J. Stiles and T. L. Jernigan, The basics of brain development, Neuropsychol Rev, vol.20, issue.4, pp.327-375, 2010.

J. C. Silbereis, The Cellular and Molecular Landscapes of the Developing Human Central Nervous System, Neuron, vol.89, issue.2, pp.248-68, 2016.

M. E. Tremblay, From the Cajal alumni Achucarro and Rio-Hortega to the rediscovery of neverresting microglia, Front Neuroanat, vol.9, p.45, 2015.

K. Reemst, The Indispensable Roles of Microglia and Astrocytes during Brain Development, Front Hum Neurosci, vol.10, p.566, 2016.

L. Lyck, An empirical analysis of the precision of estimating the numbers of neurons and glia in human neocortex using a fractionator-design with sub-sampling, J Neurosci Methods, vol.182, issue.2, pp.143-56, 2009.

I. Martinez-garay, Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex, Development, vol.143, issue.12, pp.2121-2155, 2016.

D. P. Pelvig, Neocortical glial cell numbers in human brains, Neurobiol Aging, vol.29, issue.11, pp.1754-62, 2008.

J. L. Frost and D. P. Schafer, Microglia: Architects of the Developing Nervous System, Trends Cell Biol, vol.26, issue.8, pp.587-97, 2016.

B. Clancy, R. B. Darlington, and B. L. Finlay, Translating developmental time across mammalian species, Neuroscience, vol.105, issue.1, pp.7-17, 2001.

C. K. Tong and S. Vidyadaran, Role of microglia in embryonic neurogenesis, Exp Biol Med, issue.15, pp.1669-75

H. Stolp, The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease. Front Psychiatry, vol.3, p.50, 2012.

A. Verkhratsky, V. Parpura, and J. J. Rodriguez, Where the thoughts dwell: the physiology of neuronalglial "diffuse neural net", Brain Res Rev, vol.66, issue.1-2, pp.133-51, 2011.

M. Gotz and W. B. Huttner, The cell biology of neurogenesis, Nat Rev Mol Cell Biol, vol.6, issue.10, pp.777-88, 2005.

P. O. Kanold and H. J. Luhmann, The subplate and early cortical circuits, Annu Rev Neurosci, vol.33, pp.23-48, 2010.

I. Ferrer, Cell death and removal in the cerebral cortex during development, Prog Neurobiol, vol.39, issue.1, pp.1-43, 1992.

C. A. Mosser, Microglia in CNS development: Shaping the brain for the future, Prog Neurobiol, 2017.

J. A. Cooper, A mechanism for inside-out lamination in the neocortex, Trends Neurosci, vol.31, issue.3, pp.113-122, 2008.

C. Kelsom and W. Lu, Development and specification of GABAergic cortical interneurons, Cell Biosci, issue.3, p.19, 2013.

O. Marin and J. L. Rubenstein, Cell migration in the forebrain, Annu Rev Neurosci, vol.26, pp.441-83, 2003.

F. Ginhoux, Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, issue.6005, pp.841-846, 2010.

T. Arnold and C. Betsholtz, The importance of microglia in the development of the vasculature in the central nervous system, Vasc Cell, vol.5, p.4, 2013.

N. Hagan and A. Ben-zvi, The molecular, cellular, and morphological components of blood-brain barrier development during embryogenesis, Semin Cell Dev Biol, vol.38, pp.7-15, 2015.

F. Ginhoux, Origin and differentiation of microglia, Front Cell Neurosci, issue.7, p.45, 2013.

X. Qian, Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells, Neuron, vol.28, issue.1, pp.69-80, 2000.

A. Kriegstein and A. Alvarez-buylla, The glial nature of embryonic and adult neural stem cells, Annu Rev Neurosci, vol.32, pp.149-84, 2009.

M. Nikodemova, Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week, J Neuroimmunol, vol.278, pp.280-288, 2015.

J. A. Del-rio, Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages, Cereb Cortex, vol.10, issue.8, pp.784-801, 2000.

P. Squarzoni, M. S. Thion, and S. Garel, Neuronal and microglial regulators of cortical wiring: usual and novel guideposts, Front Neurosci, vol.9, p.248, 2015.

H. Kettenmann, F. Kirchhoff, and A. Verkhratsky, Microglia: new roles for the synaptic stripper, Neuron, vol.77, issue.1, pp.10-18, 2013.

U. Pfisterer and K. Khodosevich, Neuronal survival in the brain: neuron type-specific mechanisms, Cell Death Dis, vol.8, issue.3, p.2643, 2017.

C. Sousa, K. Biber, and A. Michelucci, Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Front Immunol, vol.8, p.198, 2017.

H. Kettenmann, Physiology of microglia, Physiol Rev, vol.91, issue.2, pp.461-553, 2011.

C. Kozlowski and R. M. Weimer, An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo, PLoS One, vol.7, issue.2, p.31814, 2012.

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, vol.308, issue.5726, pp.1314-1322, 2005.

I. Arnoux, Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory, Barrel" cortex. Glia, vol.61, issue.10, pp.1582-94, 2013.

D. Davalos, ATP mediates rapid microglial response to local brain injury in vivo, Nat Neurosci, vol.8, issue.6, pp.752-760, 2005.

C. Rigato, Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks, Glia, vol.59, issue.4, pp.675-95, 2011.

A. Karperien, H. Ahammer, and H. F. Jelinek, Quantitating the subtleties of microglial morphology with fractal analysis, Front Cell Neurosci, issue.7, p.3, 2013.

U. K. Hanisch, Functional diversity of microglia-how heterogeneous are they to begin with? Front Cell Neurosci, p.65, 2013.

M. Olah, Microglia phenotype diversity, CNS Neurol Disord Drug Targets, vol.10, issue.1, pp.108-126, 2011.
DOI : 10.2174/187152711794488575

A. Scheffold, Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model, Acta Neuropathol Commun, vol.4, issue.1, p.87, 2016.

W. J. Streit, Microglial pathology, Acta Neuropathol Commun, vol.2, p.142, 2014.
DOI : 10.1186/preaccept-1035265697142235

URL : https://actaneurocomms.biomedcentral.com/track/pdf/10.1186/s40478-014-0142-6

N. Hagemeyer, Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood, Acta Neuropathol, 2017.

S. R. Mckercher, Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities, EMBO J, vol.15, pp.5647-58, 1920.

D. R. Beers, Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis, Proc Natl Acad Sci, vol.103, issue.43, pp.16021-16027, 2006.

K. E. Mcgrath, J. M. Frame, and J. Palis, Early hematopoiesis and macrophage development, Semin Immunol, vol.27, issue.6, pp.379-87, 2015.

E. G. Perdiguero and F. Geissmann, The development and maintenance of resident macrophages, Nat Immunol, vol.17, issue.1, pp.2-8, 2016.

F. Ginhoux and S. Jung, Monocytes and macrophages: developmental pathways and tissue homeostasis, Nat Rev Immunol, vol.14, issue.6, pp.392-404, 2014.
DOI : 10.1038/nri3671

M. C. Yoder, Inducing definitive hematopoiesis in a dish, Nat Biotechnol, vol.32, issue.6, pp.539-580, 2014.
DOI : 10.1038/nbt.2929

F. Ginhoux and M. Guilliams, Tissue-Resident Macrophage Ontogeny and Homeostasis, Immunity, vol.44, issue.3, pp.439-488, 2016.
DOI : 10.1016/j.immuni.2016.02.024

URL : https://doi.org/10.1016/j.immuni.2016.02.024

J. Xu, Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish, Dev Cell, vol.34, issue.6, pp.632-673, 2015.
DOI : 10.1016/j.devcel.2015.08.018

URL : https://doi.org/10.1016/j.devcel.2015.08.018

K. Kierdorf, Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways, Nat Neurosci, vol.16, issue.3, pp.273-80, 2013.
DOI : 10.1038/nn.3318

C. Schulz, A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science, vol.336, issue.6077, pp.86-90, 2012.

B. Erblich, Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits, PLoS One, vol.6, issue.10, p.26317, 2011.

A. Sanchez-lopez, Radial migration of developing microglial cells in quail retina: a confocal microscopy study, Glia, vol.46, issue.3, pp.261-73, 2004.

P. Rezaie and D. Male, Colonisation of the developing human brain and spinal cord by microglia: a review, Microsc Res Tech, vol.45, issue.6, pp.359-82, 1999.

P. Rezaie, Microglia in the cerebral wall of the human telencephalon at second trimester, Cereb Cortex, vol.15, issue.7, pp.938-987, 2005.

C. Rigato, Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion, J Neurosci, vol.32, issue.34, pp.11559-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542740

F. Alliot, I. Godin, and B. Pessac, Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain, Brain Res Dev Brain Res, vol.117, issue.2, pp.145-52, 1999.

K. Askew, Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain, Cell Rep, vol.18, issue.2, pp.391-405, 2017.

I. Kim, A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers, Brain Behav, vol.5, issue.12, p.403, 2015.

P. A. Garay, Maternal immune activation causes age-and region-specific changes in brain cytokines in offspring throughout development, Brain Behav Immun, 2012.
DOI : 10.1016/j.bbi.2012.07.008

URL : http://europepmc.org/articles/pmc3529133?pdf=render

A. L. Xavier, Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone, Front Cell Neurosci, vol.9, p.37, 2015.

U. B. Eyo, Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus, Brain Behav Immun, 2015.

J. Navascues, Entry, dispersion and differentiation of microglia in the developing central nervous system, An Acad Bras Cienc, vol.72, issue.1, pp.91-102, 2000.

L. Pont-lezica, Physiological roles of microglia during development, J Neurochem, vol.119, issue.5, pp.901-909, 2011.

P. Herbomel, B. Thisse, and C. Thisse, Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process, Dev Biol, vol.238, issue.2, pp.274-88, 2001.

M. A. Cuadros and J. Navascues, The origin and differentiation of microglial cells during development, Prog Neurobiol, vol.56, issue.2, pp.173-89, 1998.

J. Navascues, Origin of microglia in the quail retina: central-to-peripheral and vitreal-to-scleral migration of microglial precursors during development, J Comp Neurol, vol.354, issue.2, pp.209-237, 1995.

M. A. Cuadros, Development of microglia in the quail optic tectum, J Comp Neurol, vol.348, issue.2, pp.207-231, 1994.

M. A. Cuadros, Microglia development in the quail cerebellum, J Comp Neurol, vol.389, issue.3, pp.390-401, 1997.

I. Dalmau, Expression of LFA-1alpha and ICAM-1 in the developing rat brain: a potential mechanism for the recruitment of microglial cell precursors, Brain Res Dev Brain Res, vol.103, issue.2, pp.163-70, 1997.

R. Grossmann, Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development, Glia, vol.37, issue.3, pp.229-269, 2002.

J. Tanaka and N. Maeda, Microglial ramification requires nondiffusible factors derived from astrocytes, Exp Neurol, vol.137, issue.2, pp.367-75, 1996.

M. Matyash, The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain, PLoS One, vol.12, issue.4, p.175012, 2017.

D. Nayak, T. L. Roth, and D. B. Mcgavern, Microglia development and function, Annu Rev Immunol, vol.32, pp.367-402, 2014.

M. Zusso, Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1, J Neurosci, vol.32, issue.33, pp.11285-98, 2012.

A. Miyamoto, Microglia contact induces synapse formation in developing somatosensory cortex, Nat Commun, vol.7, p.12540, 2016.

T. Schilling, Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta, Am J Physiol Cell Physiol, vol.279, issue.4, pp.1123-1157, 2000.

N. Nutile-mcmenemy, A. Elfenbein, and J. A. Deleo, Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression, J Neurochem, vol.103, issue.5, pp.2035-2081, 2007.

V. V. Artym and H. R. Petty, Molecular proximity of Kv1.3 voltage-gated potassium channels and beta(1)-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers, J Gen Physiol, vol.120, issue.1, pp.29-37, 2002.

M. Levite, Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins, J Exp Med, vol.191, issue.7, pp.1167-76, 2000.

A. J. Svahn, miR-124 Contributes to the functional maturity of microglia, Dev Neurobiol, vol.76, issue.5, pp.507-525, 2016.

