T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer et al., Applications of optical coherence tomography in dermatology, J. Dermatol. Sci, vol.40, issue.2, pp.85-94, 2005.

I. A. Sigal, B. Wang, N. G. Strouthidis, T. Akagi, M. J. Girard et al., Near-IR transillumination and reflectance imaging at 1300 nm and 1500-1700 nm for in vivo caries detection, Cardiovasc. Radiat. Med, vol.98, issue.24, pp.198-204, 2003.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform, J. Biomed. Opt, vol.6, issue.2, pp.122-133, 2001.

E. Tanaka, F. Y. Chen, R. Flaumenhaft, G. J. Graham, R. G. Laurence et al., Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging, J. Thorac. Cardiovasc. Surg, vol.138, issue.1, pp.220-222, 1979.

S. Bhaumik and S. S. Gambhir, Optical imaging of Renilla Luciferase reporter gene expression in living mice, Proc. Natl. Acad. Sci, vol.99, pp.377-382, 2002.
DOI : 10.1073/pnas.012611099

URL : http://www.pnas.org/content/99/1/377.full.pdf

G. S. Filonov, K. D. Piatkevich, L. Ting, J. Zhang, K. Kim et al., Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome, Nat. Biotechnol, vol.29, issue.8, pp.969-976, 2004.

R. Xie, K. Chen, X. Chen, and X. Peng, InAs/InP/ZnSe Core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible, Nano Res, vol.1, issue.6, pp.457-464, 2008.
DOI : 10.1007/s12274-008-8048-x

URL : http://europepmc.org/articles/pmc2902876?pdf=render

H. S. Choi, B. I. Ipe, P. Misra, J. H. Lee, M. G. Bawendi et al., Tissueand organ-selective biodistribution of NIR fluorescent quantum dots, Nano Lett, vol.9, issue.6, pp.2354-2359, 2009.

T. Lécuyer, E. Teston, G. Ramirez-garcia, T. Maldiney, B. Viana et al., Chemically engineered persistent luminescence nanoprobes for bioimaging, Theranostics, vol.2016, issue.13, pp.2488-2523

L. Liu, J. Zhang, X. Su, and R. P. Mason, In vitro and in vivo assessment of CdTe and CdHgTe toxicity and clearance, J. Biomed. Nanotechnol, vol.4, issue.4, pp.524-528, 2008.

G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng, vol.2017, issue.1, p.10

J. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol, vol.7, issue.5, pp.626-634, 2003.

R. Weissleder, A. M. Smith, M. C. Mancini, and S. Nie, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol, vol.19, issue.4, pp.710-711, 2001.

W. F. Cheong, S. A. Prahl, and A. J. Welch, A Review of the optical properties of biological tissues, IEEE J. Quantum Electron, vol.26, issue.12, pp.2166-2185, 1990.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski et al., Sources of absorption and scattering contrast for nearinfrared optical mammography, Acad. Radiol, vol.8, issue.3, pp.211-218, 2001.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells, Nat. Mater, vol.13, issue.4, pp.418-426, 2014.

S. K. Sharma, D. Gourier, E. Teston, D. Scherman, C. Richard et al., Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for in vivo optical imaging, Opt. Mater. (Amst, vol.63, pp.51-58, 2017.

Y. Katayama, B. Viana, D. Gourier, J. Xu, S. Tanabe et al., Photostimulation induced persistent luminescence in Y 3 Al 2 Ga 3 O 12 :Cr 3+, Opt. Mater. Express, vol.6, issue.4, pp.34-37, 2003.

L. Lin, C. Shi, Z. Wang, W. Zhang, and M. Yin, A kinetics model of red long-lasting phosphorescence in MgSiO 3 :Eu 2+ , Dy 3+ , Mn 2+, J. Alloys Compd, vol.466, issue.1-2, pp.546-550, 2008.

