent work on low-rank factorization (Mardani et al., 2015. Exten-
sions to partially observed data is discussed in Section 6.2.

45.1 Stochastic subsampling

We want to reduce the time complexity of a single iteration. In the
original algorithm, the complexity depends linearly on the sample
dimension p in three aspects:

— Xt 2 RP is used to compute the code ¢,
— itis used to update the surrogate parameters B, 2 RP K,
— D¢ 2 RP Kk s fully updated at each iteration.

Our algorithm reduces the dimensionality of these steps at each it-
eration, such that p becomesq = ‘% in the time complexity analysis,
where r > 1 is a reduction factor Formally, we randomly draw, at it-
eration t, a mask M ; that “selects” a random subset of x;. We use it
to drop a part of the features of x; and to “freeze” these features in
dictionary D at iteration t.

It is convenient to consider M ; as aRP P random diagonal matrix,
such that each coef cient is a Bernouilli variable with parameter %
normalized to be 1 in expectation. 8j 2 [0;p- 1],

P M Gil=r = 5 P M[]=0 =1 . @9)

Thus, r describes the average proportion of observed features and
M (X Is a non-biased, low-dimensional estimator of Xx;:

EkMtthozgzq E MixX;t = X;.

with k k, counting the number of non-zero coef cients. We de ne
the pair of orthogonal projectors Py 2 R9 P and P 2 R(P- @) P that
project RP onto Im (M ) and Ker(M ¢). In other words, P;Y and P{ Y
are the submatrices of Y 2 RP Y with rows respectively selected and
not selected by M ;. In algorithms, P;Y Z 2 RY " assigns the
rows of Z to the rows of Y selected by Py, by an abuse of notation.

In brief, subsampled online matrix factorization, de ned in Algo-
rithm 2, follows the outer loop of online matrix factorization, with
the following major modi cations at iteration  t:

— ituses M ¢ x; and low-size statistics instead of x; to estimate the
code ; and the surrogate g,

— it updates a subset of the dictionary P;D. 1 to reduce the sur-
rogate value g;(D). Relevant parameters of g; are computed
using P x; and ¢ only.
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Algorithm 2 Subsampled online matrix factorization ( SOMF)
Input: Initial iterate D o, weight sequences (Wt )ig » ( ¢)eso » SAM-
ple set fx() g, , number of iterations T.
for t from 1to T do
Draw x; = x() at random and M ; following ( 4.9).
Update the regression parameters for sample i:

c) )+ 1, e
@ e+ by M x(; t o,
¢ (@- e, + DI M(Dy. 1 G G,

Compute the approximate code for x;:

1
¢ argmlkné Gy - T o+ (). (4.10)
2R

Update the parameters of the aggregated surrogate g :

Ct  (1- w)Cr 1+ Wy ¢ ;.
PiBr  (1- wy)PiBi. 1+ WiPixt 7.

Compute simultaneously (using Algorithm 3 for 15t line):
1 - —
P:Dy argmin ZTr (D" D"'Cy)- Tr (D"~ P;By).
Dra2cr 2

P/By  (1- W )Py B 1+ WPy Xt o . (4.12)

Output: Final iterate D .

We now present the three steps of SOMF in details. For comparison
purpose, we write all variables that would be computed following
the OMF rules at iteration t with a ? superscript. For simplicity, in
Algorithm 2 and in the following paragraphs, we assume that we use
one sample per iteration —in practice, we use mini-batches of size

. The next derivations are transposable when a batch |; is drawn at
iteration t instead of a single sample ;.

4.5.2 Code computation
In the omF algorithm presented in Section 4.3, { is obtained by
solving (4.5), namely

;2 argmin% Gy - T i+ () (4.12)
where G/ = Dy ;D{.; and { = D ,x%. For large p, the com-
putation of G{ and { dominates the complexity of the regression
step, which depends almost linearly on p. To reduce this complexity,
we use estimatorsfor G{ and ¢, computed at a cost proportional to
the reduced dimension q. We propose three kinds of estimators with
different properties.
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4521 Masked loss

The most simple unbiasedestimation of G/ and ;7 whose computa-
tion cost depends on g is obtained by subsampling matrix products
with M ¢:

Gt = Dt>- 1MtDt-1 (a)
t = Dt>— 1M t Xt .
Solving (4.10) then amounts to minimize the masked loss
min kM (xx- D7 )5+ () (4.13)
oRk 2 LT t-1 2 ' '

Gt and  are computed in a number of operations proportionalto q,
which brings a speed-up factor of almost r in the code computation
for large p. On large data, using estimators (a) instead of exact G/
and ; proves very ef cient during the rst epochs (cycles over the
columns).8 However, due to the masking, G; and  are not consis-
tent estimators: they do not converge to G/ and ¢ for large t, which
breaks theoretical guarantees on the algorithm output. Empirical re-
sults in Section 6.1.5 show that the sequence of iterates approaches a
critical point of the risk ( 4.3), but may then oscillate around it.

45.2.2 Averaging over epochs

At iteration t, the sample x; is drawn from a nite set of samples
fx()g. This allows to average estimators over previously seen sam-
ples and address the non-consistency issue of ). Namely, we keep
in memory 2n estimators, written (Ggi); §‘>)16 i6n- We observe the
sample i = i; at iteration t and use it to update the i-th estimators
(gfi), _Ei) following

' =(1- e+ DM x®
6 =(1- )o',+ ;MDY

where is a weight factor determined by the number of time the
one samplei has been previously observed at time t. Precisely, given
( ¢). adecreasing sequence of weights,

(i) =

= .o Wwhere ¢ = s6 t; xs = x(1)
t

All others estimators fGﬁj); fj)qgi are left unchanged from iteration

t- 1. The sethEi); §i)gle i6n IS used to de ne the averagedestima-
tors

(i) X ()~ >
Gi, Gy’ = s;tDs- 1M sDs. 1
s6 t: xg=x()
i, 0= (D2 (M ex;

S6 t; xg= x ()

(b)

8 Estimators(a) are
also available in the
in nite sample
setting, when
minimizing the
expected risk4.4)
from a i.i.d sample
stream(x ); .
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(i) _ Q

where ¢ = ¢ <t xs=x0 (1= m). Using ¢ and Gy in (4.10),
+ minimizes the masked loss averaged over the previous iterations
where sample i appeared:

X () .

ngigk ST?tkM sxM-DZ )3+ (). (4.14)
s6t
xg=x ()

The sequences(Gt), and ( ), are consistentestimations of (Gt?)t

and ( {), — consistency arises from the fact that a single samplex(")

is observed with different masks along iterations. Solving ( 4.14) is
made closer and closer to solving (4.12), to ensure the correctness of
the algorithm (see Section 5.3). Yet, computing the estimators (b) is
no more costly than computing ( @) and still permits to speed up a

single iteration close to r times. In the mini-batch setting, for every

i 2 I, we use the estimators Gﬁi) and §i) to compute Ei). This
method has a memory cost of O(nk?). This is reasonable compared
to the dataset sizelif p  kZ.

45.2.3 Exact Gram matrix computation

To reduce the memory usage, another strategy is to use the true
Gram matrix G; and the estimator  from (b):

Gt , Gf)z( D; D¢ 1
Op> M xD (c)
to st Ys-1V's

s6 t; xg=x()

As previously, the consistency of ( (), ensures that (4.4) is correctly
solved despite the approximationin ( ), computation. With the par-
tial dictionary update step we propose, it is possible to maintain G,
at a cost proportional to g. The time complexity of the coding step is
thus similarly reduced when replacing ( b) or (c) estimators in (4.12),
but the latter option has a memory usage in O(nk). Although es-
timators (c) are slightly less ef cient in the rst epochs, they are a
good compromise between resource usage and convergence. We sum
marize the characteristics of the three estimators (a)—(c) in Table 4.1,
anticipating their empirical comparison in Section 6.1.

1. Itis also possible to ef ciently swap the estimators (Ggi))i on disk, as they are
only accessed fori = iy atiteration t.

Table 4.1 — Comparison of estimators used for code computation

st
Est. t Gt Convergence Extra 1> epoch
mem. cost perform.
(&  Masked Masked X
(b) Averaged Averaged X nk?2 X

(c) Averaged Exact X nk
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4.5.3 Dictionary update

In the original online algorithm, the whole dictionary D;. 1 is up-
dated at iteration t. To reduce the time complexity of this step, we
add a “freezing” constraint to the minimization ( 4.6) of g;. Every row
r of D that corresponds to an unseenrow r at iteration r (such that
M ¢[r;r] = 0) remains unchanged. This casts the problem (4.6) into a
lower dimensional space. Formally, the freezing operation comes out
as a additional constraint in ( 4.6):

. 1 - —
Dy = argmin Z=Tr(D>DC;)- Tr (D’ By). (4.15)
D2C 2

P{D=P{D
The constraints are separable into two blocks of rows. Recalling the
notations of (4.2), for each atom d(1), the rules kdk 6 1 and the
freezing constraint P? d) = P? d), can indeed be rewritten

kPedk 6 1- kd" k+kPdD Kk, rl)
p7di) = p7dl),.

Solving (4.15) is therefore equivalent to solving the following problem
in RY X, with Bl , P{Bq,

D" 2 argmin %Tr(D”Df(ft)- Tr(D'”B[), gi(D") (4.16)
Dra2cCr

where ¢ = D'2R9 k=8j 2 [0;k- 1];kd"Dk6 ) .

The rows of D selected by P; are then replaced with D", while
the other rows of D are unchanged from iteration t - 1. Formally,
PiD¢ = D" and P/ Dy = P/ D¢. 1. We solve (4.16) by a projected
Block coordinate descent (BcD) similar to the one used in the original
algorithm, but performed in a subspace of size gq. We compute each
column j of the gradient that we use in the block coordinate descent
loop with g k operations:
where Eﬁj) and 5{(” are the j-th columns of C, and B} . Each reduced
atom d'() is projected onto the elastic-net ball of radius r!’, at an
average cost in O(q) following (Duchi et al., 2008 Mairal et al., 2010.
This makes the complexity of a single-column update proportional to
g. Performing the projection requires to keep in memory the values
fnf” , 1- kdﬁj)kq, which can be updated online at a negligible cost.
We provide the reduced dictionary update step in Algorithm 3,
where we use the function enet _projection  (u;r) that performs the
orthogonal projection of u 2 RY onto the elastic-net ball of radius r.
As in the original algorithm, we perform a single pass over columns
to solve (4.16). Dictionary update is now performed with a number
of operations proportional to q, instead of p in the original algorithm.
Thanks to the random nature of (M), updating D¢. 1 into D¢ re-
duces g; enough to ensure convergence.
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Algorithm 3 Partial dictionary update
Input: Dictionary D;. 1, projector Py, statistics C;, B, norms
(n (J)l)06J<k , Gram matrix G; (optional).
Dt Dt-1 Gt Gt- D7 ;PtD¢. 1
for j 2 permutation ([1;K]) do
rEJ) nEJ—)l + kP d(J) k.
(1 ) ~i) ;
u 'Ptdt-l c, [“](Ptb P: Dtct ).Bln RA
PtdEJ) enet _projection  (u; r(J)) B in RY
a0 ep gk
t t tYt '
Gt+1 Gt+Dt>PtDt- '
Output: Dictionary D¢, norms (nE’))j, Gram matrix Gi+1.

gram matrix computation . Performing partial updates of D
makes it possible to maintain the full Gram matrix G; = G; with
a cost in O(qk?) per iteration, as mentioned in Section 4.5.2.3. It is
indeed enough to compute the reduced Gram matrix D~ P;D before
and after the dictionary update:

Gt+1 = Dt>D'[ = Gt - Dt>_ 1PtDt>_ 1+ Dt>PtDt>
4.5.4 Surrogate computation

The computation of ; using one of the estimators above de nes a
surrogate g;(D) , %kxt - D (k3+ (), which we use to update
the aggregated surrogate g; , (1- w¢)g¢. 1 + W gt, as in online ma-
trix factorization. We follow ( 4.7) (with weights (w¢),) to update the
matrices Bt and C;, which de ne ‘gt up to constant factors. The up-
date of B; requires a number of operations proportional to p, which
we want to avoid. Fortunately, it is possible to leverage the use of two
threads to circumvent this issue.

45.4.1 Parallel parameter update

Performing block coordinate descent on gi indeed requires to ac-
cessB! = P;B; only. Assuming we may use use more than two
threads, this allows to parallelize the dictionary update step with the
update of P{ B¢. In the main thread, we compute P;B; following

PeBt  (1- wy)PBi. 1+ wiPixy {-

which has a cost proportional to q. Then, we update in parallel the
dictionary and the rows of B; that are not selected by M ;:

P? gt (1- Wt)P? B_t_ 1+thf Xt t>

This update requires k(p- ) operations (one matrix-matrix prod-
uct) for a mini-batch of size . In contrast, with appropriate imple-
mentation, the dictionary update step requires 4kq? to 6kg? opera-
tions, among which 2kq? come from slower matrix-vector products.
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Assuming k , updating B is faster than updating the dictionary
upto r 10, and performing ( 4.11) on a second thread is seamless in
term of wall-clock time. More threads may be used for larger reduc-
tion or batch size.

45.4.2 Truly partial update

It is in fact possible to replace the parallel updates of B; with the
following asynchronous updates:

P/ By, P/Bi.1
PiBy, (1- %Wt)Pt By. 1+ th PiXt ¢ (4.19

while maintaining the convergence guarantees presented in Chap-
ter 5. This was the approach we proposed in a rst version of the

SOMF algorithm (Mensch et al., 2016). (4.19) has the advantage of
updating only g rows of B; at each iteration. On the other hand, it
introduces an extra source of perturbation to the original omF algo-
rithm. The effect of the perturbation is unfortunately too strong com-

pared to the computational speed-up provided by ( 4.19). Theoretical
analysis bears resemblance to a recent work of Leblond et al. 2017
proposed for the SAGA algorithm. Note that we will reuse ( 4.19) in the
empirical adaptation of soMF for matrix completion, in Section 6.2.

455 Weight sequences

Algorithm 2 require to specify (w¢); and ( ¢)c. We provide usable
form for those sequences in Assumption (B) of the analysis: w; = tiu
and =%, whereu2 (3};1)andv2 2;3u- 2 to ensure conver-

gence. Weights have little impact on convergence speed in practice.

45.6 Subsampling and time complexity

Subsampling may be used in only someof the steps of Algorithm 2,
with the other steps following Algorithm 1. Whether to use subsam-
pling or not in each step depends on the trade-off between the com-
putational speed-up it brings and the approximations it makes. It
is useful to understand how complexity of OMF evolves with p. We
write s the average number of non-zero coefcientsin ( ¢), (s= K
when =k k%). OMF complexity has three terms:

() O(pk?): computation of the Gram matrix G;, update of the
dictionary D with block coordinate descent,

>

(i) O(pk ): computation of = D;. ;x; and of B: using Xt ¢,

(i) O(ks? ): computation of  using G; and ¢, using matrix
inversion or elastic-net regression.

Using subsampling turns p into q = ’r’— in the expressions above. It
improves single iteration time when the cost of regression O(ks? ) is
dominated by another term. This happens whenever ‘rl > s2, where
r is the reduction factor used in the algorithm. Subsampling can
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bring performance improvement up to r S%. It can be introduced in
either computations from (i) or (ii), or both. When using small batch
size, i.e., when < k , computations from (i) dominates complexity,
and subsampling should be rst introduced in dictionary update (i),
and for code computation (ii) beyond a certain reduction ratio. On
the other hand, with large batch size > k , subsampling should be
rst introduced in code computation, then in the dictionary update
step. The reasoning above ignore potentially large constants. The
best trade-offs in using subsampling must be empirically determined,
which we do in Chapter 6.

conclusion

This chapter introduced the somF algorithm in detail and provided
the intuitions that guided its design. SOMF possess asymptotic almost-
sure convergence guarantees, that may be stated in an optimization
framework adapted to a wider set of problems than matrix factoriza-
tion. Chapter 5 provides a theoretical analysis of SOMF.



ALGORITHM PROPERTIES VIA STOCHASTIC
APPROXIMATE
MAJORIZATION-MINIMIZATION

In this chapter, we present the stochastic approximate majorization-
minimization (SAMM ) framework and the convergence analysis of SOMF.
At its core, our analysis controls the perturbations that approximate
code computation and approximate surrogate minimization introduce
in the sequence of iterate (D¢ ); . We establish that the iterate sequence
converges toward a critical point of the objective ( 4.3), i.e.

.= 1 X . 1 2
PRT®.q TR Do ()
with positive directional derivatives.

To better understand the mechanisms at stake, and make our ap-
proach modular, we work in the more general framework of stochas-
tic majorization minimization (Mairal, 2013), which abstracts the
steps of online matrix factorization. We start by recalling what is
stochastic majorization-minimization and how it encompass the omF
algorithm. We then turn to analyse the convergence properties of
SAMM algorithms. We use these to obtain guarantees on SOMF conver-

gence.

51 prior art : stochastic majorization -minimization

Online matrix factorization belongs to a wider category of algo-
rithms introduced by Mairal ( 2013), that minimize locally tight up-
per bounding surrogates instead of a more complex objective, in order
to solve an expected risk minimization problem

rr;inf_( ), Ex[f(; x)I.

Generalizing online matrix factorization, we introduce in Algorithm 4
the stochastic majorization-minimizatiofsmm) algorithm, which is at
the core of our theoretical contribution. smMwm algorithms extends
the popular class of majorization-minimization algorithms (Ortega
and Rheinboldt, 1970, of which gradient descent (Cauchy, 1847 and
batch alternated minimization for matrix factorization are instances.

In online matrix factorization, the true empirical risk functions
f, and their surrogatesg; follow the update rules, with generalized
weight (w), setto ({), in (4.6) — (4.9):

fo, (- wo)feo 1+ wefe, Gr, (- W)@ 1+ wege;  (5.1)
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Algorithm 4 Stochastic majorization-minimization (Mairal, 2013)
Input: Initial iterate o, weight sequence (Wt )., , sample stream
(Xt)g » umber of iteration T.
for t from 1to T do

Draw x; P,getf;: 2 I f(x¢; ).
Construct a surrogate of f; near . ;, that meets

gt > o 9e( - 1) = fe( e 1)
Update the aggregated surrogate:

gt =(1- Wi)Gi- 1+ Wi Gt
Compute

t = argmin g¢ ().
2

Output: Final iterate .

where the pointwiseloss function and its surrogate are

f¢(D), min }kxt -D K+ ()
2Rk 2
! (5.2
9t(D), Skxi- D K+ (o).
The function g; is a majorizing surrogate of f;: g; > f, and g; is tan-
genttofy in D¢. 1,i.e,8¢(D¢. 1) = ft(D¢- 1) andr (gt - ft)(D¢- 1)=0.
Recall that at each step of online matrix factorization:

— The surrogate g; is computed along with ¢, using (4.5).

— The parameters B(;C, are updated following ( 4.7). They de ne
the aggregatedurrogate g; up to a constant.

— The quadratic function g; is minimized ef ciently by block co-
ordinate descent, using parameters B; and C; to compute its
gradient.

The smMm framework simply formalizes the three steps above, for a
larger variety of loss functions fi( ), f(; X¢), where isthe parame-
ter we want to learn ( D in the online matrix factorization setting). At
iteration t, a surrogate g; of the loss f; is computed to update the ag-
gregated surrogate g; following ( 5.1). The surrogate functions (g )t
should upper-bound the loss functions (f;); and be tight in the cur-
rent iterate . ; (e.g.,the dictionary D¢. ;). This simply means that
fe( t-1)= 0t( t-1)andr (ft - gt)( t- 1) = 0. Computing g can be
done if g; is de ned simply; in  OMF, it is linearly parametrized by
the couple of matrices (  {;Xt ¢ ). g is then minimized to obtain
a new iterate { — this is summarized in Algorithm 4.

surrogate examples . Online matrix factorization uses a varia-
tional form for g, that involves the computation of a minimizer.
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When f; is L-smooth, we obtain another well known tight upper-
bound surrogate by setting, forall 2

. L
ge( ), fe( )+ h - oasr fi( t-1)|+§k - t-1k§-

Using this class of surrogates in sMM exactly amount to perform
stochastic gradient descent with step-sizes ¥*.

It can be shown following Mairal ( 2013) that stochastic majoriza-
tion minimization algorithms asymptotically nd stationary points
of the expected risk Ex[f(; xX)] under mild assumptions recalled in
Section 5.3. sSMM admits the same mini-batch extensions as OMF.

We now propose an extension of the smm framework that allows
both the majorization and minimization steps to be approximated.
We will show that convergence guarantees may be maintained despite
those approximations.

5.2 stochastic approximate majorization -minimization

The sowmF algorithm can be understood within the stochastic ma-
jorization minimization framework. The modi cations that we pro-
pose are indeed perturbations to the rst and third steps of the smm
presented in Algorithm 4:

— The code is computed approximately: the surrogate is only an
approximatemajorizing surrogate of f; nearD¢. 1.

— The surrogate objective is only reducedand not minimized, due
to the added constraint and the fact that we perform only one
pass of block coordinate descent.

We propose a new stochastic approximate majorization-minimization
(samm) framework handling these perturbations:

— A majorization step (4 — Algorithm 4), computes an approximate
surrogateof f; near (. 1! gt g7, where g; is a true upper-
bounding surrogate of f;.

— A minimization step ( 6 — Algorithm 4), nds { by reducing
enoughthe objective g;: ¢ ;. argmin > 0t( ), which
implies Gt ( t) & Gt ( {)-

The samm framework is general, in the sense that approximations
are not speci ed. The next section provides a theoretical analysis of
the approximation of saAvMM and establishes how somF is an instance
of sammM. Its main practical result is Proposition 5.1, that provides
convergence guarantees forsomF, under the same assumptions made
for oMF in Mairal et al. ( 2010.

5.3 convergence analysis

We establish the convergence of SOMF under reasonable assump-
tions. For the sake of clarity, we rst state our principal result (Propo-
sition 5.1), that guarantees somMF convergence. It is a corollary of a



5.3 convergence analysis

more general result on saMm algorithms. To present this broader re-
sult, we recall the theoretical guarantees of the stochastic majorization-
minimization algorithm from Mairal ( 2013) (Proposition 5.2); then,
we show how the algorithm can withstand pertubations (Proposi-
tion 5.3). Proofs are reported in Section A.1. SAMM convergence is
proven before establishing somMF convergence as a corollary of this
broader result. As a side contribution, our extension proves that per-
forming a single pass of block coordinate descent to update the dic-
tionary, an important heuristic introduced by Mairal et al. ( 2010, is
indeed correct.

5.3.1 Convergence cfoOMF

Similar to Mairal et al. ( 2010 and Mardani et al. (2015, we show
that the sequence of iterates (D); asymptotically reaches a critical
point of the empirical risk ( 4.3). We introduce the same hypothesis
on the code covariance estimation C; as in Mairal et al. (2010 and a
similar one on G; — they ensure strong convexity of the surrogate
and boundedness of ( t),. They do not cause any loss of general-
ity as they are met in practice after a few iterations, if r is chosen
reasonably low, so that q > k. The following hypothesis can also be
guaranteed by adding small *, regularizations to f.

(A) There exists >0 suchthatforall t>0, C:: Gy l.

We further assume, that the weights (w¢), and ( ¢). decay at spe-
ci c rates. We specify simple weight sequences, but the proofs can be
adapted for more complex ones.

(B) There existsu 2 (%;1) and v 2 %;BU— 2) such that, for all
t>0,c>0,wy =t Y, .=cV.

The following convergence result then applies to any sequence
(Dt); produced by sowmF, using estimators (b) or (c). f is the em-
pirical risk de ned in ( 4.3).

Proposition 5.1 (somF convergence) Under assumptiongA) and (B),
f(Dt) converges with probability one and every limit podg of (D), is
a stationary point of; forallD 2 C

rf(Dy;D- D1)>0

This result applies for any positive subsampling ratio r, which may
be set arbitrarily high. However, selecting a reasonable ratio remains
important for performance, as we will discuss in Chapter 6.

Proposition 5.1 is a corollary of a stronger result on sAvM algo-
rithms. As it provides insights on the convergence mechanisms, we
formalize this result in the following.

5.3.2 Basic assumptions and results 8rM convergence

We rst recall the main results on stochastic majorization minimiza-
tion algorithms, established in Mairal ( 2013), under assumptions

63
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that we slightly tighten for our purpose. In our setting, we consider
the empirical risk minimization problem

in f( 1>@f-(i)- 5.3
min (),Hizl(,x), (5.3)

where f : RK X! R is aloss function and
©) RX and the support X of the data are compact.

This is a special case of {.4) where the samples (x; ), are drawn uni-
formly from the set fx()g. The loss functions f; , f( ;x;) de ned on
RX can be non-convex. We instead assume that they meet reasonable
regularity conditions:

(D) (ft); isuniformly R-Lipschitz continuous on RX and uniformly
bounded on

(E) The directional derivatives r fi(; 0. ), as de ned by Bor-
wein and Lewis (201Q andr f(; ©- )existforall and %in RK.

Assumption (E) allows to characterize the stationary pointsof prob-
lem (5.3), namely 2 suchthatr f(; ° ) > Oforal ©2
— intuitively a point is stationary when there is no local direction in
which the objective can be improved.

Let us now recall the de nition of rst-order surrogate functions
used in the smMMm algorithm. (gt), are selected in the setS.. (ft; - 1),
hereby introduced.

De nition 5.1 (First-order surrogate function) . Given a functionf :
RK1 R, 2 and;L>0,wedeneS, (f; ) as the set of functions
g :RX 1 R such that

— g is majorizingf on andgis -strongly convex,

— g andf are tight at — i.e.,g( ) = f( ), g- f is differentiable,
r (g- f)is L-Lipschitz,r (g- f)( ) = 0, wherer is the classical
differential operator.

In oMF, g¢ dened in ( 5.2) is a variational surrogate ! of f;. We
refer the reader to Mairal (2013) for further examples of rst-order
surrogates. We also ensure thatg; should be parametrizedand thus
representable in memory. The following assumption is met in  OMF,
asg; is parametrized by the matrices C: and B;.

(F) Parametrized surrogate$he surrogates (g;); are parametrized
by vectors in a compact set K RP. Namely, for all t > 0, there
exists ¢ 2 K such that g; is unequivocally denedas g, g ,.

Finally, we ensure that the weights (w¢), used in Algorithm 4 de-
crease at certain rates, slightly less stringent than our assumption (B).

(G) There existsu 2 (2;1) such thatw; = t™ Y.

1. Inthis case as inSOMF, gt is not -strongly convex but g; is, thanks to assump-
tion (A). This is suf cient in the proofs of convergence.
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When ( t): is the sequence yielded by Algorithm 4, the following
result (Proposition 3.4 in Mairal, 2013) establishes the convergence
of (f_( t)); and states that . is asymptotically a stationary point of
the nite sum problem ( 5.3), as a special case of theexpectedisk
minimization problem ( 4.4).

Proposition 5.2 (Convergence of smM, from Mairal, 2013). Under
assumptiongC) — (G), (f_( t))¢>1 converges with probability one. Every
limit point 1 of ( ¢), is a stationary point of the risk de ned in (5.3).
That is,

8 2 ; rf( ¢; - 1)>0.

