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“What we observe is not nature itself,  

but nature exposed to our method of questioning”  
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Why study microglia during brain development? The brain and spinal cord make up the 

central nervous system (CNS). These organs process all motor and sensory information and form 

the control center for all our daily activities. In the human CNS, approximately 100 billion neurons 

send electrochemical signals in dense networks and establish in total more than 600 trillion 

connections, called synapses that are necessary for us to breath, feel, move, and think [1, 2]. The 

CNS consists of neurons and glia, with the latter defined by Virchow in the 19th century as the cells 

that support the neurons by acting as a “glue” [3]. Depending on the brain region and age, roughly 

50% of the cells in the brain are glia in humans, primates and rodents [4]. The largest and most 

important information-processing network in the mammalian brain is the neocortex, which consists 

of 20-25 billion neurons [5]. This is the outer layer of the cerebral hemispheres and it processes 

sensory information, controls motor output and mediates higher cognitive functions [1, 6]. This 

structure has a glia to neuron ratio of 3.76 and its cellular composition is highly conserved between 

humans, primates and rodents [4]. Glial cells can be subdivided into macroglia (astrocytes and 

oligodendrocytes) and microglia. The latter cell type constitutes 5-15% of all cells in the adult 

human brain and 6-18% of all neocortical cells [4, 7]. 

During development, one layer of germ cells called the neurectoderm, will generate these billions 

of neurons that eventually establish these trillions of connections by following highly conserved 

developmental programs. These processes are highly complex, dynamic, under strict genetic 

control and require a smooth operation [1]. Microglia are the first glial cells to be present in the 

brain and they populate the brain alongside the developing neurons. The timing of their 

appearance with regard to the onset of important developmental processes has led to many 

speculations about special functions of microglia in CNS development. Studies of the last decade 

have indeed established critical tasks for microglia in guiding brain development. However, 

many aspects of their physiology and mechanisms underpinning their behaviour are still 

unresolved [4, 8]. 

This dissertation focuses on migration of microglial cells during embryonic cortical development and 

explores whether adverse conditions during pregnancy can affect these cells. More in particular, 

this work addresses the following questions: when and where can we find microglial cells and how 

can we characterize them (Chapter 2)? How do microglia move once inside the brain tissue and 

are there any molecules or structures involved in their movement (Chapter 3&4)? Finally, the 

question whether maternal immune activation during pregnancy, which is associated with an 

increased risk for neurodevelopmental disorders in the offspring, can change the microglial 

activation status in the embryo is briefly evaluated (Chapter 5). 

The necessary context to understand the data and thoughts presented in this manuscript is 

provided in the current chapter (Chapter 1: General introduction and aims). First (Section 1.1), 

the basics of brain development and the time windows for the key events during corticogenesis are 

explained. Next (Section 1.2), the microglial cell and its functions in adult brain homeostasis and 

pathology are briefly examined. Subsequently, the origin of microglia, their maturation and 

functions during development are described,  which will clarify the importance of studying 

microglial cells during embryonic corticogenesis. Then, the introduction is narrowed down to the 

mechanisms of microglial CNS invasion and colonization. The chapter proceeds (Section 1.3) with 

addressing the hallmarks of cell migration and it further focuses on the functions of the 

extracellular matrix and their major receptors, namely integrins, during brain development. Next, 
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an overview is given of the current knowledge with regard to integrin expression and function 

during microglial migration. The introduction closes with the development of the study aims 

(Section 1.4) accompanied by a scheme summarizing these aims with the most important study 

highlights and the chapters in which the different subaims are addressed (Figure 1.11). 

1.1 Basics of embryonic brain development 

Brain development follows a strict stepwise program: neuroepithelial cells first generate neurons, 

then astrocytes and subsequently oligodendrocytes (Fig. 1.1). The sequence of appearance of the 

different brain cells is similar in humans and rodents but the duration and the timing with regard to 

birth is species dependent [9]. Throughout this work, embryonic and postnatal ages (E and P, 

respectively, followed by a number indicating the amount of embryonic/postnatal days) always 

refer to those in mice, unless stated otherwise. 