S. Ye, J. Zhang, X. Zhang, and X. Wang, Mn 2+ activated red long persistent phosphors in BaMg 2 Si 2 O 7, J. Lumin, pp.914-916, 2007.

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana et al., ZnGa 2 O 4 :Cr 3+ : a new red long-lasting phosphor with high brightness, Opt. Express, vol.19, issue.11, pp.10131-10137, 2011.

Q. Le-masne-de-chermont, Q. De-;-le-masne-de-chermont, C. Chaneac, J. Seguin, F. Pelle et al., Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo Imaging, Nanoparticules à luminescence persistante pour l'imagerie optique in vivo, vol.104, pp.11810-11815, 2007.

T. Maldiney, B. Viana, A. Bessière, D. Gourier, M. Bessodes et al., In vivo imaging with persistent luminescence silicate-based nanoparticles, Opt. Mater. (Amst), vol.2013, issue.10, pp.1852-1858

C. Rosticher, Elaboration de nanoparticules à luminescence persistante dans le rougeproche infrarouge pour l'imagerie in vivo : synthèse et caractérisations optiques, 2012.

C. Rosticher, B. Viana, G. Laurent, P. Le-griel, and C. Chanéac, Insight into CaMgSi 2 O 6 :Eu 2+ , Mn 2+ , Dy 3+ nanoprobes: influence of chemical composition and crystallinity on persistent red luminescence, Eur. J. Inorg. Chem, issue.22, pp.3681-3687, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01281472

C. Rosticher, C. Chaneac, A. J. Bos, and B. Viana, Study on the persistent luminescence of diopside nanotracers CaMgSi 2 O 6 : Eu 2+ , Mn 2+ , Pr 3+, Proc. SPIE, vol.9749, pp.97490-97491, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01492711

F. A. Kröger, H. H. Vink, A. Bessière, S. K. Sharma, N. Basavaraju et al., Considerable improvement of longpersistent luminescence in germanium and tin substituted ZnGa 2 O 4, Chem. Mater, vol.26, issue.3, pp.1600-1606, 1956.

A. De-vos, K. Lejaeghere, D. E. Vanpoucke, J. J. Joos, P. F. Smet et al., First-Principles Study of antisite defect configurations in ZnGa 2 O 4 :Cr persistent phosphors, Inorg. Chem, vol.55, issue.5, pp.2402-2412, 2016.

G. Ramírez-garcía, S. Gutiérrez-granados, M. A. Gallegos-corona, L. Palma-tirado, F. ;-d'orlyé et al., Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice, Int. J. Pharm, pp.686-695, 2017.

F. Liu, W. Yan, Y. Chuang, Z. Zhen, J. Xie et al., Photostimulated nearinfrared persistent luminescence as a new optical read-out from Cr 3+-doped LiGa 5 O 8, Sci. Rep, vol.2013, issue.1, p.1554

X. Fu, C. Liu, J. Shi, H. Man, J. Xu et al., Long persistent near infrared luminescence nanoprobes LiGa 5 O 8 :Cr 3+-PEG-OCH 3 for in vivo imaging, Opt. Mater. (Amst), issue.11, pp.1792-1797, 2014.

Y. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra et al., Nanohybrides superparamagnétiques à luminescence persistante : conception et application au marquage cellulaire pour la vectorisation magnétique in vivo, Theranostics, vol.4, pp.168-184, 2014.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen et al., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol, vol.4, issue.11, pp.773-780, 2009.

S. Diao, J. L. Blackburn, G. Hong, A. L. Antaris, J. Chang et al., Fluorescence imaging in vivo at wavelengths beyond 1500 nm, Angew. Chemie Int. Ed, vol.54, issue.49, pp.14758-14762, 2015.

K. Welsher, S. P. Sherlock, and H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window, Proc. Natl. Acad. Sci, vol.108, pp.8943-8948, 2011.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat. Med, vol.2012, issue.12, pp.1841-1846

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen et al., Through-skull fluorescence imaging of the brain in a new near-infrared window, Nat. Photonics, vol.8, issue.9, pp.723-730, 2014.