The correctness of the online matrix factorization algorithm can be
deduced from this proposition.

5.3.3 Convergence ¢fAMM

We now introduce assumptions on the approximations made in
SAMM, before extending the result of Proposition 5.2. We make hy-
potheses on both the surrogate computation (majorization) step and
the iterate update (minimization) step. The principles of SAMM are
illustrated in Figure 5.1, which provides a geometric interpretation
of the approximations introduced in the following assumptions  (H)
and (1).

5.3.3.1 Approximate surrogate computation

The smm algorithm selects a surrogate for f; at point (. ; within
the setS.. (ft; (- 1). Surrogates within this set are tight at ;. 1 and
greater than f; everywhere. In samm, we allow the use of surrogates
that are only approximately majorizind; and approximately tightat ;. 1.
This is indeed what soMF does when using estimators in the code
computation step. For that purpose, we introduce the set T (f; ; ),
that contains all functions -close of a surrogate in S, (f; ) for the

1 -norm:

De nition 5.2 (Approximate rst-order surrogate function) . Given a
functionf :RX! R, 2 and >0 , T-L (f;; ) isthe setof -strongly
convex functiong : RX ! R such that

— gis -majorizingfon :8 2 ;g9 ()- f()>- ,

— gandf are -tightat —i.e.,g( )- f( )6 ,g- fisdifferentiable,
r (g- f)is L-lipschitz.

We assume thatsAMM selects an approximative surrogate in the set
T.. (ft; - 1; t) at each iteration, where ( ), is a deterministic or
random non-negative sequence that vanishes at a suf cient rate.

(H) Forallt>0,thereexists { >0 suchthatg: 2 T.. (ft; t-1; t).
There exists a constant > 0 such that E[ (] 2 O(t2(t- 1) ) and
t ! 1 0almost surely.
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As illustrated in Fig. 5.1, given the ovF surrogate g7 2 S (ft; - 1)
de ned in ( 5.2), any function g; such that kg; - g/ki < s in
T.. (ft; -1, ) — e.g, where g; uses an approximate  in (5.2).
This assumption can also be met in matrix factorization settings with
dif cult code regularizations, that requireto make code approxima-
tions.

5.3.3.2 Approximate surrogate minimization

We do not require ; to be the minimizer of g; any longer, but en-
sure that the surrogate objective function g; decreases “fast enough”.
Namely,  obtained from partial minimization should be closer to
a minimizer of g; than . ;. We write (F¢), and (F,_ %)t the ltra-
tions induced by the past of the algorithm, respectively up to the end
of iteration t and up to the beginning of the minimization step in
iteration t. Then, we assume

() Forallt>0,09:( )< gt( ¢t-1). There exists >0 such that,

forall t>0,where {=argmin , g:i(),

EG( - G DiF. )6 1- X@(e-1)- al( ). 6

Assumption (I) is met by choosing an appropriate method for the
inner g; minimization step — a large variety of gradient-descent al-
gorithms indeed have convergence rates of the form (5.4). In SOMF,
the block coordinate descent with frozen coordinates indeed meet
this property, relying on results from Wright ( 2015. When both as-
sumptions are met, SAMM enjoys the same convergence guarantees as
SMM.

5.3.3.3 Asymptotic convergence guarantee

The following proposition guarantees that the stationary point con-
dition of Proposition 5.2 holds for the samM algorithm, despite the
use of approximate surrogates and approximate minimization.

Proposition 5.3 (Convergence of saMM). Under assumptionsG) — (F),
the conclusion of Propositidn2 holds forsamm .

Figure 5.1 — Both steps of saMm make well-behaved approximations. The
operations that are performed in exact smMm are in green and
superscripted by ?, while the actual computed values are in
orange. Light bands recall the bounds on approximations as-
sumed in (H) and (1).

66
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Assumption (H) is essential to bound the errors introduced by the
sequence( t)¢ in the proof of Proposition 5.3, while (I) is the key
element to show that the sequence of iterates ( {); is stable enough
to ensure convergence. The result holds for any subsampling ratio
r, provided that (A) remains true. Full proofs are provided in Sec-
tion A.1.2.

5.3.3.4 Proving SOMF convergence

Assumptions (A) and (B) readily implies (C)—G). With Proposi-
tion 5.3 at hand, proving Proposition 5.1 reduces to ensure that the
surrogate sequence ofsoMF meets(H) while its iterate sequence meets
assumption (I). Full proofs are provided in Section A.1.3.

5.3.4 Discussion and variants

The somF algorithm relies on a somewhat complicated assump-
tion (B) on the learning weights (w;); and on a reduction mechanism
that we further discuss.

weight decay . The original oMF algorithm is provably convergent
for w¢ = t°4Y, with u 2 (%;1]. Decreasing u below 1 allows the
algorithm to forget about past iterates and may slightly increase con-
vergence speed. This assumption (G) is already stronger than the
one required by sGD for convex objectives (Bottou, 1999 and on-
line expectation-minimization for exponential families (Cappé and
Moulines, 2009, for which we may set u 2 (%; 1]. The convergence
of SOMF relies on a variance reduction mechanism, and therefore de-
mands a slightly more stringent condition that arises from the proofs:
u?2 (%; 1), as stated in assumption (B). This may be informally un-
derstood as follow: controlling the variance induced by the stochastic
subsampling mechanism requires not to forget about the past too quickly

reducing the subsampling ratio . Instead of using the vari-
ance reduction mechanism formalised in equation ( b) and (c), we may
simply gradually reduce the subsampling ratio r = % S0 as to meet
assumption (H). It if enough to de ne a sequence of subsampling
sizes(qgt); 2 [1,p] so that

1- ?O‘ 2 o(t(2u- 1 )y (5.5)

with >0 and u 2 (3;1] such that w; = % forall t > 0. We
then perform the simpler update ( a), namely solve the maskeclastic-
net/ridge problem ( 4.13), recalled here:

1
= min ZkM - D1 K3+ :
t rT;lngkz t (Xt t-1 )K3 ()

where M is a random Bernouilli matrix with parameter %—t. Of

course, (6.5) assumes thatqg; ! p, i. e. that subsampling is no longer
used asymptotically. The convergence of the resulting algorithm may
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therefore appears less surprising than the guarantees obtained on
SOMF with updates (b) and (c). However, (5.5) tells us that g; may
increase slowly: typically, we may choose q; = p - q1=mt2(“' bt :
where my is the number of the current epoch and qq is the subsam-
pling size at the rst epoch. For u = 1, q; can even remain approxi-
mately constant, asq¢ = p- ¢qi1=m, is valid for any positive . This

further justi es the use of the update ( 4.13).

54 conclusion

We have established the convergence ofsomMF and provided modu-
lar properties to analyse algorithms that perform perturbed stochastic
majorization-minimization. Due to the non-convexity of the problem,
our analysis does not provide rates of convergence in Proposition 5.1
and 5.3. This calls for a strong empirical validation of the method.
We present it in Chapter 6, to which it is possible to move directly.



SUBSAMPLED ONLINE MATRIX
FACTORIZATION IN PRACTICE

In this chapter, we experiment the performance of soMF algorithm
on various problems (dictionary learning, sparse component anal-
ysis, non-negative matrix factorization) and various datasets (two
datasets of fMRI and one dataset from hyperspectral imaging). We
demonstrate the usefulness of subsampling, and of the various de-
tails of the somF algorithm. We show quantitatively and qualitatively
that the speed-up provided by soMF makes huge matrix factoriza-
tion amenable to practitioners. Finally, we consider an extension of
the somF algorithm, that makes it usable for matrix completion. We
assess the performance of this extension on explicit collaborative |-
tering.

6.1 experiments with somf

The sowmF algorithm is designed for datasets with large nhumber of
samplesn and large dimensionality p. Indeed, as detailed in Section
4.5, subsampling removes the computational bottlenecks that arise
from high dimensionality. Proposition 5.1 of Chapter 5 establishes
that the subsampling used in sowmF is safe, as it enjoys the same
guarantees asoMF. However, as with OMF, no convergence rate is
provided. We therefore perform a strong empirical validation of sub-
sampling.

We tackle two different problems, in functional Magnetic Reso-
nance Imaging (fMRI) and hyperspectral imaging. Both involve the
factorization of very large matrices X with sparse factors. As the data
we consider are huge, subsampling reduces the time of a single itera-
tion by a factor close to % Yet it is also much redundant: soMF makes
little approximations and accessing only a fraction of the features per
iteration should not hinder much the re nement of the dictionary.
Hence high speed-ups are expected — and indeed obtained. All ex-
periments can be reproduced using open-source code.

6.1.1 Problems and datasets

6.1.1.1 FunctionalMRI

As discussed in Chapter 3, matrix factorization has long been used
in fMRI, since the seminal work of McKeown et al. (1998. Data are
temporal series of 3D images of brain activity and are decomposed
into spatial modes capturing regions that activate synchronously. They
form a matrix X where columns are the 3D images, and rows corre-
sponds to voxels. Interesting dictionaries for neuroimaging capture
spatially-localized components, with a few brain regions. This can
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be obtained by enforcing sparsity on the dictionary: we use an ",
penalty and the elastic-net constraint. SOMF streams subsampled 3D
brain records to learn the sparse dictionary D. Data can be huge: we
use the whole HcPsoorelease (Van Essen et al.2012), with n = 2.4 10°
(2000records, 1 200time points) and p = 2 10°, totaling 2 TB of dense
data. For comparison, we also use a smaller public dataset (ADHD 200,
M. P. P. D. Milham et al., 2012 with 40 records, n = 7000 samples
and p = 6 10* voxels. Importantly, we seek a low-rank factorization,
to keep the decomposition interpretable — k= 70 p.

6.1.1.2 Hyperspectral imaging

Hyperspectral cameras acquire images with many channels that
correspond to different spectral bands. They are used heavily in
remote sensing (satellite imaging), and material study (microscopic
imaging). They vyield digital images with around 1 million pixels,
each associated with hundreds of spectral channels. Sparse matrix
factorization has been widely used on these data for image classi -
cation (Chen et al., 2011, Soltani-Farani et al., 2015 and denoising
(Maggioni et al., 2013 Peng et al.,2014). All methods rely on the ex-
traction of full-band patches representing a local image neighborhood
with all channels included. These patches are very high dimensional,
due to the number of spectral bands. From one image of the Aviris
project (Vane, 1987, we extractn = 2 10° patches of size16 16 with
224 channels, hencep = 6 10*. A dense dictionary is learned from
these patches. It should allow a sparse representation of samples:
we either use the classical dictionary learning setting ( " 1/elastic-net
penalty), or further add positive constraints to the dictionary and
codes: both methods may be used and deserved to be benchmarked.
We seek a dictionary of reasonable size: we usek 256 p.

6.1.2 Experimental design

To validate the introduction of subsampling and the usefulness of
SOMF, we perform two major experiments.

— We measure the performance of SOMF when increasing the re-
duction factor, and show bene ts of stochastic dimension reduc-
tion on all datasets.

— We assess the importance of subsampling in each of the steps of
somMF. We compare the different approaches proposed for code
computation.

validation . We compute the objective function (4.3) over a test set
to rule out any over tting effect — a dictionary should be a good
representation of unseen samples. This criterion is always plotted
against wall-clock time, as we are interested in the performance of
SOMF for practitioners.

tools . To perform avalid benchmark, we implement omMF and SOMF
using Cython (Behnel et al., 2011). We use coordinate descent (Fried-



6.1 experiments with somf

Table 6.1 — Summary of experimental settings

Field Functional MRI Hyperspectral imaging
Dataset ADHD HCP Patches from Aviris
Factors D sparse,A dense D dense,A sparse
# samplesn 7 10 2 10° 2 10°

# featuresp 6 10* 2 10° 6 10

X size 2GB 2TB 103GB

Use case ex. Extracting predictive feature Recognition / denoising

Table 6.2 — CPU time to reach convergence & 1% test objective)

Dataset  ADHD Aviris ( NMF)  Aviris ( DL) HCP
Algorithm  OMF SOMF OMF SOMF OMF SOMF OMF SOMF

Conv. time 6min  28s 2h30 43min 1h16 11min 3h50 17min
Speed-up 118 3.36 6.80 1331

man et al., 2007 to solve Lasso problems with optional positivity

constraints. Code computation is parallelized to handle mini-batches.
Experiments use scikit-learn(Pedregosa et al.,2011) for numerics, and
nilearn (Abraham et al., 2014 for handling fMRI data. We have re-
leased the code in an open-source Pythonpackage. Experiments were
run on 3 cores of an Intel Xeon 2.6GHz, in which case computing
P? B, is faster than updating P;D.

parameter setting . Setting the number of components k and
the amount of regularization is a hard problem in the absence of
ground truth. Those are typically set by cross-validation when ma-
trix factorization is part of a supervised pipeline. For fMRI, we set
k = 70to obtain interpretable networks, and set so that the decom-
position approximately covers the whole brain (i.e., every map is 7"—0)
sparse). For hyperspectral images, we setk = 256 and select to
obtain a dictionary on which codes are around 3% sparse. We cycle
randomly through the data (fMRI records, image patches) until con-
vergence, using mini-batches of size = 200for HCP and Aviris, and
= 50 for ADHD (small number of samples). Hyperspectral patches
are normalized in the dictionary learning setting, but not in the non-
negative setting — the classical pre-conditioning for each case. We
useu = 0.917and v = 0.751for weight sequences.

6.1.3 Reduction brings speed-up at all data scales

We benchmark somF for various reduction factors against the orig-
inal online matrix factorization algorithm oMF Mairal et al. (2010, on
the three presented datasets. We stream data in the same order for
all reduction factors. Using variant ( ¢) (true Gram matrix, averaged

t) performs slightly better on fMRI datasets, whereas ( b) (averaged
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Figure 6.1 — Subsampling provides signi cant speed-ups on all fMRI and hy-
perspectral datasets. A reduction factor of 12 is a good overall
choice. With larger data, larger reduction factors can be used for
better performance — convergence is reached13 faster than
state-of-the-art methods on the 2TB HCP dataset.

Gram matrix and ) is slightly faster for hyperspectral decomposi-
tion. For comparison purpose, we display results using estimators ( b)
only.

6.1.3.1 BenchmarkingsOMF

Figure 6.1 plots the test objective against cpU time. First, we ob-
serve that all algorithms nd dictionaries with very close objective
function values for all reduction factors, on each dataset. This is not
a trivial observation as the matrix factorization problem ( 4.3) is not
convex and different runs of OoMF and SOMF may converge towards
minima with different values. Second, and most importantly, SOMF
provides signi cant improvements in convergence speed for three dif-
ferent sizes of data and three different factorization settings. Both ob-
servations con rm the relevance of the subsampling approach. Quan-
titatively, we summarize the speed-ups obtained in Table 6.2. On fMRI
data, on both large and medium datasets, SOMF provides more than
an order of magnitude speed-up. Practitioners working on datasets
akin to HCP can decompose their data in 20 minutes instead of 4h pre-
viously, while working on a single machine. We obtain the highest
speed-ups for the largest dataset — accounting for the extra redun-
dancy that usually appears when dataset size increase. Uptor 8,
speed-up is of the order of r — subsampling induces little noise in
the iterate sequence, compared tooMF. Hyperspectral decomposition
is performed near 7 faster than with OoMF in the classical dictionary
learning setting, and 3 in the non-negative setting, which further
demonstrates the versatility of SOMF.
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Figure 6.2 — Given a 3 minute time budget, the atoms learned by somr are
more focal and less noisy that those learned by omF. They are
closer to the dictionary of rst line, for which convergence has
been reached.

6.1.3.2 Comparison with stochastic gradient descent

It is possible to solve (4.3) using projected stochastic gradient de-
scent (sgd, Duchi and Singer (2009). We use the gradient of D !
f{ (D) evaluated in D. ; to compute D; with xed step-size

rpft(De-1)= (Xt -( Dt-1 {) &
Dt D¢.1- rpfi(Dt-1)

where ¢ is de ned in ( 4.5). Computation of r pf(D;. 1) is derived
from Danskin theorem ( 1966). Its form when ¢ is the solution of a
Lasso regression is due to Mairal et al. (2009.

On all tested settings, for high precision convergence, sgd (with the
best step-size among a grid) is slower than oOMF and even slower than
SOMF. In the dictionary learning setting, sgd is somewhat faster than
OMF but slower than sowmF in the rst epochs. sgd further requires
to select the step-size by grid search. In contrast, SOMF and OMF
performance little depends on the parameters u and v, and do not
require hyper-parameter search for solver parameters.

6.1.3.3 Qualitative results on dictionaries

Qualitatively, given a certain time budget, we compare the dictio-
naries obtained on different datasets.

hyperspectral images . Figure 6.2 compares the results of OMF
and the results of somMF with a subsampling ratio r = 24, in the non-
negative setting. Our algorithm yields a valid smooth bank of lters
much faster. °

functional mri . Figure 6.3 shows that with the same time bud-
get, the proposed reduction approach with r = 12 on half of HCP data
(500 subjects in this experiment) gives better results than processing
a small fraction of the data without reduction: segmented regions are
less noisy and closer to processing the full data. Practitioners are thus
able to derive a usable dictionary from one of the largest fMRI dataset
available in less than half a day. This was out-of-reach using existing
techniques.
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nal dictionaries,

but some atoms
remains very close
along the updates of
both algorithms,
when streaming data
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We select such
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Original OMF algorithm
1 full epoch 4 epoch

235h run time 10h run time

Proposed SOMF algorithm
% epoch, reduction r=12

10h run time

Figure 6.3 — Brain atlases: outlines of each map at half the maximum value
( = 10 *). Top left : the reference omr algorithm on the full
dataset. Top right : the reference algorithm on a twentieth of the
dataset. Bottom: the proposed somF algorithm with a similar
run time: half the dataset and r = 12. Compared to a full
run of the baseline algorithm, the gure explore two possible
strategies to decrease computation time: processing less data
(top right), or our approach (bottom). Our approach achieves a
result closer to the gold standard in a given time budget.

Figure 6.4 — Proling omF and somr for HCP decomposition. Partial dictio-
nary update removes the major bottleneck of online matrix fac-
torization for small reductions. For higher reduction, parameter
update and code computation must be subsampled to further
reduce the iteration time.

6.1.3.4 Finding the right subsampling ratio

Table 6.2 reports convergence time within 1%, which is enough
for application in practice. SOMF is less bene cial when setting very
high precision: for convergence within 0.01%, speed-up for HCP is
3.4. This is expected assomF trades speed for approximation. For
high precision convergence, the reduction ratio can be reduced after
a few epochs. As expected, there exists anoptimal reduction ratio,
depending on the problem and precision, beyond which performance
reduces: r = 12yields better results than r = 24 on Aviris (dictionary
learning) and ADHD (sparse components), for 1% precision.
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Figure 6.5 — Approximating code computation with the proposed subsam-
pling method further accelerates the convergence of soMF. Re-
ning code computation using past iterations (averaged esti-
mates) performs better than simply performing a subsampled
linear regression.

Our rst experiment establishes the power of stochastic subsam-
pling as a whole. In the following two experiments, we re ne our
analysis to show that subsampling is indeed useful in the three steps
of online matrix factorization.

6.1.4 For each step ®foMF, subsampling removes a bottleneck

In Section 4.4, we have provided theoretical guidelines on when
to introduce subsampling in each of the three steps of an iteration of
SOMF. This analysis predicts that, for k, we should rst use partial
dictionary update, before using approximate code computation and
asynchronous parameter aggregation. We verify this by measuring
the time spent by somF on each of the updates for various reduction
factors, on the HCP dataset. Results are presented in Figure6.4. We
observe that block coordinate descent is indeed the bottleneck in OMF.
Introducing partial dictionary update removes this bottleneck, and as
the reduction factor increases, code computation and surrogate ag-
gregation becomes the major bottlenecks. Introducing subsampling
as described in somMF overcomes these bottlenecks, which rationalizes
all steps of somF from a computational point of view.

6.1.5 Code subsampling is useful for high reduction

It remains to assess the performance of approximate code compu-
tation and averaging techniques used in SOMF. Indeed, subsampling
for code computation introduces noise that may undermine the com-
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putational speed-up. To understand the impact of approximate code
computation, we compare three strategies to compute ( ¢); on the
HCP dataset. First, we compute ( t'-’)t from (x¢), using (4.12). Sub-
sampling is thus used only in dictionary update. Second, we rely on
masked, non-consistent estimators (@), as in Mensch et al. 2016) —
this breaks convergence guarantees. Third, we use averaged estima-
tors ( ¢;Gt) from (c) to reduce the variance in ( ), computation.

Figure 6.5 compares the three strategies forr 2 f12;24y Partial
minimization at each step is the most important part to accelerate
convergence: subsampling the dictionary updates already allows to
outperforms OMF. This is expected, as dictionary update constitutes
the main bottleneck of oMF in large-scale settings. Yet, for large reduc-
tion factors, using subsampling in code computation is important to
further accelerate convergence. This clearly appears when comparing
the plain and dashed black curves. Using past estimates to better ap-
proximate ( ), yields faster convergence than the non-converging,
masked loss strategy (@). Note that the latter one remains a good
option as it is simpler to implement and almost as ef cient.

Before concluding this chapter, we introduce an extension of the
SOMF algorithm that allows it to handle missing values. Although
the proposed algorithm is not provably convergent, it can be used to
perform fast collaborative ltering

6.2 extension to matrix completion

SOMF algorithm may be adapted to handle a different kind of ma-
trix factorization problem, known as low-rank matrix completion. In
this setting, we have only access to a masked data matrix M X,
where X;M 2 R" P are the data matrix and masking binary matrix,
and denote the elementwise product between two matrices. For-
mally, we wantto nd D 2 RP K and A 2 RX M so that DA is
low-rank and M X M (DA). We then predict the unknown
values of X asX , DA.

One of the best known application of low-rank matrix completion
is explicit collaborative ltering In this setting, every user from a pool
of n individuals ranks a subset of p items (e.g.,movies). We want
to gather all the ratings to predict the ratings that each individual
would make for each of the p items. This amounts to complete a user-
item rating matrix X, of which we only observe the ratings that were
provided by the users.

6.2.1 Problem setting
Low-rank matrix factorization is traditionally stated as the follow-

ing empirical minimization problem, known as maximum margin ma-
trix factorisation (Srebro et al., 2004):

min m® (x.p @) 24 S(DKS + KAKD):  (6.)



6.2 extension to matrix completion

where m() is the i-th column of M. The joint *, penalty on D and
A enforce DA to be low-rank (Fazel et al., 2001). The low property
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is typically also ensured by hard setting k to be lower than min (p;n).

This setting was successfully used by the winners of the Net ix chal-
lenge (R. M. Bell and Koren, 2007).

To adapt SOMF to solve a problem similar to ( 6.1), we write, for all
i 2 [n], M) %Diag(m(i)), where (") |, km (kg is the number
of observed coef cient in sample x(). Every mask M () have the
same diagonal form as in (4.9), as if it were sampled from a 1-centered

Bernouilli distribution of parameter q;—') In the matrix completion

case, the masks areprovided coef cients of x(1) masked out by M (1)
are unknown and can never be accessed during training. We propose
to solve the following objective
R 1 i i 2
min = min(z MO .- p + k K3); 6.2
DL G MO ) 2 2) (62)

where C constrains D atoms to live in ", unit balls. Objective (6.2)
is highly similar to ( 6.1), expect for the penalty on D that has been
replaced by a constraint. Importantly, it focuses on the left-side factor

D only, as does the matrix factorization objective ( 4.3) central to this
chapter. This will allow to reuse the principles of SomF.

related work . Szabé et al. 011) proposed an algorithm similar
to OMF to solve an objective akin to (6.2). Unfortunately, the single
iteration complexity of their algorithm is proportionalto  p and not to
the effective size q(") of sample x; = x(1). This makes it unusable for
large-scale matrices with few non-zero coef cients. In contrast, the
algorithm we now propose achieves the appropriate complexity.

6.2.2 Proposed algorithm

To solve (6.2), we propose the following algorithm. At iteration t,
we sample x; = x() and M = M () and

— Compute ¢ solving (4.13), i.e.

1
¢, argmin kM ((x¢ - D;.; )k3+ k k3.
2Rk 2

— Update C; as in soMF and B; using the partial update equa-
tion (4.19), i. e.

P/ B;, P{Bi.1

P¢B¢ , (1- P Wt)PtB_t-l"'LWtPtXt .-

q() q(®
— Update D to solve the “frozen” problem ( 4.15), i. e. changes the
coef cients of P;D only:

1 - _
Dy, argmin =Tr(D>DCy¢)- Tr (D’ By).
D2C 2

P{D=P{D
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Compared to somF algorithm, two aspects have changed. First,
we do not use the mechanisms (b) or (c) to reduce the variance that
stochastic subsampling introduces. This is no longer possible as we
always look at sample x() with the same mask M (). Secondly, for
the same reason, we are not able to update the full statistic B; at
each iteration, as we can only the coef cients gathered in P;x;. We
therefore perform partial updatesof B, using a scaling coef cient q%
to compensate for the different frequencies at which rows appear in
the streaming process.

completion at test time . Past the rst epoch, at iteration t, ev-
ery column i of X can be predicted using the last code E') y s
that was computed for this column, i.e. the largest s 6 t such that
xs = x(), Atiteration t, forall i in [n], we setX{") | D, . Prediction
thus only requires a single additional matrix computation using the
recorded parameters Dy and A; , ( EI))iZ[n]-

6.2.3 Experiments

We validate the performance of the proposed algorithm on explicit
collaborative Itering.

6.2.3.1 Setting

Figure 6.6 — Learning speed for collaborative Itering  for datasets of differ-
ent size: the larger the dataset, the greater our speed-up.

We evaluate the scalability of our method on datasets of different
dimension: MovieLens 1M, MovieLens 10M, and 140M ratings Net-
ix dataset. We stream user ratings to our algorithm: p is the number
of movies and n is the number of users. Asn  p on Net ix dataset,
this increases the benet of using an online method. We have ob-
served comparable prediction performance streaming item ratings.
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Table 6.3 — Comparison of performance and convergence time for online
masked matrix factorization and coordinate descent method.

