K. R. Abhinandan and A. C. Martin, Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains, Mol Immunol, vol.45, pp.3832-3841, 2008.

A. Ács, A. Kovács, J. Csepregi, N. Tör?, G. Kiss et al., The ecotoxicological evaluation of Cylindrospermopsis raciborskii from Lake Balaton (Hungary) employing a battery of bioassays and chemical screening, Toxicon, vol.70, pp.98-106, 2013.

E. Aguete, A. Gago-martinez, J. Leao, J. Rodriquez-vazquez, M. C. et al., HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction, Talanta, vol.59, pp.697-705, 2003.

Z. Ahmad, S. Yeap, A. Ali, W. Ho, A. N. Hamid et al., ScFv antibody: principles and clinical application, Clin Dev Immunol, 2012.
DOI : 10.1155/2012/980250

URL : http://downloads.hindawi.com/journals/jir/2012/980250.pdf

L. Alvarenga, D. Moura, and P. Billiald, Recombinant Antibodies: Trends for Standardized Immunological Probes and Drugs. 97-121, Current developments in Biotechnology and Bioengineering: Human and Animal Health Applications, 2017.

L. M. Alvarenga, J. Muzard, A. Ledreux, C. Bernard, and P. Billiald, Colorimetric engineered immunoprobe for the detection and quantification of microcystins, J Immunol Methods, vol.406, p.124, 2014.

A. Carmichael and W. , Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins, Toxicon, vol.32, pp.1495-1507, 1994.

W. Arap, M. G. Kolonin, M. Trepel, J. Lahdenranta, M. Cardó-vila et al.,

, Steps toward mapping the human vasculature by phage display, Nat. Med, vol.8, pp.121-127

J. Audet-lecouffe, Etude portant sur la recherché d'une procédure alternative pour la détection des cyanobactéries et des cyanotoxines. Mémoire présenté en vue d'obtention du grade de maître en nvironnement, vol.106, 2013.

S. Azevedo, W. Carmichael, E. Jochimsen, K. Rinehart, S. Lau et al., Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil, Toxicology, vol.181, pp.441-446, 2002.

P. Babica, B. L. Mar?álek, and B. , Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms, Journal of Phycology, vol.42, pp.9-20, 2006.

C. F. Barbas, . Iii, D. Burton, S. J. Silverman, and G. , Phage Display A Laboratory Manual, 2001.

K. Bateman, P. Thibault, D. D. White, and R. , Mass spectral analyses of microcystins from toxic cyanobacteria using on-line chromatographic and electrophoretic separations, J.Chromatogr, vol.712, pp.253-268, 1995.

B. Naya, R. , M. K. Guellier, A. Matagne, A. Boquet et al., Efficient refolding of a recombinant abzyme: structural and catalytic characterizations, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866421

, Appl Microbiol Biotechnol, vol.97, pp.7721-7731

L. Bláha, A. M. Cameán, V. Fessard, D. Gutiérrez-praena, A. Jos et al., Bioassay Use in the Field of Toxic Cyanobacteria, p.272, 2017.

, Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. 1 st ed John Wiley and sons

M. Boland, M. Smillie, C. D. Holmes, and C. , A unified bioscreen for the detection of diarrhetic shellfish toxins and microcystins in marine and freshwater environments, Toxicon, vol.31, pp.1393-1405, 1993.

. Bradbury and J. Marks, Antibodies from phage antibody libraries, Journal of Immunological Methods, vol.290, pp.29-49, 2004.

A. Bradbury and A. Plückthun, Reproducibility: Standardize antibodies used in research, Nature, vol.518, pp.27-29, 2015.

A. Bradbury, N. Trinklein, H. Thie, I. C. Wilkinson, A. K. Tandon et al., When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions, MAbs, vol.27, pp.1-8, 2018.

T. Bratkovic, Progress in phage display: evolution of the technique and its applications, Cell. Mol. Life Sci, vol.67, pp.749-767, 2010.

B. Codd and G. , Immunoassay of hepatotoxic cultures and water blooms of cyanobacteria using Microcystis aeruginosa peptide toxin polyclonal antibodies, Environ. Technol, vol.9, pp.1343-1348, 1988.

A. M. Brown and D. E. Mcfarlin, Relapsing Experimental allergic encephalomyelitis in the SJL/J mouse, Laboratory Investigation, vol.45, pp.278-284, 1981.

F. M. Buratti, M. Manganelli, S. Vichi, M. Stefanelli, S. Scardala et al., Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation, Arch Toxicol, vol.91, pp.1049-1130, 2017.

K. Cabrera, D. Lubda, H. Eggenweiler, H. Minakuchi, and N. , A new monolithic-type HPLC column for fast separations, Journal of High Resolution Chromatography, vol.23, pp.93-99, 2000.

W. Carmichael and I. R. Falconer, Disease related to freshwater algal blooms.187-210, Callow JA, Advances in botanical research, 1993.

W. W. Carmichael, S. Azevedo, A. J. Molica, R. Jochimsen, E. M. Lau et al., Human fatalities from cyanobacteria, chemical and biological evidence for cyanotoxins, Environ. Health Perspect, vol.109, pp.663-668, 2001.

A. Catherine, C. Bernard, L. Spoof, and M. Bruno, Microcystins and nodularins-Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. 109-126, Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis.1, 2017.

K. Chen, M. Liu, G. Zhao, H. Shi, F. L. Zhao et al., Fabrication of a Novel and Simple MicrocystinLR Photoelectrochemical Sensor with High Sensitivity and Selectivity, Environ. Sci. Techno, vol.46, pp.11955-11961, 2012.