 

 

 

 

 

 

 

Fig. 1.1. Timeline of developmental processes in the developing mouse brain. Rectangles indicate the 

estimated periods during/from which different cell types are present in the brain. Triangles indicate the onset 

and peaks of the developmental processes. Neurogenesis refers to the continuum of processes from progenitor 

amplification to cortical layering and maturation. This is a general scheme, timing can slightly vary according to 

the region. Modified from Reemst et al. (2016) [4]. E, embryonic day; P, Postnatal day; PCD, programmed cell 

death. 

1.1.1 Progenitor amplification: E9-E12 

From E9 to E12 (Fig. 1.1), the neuroepithelial cells first form a single cell layer called the neural 

plate. Then they divide symmetrically, which means that they generate a sister neuroepithelial cell 

to increase the size of the progenitor pool. Symmetrical division first occurs in the ventricular zone 

(VZ), which is the innermost apical zone lining the ventricular lumen, and then starts in the zone 

basal to it, the subventricular zone (SVZ) [10, 11]. Around E9 to E10 the neuroepithelial cells start 

to acquire a bipolar phenotype with astrocytic features, such as astrocyte-specific glutamate 

transporter (GLAST), brain lipid binding protein and calcium-binding protein S100β [10]. Until E12, 

they thus transform into radial glia that act as precursors for neurons, astrocytes and 

oligodendrocytes [10, 12]. A radial glial cell traverses the thickness of the neocortex with one long 

radial process extending from the ventricular zone (VZ), where its soma is located, right up 

dorsally to the pial surface.  
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1.1.2 Neurogenesis and cortical layering: E11-E18 

From E11 onwards (Fig. 1.1), radial glial cells start to divide asymmetrically to give rise to 

neurons or intermediate progenitors, in order to steadily increase the progenitor pool before any 

further cell differentiation [10, 11, 13]. Newborn neurons migrate away from the VZ/SVZ towards 

the pial surface, using the processes of the radial glia. This timely orchestrated mobilization results 

in the six layers of the cortex [10]. The generation of each of the neuronal layers depends on a 

combination of transcription factor signaling to specify its fate and on an intrinsic genetic program 

that involves a number of divisions before the progenitor enters an asymmetrical division to 

generate a neuron [11]. Around E11.0, the first postmitotic neurons constitute the preplate. At E12 

the first neuronal layer forming one of the future cortical layers starts migrating and splits the 

preplate into the marginal zone, containing Cajal-Retzius cells, and the subplate [11, 14]. Subplate 

neurons form a transient population of neurons that resides just underneath (apically) the cortical 

plate. The subplate is the first layer to form cortical projections and acts as a scaffold for the 

generation of afferent thalamocortical connections, but it progressively disappears near birth by 

programmed cell death (PCD) [11, 15, 16]. 

When new neurons are born, they migrate outwards to a more superficial layer in the cortical plate 

where they reach the Cajal-Retzius cells and stop. This results in the inside-out arrangement of the 

six layers (layer VI containing the oldest and layer II/III the youngest neurons) of the adult 

neocortex [17]. This radial migration process holds true for projection neurons of the cortex [11]. 

The inhibitory interneurons (approximately 25% of all cortical neurons in the adult) are born from 

E11.5 until birth in the ventral forebrain, more specifically in the medial and caudal ganglionic 

eminences (MGE and CGE, respectively), and migrate tangentially, in other words parallel to the 

CNS surface to reach the cortical plate between E12.5 and birth [18]. Tangential migration of 

interneurons is followed by radial migration in order to fully populate the different layers of the 

cortex. Both types of migration are the basis for the cellular complexity of forebrain circuits and for 

the general cytoarchitecture of the cortex [1, 19]. Differentiation of neurons into layer-specific 

subtypes can be influenced by neutrophins, such as brain derived neutrophic factor (BDNF), nerve 

growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) [11]. Migration of 

projection and interneurons is under control of many chemoattractants and chemorepulsive signals 

such as reelin, stromal derived factor 1 (SDF-1), ephrins, slit proteins, semaphorins and 

neuregulins [11]. 