M. L. Becker, J. A. Fagan, N. D. Gallant, B. J. Bauer, V. Bajpai et al., Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes, Adv. Mater, vol.19, issue.7, pp.939-945, 2007.

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, Y. Nagasaki et al., Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-B-poly(4-Vinylbenzylphosphonate), J. Mater. Sci. Mater. Med, vol.2011, issue.9, pp.2399-2412

E. Hemmer, F. Vetrone, K. Soga, D. J. Naczynski, M. C. Tan et al., Lanthanide-based nanostructures for optical bioimaging: small particles with large promise, Nat. Commun, vol.39, issue.11, pp.960-964, 2013.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. Law, F. Wu et al., Core/shell NaGdF 4 :Nd 3+ /NaGdF 4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications, ACS Nano, vol.6, issue.4, pp.2969-2977, 2012.

C. Cao, M. Xue, X. Zhu, P. Yang, W. Feng et al., Energy transfer highway in Nd 3+-sensitized nanoparticles for efficient near-infrared bioimaging, ACS Appl. Mater. Interfaces, vol.2017, issue.22, pp.18540-18548

M. Kamimura, T. Matsumoto, S. Suyari, M. Umezawa, K. Soga et al., Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging, Angew. Chemie Int. Ed, vol.2017, issue.10, pp.12086-12090, 2014.

Q. Qin, P. Zhang, L. Sun, S. Shi, N. Chen et al., Deep tissue imaging with highly fluorescent near-infrared nanocrystals after systematic host screening, Chem. Mater, vol.2017, issue.14, pp.8158-8166, 2017.

R. W. Habash, R. Bansal, D. Krewski, and H. T. Alhafid, Thermal therapy, Part 1: an introduction to thermal therapy, Crit. Rev. Biomed. Eng, vol.34, issue.6, pp.459-489, 2006.

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, and D. Jaque, LaF 3 Core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

A. Sasaki, Y. Tsukasaki, A. Komatsuzaki, T. Sakata, H. Yasuda et al., Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors, Appl. Phys. Lett, vol.2015, issue.25, pp.5115-5119, 2016.

Y. Kong, J. Chen, H. Fang, G. Heath, Y. Wo et al., Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window, Chem. Mater, vol.28, issue.9, pp.3041-3050, 2016.

C. Levard, E. M. Hotze, B. P. Colman, A. L. Dale, L. Truong et al., Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol, issue.23, pp.13440-13448, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426281

K. Kawata, M. Osawa, and S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells, Environ. Sci. Technol, vol.43, issue.15, pp.6046-6051, 2009.

C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy et al., Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms, Environ. Sci. Technol, vol.47, issue.11, pp.13711-13717, 2013.

Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, Controlled synthesis of Ag 2 S quantum dots and experimental determination of the exciton bohr radius, J. Phys. Chem. C, vol.118, issue.9, pp.4918-4923, 2014.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris et al., In vivo fluorescence imaging with Ag 2 S quantum dots in the second near-infrared region, Angew. Chemie Int. Ed, vol.2012, issue.39, pp.9818-9821

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen et al., In vivo real-time visualization of tissue blood flow and angiogenesis using Ag 2 S quantum dots in the NIR-II window, Biomaterials, vol.35, issue.1, pp.393-400, 2014.

F. Hu, C. Li, Y. Zhang, M. Wang, D. Wu et al., Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag 2 S quantum dot-based theranostic nanoplatform, Nano Res, vol.8, issue.5, pp.1637-1647, 2015.