P. Chevalier, R. Pilote, and J. Leclerc, Risques à la santé publique découlant de la présence de cyanobactéries (algues bleues) toxiques et de microcystines dans trois bassins versants du Sud-Ouest québécois tributaires du fleuve Saint-Laurent. Unité de recherche en santé publique (Centre hospitalier de l'Université Laval) et Institut national de santé publique, pp.16-27, 2001.

I. Chianella, M. Lotierzo, S. Piletsky, I. Tothill, B. Chen et al., Rational Design of a Polymer Specific for Microcystin-LR Using a Computational Approach, Anal. Chem, vol.74, pp.1288-1293, 2002.

A. Ch'ng, N. Hamidon, Z. Konthur, and T. S. Lim, Magnetic Nanoparticle-Based Semi-Automated Panning for High-Throughput Antibody Selection, Methods Mol Biol, vol.1701, pp.301-319, 2018.

C. Chow, S. Panglisch, J. Mole, M. Drikas, M. Burch et al., A study of membrane filtration for the removal of cyanobacterial cells, J Water SRT-Aqua, vol.46, pp.324-334, 1997.

F. Chu, X. Huang, W. R. Carmichael, and W. , Production and characterisation of antibodies against microcystins, Appl. Environ. Microbiol, vol.55, pp.1928-1933, 1989.

G. Codd, L. Morrison, L. Krienitz, A. Ballot, S. Pflugmacher et al., Susceptibility of flamingos to cyanobacterial toxins via feeding, Vet. Record, vol.7, pp.722-723, 2003.

C. Smith and G. , Gene-III protein of filamentous phages: Evidence for a carboxyl-terminal domain with a role in morphogenesis, Virology, vol.132, pp.69-75, 1984.

M. A. Cuccuru, D. Dessì, P. Rappelli, and P. L. Fiori, A simple, rapid and inexpensive technique to bind small peptides to polystyrene surfaces for immunoenzymatic assays, J Immunol Methods, vol.382, p.216, 2012.

R. Derda, S. K. Tang, S. C. Li, S. Ng, W. Matochko et al., Diversity of phage-displayed libraries of peptides during panning and amplification, Molecules, vol.16, pp.1776-803, 2011.

C. M. Devlin, M. R. Bowles, R. B. Gordon, and S. M. Pond, Production of a paraquat-specific murine single chain Fv fragment, J Biochem, vol.118, pp.480-487, 1995.

T. Duy, P. Lam, G. Shaw, and D. Connell, Toxicology and risk assessment of freshwater cyanobacterial (blue green algal) toxins in water, Reviews of Environmental Contamination and Toxicology, vol.163, pp.113-186, 2000.

G. M. Eldridge and G. A. Weiss, Identifying reactive peptides from phage-displayed libraries, Methods Mol Biol, vol.1248, pp.189-99, 2015.

K. Elgert, Antibody structure and function, Immunology: Understanding the Immune System, pp.57-78, 1998.

I. R. Falconer, Measurement of toxins from blue-green algae in water and foodstuffs, Algal Toxins in Seafood and Drinking Water, pp.165-175, 1993.

W. L. Fischer, S. Altheimer, V. Cattori, P. J. Meier, D. R. Dietrich et al., Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin, Toxicol Appl Pharmacol, vol.203, pp.257-263, 2005.

D. K. Flaherty, . Immunology-for-pharmacy, . Missouri, and . Mosby, , 2012.

I. Foulds, A. Granacki, C. Xiao, U. Krull, A. Castle et al., Quantification of microcystinproducing cyanobacteria and E. coli in water by 5'-nuclease PCR, J. Appl. Microbiol, vol.93, pp.825-834, 2002.

D. Gilroy, K. Kauffman, R. Hall, H. X. , and C. F. , Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements, Environ. Health Perspect, vol.108, p.435, 2000.

D. Gioia, M. Bertazzo, M. Recanatini, M. Masetti, and A. Cavalli, Dynamic Docking: A Paradigm Shift in, Computational Drug Discovery. Molecules, vol.22, p.2029, 2017.

M. Graille, S. Harrison, M. P. Crump, S. C. Findlow, N. G. Housden et al., Evidence for plasticity and structural mimicry at the immunoglobulin light chain-protein L interface, J Biol Chem, vol.277, p.47500, 2002.

G. Lohr and R. , Isolation of peptide hepatotoxins from the blue-green alga Microcystis aeruginosa, Comp. Biochem. Physiol, vol.74, pp.413-417, 1982.

K. Harada, K. Ogawa, Y. Kimura, H. Murata, M. Suzuki et al., la Microcystins from Anabaena flos-aquae NRC 525-17, Chem. Res. Toxicol, vol.4, pp.535-540, 1999.

K. Harada, Occurrence of Four Depsipeptides, Aeruginopeptins, Together with Microcystins from Toxic Cyanobacteria, Tetrahedron Letters, vol.34, pp.6091-6094, 1993.

H. Jr and J. Markl, Keyhole limpet hemocyanin (KLH): a biomedical review, Micron, vol.30, pp.597-623, 1999.

K. Havens, Cyanobacteria blooms: effects on aquatic ecosystems, Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, pp.733-747, 2008.

C. Heng, M. Noor, S. , Y. Ts, and R. Othman, Biopanning for Banana streak virus Binding Peptide by Phage Display Peptide Library, Journal of Biological Sciences, vol.7, pp.1382-1387, 2007.

H. Nicholson and B. C. , Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay, Water Research, vol.35, pp.3049-3056, 2001.

S. Herranz, M. Bocková, M. D. Marazuela, J. Homola, and M. C. Moreno-bondi, An SPR biosensor for the detection of microcystins in drinking water, Anal Bioanal Chem, vol.398, pp.2625-2634, 2010.

A. P. Herrington-symes, M. Farys, K. H. Brocchini, and S. , Antibody fragments: Prolonging circulation half-life special issue-antibody research, Advances in Bioscience and Biotechnology, vol.4, pp.689-698, 2013.