R. Saika, MicroRNA-101a regulates microglial morphology and inflammation, J Neuroinflammation, vol.14, issue.1, p.109, 2017.

F. Pagani, Defective microglial development in the hippocampus of Cx3cr1 deficient mice. Front Cell Neurosci, vol.9, p.111, 2015.

O. Matcovitch-natan, Microglia development follows a stepwise program to regulate brain homeostasis, Science, vol.353, issue.6301, p.8670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438174

O. Butovsky, Identification of a unique TGF-beta-dependent molecular and functional signature in microglia, Nat Neurosci, vol.17, issue.1, pp.131-174, 2014.

K. Wong, Mice deficient in NRROS show abnormal microglial development and neurological disorders, Nat Immunol, vol.18, issue.6, pp.633-641, 2017.

D. Erny, Host microbiota constantly control maturation and function of microglia in the CNS, Nat Neurosci, vol.18, issue.7, pp.965-77, 2015.

R. Hanamsagar, Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity, Glia, 2017.

T. L. Tay, A new fate mapping system reveals context-dependent random or clonal expansion of microglia, Nat Neurosci, 2017.

P. Reu, The Lifespan and Turnover of Microglia in the Human Brain, Cell Rep, vol.20, issue.4, pp.779-784, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01572438

J. Bruttger, Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System, Immunity, vol.43, issue.1, pp.92-106, 2015.

Y. Lavin, Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment, Cell, vol.159, issue.6, pp.1312-1338, 2014.

D. Gosselin, Environment drives selection and function of enhancers controlling tissue-specific macrophage identities, Cell, vol.159, issue.6, pp.1327-1367, 2014.

E. L. Gautier, Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat Immunol, vol.13, issue.11, pp.1118-1146, 2012.

A. Buttgereit, Sall1 is a transcriptional regulator defining microglia identity and function, Nat Immunol, vol.17, issue.12, pp.1397-1406, 2016.

K. Grabert, Microglial brain region-dependent diversity and selective regional sensitivities to aging, Nat Neurosci, vol.19, issue.3, pp.504-520, 2016.

A. Crotti and R. M. Ransohoff, Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity, vol.44, pp.505-520, 2016.

T. Goldmann, Origin, fate and dynamics of macrophages at central nervous system interfaces, Nat Immunol, vol.17, issue.7, pp.797-805, 2016.

A. D. Hart, Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences, Brain Behav Immun, vol.26, issue.5, pp.754-65, 2012.

L. Schnell, Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord, Eur J Neurosci, vol.11, issue.10, pp.3648-58, 1999.

A. Flowers, Proteomic anaysis of aged microglia: shifts in transcription, bioenergetics, and nutrient response, J Neuroinflammation, vol.14, issue.1, p.96, 2017.

L. M. De-biase, Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia, 2017.

T. Zrzavy, Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis, Brain, vol.140, issue.7, pp.1900-1913, 2017.

M. L. Bennett, New tools for studying microglia in the mouse and human CNS, Proc Natl Acad Sci, vol.113, issue.12, pp.1738-1784, 2016.
DOI : 10.1073/pnas.1525528113

URL : http://www.pnas.org/content/113/12/E1738.full.pdf

S. J. Harrison, Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome, Dis Model Mech, vol.5, issue.3, pp.351-65, 2012.
DOI : 10.1242/dmm.002873

URL : http://dmm.biologists.org/content/dmm/5/3/351.full.pdf

I. R. Holtman, D. Skola, and C. K. Glass, Transcriptional control of microglia phenotypes in health and disease, J Clin Invest, 2017.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nat Immunol, vol.18, issue.4, pp.385-392, 2017.
DOI : 10.1038/ni.3703

S. E. Hickman, The microglial sensome revealed by direct RNA sequencing, Nat Neurosci, vol.16, issue.12, pp.1896-905, 2013.
DOI : 10.1038/nn.3554

URL : http://europepmc.org/articles/pmc3840123?pdf=render

P. Italiani and D. Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol, vol.5, p.514, 2014.
DOI : 10.3389/fimmu.2014.00514

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2014.00514/pdf

S. Yona, Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, issue.1, pp.79-91, 2013.
DOI : 10.1016/j.immuni.2013.05.008

URL : https://doi.org/10.1016/j.immuni.2013.05.008

I. M. Chiu, A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model, Cell Rep, vol.4, issue.2, pp.385-401, 2013.

K. Kierdorf, Development and function of tissue resident macrophages in mice, Semin Immunol, vol.27, issue.6, pp.369-78, 2015.

J. L. Marin-teva, Microglia promote the death of developing Purkinje cells, Neuron, vol.41, issue.4, pp.535-582, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00077309

S. Wakselman, Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor, J Neurosci, vol.28, issue.32, pp.8138-8181, 2008.
DOI : 10.1523/jneurosci.1006-08.2008

URL : http://www.jneurosci.org/content/28/32/8138.full.pdf

J. M. Antony, Endogenous microglia regulate development of embryonic cortical precursor cells, J Neurosci Res, vol.89, issue.3, pp.286-98, 2011.
DOI : 10.1002/jnr.22533

C. L. Cunningham, V. Martinez-cerdeno, and S. C. Noctor, Microglia regulate the number of neural precursor cells in the developing cerebral cortex, J Neurosci, vol.33, issue.10, pp.4216-4249, 2013.

C. Cunningham, Microglia and neurodegeneration: the role of systemic inflammation, Glia, vol.61, issue.1, pp.71-90, 2013.

G. A. Garden and T. Moller, Microglia biology in health and disease, J Neuroimmune Pharmacol, vol.1, issue.2, pp.127-164, 2006.
DOI : 10.1007/s11481-006-9015-5

T. Masuda and M. Prinz, Microglia: A Unique Versatile Cell in the Central Nervous System, ACS Chem Neurosci, vol.7, issue.4, pp.428-462, 2016.

Y. Shigemoto-mogami, Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone, J Neurosci, vol.34, issue.6, pp.2231-2274, 2014.

K. I. Mosher, Neural progenitor cells regulate microglia functions and activity, Nat Neurosci, vol.15, issue.11, pp.1485-1492, 2012.
DOI : 10.1038/nn.3233

URL : http://europepmc.org/articles/pmc3495979?pdf=render

C. Bechade, Nitric oxide regulates astrocyte maturation in the hippocampus: involvement of NOS2, Mol Cell Neurosci, vol.46, issue.4, pp.762-771, 2011.

P. Squarzoni, Microglia modulate wiring of the embryonic forebrain, Cell Rep, vol.8, issue.5, pp.1271-1280, 2014.

L. Pont-lezica, Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation, Eur J Neurosci, vol.39, issue.10, pp.1551-1558, 2014.

B. Chamak, V. Morandi, and M. Mallat, Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin, J Neurosci Res, vol.38, issue.2, pp.221-254, 1994.

B. Chamak, A. Dobbertin, and M. Mallat, Immunohistochemical detection of thrombospondin in microglia in the developing rat brain, Neuroscience, vol.69, issue.1, pp.177-87, 1995.

Y. Wu, Microglia: Dynamic Mediators of Synapse Development and Plasticity, Trends Immunol, vol.36, issue.10, pp.605-618, 2015.

Y. Zhan, Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior, Nat Neurosci, vol.17, issue.3, pp.400-406, 2014.

D. Checchin, Potential role of microglia in retinal blood vessel formation, Invest Ophthalmol Vis Sci, vol.47, issue.8, pp.3595-602, 2006.

Y. Kubota, M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis, J Exp Med, vol.206, issue.5, pp.1089-102, 2009.

A. Fantin, Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction, Blood, vol.116, issue.5, pp.829-869, 2010.

J. A. Stefater, Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells, Nature, vol.474, issue.7352, pp.511-516, 2011.

N. Unoki, SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis, Invest Ophthalmol Vis Sci, vol.51, issue.7, pp.3362-71, 2010.

S. F. Rymo, A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures, PLoS One, vol.6, issue.1, p.15846, 2011.

H. H. Outtz, Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice, Blood, vol.118, issue.12, pp.3436-3445, 2011.

S. A. Wolf, H. W. Boddeke, and H. Kettenmann, Microglia in Physiology and Disease, vol.79, pp.619-643, 2017.

V. Hughes, Microglia: The constant gardeners, Nature, vol.485, issue.7400, pp.570-572, 2012.

A. Brown, Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection, Clin Transl Med, vol.4, p.7, 2015.

H. Wake, Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals, J Neurosci, vol.29, issue.13, pp.3974-80, 2009.

Y. Li, Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo, Dev Cell, vol.23, issue.6, pp.1189-202, 2012.

A. M. Fontainhas, Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission, PLoS One, vol.6, issue.1, p.15973, 2011.

M. E. Tremblay, Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices, Glia, vol.60, issue.4, pp.541-58, 2012.

C. N. Parkhurst, Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor, Cell, vol.155, issue.7, pp.1596-609, 2013.

A. Bessis, Microglial control of neuronal death and synaptic properties, Glia, vol.55, issue.3, pp.233-241, 2007.

B. Stevens, The classical complement cascade mediates CNS synapse elimination, Cell, vol.131, issue.6, pp.1164-78, 2007.

D. P. Schafer, Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner, Neuron, vol.74, issue.4, pp.691-705, 2012.

A. R. Bialas and B. Stevens, TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement, Nat Neurosci, vol.16, issue.12, pp.1773-82, 2013.

I. Bahrini, Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia, vol.5, p.7989, 2015.

E. Czirr, Microglial complement receptor 3 regulates brain Abeta levels through secreted proteolytic activity, J Exp Med, 2017.

J. T. Rogers, CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, J Neurosci, vol.31, issue.45, pp.16241-50, 2011.

M. Tsuda, P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury, Nature, vol.424, issue.6950, pp.778-83, 2003.

J. A. Coull, BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain, Nature, vol.438, issue.7070, pp.1017-1038, 2005.

G. O. Sipe, Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nat Commun, vol.7, p.10905, 2016.

D. P. Schafer, E. K. Lehrman, and B. Stevens, The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS, Glia, vol.61, issue.1, pp.24-36, 2013.

Y. Cantaut-belarif, Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord, J Cell Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680683

K. Sato, Effects of Microglia on Neurogenesis, Glia, vol.63, issue.8, pp.1394-405, 2015.

R. Xavier and A. L. , A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone, J Neurosci, vol.35, issue.34, pp.11848-61, 2015.

A. Sierra, Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis, Cell Stem Cell, vol.7, issue.4, pp.483-95, 2010.

L. J. Chew, A. Takanohashi, and M. Bell, Microglia and inflammation: impact on developmental brain injuries, Ment Retard Dev Disabil Res Rev, vol.12, issue.2, pp.105-117, 2006.

S. Rotshenker, The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease, J Mol Neurosci, vol.39, issue.1-2, pp.99-103, 2009.

M. Colonna and O. Butovsky, Microglia Function in the Central Nervous System During Health and Neurodegeneration, Annu Rev Immunol, 2017.

U. K. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nat Neurosci, vol.10, issue.11, pp.1387-94, 2007.

R. M. Ransohoff, A polarizing question: do M1 and M2 microglia exist?, Nat Neurosci, vol.19, issue.8, pp.987-91, 2016.

F. Ginhoux, New insights into the multidimensional concept of macrophage ontogeny, activation and function, Nat Immunol, vol.17, issue.1, pp.34-40, 2016.

X. Jin and T. Yamashita, Microglia in central nervous system repair after injury, J Biochem, vol.159, issue.5, pp.491-497, 2016.

R. Shechter, Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice, PLoS Med, vol.6, issue.7, p.1000113, 2009.

A. Rolls, R. Shechter, and M. Schwartz, The bright side of the glial scar in CNS repair, Nat Rev Neurosci, vol.10, issue.3, pp.235-276, 2009.