Y. Zhang, J. Xia, C. Li, G. Zhou, W. Yang et al., Near-infrared-Eemitting colloidal Ag 2 S quantum dots excited by an 808 nm diode laser, J. Mater. Sci, vol.2017, issue.16, pp.9424-9429
DOI : 10.1007/s10853-017-1131-5

W. Liu, A. Y. Chang, R. D. Schaller, and D. V. Talapin, Colloidal InSb nanocrystals. J. Am. Chem. Soc, vol.2012, issue.50, pp.20258-20261

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi et al., Bibliographie (1) Mikenda, W.; Preisinger, A. N-lines in the luminescence spectra of Cr 3+-doped spinels (I) Identification of N-lines, Nat. Biomed. Eng, vol.2017, issue.4, pp.67-83, 1981.

W. Mikenda, D. Gourier, A. Bessière, S. K. Sharma, L. Binet et al., N-lines in the luminescence spectra of Cr 3+-doped spinels (III) Partial spectra, J. Lumin, vol.26, issue.1-2, pp.85-98, 1981.

K. R. Priolkar, M. Allix, S. Chenu, E. Véron, T. Poumeyrol et al., Origin of the visible light induced persistent luminescence of Cr 3+-doped zinc gallate, J. Phys. Chem. Solids, vol.75, issue.7, pp.826-837, 2014.

S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, Considerable improvement of longpersistent luminescence in germanium and tin substituted ZnGa 2 O 4, Chem. Mater, vol.25, issue.9, pp.1600-1606, 2013.

S. K. Sharma, A. Bessière, N. Basavaraju, K. R. Priolkar, L. Binet et al., Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa 2 O 4 :Cr 3+ for in vivo imaging, J. Lumin, vol.155, pp.251-256, 2014.

A. De-vos, K. Lejaeghere, D. E. Vanpoucke, J. J. Joos, P. F. Smet et al., The importance of inversion disorder in the visible light induced persistent luminescence in Cr 3+ doped AB 2 O 4 (A = Zn or Mg and B = Ga or Al), Phys. Chem. Chem. Phys, vol.55, issue.5, pp.1369-1377, 2016.

P. Bertrand and . Spectroscopie-de-résonance-paramagnétique-Électronique, EDP Scienc, 2010.

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson, vol.178, issue.1, pp.42-55, 2006.
DOI : 10.1016/j.jmr.2005.08.013

D. Massiot, T. Vosegaard, N. Magneron, D. Trumeau, V. Montouillout et al., 71 Ga NMR of reference Ga IV , Ga V , and Ga VI compounds by MAS and QPASS, extension of gallium/aluminum NMR parameter correlation, Solid State Nucl. Magn. Reson, vol.15, issue.3, pp.159-169, 1999.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Synthesis and characterization of spinel-type gallia-alumina solid solutions, Zeitschrift für Anorg. und Allg. Chemie, vol.40, issue.1, pp.2121-2126, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00095794

G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. M. Coey et al., (16) d'Espinose de Lacaillerie, J.-B.; Fretigny, C.; Massiot, D. MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model, J. Magn. Reson, vol.23, issue.6, pp.244-251, 1981.

G. Caër, R. A. Le;-brand, D. R. Neuville, L. Cormier, and D. Massiot, Al Environment in tectosilicate and peraluminous glasses: a 27 Al MQ-MAS NMR, raman, and XANES investigation, J. Phys. Condens. Matter, vol.10, issue.47, pp.5071-5079, 1998.

J. T. Randall, M. H. Wilkins, and R. Chen, On the calculation of activation energies and frequency factors from glow curves, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.1945, issue.999, pp.570-585, 1969.

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana et al., ZnGa 2 O 4 :Cr 3+ : a new red long-lasting phosphor with high brightness, Opt. Express, vol.19, issue.11, pp.10131-10137, 2011.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet et al., Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate, Chem. Mater, vol.26, issue.3, pp.1365-1373, 2014.

B. Buesser, A. J. Gro?hn, S. E. Pratsinis, T. Maldiney, A. Bessière et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells, J. Phys. Chem. C, vol.115, issue.22, pp.418-426, 2011.