B. Hitzfeld, H. S. , and D. D. , Cyanobacterial toxins, removal during drinking water treatment, and human risk assessment, Environ. Health Perspect, vol.108, pp.113-122, 2000.

S. Hoger, D. Dietrich, and B. Hitzfeld, Effect of ozonation in drinking water treatment on the removal of cyanobacterial toxins, Toxicol Sci, vol.48, pp.30-39, 1999.

H. Hoogenboom, A. Griffiths, K. Johnson, D. Chiswell, H. P. Winter et al., Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains, Nucleic Acids Res, vol.19, pp.4133-4137, 1991.

C. Hu, N. Gana, Y. Chenc, L. Bic, X. Zhang et al., Detection of microcystins in environmental samples using surface plasmon resonance biosensor, Talanta, vol.80, pp.407-410, 2009.

S. Hu, M. Wang, G. Cai, and M. He, Genetic code-guided protein synthesis and folding in Escherichia coli, J Biol Chem, vol.288, pp.30855-61, 2013.

M. Ikawa, K. Wegener, T. Foxall, and J. Sasner, Comparaison of the toxins of the blue-green alga Aphanizomenon flosq-aquae with the Gonyaulax toxins, Toxicon, vol.20, pp.747-752, 1982.

M. Jäger and A. Plückthun, Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria, FEBS Lett, vol.462, pp.307-319, 1999.

L. Janssen, F. Sobott, D. Deyn, P. P. , V. Dam et al., Signal loss due to oligomerization in ELISA analysis of amyloid-beta can be recovered by a novel sample pre-treatment method, MethodsX, vol.2, pp.112-135, 2015.

B. Jeong, M. Oh, H. Park, C. Park, E. Kim et al., Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways, Water Research, vol.114, pp.189-199, 2017.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson et al., Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil, N Engl J Med, vol.338, pp.873-881, 1998.

T. Kaloudis, S. Zervou, K. Tsimeli, T. M. Triantis, T. Fotiou et al., Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, Journal of Hazardous Materials, vol.263, pp.105-115, 2013.

R. Kaushik-r-and-balasubramanian, Methods and Approaches Used for Detection of Cyanotoxins in Environmental Samples: A Review, Critical Reviews in Environmental Science and Technology, vol.43, pp.1349-1383, 2012.

I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin, A geometric approach to macromolecule-ligand interactions, J. Mol. Biol, vol.161, pp.269-288, 1982.

Z. Lakhrif, M. Pugnière, C. Henriquet, A. Di-tommaso, I. Dimier-poisson et al., A method to confer Protein L binding ability to any antibody fragment, MAbs, vol.8, pp.379-388, 2016.

J. C. Lazzaroni, P. Germon, R. Mc, and A. Vianney, The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability, FEMS Microbiol Lett, vol.177, pp.191-197, 1999.

L. Lepisto, K. Lakti, and J. Niemi, Removal of cyanobacteria and other phytoplankton in four Finnish waterworks, Algolog Studies, vol.75, pp.167-181, 1994.

X. Li, R. Cheng, H. Shi, B. Tang, H. Xiao et al., A simple highly sensitive and selective aptamerbased colorimetric sensor for environmental toxins microcystin-LR in water samples, Journal of Hazardous Materials, vol.304, pp.474-480, 2016.

L. and C. F. , In vitro neutralization of the inhibitory effect of Microcystin-LR to protein phosphatase 2A by antibody against the toxin, Toxicon, vol.32, pp.605-613, 1994.

S. L. Littlechild, Y. Zhang, J. M. Tomich, and G. W. Conrad, Fibrinogen, riboflavin, and UVA to immobilize a corneal flap-molecular mechanisms, Invest Ophthalmol Vis Sci, vol.53, pp.5991-6003, 2012.

H. Liu and M. K. , Disulfide bond structures of IgG molecules: Structural variations, chemical modifications and possible impacts to stability and biological function, mAbs, vol.4, pp.17-23, 2012.

L. Liu, C. Xing, H. Yan, K. H. Xu, and C. , Development of an ELISA and Immunochromatographic Strip for Highly Sensitive Detection of Microcystin-LR, Sensors, vol.14, pp.14672-14685, 2014.

N. M. Low, P. Holliger, and G. Winter, Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain, Journal of molecular biology, vol.260, pp.359-368, 1996.

J. Lv, S. Zhao, S. Wu, and Z. Wang, Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing, Biosensors and Bioelectronics, vol.90, pp.203-209, 2017.

W. Ma, W. Chen, R. Qiao, C. Liu, Y. Chunhui et al., ? tous les auteurs ne sont pas référencés. 2009. Rapid and sensitive detection of microcystin by immunosensor based on nuclear magnetic resonance, Biosensors and Bioelectronics, vol.25, pp.240-243

M. Carmichael and W. , Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaenafios-aquae NRC-525-17, Toxicon, vol.25, pp.1221-1227, 1987.

P. Malik, T. D. Tarry, L. R. Gowda, A. Langara, S. A. Petukhov et al., Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage, J. Mol. Biol, vol.260, pp.9-21, 1996.

J. Mankiewicz, M. Tarczynska, Z. Walter, and Z. M. , Natural toxins from cyanobacteria, acta biologica cracoviensia Series Botanica, vol.45, pp.9-20, 2003.

E. Mbukwa, T. Msagati, and B. Mamba, Preparation of guanidinium terminus-molecularly imprinted polymers for selective recognition and solid-phase extraction (SPE) of [arginine]-microcystins, Anal Bioanal Chem, vol.405, pp.4253-4267, 2013.

J. Mccafferty, A. Griffiths, W. G. Chiswell, and D. J. , Phage antibodies: filamentous phage displaying antibody variable domains, Nature, vol.348, pp.552-554, 1990.