A. Rolls, Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation, PLoS Med, vol.5, issue.8, p.171, 2008.

M. Kawabori and M. A. Yenari, The role of the microglia in acute CNS injury. Metab Brain Dis, vol.30, pp.381-92, 2015.

X. Zhou, X. He, and Y. Ren, Function of microglia and macrophages in secondary damage after spinal cord injury, Neural Regen Res, vol.9, pp.1787-95, 1920.

D. H. Madsen and T. H. Bugge, Imaging collagen degradation in vivo highlights a key role for M2polarized macrophages in extracellular matrix degradation, Oncoimmunology, issue.2, p.27127, 2013.

R. Shechter, The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair, PLoS One, vol.6, issue.12, p.27969, 2011.

D. H. Madsen, M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway, J Cell Biol, vol.202, issue.6, pp.951-66, 2013.

K. A. Kigerl, Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord, J Neurosci, vol.29, issue.43, pp.13435-13479, 2009.

H. S. Domingues, Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair, Front Cell Dev Biol, vol.4, p.71, 2016.

V. E. Miron, M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination, Nat Neurosci, vol.16, issue.9, pp.1211-1218, 2013.

Y. Ren and W. Young, Managing inflammation after spinal cord injury through manipulation of macrophage function, Neural Plast, p.945034, 2013.

X. Hu, Microglial and macrophage polarization-new prospects for brain repair, Nat Rev Neurol, vol.11, issue.1, pp.56-64, 2015.

S. Reisinger, The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery, Pharmacol Ther, vol.149, pp.213-239, 2015.

I. Knuesel, Maternal immune activation and abnormal brain development across CNS disorders, Nat Rev Neurol, vol.10, issue.11, pp.643-60, 2014.

L. Fernandez-de-cossio, Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring, Brain Behav Immun, vol.63, pp.88-98, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606985

H. J. Kim, Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects, Mol Psychiatry, 2016.

R. C. Paolicelli and M. T. Ferretti, Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front Synaptic Neurosci, vol.9, p.9, 2017.

F. Petrelli, L. Pucci, and P. Bezzi, Astrocytes and Microglia and Their Potential Link with, Autism Spectrum Disorders. Front Cell Neurosci, vol.10, p.21, 2016.
DOI : 10.3389/fncel.2016.00021

URL : https://www.frontiersin.org/articles/10.3389/fncel.2016.00021/pdf

D. M. Werling, The role of sex-differential biology in risk for autism spectrum disorder, Biol Sex Differ, vol.7, p.58, 2016.

S. Nardone and E. Elliott, The Interaction between the Immune System and Epigenetics in the Etiology of, Autism Spectrum Disorders. Front Neurosci, vol.10, p.329, 2016.

L. Alexopoulou, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature, vol.413, issue.6857, pp.732-740, 2001.

G. B. Choi, The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring, Science, vol.351, issue.6276, pp.933-942, 2016.

S. E. Smith, Maternal immune activation alters fetal brain development through interleukin-6, J Neurosci, vol.27, issue.40, pp.10695-702, 2007.
DOI : 10.1523/jneurosci.2178-07.2007

URL : http://www.jneurosci.org/content/jneuro/27/40/10695.full.pdf

P. Patterson, W. Xu, S. Smith, and B. Devarman, Maternal Immune Activation, Cytokines and Autism, 2008.

N. V. Malkova, Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism, Brain Behav Immun, 2012.

M. D. Bauman, Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring, Biol Psychiatry, vol.75, issue.4, pp.332-373, 2014.

C. J. Machado, Maternal immune activation in nonhuman primates alters social attention in juvenile offspring, Biol Psychiatry, vol.77, issue.9, pp.823-855, 2015.
DOI : 10.1016/j.biopsych.2014.07.035

URL : https://authors.library.caltech.edu/52452/8/mmc2.pdf

L. Shi, Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring, J Neurosci, vol.23, issue.1, pp.297-302, 2003.

P. H. Patterson, W. Xu, S. E. Smith, and D. B. , Maternal Imunne Activation, Autism, 2008.

V. Mondelli, Brain microglia in psychiatric disorders, Lancet Psychiatry, vol.4, issue.7, pp.563-572, 2017.
DOI : 10.1016/s2215-0366(17)30101-3

URL : https://kclpure.kcl.ac.uk/portal/files/67257567/Brain_microglia_in_psychiatric_MONDELLI_Publishedonline25pril2017_GREEN_AAM_.pdf

T. A. Bayer, Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci Lett, vol.271, issue.2, pp.126-134, 1999.

K. Radewicz, Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics, J Neuropathol Exp Neurol, vol.59, issue.2, pp.137-50, 2000.

R. Upthegrove, N. Manzanares-teson, and N. M. Barnes, Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis, Schizophr Res, vol.155, issue.1-3, pp.101-109, 2014.
DOI : 10.1016/j.schres.2014.03.005

O. D. Howes and R. Mccutcheon, Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry, vol.7, p.1024, 2017.

D. L. Vargas, Neuroglial activation and neuroinflammation in the brain of patients with autism, Ann Neurol, vol.57, issue.1, pp.67-81, 2005.

J. T. Morgan, Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism, Biol Psychiatry, vol.68, issue.4, pp.368-76, 2010.

K. Suzuki, Microglial activation in young adults with autism spectrum disorder, JAMA Psychiatry, vol.70, issue.1, pp.49-58, 2013.
DOI : 10.1001/jamapsychiatry.2013.272

URL : https://jamanetwork.com/journals/jamapsychiatry/articlepdf/1393597/yoa120025_49_58.pdf

S. Hafizi, Imaging Microglial Activation in Individuals at Clinical High Risk for Psychosis: An InVivo PET Study with, 2017.

M. K. Loth, TSPO in a murine model of Sandhoff disease: presymptomatic marker of neurodegeneration and disease pathophysiology, Neurobiol Dis, vol.85, pp.174-86, 2016.

F. Roncaroli, TSPO expression in brain tumours: is TSPO a target for brain tumour imaging?, Clin Transl Imaging, vol.4, pp.145-156, 2016.
DOI : 10.1007/s40336-016-0168-9

URL : https://link.springer.com/content/pdf/10.1007%2Fs40336-016-0168-9.pdf

M. Veronese, Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis, J Cereb Blood Flow Metab, pp.271678-17712388, 2017.

D. R. Owen, Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans, J Cereb Blood Flow Metab, pp.271678-17710182, 2017.

I. Voineagu, Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Nature, vol.474, issue.7351, pp.380-384, 2011.
DOI : 10.1038/nature10110

URL : http://europepmc.org/articles/pmc3607626?pdf=render

P. H. Patterson, Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness, Curr Opin Neurobiol, vol.12, issue.1, pp.115-123, 2002.
DOI : 10.1016/s0959-4388(02)00299-4

S. H. Fatemi, Glial fibrillary acidic protein and glutamic acid decarboxylase 65 and 67 kDa proteins are increased in brains of neonatal BALB/c mice following viral infection in utero, Schizophr Res, vol.69, issue.1, pp.121-124, 2004.

H. M. Golan, Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy, Neuropharmacology, vol.48, issue.6, pp.903-920, 2005.
DOI : 10.1016/j.neuropharm.2004.12.023

L. C. Hutton, Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation, Am J Obstet Gynecol, vol.198, issue.1, pp.117-118, 2008.

O. Butovsky, Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective, Mol Cell Neurosci, vol.29, issue.3, pp.381-93, 2005.
DOI : 10.1016/j.mcn.2005.03.005

S. H. Fatemi, Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia, Cell Mol Neurobiol, vol.22, issue.1, pp.25-33, 2002.

S. H. Fatemi, Prenatal viral infection causes alterations in nNOS expression in developing mouse brains, Neuroreport, vol.11, issue.7, pp.1493-1499, 2000.
DOI : 10.1097/00001756-200005150-00027

S. H. Fatemi, Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice, Mol Psychiatry, vol.4, issue.2, pp.145-54, 1999.

S. H. Fatemi, Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice, Synapse, vol.29, issue.1, pp.84-92, 1998.

S. Giovanoli, Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging, J Neuroinflammation, vol.12, p.221, 2015.

U. Meyer, The time of prenatal immune challenge determines the specificity of inflammationmediated brain and behavioral pathology, J Neurosci, vol.26, issue.18, pp.4752-62, 2006.

L. R. Frick, K. Williams, and C. Pittenger, Microglial dysregulation in psychiatric disease, Clin Dev Immunol, p.608654, 2013.
DOI : 10.1155/2013/608654

URL : http://downloads.hindawi.com/journals/jir/2013/608654.pdf

S. Bauer, B. J. Kerr, and P. H. Patterson, The neuropoietic cytokine family in development, plasticity, disease and injury, Nat Rev Neurosci, vol.8, issue.3, pp.221-253, 2007.

B. E. Deverman and P. H. Patterson, Cytokines and CNS development, Neuron, vol.64, issue.1, pp.61-78, 2009.
DOI : 10.1016/j.neuron.2009.09.002

URL : https://doi.org/10.1016/j.neuron.2009.09.002

M. Nakanishi, Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells, Eur J Neurosci, vol.25, issue.3, pp.649-58, 2007.

R. Koyama and Y. Ikegaya, Microglia in the pathogenesis of autism spectrum disorders, Neurosci Res, vol.100, pp.1-5, 2015.

A. Roumier, Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse, J Neurosci, vol.24, issue.50, pp.11421-11429, 2004.

J. Paloneva, Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts, Nat Genet, vol.25, issue.3, pp.357-61, 2000.

A. Roumier, Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function, PLoS One, vol.3, issue.7, p.2595, 2008.

T. Kaifu, Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12deficient mice, J Clin Invest, vol.111, issue.3, pp.323-355, 2003.
DOI : 10.1172/jci200316923

URL : http://www.jci.org/articles/view/16923/files/pdf

D. B. Mckim, Microglial recruitment of IL-1beta-producing monocytes to brain endothelium causes stress-induced anxiety, Mol Psychiatry, 2017.

S. K. Chen, Hematopoietic origin of pathological grooming in Hoxb8 mutant mice, Cell, vol.141, issue.5, pp.775-85, 2010.

G. Krabbe, Microglial NFkappaB-TNFalpha hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia, Proc Natl Acad Sci, 2017.

N. C. Derecki, Wild-type microglia arrest pathology in a mouse model of Rett syndrome, Nature, vol.484, issue.7392, pp.105-114, 2012.

J. C. Cronk, Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli, Immunity, vol.42, issue.4, pp.679-91, 2015.
DOI : 10.1016/j.immuni.2015.03.013

URL : http://europepmc.org/articles/pmc4407145?pdf=render

J. Wang, Wild-type microglia do not reverse pathology in mouse models of Rett syndrome, Nature, vol.521, issue.7552, pp.1-4, 2015.

D. P. Schafer, Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife, 2016.

R. C. Paolicelli, TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss, 2017.
DOI : 10.1016/j.neuron.2017.05.037

URL : https://doi.org/10.1016/j.neuron.2017.05.037

J. W. Vanryzin, Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats. eNeuro, 2016.

J. C. Nissen, Microglial Function across the Spectrum of Age and Gender, Int J Mol Sci, vol.18, issue.3, 2017.

L. H. Nelson, S. Warden, and K. M. Lenz, Sex differences in microglial phagocytosis in the neonatal hippocampus, Brain Behav Immun, 2017.

K. M. Lenz and M. M. Mccarthy, A starring role for microglia in brain sex differences, Neuroscientist, vol.21, issue.3, pp.306-327, 2015.

K. M. Lenz, Microglia are essential to masculinization of brain and behavior, J Neurosci, vol.33, issue.7, pp.2761-72, 2013.
DOI : 10.1523/jneurosci.1268-12.2013

URL : http://www.jneurosci.org/content/jneuro/33/7/2761.full.pdf

T. Rozario and D. W. Desimone, The extracellular matrix in development and morphogenesis: a dynamic view, Dev Biol, vol.341, issue.1, pp.126-166, 2010.

M. Vicente-manzanares and A. R. Horwitz, Cell migration: an overview, Methods Mol Biol, vol.769, pp.1-24, 2011.

S. I. Fraley, A distinctive role for focal adhesion proteins in three-dimensional cell motility, Nat Cell Biol, vol.12, issue.6, pp.598-604, 2010.