Test RMSE  Convergence time

Dataset CD SOMF CD SOMF Speed-up
ML 1M 0.872 0.866 6s 8s 0.75
ML 10M 0.802 0.799 223s 60s 37
NF (140M) 0938 0.934 1714s 256s 6.8

baseline . We compare our algorithm to a coordinate descent based
method (Yu et al.,, 2012, that provides state-of-the art convergence
time performance on our largest dataset. Although stochastic gradi-
ent descent methods for matrix factorization can provide slightly bet-
ter single-run performance (Takacs et al., 2009, these are notoriously
hard to tune and require a precise grid search to uncover a working
schedule of learning rates. In contrast, coordinate descent methods
do not require any hyper-parameter setting and are therefore more
ef cient in practice. We benchmarked various recommender-system
codes MyMedialite, LibFM, Softimpute spira), and chose coordinate
descent algorithm from spiraas it was by far the fastest.

preprocessing . Successful prediction should take into account the
biases associated to users and items. We compute these biases on
train data following Hastie et al. ( 2015 (alternated debiasing). We use
them to center the samples (x;); that are streamed to the algorithm,
and to perform nal prediction.

details . Both baseline and proposed algorithm are implemented
in a computationally optimal way, enabling fair comparison based on
CPU time. Benchmarks were run using a single 2.7 GHz Xeon CPU,
with k = 30 components in the dictionary. For Movielens datasets,
we use a random 25% of data for test and the rest for training. We
average results on ve train/test split for MovieLens in Table 6.3. On
Net ix, the probe dataset is used for testing. Regularization parame-
ter is set by cross-validation on the training set: the training data is
split 3 times, keeping 33% of Movielens datasets for evaluation and
1% for Netix, and grid search is performed on 15 values of be-
tween 10 2 and 10. We assess the quality of obtained decomposition
by measuring the Root mean square error (RMSE) between prediction
on the test set and ground truth. We use mini-batches of size 155

6.2.3.2 Performance benchmark

We report the evolution of test RMSE across time in Figure 6.6. Con-
vergence is virtually achieved, despite the lack of theoretical guaran-
tees. We report testRMSE at convergence and wall-clock convergence
time in Table 6.3. Benchmarks are performed on the nal run, after
selecting the regularization parameter
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Figure 6.7 — Learning weights : on two different datasets, optimal conver-
gence is obtained for 2 [.85; .95], predicted by theory.

The proposed method converge toward a solution that is at least as
good as that of coordinate descent, and slightly better on Movielens
10M and Netix ( 140M ratings). Our algorithm brings a substantial
performance improvement on medium and large scale datasets. On
Net ix, convergence is almost reached in 4 minutes (score under 0.1%
deviation from nal RMSE), which makes our method 6.8 times faster
than coordinate descent. Moreover, the relative performance of our
algorithm increases with dataset size. Indeed, as datasets grow, less
epochs are needed for our algorithm to reach convergence (Fig. 6.6).
This is a signi cant advantage over coordinate descent, that requires
a stable number of cycle on coordinates to reach convergence, regard-
less of dataset size.

6.2.3.3 Learning weights

Unlike sGD, and similar to the vanilla online dictionary learning al-
gorithm, our method does not critically suffer from hyper-parameter
tuning. We tried weights wy; = t% as described in Section4.5.5, and
observed that a range of u yields fast convergence. Theoretically,
from (G), u must be in (.75; ] to ensure convergence of stochastic
majorization minimization algorithms. Although the matrix comple-
tion algorithm adapted from SOMF is not provably convergent, we
obtain optimal accuracy decrease for u 2 [.85;095], as observable in
Figure 6.7. We report results for = 0.91in Figure 6.6 and Table 6.3.

6.3 conclusion of part ii

In the previous three chapters, we introduced sSOMF, a matrix fac-
torization algorithm that can handle input data with very large num-
ber of rows and columns. It leverages subsampling within the inner
loop of a streaming algorithm to make iterations faster and accelerate
convergence. We show that soMF provides a stationary point of the
non-convex matrix factorization problem. To prove this result, we ex-
tend the stochastic majorization-minimization framework to two ma-
jor approximations. We assess the performance of somF on real-world
large-scale problems, with different sparsity/positivity requirements
on learned factors. In particular, on fMRI and hyperspectral data de-
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composition, we show that the use of subsampling can speed-up de-
composition up to 13times. SOMF may also be adapted to perform ex-
plicit collaborative Itering, with very good performance. The larger
the dataset, the more somMF outperforms state-of-the art techniques,
which is very promising for future applications. This call for adapta-
tion of our stochastic subsampling approach to learn more complex
models.
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Part iii

DEEPER MODELS FOR MULTI-STUDY
COGNITIVE MAPPING



LEARNING MULTI-STUDY NEURAL
REPRESENTATIONS OF COGNITION FOR
COMPREHENSIVE INTER-SUBJECT DECODING

In this chapter, we consider the problem of inter-subject decodinm
fMRI, and speci cally address the following question: can we gather
the many publicly available task fMRI studies to learn new cognitive
models that are both more interpretable and more accurate than ex-
isting methods, that have been shown to be fragile due to the small
sample sizes (Button et al., 2013 ?

We build upon the work from Chapter 4-6 to learn functional net-
works from a large repository of resting-state data. We inject these
into supervisednodels that classify statistical maps from many stud-
ies into the stimuli/tasks used in these studies. More precisely, we
resort to three-layer linear models: the rst two layers incorporate
information from resting-state data and perform successive dimen-
sion reductions; the last layer is constituted of one classi cation head
per study. The dimension reduction of input brain images is jointly
learned with the many classi cation tasks, so as to allow transfer learn-
ing across tasks.

Our multi-study model is thus deepethat the usual decoding mod-
els, although it remains linear. We show that it performs guantita-
tively better than the usual models used for decoding, and that it
may be used to uncover interesting cognitive networks in the brain.
Interpreting statistical learning models with multiple layers is chal-
lenging: we propose a new approach based on matrix factorization
and ensembling to produce models with interpretable layers from
equivalent non-interpretable models.

This chapter is a substantial extension of the work

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., & Varo-
guaux, G. (2017. Learning neural representations of hu-
man cognition across many fMRI studies. Advances in Neu-
ral Information Processing Systems

and has been uploaded as a preprint under the title

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(20181). Extracting universal representations of cognition
across brain-imaging studies. arXiv:180906035[stat.ML].

It is written with the cognitive neuroscience community as a tar-
get — we slightly tone down on mathematical formalism and give a
stronger cognitive perspective to our approach.

7.1 introduction

Cognitive neuroscience is progressively accumulating records of
neural activity responses to speci c tasks or stimuli, and the num-
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ber of publicly available fMRI records is increasing in two major direc-
tions. First, relatively generic task data are being acquired on cohorts
of subjects in the thousands (Sudlow et al., 2015 Van Essen et al.,
2012, along with a large amount of resting-state data. Secondly, the
conclusions obtained on smaller-cohort task studies (with dozens of
subjects) are being made available in standard format and common
repositories (Poldrack et al., 2013. Within this positive context, the
conclusions of Button et al. (2013 brought to the light the low sta-
tistical power of analyzing these small studies with standard meth-
ods. Since those still form the majority of data in neuro-imaging, this
lack of power is a central challenge for cognitive neuroimaging. As
stressed by Poldrack et al. 2017, increasing the number of training
samples in cognitive inference may therefore be the only way to at
last provide strong conclusions on functional localization — and the
community should endeavor to work with much larger cohorts.

Yet, large-scale studies are costly and there is little hope to acquire
many single-subject records for the multitude of precise psychologi-
cal processes that are of interest when studying the brain. Despite the
richness of their data, task-broadmRI initiatives, also known as deep
phenotyping (Nooner et al., 2012 Pinho et al., 2018, are doomed to
remain limited in number of subjects, and therefore hard to exploit to
produce inter-subject cognitive atlases. This may appear somewhat
of a dead-end, unlesswe leverage the aforementioned accumulation
of functional data across studies. Combining many large and small-
cohort studies to learn common cognitive models would indeed dras-
tically increase their observed evidence.

A major obstacle against this endeavor lies in the heterogeneity of
the protocols used to produce statistical maps of brain activity. As
stressed by Newell (1973, aggregating knowledge across cognitive
neuroscience experiments is intrinsically dif cult due to the diverse
nature of the hypotheses and conclusions of the investigators. Con-
cretely, every task fMRI study aims at isolating brain effects underly-
ing some study-speci ¢ psychological processes. The conclusions it
provides are statistical maps that correspond to carefully designed
but study-exclusive stimuli, that seldom have any exact counterpart
in other studies.

These statistical maps will typically be used to learn inter-subject
decoding models, that predict stimuli from statistical maps acquired
on new subjects (Poldrack et al.,2009. As a modern consequence of
Newell's curse, taking advantage of using different studies to learn
brain map decoders requires to circumvent the undocumented nature
of protocols' relationships, or in other word the absence of known
connections between the different cognitive labels we wish to predict.

To address this issue, several works (Koyejo and Poldrack, 2013
Schwartz et al., 2013 T. D. Wager et al., 2013 rely on cognitive
ontologies (e.g., Turner and Laird, 2012 to decompose psychologi-
cal manipulations onto common meaningful cognitive concepts, that
they predict using a single model. Although it proved successful in
providing well de ned region atlases, this approach hardly scales up
to the current size of public repositories as it requires a high level
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of supervision: a human must classify every condition from every
study into a common nomenclature. It is also prone to be biased to-
ward speci ¢ understanding of cognition. On the other side of the
supervision spectrum, large-scale meta-analysis initiatives (Yarkoni
et al., 201)) relates key coordinates extracted from statistical maps
to a summarized description of the scienti ¢ papers they appear in.
Although quantitative meta-analysis techniques provide useful sum-
maries of the existing literature, they are hindered by label noise in
the experiment descriptions, and the weak information on brain acti-
vation provided by author-selected coordinates (Salimi-Khorshidi et
al., 2009.

In this chapter, we show how to learn multi-study decoding mod-
els from full statistical maps, without preliminary labelling of any
sort. That is, we give up on de ning ad-hoc cognitive ontologies,
which is a fundamental problem in psychology (Uttal, 2001), and let
interesting cognitive directions be extracted from data. For this, we
start from the minimal hypothesis that activation maps may be de-
scribed on atomic basis functions that captures the neural building
blocks underlying cognitive processes (Barrett, 2009. Leveraging ad-
vances in multi-task learning (Ando and T. Zhang, 2005 Y. Xue et al.,
2007 with deep models ( e.g.,Collobert and Weston, 2008 LeCun et
al., 2015, we learn these functions in a fully data-driven way, so that
they are t for decoding every study of our corpus. We argue that our
starting point hypothesis and approach constitute a sound direction
to overcome the known limitations (Poldrack and Yarkoni, 2016 of
single-study cognitive subtraction models. Our model indeed 1) ex-
tracts interpretabletask-optimized spatial networks, that constitute a
valid approximation of basic cognitive directions and 2) signi cantly
improves decoding performance for a vast majority of studies, as the
information provided by every statistical image helps decoding left-
out subject images across paradigms

7.2 results

We begin with a concise overview of our methodological approach,
that will be further described in Section 7.4.

7.2.1 Method overview

Our approach of multi-study inter-subject decoding has three ma-
jor aspects, that we summarize in Figure 7.1. First, as made possible
by the increasing availability of public task functional MRI data, we
aggregate (Figure 7.1a) statistical maps from many task studies and
the BOLD time-series from one or several large resting-state studies, to
serve as input to the proposed model. Statistical maps are obtained
by standard analysis, computing z-statistics maps for either base con-
ditions or contrasts of interest when those are publicly speci ed.

We cast inter-subject decoding as a machine-learning classi cation
problem, where models predict the contrast/condition class from an
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Figure 7.1 — We perform inter-subject decoding using a shared three-layer
model trained on multiple studies. An initial layer projects the
input images from all studies onto functional networks learned
on resting-state data. Then, a second layer combines the func-
tional networks loadings into common meaningful cognitive di-
rections, that are used to perform decoding for each study in a
third-layer. The second and third layer are trained jointly, fos-
tering transfer learning across studies.

input z-map. The proposed linear classi cation model features three
layers of transformation (Figure 7.1b). The rst layer projects input
z-maps onto functional components (e.g.,512) that are learned from
resting-state data. The second layer performs a further dimension
reduction (e. g.,with 128 output features) and outputs a common em-
beddingof all input data; the embedded data from each study are
then classi ed into their respective contrast/condition classes by a
third study-speci c layer. The second layer and the many classi -
cation heads of the third layer are jointly learned using regularized
stochastic optimization. Overall, this approach re ects our starting
point cognitive hypothesis: cognition may be represented on basic
cognitive functions distributed spatially in the brain. On the other
hand, we expect that, for all studies, projecting on this basis should
improve or at least preserve across-subject predictive accuracy, by
removing confounds while keeping intact the cognitive signal. We
should therefore be able to label input brain maps from a shared uni-
versal low-dimensional brain representation, that we assume to be a
combination (described in the second layer) of resting-state functional
networks (assigned to the rst layer). Our approach simultaneously
learns to compute and to decode from this representation, for every
study of our corpus.

As our model suffers from parametrization invariances, we per-
form a post-hoc linear transformation of the second and third layer,
based on an ensembling method, to uncover an interpretable repre-
sentation (Figure 7.1c) of the learned dimension reduction. Together,
the rst two layers project input data onto  multi-study task-optimized
networks (MSTON), whose loadings offer a general multi-study and
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multi-subject representation of the cognitive signal contained in sta-
tistical maps.

Figure 7.2 — Performing joint training improves the performance of inter-
subject decoding for most studies (a). Overall, decoding from
task-optimized networks leads to a median improvement accu-
racy of 5%; improvement is skewed across studies (b). Stud-
ies of typical size strongly bene ts (d) from transfer learning,
whereas little information is to be gained for larger or easier to
decode studies (c)
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7.2.2 Data and performance metrics

We present the results obtained by applying our method on a set
of 35 publicly available task fMRI studies, listed in Table (7.1); a few
are performed on cohorts of hundreds of subjects (e.g.,HCP, Camcan,
LA5C), but most feature more common cohorts of 10 to 20 subjects.
These studies all follow different experimental protocols, although
those are known to recruit related aspects of cognition ( e. g., motor,
attention, judgement tasks, object recognition). We measure accuracy
on left-out subjects for each study, and compare the scores obtained
by our model to results obtained by simpler baseline decoders, that
classify z-maps separately from each study, and directly from voxels.
To analyse more speci cally the impact of our method on the predic-
tion accuracy for each contrast/condition, we also discuss balanced
accuracy that is computed for each predicted class. Details on data
and metrics are reported in the detailed method section 7.4.

7.2.3 Multi study training inter-subject decoding

Figure 7.2 summarizes our quantitative results. For 28 out of the 35
task fMRI studies that we consider (Figure 7.2a), following our train-
ing procedure and thereby decoding contrast/condition from multi-
study task-optimized networks brings a signi cant improvement in
test prediction accuracy. It reaches +17% for the most sensitive stud-
ies, with a median of 4.9% across studies and cross-validation splits.

We explain our model performance from the transfer learningit per-
mits across the many study decoding tasks. By minimizing a joint
objective that combines training losses from every study, we learn a
second-layer representation that is ef cient for many study-speci c
decoding tasks; the second layer parameters therefore incorporate in-
formation from all studies; the joint objective further permits informa-
tion transfer among the many classi cation heads of the third layer.
Although we have no knowledge on how experiments are effectively
related from a cognitive point of view, our quantitative results show
that some of these relations can belearnedduring training to improve
decoding performance.

Studies that bene t from using multi-study training have diverse
cognitive focuses. Among the highest accuracy gains, we nd cog-
nitive control (stop-signal), classi cation studies, and localizer-like
protocols. Our corpus contains many of such studies: the number of
samples that brings information on the associated cognitive networks
is substantially increased from single-study to multi-study decoding.
Our model thus learns to capture the activation of these networks
across subjects more ef ciently, thereby leading to the observed im-
provement. In contrast, for a few studies, among which Hcp and
LASC, we observe a slight negative transfer effect. This is not surpris-
ing: as HCP holds 900subjects, it may not bene t from the aggregation
of much smaller studies; LA5C focuses on higher-level cognitive pro-
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Figure 7.3: Visualization of some of task-optimized networks. Our approach allows to learn networks which
are important for inter-subject decoding across studies. These networks, individually focal and collectively
well spread across the cortex, are readily associated with the cognitive tasks they contribute to predict. We
display a selection of these networks, named with the salient anatomical brain region they recruit, along with
word clouds representation of the stimuli each network pushes to predict.

cesses with limited counterparts in the other studies, which prevents
effective transfer.

Figure 7.2b shows that simply projecting data onto resting-state
functional networks instead of using our three layer model does not
signi cantly improve decoding, although the net effect varies from
study to study. Appending a further superviseddimension reduction
is thus necessary to improve overall decoding accuracy. As expected
(Figure 7.2c), easy and hard-to-classify contrast classes little bene t
from multi-study training, whereas classes whose balanced accuracy
is around 80% prot from the highest balanced accuracy improve-
ment. Figure 7.2d shows that the bene t of multi-study training is
higher for smaller studies, con rming that out method can be seen as
a regularization from external data. To further outline the bene ts of
multi-study training for small datasets, we show how it affects learn-
ing curves in Section 7.4: gain increases as training size is reduced.

7.24 Multi-study task-optimized networks

Training the second and third layer of our model using stochastic
gradient descent identi es a subspacef the brain images onto which
projecting helps decoding. Found subspaces prove remarkably stable
across runs (see Sectiory.4.6). Performing non-negative matrix factor-
ization over the parameters of the second layer across multiple runs
nds interpretable directions in a “mean” subspace. In voxel space,
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these directions form multi-study task optimized networks, which
constitutes the support of the learned low-dimensional representa-
tion of input z-maps.

We outline the contours of the extracted MSTON in Figure 7.3a. The
networks cover the entire cortex, an expected design consequence,
fostered by the broad coverage of cognition of the studies we gath-
ered. Task optimized networks should indeed capture information
for discriminating in between cognitive classes with very diverse lo-
calizations. Overall, the activations associated with the 545 contrasts
of our analysis cover the entire cortex, which pushes MSTON to be
well spread over the brain. Brain regions that are systematically in-
volved and studied in task fMRI protocols, e. g.,motor cortex, auditory
cortex and primary visual cortex are over-segmented by MSTON, i.e.
appear in several different networks. As capturing information in
these regions is crucial for decoding many contrasts in our corpus,
our model dedicates a large part of its representation capability for
it. Decoding requires to compare distributed activation: as an appar-
ent conseguence,MSTON are non-connected networks, as outlined in
Figure 7.3b. For instance, both fusiform gyri appears together in the
yellow network.

Most importantly, Figure 7.3b-c shows that our method singles out
networks with cognitive meaning. Every network is important for
classifying z-maps into a few classes, whose names are represented
in word-clouds (Figure 7.3c). Our method nds cognitive networks at
different levels. At a lower level, it identi es the primary visual cor-
tex, associated with contrasts such as checkerboard stimuli, and both
hand motor cortices, associated with many tasks demanding motor
functions. At a higher level, it identi es the left DLPFC and the IPs
in a single network, which is recruited by decoding tasks related to
calculation and comparison. It successfully delineates the language
network and the right posterior insula, which is detected to be im-
portant in decoding tasks involving music. Several found networks
involve regions of the brains recruited by wide range of tasks, such as
the cerebellum, the anterior insula, and the Acc, a part of the salience
network.

7.25 Impact of multi-study training on classi cation maps

To better understand how the use of multi-study training and lay-
ered architecture improve decoding performance, we compare clas-
si cation maps obtained using our model to baseline classi cation
maps in Figure 7.4a. Those are simple to obtain, as our model even-
tually remains a simple linear classi er from voxels to classes. For
contrasts for which balanced accuracy gain is signi cant, the classi-
cation maps are less noisy and more focal. They single out deter-
minant regions more clearly, e.g.,the fusiform face area (FFA, row 1)
in classi cation maps for the face-vs-house contrast, or the left motor
cortex in maps (row 2) predicting pumping action in  BART tasks. The
language network is typically better delineated by our model (row 3),
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and so is the posterior insula in music related contrasts (row 4). These
improvements are due to two aspects: rst, projecting onto a lower
dimension subspace has a denoising effects on z-maps, that is already
at play when projecting onto simple resting-state functional networks.
Next, using multi-study task-optimized networks contribute to nd-
ing sharper images. Our method slightly decreases performance for a
small fraction of contrasts: typically, maps associated vertical checker-
board (row 5), an easy-to-decode and very localized condition. Our
model renders them as more distributed, a consequence of multi-
study training that has here a negative effect.

In a dual perspective, we display in Figure 7.4b the representa-
tion of input z-maps that the projection on task-optimized networks
brings. Projected data are more focal, i. e. spatial variations that are
unlikely to be related to cognition are smoothed. It is therefore less
confounded, which allows decoders to generalize better across sub-
jects than when classifying raw input directly. This is once again a
combined effect of the rst layer (projection on functional networks)
and of the trained second layer.

In Figure 7.5, we compare correlation between classi cation maps
obtained with our model and the baseline decoder. The absolute
correlation between classi cation maps within and across studies is
higher on average. Th is is because the whole classi cation matrix
is low-rank and in uenced by the many studies we consider — the
classi cation maps of our model are supported by networks relevant
for cognition. As a consequence, it is easier to cluster maps into
meaningful groups using hierarchical clustering based on cosine dis-
tances. For instance, we outline inter-study groups of maps related
to left-motor functions, or calculation tasks. Hierarchical clustering
on baseline maps is less successful: the associated dendrogram is less
structured, and the distortion introduced by clusters is higher (as sug-
gested by the smaller cophenetic coef cient). Clusters are harder to
identify, due to a smaller contrast in the correlation matrix. Multi-
study training thus acts as a regularizer, by forcing maps from each
study to be more correlated to maps from other studies.

7.3 discussion

Our approach shows that using hierarchical models trained end-to-
end can be successful in functional neurocimaging. This is interesting
in several aspects. First, in practice, our approach can be seen as a
universal way to improve the accuracy of decoding in a new study.
Many task fMRI experiments are still performed on cohorts of less
than 30 subjects. In this regime,it is highly likely that decoding per-
formance improves when aggregating existing studies to the new one
in a factored, multi-study model (Figure 7.2a,d). As the repositories
of publicly available data are progressively getting normalized and
accessible, our model provides an easy-to-deploy upgrade over sim-
ple decoders. We have shown that improvements are also qualitative,
as the interpretation of decoding maps is made easier (Figure 7.4).



7.3 discussion

Figure 7.4 — Classi cation maps (a) obtained from multi-study training of
decoding models are smoother and more focal. Relevant brain
regions are often better underlined. In a dual perspective, the
representation of input data (b) on task-optimized networks is
simpler and therefore easier to classify.

Secondly, our approach shows the benets of uncovering inter-
pretable cognitive networks that capture information relevant for ma-
ny decoding tasks. This provides quantitative evidence of the struc-
turing of the human mind in various basic networks. Capturing all
these networks is beyond the scope of any single fMRI study. Yet
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Figure 7.5: Cosine distances between classi cation maps, obtained with our multi-study decoder (top) and
with decoders learned separately (bottom), clustered using average-linkage hierarchical clustering. The
classi cation maps obtained when decoding from task-optimized networks are more easily clustered into
cognitive-meaningful groups using hierarchical clustering — the cophenetic coef cient of the top clustering
is thus higher.

aggregation of many cognitive studies allows to nd interesting ap-
proximations, that we call MSTON and study in Figure 7.3.

Our approach was driven by the recent successes of deep non-linear
models in computer vision and medical imaging. Although this may
seem disappointing, we were not able to increase performance by de-
parting from linear models: any introduction of non linearities in our
models leads to a drastic increase of over tting and does not improve
left-out accuracy. On the other hand, the principle of using a layered
model proves successful: having more fMRI data at our disposal al-
lows to learn “deeper” models, although those should remain linear.
Sticking to linear models has the further advantage of allowing easy
interpretation of decoding models. Techniques issued from the deep
learning communities prove very useful to train models that general-
ize well across subjects: we used dropout regularization, batch nor-
malization and advanced stochastic gradient technique as those are
essential for successful transfer learning and good generalization per-
formance. We departed from the traditional convex models used in
neuro-imaging: for this reason, we had to resort to post-hoc analy-
sis of learned models, as detailed in Section 7.4.6, to uncover MSTON,
inspired by methods for interpreting neural network predictions.

We suggest that widening our model by aggregating more studies
using a systematic pipeline will allow us to nd better descriptions
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of task-optimized networks. These could in turn be used in subse-
guent analysis. For example They may be tuned at the individual

level using recent methods akin to Tavor et al. (2016, or leveraged
to compute biomarkers in place of resting-state functional networks

(used in e.g., Abraham et al., 2017 Greicius, 2008).

74 detailed method

We describe in mathematical terms the multi-layer decoder at the
center of our method. We start by formalizing the joint objective loss
and the model training process.

7.4.1 Inter-subject decoding setting

We consider N task functional MRI studies, on which we perform
inter-subject decoding, as formalized in Chapter 2. In each study j,
nl subjects are made to perform several tasks. Acquired BOLD time-
series are registered to a common template using non-linear registra-
tion, after motion and slice-timing corrections. BOLD time-series are
then fed to standard analysis, that ts a linear model relating the de-
sign matrix of each experiment to the activation of every voxel. From
the obtained beta maps, we compute z-statistics maps, either associ-
ated with each of the base conditions (stimulus or task) of the exper-
iments, or to contrasts de ned by the study's authors. In both case,
z-maps are labeled with a number 16 k 6 ¢ that corresponds to k-
th contrast/base condition (called contrast in the following). Overall,
this produced a set of z-maps (x’i )iz[cjnj] living in RP, where p is the
number of voxels, associated with a sequence of contrast (ki ); cini]-
Inter-subject decoding proposes a model f : RP ! [1;d] that pre-
dicts contrast from z-maps, i.e. k! , f (x‘i), where is learned from
training data, and the performance of the model is assessed on left-
out subjects.

7.4.2 Baseline voxel-space decoder

Baseline decoders are linear classi er models de ned separately
for each study j, that take full brain images as input. For every input
map X; 2 RP, we compute the logits |; in R®¢ as

li , WX, + b;

where W 2 R® P and b 2 R€ are the parameters of the linear model
to be learned for study j — we drop the exponent j in this paragraph.
Logits yield a classi cation probability vector using the softmax oper-
ator. At test time, we predict the label corresponding to the maximal
logit, i.e. yi = argmax;q,¢liy - The model is trained on the data
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(Xi;Yi)i2[n] by minimizing the regularized multinomial classi cation
problem

_ 1 X X )
min - — liy (W ;Db)+ log( explixk (W;b)) + kWKkg.
W2R¢ P N _ _
b 2 R¢ i=1 k=1

(7.2)

7.4.3 Baseline dimension reduced decoder

A variant of the voxel-based decoders is obtained by introducing a
rst-layer dimension reduction learned from resting-state data. This
amounts to computing

li , VDx; + b;

where V 2 R¢ Kk form the classifying weights of the model, and
the matrix D 2 RX P is assignedduring training to functional net-
works learned on resting-state data, as detailed in Section 7.4.5. Mul-
tiplying input data by D projects statistical images onto meaning-
ful resting-state components, in an attempt to improve classi cation
performance and reduce computation cost, akin to the methods pro-
posed in S. M. Smith et al. (2009 and Yeo et al. (2011). The model
is trained solving the convex objective ( 7.1) separately for each study;,
replacing W by V 2 R¢ k:

X xX

min - 1 liy . (V;b;D)+ log( explik (V;b;D)) + kaé.
V2RS kK N -
b2RC¢ i=1 k=1

(7.2)

Our results (Figure 7.2c) show that decoding from functional net-
works is not signi cantly better than decoding from voxels directly.
For both baselines, the parameter is found by half-split cross-valida-
tion 1. Training is performed using a L-BFGSsolver. We use non stan-
dardized maps (xj); as input as we observed that standardization
hinders performance.