E. O. Mccullum, B. A. Williams, J. Zhang, and J. C. Chaput, Random mutagenesis by error-prone PCR, Methods Mol Biol, vol.634, pp.103-109, 2010.

J. Mcelhiney, M. Drever, L. La, and A. J. Porter, Rapid Isolation of a Single-Chain Antibody against the Cyanobacterial Toxin Microcystin-LR by Phage Display and Its Use in the Immunoaffinity Concentration of Microcystins from Water, Appl Environ Microbiol, vol.68, pp.5288-5295, 2002.

J. Mcelhiney, L. L. Porter, and A. , Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naive human phage display library, FEMS Microbiol. Lett, vol.193, pp.83-88, 2000.

C. Menezes, E. Valério, E. Dias, and E. , The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins-Chapter 2, pp.20-32, 2013.

J. Meriluoto, S. L. Codd, and G. , Handbook of Cyanobacterial Monitoring and Cyanotoxin, 2017.

J. Metcalf and G. Codd, Analysis of cyanobacterial toxins by immunological methods, Chem. Res. Toxicol, vol.16, pp.103-112, 2003.

J. Metcalf and G. Codd, Cyanotoxins. 651-675, Ecology of Cyanobacteria II: Their Diversity in Space and Time, 2012.

J. Metcalf, A. Hiskia, and T. Kaloudis, Protein phosphatase inhibition assays. 267-271, Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. 1 st ed John Wiley and sons, 2017.
DOI : 10.1002/9781119068761.ch26

M. Wu and Y. , Surface Plasmon Resonance Biosensors for Highly Sensitive Detection of Small Biomolecules, Pier Andrea Serra Editor. InTech, 2010.

P. Mouchet and V. Bonnelye, Solving algae problems: French expertise and world-wide applications, J Water SRT-Aqua, vol.47, pp.125-141, 1998.
DOI : 10.2166/aqua.1998.19

D. Mountfort, P. Holland, and J. Sprosen, Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS, Toxicon, vol.45, pp.199-206, 2005.

L. Mur, S. Om, and H. Utkilen, Cyanobacteria in the environment. 13-43. In water: A guide to Natural toxins from Cyanobacteria public health significance, consequences, monitoring and management, vol.1, 1999.

C. Murphy, E. Stack, S. Krivelo, D. A. Mcpartlin, B. Byrne et al., Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform, Biosens Bioelectron, vol.67, pp.708-714, 2015.

M. Weaver and C. , An introduction to immunobiology and innae immunity. 1-77, Janeway's immunobiology. 9, 2017.

S. Nagata, H. Soutome, T. Tsutsumi, A. Hasegawa, M. Sekijima et al., Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity, Natural Toxins, vol.3, pp.78-86, 1995.
DOI : 10.1002/nt.2620030204

P. N. Nelson, G. M. Reynolds, E. E. Waldron, E. Ward, K. Giannopoulos et al., Monoclonal antibodies. Mol Pathol, vol.53, pp.111-117, 2000.

A. Ng, R. Chinnappan, S. Eissa, H. Liu, C. Tlili et al., Selection, characterization, and biosensing application of high affinity congener-specific microcystin-targeting aptamers, Environ. Sci. Technol, vol.46, pp.10697-10703, 2012.

. Nicholson and M. Burch, Evaluation of analytical methods for detection and quantification of cyanotoxins in relation to Australian drinking water guidelines, a report prepared for the National Health and Medical Research Council of Australia, the Water Services Association of Australia, and the Cooperative Research Centre for Water Quality and Treatment, l_Methods_for_Detection_and_Quantification_of_Cyanotoxins_in_Relation_to_Australian_Drinking_ Water_Guidelines/links/54d8a47e0cf24647581aed52/Evaluation-of-Analytical-Methods-forDetection-and-Quantification-of-Cyanotoxins-in-Relation-to-Australian-Drinking-WaterGuidelines, pp.20-31, 2001.

C. Ortega, A. Herbet, S. Richard, N. Kersual, N. Costa et al., High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging, J Immunol Methods, vol.387, pp.11-20, 2013.

B. Oudraa, M. Loudikia, B. Sbiyyaa, R. Martins, V. V. Namikoshi et al., Isolation, characterization and quanti®cation of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake±reservoir (Morocco), Toxicon, vol.39, p.1375, 2001.

A. Pacheco, I. Guedes, and S. Azevedo, Is qPCR a Reliable Indicator of, Cyanotoxin Risk in Freshwater Toxins, vol.8, issue.6, p.172, 2016.

S. Padiolleau-lefèvre, H. Débat, D. Phichith, D. Thomas, A. Friboulet et al., Expression of a functional scFv fragment of an anti-idiotypic antibody with a beta-lactam hydrolytic activity, Immunol Lett, vol.103, pp.39-44, 2006.

H. Paerl and P. V. , Climate change: Links to global expansion of harmful cyanobacteria, Water Res, vol.46, pp.1349-1363, 2012.

H. Paerl, Mitigating Harmful Cyanobacterial Blooms in a, Human-and Climatically-Impacted World. Life, vol.4, pp.988-1012, 2014.

C. X. , Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-Volume water samples combined with liquid chromatography-tandem mass spectrometry, Journal of Chromatography A, vol.1422, pp.1-12, 2015.

C. Parker, W. Stutts, and S. Degrasse, Development and Validation of a Liquid ChromatographyTandem Mass Spectrometry Method for the Quantitation of Microcystins in Blue-Green Algal Dietary Supplements, J. Agric. Food Chem, vol.63, pp.10303-10312, 2015.