1.1.3 Angiogenesis: from E8.0 

Blood vessels in the brain develop only from pre-existing vessels through a process called 

angiogenesis [4]. Upon the start of progenitor amplification at E9.0, vascular plexi form (Fig. 1.1) 

[11, 20]. The first capillary sprouts invading the nervous parenchyma are visible at E9.5-E10. 

These new capillaries consist of tip cells at the vascular front and of proliferative stalk cells further 

down. Tip cells are attracted by vascular endothelial growth factor-A (VEGF-A), which induces a 

negative feedback loop in the adjacent cells to suppress the angiogenic and promote the stalk cell 

phenotype [21]. Then, neighboring tip cells anastomose to create vascular loops. These processes 

are repeated constantly in order to establish vascular plexi inside the ventricular zone, 
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subventricular zone and cortical plate, that are connected by tangential blood vessels at E14 (Fig. 

1.2) [11, 21]. By E15, a few tangential blood vessels start to appear in the intermediate zone, but 

this region remains less vascularized in comparison to the others. At E18, towards the end of 

neurogenesis, the ventricular plexus is not well distinguishable anymore. By P8, a more 

homogeneous structure with many small parenchymal arteries is present (Fig. 1.2) [4, 11]. 

Outgrowth and alignment of blood vessels is controlled by pericytes and by chemoattractive and 

repulsive signals involved in neurogenesis such as VEGF, semaphorins and netrins [11, 22]. 

Development of the blood-brain barrier (BBB), which consists of endothelial cells coupled with tight 

junctions, a  basement membrane, pericytes and astroglial endfeet, starts at E13.5 and is fully 

functional at E16.5 in the cerebral cortex [22]. This means that already during embryonic 

development, the BBB separates the fetal environment from the exterior together with the choroid 

plexus epithelial barrier and arachnoid barrier [11, 23].  

 

 

 

Fig. 1.2. Schematics of cortical vasculature development. The first blood vessels sprout into the 

parenchyma around E10 and at E14 two dense plexi in the ventricular zone (VZ), subventricular zone (SVZ) 

and cortical plate (CP) are visbible, connected by tangential blood vessels. The vascular network increases in 

complexity through angiogenesis and evolves to a homogenous structure supplying blood in all layers of the 

cortex. Modified from Stolp et al. (2012) [11]. E, embryonic day; IZ, intermediate zone; MZ, marginal zone; P, 

postnatal day; SP, subplate; WM, white matter; I-VI, cortical layers I-IV.  

 

1.1.4 Gliogenesis: E16-P20 

Around E16 gliogenesis starts and lasts until the end of the first postnatal month (Fig. 1.1). 

Around this age, radial glia cease the production of neurons and the developmental program 

largely switches to astrocytogenesis and later oligodendrogenesis [10, 24]. This switch is under 

control of epigenetic regulation, such as DNA (de)methylation and/or acetylation that as long as 

neurogenesis is ongoing, represses the activity of the astrocytic promoters Glial fibrillary acidic 

protein (GFAP) and S100β, as well as the sensitivity of the progenitor cell to pro-astrocyte lineage 

directing cues present in the environment, such as Leukemia inhibitory factor (LIF), Ciliary 

neutrophic factor (CNTF) and Cardiotophin (CT)-1 [11]. Newly generated astrocytes migrate first 

tangentially and then radially to their final positions where they mature and induce synapse 

maturation during the first two to three postnatal weeks [11]. Similar to astrocytes, 

oligodendrocytes arise from radial glia (Fig. 1.1) but in this case through a pro-oligodendrocytic 

epigenetic switch that involves Wingless-related integration site (Wnt) signaling. Oligodendrocyte 

precursors arise in three waves and from different progenitors. The VZ of the ganglionic eminences 

gives rise to the majority of precursors in two prenatal waves. After neurogenesis completes 

postnatally, a third production wave arises in the cortical VZ [11]. Oligodendrocyte precursors first 

migrate to the cortex, where they appear by E16 [25]. Subsequently they mature and initiate 

myelination postnatally. 