7.4.4 Three-layer model description

Our three-layer model adds a second shared linear layer in between
the projection on functional networks and the classi cation models.
We still have

1, wix + b

for every z-map i and study j. However, in this case, we introduce a
coupling in between the various parameters (Wj)jz[N] of each study,
that should decompose on on common basis LD, where L is esti-
mated from the whole corpus of data. Formally, we assume that

1. over the values (10 );=¢. 3.- 2.3 g



7.4 detailed method

there exist matrices L 2 R! X, (U!);,n;, so thatl <k < p , and for
all j 2 [N],

Wi, UiLD; where Ui 2RY ! (7.3)

The matrix D corresponds to the rst-layer weights pictured in Fig-
ure 7.1, L to the second's, and (U!; bj)j to the various classi cation
heads of the third. In this work, we choose k 512 | = 128 While
D remains xed, the second-layer matrix L and the N classi cation
heads (Uj)jz[N] are jointly learned during training, a necessary step
toward improving decoding accuracy. The “shared-layer” parameter-
ization (7.3) is a common approach in multi-task learning (Ando and
T. Zhang, 2005 Y. Xue et al., 2007, and should allow transfer learn-
ing between decoding tasks, under certain conditions. In our setting,
both the data distribution from the different studies and the classi-
cation task associated with each study differ — this is a particular
case ofinductive transfer learningdescribed by Pan and Yang (2010.1°

Without re nement nor regularization, we seek a local minimizer
the following non-convex objective function, that combines the classi-
cation objectives ( 7.1) from all studies:

X (nj) x o ! . o
L;nREIn - = i, (U5bYL)- log( expliy (U);b)5L)
(Uisply; 1=t =1 k=1

(7.4)

where the dependence on D is implicit. The scalar 2 [0;]1] is a
parameter that regulates the importance of each study in the joint

objective, that we further discuss later. We solve the problem (7.4)
using stochastic optimization. Namely, at each iteration, we compute

an unbiased estimate of the objective (7.4) and its gradient w.r.t. the

model parameters, to perform a stochastic gradient step. For this,
we randomly choose study j with a probability proportional to (nl) |
and consider a mini-batch of z-maps (x’i )i2B, that we use to compute
the unbiased objective estimate

1 X j x j
5 - I, log( expliy ) ; (7.5)
i=1 k=1

from which we compute gradients w.r.t. L, Ul and bi.

Minimizing ( 7.4) leads to strong over tting and low performance
on left-out data, with performance similar to tting (  7.1) without reg-
ularization, separately for each study. Adding ", regularization to
the second and third layer weights gives little bene t, as we discuss
in Section 7.5.1 On the other hand, introducing dropout (Srivastava
et al., 2014 during training alleviates the over tting issue and al-
lows transfer learning to occur. Dropout is a stochastic regulariza-
tion method that is designed to prevent the weights from each layer
to co-adapt, and ensure that the information is well spread across
coef cients rows and columns (Neyshabur, 2017. In our case, this
favors transfer learning, as it ensures that no single row of L, or in
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plain words no task-optimized network, becomes dedicated to a sin-
glestudy. We further discuss the different methods that foster transfer
of information between studies in Section 7.5.1.

We use the variational avor of dropout (Kingma et al., 2015 to
make individual dropout rate for every study adaptive. This slightly
improves performance compared to binary dropout: every decoding
task requires a different level of regularization, depending on the
size of the study and the hardness of the task, and it is bene cial to
estimate it from data. During training, at every iteration, for every
input sample i of a minibatch from study |, we randomly draw two
multiplicative noise matrices

M p = Diag([bot l2ky); M1 = Diag([bis J2p1);

where bpy N (1; )and by N (1; J), with xed and 1 esti-
mated from data. 2 We then compute the noisy logits

1, UMILM pDx! + bl;

and use these to compute the loss (7.5), to which we add a regulariza-
tion term that regulates the learning of !, introduced by Molchanov
et al. (2017). We compute the gradient w.r.t. L, U, bl using the local
reparametrization trick (Kingma et al., 2015. We refer to Molchanov
et al. (2017 for more details on variational dropout and Bayesian
grounding of this approach.

Optimization is performed using Adam (Kingma and Ba, 2015, a
avor of stochastic gradient descent that depends less on the step-
size. We use batch normalization (loffe and Szegedy, 2015 between
the second and third layer, as it slightly improves performance — it
reduces potential negative transfer learning — and training speed.

7.45 Resting-state data

As mentioned above, we use resting-state data to compute the rst-
layer weights D 2 RK P, where k = 512 We consider data from
the HCP9oo release, and stack all records to obtain a data matrix X 2
R" P. We then use the method proposed in Chapter 4- 6 to solve the
sparse non-negative matrix factorization problem

A;D, argmin kX- AD kZ+ KkAKZ (7.6)
D2C:A2Rk n

where the constraint C= D 2 Rk P;kdjk, 6 1;d; > 0 enforces
every dictionary component to live in the simplex of RP, ensuring
sparsity and positivity of the functional networks. The sparsity level

is chosen so thatD covers the whole brain with as little overlap as

possible.

2. This Gaussiandropout has a similar behavior to the more commonly used
binary dropout with parameter p = —.
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second -layer initialization . To initialize the weights of the
second layer weights, we learn a smaller dictionary D; 2 R' P as
in (7.6), where | = 128 We then compute the initial weights L, so that
D, L,D using least-square regression. This way, the two rst layers
of the initial layer initially behave as a projection on | = 128 larger
functional networks, which is a reasonable prior for reducing brain
statistical maps. This initialization slightly improves performance, as
we discuss in Section 7.5.3.

grey matter restriction . To help interpreting the obtained mo-
del, we found it helpful to remove from D the fraction (9%) of the
functional networks components located in the white matter and the
cerebrospinal uid areas, turning k = 512into k = 465 We discuss
the effect of this restriction in Section 7.5.3.1.

7.4.6 Post-hoc model transformation with ensembling

Given any invertible matrix M 2 R! !, the non-regularized ver-
sion of the objective (7.4) is left invariant when transforming L into
ML and each U} into U/M - 1. This prevents us from interpreting
the coef cients of L at the end of the training procedure, and to re-
trieve relevant networks by reading the weights of the second weight.
The only aspect of L that remains unchanged after a linear parame-
ter transformation is its span. Dropout regularization, that favors the
canonical directions in matrix space (Srivastava et al., 2014, should
break this symmetry, but does not help to uncover meaningful direc-
tions in the span of L in practice.

On the other hand, we found that this span was remarkably stable
across runs on the same data, whether when varying initialization or
simply the order in which data are streamed during stochastic gra-
dient descent. More precisely, we trained our model 100times with
different seeds, and concatenated the weights (L), of the second-
layer into a big matrix L. We performed a svD on this matrix, and
observed that the rst | = 128 components captured 98% of the vari-
ance of L when using the same initialization but different streaming
order, and 96% when also using a different random initialization. De-
spite the many local minima that objective ( 7.4) admits, the span of L
thus remains close to some reference span that we can extract with a
matrix factorization method.

The above remark suggested the following ensemble method. We
run the learning algorithm r = 100times, and store the weights (L),
of the second layer for each run, along with the average matrices and
biases

. _ X
UlLs bl =
N=1 N=1

bl; 8j2[N]

|
=l

>
=l

that combine the second and third-layer weights and biases for each
study j and run N, and average them across runs. We then stack the
second-layer weights (L), into a fat matrix L 2 R'™ ¥ on which we
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perform sparse non-negative matrix factorization. Namely, we com-
pute L 2 R' Kk, the new weight matrix for the second layer, solving

min min ki - KLkZ + KkKK3;

L2C K2 RI Ir
where C= L2 R!' % kilk; 6 1;I) >0 and regulates the sparsity
of L. Finally, we compute new weights U! for all the classi cation
heads of the third layer, so that W/  UIL?, from a least-square
point of view, for each study j. The new model is then formed of
parameters D ; L; (Jj ) )j2(n1- In plain words, we obtain sparse non-
negative second-layer weights L?, and de ne from these weights a
new model that is as close as possible to the ensemble of all learned
models D;LS;(UJS;_b’s)j N2

The columns of L are now interpretable separately, as the non-
negative and sparse constraints have broken the inherent parameter
invariance of the original model. The columns of L hold the coef -
cients for combining resting-state networks held in D into | multi-
study task-optimized networks LD 2 R' P. We initialize the sparse
NMF algorithm with the weights L; computed in Section 7.4.5, to in-
ject a small prior regarding nal MsSTON distribution: before running
NMF, those are set toL|D D,, i.e. are close to large resting-state
functional networks.

We observed that directly enforcing negativity/sparsity over L dur-
ing the training of the model led to a strong loss in accuracy. Finding
a consensus model through a post-hoc ensembling transformation
thus proves to be the right solution for obtaining both performance
improvement andinterpretability.

7.5 design discussion

In this section, we discuss the various choices when made for de-
signing our model and training procedures. To this end, we perform
diverse quantitative and qualitative comparisons of model variants.

7.5.1 How to induce transfer learning ?

We start by discussing the various way in which we can force infor-
mation sharing across studies in training our multi-layer model.

7.5.1.1 The need for objective coupling

Without modi cation nor constraint on the second layer output
size |, we cannot expect to observe any transfer learning by solving
the joint quective (7.49). IndNeed, in the general case where we allow
| > ¢, szlcj, we let (VI;bl); 2 R® K be the unique solutions
of the non-regularized convex problems ( 7.1) and V 2 R¢ K be their
vertical concatenation. We then form the matrices
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3
h [
I

2

Ul
L= ZRI kandgsé, CZRC C;OZRI—CI;

UN

(7.7)

in which L is split into row-blocks (\7j)j, dedicated to and learned
on single studies It follows from elementary considerations that the
matrices (L; (U';bl);) form a global minimizer of ( 7.4), that is formed
from the solutions of the separategbroblems (7.2). It is therefore pos-
sible to nd solutions of ( 7.4) for which no transfer occur. Two modi-
cations of the objective ( 7.4) allows to enforce transfer: dropout reg-
ularization and low-rank constraints, that we present and compare.

7.5.1.2 Dropout as a transfer incentive

First, as presented in the method section (7.4), we can use dropout
in between the second layer weight L and the third layer head weights
Ul. Dropout prevents constructions of block-separated solution of
objective (7.4) similar to the one proposed in (7.7). Indeed, every
reduced sample LDx‘i fed to the third layer classi cation head | can
see any of his features corrupted by multiplicative noise M | during
training. This pushes the model to capture information relevant for
all studies in every activation of the second layer. In other word, the
projection performed on any task-optimized network 1,D, for h 2 [I]
should be relevant for decoding every study. This fosters transfer
learning as L carry multi-study aggregated information at the end of
training, unlike in ( 7.7).

7.5.1.3 Transfer through low-rank constraints/penalty

A second approach to transfer is to force the matrices
3

2 3 2
vi ul
v R L
VN uN

formed of the parameters of the joint objective ( 7.4) to be low-rank In
this case, the subspace ofR¢ ¥ in which V evolves is strictly smaller
than R® K, and we cannot always nd a global minimum of the
joint objective (7.4) formed with the solutions V of the separate objec-
tives (7.2), as we did in the construction ( 7.7). As a consequence, the
data from studies truly in uence the solutions (L;(U!; bj)j) of (7.4),
and transfer is theoretically possible.

The low-rank property may be enforced in two ways. First, we may
set it as a hard constraint, setting | < ¢ in the joint objective ( 7.4). This
is in practice what we do when selecting | = 128 asc = 545in our
experiments.

Alternatively, following Srebro et al. ( 2004, we may resort to a
convex objective function parametrized by V 2 R¢ K, that penalizes
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V rank. We learn Vi 2 R ¥ for all study j 2 [N] solving the joint
objective

Xpiy XD o *’ o
min - H, (Vi;bl)- log(  expll, (V!;bl))
(Viibl); n! _— '3{' o1 '
i
+  yIToyNT (7.8)

?
. P min(ck )
where kVk- is the nuclear norm of V, dened as ., i(V),
with (' ;(V)); singular values of V. The nuclear norm is a convex
proxy for the rank of matrix V. As a consequence, the rank of the
solution decreases from min(c;k) to 0 as increases. The objec-
tive (7.8) is solvable using proximal-methods, e.g.,using FISTA (Beck
and Teboulle, 2009. However, these methods become impractical
when ¢ becomes large — it requires to perform a ¢ ¢ sSvD at each
iteration. Fortunately, there exists a non-convex objective (Rennie and
Srebro, 2005, amenable to stochastic gradient descent (R. M. Bell and
Koren, 2007, that includes the solution of ( 7.8) as a minimizer. It is

obtained setting | = max(x; k) and adding % penalties to the objec-
tive (7.4):
_ X (nly j o j j o
min - li, (U;b%;L)- log(  expli, (U);b’;L))
L2R! & nl By b
(Ui:bl) =1 i=1 k=1

+ 5 kLkZ2+  kUIKkZ ; where U 2R® '8j2[N].
ji=1

We solve this objective using Adam, similarly to the main method. It
is possible to continue using dropout in between the rst and second
layer while enforcing V to be low-rank — this can then be understood
as a regularization technique through feature noising (S. Wager et al.,
2013.

7.5.1.4 Empirical comparison

Both the dropout and low-rank approaches are competitive a priori
to foster transfer learning. Our nal method uses a combination of
both, as it enforces a hard low-rank constraint and uses dropout. This
choice was motivated by the comparison displayed in Figure 7.6. We
compare three regularization variants, measuring the improvement
due to hard low-rank constraints and the difference between dropout
and ",. ", accuracy gain is an upper-bound of its actual performance
in practice, as we take the highest performing on the test sets. The
three estimators uses input dropout (p = 0.25), while dropout be-
tween layer 2 and 3 is initialized to p = 0.75 when used. We ob-
serve that forcing V to be low-rank is bene cial, and that dropout
regularization performs signi cantly better than low-rank inducing
"o penalties, which justi es using dropout and hard-rank constraints
for regularization.
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Figure 7.6 — Quantitative comparison of regularization techniques: dropout
with hard-rank constraints outperform “, regularization with
and without hard-rank constraints.

Figure 7.7 — Quantitative improvement linked to training the model on the
join objective (7.4), versus improvement linked to transfer in the
second-layer only.

7.5.2 Performance without joint training

We have argued that training the joint objective ( 7.4) improves
decoding performance as the data from every study in uences the
learned weights in bot the second and third layer. This can be mea-
sured by comparing the performance of learning task-optimized net-

works on all studies but a target one, and freezing these networks ( i.e.

use them for a xed dimension reduction) to learn the target decoder.
We observe in Figure (7.7) that this approach, that allows transfer
through the second layer only, performs better than the baseline, but
worse than our approach. This shows that using a joint objective also
foster transfer in the classi cation heads of the third layer.
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7.5.3 Interpretability incentives

Figure 7.8 — Quantitative improvement linked to ensembling and resting-
state initialization in our model.

Our approach involves model interpretability as a core require-
ment. Three factors contribute to output cognitive meaningful task-
optimized networks. First, the initial rst layer, learned on resting-
state data, coarsens the resolution of networks in a way adapted to
typical brain signal. Second, we compute a consensus model, so that
the task-optimized network loadings held in L are non-negative and
interpretable. Third, we initialize the second-layer weights so that
Linit D corresponds to resting-state functional networks. This initial-
ization is used both during the training phase and the consensus
phase.

consensus model . In Figure 7.8, we measure the quantitative ef-
fects of the two later factors on decoder accuracy. Learning a con-
sensus model using sparse NMF is crucial for nding interpretable
direction in the span of L. Without this re nement, the directions we
obtain are similar to the one displayed in Figure 7.9a, and are not
interpretable. The consensus phase also contributes positively to the
model decoding performance (+.5% overall accuracy). We attribute
this improvement to an ensembling effect similar to the bene ts of
bagging (Breiman, 1996, as the nal model summarizes 100training
runs on the same data, with different random seeds.

resting -state initialization . Figure 7.8 shows that resting-
state based initialization of the second-layer has no measurable im-
pact on performance, and thus provides more interpretable compo-
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Figure 7.9 — Without interpretability re nements  (a), resting-state based ini-
tialization (b) and grey matter components selection (c), some
task-optimized networks may be hard to interpret/ not relevant
from a cognitive perspective.

nents with no accuracy cost, as the qualitative discussion will show.
Qualitatively, we show examples of three components found with-
out resting-state initialization in Figure 7.9b. Two of those are scat-
tered networks, that capture various connected components whose
co-occurrence is not interpretable: those are likely artifacts due to
random initialization. Using resting-state initialization nds such net-
works much more rarely. It remains interesting to note that most
of the components found without resting-state based prior bear cog-
nitive meaning, similar to the third components displayed in Fig-
ure 7.9b.

7.5.3.1 Effect of selecting grey-matter components

We project data onto a subset of 465 out of 512 functional networks
learned on HCP resting-state data, selecting the networks that inter-
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Figure 7.10 — Working with functional networks located in the grey matter
only has not signi cant impact on performance.

sect with an anatomical grey-matter mask. This avoids nding MSTON
that that are distributed or formed with non grey-matter regions.
In Figure 7.9c, we show that without those precautions, our model
nds networks located in the white matter and the neuro-spinal uid
zones. Quantitatively, as expected, performing classi cation from
grey-matter components only brings a non-signi cant performance
loss (Figure 7.10).

7.5.4 Effect of variational dropout and batch normalization

Figure 7.11 — Batch normalization and adaptive variational dropout both
have a bene cial impact on classi cation accuracy of the nal
learned decoder.

We introduced variational dropout and batch normalization in the
training procedure of our algorithm. Figure 7.11 shows that is in-
deed bene cial. Variational dropout allows a gain of + 1% compared
to baseline; batch normalization benet is smaller but positive, and
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allows faster training — in line with its original purpose (loffe and
Szegedy, 2015.

7.5.5 Study weights

Figure 7.12— Impact of changing the study weight in the joint objective.
Large studies should be given more weights (! 1) to prevent
negative transfer learning. Yet using an intermediary 0.6
(i. e. giving more weight to samples from small studies) is ben-
e cial for performance on studies with less than 10 subjects.

Our model learns the second and third layer weights by solving

X (nhy X o %' : o
min - : L, (UhbhL)- log( expll, (US;bl;L))
L2R! K nl Y b
(Uj;bj)j j i=1 k=1

in which the many studies can be given various weights. At one
extreme, we may consider that all studies of the corpus should be
weighted the same, which amounts to setting = 0in (74). At
the opposite, we can consider that each brain map from each study
should have the same importance, which amount to set = 1. As
Figure 7.12b shows, it is bene cial to set an intermediary , typically

= 0.6. On the one hand, we do want to give the smallest study
of our corpus a non negligible importance; on the other hand, we
wish large corpus, that provide a greater amount of information, to
remain more weighted than smaller ones. Our amortized reweighting
amounts to give every study j an “effective sample size”

Nt = NP ——
i=1 i=1 N

that is larger than the true sample size for smaller studies and smaller
for larger studies. We observe on Figure 7.12a that the negative trans-
fer learning endured by large-study decoders such as HCP and LA5C
reduces as these studies are given more weight ( ! 1). On the other
hand, the performance on small datasets slightly reduces for >0 .6.
It also reduces for low , hinting at the importance of large studies
for improving small studies decoding.
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We thus have provided justi cations for all the technical design
choices made in training our decoding model: regularization, joint
training, training re nements, choice of study weights.

7.6 data corpus and references

In this last section, we detail our experiment pipeline, the numer-
ical parameters needed for reproducing this study, and the sources
from which we obtained our corpus of studies.

7.6.1 Reproduction details

We used nilearn (Abraham et al., 2014 and scikit-learn (Pedregosa
et al.,, 2011 in our experiment pipelines, the sowmFr algorithm (see
Chapter 6) for learning resting state dictionary and PyTorch(Paszke
et al., 2017 for model design and training. A Python package 3 is
available for reproducibility and reuse. It provides the multi-scale
resting-state dictionaries extracted from HcCP, as those are costly to
learn.

general cross -validation scheme . For every validation ex-
periment and comparison, we perform 20 half-split of all data. Name-
ly, we consider half of the subjects of every study for training, and
test the decoder on the other half. As two studies (Rizk-Jackson et al.,
n.d.) share subjects, we also ensure that no single subject appears in
both the training and the test sets across studies.

baseline parameter selection . We cross validate the param-
eteron agrid f10;i =[- 3;3|g

dropout rate . We use a dropout rate of p = 0.25 in between the
rst and second layer and initialize study-speci ¢ dropout rates with

p = 0.75 in between the second and third-layer classi cation heads
(i.,e.weset = ﬁ in variational dropout).

resting -state dictionaries . We obtain the 512-components and
128-components resting-state dictionaries by choosing on a grid
f10 ;i = [- 5;1]g so that we obtain components that cover the whole
brain with minimal overlapping.

consensus phase. We run the training procedure 100times with
different random seeds. We set = 10 4, so as to obtain 80% spar-
sity.Higher sparsity leads to a slight decrease in performance, lower
sparsity is softer on symmetry breaking, which may reduce inter-
pretability. This parameter has little in uence.

3. github.com/arthurmensch/cogspaces
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7.6.2 TaskfMRI studies
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Table 7.1 recapitulates the various studies used in our corpus and
provide their sources. The names corresponds to the ones used in

Figure 7.2.

Task name

Source study

High-level math
Localizer
Brainomics localizer
CamcCan audio-visual
Constit. struct. of sent. & music
Sentence/music complexity
Balloon Analog Risk-taking
Classi cation learning
Rhyme judgment
Mixed-gambles
Plain or mirror-reversed text
Stop-signal w/ spoken & manual resp.
Stop-signal
BART, stop-signal, emotion
Weather prediction
Stop-signal & classi cation
Stop-signal & classi cation (retake)
Cross-language repetition priming
Classif. learning & reversal
Simon task
Flanker task (event-related)
Visual object recognition
Word & object processing
Emotion regulation
False belief
Incidental encoding
Motor task & word/verb generation
Auditory & Visual Oddball
Spatio-temporal judgement
Spatio-temporal judgement (retake)
The Human Connectome Project
Face recognition
Arithmetic & saccades
UCLA LA 5C
Twin localizer
Compression

Amalric and Dehaene ( 2016
Pinel et al. (2007a)
Papadopoulos Orfanos et al. (2017
Shafto et al. (2014
Cauvet (2012 and Hara et al. (2009
Devauchelle et al. (2009
Schonberg et al. (2012
Aron et al. ( 2009
G. Xue and Poldrack (2007
Tom et al. (2007
Jimura et al. ( 20149
G. Xue et al. ( 2009
Aron et al. (2007)
Cohen (2009
Foerde et al. (2009
Rizk-Jackson et al. (n.d.)
Rizk-Jackson et al. (n.d.)
Alvarez et al. ( 2002
Poldrack et al. (2001
Kelly and M. Milham ( n.d.)
Kelly et al. (2009
Haxby et al. (2001a)
Duncan et al. (2009
T. D. Wager et al. (2008
Moran et al. (2012
Uncapher et al. (2011

Gorgolewski etal. ( 2013
Collieretal. ( 2019

Gauthier et al. (2012
Gauthier et al. (2012
Barch et al. Q013

Henson et al. 2017

Knops et al. (2009
Poldrack et al. (2016

Pinel and Dehaene (2013
Vagharchakian et al. (20129

Table 7.1 — Studies used in our corpus
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DIFFERENTIABLE DYNAMIC PROGRAMMING
FOR STRUCTURED PREDICTION AND
ATTENTION

In this chapter, we depart from fvRI, the main domain of appli-
cation of this thesis, and consider the problem of learning rich rep-
resentations for structured prediction We present a general approach
for performing end-to-end training of (potentially deep) models that
involves predicting structured entities, i.e. objects that belongs to
combinatorial sets, through the application of dynamic programming
algorithms. The work presented in this chapter is the result of an four
months collaboration with Mathieu Blondel, in NTT Communication
Laboratories, Kyoto, Japan. It was recently presented and published
under the title

Mensch, A., & Blondel, M. (2018. Differentiable dy-
namic programming for structured prediction and atten-
tion. Proceedings of the International Conference on Machine
Learning (ICML)

It possesses some connections with concepts studied in the previ-
ous chapters. First, we show how to introduce sparsityin structured
prediction, and transform single output prediction models into mod-
els that predict a small set of possible structures. Second, we show
how to minimize a range of objective functions that involves com-
puting maximizers similar to what we did when designing the SomF
algorithm.

Dynamic programming ( DP) constitutes the starting point of this
chapter. It solves a variety of structured combinatorial problems by
iteratively breaking them down into smaller sub-problems. In spite
of their versatility, many DP algorithms are non-differentiable, which
hampers their use as a layer in neural networks trained by backpropa-
gation. To address this issue, we propose to smooth the max operator
in the dynamic programming recursion, using a strongly convex regu-
larizer. This allows to relax both the optimal value and solution of the
original combinatorial problem, and turns a broad class of DP algo-
rithms into differentiable operators. Theoretically, we provide a new
probabilistic perspective on backpropagating through these DP oper-
ators, and relate them to inference in graphical models. We derive
two particular instantiations of our framework, a smoothed Viterbi
algorithm for sequence prediction and a smoothed DTw algorithm
for time-series alignment. We showcase these instantiations on struc-
tured prediction (audio-to-score alignment, NER) and on structured
and sparse attention for translation.
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8.1 introduction

Modern neural networks are composed of multiple layers of nested
functions. Although layers usually consist of of elementary linear
algebraic operations and simple non-linearities, there is a growing
need for layers that output the value or the solution of an optimiza-
tion problem. This can be used to design loss functions that capture
relevant regularities in the input (Cuturi and Blondel, 2017 Lample
et al., 2019 or to create layers that impose prior structure on the out-
put (Amos and Kolter, 2017 Djolonga and Krause, 2017 Y. Kim et al.,
2017 Niculae and Blondel, 2017.

Among these works, several involve a convex optimization prob-
lem (Amos and Kolter, 2017 Djolonga and Krause, 2017 Niculae
and Blondel, 2017; others solve certain combinatorial optimization
problems by dynamic programming (Cuturi and Blondel, 2017 Y.
Kim et al., 2017 Nowak et al., 2018. However, because dynamic
programs (Bellman, 1952 are usually non-differentiable, virtually all
these works resort to the formalism of conditional random elds
(CRFs) (Lafferty et al., 2001, which can be seen as changing the
semiring used by the dynamic program — replacing all values by
their exponentials and all (max;+) operations with (+; ) operations
(Verdu and Poor, 1987. While this modi cation smoothes the dy-
namic program, it looses the sparsity of solutions, since hard assign-
ments become soft ones. Moreover, a general understanding of how
to relax and differentiate dynamic programs is lacking. We propose
to do so by leveraging smoothing (Moreau, 1965 Nesterov, 2005 and
backpropagation (Linnainmaa, 1970. We make the following contri-
butions.

1. We present a uni ed framework for turning a broad class of
dynamic programs into differentiable operators. Unlike existing
works, we propose to change the semiring to use (max ;+)
operations, where max is a max operator smoothed with a
strongly convex regularizer  (Section8.2).