M. K. Paudel, S. Sakamoto, L. Van-huy, H. Tanaka, T. Miyamoto et al., The effect of varying the peptide linker length in a single chain variable fragment antibody against wogonin glucuronide, J Biotechnol, vol.251, pp.47-52, 2017.

A. Pelander, I. Ojanperä, K. Lahti, N. K. Vuori, and E. , Visual detection of cyanobacterial hepatotoxins by thin-layer chromatography and application to water analysis, Water Res, vol.34, pp.2643-2652, 2000.

S. Pflugmacher, Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems, Environ. Toxicol, vol.17, pp.407-413, 2002.

D. Ponsel, J. Neugebauer, K. Ladetzki-baehs, and K. Tissot, High affinity, developability and functional size: the holy grail of combinatorial antibody library generation, Molecules, vol.16, pp.3675-3700, 2011.

G. Poon, I. Priestley, S. Hunt, and G. Codd, Purification procedure for peptide toxins from the cyanobacterium Microcystis aeruginosa involving high-performance thin-layer chromatography, J. Chromatogr, vol.387, pp.551-555, 1987.

R. Porter, The hydrolysis of rabbit ?-globulin and antibodies with crystalline papain, Biochem J, vol.73, pp.119-126, 1959.

D. Pyo, J. Choi, J. Hong, and H. H. Oo, Rapid analytical detection of microcystins using gold colloidal immunochromatographic strip, J Immunoassay Immunochemistry, vol.27, pp.291-302, 2006.

Q. Emilie, Sélection de peptides inhibiteurs de l'activité des protéines STAT5, 2011.

R. Queirós, S. S. , N. J. Frazão, O. , J. P. Aguilar et al., Microcystin-LR detection in water by the Fabry-Pérot interferometer using an optical fibre coated with a sol-gel imprinted sensing membrane, Biosensors and Bioelectronics, vol.26, pp.3932-3937, 2011.

L. Rahbarnia, S. Farajnia, H. Babaei, J. Majidi, K. Veisi et al., Evolution of phage display technology: from discovery to application, J Drug Target, vol.25, pp.216-224, 2016.

P. Rao, N. Gupta, A. Bhaskar, and R. Jayaraj, Toxins and bioactive compounds from cyanobacteria and their implications on human health, J. Environ. Biol, vol.23, pp.215-224, 2002.

J. Rapala and E. K. , Detection of microcystins with protein phosphatase inhibition assay, highperformance liquid chromatography-UV detection and enzyme-linked immunosorbent assay Comparison of methods, Analytica Chimica Acta, vol.466, pp.213-231, 2002.

S. T. Reddy, X. Ge, A. E. Miklos, R. A. Hughes, S. H. Kang et al., Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells, Nat Biotechnol, vol.28, pp.965-969, 2010.

D. Ribatti, Edelman's view on the discovery of antibodies, Immunol Lett, vol.164, pp.72-75, 2015.

R. Beckwith and J. , Roles of thiol-redox pathways in bacteria, Annu Rev Microbiol, vol.55, pp.21-48, 2001.

D. J. Rodi, A. S. Soares, and L. Makowski, Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries, J. Mol. Biol, vol.322, pp.1039-1052, 2002.

J. Rositano, B. Nicholson, and S. A. Salisbury, Water Treatment Techniques for the Removal of Cyanobacterial Toxins from Water 2/94, pp.30-41, 1994.

M. T. Runnegar and I. R. Falconer, The in vivo and in vitro biological effects of the peptide hepatotoxin from the blue-green alga Microcystis-aeruginosa, South African Journal of Science, vol.78, pp.363-366, 1982.

N. Salmaso, C. Bernard, J. F. Humbert, R. Akçaalan, M. Albay et al., Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria. 46-70. In Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, 2017.

A. Sassolas, G. Catanante, D. Fournier, and J. Martya, Development of a colorimetric inhibition assay for microcystin-LR detection: Comparison of the sensitivity of different protein phosphatases, Talanta, vol.85, pp.2498-2503, 2011.

S. Deane and C. , Synonymous codon usage influences the local protein structure observed, Nucleic Acids Res, vol.38, pp.6719-6728, 2010.

T. Schirrmann, T. Meyer, M. Schütte, A. Frenzel, and M. Hust, Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules, vol.16, pp.412-426, 2011.

S. Cavacini and L. , Structure and Function of Immunoglobulins, J Allergy Clin Immunol, vol.125, pp.41-52, 2010.

M. Shahsavarian, N. Chaaya, N. Costa, D. Boquet, A. Atkinson et al., Multitarget selection of catalytic antibodies with ?-lactamase activity using phage display, FEBS J, vol.284, pp.634-653, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01988396

M. Shahsavarian, L. Minoux, D. Matti, K. M. Kaveri, S. Lacroix-desmazes et al., Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries, J Immunol Methods, vol.407, pp.26-34, 2014.

M. Shahsavarian, Genesis of immune diversity and selection of catalytic antibodies: A new nvestigation, 2015.

J. Shamsara, Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets, Int J Med Chem, 2018.

G. Shephard, S. Stockenstrom, D. De-villiers, W. Engelbrecht, E. Sydenham et al., Photocatalytic degradation of cyanobacterial microcystin toxins in water, Toxicon, vol.36, pp.1895-1901, 1998.

S. Sidhu, Engineering M13 for phage display, Biomolecular Engineering, vol.18, pp.57-63, 2001.

S. Mudge and L. , Detection of Hepatotoxins by Protein Phosphatase Inhibition Assay: Advantages, Pitfalls, and Anomalies. 100-105, Detection Methods for Cyanobacterial Toxins, 1 st ed The Royal Society of Chemistry, 1994.

A. Singh, V. Upadhyay, A. K. Upadhyay, S. M. Singh, and A. K. Panda, Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process, Microb Cell Fact, vol.14, pp.41-51, 2015.