General introduction and aims 

 

6 

 

1.1.5 Synaptogenesis, Pruning and Programmed Cell Death: mainly postnatally 

Maturation of the cortex proceeds postnatally and involves not only cell differentiation, connecting 

and strengthening of synaptic networks, but also the elimination of superfluous neurons produced 

during neurogenesis, which is called PCD. The majority of these processes occur during the first 

three postnatal weeks in mice (Fig. 1.1) [26]. Nevertheless, the first wave of synaptogenesis 

already occurs from E14.5 to E18.5 in the subplate (Fig. 1.1) [27, 28] and is regulated by 

thrombospondins, BDNF and anti-inflammatory cytokines [4, 29]. Synaptogenesis further peaks 

during the first postnatal week, followed by elimination (pruning) of excessive synapses, which 

allows further maturation of the remaining ones (Fig. 1.1) [16]. Similar to synapses, neurons are 

also produced in excessive numbers. Approximately 50% of neurons formed during development 

are cleared from the brain starting prenatally and peaking between P4 and P7 for projection 

neurons and between P7 and P11 for interneurons (Fig. 1.1) [4, 30]. Generally, PCD follows the 

inside-out gradient of neuronal migration during cortical layer formation [15].  

Altogether, the time windows and major processes during brain development were described in the 

sections above. Another major event during brain development is the colonization by microglial 

cells. The physiology and functions of this cell type is put into the spotlight in the next sections. 

1.2 The microglial cell: versatile outsider and one of a kind 

A giant leap for neuroscience occurred in 1873 when Camillo Golgi developed his famous “Black 

reaction” staining technique. This discovery allowed neurohistologists to obtain images of neural 

cells in their entity and morphologically characterize the cells of the nervous system [31]. In 1898, 

Franz Nissl was the first to visualize “Stäbchenzellen" (rod cells) which he suggested to have a 

capacity for migration and phagocytosis [23]. In the 1910’s, Pio Del Rio Hortega, a student of the 

Santiago Ramón y Cajal School and pupil of Nicolás Achùcarro, developed the famous silver-

carbonate method [3]. Using this technique and light microscopy, Del Rio Hortega was finally 

allowed in 1924 to baptize the cells visualized by Nissl as “microglia” after a long-standing conflict 

between himself and Cajal [3, 31]. Although almost a century old, Del Rio Hortega’s postulations 

about the mesodermal origin of microglia, their capacity for migration and phagocytosis still hold 

true today [32]. Microglia are often referred to as the CNS resident macrophage population. 

In the healthy adult mouse CNS, microglia adopt a ramified morphology characterized by a small 

cellular body (± 4 to 7 µm in diameter in vivo) and multiple long and thin branched processes that 

can extend up to 50 µm from the soma [33-35]. Ramified microglia were classically defined as 

‘resting’ cells, but this view was challenged by groundbreaking research of Axel Nimmerjahn and 

Dimitri Davalos in 2005 [34, 36]. Through cranial windows (thinned skull) in the adult mouse they 

observed highly motile microglial processes constantly protruding and retracting. Using this active 

scanning behaviour microglia survey the entire brain in just a couple of hours [34, 36]. In contrast, 

the amoeboid-like morphology is characterized by a large rounded soma (± 10 to 12 µm in 

diameter in vivo) with fewer, thicker and shorter processes. This morphology appears primarily 

during embryonic development and upon encountering activating stimuli, such as cytokines, 

products of invading organisms and intracellular contents [16, 33, 37]. It should be noted that a 
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large continuum of microglial morphologies exists in between these two extremes. Also, function 

and morphology are not necessarily linked and both can be influenced by the brain region in which 

they reside [35, 38-43]. 