2. We show that the resulting DP operators, that we call DP , are
smoothed relaxations of the original DP algorithm and satisfy
several key properties, chief among them convexity. In addition,
we show that their gradient, r DP , is equal to the expected
trajectoryof a certain random walk and can be used as a sound
relaxation to the original dynamic program's solution. Using
negative entropy for  recovers existing CRF-based works from
a different perspective — we provide new arguments as to why
this  is a good choice. On the other hand, using squared ",
norm for  leads to new algorithms whose expected solution is
sparse We derive a clean and ef cient method to backpropagate
gradients, both through DP and r DP . This allows us to
de ne differentiable DP layers that can be incorporated in neural
networks trained end-to-end (Section 8.3).

3. We illustrate how to to derive two particular instantiations of
our framework, a smoothed Viterbi algorithm for sequence pre-
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DTW, (1) =! 7.49 DTW, 4:(!) = 9.61

Figure 81 - DTW ( ) is an instantiation of the proposed smoothed dy-
namic programming operator, DP (), to the bTw computa-
tional graph. In this picture, is the squared Euclidean distance
matrix between the observations of two time-series. The gradi-
entr DTW ( ) is equal to the expected alignment under a cer-
tain random walk characterized in Section 8.3.3 and is a sound
continuous relaxation to the hard DTw alignment between the
two time-series (here depicted with a yellow path). Unlike ne-
gentropy regularization (left), % regularization leads to exactly
sparse alignments (right). Our framework allows to backpropa-
gate through both DTW ( ) and r DTW ( ), which makes it
possible to learn the distance matrix  end-to-end.

diction and a smoothed DTw algorithm for supervised time-
series alignment (Section 8.4). The latter is illustrated in Figure
8.1. Finally, we showcase these two instantiations on structured
prediction tasks (Section 8.5) and on structured attention for
neural machine translation (Section 8.6).

Notation

We denote scalars, vectors and matrices using lower-case, bold
lower-case and bold upper-case letters, e.g.,y, y and Y. We denote
the elements of Y by y;; and its rows by y;. \ege denote the Frobenius
inner product between A and B by PA;Bi,  ; ajj bij . We denote
the (D - 1)-probaility simplex by 4 D f 2RP:k kg = 1g We
write conv (Y) , f oy yY: 24 Mgthe convex hull of Y, [N] the

We denote the Shannon entropy by H(q) , i di log q;.
We have released an optimized and modular PyTorchimplementa-
tion ! for reproduction and reuse.

8.2 smoothed max operators

In this section, we introduce smoothed max operators (Beck and
Teboulle, 2012 Nesterov, 2005 Niculae and Blondel, 2017, that will
serve as a powerful and generic abstraction to de ne differentiable
dynamic programs in Section 83. Let : RP I R be a strongly

1. https://github.com/arthurmensch/didyprog
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convex function on 4 P and let x 2 RP . We de ne the max operator
smoothed by  as:

max (X) , quL?)é hg;xi -  (q). (8.2)

In other words, max is the convex conjugate of , restricted to the
simplex. From the duality between strong convexity and smoothness,
max is smooth: differentiable everywhere and with Lipschitz con-
tinuous gradient. Since the argument that achieves the maximum
in (8.1) is unique, from Danskin's theorem ( 1966, it is equal to the
gradient:

r max (x)= argmax hg;xi- (q).
q24 P
The gradient is differentiable almost everywhere for any strongly-
convex  (everywhere for negentropy). Next, we state properties
that will be useful throughout this chapter.

Lemma 8.1. Properties omax operators

1. Boundedness: If is lower-bounded bl .p and upper-bounded by
U.p onthe simplext P, then
max(x)- Up 6 max (x) 6 max(x)- L.p

2. Distributivity of + overmax
max (x+cl)= max (x)+c 8c2R.

3. Commutativity: If (Pq) = (q), whereP is a permutation matrix,
thenmax (Px) = max (x).

4. Non-decreasingness in each coordinate:
max (X) 6 max (y) 8x6y

5. Insensitivity to- 1 : x; =- 1 )r max (x); = 0.

Proofs are givenpin Section B.1.1. In particular, property 3 holds
whenever (q) = P: 1! (qi), for some function ! . In this chapter,
we focus on two speci ¢ regularizers  : the negentropy - H and the
squared ", norm. For these choices, all properties above are satis ed
and we can derive closed-form expressions for max , its gradient
and its Hessian — see SectionB.2.1. When using negentropy, max
becomes thelog-sum-expand r max the softmax The former satis-
es associativity, which as we shall see, makes it natural to use in dy-
namic programming. With the squared ", regularization, as observed
by Martins and Astudillo ( 2016 and Niculae and Blondel (2017, the
gradient r max is sparse This will prove useful to enforce sparsity
in the models we study.

8.3 differentiable dynamic programming layers

DP is a generic way of solving combinatorial optimization problems
by recursively solving problems on smaller sets. We rst introduce
this category of algorithms in a broad setting, then use smoothed max
operators to de ne differentiable DP layers.
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8.3.1 Dynamic programming on ®AG

Every problem solved by dynamic programming reduces to nding
the highest-scoring path between a start node and an end node, on
a weighted directed acyclic graph ( DAG). We therefore introduce our
formalism on this generic problem, and give concrete examples in
Section 8.4.

Formally, let G = (V;E) be aDAG, with nodes V and edgesE. We
write N = jVj> 2the number of nodes. Without loss of generality, we
number the nodes in topological order, from 1 (start) to N (end), and
thus V = [N]. Node 1 is the only node without parents, and node N
the only node without children. Every directed edge (i;j) from a par-
ent node j to a child node i has aweight ;; 2 R. We gather the edge
weights in a matrix 2 RN N setting j =- 1 if (;j) 2E
and 11 = 1. We consider the setY of all paths in G from node 1
to node N. Any path Y 2 Y can be represented as aN N binary
matrix, with y;; = 1 if the path goes through the edge (i;j) and
yij = Ootherwise. In the sequel, paths will have a one-to-one corre-
spondence with discrete structures such as sequences or alignments.
Using this representation, hY; i corresponds to the cumulated sum
of edge weights, along the path Y. The computation of the highest
scoreamong all paths amounts to solving the combinatorial problem

LP( ), ryzag; hy; i2 R. (8.2

Although the size of Y is in general exponential in N, LP( ) can
be computed in one topologically-ordered pass over G using dynamic
programming We let P; be the set of parent nodes of nodei in graph
G and de ne recursively

vi( ), O
812[2;:::;N]: vi( ), jrg%x i +Vvi(). (8.3)

This algorithm outputs DP ( ) , vn( ). We now show that this is
precisely the highest score among all paths.

Proposition 8.1. Optimality of dynamic programming
8 2 : DP()=LP()

The optimality of recursion ( 8.3) is well-known (Bellman, 1952. We
prove it again with our formalism in Section B.1.2, since it exhibits the
two key properties that the max operator must satisfy to guarantee
optimality: distributivity of + over it and associativity The cost of
computing DP () is O(JEj), which is exponentially better than O(jY)).

In many applications, we will often rather be interested in the ar-
gumentthat achieves the maximum, i.e, one of the highest-scoring
paths

Y?( ) 2 argmax hy; i. (8.4)
v2Y

This argument can be computed by backtrackingthat we now relate
to computing subgradients of LP ( ).
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linear program , lack of differentiality . Unfortunately, the
linear program value LP ( ) is not differentiable everywhere w.r.t.

To see why this is the case, notice that 8.2) can be rewritten as a linear
program over the convex polytope conv (Y):

LP( )= max hy; i.
Y2 conv(Y)

From the generalized Danskin theorem (Bertsekas, 1977),

Y?( )2 @P( )= argmax hY; i;
Y 2 conv(Y)

where @denotes the subdifferential of LP ( ), i.e, the set of subgradi-
ents. When Y?( ) is unique, @P( ) is a singleton and Y? is equal to
the gradient of LP ( ), that we write r LP( ). Unfortunately, Y?( )
is not always unique, meaning that LP ( ) is not differentiable every-
where. As we will show in Section 8.5.2, this hinders optimization as
we can only train models involving LP () with subgradientmethods.
Worse, Y?( ), a function from to Y, is discontinuous and has null
or unde ned derivatives. It is thus impossible to use it in a model
trained by gradient descent.

8.3.2 Smoothed max layers

To address the lack of differentiability of dynamic programming,
we introduce the operator max , presented in Section 8.2, and con-
sider two approaches.

smoothing the linear program . Letusde nethe -smoothed
maximum of a function f:Y! R over a nite set Y using the follow-
ing shorthand notation:

max  f(Y), max ((f(Y))vzv).
Y2y

A natural way to circumvent the lack of differentiability of LP () is
then to replace the globalmax operator by max

LP (), max hy; i2 R. (8.5)

Y2y

From Section 8.2, LP ( ) is convex and, as long as is strongly
convex, differentiable everywhere. In addition, r LP ( ) is Lipschitz
continuous and thus differentiable almost everywhere. Unfortunately,
solving (8.5) for general s likely intractable when Y has an expo-
nential size.

smoothing the dynamic program . As a tractable alternative,
we propose an algorithmic smoothing. Namely, we replace max by
max locallywithin the DP recursion. Omitting the dependence on
this de nes a smoothed recursion over the new sequence (vi( )) iN: 1

Vl( )! 0
8 2 [2;::iN]rvi( ), max g5 +vi( ). (8.6)
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The new algorithm outputs DP (), vn( ), the smoothed highest score
Smoothing the max operator locally brings the same bene t as before

— DP () is smooth and r DP ( ) is differentiable almost every-
where. However, computing DP () is now always tractable, since it
simply requires to evaluate (vi( )) iNz 1 In topological order, as in the
original recursion ( 8.3). Although LP ( ) and DP ( ) are generally
different (in fact, LP ( ) > DP ( ) forall 2 ), we now show
that DP ( ) is a sensible approximation of LP( ) in several respects.

Proposition 8.2. Properties of DP
1. DP ( ) is convex

2. LP( )- DP ( ) is bounded above and below:
(N- Dbn >LP(C)- DP ()6 (N- DU

with Lemmas8.1 notations.

3. When s separable, DP( )= LP ( ) ifand only if =- H,
where > 0. In other word, theonly separable regularization
for which smoothing the dynamic program amounts to smoothing the
whole associated linear program is tiegentropy.

Proofs are given in Section B.1.3. The rst claim can be surprising
due to the recursive de nition of DP (). The second claim implies
that DP () converges to LP( ) when the regularization vanishes:
DP ()! . oLP();LP () also satis es this property. The “if”
direction of the third claim follows by showing that max . y satis-
es associativity. This recovers known results in the framework of
message passing algorithms for probabilistic graphical models (e.g.,
M. J. Wainwright and Jordan, 2008 Section 4.1.3), with a more alge-
braic point of view. The key role that the distributive and associative
properties play into breaking down large problems into smaller ones
has long been noted (Aji and McEliece, 2000 Verdu and Poor, 1987).
However, the “and only if” part of the claim is new to our knowledge.

Its proof shows that max.  is the only max satisfying associativ-
ity, exhibiting a functional equation from information theory (Horibe,
1988. While this provides an argument in favor of entropic regular-
ization, % regularization has different bene ts in terms of sparsity of
the solutions.

8.3.3 Relaxed argmax layers

It is easy to check thatr LP ( ) belongs to conv(Y) and can be
interpreted as an expected path under some distribution induced by
r max , over all possible Y 2 Y — see SectionB.1.4 for details. This
makesr LP ( ) interpretable as a continuous relaxatiorof the highest-
scoring path Y?( ) de ned in ( 8.4). However, like LP ( ), comput-
ing r LP () is likely intractable in the general case. Fortunately,
r DP () is always easily computable by backpropagatioand enjoys
similar properties, as we now show.
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computing r DP (). Computing r DP () can be broken down
into two steps. First, we compute and record the local gradients along-
side the recursive step (8.6):

8i2[N]: qi( ), rmax ( j+v())24N;

where v( ), (vi( );:::;vn( ). Since we assume that j =- 1

if (i;j) 62E, we have supp(g;( )) = P;. This ensures that, similarly
to vi( ), qi( ) exclusively depends on (vj( ))j2p,. Let G be the
children of node j 2 [N]. A straighforward application of backprop-
agation (cf. Section B.1.5) yields a recursion run in reverse-topological
order, starting fromnode j= N- l1downto j= 1

X
8i 2 G : & éqi;j then €J €ij ;
i2Cj
where ey 1 and e 0 for (i;j) 2 E. The nal output is

r DP ( )= E. Assuming max can be computed in linear time, the
total cost is O(JEj), the same as DR ). Pseudo-code is summarized in
Section B.1.5.

associated path distribution . The backpropagation formulae
we derived have a probabilistic interpretation. Indeed, Q( )2 RN N
can be interpreted as a transition matrix: it de nes a random walkon
the graph G, i.e, a nite Markov chain with states V and transition
probabilities supported by E. The random walk starts from node N
and, when at node i, hops to node j 2 P; with probability qi; . It
always ends at node 1, which is absorbing. The walk follows the path

Y 2 Y with a probability p . (Y), which is simply the product of the

gij of visited edges. Thus, Q( ) de nes a path distributionp . . Our
next proposition shows that r DP (YY) 2 conv(Y) and is equal to the
expected path E . [Y] under that distribution.

Proposition 8.3. r DP ( ) as an expected path
8 2 : rDP ()=E. [Y]=E2conv(Y).

Proof is provided in Section B.1.5. Moreover, r DP ( ) is a prin-
cipled relaxation of the highest-scoring path Y?( ), in the sense that
it converges to a subgradient of LP( ) as the regularization vanishes:
rbP () . Y?( )2 @P( ). When =- H, the distributions

underpinning LP  ( ) and DP ( ) coincide and reduce to the Gibbs
distribution p . (Y)/ exp(h ;Yi= ). ThevalueLP ( )= DP ()
is then equal to the log partition. When = k k?, some transitions
between nodes have zero probability and hence some paths have zero
probability under the distribution p . . Thus,r DP () is typically
sparse— this will prove interesting to introspect the various models
we consider (typically, the smaller , the sparserr DP ( )).

8.3.4 Multiplication with the Hessianr 2DP ( )Z

Using r DP ( ) as a layer involves backpropagating through the
gradient r DP ( ). This requires to apply the Jacobiawwfr DP oper-
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ator (a linear map from RN N to RN N) orin other words to apply
the Hessianof DP , to an input sensibility vector Z, computing

r?DP ( )Z=rthr DP ( );Zi2 RN N;

where derivatives are w.r.t. . The above vector may be computed in
two ways, that differ in the order in which derivatives are computed.
Using automatic differentiation frameworks such as PyTorch(Paszke
et al., 2017, we may backpropagate over the computational graph a
rst time to compute the gradient r DP ( ), while recording opera-
tions. We may then compute hr DP ( );Zi, and backpropagate once
again. However, due to the structure of the problem, it proves more
ef cient, adapting Pearlmutter's approach ( 1994, to directly compute
hr DP ( );Zi 2 R, namely, the directional derivativeat along Z.
This is done by applying the chain rule in one topologically-ordered
pass over G. Similarly to the gradient computation, we record prod-
ucts with the localHessiansH;( ), r ?2max ( ; + v( )) along the
way. We then compute the gradient of the directional derivative using
backpropagation. This yields a recursion for computing r 2DP ( )Z
in reverse topological-order over G. The complete derivation and the
pseudo-code are given in Section B.1.7. They allow to implement
DP as as a custom twice-differentiable module in existing software.
For both approaches, the computational cost is O(JE]j), the same as for
gradient computation. In our experiments in Section 8.5.2, our cus-
tom Hessian-vector product computation bringsa 3 /12 speed-up
during the backward pass on GPU/ CPU vs. automatic differentiation.

related works . Smoothing LP formulations was also used for
MAP inference (Meshi et al.,, 2015 or optimal transport (Blondel et
al., 2018 but these works do not address how to differentiate through
the smoothed formulation. An alternative approach to create struc-
tured prediction layers, fundamentally different both in the forward
and backward passes, is SparseMAP (Niculae et al.,2018.

summary. We have constructed the operator DP ( ), a smooth,
convex and tractable relaxation to the valueof LP( ). We have also
shown that r DP () belongs to conv(Y) and is therefore a sound
relaxation to solutionsof LP( ). To conclude this section, we formally
de ne our proposed two layers.

De nition 8.1. Differentiable dynamic programming layers
Value layer: DP ( )2 R
Gradient layer: r DP () 2 conv(Y)

84 examples of computational graphs

We now illustrate two instantiations of our framework for speci ¢
computational graphs.
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8.4.1 Sequence prediction

We demonstrate in this section how to instantiate DP  to the com-
putational graph of the Viterbi algorithm (Rabiner, n.d.; Viterbi, 1967,
one of the most famous instances of DP algorithm. We call the result-
ing operator Vit . We wish to tag a sequence X = (Xg;:::;Xt) of
vectors in RP (e.g. word representatlons) with the most probable out-

can be cast as ndlng the highest-scoring path on a tre|II|s G. While
y can always be represented as a sparseN N binary matrix, it is
convenient to representitinsteadasaT S Shinary tensor Y, such

that y;; = 1if y transitions from node j to node i on time t, and 0
otherwise — we set yg = 1. The potentials can similarly be organized
asaT S Srealtensor, suchthat ¢; = (Xt;i;]). Traditionally,

the potential functions ; were human-engineered (Sutton, McCal-
lum, et al., 2012 Section 2.5). In recent works and in our approach,
they are learned end-to-end (Bottou et al., 1997 Collobert et al., 2013
Lample et al., 2019.

Using the abovei:,binary tensor representation, the inner product
hy; i is equal to thl t(Xt;Ye;Yi- 1), Y's cumulated score. This
is illustrated in Figure 8.2 on the task of part-of-speech tagging. The
bold arrows indicate one possible output sequence vy, i.e, one possible
path in G.

the boat sank
start

unou

qlen

18p

Y, i= 131+ 213+ 321
Figure 8.2 — Computational graph of the Viterbi algorithm.

When = - H, we recover linear-chain conditional random elds
(CRF) (Lafferty et al., 2001) and the probability of y (Y in tensor repre-
sentation) given X is

XT
P ;- n(yiX)/ exp(hY; i)=exp t(Xt;YtiYt- 1) - 8.7)
t=1

From Prop. 8.3, the gradient r Vit_ y( )= E2 RT S S s such that
€ij =P -nyt =1yt-1=]jX). The n]glrglnal probability of state
i attime tissimply p .- y(yt = ijX) = ,_1et|1 . Using a differ-
ent  simply changes the distribution over state transitions. When

= k k2, the marginal probabilities are typically sparse Pseudo-
code for Vit ( ), as well as gradient and Hessian-product computa-
tions, is provided in Section B.2.2. The case = k k? is new to our
knowledge.

119



8.4 examples of computational graphs

When = - H, the marginal probabilities are traditionally com-
puted using the forward-backward algorithm (Baum and Petrie, 1966.
In contrast, we compute r Vit. 4 ( ) using backpropagation while ef-
ciently maintaining the marginalization. An advantage of our ap-
proach is that all operations are numerically stable. The relation be-
tween forward-backward and backpropagation has been noted before
(e.g.,Eisner (2019). However, the analysis is led using (+; ) opera-
tions, instead of (max ;+) as we do. Our Viterbi instantiation can
be generalized to graphical models with a tree structure, and to ap-
proximate inference in general graphical models, since unrolled loopy
belief propagation (Pearl, 1988 yields a dynamic program. We note
that continuous beam search Goyal et al., 2017 can also be cleanly
rewritten and extended using Vit  operators.

8.4.2 Time-series alignment

We now demonstrate how to instantiate DP  to the computational
graph of bTw (Sakoe and Chiba, 1978, whose goal is to seek the
minimal cost alignment between two time-series. We call the resulting
operator DTW . Formally, let No and Ng be the lengths of two
time-series, A and B. Let a; and b; be the i!" and j observations
of A and B, respectively. Since edge weights only depend on child
nodes, it is convenient to rearrange Y and asNa Npg matrices.
Namely, we represent an alignment Y as aNp  Npg binary matrix,
such thaty;; = 1if a; is aligned with bj, and O otherwise. Likewise,
we represent as aNa Np matrix. A classical example is j; =
d(aj;bj), for some differentiable discrepancy measure d. We write Y
the set of all monotonic alignment matrices, such that the path that
connects the upper-left (1; 1) matrix entry to the lower-right (Na;Ng)
one uses only#;! ;& moves. TheDAG associated with Y is illustrated
in Figure 8.3with Na = 4and Ng = 3 below.

1,1 > 1,2 > 1,3 > 1,4
o X : e o
2,1 > 2,2 m— 23 > 2,4
- 2:3 -
3 B d s -
"u u st
31 y 3,2 y 33 ——3 34
. 3;4
~ end
hY; i = 11+ 20+ 23+ 33+ 34

Figure 8.3 — Computational graph of the DTw algorithm.

Again, the bold arrows indicate one possible path Y 2 Y from start
to end in the DAG, and correspond to one possible alignment. Using
this representation, the cost of an alignment (cumulated cost along
the path) is conveniently computed by hY; i. The value DTW ( )
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can be used to de ne a loss between alignments or between time-

series. Following Proposition 8.3, r DTW ( )= E 2 RN~ Ns can

be understood as a soft alignment matrix. This matrix is sparse when
= k k2, as illustrated in Figure 8.1 (right).

Pseudo-code to compute DTW ( ) as well as its gradient and its
Hessian products are provided in Section B.2.3. When =- H, the
operator DTW ( ) de nes a conditional random eld known as soft-
DTW, and the probability p . (YjA;B) is a Gibbs distribution similar
to (8.7) (Cuturi and Blondel, 2017. The case = k k? and the
computation of r 2DTW ( )Z are new and allow new applications.

8.5 differentiable structured prediction

We now apply the proposed layers, DP () and r DP ( ), to
structured prediction (Bakr et al., 2007, whose goal is to predict a
structured output Y 2 Y associated with a structured input X 2 X. We
de ne old and new structured losses, and demonstrate them on two
structured prediction tasks: named entity recognition and time-series
alignment.

8.5.1 Structured loss functions

Throughout this section, we assume that the potentials 2
have already been computed using a function from X to  and let
C:Y Y! R, be a cost function between the ground-truth output
Ywue and the predicted output Y.

convex losses . BecauseC is typically non-convex, the cost aug-
mented structured hinge loss (Tsochantaridis et al., 2009 is often used
instead for linear models

“c(Youe; ) q‘g)(( C(Mirue; Y) + hY; i - hYyye; I. (8.8)

This is a convex upper-bound on C(Yyue; Y?( )), where Y?( ) is de-
ned in ( 8.4). To make the cost-augmented decoding tractable, it is
usually assumed that C(Yyue;Y) is linear in Y, i.e, it can be written
asCy,,.;Yi for some matrix Cy, .. We can then rewrite (8.8) using
our notation as

“c(Yue: )= LP( + Cy.)- hYiue; i.

However, this loss function is non-differentiable. We therefore pro-
pose to relax LP by substituting it with DP

‘¢ (Ywue; ), DP ( + Cvye) - Mirue; 1.

Losses in this class are convex, smooth, tractable for any , and by
Proposition 8.2, property 2, a sensible approximation of "¢. In addi-
tion, they only require to backpropagate through DP () at training
time. Itis easy to check that we recover the structured perceptron loss



8.5 differentiable structured prediction 122

with "o, (Collins, 2002, the structured hinge loss with "¢.o (Tsochan-
taridis et al., 2009 and the CRF loss with “o.. i (Lafferty et al., 2001).
The last one has been used on top ofLsTMs in several recent works
(Lample et al., 2016 Ma and Hovy, 2016. Minimizing “o.- n( ) is
equivalent to maximizing the likelihood p .. y (Yiue). However, min-
imizing “o.x k2 iS not equivalent to maximizing p .y x2(Yiue). In fact,
the former is convex while the latter is not.

non -convex losses . A direct %pproach that uses the output dis-
tribution p. minimizes therisk 5,y P ;- 1 (Y)C(Yiue;Y). As dis-
cussed by Stoyanov and Eisner 2012, this can be achieved by back-
propagating through the minimum risk decoder. However, the risk is
usually non-differentiable, piecewise constant (D. A. Smith and Eis-
ner, 2006 and several smoothing heuristics are necessary to make the
method work (Stoyanov and Eisner, 2012.

Another principled approach is to consider a differentiable approx-
imation :Y conv(Y) ! R4 of the cost C. We can then relax
C(Yuue:Y?( ) by  (Yiue;r DP ()). Unlike minimum risk training,
this approach is differentiable everywhere when = - H. Both ap-
proaches require to backpropagate through r DP (), which is twice
as costly as backpropagating through DP () (see Section8.3.4).

8.5.2 Named entity recognition

Let X = (x1; ;xt) be an input sentence, where each word x; is
represented by a vector in RP , computed using a neural recurrent ar-
chitecture trained end-to-end. We wish to tag each word with named
entities, i.e, identify blocks of words that correspond to names, loca-
tions, dates, etc. We use the specialized operator Vit described in
Section 8.4.1. We construct the potential tensor (X) 2 RT S Sas

8t>1; (X)t;i;j , Wi> Xt + bj + ti;j ;
and (X)1ij , W[ Xt + bj, where (wi;bj) 2 RP R is the linear
classi er associated with tag i and T 2 RS S is a transition matrix.

We learn W, b and T along with the network producing X, and com-
pare two losses:

Surrogate convex loss: “o:  (Yiue; );

Relaxed loss: (Yirue;t DP - (1));
where  (Yyue; Y) is the squared ", distance when = k k% and the
Kullback-Leibler divergence when = - H, applied row-wise to the

marginalization of Yy and Y.

experiments . We measure the performance of the different losses
and regularizations on the four languages of the CoNLL 2003dataset.
Following Lample et al. ( 2016, who use the "o.. 4 loss, we use a
character LsTM and FastText (Joulin et al., 2016 pretrained embed-
dings computed using on Wikipedia. Those are fed to a word bidi-

rectional LsTM to obtain X. Architecture details are provided in Sec-
tion B.3.1. Results are reported in Table 8.1, along with reference
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Figure 8.4: Test predictions from the entropy and § regularized NER models. Red dots indicate ground truth.
When using % regularization, model predictions are sparse (grey borders indicates non-zero cells). They are
thus easier to introspect for ambiguities, as we can list a nite number of possible outputs.

results with different pretrained embeddings. We rst note that the
non-regularized structured perceptron loss "o, that involves work-
ing with subgradients of DP ( ), perform signi cantly worse than
regularized losses. With proper parameter selections, all regularized
losses perform within 1% F;-score of each other, although entropy-
regularized losses perform slightly better on 3 out of 4 languages.
However, the ‘%—regularized losses yield sparse predictions, whereas
entropy regularization always yields dense probability vectors. Qual-
itatively, this allows to identify ambiguous predictions more easily.
This is illustrated in Figure 8.4, in which we display a few tagged
English sequences. The model using‘% regularization correctly iden-
ti es an ambiguous entity ( Union Bank of Switzerlangdand proposes
two non zero tag sequences: Union Bank of Switzerlands an organiza-
tion, or Union Bankas an organization and Switzerlandas a location.

set of top predictions . Probabilities of every tag sequence can
be computed using the matrix Q, as described in Section8.3.3 — this
remains tractable as long as the matrix Q is sparse enoughso that
the number of non-zero probabilities sequence remains low. Using
the "2 regulariation thus allows to enumerate all non-zero probability
entities and provide the user with a set of top k predictions. Poten-
tially, this would allow to trade precision for recall at test time. In
contrast, the model using negentropy regularization never assign a
zero probability to any tag sequence — it is not tractable to sort these
probabilities and provide the user with a small set of interesting se-
qguences.
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Table 8.1 — F; score comparison on CoNLLO3 NER datasets.