A. D. Theocharis, Extracellular matrix structure, Adv Drug Deliv Rev, vol.97, pp.4-27, 2016.

M. Ahmed and C. Ffrench-constant, Extracellular Matrix Regulation of Stem Cell Behavior. Curr Stem Cell Rep, vol.2, pp.197-206, 2016.

J. M. Barnes, L. Przybyla, and V. M. Weaver, Tissue mechanics regulate brain development, homeostasis and disease, J Cell Sci, vol.130, issue.1, pp.71-82, 2017.

J. M. Stoffels, Fibronectin aggregation in multiple sclerosis lesions impairs remyelination, Brain, issue.136, pp.116-147, 2013.

H. Bachman, Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses, Adv Wound Care, vol.4, issue.8, pp.501-511, 2015.

A. J. Zollinger and M. L. Smith, Fibronectin, the extracellular glue, Matrix Biol, 2016.

A. J. Engler, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, issue.4, pp.677-89, 2006.

M. Caiazzo, Defined three-dimensional microenvironments boost induction of pluripotency, Nat Mater, vol.15, issue.3, pp.344-52, 2016.

M. J. Dalby, N. Gadegaard, and R. O. Oreffo, Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate, Nat Mater, vol.13, issue.6, pp.558-69, 2014.

A. D. Doyle and K. M. Yamada, Mechanosensing via cell-matrix adhesions in 3D microenvironments, Exp Cell Res, vol.343, issue.1, pp.60-66, 2016.

L. W. Lau, Pathophysiology of the brain extracellular matrix: a new target for remyelination, Nat Rev Neurosci, vol.14, issue.10, pp.722-731, 2013.

S. Soleman, Targeting the neural extracellular matrix in neurological disorders, Neuroscience, vol.253, pp.194-213, 2013.

M. K. Gordon and R. A. Hahn, Collagens. Cell Tissue Res, vol.339, issue.1, pp.247-57, 2010.

F. S. Jones and P. L. Jones, The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling, Dev Dyn, vol.218, issue.2, pp.235-59, 2000.

C. Ffrench-constant and R. O. Hynes, Alternative splicing of fibronectin is temporally and spatially regulated in the chicken embryo, Development, vol.106, issue.2, pp.375-88, 1989.

A. Domogatskaya, S. Rodin, and K. Tryggvason, Functional diversity of laminins, Annu Rev Cell Dev Biol, vol.28, pp.523-53, 2012.

E. Ruoslahti, Brain extracellular matrix, Glycobiology, vol.6, issue.5, pp.489-92, 1996.

G. Bruckner, Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R, J Comp Neurol, vol.428, issue.4, pp.616-645, 2000.

C. De-luca and M. Papa, Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders, Neurochem Res, vol.41, issue.7, pp.1507-1522, 2016.

A. Suttkus, M. Morawski, and T. Arendt, Protective Properties of Neural Extracellular Matrix, Mol Neurobiol, vol.53, issue.1, pp.73-82, 2016.
DOI : 10.1007/s12035-014-8990-4

R. Milner, Fibronectin-and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5, J Immunol, vol.178, issue.12, pp.8158-67, 2007.
DOI : 10.4049/jimmunol.178.12.8158

URL : http://www.jimmunol.org/content/178/12/8158.full.pdf

J. D. Lathia, Patterns of laminins and integrins in the embryonic ventricular zone of the CNS, J Comp Neurol, vol.505, issue.6, pp.630-673, 2007.

A. M. Sheppard, S. K. Hamilton, and A. L. Pearlman, Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development, J Neurosci, vol.11, issue.12, pp.3928-3970, 1991.

P. Liesi, Do neurons in the vertebrate CNS migrate on laminin?, EMBO J, vol.4, issue.5, pp.1163-70, 1985.

R. U. Margolis, Glycosaminoglycans of brain during development, Biochemistry, vol.14, issue.1, pp.85-93, 1975.

O. Yasuhara, Immunohistochemical localization of hyaluronic acid in rat and human brain, Brain Res, vol.635, issue.1-2, pp.269-82, 1994.

A. Bignami and R. Asher, Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain, Int J Dev Neurosci, vol.10, issue.1, pp.45-57, 1992.

A. M. Sheppard, Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains, Dev Biol, vol.172, issue.2, pp.504-522, 1995.

B. Anlar, Expression of adhesion and extracellular matrix molecules in the developing human brain, J Child Neurol, vol.17, issue.9, pp.707-720, 2002.

D. E. Koser, Mechanosensing is critical for axon growth in the developing brain, Nat Neurosci, vol.19, issue.12, pp.1592-1598, 2016.

K. Sekine, Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1, Neuron, vol.76, issue.2, pp.353-69, 2012.

E. Garcion, A. Faissner, and C. Ffrench-constant, Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development, vol.128, pp.2485-96, 2001.

M. M. Sobeih and G. Corfas, Extracellular factors that regulate neuronal migration in the central nervous system, Int J Dev Neurosci, vol.20, pp.349-57, 2002.

Y. Takada, X. Ye, and S. Simon, The integrins, Genome Biol, vol.8, issue.5, p.215, 2007.

R. O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell, vol.110, issue.6, pp.673-87, 2002.

B. H. Luo, C. V. Carman, and T. A. Springer, Structural basis of integrin regulation and signaling, Annu Rev Immunol, vol.25, pp.619-666, 2007.

S. J. Shattil, C. Kim, and M. H. Ginsberg, The final steps of integrin activation: the end game, Nat Rev Mol Cell Biol, vol.11, issue.4, pp.288-300, 2010.

J. Takagi, Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell, vol.110, issue.5, pp.599-610, 2002.

J. Takagi, Structure of integrin alpha5beta1 in complex with fibronectin, EMBO J, vol.22, issue.18, pp.4607-4622, 2003.

M. L. Tanzer, Current concepts of extracellular matrix, J Orthop Sci, vol.11, issue.3, pp.326-357, 2006.

, Cell-Extracellular Matrix Interactions in Cancer, vol.XII, p.314, 2010.

B. D. Adair, Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin, J Cell Biol, vol.168, issue.7, pp.1109-1127, 2005.

I. D. Campbell and M. J. Humphries, Integrin structure, activation, and interactions, Cold Spring Harb Perspect Biol, issue.3, 2011.

T. Kinashi, Intracellular signalling controlling integrin activation in lymphocytes, Nat Rev Immunol, vol.5, issue.7, pp.546-59, 2005.

D. Bouvard, Integrin inactivators: balancing cellular functions in vitro and in vivo, Nat Rev Mol Cell Biol, vol.14, issue.7, pp.430-472, 2013.

T. N. Hartmann, CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene, vol.24, pp.4462-71, 2005.

J. M. Busillo and J. L. Benovic, Regulation of CXCR4 signaling, Biochim Biophys Acta, vol.1768, issue.4, pp.952-63, 2007.

W. Shen, The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow, Exp Hematol, vol.29, issue.12, pp.1439-1486, 2001.

L. Pan, Research advances on structure and biological functions of integrins. Springerplus, vol.5, p.1094, 2016.

R. Changede, Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation. Dev Cell, vol.35, issue.5, pp.614-635, 2015.

C. K. Choi, Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner, Nat Cell Biol, vol.10, issue.9, pp.1039-50, 2008.

M. Vicente-manzanares and A. R. Horwitz, Adhesion dynamics at a glance, J Cell Sci, issue.124, pp.3923-3930, 2011.

D. V. Iwamoto and D. A. Calderwood, Regulation of integrin-mediated adhesions, Curr Opin Cell Biol, vol.36, pp.41-48, 2015.

D. Valdembri and G. Serini, Regulation of adhesion site dynamics by integrin traffic, Curr Opin Cell Biol, vol.24, issue.5, pp.582-91, 2012.

E. R. Horton, Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly, Nat Cell Biol, vol.17, issue.12, pp.1577-87, 2015.

D. S. Harburger and D. A. Calderwood, Integrin signalling at a glance, J Cell Sci, issue.122, pp.159-63, 2009.

A. D. Doyle, Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions, Nat Commun, vol.6, p.8720, 2015.

P. Mendoza, Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells, J Cell Sci, issue.126, pp.3835-3882, 2013.

R. J. Petrie and K. M. Yamada, Multiple mechanisms of 3D migration: the origins of plasticity, Curr Opin Cell Biol, vol.42, pp.7-12, 2016.

S. P. Palecek, Integrin-ligand binding properties govern cell migration speed through cellsubstratum adhesiveness, Nature, vol.385, issue.6616, pp.537-577, 1997.
DOI : 10.1038/385537a0

A. Huttenlocher and A. R. Horwitz, Integrins in cell migration, Cold Spring Harb Perspect Biol, vol.3, issue.9, p.5074, 2011.

M. Vicente-manzanares, C. K. Choi, and A. R. Horwitz, Integrins in cell migration-the actin connection, J Cell Sci, vol.122, issue.2, pp.199-206, 2009.

E. L. Barnhart, An adhesion-dependent switch between mechanisms that determine motile cell shape, PLoS Biol, vol.9, issue.5, p.1001059, 2011.
DOI : 10.1371/journal.pbio.1001059

URL : https://doi.org/10.1371/journal.pbio.1001059

R. Milner and I. L. Campbell, The integrin family of cell adhesion molecules has multiple functions within the CNS, J Neurosci Res, vol.69, issue.3, pp.286-91, 2002.

R. S. Schmid and E. S. Anton, Role of integrins in the development of the cerebral cortex, Cereb Cortex, vol.13, issue.3, pp.219-243, 2003.

Y. K. Park and Y. Goda, Integrins in synapse regulation, Nat Rev Neurosci, vol.17, issue.12, pp.745-756, 2016.
DOI : 10.1038/nrn.2016.138

M. E. Kerrisk, L. A. Cingolani, and A. J. Koleske, ECM receptors in neuronal structure, synaptic plasticity, and behavior. Prog Brain Res, vol.214, pp.101-132, 2014.
DOI : 10.1016/b978-0-444-63486-3.00005-0

URL : http://europepmc.org/articles/pmc4640673?pdf=render

M. M. Almutairi, Factors controlling permeability of the blood-brain barrier, Cell Mol Life Sci, vol.73, issue.1, pp.57-77, 2016.

G. J. Del-zoppo and R. Milner, Integrin-matrix interactions in the cerebral microvasculature, Arterioscler Thromb Vasc Biol, vol.26, issue.9, pp.1966-75, 2006.

K. Loulier, beta1 integrin maintains integrity of the embryonic neocortical stem cell niche, PLoS Biol, vol.7, issue.8, p.1000176, 2009.

K. Long, Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin, Nat Commun, vol.7, p.10354, 2016.
DOI : 10.1038/ncomms10354

URL : http://www.nature.com/articles/ncomms10354.pdf

R. Belvindrah, Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex, J Neurosci, vol.27, issue.50, pp.13854-65, 2007.

E. Georges-labouesse, Essential role of alpha 6 integrins in cortical and retinal lamination, Curr Biol, vol.8, issue.17, pp.983-989, 1998.

E. S. Anton, J. A. Kreidberg, and P. Rakic, Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex, Neuron, vol.22, issue.2, pp.277-89, 1999.

D. Graus-porta, Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex, Neuron, vol.31, issue.3, pp.367-79, 2001.

S. Murase and A. F. Horwitz, Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream, J Neurosci, vol.22, issue.9, pp.3568-79, 2002.

J. G. Emsley and T. Hagg, alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain, Exp Neurol, vol.183, issue.2, pp.273-85, 2003.

G. Marchetti, Integrin alpha5beta1 is necessary for regulation of radial migration of cortical neurons during mouse brain development, Eur J Neurosci, vol.31, issue.3, pp.399-409, 2010.

D. J. Webb, alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons, J Biol Chem, vol.282, issue.10, pp.6929-6964, 2007.