1.2.1 Origin of microglia 

Until the 1990’s, researchers heavily debated whether microglia are ectodermally or mesodermally 

derived cells [23]. Later in 2006, it turned out Del Rio Hortega had been right all these years:  it 

was demonstrated that mice lacking the transcription factor Pu.1, were also devoid of microglia 

[44, 45]. At that point the hematopoietic nature of microglia was established, but until 2010 it 

remained unclear whether the adult microglial population consisted of cells descending from 

embryonic progenitors or from circulating blood monocytes [23]. 

 Embryonic hematopoiesis 

Human and mouse hematopoiesis share a similar course and occur in three sequential but 

overlapping waves [46-48] (Fig. 1.3). During the first wave, named primitive hematopoiesis, 

primitive myeloid progenitors (MP) are generated from E7.0 until E9.0 depending on the 

transcription factors Pu.1 and Scl-Tal-1 [46, 47]. These cells arise from hematopoietic progenitors 

inside the blood islands of the extra-embryonic yolk sac. Slightly later around E8.25-E8.5, but in 

overlap with MP generation, a transient wave of definitive hematopoiesis is initiated in the 

hemogenic endothelium of the yolk sac, in the endothelial cells lining the blood islands [49]. This 

wave lasts until E10.5-E11.5 and gives rise to erythromyeloid progenitors (EMPs), depending on 

the transcription factors Pu.1, stem cell leukemia/T-cell acute lymphoblastic leukemia 1 (Scl/Tal1), 

core-binding factor subunit beta (CBfb) and runt-related transcription factor 1 (Runx1) [47]. 

Starting from E9.0-E9.5 but in overlap with EMP generation, a second wave of definitive 

hematopoiesis is initiated and lasts until E12.5 in the aorta-gonads-mesonephros region and in the 

umbilical and vitelline arteries [46, 47]. This wave generates hematopoietic stem cells (HSCs) from 

the arterial hemogenic endothelium, depending on c-Myb, Scl-Tal-1, CBfb, Runx1 and Notch1, but 

no longer on Pu.1 (though macrophage differentiation is compromised upon Pu.1 absence) [46, 

47]. Of note, the terminology “primitive” and “definitive” has been a source of confusion and in 

particular EMP generation is often mistakenly referred to as being part of the primitive wave [46, 

49]. Since EMPs have the potential to generate erythrocytes and PMs not, the PM wave is strictly 

primitive while the EMP wave is not [46, 49].  Both EMPs and HSCs colonize the fetal liver around 

E10-E10.5 [48]. From E11.0-E11.5 on, the fetal liver is the major site for hematopoiesis and 

generates all hematopoietic lineages. From here, HSCs will colonize other hematopoietic organs 

such as the bone marrow at E15 to activate hematopoiesis in this site from E17 [47, 48]. 
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Fig. 1.3. Time scale for the development of hematopoietic progenitor cells in the mouse embryo. 

There are three successive but overlapping waves of hematopoietic progenitor cells during development, each 

of which has the potential to give rise to fetal macrophages. While primitive progenitor cells have been found 

only in a small time window (middle), definitive progenitor cells (including EMPs and HSCs) co-exist during most 

fetal development in the fetal liver. Only HSC-derived hematopoiesis then shifts to the bone marrow niche. The 

three waves of progenitor cells can also be distinguished by their differentiation potential in vivo (bottom). 

Primitive progenitor cells are restricted to the erythroid or myeloid lineage, while EMPs have both erythroid and 

myeloid potential. EMP-derived hematopoiesis gives rise to erythrocytes, macrophages, monocytes, 

granulocytes and mast cells. Modified from Perdiguero et al. (2016) with permission [47]. E, embryonic day; 

EMPs, erythromyeloid precursors; HSC, hematopoietic stem cells. 