Loss English Spanish German Dutch
Negent.  Surrogate 90.80 86.68 7735 8756
Relaxed 9047 8620 7756 8737
"2 Surrogate 90.86 8551 7601 8658
Relaxed 89.49 8407 7691 8590

0  Struct. perceptron 86.52 8148 6881 8049

Lample et al., 2016 90.96 8575 7876 8174

Table 8.2 — Mean absolute deviation of alignment using an end-to-end
trained multinomial classi er and a pre-trained one.

Linear model Train Test

End-to-end trained 0.17 0.01 107 061
Pretrained 1.80 0.14 369 2.85
Random 1464 263 1464 0.29

8.5.3 Supervised audio-to-score transcription

We use our framework to perform supervised audio-to-score align-
ment on the Bach 10 dataset (Duan and Pardo, 2011). The dataset con-
sists of 10 music pieces with audio tracks, MIDI transcriptions, and
annotated alignments between them. We transform the audio tracks
into a sequence of audio frames using a feature extractor (see Section
B.3.2) to obtain a sequenceA 2 RN~ D while the associated score se-
quence is represented byB 2 RNe K (each row bj is a one-hot vector
corresponding to one key bj). Each pair (A;B) is associated with an
alignment Yye 2 RN~ Ne_ As described in Section 8.4.2, we de ne
a discrepancy matrix 2 RNa Ns petween the elements of the two
sequences. We set the cost between an audio frame and a key to be
the log-likelihood of this key given a multinomial linear classi er:

8i 2 [Nal;li , - log(softmax(W~a; + c)) 2 RK

| (8.9)
and 8j 2 [Ngl, i , lin;;

where (W;c) 2 RP K RK are learned classi er parameters. We
predict a soft alignment by Y = r DTW. 4( ). Following (Garreau
et al., 2014, we de ne the relaxed loss

(Yirue; Y) , KL(Y - Ytrue)> k|2:;

where L a the lower triangular matrix lled with 1. When Y 2 Y is
a true alignment matrix, (Yyue;Y) is the area between the path of
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Figure 8.5 — Alignment maps between score onsets and audio frames on test
data from the Bach10 dataset. Our end-to-end trained model
qualitatively performs better than the baseline model.

Yiue @and Y, which corresponds to the mean absolute deviatian the
audio literature. When Y 2 conv(Y), it is a convex relaxation of the
area. At test time, once is learned, we use the non-regularized DTW
algorithm to output a hard alignment  Y?( ) 2 Y.

results . We perform a leave-one-out cross-validation of our model
performance, learning the multinomial classier on 9 pieces and as-
sessing the quality of the alignment on the remaining piece. We re-
port the mean absolute deviation on both train and test sets. A solid
baseline consists in learning the multinomial classier (W ;c) before-
hand, i.e, without end-to-end training. We then use this model to
compute as in (8.9) and obtain Y?( ). As shown in Table 8.2, our
end-to-end technique outperforms this baseline by a large margin.

In Figure 8.5, we display the alignment maps we obtained using
our algorithm and using the baseline multinomial model followed
by a hard-DTw alignment computation. These alignment maps cor-
respond to the predicted onsets of keys. Our model (in orange) per-
forms visibly better in predicting onsets.

End-to-end training thus allows to  ne-tune the distance matrix
for the task at hand.

8.6 structured and sparse attention

We show in this section how to apply our framework to neural
sequence-to-sequence models augmented with an attention mecha-
nism (Bahdanau et al., 2015. An encoder rst produces a list of

is then used to greedily produce the corresponding output sequence.
To simplify the notation, we focus on one time step of the decoding
procedure. Given the decoder's current hidden state z and X as in-
puts, the role of the attention mechanism is to produce a distribution
w 2 4 T over X, for the current time step. This distribution is then
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typically used to produce a context vector ¢, X>w, thatis in turn
invoved in the computation of the output sequence's next element.

structured attention layers . Y. Kim et al. (2017 proposed a
segmentation attention layer, which is capable of taking into account
the transitions between elements of X. They use a linear-chain CRF to

where each y; is either 1 (“pay attention”) or 0. They then pro-
pose to use normalized marginal probabilities as attention weights:
wt /[ p .- w(yt = 1X). They show how to backpropagate gradients
through the forward-backward algorithm, which they use to compute
the marginal probabilities.

generalizing structured attention . With Section 8.4.1 no-
tation, any y can be represented as a tensorY 2 f0;1g 2 2 and the
potentials as atensor 2 RT 2 2. Similarly to Y. Kim et al. ( 2017,
we de ne

t1j » XtMz +ty; and o5 . toy;

where xMz is a learned bilinear formand T 2 R? 2 is a learned tran-
sition matrix. Following Section 8.4.1, the gradient r Vit ( ) is equal
to the expected matrix E 2 RT 2 2 and the marginals are obtained
by marginalizing that matrix. Hence, we can set wy / p . (Yt =
1jX) = er1.0 + er1.1 . Backpropagating through r Vit () can be car-
ried out using our approach outlined in Section 8.3.4. This approach
is not only more general, but also simpler and more robust to under-
ow problems than backpropagating through the forward-backward
algorithm as done by Y. Kim et al. ( 2017).

experiments . We demonstrate structured attention layers with an
LSTM encoder and decoder to perform French to English translation
using data from a 1 million sentence subset of the WMT 14 fr-en chal-
lenge. We illustrate an example of attention map obtained with ne-
gentropy and "3 regularizations in Figure 8.6. Non-zero elements are
underlined with borders: ‘%—regularized attention maps are sparse
and more interpretable — this provides a structured alternative to
sparsemax attention (Martins and Astudillo, 2016. Results were all
within 0.8 point of BLEU score on the newstesR014dataset. For French
to English, standard softmax attention obtained 27.96, while entropy
and 2 regularized structured attention obtained 27.96 and 27.19 —
introducing structure and sparsity therefore provides enhanced inter-
pretability with comparable performance. We provide model details,
full results and further visualizations in Section B.3.3.

8.7 conclusion

In this chapter, we proposed a theoretical framework for turning
a broad class of dynamic programs into convex, differentiable and
tractable operators, using the novel point of view of smoothed max
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Figure 8.6 — Attention maps obtained with structured attention. Although

both regularizations led to the same translation ( y-axis) in this

example, attention is sparse and more interpretable with %

operators. This approach sheds a new light on how to transform dy-
namic programs that predict hard assignments ( e.g.,the maximum
a-posteriori estimator in a probabilistic graphical model or an align-
ment matrix between two time-series) into continuous and probabilis-
tic ones. We provided a new argument in favor of negentropy regu-
larization by showing that it is the only one to preserve associativity
of the smoothed max operator. We showed that different regulariza-
tions induce different distributions over outputs and that % regular-
ization has other benets, in terms of sparsity of the expected out-
puts. Generally speaking, performing inference in a graphical model
and backpropagating through it reduces to computing the rst and
second-order derivatives of a relaxed maximum-likelihood estimation
— leveraging this observation yields elegant and ef cient algorithms
that are readily usable in deep learning frameworks, with various
promising applications.
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CONCLUSION

In this thesis, we developed two new approaches for functional
MRI analysis, that opens new perspectives for taking advantage of the
amount of data that is now available.

First, in Chapter 3-5, we showed that sparse matrix factorization
techniques were amenable to the terabytes of data produced by rest-
ing state iMRI. We learned that introducing random perturbation in
learning algorithms can prove bene cial if these perturbations allows
to perform faster updates while keeping most of the signal. We can
know learn dictionaries of 1000components from the HCP1200dataset
in a few days, which opens new perspectives for subsequent analysis:
we are the rst to provide so many continuous functional networks
learned on nearly 5000resting-state fMRI records.

We are now performing an extensive validation of these networks
for various neuro-imaging tasks. In a work to appear, we show that
using functional networks learned on thousands of subjects for re-
ducing the dimensionality of input data is bene cial for diverse data
analysis tasks performed by neuroscientists. We argue in favor gather-
ing fMRI studies in the form of loadings over the functional networks
we provide, at different scale (128 512 1024components), in common
public repositories.

Second, in Chapter 7, we showed the interest of dusing eeper mod-
els in predictive modeling for neuro-imaging. We established that
multi-layer models could identify meaningful cogntitive directions in
which decoding is made easier, and successfully aggregate the infor-
mation from many studies to improve decoding accuracy. We per-
formed an extensive study of the components that made our model
accurate and interpretable, and established the interest of newly in-
troduced regularization and training techniques (Dropout, batch nor-
malization, Adam) in the eld of fvMRI. The method based on ensem-
bling and NMF that we introduced extract interesting directions in the
output space of an intermediary layer is new and may be of interest
in other applications — the problem of producing interpretable deep
models is indeed quite fundamental in the eld. This line of research
brings an interesting perspective in machine learning: rst, learning
over-parametrized models with stochastic optimization and regular-
ization allows to take a step forward in performance. Yet, to interpret
the predictions of these models, we have to step down and transform
the learned models in ways that reduces the effect of random training,
S0 as to recover meaningful parameters.

The matrix factorization methods we developed in Chapter 4-5 ex-
hibits the power of stochastic subsampling, which appears an ef -
cient method to accelerate training of models with high-dimensional
inputs. The smM framework that we extended into SAMM includes
stochastic gradient descent (SGD as an instance. The performance
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gain obtained by sketching surrogate computations and freezing a
large fraction of the model parameter (the dictionary D) at each iter-
ation suggests that these approaches should be useful when running
SGD on more general non-convex objectives than the matrix factor-
ization one. Meanwhile, our methods proved useful in several MF
applications (hyperspectral imaging, collaborative ltering), and are
likely to provide large speed-ups for working with high spatial and
temporal resolution modalites, such as electron microscopy imaging,
tomography, etc.

Finally, the smoothing approach proposed in Chapter ( 8) is simple
yet general, and is likely to be amenable to other algorithms that
have an approximate dynamic programming structure ( e.g.,Dijsktra
algorithm), and to reinforcement learning problems. The fact that 2
smoothing provides a way to compute sparse marginals in graphical
models is also an interesting properties. It permits to output small
sets of top-scored predictions, which should improve performance
(typically, in text analysis and language translation).

9.1 software

A number of software contributions have been performed within
the context of this thesis. All produced code was written in Python,
using a combination of scikit-learrt?, nilearn?, Cython'3, PyTorch* for
experiment design, ef cient routine writing and model design, re-
spectively. Software references are provided in the main section of
this thesis.

The work presented in Chapter 4-5 is available as a Python pack-
age called mod| that heavily relies on Cython for core algorithmic
implementation:

github.com/arthurmensch/modl

The work presented in Chapter 7 is available as a Python package
called cogspacesThe multi-layer model is de ned and trained using
PyTorch while the pipelines for handling data and evaluating perfor-
mance relies on scikit-learn

github.com/arthurmensch/cogspaces

The work presented in Chapter 8 is available as a Python pack-
age called didyprog The new dynamic programming layers are im-
plemented using PyTorchlow-level cpu/ GPU API. We provide these
layers and wrap them in a higher level library for natural language
processing, and in existing models for neural machine translation.

github.com/arthurmensch/didyprog

During these three years, | had the joy to contribute to scikit-learn
(improvement in the decompositioomodule, SAGA algorithm, cython
compilation system) and nilearn (dictionary learning module).
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11 scikit-learn.org
12 pjlearn.github.io
13 cython.org

14 pytorch.org
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PROOFS OF CHAPTER7 — SOMF AND SAMM
ANALYSIS

This appendix to Chapter 5 contain the detailed proofs of Propo-
sition 5.3 and Proposition 5.1. This section can be skipped at rst
reading.

a.l proofs of convergence

We introduce three lemmas that will be crucial to prove saAMM con-
vergence, before establishing it by proving Proposition 5.3. Finally,
we show that somF is indeed an instance of saMM (i.e. meets the
assumptions (C)—1)), proving Proposition 5.1.

a.l.1 Basic properties of the surrogates, estimate stability

Let us rstrecall a basic inequality for L-Lipschitz continuous func-
tions. This inequality is useful in the demonstration of Lemma A.2
and Proposition 5.3. Let f : RX I R be a function with L-
Lipschitz gradient. That is, for all ; ©2 ; kr f( )- r f( 9k, 6
Lk - %,. Then, forall ; %2

f(96 f()+rf() (0% )+ %k - %, (A.1)

In this section, we derive an important result on the stability and
optimality of the sequence ( ), formalized in Lemma A.3 — intro-
duced in the main text. We rst introduce a numerical lemma on the
boundedness of well-behaved deterministic and random sequence.

Lemma A.1 (Bounded quasi-geometric sequences) Let (x;), be a se-
quence inR*, u:R R ! R,tp 2 N and 2 [0;1) such that, for
allt > to; Xt 6 X -1+ u(Xe;X- 1), whereu(x;y) 2 o(x+y) for
X;y ! 1 .Then(xt), is bounded.
Let now(X;)¢ be a random sequenceRf , such thatE[X;] < 1 . We
de ne (F¢), the ltration adapted to(X¢),. If, forallt >t g, there exists a
-algebraF;osuch thatF;. ; F;o F; and

EXtjFto] 6 X .1+ U(Xe; Xt- 1);
then(X;); is bounded almost surely.

Proof. We rst focus on the deterministic case. Assume that (xt), is
not bounded. Then there exists a subsequence of(x; ), that diverges
towards +1 . We assume without loss of generality that (x¢), ! 1.
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Then, x; + X;- 1! 1 andforall >0, using the asymptotic bounds
on u, there existst, > tg such that

8t>11; Xt 6 X1+ (X + Xt-1)

+
and therefore x; 6 1

Xt- 1.

Setting small enough, we obtain that x; is bounded by a geometri-
cally decreasing sequence aftert,, and converges to 0, which contra-
dicts our hypothesis. This is enough to conclude.

In the random case, we consider a realization of (X;), that is not
bounded, and assumes without loss of generality that it diverges to
+1 . Following the reasoning above, there exists <1 ,t; >0, such
thatforall t>t 1, E[X{jFto]6 X {.1,whereF;.; Fio F;. Taking
the expectation conditioned on Fi. 1, E[X{jFt- 1] 6 X (. 1, as X;- 1
is deterministic conditioned on F;. 1. Therefore X; is a supermartin-
gale beyond a certain time. As E[X;] < 1 , Doob's forward conver-
gence lemma on discrete martingales (Doob, 1990 ensures that (X; ),
converges almost surely. Therefore the event f(X;), is not boundedg
cannot happen on a set with non-zero probability, less it would lead
to a contradiction. The lemma follows. O

We then derive some properties of the approximate surrogate func-
tions used in sAMM. The proof is adapted from Mairal ( 2013).

Lemma A.2 (Basic properties of approximate surrogate functions).
Consider any sequence of iterates), and assume there exists 0 such
thatgr 2 T.. (ft; ¢-1; )forallt > 1. Denehy, g;- fi forallt > 1,
ho, hoandh;, (1- wi)hi. 1+ wih;. Under assumptiongD) — (G),

() (r he( t-1))po is uniformly bounded and there exis® such that
fr hig is uniformly bounded byrR®.

(i) (ht), and(ﬁt)t are uniformlyR%Lipschitz,(g; ), and(g:), are uni-
formly (R+ R9-Lipschitz.

Proof. We rstprove (i). Weset >0 anddene % - it

As h; has aL-Lipschitz gradient on RK, using Taylor's inequality ( A.1)
L 2
he( 96 he(¢)- kr ht(t)kz*'T (A.2)
1 L 2 L
kr he( t)ka 6 —(he( )~ he( 0))"'76* * 5

where we use hi( ) < and -h¢( Q 6 from the assumption
Ot 2 T, (ft; t-1; ). Moreover, by de nition, r h; exists and is L-
lipschitz for all t. Therefore, 8t > 1,

kr he( )kz 6 kr he( (ko + LK (- 1- K,

Since is compact and (kr h¢( ¢)k,),. ; is bounded in (A.2),r hy is
bounded by R?independent of t. (ii) follows by basic considerations
on Lipschitz functions. O

149



A.1 proofs of convergence 150

Finally, we prove a result on the stability of the estimates, that de-
rives from combining the properties of (g;); and the geometric de-
crease assumption(l).

Lemma A.3 (Estimate stability under saAMM approximation) . In the
same setting as Lemma 2, with the additional assumptiofil) (expected
linear decrease @f suboptimality), the sequenée; - . 1k, converges
to 0 as fast agwt ), and  is asymptotically an exact minimizer. Namely,
almost surely,

K- t-1Ky 2 O(we)andge( 1)- Gi( 7) 2 O(w?).

Proof. We rst establish the result when a deterministic version of (1)
holds, as it makes derivations simpler to follow.

a.1.1.1 Determistic decrease rate

We temporarily assume that decays are deterministic.

(Iget) Forallt>0,0:( t) < gt( t- 1)- Moreover, there exists >0
such that, for all t>0

G(0)- G( )6 (L- )G( t-1)- G )
where 7 = argmin g;( );
2

We introduce the following auxiliary positive values, that we will
seek to bound in the proof:

Av, Ki- -1k Br, k- {ko;
Ctl k:_ ;?-]_kz; Dt’ g[( t)_ @( ?)

Our goal is to bound A;. We rstrelate itto C; and B; using convex-
ity of “, norm:

A2 6 3B + 3B2 | + 3C2. (A.3)
As 7 is the minimizer of g, by strong convexity of (gt )+,

5Bt = 5Kt~ (k5 6 Dy; (A.4)

while we also have

Ski- k6 G 1) G( )

6 (1- we) G- 1( - 1)- Ge-1( {) +wWe 9e( (- 1)- 9e( ()

6 wi(R+ RYk (- ¢ ;ko; andthus C; 6 wt@. (A.5)
The second inequalities holds because ;. ; is a minimizer of g;. 1

and g; is Q-Lipschitz, where Q , R+ RC using Lemma A.2. Replac-
ing (A.4) and (A.5) in (A.3) yields

12Q2
A2 6 §(Dt + Di. 1)+ iw?; (A.6)
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and we are left to show that Dy 2 O(w?) to conclude. For this, we
decompose the inequality from (I 4e¢) into

Dt 6 (1- )(Gt( t-1)- Ge( ()
=(1- ) we e t-1)- 9e( 1) +we g 0)- el ()
+(1- ) (1- we) Ge- 2 - 1)- Ge- 2 (- 1)
+(L1- we) Ge-1( - 1)- Ge-1( ()
6 (1- )wiQ(A¢ + Bt)+ Dt 1); (A.7)

where the second inequality holds for the same reasons as in (A.5).
Injecting (A.4) and (A.6) in (A.7), we obtain

2

~ ~ W2 Y
D1 6 (1- )Dr-1- 5+ +u(De; D 1); (A.8)
t
where we de ne Dy , %.
t

Injecting (A.4) and (A.6) in (A.7), we obtain

2

. . W - -

Dt 6 (1- )Dt—lvtvi-zl‘l‘U(Dt;Dt_l); where
t

s
. . o~ W2 9 _—
u(Dt;Dr-1), (1- )Q  3(Dt+Di1— 55+ Q+ D
t
2
From assumption (G), WV;'zl I 1, and we have, from elementary com-
t

parisons, that u(D¢;D¢. 1) 2 o(D; + D¢. 1) if D; ! 1. Using the
determistictic result of Lemma A.1, this ensures that D; is bounded.
Combined with ( A.4), this allows to conclude.

a.1.1.2 Stochastic decrease rates

In the general case(l), the inequalities (A.4), (A.5) and (A.6) holds,
and (A.8) is replaced by

2
. .~ w2 . .
E[D¢jF,. %]6 (1- )Dt.1 vtv L+ u(Dy;Dy- 1);

2
t

Taking the expectation of this inequality and using Jensen inequality,
we show that (A.7) holds when replacing D; by E[D:]. This shows
that E[D¢] 2 O(w?) and thus E[D{] < 1 . The result follows from
Lemma A.1, that appliesasF;. 1 F,_ 1 F;. O

a.l.2 Convergence gfAMM — Proof of Propositios.3

We now proceed to prove the Proposition 5.3, that extends the
stochastic majorization-minimization framework to allow approxima-
tions in both majorization and minimizations steps.

Proof of Propositio®.3. We adapt the proof of Proposition 3.3 from
Mairal (2013) (reproduced as Proposition 5.2 in our work). Relaxing
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tightness and majorizing hypotheseses introduces some extra error
terms in the derivations. Assumption (H) allows to control these
extra terms without breaking convergence. The stability Lemma A.3
is important in steps 3 and 5.

a.1.2.1 Almost sure convergence @; ( t))

We control the positive expected variation of (g:( ¢)); to show that
it is a converging quasi-martingale. By construction of g; and prop-
erties of the surrogates gt 2 T. (ft; t-1; t), where  is a non-
negative sequence that meets(H),

gt( t)- Ge-1( t-1)
=(0t( t)- 9t t- 1)+ We(Qe( t-1)- Ot- 1( t- 1))
6 We(9t( t-1)- G- 1( t- 1))
6 Wi(ge( t-1)- fr( o)+ Wife( t-1)- fro1( - 1)
+ Wi (fro 1( - 1) - Gt- 1( t- 1))
6 wi(fi( 1-1)- froa( o)+ We(Ta+ o); (A.9)

where the average error sequence( ¢); is de ned recursively: ¢ ,
oand ¢, (1- wt) ¢. 1+ W ¢. The rstinequality uses gi( ¢) 6
0:( ¢- 1). To obtain the forth inequality we observe

gt t-1)- fe(t-1)< ¢

by de nition of { and f{( ¢. 1)- Gi( - 1) 6 ¢, which can easily be
shown by induction on t. Then, taking the conditional expectation
with respectto F;. 1,

E[9t( t)- Ot- 1( t- 1)jFt- 1]
6 wy sgpjf( )- feoa()i+ we(- 1+ E[ tjFe- 1]). (A.10)

We have used the fact that . ; is deterministic with respectto F;. 1.
To ensure convergence, we must bound both terms in (A.10): the rst
term is the same as in the original proof with exact surrogate, while
the second is the perturbative term introduced by the approximation
sequence( t),. We use Lemma B7 from Mairal ( 2013), derived
from the theory of empirical processes: E[sup , jf( )- fi. 1()j] =
O(w; t172), and thus

P _ P
wiE[supjf( )- fi.1()]<C  tPwi<1 (A.12)
2

t=1 t=1

where C is a constant, ast'=2w? = t172- 24 and u > 3=4 from (G). Let
us now fc&sus on the second term of (A.10). De ning, forall 16 i 6 t,
Wit = Wi jt:i+l(1' Wj),

X X
E[t]= WiE[ {16 wq E[ t].
i=1 i=1
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We set >0 sothat2(u- 1)- > -1 Assumption (H) ensures
E[ ]2 O(t2(u- 1)- ) which allows to bound the partial sum

E[i]20(t* 1 ).
i=1

Therefore, we have

WiE[ t- 1+ E[ tjFt- 1]l = WE[ t- 1]+ Wi E[ (]
X
6w E[(] +WE[] (A.12)
i=1
6At2u-2u-l- +Bt2u-u-2- 6 Ct 1-
where we use u < 1 on the third line and the de nition of  (w¢),
on the second line. Thus . W{E[ 7.1+ E[ (jF.1]] < 1. We
use guasi-martingale theory to conclude, as in Mairal ( 2013). We
de nethevariable tobelif E[g:( ¢)- 9t- 1( t- 1)jFt- 1]> 0,and O
otherwise. As all terms of (A.10) are positive:

R _ _
E[+(9t( ¢)- 9t-1( t- 1))]

t=

xl—‘

E[ tE[Qt( t)- Ot- 1( t- 1)iFt- 1]]
1

—
1

6  WiE[supjf( )- fr-1( )i+ -1+ E[ tjFe-alil< 1.
t=1 2

As g; are bounded from below ( f; is bounded from (D) and we easily

show that ; is bounded), we can a quasi-martingale convergence the-

orem originally found in Métivier ( 1982. It ensures that (gt( t)i>1

gpnverges almost surely to an integrable random variable g?, and that
-1 E[E[9t( t)- 9t- 2( t- 1)iFt- 1]l < 1 almost surely.

a.1.2.2 Almost sure convergence t_if t)

We rewrite the second inequality of ( A.9), adding ¢ on both sides:

06 W G- 1( 1- 1) fro2( - 1)+ -1
6 W 9t( t-1)- fr(e-1) +we fr( e-1)- fio 2 t-1)
+ Or-1( t-1)- Gt 1) +we -1
6 we fe( t-1)- froa(eo1) + G- 1( - 1)- Ge( 1)
+ Wi+ t-1); (A.13)
where the left side bound has been obtained in the last paragraph by

induction and the right side bound arises from the de nition of t-
Taking the expectation of (A.13) conditioned on F;. 1, almost surely,

06 Wi (f( t-1)- fr-1( t- 1))
- E[0t( £)- Ot- 1( t- 1)iFt- 1]+ Wi (- 1+ E[ ¢jFe- 1]);
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We separately study the three terms of the previous upper bound.
The rst two terms can undergo the same analysis as in Mairal ( 2013).
First, almost sure convergence of the sum

e
E JE[Gt( t)- Ot- 1( t- 1)iFt- 1]i
t=1

implies that E g¢( t)- Gi- 1( t- 1)jFt- 1 is the summand of an al-
most surely converging sum. Second, w; f( ¢. 1) - fi. 1(t-1) Is
the summand of an absolutely converging sum with probability one,
less it would contradict ( A.11). To bound the third term, we have
pnce more to control the perturbation introduced by ( t),. We have

t1: 1 Wt -1+ WiE[ tjFi- 1] < 1 almost surely, otherwise Fubini's
theorem would invalidate ( A.12).