P. Michaluk, Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling, J Neurosci, vol.29, issue.18, pp.6007-6019, 2009.
DOI : 10.1523/jneurosci.5346-08.2009

URL : http://www.jneurosci.org/content/jneuro/29/18/6007.full.pdf

R. Milner and I. L. Campbell, Developmental regulation of beta1 integrins during angiogenesis in the central nervous system, Mol Cell Neurosci, vol.20, issue.4, pp.616-642, 2002.

T. Osada, Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins, J Cereb Blood Flow Metab, vol.31, issue.10, pp.1972-85, 2011.
DOI : 10.1038/jcbfm.2011.99

URL : http://europepmc.org/articles/pmc3208159?pdf=render

R. Milner and I. L. Campbell, The extracellular matrix and cytokines regulate microglial integrin expression and activation, J Immunol, vol.170, issue.7, pp.3850-3858, 2003.
DOI : 10.4049/jimmunol.170.7.3850

URL : http://www.jimmunol.org/content/170/7/3850.full.pdf

C. U. Kloss, Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus, J Comp Neurol, vol.411, issue.1, pp.162-78, 1999.

J. V. Welser-alves, Microglia use multiple mechanisms to mediate interactions with vitronectin
DOI : 10.1186/1742-2094-8-157

URL : https://jneuroinflammation.biomedcentral.com/track/pdf/10.1186/1742-2094-8-157?site=jneuroinflammation.biomedcentral.com

, non-essential roles for the highly-expressed alphavbeta3 and alphavbeta5 integrins, J Neuroinflammation, vol.8, p.157, 2011.

R. Milner, Microglial expression of alphavbeta3 and alphavbeta5 integrins is regulated by cytokines and the extracellular matrix: beta5 integrin null microglia show no defects in adhesion or MMP-9 expression on vitronectin, Glia, vol.57, issue.7, pp.714-737, 2009.

A. Witting, Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition, J Neurochem, vol.75, issue.3, pp.1060-70, 2000.

R. Milner and I. L. Campbell, Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the alpha6beta1 integrin, J Neurosci, vol.22, issue.5, pp.1562-72, 2002.

B. Chamak and M. Mallat, Fibronectin and laminin regulate the in vitro differentiation of microglial cells, Neuroscience, vol.45, issue.3, pp.513-540, 1991.

D. Kurpius, E. P. Nolley, and M. E. Dailey, Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus, Glia, vol.55, issue.8, pp.873-84, 2007.

S. Gyoneva, A. G. Orr, and S. F. Traynelis, Differential regulation of microglial motility by ATP/ADP and adenosine, Parkinsonism Relat Disord, vol.15, pp.195-204, 2009.

A. G. Orr, Adenosine A(2A) receptor mediates microglial process retraction, Nat Neurosci, vol.12, issue.7, pp.872-880, 2009.

U. B. Eyo, Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium, J Neurosci, vol.35, issue.6, pp.2417-2439, 2015.

N. Gu, Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain, Brain Behav Immun, vol.55, pp.82-92, 2016.
DOI : 10.1016/j.bbi.2015.11.007

URL : http://europepmc.org/articles/pmc4864135?pdf=render

M. Noda, Calcium influx through reversed NCX controls migration of microglia, Adv Exp Med Biol, vol.961, pp.289-94, 2013.

A. Sunkaria, Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling, Mol Neurobiol, vol.53, issue.2, pp.944-54, 2016.

K. Nasu-tada, S. Koizumi, and K. Inoue, Involvement of beta1 integrin in microglial chemotaxis and proliferation on fibronectin: different regulations by ADP through PKA, Glia, vol.52, issue.2, pp.98-107, 2005.

K. Ohsawa and S. Kohsaka, Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain, Glia, vol.59, issue.12, pp.1793-1802, 2011.

K. Ohsawa, P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP, Glia, vol.58, issue.7, pp.790-801, 2010.

C. Kim, beta1-integrin-dependent migration of microglia in response to neuron-released alphasynuclein, Exp Mol Med, vol.46, p.91, 2014.

H. Yao, Nonmuscle myosin light-chain kinase mediates microglial migration induced by HIV Tat: involvement of beta1 integrins, FASEB J, vol.27, issue.4, pp.1532-1580, 2013.

O. Ullrich, Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1, Nat Cell Biol, vol.3, issue.12, pp.1035-1077, 2001.

D. Kurpius, Early activation, motility, and homing of neonatal microglia to injured neurons does not require protein synthesis, Glia, vol.54, issue.1, pp.58-70, 2006.

A. K. Persson, Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia, Glia, vol.62, issue.12, pp.2080-95, 2014.

B. Harl, Chloride channel blockers suppress formation of engulfment pseudopodia in microglial cells, Cell Physiol Biochem, vol.31, issue.2-3, pp.319-356, 2013.

S. Zierler, Chloride influx provokes lamellipodium formation in microglial cells, Cell Physiol Biochem, vol.21, issue.1-3, pp.55-62, 2008.

A. Schwab, Function and spatial distribution of ion channels and transporters in cell migration, Am J Physiol Renal Physiol, vol.280, issue.5, pp.739-786, 2001.

D. J. Hines, Microglia processes block the spread of damage in the brain and require functional chloride channels, Glia, vol.57, issue.15, pp.1610-1618, 2009.

P. Swiatkowski, Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury, Neuroscience, vol.318, pp.22-33, 2016.

H. M. Lim, UDP-Induced Phagocytosis and ATP-Stimulated Chemotactic Migration Are Impaired in STIM1-/-Microglia In Vitro and In Vivo, Mediators Inflamm, p.8158514, 2017.

S. Echeverry, M. J. Rodriguez, and Y. P. Torres, Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease, 2016.

Y. Fan, L. Xie, and C. Y. Chung, Signaling Pathways Controlling Microglia Chemotaxis, Mol Cells, vol.40, issue.3, pp.163-168, 2017.

C. Vincent, T. A. Siddiqui, and L. C. Schlichter, Podosomes in migrating microglia: components and matrix degradation, J Neuroinflammation, vol.9, p.190, 2012.

T. A. Siddiqui, Regulation of podosome formation, microglial migration and invasion by Ca(2+)signaling molecules expressed in podosomes, J Neuroinflammation, vol.9, p.250, 2012.

K. Ohsawa, Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia, vol.55, pp.604-620, 2007.

Y. Irino, Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia, J Neurosci Res, vol.86, issue.7, pp.1511-1520, 2008.

S. H. Lee, Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis, Traffic, vol.12, issue.7, pp.878-89, 2011.

A. M. Miller and N. Stella, Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: quantification of migration by a novel near-infrared method, Glia, vol.57, issue.8, pp.875-83, 2009.

M. Ifuku, TLR2 controls random motility, while TLR7 regulates chemotaxis of microglial cells via distinct pathways, Brain Behav Immun, vol.58, pp.338-347, 2016.

S. Ito, Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway, Exp Gerontol, vol.42, issue.6, pp.532-539, 2007.

S. H. Lee, beta-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser(83) and microglia chemotaxis, Glia, vol.60, issue.9, pp.1366-77, 2012.

S. H. Lee, Regulation of Integrin alpha6 Recycling by Calcium-independent Phospholipase A2 (iPLA2) to Promote Microglia Chemotaxis on Laminin, J Biol Chem, vol.291, issue.45, pp.23645-23653, 2016.

S. Lee and C. Y. Chung, Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation, Mol Cell Neurosci, vol.42, issue.4, pp.382-90, 2009.

J. M. Frade and Y. A. Barde, Microglia-derived nerve growth factor causes cell death in the developing retina, Neuron, vol.20, issue.1, pp.35-41, 1998.

W. J. Streit, Microglia and macrophages in the developing CNS, Neurotoxicology, vol.22, issue.5, pp.619-643, 2001.

F. Vilhardt, Microglia: phagocyte and glia cell, Int J Biochem Cell Biol, vol.37, issue.1, pp.17-21, 2005.

J. M. Antony, Endogenous microglia regulate development of embryonic cortical precursor cells, J Neurosci Res, 2011.

V. S. Caviness, T. Jr, R. S. Takahashi, and . Nowakowski, Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model, Trends Neurosci, vol.18, issue.9, pp.379-83, 1995.

P. Rezaie, Microglia in the Human Nervous System during Development, Neuroembryology, vol.2, pp.18-31, 2003.

S. Jung, Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion, Mol Cell Biol, vol.20, issue.11, pp.4106-4120, 2000.

D. Ito, Microglia-specific localisation of a novel calcium binding protein, Iba1, Brain Res Mol Brain Res, vol.57, issue.1, pp.1-9, 1998.

M. M. Esiri and J. O. Mcgee, Monoclonal antibody to macrophages (EMB/11) labels macrophages and microglial cells in human brain, J Clin Pathol, vol.39, issue.6, pp.615-636, 1986.

A. V. Andjelkovic, Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study, Brain Res, vol.814, issue.1-2, pp.13-25, 1998.

C. Venkatesan, Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac2 and nerve growth factor following diffuse axonal injury, J Neuroinflammation, vol.7, p.32, 2010.

M. Lalancette-hebert, Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain, J Neurosci, vol.27, issue.10, pp.2596-605, 2007.

F. Reichert and S. Rotshenker, Galectin-3/MAC-2 in experimental allergic encephalomyelitis, Exp Neurol, vol.160, issue.2, pp.508-522, 1999.

M. Walther, Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy, J Neurosci Res, vol.61, issue.4, pp.430-435, 2000.

E. Avignone, Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling, J Neurosci, vol.28, issue.37, pp.9133-9177, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00322326

M. L. Block, L. Zecca, and J. S. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nat Rev Neurosci, vol.8, issue.1, pp.57-69, 2007.

T. Scholzen and J. Gerdes, The Ki-67 protein: from the known and the unknown, J Cell Physiol, vol.182, issue.3, pp.311-333, 2000.

J. W. Cheong, Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells, Clin Cancer Res, vol.9, issue.13, pp.5018-5045, 2003.

E. Meijering, O. Dzyubachyk, and I. Smal, Methods for cell and particle tracking, Methods Enzymol, vol.504, pp.183-200, 2012.

S. S. Tan, Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex, Neuron, vol.21, issue.2, pp.295-304, 1998.

S. A. Anderson, Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes, Science, vol.278, issue.5337, pp.474-480, 1997.

S. A. Anderson, Distinct cortical migrations from the medial and lateral ganglionic eminences. Development, vol.128, pp.353-63, 2001.

R. M. Ransohoff and A. E. Cardona, The myeloid cells of the central nervous system parenchyma, Nature, vol.468, issue.7321, pp.253-62, 2010.

I. Bystron, C. Blakemore, and P. Rakic, Development of the human cerebral cortex: Boulder Committee revisited, Nat Rev Neurosci, vol.9, issue.2, pp.110-132, 2008.

C. Cina, Expression of connexins in embryonic mouse neocortical development, J Comp Neurol, vol.504, issue.3, pp.298-313, 2007.

P. Rakic, A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci, vol.18, issue.9, pp.383-391, 1995.

T. F. Haydar, Differential modulation of proliferation in the neocortical ventricular and subventricular zones, J Neurosci, vol.20, issue.15, pp.5764-74, 2000.

H. Kurz, Physiology of angiogenesis, J Neurooncol, vol.50, issue.1-2, pp.17-35, 2000.

T. Kamiryo, Development of the rat meninx: experimental study using bromodeoxyuridine, Anat Rec, vol.227, issue.2, pp.207-217, 1990.

R. R. Sturrock, A morphological study of the development of the mouse choroid plexus, J Anat, issue.129, pp.777-93, 1979.

P. A. Johansson, Blood-CSF barrier function in the rat embryo, Eur J Neurosci, vol.24, issue.1, pp.65-76, 2006.

Y. Furuta, D. W. Piston, and B. L. Hogan, Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development, Development, vol.124, issue.11, pp.2203-2215, 1997.

D. S. Currle, Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development, vol.132, pp.3549-59, 2005.

J. Von-frowein, A. Wizenmann, and M. Gotz, The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate, Dev Biol, vol.296, issue.1, pp.239-52, 2006.

A. Monier, Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation, J Comp Neurol, vol.499, issue.4, pp.565-82, 2006.

A. M. Santos, Embryonic and postnatal development of microglial cells in the mouse retina, J Comp Neurol, vol.506, issue.2, pp.224-263, 2008.