D. P. Singh, M. B. Tyagi, and A. Kumar, Cyanobacterial toxins, Cyanobacterial and algal metabolism and environmental biotechnology, pp.61-72, 1999.

S. Singh, A. Srivastava, H. Ohb, C. Ahn, G. Choi et al., Recent trends in development of biosensors for detection of microcystin, Toxicon, vol.60, pp.878-894, 2012.

K. Sivonen and J. J. , In: Chorus I, Bartram J, Toxic cyanobacteria in water: A guide to Natural toxins from Cyanobacteria public health significance, consequences, monitoring and management, vol.1, pp.41-111, 1999.

H. Smienk, E. Dominguez, M. Rodriguez-velasco, D. Clarke, K. Kapp et al., Quantitative determination of the okadaic acid toxins group by a colorimetric phosphatase inhibition assay: interlaboratory study, Journal of the AOAC International, vol.96, pp.77-85, 2013.

G. P. Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion, surface. Science, vol.228, pp.1315-1317, 1985.

M. ?najder, M. Miheli?, D. Turk, and N. P. Ulrih, Codon optimisation is key for pernisine expression in Escherichia coli, PLoS One, vol.10, issue.4, p.123288, 2015.

M. Sorouri, S. Fitzsimmons, A. Aydanian, S. Bennett, and M. Shapiro, Diversity of the antibody response to tetanus toxoid: comparison of hybridoma library to phage display library, PLoS ONE, vol.9, p.106699, 2014.

L. Spoof, N. M. Meriluoto, and J. , Fast separation of microcystins and nodularins narrow-bore reversed-phase columns coupled to a conventional HPLC system, Toxicon, vol.55, pp.954-964, 2010.

L. Spoof, P. Vesterkvist, T. Lindholm, and J. Meriluoto, Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatographyelectrospray ionisation mass spectrometry, J. Chromatogr. A, vol.1020, pp.105-119, 2003.

J. T. Staley, B. M. , P. N. Holt, and J. , Bergey's Manual of Systematic Bacteriology, vol.3, 1989.

A. ?traser and B. Zegura, Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells, Toxicology In Vitro, vol.27, pp.1809-1819, 2013.

Z. Svircev, S. Krstic, M. Miladinov-mikov, V. Baltic, and M. Vidovic, Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia, J Environ Sci Health Part C-Environ Carcinogen & Ecotox Rev, vol.27, pp.36-55, 2009.

N. Tippkötter, H. Stückmann, S. Kroll, G. Winkelmann, U. Noack et al., A semiquantitative dipstick assay for microcystin, Anal Bioanal Chem, vol.394, pp.863-869, 2009.

M. R. Tohidkia, J. Barar, A. F. Omidi, and Y. , Molecular considerations for development of phage antibody libraries, J Drug Target, vol.20, pp.195-208, 2012.

G. Trifirò, E. Barbaro, A. Gambaro, V. Vita, M. T. Clausi et al., Quantitative determination by screening, the water of Occhito lake and crops, vol.408, pp.7699-7708, 2016.

O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, vol.31, pp.455-461, 2010.

K. Tsuji, T. Watanuki, F. Kondo, M. Watanabe, S. Suzuki et al., Stability of microcystins from cyanobacteria, II: Effect of UV light on decomposition and isomerization. Toxicon, vol.33, pp.1619-1631, 1995.

K. Tsumoto, K. Shinoki, H. Kondo, M. Uchikawa, T. Juji et al., Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent-application to a human single-chain Fv fragment, J Immunol Methods, vol.219, pp.119-129, 1998.

M. Umetsu, K. Tsumoto, M. Hara, A. K. Goda, S. Adschiri et al., How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment, J Biol Chem. 2003, vol.278, pp.8979-8987, 2003.

M. Van-appeldoorn, H. P. Van-egmond, G. Speijers, and G. Bakker, Toxins of Cyanobacteria, Mol.Nutr.Food Res, vol.51, pp.7-60, 2007.

B. Van-dorst, J. Mehta, E. Rouah-martin, R. Blust, and J. Robbens, Phage display as a method for discovering cellular targets of small molecules, Methods, vol.58, pp.56-61, 2012.

Y. Vander-heyden, A. Nijhuis, J. Smeyers-verbeke, V. B. Massart, and D. , Guidance for robustness: ruggedness tests in method validation, J. Pharm. Biomed. Anal, vol.24, pp.723-753, 2001.

G. Vasas, A. Gásprár, G. Surányi, G. Batta, G. Gyémánt et al., Capillary Electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum by plant test, 2002.

, Analytical Biochemistry, vol.302, pp.95-103

T. Vinogradova, M. Danaher, A. Baxter, M. Moloney, D. Victory et al., Rapid surface plasmon resonance immunobiosensor assay for microcystin toxins in blue-green algae food supplements, Talanta, vol.84, pp.638-643, 2011.

M. Welker, J. Fastner, E. M. Von-dohren, and H. , Applications of MALDI-TOF MS analysis in cyanotoxin research, Environmental Toxicology, vol.17, pp.367-374, 2002.

M. Weller, Immunochromatographic techniques-a critical review, Fresen J. Anal. Chem, vol.366, pp.635-645, 2000.

M. Weller, Immunoassays and Biosensors for the Detection of, Cyanobacterial Toxins in Water. Sensors, vol.13, pp.15085-15112, 2013.

W. Br and S. J. , Polyclonal anti-colorectal cancer Fab phage display library selected in one round using density gradient: centrifugation to separate antigen-bound and free phage, Immunol. Lett, vol.81, pp.141-148, 2002.

W. D. Wilson, Analyzing biomolecular interactions. Science, vol.295, pp.2103-2105, 2002.

C. Wu, I. Liu, R. Lu, and H. Wu, Advancement and applications of peptide phage display technology in biomedical science, J Biomed Sci, vol.19, pp.23-28, 2016.