As the three terms are the summand of absolutely converging sums,
the positive term w (gi- 1( t- 1)- fi. 1( t- 1)+ . 1) isthe summand
of an almost surely convergent sum. This is not enough to prove that
he( ¢), Gi(¢)- ft( ¢)! 1 O, hence we follow (Mairal, 2013) and
make use of its Lemma A.6. We dene X; , hio1( - 1)+ t-1.
As (H) holds, we use Lemma A.3, which ensures that (ﬁt)t>l are
uniformly R%Lipschitz and k - . 1ko = O(w¢). Hence,

Xee1- Xei6 jhe( o) heo1( - )i+ it t-a
6 Rk - (.1ko+|t- t.1j; ashy is R%Lipschitz
6 O(We)+ jt- t-1); ask¢- (- 1ks = O(wy)

From assumption (H), ( ¢); and ( ¢); are bounded. Therefore j ¢ -
t- 106 We(j tj+ ] t- 1)) 2 O(wy) and hence

th+1 - th 6 O(Wt)

Lemma A.6 from Mairal ( 2013) then ensures that X; converges to
zero with probability one. Assumption (H) ensuresthat { ! 1 O
almost surely, from which we can easily deduce ¢ ! ; 0 almost

surely. Therefore hi( () ! 0 with probability one and (f;( t)t>1
converges almost surely to g?.

a.1.2.3 Almost sure convergence t_(f t)

Lemma B.7 of (Mairal, 2013), based on empirical process theory
(Van der Vaart, 2000, ensures thatf; uniformly converges to f. There-
fore, (f( t));» 4, converges almost surely to g’

a.1.24 Asymptotic stationary point condition

Preliminary to the nal result, we establish the asymptotic station-
ary point condition ( A.15) as in Mairal (2013). This requires to adapt
the original proof to take into account the errors in surrogate com-
putation and minimization. We set > 0 . By de nition, r he is
L-Lipschitz over RX. Following the same computation as in ( A.2), we
obtain, forall >0 ,

kr hi( ko 6 27 + L?; (A.14)
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where we use jhi( )j6 T forall 2 RX. As ;! 0and the inequal-
ity (A.14) is true for all , kr ﬁt( t)ko ! 1 Oalmost surely. From the
strong convexity of g; and Lemma A.3,k { - ko, converges to zero,
which ensures

kr he( {)ko 6 kr he( {)ka+ Lk - [ka! 1 O. (A.15)

a.1.25 Parametrized surrogates

We use assumption (F) to nally prove the property, adapting the
proof of Proposition 3.4 in Mairal ( 2013). We rst recall the deriva-
tions for obtaining ( A.16) We dene ( t); such thatg; = g , for all
t>0. We assume that ; is a limit point of ( {),. As is compact,
there exists an increasing sequence(ty )y such that ( ¢, )k converges
toward 1. As K is compact, a converging subsequence of( t, )«
can be extracted, that converges towards 1 2 K. From the sake of
simplicity, we drop subindices and assume without loss of general-
ity that ¢ ! 1 and ¢! 1 . From the compact parametrization
assumption, we easily show that (g ,), uniformly converges towards
1, §,.Then,dening hy =g - f,forall 2

rf(1; - 1)=rgi(1; - 1)-rhi(1; - 1) (A19
We rst showthat rf( 1; - 1) > Oforall 2 . We consider
the sequence( {),. From Lemma A.3, k ¢ - 7k ! 0, which im-
plies 7! 1. gt converges uniformly towards g; , which implies
(@t( 7))y ! 01( 1). Furthermore, as { minimizes g, for all t >0

and 2 ,0t({)6 gi( ). Thisimplies g1 ( 1) 6 inf » g1 () by
taking the limitfor t! 1 . Therefore ; is the minimizer of g; and
thusrgi(1; - 1)>0.

Adapting the work of Mairal ( 2013), we perform the rst-order
expansion of h; around { (instead of  in the original proof) and
showthatr hy ( 1; - 1)= 0, ash, differentiable, kr hy( ?)ko! 0
and 7! 1. Thisis sufcient to conclude. O

a.1.3 Convergence cfoMF — Proof of Propositiorb.1

Proof of Propositiofs.1. From assumption (D), (xt), is 2-bounded by
a constantX. With assumption (A), itimpliesthat ( ), is 2-bounded
by a constant A. This is enough to show that (g;); and ( ); meet
basic assumptions (C)—(F). Assumption (G) immediately implies (B).
It remains to show that (g¢): and ( ): meet the assumptions (H) and
(). This will allow to cast somF as an instance ofsAMM and conclude.

a.1.3.1 The computation db; veries (l)

We de ne DY = argming , - 9t (D). We show that performing sub-
sampled block coordinate descent on g; is suf cient to meet assump-
tion (1), where { = D{. We separately analyse the exceptional case
where no subsampling is done and the general case.

First, with small but non-zero probability, M = I, and Alg. 3
performs a single pass of simple block coordinate descent on g;. In
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this case, asg; is strongly convex from (A), (Beck and Tetruashvili,
2013 Wright, 2019 ensures that the sub-optimality decreases at least
of factor 1-  with a single pass of block coordinate descent, where

> 0 is a constant independent of t. We provide an explicit in
SectionA.1.4.1.

In the general case, the function value decreases deterministically
at each minimization step: g{(Dt) 6 g{(D¢. 1). As a consequence,
E[9t (D4)jF,. %;Mt 6 Ip] 6 0t(D¢- 1). Furthermore, g; and hence
gt (D7) are deterministic with respect to F.. 1 which implies

E[G: (D{)iF,. 1;M ¢ 6 1p]= Gt (D).

Dening d, P[M¢ = Ip], we split the sub-optimality expectation
and combine the analysis of both cases:

E[Gi(D1)- G (DF,. 3]
= dE[Gi(D1)- G (DF,. 3:M( = 1p]
+(1- DE[@D)- GDIF. 1M 6 1p]

6 d(1- )+(1-d) (Gt(Dt-1)- Gi(D7))
= 1-d (§(Dt-1)- Gt(DY)).

a.1.3.2 The surrogate$g: ), verify (H)

We dene g 2 S, (f;;D¢. 1) the surrogate used in OMF at iter-
ation t, which depends on the exactcomputation of f while the
surrogate g; used in SOMF relies on approximated . Formally, us-
ing the loss function *( ;G; ), % G - ~ +  (),werecall
the de nitions

¢,argmin ( ;G{; {); 1, argmin ( Gy )
2Rk 2Rk
9/(D), *( {;D”D;D”x); 6 (D), *( ;D D;D”xy).

The matrices G{, { are dened in (4.12) and Gy, ¢ in either the
update rules (b) or (c). We dene  , kg/- giki to be the ;
difference between the approximate surrogate of sOMF and the ex-
act surrogate of oMF, as illustrated in Figure 5.1. By de nition, g; 2
T.. (ft; t-1; t). We rstshowthat  can be bounded by the Froebe-
nius distance between the approximate parameters Gy,  and the
exact parametersG/; {. Using Cauchy-Schwartz inequality, we rst
show that there exists a constant C%> 0 such that for all D 2 C,

jgt(D)- g/(D)j6 Ck (- (ka. (A.17)

Then, we show that the distance k - Kk, can itself be bounded:
there exists C%> 0 constant such that

k - 7k, 6 COKG?- Grkp+k 7- tky). (A.18)

We combine both equations and take the supremum over D 2 C,
yielding

t 6 C(KGY - Gike+k 7- tky); (A.19
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where C is constant. Detailed derivation of ( A.17) and (A.18) relies
on assumption (A) and are reported in Section A.1.4.2.

In a second step, we show that kG{ - Gikr and k {- (ko vanish
almost surely, suf ciently fast. We focus on bounding Kk ¢ - t'-’k2 and
proceed similarly for kG - G{kr when the update rules (b) are used.

Fort>0, we write i, it. Then
. X . .
i, Bz (D32 (M x;
s6 t; xg= x (1)
. Q . ,
where gl;t) = Csi) s<t: XS:X(i)(l‘ Cgi)) and Cgl)z S6 t; Xs = x()

We can then decompose (- { as

o2 = X (i)(D -D >M <x(
t t = sit s-1 t- l) sX
S6 t; xg=x¢=x()
+DI. M- 1 x®, (A.20)

S6 t; xg=x1)

The latter equation is composed of two terms: the rst one captures
the approximation made by using old dictionaries in the computation
of ( t);, while the second captures how the masking effect is aver-
aged out as the number of epochs increases. Assumption (B) allows
to bound both terms at the same time. Setting , Fmin v- 3;(3u-
2)- v > 0, a tedious but elementary derivation presented in Sec-
tion A.1.4.3 indeed shows E[k - 7ko]2 O(t2(“- 1) Yand ! O
almost surely. The somF algorithm therefore meets assumption (H)
and is a convergent sAMM algorithm. Proposition 5.1 follows. O

We postponed the proof of three highly technical results in the
proof above. We turn to establish them.

a.l.4 Detailed derivations in the proof of Propositibri

Let us rst exhibit a scaler > 0 independent of t,for which (l) is
met.

a.1.4.1 Geometric rate for single pass subsampled block coordinate descent

For DU) 2 RP ¥ any matrix with non-zero j-th column d{) and
zero elsewhere

rg(D+DW)- r (D)= Cifj;jld?

and hence g; gradient has component Lipschitz constart = d[i;j]
for component j, as already noted by Mairal et al. (2010. Using the
terminology from Wright ( 20159, r g; has coordinate Lipschitz constant
S e 12 2.
Lmax ' Orf-injgl)(( Ct D’J] 6 t>0;(|;na6)1§<k t[J] 6 A ’
as( )¢ is bounded from (A). As a consequence,g; gradienbigalso

L-Lipschitz continuous, where Wright, 2015note that L 6 = KLmax.
Moreover, g; is strongly convex with strong convexity modulus >0
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by hypothesis (A). Then, Beck and Tetruashvili, 2013 ensures that
after one cycle over the k blocks
E[Gt(D1)- G(D))iFi- ;M = Ip]

° I 2Lmax(1+ kLZ:Ltznax) (Gt (Dt 1)- g_t(D:))

6 1- (0:(Dt-1)- G:(D7)) where

2A2(1+ k2)

a.1.4.2 Controling  from (G¢; +);(G{; {) — Equations(A.17) and
(A.19)

We detail the derivations that are required to show that (H) is
met in the proof of somMmF convergence. We rst show that ( ) is
bounded. We chooseD > 0 such that kd(Vk, 6 D for all j 2 [k] and
D 2 C, and X such that kxk, 6 X for all x 2 X. From assumption (A),
using the second-order growth condition, forall t>0,

oK o 0k3 6 (0)-(% Gt t- ¢t ()
Sk tk§+% {Gt ¢ 6 0+k tkk tky; hence
k (k56 Fl;krDXk tk,; and therefore
K ik, 6 krDX A

We have auccessively used the fact that (0) = 0, ( ¢) > O, and
k tk, 6  krDX, which can be shown by a simple induction on the
number of epochs. For all t > 0, from the de nition of t and t” for
allD 2 C

. . 1 > > > >
igi(D)- g/(D)i= 5TD"D( ¢ - { {7)-( t- )D'x

6 %kD>Dka t £ ¢ ke
+ kD kekxi kok ¢ - 7k,
6 (kD2A + pEDX)k t- oKy

where we use Cauchy-Schwartz inequality and elementary bounds
on the Froebenius norm for the rst inequality, and use
t; 16 A, xg 6 Xforal t>0 and dl) 6 D forall j 2 [K] to
obtain the second inequality, which is ( A.17) in the main text.
We now turn to control k - E’kz. We adapt the proof of Lemma
B.6 from Mairal, 2013, that states the lipschitz continuity of the min-
imizers of some parametrized functions. By de nition,

? N N - n G L)
{ = argmin “( ;G¢; ) t = argmin "( ;Gyt; t);
2Rk 2Rk
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Assumption (A) ensures that G |k, therefore we can write the
second-order growth condition

sko- Tk 6 °( GGh D) (G )
—k (- (K26 ( 7:Gt; 1)- (5GP D);  and therefore
k - K56 p( 1)- p( {); where
p( ). (3Gt - (GGl D)
p takes a simple form and can differentiated with respectto . For
all 2 RKsuchthatk k, 6 A,
- 1 > ? > ?
P()=5 "(Gi-G) - “(e- o)
rp( )=(Gt- G) -( t- )
kr p( )k, 6 AKGy - Gike+k - {k,, L

Therefore p is L-Lipschitz on the ball of size A where  and 7 live,
and

kK t- (k36 Lk (- ¢k
k t- ¢k, 6 ékc;t- Gikg + L £ oKy

which is (A.18) in the main text. The bound ( A.19) on  immediately
follows.

a.1.4.3 Boundingk - 7k, in equation(A.20)

Taking the ", norm in (A.20), we have k - {k, 6 BL; + CR,,
where B and C are positive constants independent of t and we intro-
duce the terms

X (i)
Lt , sit kKDs- 1- Dt- 1kg;
S6 t; xg= Xt = x(1)
P (i)
R, s6t; xs=x{) st Ms - | E
conditioning on the sequence of drawn indices . We re-

call that (iy), is the sequence of indices that are used to draw (Xt ),

from fx('g, namely such that x; = x{). (i), is a sequence of
i.i.d random variables, whose law is uniform in [1;n]. For each
i 2 [n], we de ne the increasing sequence (tf)'))b>0 that record the

iterations at which sample (i) is drawn, i.e. such that iy, = i for all

b>0. Fort> 0, we recall that cg') > 0 is the integer that counts

the number of time sample (i) has appeared in the algorithm, i.e.
¢! = maxfb > 0;t{) 6 tg These notations will help us understand-

ing the behavior of (L;), and (R);.
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bounding R;. Therightterm R; takes its value into sequences that
are running average of masking matrices. Formally, we have R =

kI\/I_E“) - lkg, where we de ne for all i 2 [n],

(1)

X
ME'), ('(i)) iyMt,;  which follows the recursion
g b=1 thite
s MO = (1o M+ oMy ifi=
t‘ . Cf') t- 1 CEI) t t
s M) = m{, ifisi (A.21)
M) = 0 foralli2[n]

When sampling a sequence of indices (is)s>0 , the n random matrix

sequences[(l\/l_fi))t6 O]iZ[n] follows the same probability law as the

sampling is uniform. We therefore focus on controling (|vT§°>)t. For
simplicity, we write c¢; , cgo). When E[] is the expectation over the
sequence of indices(is)s,

_ x _
EKM (- 1k 26 E (M V;i1- 1) = pE[(M V[0;0- 1)
j=1
6 Cp(c )™ ¢, = Cp(c)™2Y; (A.22)

where C is a constant independent of tWe have simply bounded the
Froebenius norm by the “; norm in the rst inequality and used the
fact that all coef cients M ¢[j;j] follows the same Bernouilli law for
allt >0,j 2 [p]. We then used Lemma B.7 from Mairal, 2013
for the last inequality. This lemma applies as M ([0; Q] follows the
recursion (A.21). It remains to take the expectation of (A.22), over all
possible sampling trajectories (is)s>o :

E E[Ri(is)s] = E E[kM {0 - Tkgi(is)s] (A.23)
E EkM ¥ - Ikqj(is)s] = EkM (P - 1k.]
CpE[(c)*™ V16 CpE[(ci)*™ 1 1.

E[R]

The last inequality arises from the de nition of the exponent :
zmin v- 2:(3u- 2)- v, as follows. First, >0 asu> i13. Then,
we successively have

5 2 3 11 3 5 _
E-ZU<§<Z’ asu > 1 V>Z+2> §-2u+2,
1 1 5
v Z- —+ - = - - < - -
> v 5" 5 2u- 2 2u- 1)- 2<2@u-DH- ;

which allows to conclude. Lemma B. 7 from Mairal, 2013 also en-
sures that M ([0;0] ! 1 almost surely when t ! 1. Therefore
(IVI_EO) - 1)¢ converges towards 0 almost surely, given any sample se-
qguence (is)s. It thus converges almost surely when all random vari-

ables of the algorithm are considered. This is also true for (I\/Tgi) - 1),

forall i 2 [n] and hence for R;.
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bounding L;. As above, we de ne n sequences[(Lﬁi))t] such

that L = LE“) for all t>0. Namely,

i2[n]

i X )
Lgl) J (sl;t)kDS-l‘ Dt-lkF
s6 t;
xs=x;=x()
Xﬁi) (i)
_ i
- 1 @) () Dtb‘ 1- Dy -1
b=1 b i t F

Once again, the sequences (LE'))t ; all follows the same distribu-
tion when sampling over sequence of indices (is)s. We thus focus
on bounding (LEO))t. Once again, we drop the (0) superscripts in the
right expression for simplicity. We set , 3u- 2- . From assump-
tion (B) and the de nition of , we have v < <1 . We split the
sum in two parts, around index d; , ¢;- b(c;) c, where b ctakes the
integer part of a real number. For simplicity, we write d , d; and
c, C; inthe following.

x
0
Lg ) = tpite Dtb- 1- Dtc- 1 E
b=1
p_ X xe X1
6 2 kD tpite T thit Ws

0 b=1 b=d+1 S=tp- 1

., 2 koL@ + LY
On the left side, we have bounded kD ki by P kD, where D is de ned
in the previous section. The right part uses the bound on kD - Dkg

provided by Lemma A.3, that applies here as (I) is met and (A.19)
ensures that (kgr - gk, ); is bounded.

We now study both LEE) and Lf;g). First, forall t>0,
X X Y X

0 -
LY e = b 1- )6 p(l- )P
b=1 b=1 p:b+1 b=1

(1_ C)bc c
c

6 C%' exp(c " V)6 Cc2U 1 = C(g)?- D

1
6 6 ¢’ exp log(1l- C—V)c

where C and C° are constants independent of t. We have used
> v for the third inequality, which ensures that log (1- Civ)c 2
O(c V). Basic asymptotic comparison provides the last inequality,
asc; ! 1 almost surely and the right term decays exponentially in
(ct);, while the left decays polynomially. As a consequence, LE.(l)) 10
almost surely. '
Secondly, the right tembcan be bounded as (w), decays suf-
ciently rapidly. Indeed, as = -, 1, = 1, we have
X ity 1 ty 1 ty- 1
Lf;g) , tpt Wg 6 dgnt?g(C Wg = Wg
b=d s=tp- 1 s=tp-1 s=tg- 1
tc'tdzct'dttc'td dit)u
(tg)" (d)" ¢ - di 'ty

6 W[d(tc = td) =

161



A.1 proofs of convergence

from elementary comparisons. First, we use the de nition of to
draw

Ct - di (ct)
(d)" 7 (c)u(d- ¢~ Hyu

6 C(ct) " Y =C(c)?u Y

were we use the fast that - 1 < 0. We note that for all b > 0,
tp+1 - tp follows a geometric law of parameter ni and expectation n.
Therefore, asc- d! 1 whent ! 0, from the strong law of large
numbers and linearity of the expectation

te-tg 1 X1

the1- tp! Ny

c-d c- db=d
tg 1(;(1
— = = th+1- tp ! n almost surely.
d db=0

As a consequence, &gt (f4)" | n'- U almost surely. This immedi-

ately shows ng) I 0 and thus L§°> I 0 almost surely. As with R;,
this implies that L; ! 0 almost surely and therefore

k t- 7k,! O almostsurely.

Finally, from the dominated convergence theorem, E[ﬁ(?—é)“] !

nl-Yfort! 1 .We can use Cauchy-Schartz inequality and write

B = S0 BTt ()
6 (%6 CCE[e)™ Y
(@)

where CUis a constant independent of t. Then
HM=%H$W%M=EEM%mM
= E[L{”]6 2 kDE[LY1+ E[L{Y12 O((c )2 2 ).
Combined with ( A.23), this shows that
Ek - (k]2 O((c)*" P ).

As c; follows a binomial distribution of parameter (t; 1), St + 1
almost surely when t ! 0. Therefore E[(St)2(u-1- )1 n -2(u- 1)
and from Cauchy-Schwartz inequality,

Elk - {k,]6 CE[(%)Z(“'”‘ e2u- - 2 o(r2u- -y,

We have reused the fact that converging sequences are bounded. This
is enough to conclude.
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PROOFS AND RESULTS FROM CHAPTERS8 —
DIFFERENTIABLE DYNAMIC PROGRAMMING

b.1 proofs and detailed derivations

This section contains the proofs of the propositions and lemmas
presented in the main text. It also contains derivations of gradient,
directional derivative and Hessian-product computations.

b.1.1 Proof of Lemm®&.1 (properties omax )

property 1 (boundedness). Letq? and q” be the solutions of
maxg o4 o 47X and maxqo4 o 9° X - (q), respectively. Then, we
have

max ()= ha?;xi- (a7)>h%xi- (@7 = max(9)- (a7
and
max(x)- (q°)>hg?;xi- (q°)= max (x).

Combining the two and using Lp 6 (q)6 Up 89 24P, we
obtain

max(x)- Up 6 max(x)- (q°) 6 max (x) 6 max(x)- (q°)

6 max(x)- L.p

P
When (q) = qilogqi, we have the tight inequality - logD 6
(q) 6 089 24 P and hence

max(x) 6 max (x) 6 max(x)+ logD.

When (q) = 1kgk?, we have the tight inequality > 6 (q) 6
$8g 24 P and hence

1
max(x) - > 6 max (X) 6 max(x)- .

Note that the difference U.p - L.p isequaltologD when is
the negative entropy and to % 6 % when s the squared “, norm.
Since logD > % for all integers D > 2, we get a better approxima-
tion of the max operator using squared ", norm than using negative

entropy, whenever D > 2.

property 2 (distributivity of + over max ). This follows
immediately from

max (x+cl)= maxhy;x+cli- (q)

q24 P

max hg;xi - (q)+ c= max (x)+ c.
q24 b
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Using our shorthand notation, this simply becomes
max (f(Y)+c)= max f(Y) +c.
Y2y Y2y
property 3 (commutativity ). Assume (Pq) = (q) for all

permutation matrices P. Let P~ ! be the inverse permutation matrix
associated with P. Then we have

max (Px)= maxhg;Pxi- (q)= maxHP iq:xi- (q)
g24 D q24 P
= maxhg;xi- (Pq)= maxhg;xi- (q).
g24 P q24 b

property 4 (non -decreasingness in each coordinate ). If
x6 y,thenforall q 24P, xqi- (q)6 hy;qi- (q),asallq
coordinates are non-negative. Thus max (x) 6 max (y).

property 5 (insensitivityto -1). Aswe have
max (X) = maXqps oho;xi - (Q);
if x;=- 1 ,thenq; = r max (x); = Ois the only feasible solution for

the j coordinate.

b.1.2 Proof of Propositio.1 (optimality of DP recursion)
Let vi( ) be the highest-score path up to node i 2 [N]. LetY; be
node i, thatisy; = 1and y_ = i. Note that L may depend on y but

we do not make this dependency explicit. Because nodes are sorted
in topological order, we can compute v;( ) by

X i 1
vi( )= )an@f Yiyi1 = 5“2%).( Veve1 T vy
t=2 t=2
e 1
= max yeyert oy Loa-
yaYi (o, ’

Recall that P; is the set of parent nodes of node i. From the associativ-

ity of the max operator,
!

e 1
vi( )= Jn;'aax ;nza\-(x yuye1tohy
i i _
yL1=j 152 |
B 1 '
= max max . +
2P, y2v; ) YtYt-1 1)
yL-1=]) t=2
From the distributivity of + over max, we obtain
0 1
e 1
Vi( )ZI’Q%X@;;T]Z@YX yt;Y1-1A+ ] =:T2]lajx Vj( )+ i
L oyLa=) =2 I

where we used the fact that the inner max operations are independent
of y. = i. This concludes the proof of the optimality of ( 8.3).
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b.1.3 Proof of Propositio®.2 (properties of DP ( ))

We prove in this section the three main claims of Proposition 8.2.
For the rst two claims, we rewrite ( 8.3) and (8.6) using the following
notations:

VO( ), max(ul( ) and v, (), max(u; ()); where
uPC) . Cia + VR0 )ity -1+ v g( )i 1= 1) 2 RN,

These de nitions are indeed valid as per Lemma 8.1, property 5.
proof of DP ( ) convexity . Sincev, ( )= 0, itis trivially con-

the composition of max and u; , a convex function and a function
which outputs a vector whose each coordinate is convex in . By in-
duction, since max is non-decreasing per coordinate (cf. Lemma 8.1
property 4),v; ( ) is convex (e.g.,Boyd and Vandenberghe, 2004 Sec-
tion 3.2.4). Thereforev; ( ) is convex for all i 2 [N]and DP ( )=
vy () is convex.

proof of DP () bound. We clearly have v, ( ) > v‘f( ). As-

is,u; () >ul()-(i-2U.n 1, where 12 RN is the unit vector.
Then, by induction, we have

max (u; () > max (uP( )-(i- U

> max(u( )-(i- YU ;
where we used Lemma 8.1, properties 1, 2 and 4. Thereforev, ( ) >
VO( )-(i- hU.y forall i 2 [N]and hence,DP ( )> LP( )-( N-
1)U N . Using a similar reasoning we obtain vio( )-(i- DLy >

v; () andtherefore LP( )-( N- 1)L,y > DP ( ). To summarize,
we obtain

LPC )-(N- DLy >DP ()>LP()-(N- DU ;

which concludes the proof. Note that using property 1 of Lemma 8.1,
this immediately implies a bound involving LP () instead of LP( ).

proof that =- H) DP ()= LP (). We rstshow that
max is associative.

Lemma B.1. Associativity ofmax when =- H
We havamax (max (x);c)= max (x;c) 8x2 RP;c2R.
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Proof. We simply use the closed form of max when =- H (cf.
Section B.2.1):
max (max (x);c)= log(exp(max (x)=)+ exp(|c= ) '
N ! !
= log exp log exp(xj=) + exp(c=)
i=1
I
p !
= log exp(x;= )+ exp(c=)
i=1
= max (X;c);
and the lemma follows. O

Using our shorthand notation, Lemma B.1 can be used to write

max f(y) = max max f(y).

Voo (ynnviny o)
This is precisely the associative property that we used in the proof of
Proposition 8.1. The second property that we used, the distributivity
of + over max, holds for any max , as per Lemma 8.1 property 2.
Thus, the same proof as Proposition 8.1 is also valid when we sub-

stitute max with max , when = - H, which yields LP () =
DP ().
proof that =- H ( DP ()= LP (). Mirroring the previ-

ous proof, we rst characterize the regularizations for which max
is associative.

LemmaB.2. Let :4P 1 Rbea regularization function, i.edom =
4 D Assume that the5§ exidt convex lower-semi-continuous de ned on
[0;1 suchthat (q)= &,! (qi). If

max (max (x);c)= max (x;c) 8x2 RP:c2R;
P
then (q)=- idzlqi log(q;) for some > 0.