N. M. Walton, Microglia instruct subventricular zone neurogenesis, Glia, vol.54, issue.8, pp.815-840, 2006.

F. Peri and C. Nusslein-volhard, Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo, Cell, vol.133, issue.5, pp.916-943, 2008.

A. J. Svahn, Development of ramified microglia from early macrophages in the zebrafish optic tectum, Dev Neurobiol, 2012.

G. Raivich, Like cops on the beat: the active role of resting microglia, Trends Neurosci, vol.28, issue.11, pp.571-574, 2005.

A. M. Casano and F. Peri, Microglia: multitasking specialists of the brain, Dev Cell, vol.32, issue.4, pp.469-77, 2015.

D. J. Romberger and . Fibronectin, Int J Biochem Cell Biol, vol.29, issue.7, pp.939-982, 1997.

G. R. Stewart and A. L. Pearlman, Fibronectin-like immunoreactivity in the developing cerebral cortex, J Neurosci, vol.7, issue.10, pp.3325-3358, 1987.

R. De-gasperi, M. A. Sosa, and G. A. Elder, Presenilin-1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells, BMC Biochem, vol.13, p.28, 2012.

Y. Kasahara, R. Koyama, and Y. Ikegaya, Depth and time-dependent heterogeneity of microglia in mouse hippocampal slice cultures, Neurosci Res, vol.111, pp.64-73, 2016.

M. A. Petersen and M. E. Dailey, Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices, Glia, vol.46, issue.2, pp.195-206, 2004.

C. Li, RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix, Nat Commun, vol.7, p.11455, 2016.

M. Graupera, Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration, Nature, vol.453, issue.7195, pp.662-668, 2008.

Y. Y. Grinberg, J. G. Milton, and R. P. Kraig, Spreading depression sends microglia on Levy flights, PLoS One, vol.6, issue.4, p.19294, 2011.

E. Cukierman, Taking cell-matrix adhesions to the third dimension, Science, vol.294, issue.5547, pp.1708-1720, 2001.

K. R. Legate, Integrin adhesion and force coupling are independently regulated by localized PtdIns(4,5)2 synthesis, EMBO J, vol.30, issue.22, pp.4539-53, 2011.

U. B. Eyo, Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus, J Neurosci, vol.34, issue.32, pp.10528-10568, 2014.

J. Schiefer, Microglial motility in the rat facial nucleus following peripheral axotomy, J Neurocytol, vol.28, issue.6, pp.439-53, 1999.

R. Gorelik and A. Gautreau, The Arp2/3 inhibitory protein arpin induces cell turning by pausing cell migration. Cytoskeleton (Hoboken), vol.72, pp.362-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222824

S. Smolders, Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo, Front Cell Neurosci, vol.9, p.301, 2015.

H. T. Maecker and J. Trotter, Flow cytometry controls, instrument setup, and the determination of positivity, Cytometry A, vol.69, issue.9, pp.1037-1079, 2006.

F. Madadizadeh, M. E. Asar, and M. Hosseini, Common Statistical Mistakes in Descriptive Statistics Reports of Normal and Non-Normal Variables in Biomedical Sciences Research, Iran J Public Health, vol.44, issue.11, pp.1557-1565, 2015.

F. Zhang, Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation, J Neuroinflammation, vol.13, issue.1, p.65, 2016.

L. C. Greig, Molecular logic of neocortical projection neuron specification, development and diversity, Nat Rev Neurosci, vol.14, issue.11, pp.755-69, 2013.

D. Stankovic and N. , Microglia-blood vessel interactions: a double-edged sword in brain pathologies, Acta Neuropathol, vol.131, issue.3, pp.347-63, 2016.

A. J. Svahn, Development of ramified microglia from early macrophages in the zebrafish optic tectum, Dev Neurobiol, vol.73, issue.1, pp.60-71, 2013.

G. Maheshwari, Cell adhesion and motility depend on nanoscale RGD clustering, J Cell Sci, issue.113, pp.1677-86, 2000.

L. Saux and G. , Spacing of integrin ligands influences signal transduction in endothelial cells, Biophys J, vol.101, issue.4, pp.764-73, 2011.

A. F. Blandin, Glioma cell dispersion is driven by alpha5 integrin-mediated cell-matrix and cellcell interactions, Cancer Lett, vol.376, issue.2, pp.328-366, 2016.

D. Sieger, Long-range Ca2+ waves transmit brain-damage signals to microglia, Dev Cell, vol.22, issue.6, pp.1138-1186, 2012.

B. L. Finlay and R. B. Darlington, Linked regularities in the development and evolution of mammalian brains, Science, vol.268, issue.5217, pp.1578-84, 1995.

C. M. Sauvageot and C. D. Stiles, Molecular mechanisms controlling cortical gliogenesis, Curr Opin Neurobiol, vol.12, issue.3, pp.244-253, 2002.

P. Rezaie, N. J. Cairns, and D. K. Male, Expression of adhesion molecules on human fetal cerebral vessels: relationship to microglial colonisation during development, Brain Res Dev Brain Res, vol.104, issue.1-2, pp.175-89, 1997.

E. M. Stettler and D. S. Galileo, Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain, J Comp Neurol, vol.468, issue.3, pp.441-51, 2004.

M. Moroi, Involvement of activated integrin alpha2beta1 in the firm adhesion of platelets onto a surface of immobilized collagen under flow conditions, Thromb Haemost, vol.83, issue.5, pp.769-76, 2000.

J. Toyjanova, Matrix confinement plays a pivotal role in regulating neutrophil-generated tractions, speed, and integrin utilization, J Biol Chem, vol.290, issue.6, pp.3752-63, 2015.

P. Costa, Integrin-specific control of focal adhesion kinase and RhoA regulates membrane protrusion and invasion, PLoS One, vol.8, issue.9, p.74659, 2013.

H. Zhao, Role of integrin switch and transforming growth factor Beta 3 in hypoxia-induced invasion inhibition of human extravillous trophoblast cells, Biol Reprod, vol.87, issue.2, p.47, 2012.

R. Pankov and K. M. Yamada, 471. ffrench-Constant, C., Alternative splicing of fibronectin-many different proteins but few different functions, Exp Cell Res, vol.115, issue.2, pp.261-71, 1995.

C. Ffrench-constant, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J Cell Biol, vol.109, issue.2, pp.903-917, 1989.

P. Xia and L. A. Culp, Adhesion activity in fibronectin's alternatively spliced domain EDa (EIIIA): complementarity to plasma fibronectin functions, Exp Cell Res, vol.217, issue.2, pp.517-544, 1995.

W. Chen and L. A. Culp, Adhesion mediated by fibronectin's alternatively spliced EDb (EIIIB) and its neighboring type III repeats, Exp Cell Res, vol.223, issue.1, pp.9-19, 1996.

J. H. Peters and R. O. Hynes, Fibronectin isoform distribution in the mouse. I. The alternatively spliced EIIIB, EIIIA, and V segments show widespread codistribution in the developing mouse embryo, Cell Adhes Commun, vol.4, issue.2, pp.103-128, 1996.

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J Cell Sci, issue.123, pp.4195-200, 2010.

A. Morla, Z. Zhang, and E. Ruoslahti, Superfibronectin is a functionally distinct form of fibronectin, Nature, vol.367, issue.6459, pp.193-199, 1994.

J. G. Lock, B. Wehrle-haller, and S. Stromblad, Cell-matrix adhesion complexes: master control machinery of cell migration, Semin Cancer Biol, vol.18, issue.1, pp.65-76, 2008.

S. Dufour, Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules, EMBO J, vol.7, issue.9, pp.2661-71, 1988.

K. Miyake, Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture, J Cell Biol, vol.119, issue.3, pp.653-62, 1992.

D. Julich, Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology, Dev Cell, vol.34, issue.1, pp.33-44, 2015.

M. Yuryev, In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex, Front Cell Neurosci, vol.9, p.500, 2015.

Y. Yokota, Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex, PLoS One, vol.2, issue.8, p.794, 2007.

N. Yoshida, Decrease in expression of alpha 5 beta 1 integrin during neuronal differentiation of cortical progenitor cells, Exp Cell Res, vol.287, issue.2, pp.262-71, 2003.

A. Avila, Glycine receptor alpha2 subunit activation promotes cortical interneuron migration, Cell Rep, vol.4, issue.4, pp.738-50, 2013.
DOI : 10.1016/j.celrep.2013.07.016

URL : https://doi.org/10.1016/j.celrep.2013.07.016

W. S. Carbonell, Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study, J Neurosci, vol.25, issue.30, pp.7040-7047, 2005.

S. M. Smolders, Age-specific function of alpha5beta1 integrin in microglial migration during early colonization of the developing mouse cortex, Glia, 2017.

A. Liapi, Stromal-derived factor 1 signalling regulates radial and tangential migration in the developing cerebral cortex, Dev Neurosci, vol.30, issue.1-3, pp.117-148, 2008.

M. Li and R. M. Ransohoff, Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology, Prog Neurobiol, vol.84, issue.2, pp.116-147, 2008.

Y. Zhu, Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells, J Neurosci, vol.35, issue.24, pp.9211-9235, 2015.

Z. Yang, Activation of integrin beta1 mediates the increased malignant potential of ovarian cancer cells exerted by inflammatory cytokines, Anticancer Agents Med Chem, vol.14, issue.7, pp.955-62, 2014.

Y. Yu, Stromal cell-derived factor-1 (SDF-1)/CXCR4 axis enhances cellular invasion in ovarian carcinoma cells via integrin beta1 and beta3 expressions, Oncol Res, vol.21, issue.4, pp.217-242, 2013.
DOI : 10.3727/096504014x13907540404879

D. L. Kiss, L. C. Windus, and V. M. Avery, Chemokine receptor expression on integrin-mediated stellate projections of prostate cancer cells in 3D culture, Cytokine, vol.64, issue.1, pp.122-152, 2013.

Y. C. Huang, Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells, Biochem Pharmacol, vol.74, issue.12, pp.1702-1714, 2007.

B. A. Teicher and S. P. Fricker, SDF-1)/CXCR4 pathway in cancer, Clin Cancer Res, vol.12, issue.11, pp.2927-2958, 2010.
DOI : 10.1158/1078-0432.ccr-09-2329

URL : http://clincancerres.aacrjournals.org/content/16/11/2927.full.pdf

A. Rot and U. H. Von-andrian, Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells, Annu Rev Immunol, vol.22, pp.891-928, 2004.

D. Y. Lu, SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NFkappaB-dependent pathway in microglia, Eur J Pharmacol, vol.613, issue.1-3, pp.146-54, 2009.

A. Peled, The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice, Blood, vol.95, issue.11, pp.3289-96, 2000.

J. M. Petty, Crosstalk between CXCR4/stromal derived factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow, J Immunol, vol.182, issue.1, pp.604-616, 2009.

K. R. Legate, S. A. Wickstrom, and R. Fassler, Genetic and cell biological analysis of integrin outside-in signaling, Genes Dev, vol.23, issue.4, pp.397-418, 2009.

L. C. Cantley, The phosphoinositide 3-kinase pathway, Science, vol.296, issue.5573, pp.1655-1662, 2002.

M. C. Mendoza, E. E. Er, and J. Blenis, The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation, Trends Biochem Sci, vol.36, issue.6, pp.320-328, 2011.

S. Tanabe, Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes, J Immunol, vol.159, issue.2, pp.905-916, 1997.

J. Lipfert, CXCR4 and CXCR7 form a functional receptor unit for SDF-1/CXCL12 in primary rodent microglia, Neuropathol Appl Neurobiol, vol.39, issue.6, pp.667-80, 2013.

J. Bernhagen, MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment, Nat Med, vol.13, issue.5, pp.587-96, 2007.

D. Yoshida, R. Nomura, and A. Teramoto, Signalling pathway mediated by CXCR7, an alternative chemokine receptor for stromal-cell derived factor-1alpha, in AtT20 mouse adrenocorticotrophic hormone-secreting pituitary adenoma cells, J Neuroendocrinol, vol.21, issue.5, pp.481-489, 2009.