. Xie and H. D. Park, Determination of microcystins in fish tissues using HPLC with a rapid and efficient solid phase extraction, Aquaculture, vol.271, pp.530-536, 2007.

J. L. Xu and M. M. Davis, Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities, Immunity, vol.13, pp.37-45, 2000.

Z. Yang, L. Zhang, Y. Zhang, T. Zhang, Y. Feng et al., Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method, PLoS One, vol.6, issue.7, p.22981, 2011.

A. S. Yribarren, Sélection et caractérisation d'inhibiteurs d'une activité de type béta-lactamase portée par un anticorps anti-idiotypique : Approche combinatoire par l'utilisation d'une banque peptidique en surface de bactériophage, 2003.

C. Zahnd, A. P. Plückthun, and A. , Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target, Nat Methods, vol.4, pp.269-279, 2007.

A. Zeck, A. Eikenberg, M. Weller, and R. Niessner, 2001-A. Highly sensitive immunoassay based on a monoclonal antibody specific for [4-arginine] microcystins, Anal. Chim. Acta, vol.441, pp.1-13

A. Zeck, M. Weller, D. Bursill, and R. Niessner, 2001-B. Generic microcystin immunoassay based on monoclonal antibodies against, ADDA. Analyst, vol.126, pp.2002-2007

C. Zhang, Hybridoma technology for the generation of monoclonal antibodies, Methods Mol Biol, vol.901, pp.117-135, 2012.

X. Zhang, K. He, R. Zhao, L. Wang, and J. Y. , Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water, Chemosphere, vol.160, pp.230-236, 2016.

H. Zhao and T. J. , A graphene and multienzyme functionalized carbon nanosphere-based electrochemical immunosensor for microcystin-LR detection, Colloids and Surfaces B: Biointerfaces, vol.103, pp.38-44, 2013.
DOI : 10.1016/j.colsurfb.2012.10.010

S. Zhao, P. Shen, Y. Zhou, Y. Wei, X. X. Hua et al., Selecting peptide ligands of microcystin-LR, 2005.

I. -1-; and K. La, Conjugaison de la MC-LR aux protéines porteuses : l'ovalbumine (OVA)

. , Dosage protéique à l'Acide Bicinchoninique (BCA)

I. ?. ,

I. .. -5.-western-blot????????????????????????????????, , vol.4

. , Préparation d'anticorps monoclonaux par la technologie des hybridomes

. , Sélection par Phage Display de scFv dirigés contre la MC-LR

. , Préparation de la banque de phages

. , Sélection des phages spécifiques à la MC-LR

. , Séquençage des 11 clones sélectionnés

. , 11 I-10.a-Le vecteur d'expression pET9c, Clonage et Production des scFv sous forme soluble

. , Séquences optimisées

. , Caractérisation biochimique et validation de la fonctionnalité

. , b-Etude des interactions des anticorps commerciaux avec la MC-LR par SPR

. , Etude des interactions du scFv 3A8 avec la MC

, Conjugaison de la MC-LR aux protéines porteuses : l'ovalbumine (OVA) et la KLH

, Celui-ci réagit avec les groupements carboxyliques et induit la formation d'un intermédiaire (l'ester actif O-acyliso-urée) réagissant à son tour rapidement avec un groupement amine pour former une liaison amide et libérer un produit secondaire, l'iso-urée. Une liaison entre le groupement carboxylique de l'un

, Réactifs Protéines porteuses 0.5 mg (OVA ou KLH Thermo Scientific, # 77120 et 77600 respectivement)

. ?-tampon-de,

, ? EDC 10 mg

?. Mc,

, Protocole La protéine porteuse et la MC-LR sont dissoutes dans respectivement 50 µL et 125 µL de tampon de conjugaison puis mélangées ensemble (volume final 175 µL). 100 µL d'EDC 10 mg/mL préparés extemporanément sont ajoutés au mélange

, Dosage protéique à l'Acide Bicinchoninique (BCA)

. Réactifs-?-ampoule and . Bsa,

?. Kit and B. , B9643-1L) et solution B de sulfate de cuivre (Sigma, # C2284-25mL) utilisées en ratio A/B de 50/1, solution A d'acide bicinchoninique

, Protocole Une gamme étalon d'Albumine de Sérum Bovin (BSA) est préparée en balayant les concentrations de 0

, Le réactif de détection BCA est préparé extemporanément à partir d'une solution A d'acide bicinchoninique et d'une solution B de sulfate de cuivre en

, ?L de chaque point de gamme et de chaque échantillon sont déposés en duplicats dans une plaque 96

, L'absorbance est mesurée à 560 nm après incubation de la plaque pendant 30 minutes à 37°C. L'intensité de la coloration est mesurée par spectrophotométrie sur un dosage immuno-enzymatique qui permet l'étude d'interaction entre la MC-LR et les anticorps commerciaux AD4G2 et MC10E7. L'utilisation d'anticorps conjugués à un marqueur enzymatique adaptés permet la révélation, puits, auxquels sont ajoutés 200 µl du réactif BCA

, Réactifs ? Tampon Carbonate d'immobilisation : solution A : Na2CO3 0,1 M, solution B : NaHCO3 0,1 M (30 mL de solution A + 70 mL de solution B), vol.9, p.6

?. Pbs, NaCl 137 mM, KCl 2,7 mM, NaHPO4 10 mM et KH2PO4 1,8 mM ? Tampon de saturation : PBS 1x et gélatine en poudre 1%. ? Tampon de lavage PBST : PBS 1x et Tween-20 0,05%. ? Anticorps

?. Anticorps-secondaire, Anti-IgG de souris couplé HRP (Abliance # BI2413C)

, Substrat de l'enzyme HRP : ABTS (2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (Merck Millipore, 194434.