Proof. We start by writing the associativity property for three ele-
ments. For all x1;X2;X3 2 R,

max  (Xg;X2;X3) max max (X1;X2);X3)

max g max GiXy+ Goxz- ! (G1)- ! (G2)
q+q3=1  Gi1+Go=1

g;q 3>0 Gi>0

+qsx3- ! (g3)- ! (Q)

= max  QiXi+ g2X2 + QsX3-  (01;02;03);
Q1+Q2:83=1
qi

where we de ne  (q1;02;03) as

ar gz

g1+ 02 C g1t Q2

(dr+0g2) ! +1 (g1 +g2)+ ! (g3).
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We have performed a variable change 1.2 = q 1.2 at the second line,
and noticed q = g1 + (2. Therefore

max  (x1;%2;X3) = “(X1;X2iX3);

where 7 is the convex conjugate of  restricted to ]0;1]°. By def-

inition, we also have max  (X1;X2;X3) =  “(X1;X2;X3), So that
? = ?onR3 As s convex and lower semi-continuous, we
can apply Moreau-Yoshida theorem and obtain 7= = 7?6 .
Suppose that there exists @ = (g1;02;03) 2 4 3 such that we
have (d1;02;93) < (d1;02;93). Given the forms of and

(01;92:0) < (91;02;0). We let x = (X1;X2;- 1 ) 2 R3 such that

max (Xg;Xz;- 1) = max (Xi;X2)
X101+ X202 - ! (d1)- ! (92) = hx;qi-  (q)
h;qi- (q) 6 maxhx;qi- (q)

g24 3

N

max max (Xi;X2);- 1) :

leading to a contradiction. Therefore > over 43, and nally
= . We have used the fact that the operatorr max :R214 2
is surjective, as 4 2 is a one-dimensional segment, r max is contin-
uous and reaches the extreme valuesr max (0;- 1) = (1;0) and
rmax (- 1;0) = (0;1) — which allows to use the intermediate
value theorem.
To conclude, for all q;;q2 2]0;1] such that gq; + g2 6 1, we have

@+ @)= () Lot sl R
+1 (g1 + Q2);
and thus, forall 0<y 6 1;0<x<1,
Pixy)+ ! ((1- x)y)- P (y)=y( )+ ! (1- x)) (B.1)

where we have sety = q; + g and x = ql(lilqz The functional equa-
tion (B.1) was rst studied in the eld of information theory. As rst
shown by Horibe ( 1988 Theorem 0), and further extended (Gselmann,
2017), all measurable solutions have the form

' (x)=- x log(x);
where > 0is a constant. The lemma follows. O

Assuming that isnotequalto - H forany > 0, the previous
lemma tells us that the associativity property is not met for a triplet
(Xx1;X2;%3) 2 R3. In Figure B.1, we construct a graph G such that

DP ()= max (max (Xi;X2);X3)6 LP ( )= max (Xi;X2;X3)

The proposition follows.

b.1.4 Computation of LP ( ) and interpretation as an expectation

We show that r LP () 2 conv(Y), and characterize a path distri-
bution of which r LP ( ) is the expectation.
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Figure B.1 — In general,vg( )= DP ( )6 LP ().

convex hull of Y. We rewrite LP ( ) = max (u( )), where
u( ), (hy; i)ya2y. Using the chain rule, we have

rLP ()=Ju( ) rmax (u()); (B.2)

where J, is the Jacobian ofu w.r.t. , a matrix of size jYj (N N).
The horizontal slices of J, are exactly all the paths Y of Y. Using
rmax (u( )) 24 ™, we concludethatr LP ( )2 conv(Y).

induced distribution . Frlgm (B.2), we see that the regularized
gradientr LP () rewritesas y,vp - (Y)Y, where we de ne the
distribution

P (V. rmax (u() .

Unfortunately, since u( ) 2 RYI, computing p . (Y), let alone the
expectation E . [Y] under that distribution, is intractable for gen-
eral

b.1.5 Proof of Propositio.3 (computation of DP ( ))

gradient computation . We rst derive the recursion over E |,
r DP () using sensitivity analysis, a.k.a backpropagation calculus.
For any (i;j) 2 E, since j; inuences only v;, a straightforward
application of the chain rule gives
@ @y @y
e = M = OX —. (B.3)
@I;j @y @I;j
Recall that v = (vq;:::;vny) and g; , r max ( ; + V). With this
vector de ned, we can now easily derive the two terms on the r.h.s
of (B.3). Differentiating ( 8.6) w.r.t. ; straightforwardly gives the

second term " = qj; .

The rstterm must be computed recursively. Recall that G denotes
the children of node j. Since a nodej inuences only its children
i 2 G, using the chain rule, we get

@y _ X @u @v 5

— = ——, §. (B4)
@y c @v @y
Differentiating ( 8.6) w.r.t. v; again gives %\\} = Qjj . By de nition, we
also have@@—‘f; = g and e; = €Qj; . Hence,
X X
g = €dij = &ij -

i2¢ i2C
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Combining the above, for any j 2 [N - 1], we obtain the following
two-step recursion
_ X
8i 2 q; € = € (i and € = €i;j -
i2C

The values (ej; ) ;; )¢ can thus be computed in reverse topological

order over the nodes of G, initializing ey = % = 1. The pseudo-
code is summarized in Algorithm 5.

associated random walk . It remains to show that E is also the
expectation of Y 2 Y support of the following random walk, de ned
informally in the main text. Formally, we de ne the random sequence
(wt), as

wo=N; 8t>0; 8i 2[N];8j2P;; Plw;=jjwi.1=1]=djj .

We sety; , 1f9t>0 s.t.w;. 1 = i;w = jgwhere 1 is the character-
istic function of an event, thereby de ning a random variable Y 2,
with distribution D. We leave implicit the dependency of P in and
. As the depth of w; (number of edges to connect to the root node)

is strictly decreasing with t, (w¢), reaches nodel in nite time with
probability one and is constant after this event. We introduce the
random variables (371')1 ,denedforall j2[N]as

. X

yj,» 1f9t> O;w; = jg= yij if j 8 N, O otherwise.

i2C;

By de nition, using the factthat P[w; = jjw;. 1 = i]is independent
of t (Markov property), forall i 2 G and forall j 2 [N - 1], we have

Plyij = 1= Elyi; ]
= POt> 0w (. 1 = iIP[wy = jiwe. 1 = 1= E[Filay -

Linearity of the expectation then provides
. X
Elyjl= Elyij I
i2C

with initialization E[yn]= 1. We recover the same two-step recursion
as the one de ning E and e, with the same initialization. Hence the
probabilistic interpretation of the gradient, where the expectation is
taken with respect to the distribution D of Y:

E=E . [Y] and e=E . [y].
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Algorithm 5 Compute DP ( )andr DP ()
Input: Edge weights 2 RN N
vi 0; ey 1; Q:E O02RN N
for i 2 [2;:::;N]do B Topological order

Vi max HY!
i2P;i
(@ij Jijop, T Max i +V
J 7j2P; 2P, J J

forj2[N- 1;:::;1]do B Rever§§ topological order
8i2G;e; dij&, § i2¢; S
Return: DP ( )= vy,rDP ( )= E2RN N
Intermediate computation for Algorithm 6

e, L, 2RV, Q2RN N

Algorithm 6 Compute hr DP  ( );Zi andr 2DP ( )Z
Input: Edge weights and perturbation ;Z 2 RN N
Call Algorithm 5 with input  to gete and Q
vi O e O; Q:E O02RN N
fori 2 [2,::; N]do B Topological order

i e G (g V) (A1)

(dij )izp, I (@ijize; (Z *Vj)j2p, (A2)
forj2 [N- 1;:::;1do B Reverse topological order

8i2qG ey gy&+die (A3)

g i2¢; €ij

Return: hrDP ( );Zi = vy
r2DP ()Z=E2RN N

b.1.6 Computation of the directional derivativee DP ( ); Zi

The derivations of the following two sections allows to write Algo-
rithm 6. Letv; , hrv;( );Zi, where v;( ) is de ned in ( 8.6). Since
vi only directly depends on v; + ; for j 2 P, a straightforward
differentiation of hrv;( );Zi gives

X
Vi = ov Vi * Zi

j2P; @}/

Recall that % = @;; and has already been obtained when computing
r DP (). Hence equation (A1), reproduced here:

X
8i2[2;:::;N]: Vi = Qi (vj +z5 ). (B5)
j2P;

This recursion can be computed in topological order, starting from
vy = 0to nishat vy = hr DP ( );Zi.
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b.1.7 Computation of the Hessian-vector productDP ( )Z

For convenience, letus dene r 2DP ( )Z, E. For (i;j) 2 E, we
evidently have e; = 0. For(i;j) 2 E, since j; inuencesonly v; and
Vi, we obtain

@y _ Gy @V, @y @
@i @y @i; @ @i

We will now show how to derive each of the right-hand side terms
in turn. We already know that @g@“ qij . We also have @é(,'j =

€ij =

ui. Indeed, observe that v; only lerectIy inuences v fori 2 G.
Therefore, we have

an _ X @N .

— = 8j2[N- 1 B.6

and @’N = 1. Comparing (B.4) and (B.6), we see that( ) follows

the same recursion as( ) Since %E‘ = @\h , both sequences are
equal:

@n _ @x _ o
@ @v
Next, we derive @C?" Since, forj 2 Pj, vj + z; does not depend on
ij , differentiating ( B.5) w.r.t. i , we obtain
@; X og;
@_', = 7@% (Vk + Zix )
B kop, S0
X @v
= Vk + Zix ),
@IJ @Ik @y @ I'k)

This can be conveniently rewritten in a vectorial form as
gi =r%max (+V)(zi+Vv)=J (qi)(zi +V);

where we have de ned v, (vi;:::;vN) and where we have used the
function J de ned in Section B.2.1, that conveniently computes the
Hessian of max from its gradient. The Hessian has this form for

both negentropy and 3 regularizations. In a practical implementa-

tion, we only need to compute the coordinates (i;j) of Q, forj 2 P;.
Namely, as specied in ( A2),

(dij )j2p; (dij )j2p, (Zij + V)j2p;-

Finally, we derive
the chain rule gives

@y _ % aney, one _*
Qv @y@v @; @v

. Sincey; inuences only v; andv; fori 2 G,

&j ., €.

j2C; jZCj

Combining the above, for any j 2 [N - 1], we obtain the following
two-step recursion (A 3), reproduced here:
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X
8i 2 Cj; ei;j = qi;j g + qi;j € and ej = ei;j .
i2C
Similarly to the computation of r DP (), our algorithm computes
this recursion in reverse topological order over the graph G, yielding
r2DP ( )Z=E.

b.2 examples of algorithm instantiations

We provide the explicit forms of max  and its derivative for the
negentropy and ‘2 regularizations. Then, we provide details and
pseudo-code for the two instances of differentiable dynamic program-
ming presented in Section 8.4.

b.2.1 Examples ofmax

P
Negative entropy. When (q) = iDzl gi logq;, where >0
(smaller is less regularized), we obtain

»©
max (x)= log exp(xi=)
i=1
%
r max (x)= exp(x=) exp(xi=)
i=1
r2max (x)=J (r max (x));

where J (q) , (Diag(q)- gq~)= . Note that r max (x) recovers
the usual “softmax” with temperature = 1. For a proof of the ex-
pression of max , see,e.g.,(Boyd and Vandenberghe, 2004 Example
3.25).

squared "> norm . When (x)= §kxk§ with >0 , we obtain the
following expressions

max (x)= hg?;xi - 5kq?ké
r max (x)= argminkq- x= k3 =q°
q24 P
r?max (x)=J (r max (x));

where J (q) , (Diag(s)- ss” =kski;)= and s 2 f0;1d’ is a vector
that indicates the support of g. Note that r max (x) is precisely the
Euclidean projection onto the simplex of x= and can be computed
exactly in worst-case O(D log D) time using the algorithm of (Mich-
elot, 1986 or in expected O(D) time using the randomized pivot al-
gorithm of (Duchi et al., 2008. It can be ef ciently performed on
Nvidia GPUs since recently. An important bene t of the squared
norm, compared to the negative entropy, is that r max (x) tends to
be sparse. This is useful, among other things, to de ne sparse atten-
tion mechanisms (Martins and Astudillo, 2016 Niculae and Blondel,
2017).
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b.2.2 Sequence prediction with the smoothed Viterbi algorithm

computational graph . As illustrated in Section 8.4, the DAG

contains a start node, Snodes for each time step and end node. There-
fore jVj = N = TS+ 2. Only nodes from consecutive time steps are

connected to each other. Taking into account the start and end nodes,
the total number of edges is therefore jEj= (T- 1)S* + 2S.

representation . We follow the notation of Section 84, i.e. we
representY and asT S Stensors (we can safely ignore the edges
connected to the end node since their value is 0). We representY as
a binary tensor such that yyj; = 1if Y isin statesi and j in time

stepst andt- 1, andyy;; = Ootherwise. Likewise, we represent the

potentials  as a real tensor such that ; contains the potential of

transitioning from state j to statei on time t.

algorithms . Applying recursion ( 8.6) to this speci ¢ DAG, we ob-

tain a smoothed version of the Viterbi algorithm. Let v;; be the score
of being in state i up to time t. We can rewrite the smoothed Bellman
recursion as

Vei (), max  veog( )+ iy = max (V- a( )+ i)
j2[S

The value Vit ( ), max (vr( )) can be computed in topological

order, starting from vo( ). The total computational costis O(TS). Us-
ing the computations of Section 8.3.3 and Section 8.3.4 to this specic

DAG, we can compute r Vit (), hrVit ( );Zi and r 2Vit ( )Z
with the same complexity. The procedures are summarized in Algo-

rithm 7 and Algorithm 8, respectively. From Proposition 8.2 property
1, Vit () is a convex function for any

Algorithm 7 Compute Vit ( )andr Vit ( )

Input: Potential scores 2 RT S S
B Forward pass
Vo = Os

Vei = max ( ¢ + V. 1)

qui =r max ( ¢ + Vi-1)
Vren = max (vr); grepn =1 max (vr)
B Backward pass

€ j = Ot+1;j Ut+1; Uy = heg j;1si
Return: Vit ( )= vrs11
Vit ()= (e 1 NS -2
Intermediary computations for Alg. 8:
Q. (IS uU, (WiXsy,
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Algorithm 8 Compute hr Vit ( );Zi andr 2Vit ( )Z
Input: Z2 RT S S; 2RT S S
Call Alg. 7 with input togetU, Q
B Forward pass
Vo = Os

Vei = Mg ;Zei + Vio 1d

i =J (dei ) (Ze + vi- 1)
Vreg1 = Mo vris dren =3 (dr+11) VT
B Backward pass
Ut+1=0s; Q1+1=0s s

€ j = Ot+1;j Ut+1+0re1; Ute1
Ug = hey ;i
Return: it ( );Zi = vr+1
r2vit ()Z =(e. Lij )tT;:Sl;ﬁ;j =1

b.2.3 Monotonic alignment prediction with the smoothed DTW

computational graph . As illustrated in Section 8.4, the DAG
contains a start node and Na Ng nodes. Therefore, the number of
vertices jVjis Na Ng + 1. Due to the monotonic constraint, each node
may only be connected with at most 3 other nodes. The cardinality
of Yis the Delannoy number (Na- 1;Ng- 1), as studied by Banderier
and Schwer (2005 and Sulanke (2003. That number grows exponen-
tially with  Na and Ng.

representation . We follow the notation of Section 84, i.e. we
representY and asNp Np matrices. We representY as a binary
matrix such that y;; = 1if a; is aligned with b;, and y;; = 0 oth-
erwise. Likewise, we represent as a real matrix such that ;; is a
measure of “discrepancy” between a; and b;.

algorithms . Following the DTw literature (Sakoe and Chiba, 1978,
we seek an alignment with minimal cost. For that reason, we introduce
the smoothed min operator, its gradient and its Hessian as follows

min  (X), - max (- X)
rmn (xX)=r max (- X)
r2min (x)=- r 2max (- x)
=-J (r max (- X))
=-J (r min (x)).

Applying ( 8.6) to the DTW DAG gives rise to a smoothed version of
the algorithm. Let v;; ( ) be the alignment cost up to cell (i;j). Then
the smoothed DTW recursion is

Vi ()= g +min (Vi - 1( )svie - 20 )ivie 15 ()
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The value DTW (), VN,:Ng( ) can be computed in O(NaNg)
time. Applying the derivations of Section 8.3.3 and Section 8.3.4
to this speci ¢ DAG, we can compute r DTW ( ), hr DTW ( );Zi
and r 2DTW ( )Z with the same complexity. The procedures, with
appropriate handling of the edge cases, are summarized in Algorithm
9 and 10, respectively.

Note that when is the negative entropy, DTW () is known as
soft-DTW (Cuturi and Blondel, 2017. While the DP computation of
DTW () and of its gradient were already known, the generalization
to any strongly convex  and the computation of r 2DTW ( )Z are
new. From Proposition 8.2 property 1, DTW ( ) is aconcavdunction
of the discrepancy matrix  for any . With respect to time-series,
DTW is neither convex nor concave.

Algorithm 9 Compute DTW ( )andr DTW ()

Input: Distance matrix 2 RN~ Ns
B Forward pass
Voo = 0;Vvip =Voj =1,i2[Nal;j2[Ng]

Vij = dij +min (Vij -1 Vie1j- 13 Vie 1)
Qij =rmin (Vij-13Vi- 15-13Vi- 15) 2 R®
B Backward pass
iN g+1 = ONa+1j = 03,1 2 [Nal;j 2 [Ng]
EiN g+1 = €Na+1j = 0,0 2[Nalij 2 [Ng]
ON,+1Ng+1 =(0;1L;05en, +1Ng+1 =1

ei;j = C]i;j +1;1 ei;j +1t qi+ 1 +1;2 €+ Lj+1 + Qi+ 1;j;3 €+ 1
Return: DTW ( )= VN.iNg
rDTW () =(enih®
Intermediate computations for Algo. 10:

Na+1,Ng+13. Na+LNg+1
Q, (Q)i;j;ﬁ il B, (e)i;jAzl 8
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Algorithm 10 Compute hr DTW ( );Zi,r 2DTW ( ) Z
Input: 2 RNa Nes.z 2 RNa Ns
Call Algo. 9with input  to retrieve Q and E
B Forward pass

Viji = Zijp Y i Vij -1t Qg2 Vi-15- 1T iz Vi- 15
dij =- 3 (Qij ) (Vij - 15Vi- 15-1;Vi- 1) 2 R3

B Backward pass

QiN g+1 = ONp+1j = 03,1 2 [0;:::5NaT ) 2 [NB]

€N g+1 = eNA+1;j =0,i2 [O;Z::;NA];j 2 [NB]

€ij = ij+11 €;j+1+0ij+1;1 € +17F
Qi+1;j+12 C+1j+1F Qi+ 1;j+1;2 €+15+1F
qi+1;j;3 ei+1;j + qi+l;j;3 ei+l;j
Return: hr DTW ( );Zi = VN, Ng

— N a:N
r2DTW () Z=(ey %"

b.3 experimental details and further results

Finally, we provide details on the architecture used in experiments,
with additional gures.

b.3.1 Named entity recognition (Sectidh5.2)

Our model extracts word embedding from a 300-dimensional look-
up table concatenated with a 50-dimensional character embedding.
This character embedding corresponds to the concatenation of the
last hidden unit of a bi-directional character LSTM, as in Lample et
al. (2019. Character embedding size is set to 50. A word LSTM
then produces sentence-aware features for each word. This LSTM is
bi-directional with 100-dimensional hidden units per direction. The
nal features X used to build the potential tensor are thus 200
dimensional. Note that, in contrast with Lample et al. ( 2016:

— The look-up table is initialized with 300-dimensional embed-
dings from FastText(Joulin et al., 2016, trained on Wikipedia
corpus.

— We do not pad letters prior to feeding the character LSTM as it
is not principled.

— We do not train the unknown word embedding as we found it
had no effect.

We convert tags to the I0BES (Inside-Outside-Begin-End-Stop) scheme
to build a richer Vit  model than if we used the simpler IOB (Inside-
Outside-Begin) scheme, that has a lower number of tags. We per-
formed a small grid-search to select the step-size and batch-size used
for optimization: s 2 f0.005;Q001;002g b 2 8;32;128 For each lan-
guage and each loss, we select the highest-scoring model on the vali-
dation set, and report the test score.
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The model is strongly subject to over tting using the convex surro-
gate loss and the log likelihood. We have to use a small batch size
(b = 8) and vanilla SGD with large step size (s = 0.01) to avoid
this over tting issue. For all losses, accelerated stochastic optimizers
have all lower generalization performance than SGD. This was also
noticed by Lample et al. (2016 when using the classical negative log-
likelihood as a loss.

b.3.2 Supervised audio-to-score transcription (Secim3)

Audio sequences, sampled at 22.05kHz, are split into frames of
512 samples. We extract the following features from these sequences:
energy, spectral centroid, spectral bandwidth, and the 5 rst Mel-
frequency cepstral coef cients (MFcC) features. All features are cen-
tered around the median and normalized. The r DTW layer is writ-
ten in Cython', and hence run on CPU. This technical choice was sug-
gested by the fact that we have to write explicit loops to specify the
topological and reverse topological pass over the DTW computation
graph (see Algorithm 9). However, it is possible to use only contigu-
ous vector operations and thus take advantage of GPU computations
— this is left for future work. We use SciPys? LBFGS-B solver to per-
form end-to-end training and multinomial regression. We use a %
regularization on the weight W ,: we selected it using a grid search

b.3.3 Structured and sparse attention (SectiBit)

We use OpenNMT-py library 3 to t our structured attention model.
Model architecture and optimization details are as follow:
— We use a bidirectional LSTM encoder and decoder, with 500
units in each direction and a depth of 2 layers .
— The decoder is fed with the input representation as in Luong
et al. (2019.
— SGD training with s = 1 learning rate, decaying from epoch 8to
epoch 15 with rate 0.65, batch size of size 256.
— Training sentence of lengths superior to 50 are ignored, and
translated sentence are forced to a length inferior to 100.
— The temperature parameter is set to = 2 for entropy, and
= 10for *2. Performance is not affected much by this param-
eter, provided that it is not set too low in the 3 case — with a
too small , Vit reduces to unregularized MAP estimation and
r Vit has zero derivatives.
We use al-million sentence subject of WMT 14 English-to-French cor-
pus, available at http://nmt-benchmark.net/ . We use Moses tok-
enizer and do not perform any post-processing, before computing
BLEU score on detokenized sentences fulti_bleu.perlscript).

1. http://cython.org/
2. http://scipy.org/
3. http://opennmt.net/



B.3 experimental details and further results 178

Table B1 — Detokenized BLEU score on newstes014data, comparing soft-
max attention with structured attention.

Attention model WMT 14 M fr! en WMT14en! fr
Softmax 27.96 2808
Entropy regularization 27.96 27.98
2 reg. 27.21 2728

implementation . We implemented a batch version of the r Vit
layer on GPU, using the PyTorchtensor API. Model with negentropy-
regularized attention mechanism runs 1=2 as fast as the softmax at-
tention mechanism (approximately 7500tokens/s vs 15000tokens/s
on a single Nvidia Titan X Pascal). With % regularization, it is only
1=3as fast: approximately 5000tokens/s. Although this remains rea-
sonable, it could certainly be optimized by rewriting kernels using
lower-level languages (e.g.,using ATen API from PyTorch)

further results . Table B.1 provides BLEU scores for both trans-
lation directions on the 1 million sentence subset of WMT 14 we used.
We observe that the introduction of structure and sparsity does not

hinder the general performance of the model. We provide several

examples of attention maps in Figure B.2, that illustrate the sparsity

patterns "5 regularization uncovers.
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Figure B.2: Attention on test samples from Newstes?014 Borders indicate non-zero cells. Translations (y-axis)

are often qualitatively equivalent, while attentions maps are sparse in the % case.






Titre : Apprentissage de représentation en imagerie fonctionnelle
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Résumé : Grace aux avancées technologiques dans
le domaine de l'imagerie fonctionnelle cérébrale, les
neurosciences cognitives accumulent une grande
guantité de cartes spatiales décrivant de maniere
guantitative l'activité neuronale suscitée dans le cer-
veau humain en réponse a des taches ou des stimuli
spéci ques, ou de maniére spontanée. Dans cette
thése, nous nous intéressons particulierement aux
données issues de l'imagerie par résonance magné-
tique fonctionnelle (IRMf), que nous étudions dans un
cadre d'apprentissage statistigue. Notre objectif est
d'apprendre des modeéles d'activité cérébrale a partir
des données. Nous proposons différentes nouvelles
maniéres de proter de la grande quantité de don-
nées IRMf disponible. Tout d'abord, nous considé-
rons les données d'IRMf de repos, que nous traitons
grace a des méthodes de factorisation de matrices.
Nous présentons de nouvelles méthodes pour calcu-
ler en un temps raisonnable une factorisation parci-
monieuse de matrices constituées de centaines d'en-
registrements d'IRMf. Cela nous permet d'extraire des
réseaux fonctionnels a partir de données d'une en-
vergure inédite. Notre méthode principale introduit
une réduction aléatoire de la dimension des don-

nées dans une boucle d'apprentissage en ligne. Lal-
gorithme proposé converge plus de 10 fois plus vite
gue les meilleures méthodes existantes, pour diffé-
rentes con gurations et sur plusieurs jeux de don-
nées. Nous effectuons une vaste validation expéri-
mentale de notre approche de sous-échantillonnage
aléatoire. Nous proposons une étude théorique des
propriétés de convergence de notre algorithme. Dans
un second temps, nous nous intéressons aux don-
nées d'IRMf d'activation. Nous démontrons comment
agréger différents études acquises suivant des pro-
tocoles distincts a n d'apprendre des modeéles joints
de décodage plus justes et interprétables. Notre mo-
deéle multi-études apprend a réduire la dimension des
images cérébrales en entrée en méme temps qu'il
apprend a les classi er, pour chacune des études, a
partir de leurs représentations réduites. Cela suscite
un transfert d'information entre les études. En consé-
guence, notre modéle multi-étude est plus performant
gue les modéles de décodage appris sur chaque
étude séparément. Notre approche identi e une re-
présentation universellement pertinente de l'activité
cérébrale, supportée par un petit nombre de réseaux
optimisés pour l'identi cation de taches.

Title: Learning representations from functional MRI data

Keywords: Machine learning, functional imaging, matrix factorization, dictionary, optimization, deep learning

Abstract: Thanks to the advent of functional brain-
imaging technologies, cognitive neuroscience is ac-
cumulating maps of neural activity responses to spe-
ci c tasks or stimuli, or of spontaneous activity. In this
work, we consider data from functional Magnetic Res-
onance Imaging (fMRI), that we study in a machine
learning setting: we learn a model of brain activity that
should generalize on unseen data. After reviewing the
standard fMRI data analysis techniques, we propose
new methods and models to bene t from the recently
released large fMRI data repositories. Our goal is
to learn richer representations of brain activity. We
rst focus on unsupervised analysis of terabyte-scale
fMRI data acquired on subjects at rest (resting-state
fMRI). We perform this analysis using matrix factor-
ization. We present new methods for running sparse
matrix factorization/dictionary learning on hundreds of
fMRI records in reasonable time. Our leading ap-
proach relies on introducing randomness in stochastic
optimization loops and provides speed-up of an order
of magnitude on a variety of settings and datasets.
We provide an extended empirical validation of our
stochastic subsampling approach, for datasets from

fMRI, hyperspectral imaging and collaborative lter-
ing. We derive convergence properties for our algo-
rithm, in a theoretical analysis that reaches beyond
the matrix factorization problem. We then turn to work
with fMRI data acquired on subject undergoing be-
havioral protocols (task fMRI). We investigate how to
aggregate data from many source studies, acquired
with many different protocols, in order to learn more
accurate and interpretable decoding models, that pre-
dicts stimuli or tasks from brain maps. Our multi-study
shared-layer model learns to reduce the dimensional-
ity of input brain images, simultaneously to learning
to decode these images from their reduced represen-
tation. This fosters transfer learning in between stud-
ies, as we learn the undocumented cognitive common
aspects that the many fMRI studies share. As a con-
sequence, our multi-study model performs better than
single-study decoding. Our approach identi es uni-
versally relevant representation of brain activity, sup-
ported by a few task-optimized networks learned dur-
ing model tting. Finally, on a related topic, we show
how to use dynamic programming within end-to-end
trained deep networks, with applications in language.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



	Abstract