B. Schonemeier, Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain, J Comp Neurol, vol.510, issue.2, pp.207-227, 2008.

Y. Ohtani, Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells, Neurosci Lett, vol.249, issue.2-3, pp.163-169, 1998.

J. Slusarczyk, Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells, Front Cell Neurosci, vol.9, p.82, 2015.

P. Rezaie, Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS, Glia, vol.37, issue.1, pp.64-75, 2002.

J. L. Jones and R. A. Walker, Integrins: a role as cell signalling molecules. Mol Pathol, vol.52, pp.208-221, 1999.
DOI : 10.1136/mp.52.4.208

URL : https://mp.bmj.com/content/molpath/52/4/208.full.pdf

G. Constantin, Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow, Immunity, vol.13, issue.6, pp.759-69, 2000.
DOI : 10.1016/s1074-7613(00)00074-1

URL : https://doi.org/10.1016/s1074-7613(00)00074-1

E. Kokovay, Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling, Cell Stem Cell, vol.7, issue.2, pp.163-73, 2010.
DOI : 10.1016/j.stem.2010.05.019

URL : https://doi.org/10.1016/j.stem.2010.05.019

I. Dalmau, Development of microglia in the prenatal rat hippocampus, J Comp Neurol, vol.377, issue.1, pp.70-84, 1997.

C. Jimenez, Role of the PI3K regulatory subunit in the control of actin organization and cell migration, J Cell Biol, vol.151, issue.2, pp.249-62, 2000.

K. Dumstrei, R. Mennecke, and E. Raz, Signaling pathways controlling primordial germ cell migration in zebrafish, J Cell Sci, issue.117, pp.4787-95, 2004.
DOI : 10.1242/jcs.01362

URL : http://jcs.biologists.org/content/117/20/4787.full.pdf

B. Heit, PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP, J Cell Sci, issue.121, pp.205-219, 2008.
DOI : 10.1242/jcs.020412

URL : http://jcs.biologists.org/content/121/2/205.full.pdf

N. Schneble, Phosphoinositide 3-kinase gamma ties chemoattractant-and adrenergic control of microglial motility, Mol Cell Neurosci, vol.78, pp.1-8, 2017.

J. Meller, Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages, JCI Insight, issue.2, 2017.
DOI : 10.1172/jci.insight.93002

URL : http://europepmc.org/articles/pmc5453700?pdf=render

C. J. Bohlen, Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures, Neuron, vol.94, issue.4, p.8, 2017.
DOI : 10.1016/j.neuron.2017.04.043

URL : http://www.cell.com/article/S0896627317304002/pdf

D. Gosselin, An environment-dependent transcriptional network specifies human microglia identity, Science, issue.6344, p.356, 2017.
DOI : 10.1126/science.aal3222

URL : https://science.sciencemag.org/content/sci/356/6344/eaal3222.full.pdf

K. E. Mcgrath, Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4, Dev Biol, vol.213, issue.2, pp.442-56, 1999.

D. E. Lysko, M. Putt, and J. A. Golden, SDF1 regulates leading process branching and speed of migrating interneurons, J Neurosci, vol.31, issue.5, pp.1739-1784, 2011.
DOI : 10.1523/jneurosci.3118-10.2011

URL : http://www.jneurosci.org/content/31/5/1739.full.pdf

P. Bezzi, CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity, Nat Neurosci, vol.4, issue.7, pp.702-712, 2001.
DOI : 10.1038/89490

A. S. Brown, Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism, Dev Neurobiol, vol.72, issue.10, pp.1272-1278, 2012.

P. H. Patterson, Immune involvement in schizophrenia and autism: etiology, pathology and animal models, Behav Brain Res, vol.204, issue.2, pp.313-334, 2009.

M. E. Fortier, G. N. Luheshi, and P. Boksa, Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy, Behav Brain Res, vol.181, issue.2, pp.270-277, 2007.

G. C. Lowe, G. N. Luheshi, and S. Williams, Maternal infection and fever during late gestation are associated with altered synaptic transmission in the hippocampus of juvenile offspring rats, Am J Physiol Regul Integr Comp Physiol, vol.295, issue.5, pp.1563-71, 2008.

L. Harvey and P. Boksa, A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy, Neuropharmacology, vol.62, issue.4, pp.1767-76, 2012.

S. Giovanoli, Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice, Science, vol.339, issue.6123, pp.1095-1104, 2013.

A. M. Samuelsson, Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning, Am J Physiol Regul Integr Comp Physiol, vol.290, issue.5, pp.1345-56, 2006.

U. Meyer, Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling, Mol Psychiatry, vol.13, issue.2, pp.208-229, 2008.

F. Sedel, Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death, J Neurosci, vol.24, issue.9, pp.2236-2282, 2004.

M. E. Tremblay, R. L. Lowery, and A. K. Majewska, Microglial interactions with synapses are modulated by visual experience, PLoS Biol, vol.8, issue.11, p.1000527, 2010.

J. Aarum, Migration and differentiation of neural precursor cells can be directed by microglia, Proc Natl Acad Sci, vol.100, issue.26, pp.15983-15991, 2003.

G. M. Jonakait, Microglial regulation of cholinergic differentiation in the basal forebrain, Dev Neurobiol, vol.72, issue.6, pp.857-64, 2011.

J. K. Krady, Ciliary neurotrophic factor and interleukin-6 differentially activate microglia, J Neurosci Res, vol.86, issue.7, pp.1538-1585, 2008.

W. J. Streit, Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration, J Neurosci Res, vol.61, issue.1, pp.10-20, 2000.

S. Lacroix, Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth, J Comp Neurol, vol.454, issue.3, pp.213-241, 2002.

K. M. Lee, S. M. Jeon, and H. J. Cho, Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK, Eur J Pain, vol.14, issue.7, pp.682-683, 2010.

L. Shi, Activation of the maternal immune system alters cerebellar development in the offspring, Brain Behav Immun, vol.23, issue.1, pp.116-139, 2009.

T. Wierzba-bobrowicz, Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics, Folia Neuropathol, vol.43, issue.2, pp.81-90, 2005.

A. Monji, Neuroinflammation in schizophrenia especially focused on the role of microglia, Prog Neuropsychopharmacol Biol Psychiatry, vol.42, pp.115-136, 2013.

G. Juckel, Microglial activation in a neuroinflammational animal model of schizophrenia-a pilot study, Schizophr Res, vol.131, issue.1-3, pp.96-100, 2011.

U. Ratnayake, Behaviour and hippocampus-specific changes in spiny mouse neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-pregnancy, Brain Behav Immun, vol.26, issue.8, pp.1288-99, 2012.

J. Dumic, S. Dabelic, and M. Flogel, Galectin-3: an open-ended story, Biochim Biophys Acta, vol.1760, issue.4, pp.616-651, 2006.

Y. Kohmura, Lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) in mice is principally due to maternal cause but not fetal sensitivity to LPS, Microbiol Immunol, vol.44, issue.11, pp.897-904, 2000.

J. Dahlgren, Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation, Pediatr Res, vol.60, issue.2, pp.147-51, 2006.

H. Ashdown, The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia, Mol Psychiatry, vol.11, issue.1, pp.47-55, 2006.

A. S. Brown and P. H. , The Origins of Schizophrenia, p.448, 2011.

Z. Cai, Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration, Pediatr Res, vol.47, issue.1, pp.64-72, 2000.

L. Pratt, Maternal inflammation promotes fetal microglial activation and increased cholinergic expression in the fetal basal forebrain: role of interleukin-6, Pediatr Res, 2013.

M. P. Manitz, The role of microglia during life span in neuropsychiatric disease-an animal study, Schizophr Res, 2012.

W. Y. Li, Y. C. Chang, and L. J. Lee, Prenatal infection affects the neuronal architecture and cognitive function in adult mice, Dev Neurosci, vol.36, issue.5, pp.359-70, 2014.

F. Zhu, Minocycline alleviates behavioral deficits and inhibits microglial activation in the offspring of pregnant mice after administration of polyriboinosinic-polyribocytidilic acid, Psychiatry Res, vol.219, issue.3, pp.680-686, 2014.

E. Y. Hsiao, Modeling an autism risk factor in mice leads to permanent immune dysregulation, Proc Natl Acad Sci, vol.109, issue.31, pp.12776-81, 2012.

R. Willi, Altered GSK3beta signaling in an infection-based mouse model of developmental neuropsychiatric disease, Neuropharmacology, vol.73, pp.56-65, 2013.

D. Krstic, Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice, J Neuroinflammation, vol.9, p.151, 2012.
DOI : 10.1186/1742-2094-9-151

URL : https://jneuroinflammation.biomedcentral.com/track/pdf/10.1186/1742-2094-9-151

E. Pineda, Maternal immune activation promotes hippocampal kindling epileptogenesis in mice, Ann Neurol, vol.74, issue.1, pp.11-20, 2013.
DOI : 10.1002/ana.23898

URL : http://europepmc.org/articles/pmc3775928?pdf=render

C. Mallard, White matter injury following systemic endotoxemia or asphyxia in the fetal sheep, Neurochem Res, vol.28, issue.2, pp.215-238, 2003.

E. Kuypers, Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep, PLoS One, vol.8, issue.12, p.81644, 2013.

L. Belle and J. E. , Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells, Stem Cell Reports, vol.3, issue.5, pp.725-759, 2014.

G. M. Jonakait, The effects of maternal inflammation on neuronal development: possible mechanisms, Int J Dev Neurosci, vol.25, issue.7, pp.415-440, 2007.

E. Y. Hsiao and P. H. Patterson, Activation of the maternal immune system induces endocrine changes in the placenta via IL-6, Brain Behav Immun, vol.25, issue.4, pp.604-619, 2011.

S. Girard, IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation, J Immunol, vol.184, issue.7, pp.3997-4005, 2010.
DOI : 10.4049/jimmunol.0903349

URL : http://www.jimmunol.org/content/jimmunol/184/7/3997.full.pdf

D. A. Gayle, Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain, Am J Physiol Regul Integr Comp Physiol, vol.286, issue.6, pp.1024-1033, 2004.

J. Richetto, Prenatal Immune Activation Induces Maturation-Dependent Alterations in the Prefrontal GABAergic Transcriptome, Schizophr Bull, 2013.

T. Holloway, Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system, J Neurosci, vol.33, issue.3, pp.1088-98, 2013.

T. V. Lipina, Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice, J Neurosci, vol.33, issue.18, pp.7654-66, 2013.

D. E. Korzhevskii and O. V. , Brain Microglia and Microglial Markers, Neuroscience and Behavioral Physiology, vol.46, issue.3, pp.284-290, 2016.

J. Muffat, Efficient derivation of microglia-like cells from human pluripotent stem cells, Nat Med, 2016.

S. Hong, L. Dissing-olesen, and B. Stevens, New insights on the role of microglia in synaptic pruning in health and disease, Curr Opin Neurobiol, vol.36, pp.128-162, 2016.

G. M. Viswanathan, Optimizing the success of random searches, Nature, vol.401, issue.6756, pp.911-915, 1999.

M. W. Salter and S. Beggs, Sublime microglia: expanding roles for the guardians of the CNS, Cell, vol.158, issue.1, pp.15-24, 2014.

J. Van-den-ameele, Thinking out of the dish: what to learn about cortical development using pluripotent stem cells, Trends Neurosci, vol.37, issue.6, pp.334-376, 2014.

S. Lively and L. C. Schlichter, The microglial activation state regulates migration and roles of matrixdissolving enzymes for invasion, J Neuroinflammation, issue.10, p.75, 2013.

R. De-simone, TGF-beta and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression, J Neurochem, vol.115, issue.2, pp.450-459, 2010.

H. J. Luhmann, Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions, Front Neural Circuits, vol.10, p.40, 2016.

S. H. Bitzenhofer, Layer-specific optogenetic activation of pyramidal neurons causes betagamma entrainment of neonatal networks, Nat Commun, vol.8, p.14563, 2017.