L. Protocole and . Est, L'immobilisation de l'OVA-MC s'effectue après dilution dans le tampon carbonate à 2,5 µg/mL à raison de 100 µl/puits en duplicats (les conditions de la KLH-MC sont similaires dans le cas d'un ELISA visant à tester le couplage de cette protéine porteuse). La plaque est incubée 2h à 37°C puis lavée 3 fois avec 300 µL de PBST. Entre chaque étape, réalisé dans des plaques 96 puits Maxisorb (Nunc)

, µL de la solution d'ABTS sont déposés par puits, puis l'A405 nm est lue après incubation de la plaque à l'obscurité, pendant 30 minutes

, Préparation d'anticorps monoclonaux par la technologie des hybridomes I-6.a-Immunisation des souris Deux souris (SWISS) ont été immunisées par voie sous-cutanée en utilisant la KLH-MC à 5 ?g/mL homogénéisée dans l'adjuvant complet de Freund. Après deux semaines, chaque souris a reçu une nouvelle injection sous-cutanée, comme décrit précédemment, mais en présence d'adjuvant incomplet de Freund. Après dix jours

, Une semaine après la dernière injection, du sang a été prélevé et le titre en anticorps spécifiques a été évalué par ELISA sur des dilutions successives du sérum, Trois injections sous-cutanées supplémentaires ont été effectuées à 20 jours d'intervalle avec 20 µg de chaque antigène émulsionné dans l'adjuvant incomplet de Freund

, L'animal ayant le meilleur titre en anticorps a reçu une dernière injection de 5 ?g d'antigène dilué dans 100 ?l de PBS, par voie intraveineuse. Trois jours plus tard l'animal a été sacrifié et sa rate prélevée

, I-6.b-Production d'anticorps monoclonaux

, Après centrifugation, les cellules sont mises en culture dans un milieu sélectif HAT (hypoxanthine, aminoptérine et thymidine), réparties dans des plaques 96 puits à raison d'une cellule par puits, et enfin incubées à 37°C sous atmosphère de 5% de CO2. Quinze jours plus tard, le surnageant prélevé des puits est testé par ELISA. Les lignées cellulaires d'hybridomes positives sélectionnées sont ensuite sous-clonées par la méthode de dilutions limites à raison d'une cellule tous les 3 puits. Vingt jours après le clonage, le test ELISA est répété pour confirmer la présence d'anticorps spécifiques dans le surnageant des cellules hybrides ainsi sous-clonées, Les cellules spléniques ont été fusionnées aux cellules de myélome SP2/0 préalablement mises en culture dans du milieu DMEM 10 (Dulbecco's Modified Eagle Medium mélangé avec du sérum bovin foetal à 10%)

, I-6.c-Caractérisation immunologique-ELISA

, mg/mL de KLH/MC dilués avec du tampon carbonate ont été immobilisés sur les puits des plaques NUNC 96 puits pendant 12 à 16 heures à 4°C. Après l'étape d'immobilisation

, L'anticorps secondaire utilisé est l'anti-Ig G de souris conjugué à la peroxydase (dilué à 1 :4000 dans du tampon d'incubation). La révélation de l'activité enzymatique est assurée grâce à une solution d'orthophénylènediamine (OPD). De l'acide sulfurique est ajoutée15 minutes plus tard pour arrêter la réaction, Ensuite, la plaque est lavée de nouveau et incubée avec les sérums d'animaux immunisés dilués dans un tampon d'incubation

L. , ELISA sandwich est la même que l'ELISA effectué dans le cadre de la vérification du couplage (Annexe I-3) mais ici, l'ajout des scFv remplace celui des anticorps AD4G2/MC10E7. Les scFv purs sont en principe à 10 µM et peuvent être dilués d'un facteur

, L'anticorps secondaire est l'anti-His couplé à l'HRP (Clinisciences, p.8036

, Etude des interactions des anticorps commerciaux avec la MC-LR par SPR Réactifs ? Tampon d'immobilisation des anticorps ou fragments d'anticorps : Acétate de Sodium 10 mM ? Tampon de course : HBS-P pH

, une dilution a été préalablement effectuée à 100 µg/mL dans le tampon d'acétate de Sodium (10 mM à pH 5,0) avant d'être injectés à un débit de 3 µL/min pendant 8 minutes jusqu'à atteindre la RL visée (ici 20 000 RU), Protocole Pour immobiliser les anticorps commerciaux sur la puce CM5

, Les constantes d'affinité sont déterminées avec le logiciel BIAeval permettant un ajustement des données expérimentales à un modèle mathématique. L'alignement des résultats a été réalisé avec le modèle Steady State Affinity

, Pour l'analyse des interactions avec la MC-LR, la méthode Single Cycle Kinetics permettant l'injection de concentrations croissantes d'analyte sans régénération a été utilisée. Cinq concentrations croissantes successives de MCLR ont ensuite été injectées à 10 µL/min pendant 500 secondes, Etude des interactions du scFv 3A8 avec la MC-LR par SPR 50µg/mL de scFv 3A8 dilués en acétate de sodium 10 mM pH, vol.3

, d-ELISA compétitif Pour effectuer l'ELISA compétitif, un protocole semblable à celui de l'ELISA Sandwich a été utilisé

. Toutefois, une étape entre les lavages effectués après incubation avec les scFv et l'ajout des anticorps secondaires l'anti His /HRP a été ajoutée

, Cette même démarche a été utilisée avec un extrait brut d'un échantillon prélevé sur le terrain. Dans ce cas, l'anticorps commercial AD4G2 a été utilisé à la place des scFv. L'anticorps secondaire était alors l'anti IgG/HRP (Abliance, # BI2413C)