T. Bibliographie-;-matsuzawa, H. Yamamoto, T. Matsuzawa, Y. Zhuang, J. Ueda et al., Enhancement of red persistent luminescence in Cr 3+doped ZnGa 2 O 4 phosphors by Bi 2 O 3 codoping, J. Electrochem. Soc, vol.143, issue.1, pp.52602-52606, 1996.

Z. Hu, D. Ye, X. Lan, W. Zhang, L. Luo et al., Influence of co-Doping Si ions on persistent luminescence of ZnGa 2 O 4 :Cr 3+ red phosphors, Opt. Mater. Express, vol.6, issue.4, pp.1329-1338, 2016.

J. Shi, X. Sun, J. Zhu, J. Li, and H. Zhang, One-step synthesis of aminofunctionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging, Nanoscale, vol.8, issue.18, pp.9798-9804, 2016.

H. Zhao, C. Yang, and X. Yan, Fabrication and bioconjugation of B III and Cr III co-Doped ZnGa 2 O 4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging, Nanoscale, vol.8, issue.45, pp.18987-18994, 2016.
DOI : 10.1039/c6nr06259h

R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang et al., Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence, Nat. Mater, vol.2017, issue.6, pp.58-63, 2011.
DOI : 10.1007/s12274-016-1396-z

S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, Considerable improvement of longpersistent luminescence in germanium and tin substituted ZnGa 2 O 4, Chem. Mater, vol.25, issue.9, pp.1600-1606, 2013.

Y. Li and X. Yan, Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging, Nanoscale, vol.8, issue.32, pp.14965-14970, 2016.
DOI : 10.1039/c6nr04950h

J. S. Kim, E. S. Oh, J. C. Choi, M. Lee, J. H. Bahng et al., Sn mole fractions forming as single phases in ZnGa 2?x Sn x O 4 phosphors, Int. J. Inorg. Mater, vol.3, issue.2, pp.183-185, 2001.
DOI : 10.1016/s1466-6049(00)00107-0

Y. Zhuang, J. Ueda, S. Tanabe, T. Maldiney, A. Bessière et al., Tunable trap depth in Zn(Ga 1?x Al x ) 2 O 4 :Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence, J. Mater. Chem. C, vol.2013, issue.47, pp.418-426, 2014.

Y. Tanabe and S. Sugano, On the absorption spectra of complex ions II, J. Phys. Soc. Japan, vol.1954, issue.5, pp.766-779
DOI : 10.1143/jpsj.9.766

M. D. Seltzer, A. House-;-bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar et al., Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams, J. Inorganic Chemistry, vol.72, issue.10, pp.562-566, 1995.

T. Suzuki, G. Senthil-murugan, Y. Ohishi, J. Koetke, G. Huber et al., Spectroscopy of Ni 2+-doped garnets and perovskites for solid state lasers, J. Lumin, vol.113, issue.3-4, pp.564-568, 1991.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, The optical spectroscopy of LiGa 5 O 8 :Ni 2+, J. Lumin, vol.35, issue.1, pp.57-63, 1986.

A. Dugué, L. Cormier, O. Dargaud, L. Galoisy, G. Calas et al., Evolution of the Ni 2+ environment during the formation of a MgO-Al 2 O 3-SiO 2 glass-ceramic: a Combined XRD and diffuse reflectance spectroscopy approach, Springer Series in Optical Sciences, vol.2012, pp.3613-3626, 1986.

C. Richard, Z. Gao, Y. Liu, J. Ren, Z. Fang et al., Selective doping of Ni 2+ in highly transparent glass-ceramics containing nano-spinels ZnGa 2 O 4 and Zn 1+x Ga 2?2x Ge X O 4 for broadband near-infrared fiber amplifiers, Persistent luminescence of AB 2 O 4 :Cr 3+ (A=Zn, Mg, B=Ga, Al) spinels: new biomarkers for in vivo imaging, vol.36, p.1783, 2014.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, S. Tanabe et al., Near-infrared multi-wavelengths long persistent luminescence of Nd 3+ ion through persistent energy, Appl. Phys. Express, vol.8, issue.4, p.42602, 2015.
DOI : 10.1063/1.4929495

URL : https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/201852/1/1.4929495.pdf

, Al 2 Ga 3 O 12 for the first and second bio-imaging Windows, Appl. Phys. Lett, issue.8, p.81903, 2015.