M. J. Miller, Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy, Proc Natl Acad Sci, vol.100, issue.5, pp.2604-2613, 2003.

D. Devenport and N. H. Brown, Morphogenesis in the absence of integrins: mutation of both Drosophila beta subunits prevents midgut migration. Development, vol.131, pp.5405-5420, 2004.

S. Klapproth, Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice, Blood, vol.126, issue.24, pp.2592-600, 2015.

W. Xu, H. Baribault, and E. D. Adamson, Vinculin knockout results in heart and brain defects during embryonic development, Development, vol.125, issue.2, pp.327-364, 1998.

M. Marella and J. Chabry, Neurons and astrocytes respond to prion infection by inducing microglia recruitment, J Neurosci, vol.24, issue.3, pp.620-627, 2004.
DOI : 10.1523/jneurosci.4303-03.2004

URL : https://hal.archives-ouvertes.fr/hal-00091368

I. Skaliora, Differential patterns of semaphorin expression in the developing rat brain, Eur J Neurosci, vol.10, issue.4, pp.1215-1244, 1998.

H. Takamatsu, T. Okuno, and A. Kumanogoh, Regulation of immune cell responses by semaphorins and their receptors, Cell Mol Immunol, vol.7, issue.2, pp.83-91, 2010.

W. D. Andrews, M. Barber, and J. G. Parnavelas, Slit-Robo interactions during cortical development, J Anat, vol.211, issue.2, pp.188-98, 2007.
DOI : 10.1111/j.1469-7580.2007.00750.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-7580.2007.00750.x

X. Liu, Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling, J Biol Chem, vol.287, issue.21, pp.17503-17519, 2012.

K. L. Allendoerfer and C. J. Shatz, The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex, Annu Rev Neurosci, vol.17, pp.185-218, 1994.

A. Sierra, Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis, Front Cell Neurosci, issue.7, p.6, 2013.

L. Scheppke, Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane, Blood, vol.119, issue.9, pp.2149-58, 2012.

C. Collins and W. J. Nelson, Running with neighbors: coordinating cell migration and cell-cell adhesion, Curr Opin Cell Biol, vol.36, pp.62-70, 2015.

A. C. Da-fonseca, The impact of microglial activation on blood-brain barrier in brain diseases, Front Cell Neurosci, vol.8, p.362, 2014.

J. Van-den-bossche, Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs, Blood, vol.119, issue.7, pp.1623-1656, 2012.

W. Meng and M. Takeichi, Adherens junction: molecular architecture and regulation, Cold Spring Harb Perspect Biol, vol.1, issue.6, p.2899, 2009.

T. N. Tham, Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system, Eur J Neurosci, vol.13, issue.5, pp.845-56, 2001.

A. Kolodziej, Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus, J Neurosci, vol.28, issue.17, pp.4488-500, 2008.

P. Del-rio-hortega, . Microglia, W. Penfield, and A. E. , Cytology and Cellular Pathology of the Nervous System, pp.481-534, 1932.

S. Chen, CNS Macrophages Control Neurovascular Development via CD95L. Cell Rep, vol.19, pp.1378-1393, 2017.

J. Yin, Up-regulated basigin-2 in microglia induced by hypoxia promotes retinal angiogenesis, J Cell Mol Med, 2017.

S. Biswas, Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis, Am J Pathol, vol.187, issue.9, pp.2112-2127, 2017.

Y. Mizoguchi and A. Monji, Microglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders. Front Cell Neurosci, vol.11, p.69, 2017.

C. A. Edmonson, M. N. Ziats, and O. M. Rennert, A Non-inflammatory Role for Microglia in, Autism Spectrum Disorders. Front Neurol, vol.7, p.9, 2016.

K. Askew and D. Gomez-nicola, A story of birth and death: Insights into the formation and dynamics of the microglial population, Brain Behav Immun, 2017.

B. J. Eggen, Microglial phenotype and adaptation, J Neuroimmune Pharmacol, vol.8, issue.4, pp.807-830, 2013.

S. Giovanoli, Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia, Transl Psychiatry, vol.6, p.772, 2016.

H. Barron, S. Hafizi, and R. Mizrahi, Towards an Integrated View of Early Molecular Changes Underlying Vulnerability to Social Stress in Psychosis. Mod Trends Pharmacopsychiatry, vol.31, pp.96-106, 2017.

G. J. Harry and A. D. Kraft, Microglia in the developing brain: A potential target with lifetime effects, Neurotoxicology, vol.33, issue.2, pp.191-206, 2012.

J. C. Delpech, Early life stress perturbs the maturation of microglia in the developing hippocampus, Brain Behav Immun, vol.57, pp.79-93, 2016.

B. Kaminska, M. Mota, and M. Pizzi, Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation, Biochim Biophys Acta, vol.1862, issue.3, pp.339-51, 2016.

D. Mattei, Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry, vol.7, p.1120, 2017.

J. C. Delpech, Microglia in neuronal plasticity: Influence of stress, Neuropharmacology, issue.96, pp.19-28, 2015.

Y. Takatsuru, Early-life stress increases the motility of microglia in adulthood, J Physiol Sci, vol.65, issue.2, pp.187-94, 2015.

S. B. Gumusoglu, The role of IL-6 in neurodevelopment after prenatal stress, Brain Behav Immun, 2017.

F. K. Johnson and A. Kaffman, Early life stress perturbs the function of microglia in the developing rodent brain: new insights and future challenges, Brain Behav Immun, 2017.

L. W. Fan and Y. Pang, Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders, Neural Regen Res, vol.12, issue.3, pp.366-371, 2017.

A. M. Antonson, Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation, Brain Behav Immun, vol.59, pp.300-312, 2017.

D. Mattei, Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia, Brain Behav Immun, vol.38, pp.175-84, 2014.

K. Van-den-eynde, Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia, Behav Brain Res, vol.258, pp.179-86, 2014.

A. Turano, J. H. Lawrence, and J. M. Schwarz, Activation of neonatal microglia can be influenced by other neural cells, Neurosci Lett, vol.657, pp.32-37, 2017.

H. G. Bernstein, Y. Piontkewitz, and G. Keilhoff, Commentary: Maternal immune activation evoked by polyinosinic: polycytidylic acid does not evoke microglial cell activation in the embryo, Front Cell Neurosci, vol.10, p.41, 2016.

K. Yamamuro, Potential primary roles of glial cells in the mechanisms of psychiatric disorders, Front Cell Neurosci, vol.9, p.154, 2015.

L. E. Clarke and B. A. Barres, Emerging roles of astrocytes in neural circuit development, Nat Rev Neurosci, vol.14, issue.5, pp.311-332, 2013.

D. F. De-souza, Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex, Front Cell Neurosci, vol.9, p.489, 2015.

M. Elsayed and P. J. Magistretti, A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci, vol.9, p.468, 2015.

A. Gottlieb, I. Keydar, and H. T. Epstein, Rodent brain growth stages: an analytical review, Biol Neonate, vol.32, pp.166-76, 1977.

B. Clancy, Extrapolating brain development from experimental species to humans, Neurotoxicology, vol.28, issue.5, pp.931-938, 2007.

A. M. Smith and M. Dragunow, The human side of microglia, Trends Neurosci, vol.37, issue.3, pp.125-160, 2014.

A. Mildner, P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases, Glia, vol.65, issue.2, pp.375-387, 2017.

T. F. Galatro, Transcriptomic analysis of purified human cortical microglia reveals age-associated changes, Nat Neurosci, vol.20, issue.8, pp.1162-1171, 2017.

T. C. Burns, Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models, Eur J Pharmacol, vol.759, pp.101-118, 2015.

A. Masuch, Microglia replenished OHSC: A culture system to study in vivo like adult microglia, Glia, vol.64, issue.8, pp.1285-97, 2016.

K. M. Yamada, R. Pankov, and E. Cukierman, Dimensions and dynamics in integrin function, Braz J Med Biol Res, vol.36, issue.8, pp.959-66, 2003.
DOI : 10.1590/s0100-879x2003000800001

URL : http://www.scielo.br/pdf/bjmbr/v36n8/5015.pdf

*. Silke-smolders, S. Kessels, *. Sophie, M. T. Smolders, F. Poulhes et al., Magnetofection is superior to other chemical transfection methods in a microglial cell line, Journal of Neuroscience methods. Accepted

M. T. Sophie, N. Smolders, S. Swinnen, K. Kessels, S. Arnauts et al., Age-specific function of ?5?1 integrin in microglial migration during early colonization of the developing mouse cortex, GLIA, 2017.

R. Paesen, S. Smolders, J. Manolo-de-hoyos, B. O. Vega, D. Eijnde et al., Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images, J Biomed Opt, vol.21, issue.2, p.26003, 2016.
DOI : 10.1117/1.jbo.21.2.026003

R. Paesen, S. Smolders, I. Wens, K. Notelaers, J. Manolo-de-hoyos et al., On the interpretation of second harmonic generation intensity profiles of striated muscle, J Biomed Opt, vol.20, issue.8, p.86010, 2015.

*. Silke-smolders, S. Mt-smolders, *. , N. Swinnen, A. Gärtner et al., Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci, vol.9, p.301, 2015.

N. Swinnen, S. Smolders, A. Avila, K. Notelaers, R. Paesen et al., Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo, GLIA, vol.61, issue.2, pp.150-63, 2013.

S. Smolders, M. T. Sophie, T. Smolders, U. Notter, B. Meyer et al., Controversies and prospects for microglial alterations following maternal immune activation as a model for neurodevelopmental disorders. Brain, behaviour and immunity
DOI : 10.1016/j.bbi.2018.06.001

M. T. Sophie, T. Smolders, S. Vangansewinkel, B. Hendrix, and . Brône, Injury and repair mirroring development: a changing central nervous system microenvironment instructs microglial phenotype. Acta Neuropathologica

S. Smolders, N. Swinnen, K. Arnauts, S. Smolders, B. Le-bras et al., Age-specific function of ?5?1 integrin in microglial migration during early colonization of the developing mouse cortex

, ? Euron PhD Workshop & BSCDB Spring Meeting on Microglia in development and disease, 2017.

?. Seminars, Fibronectin, Integrins & Related Molecules

C. Ventura,

S. Smolders, N. Swinnen, B. Brône, and J. M. Rigo, Migration of microglia in the embryonic neocortex. ? Euron PhD days: EURON and THEME joint PhD meeting, 2011.

S. Smolders, N. Swinnen, S. Kessels, K. Arnauts, S. Smolders et al., Age-specific function of ?5?1 integrin in microglial migration during early colonization of the developing mouse cortex

, United Kingdom ? Euron PhD Workshop & BSCDB Spring Meeting on Microglia in development and disease, 2017.

C. Ventura, United States of America ? BSCDB autumn meeting 2016: Cell Adhesion and Communication, pp.13-14, 2016.

. Ghent,

S. Smolders, A. Avila, N. Swinnen, T. Struys, I. Lambrichts et al., Migration of microglia in the embryonic neocorex: cellular and molecular interactions. ? 11th Congress of the Belgian Society for Neuroscience, 2015.

. Mons and ?. Belgium, The immune-brain axis: from molecules to behavior. March 12-13, Diepenbeek, Belgium ? Belgian Society of Physiology and Pharmacology: Autumn meeting, 2014.

. Brussels, ?. Belgium, . Embl-conference, and . Microglia, Guardians of the Brain, 2014.

?. Xi, European Meeting on Glial Cells in Health and Disease, 2013.

G. S. Berlin, N. Smolders, B. Swinnen, J. M. Brône, and . Rigo, The Netherlands ? Belgian Society for Cell and Developmental Biology: Spring meeting 2012: Cell Adhesion and Cell Polarity in Development and Disease, ? 8th FENS Forum of Neuroscience, 2012.

. Barcelona and ?. Spain, Spring meeting 2012, 2012.

. Brussels,

, ? Cytokines and Cell trafficking in Immunological Disorders, 2012.

?. Iuap, Ghent, Belgium Awards 3rd Award Oral presentation "Migration of microglia in the embryonic neocortex, 2011.