J. Xu, D. Murata, J. Ueda, and S. Tanabe, Near-infrared long persistent luminescence of Er 3+ in garnet for the third bio-imaging window, J. Mater. Chem. C, vol.2016, issue.47, pp.11096-11103

A. Revaux, G. Dantelle, D. Decanini, A. Haghiri-gosnet, T. Gacoin et al., Synthesis of YAG:Ce/TiO 2 nanocomposite films, Opt. Mater. (Amst), issue.7, pp.1124-1127, 2011.

H. Yang, G. Zhu, L. Yuan, C. Zhang, F. Li et al., Characterization and luminescence properties of YAG:Ce 3+ phosphors by molten salt synthesis, J. Am. Ceram. Soc, vol.2012, issue.1, pp.49-51

C. Wu, A. Luo, G. Du, X. Qin, and W. Shi, Synthesis and luminescent properties of nonaggregated YAG:Ce 3+ phosphors via the molten salt synthesis method, Mater. Sci. Semicond. Process, vol.16, issue.3, pp.679-685, 2013.

L. Gan, Z. Mao, F. Xu, Y. Zhu, and X. Liu, Molten salt synthesis of YAG:Ce 3+ phosphors from oxide raw materials, Ceram. Int, vol.40, issue.3, pp.5067-5071, 2014.

Y. Liang, D. Yu, W. Huang, M. Zhang, G. Li et al., Molten salt synthesis and luminescent properties of nearly spherical YAG:Ce phosphor, Mater. Sci. Semicond. Process, vol.30, pp.92-97, 2015.

M. L. Saladino, G. Nasillo, D. Martino, and E. Caponetti, Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation, J. Alloys Compd, pp.737-741, 2010.

H. Roh, D. H. Kim, I. Park, H. J. Song, S. Hur et al., Template-free synthesis of monodispersed Y 3 Al 5 O 12 :Ce 3+ nanosphere phosphor, J. Mater. Chem, vol.2012, issue.24, pp.12275-12280

J. Su, Q. L. Zhang, C. J. Gu, D. L. Sun, Z. B. Wang et al., Preparation and characterization of Y 3 Al 5 O 12 (YAG) nano-powder by co-precipitation method, Mater. Res. Bull, vol.40, issue.8, pp.1279-1285, 2005.

C. Marlot, E. Barraud, S. Gallet, M. Eichhorn, and F. Bernard, ) Palmero, P.; Traverso, R. Co-precipitation of YAG powders for transparent materials: effect of the synthesis parameters on processing and microstructure. Materials (Basel), J. Solid State Chem, vol.191, issue.22, pp.7145-7156, 2012.

J. Ueda, K. Kuroishi, and S. Tanabe, Yellow persistent luminescence in Ce 3+-Cr 3+codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation, Appl. Phys. Express, vol.7, issue.6, p.62201, 2014.

J. Ueda, P. Dorenbos, A. J. Bos, K. Kuroishi, and S. Tanabe, Control of electron transfer between Ce 3+ and Cr 3+ in the Y 3 Al 5?x Ga x O 12 host via conduction band engineering, J. Mater. Chem. C, vol.2015, issue.22, pp.5642-5651

J. Ueda, K. Kuroishi, S. Tanabe, J. Xu, D. Murata et al., Cr 3+ /Er 3+ co-doped LaAlO 3 perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows, J. Mater. Chem. B, vol.104, issue.10, pp.6385-6393, 2014.