 

 Microglia arise from hematopoietic progenitors in the yolk sac 

Macrophages are generated in two phases: primitive and definitive hematopoiesis [47]. MP- and 

EMP-derived macrophages colonize the entire embryo starting from E9-E10. However, HSC-derived 

macrophages will colonize the tissues around E13.5-E14.5 and largely replace the yolk sac 

macrophages, but not microglia [48]. The developing BBB might shield the brain from these HSC-

derived macrophages [48]. In fact, though still significant amount of controversy remains about 

the exact precursors, it is genuinely acknowledged that microglia emerge from c-kit+ (alternatively 

Mast/stem cell growth factor receptor or CD117) embryonic yolk sac progenitors before E8.5 in 

mice [20, 50-52]. These precursors develop into CD45+ c-kitlo Chemokine (C-X3-C motif) receptor 

1 (CX3CR1)- immature (A1) cells and mature into CD45+ c-kit- CX3CR1+ (A2) cells that 

downregulate CD31 and upregulate F4/80 and Macrophage-colony stimulating factor receptor (M-

CSFR) [52]. Microglial development is independent of Myb [52, 53], but dependent on Pu.1 [52], 

interferon regulatory factor 8 (Irf8) [52] and colony stimulating factor 1 receptor (Csf1R) [20, 54] 

(summarized in Table 1.1 and Fig. 1.6). Deletion of these genes resulted in embryos either 

devoid of microglia (Pu.1 knockout (KO)) [52], a ~1.6 fold (Irf8 KO) [52] or a ~4.3 fold to 

complete reduction (Csf1r KO) in microglial cells [20, 54]. More in particular, Irf8 seemed to be 

involved in the maturation of microglia from A1 to A2 precursors, while lack of Pu.1 clearly affected 

the size of the A1 population. So Irf8 is a factor implicated in the early microgliogenesis [52]. The 

maturation processes occur in the blood islands and cephalic mesenchyme before these cells 

invade the neuroepithelium [55]. The proliferating A2 population gives rise to microglia that travel 

to the brain rudiment between E8.5 and E9.5 using a functional blood circulation [20, 50-52]. 

Microglia are detectable in the cephalic mesenchyme already by E9.0 and from then express 
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CX3CR1, CD45 and F4/80 [20, 52]. By E9.5-E10.5 they are found in the neuroepithelium in the 

brain [20, 52] and by E11.5 they invade the spinal cord parenchyma [37] (Timeline of microglia 

development see Fig. 1.5). In humans, microglia invade the forebrain around 4.5 to 5.5 

gestational weeks [56, 57]. 

The yolk sac origin of microglia is conserved across vertebrate species such as humans, rodents 

and avians [10, 23]. However, high temporal-spatial resolution fate mapping in zebrafish showed 

that microglia in the developing vs. the adult zebrafish CNS derive from different sources and show 

differential transcription factor dependencies [51]. Embryonic microglia develop from the rostral 

blood island which is the zebrafish equivalent of the yolk sac, while adult microglia arise from the 

ventral wall of the dorsal aortoa, which is the equivalent of the aorta-gonads-mesonephros, giving 

rise to HSCs. It remains to be shown whether this zebrafish-mouse discrepancy is due to species 

differences or to the lack of high temporal-spatial resolution of the current fate mapping strategies 

in rodents [51]. Therefore, at this moment a small contribution from non-yolk sac progenitors 

recruited later during development cannot be excluded.  

1.2.2 Migration into the CNS  

 Attracting molecules  

The mechanisms underlying microglial recruitment into the CNS have been partly assessed. 

Signaling of interleukin-34 (IL-34) and colony stimulating factor-1 (CSF-1) through their receptor 

CSF-1R on microglia, is essential for microglial survival and precursor entry into the CNS [20, 58]. 

Whether these attractants are required for microglia production in the yolk sac, to travel from the 

yolk sac to the brain or to infiltrate the CNS is unclear [59]. IL-34 mRNA is detectable at E11.5 in 

the embryonic mouse brain and preceeds the expression of Csf-1 mRNA [60]. Interestingly, during 

development both IL-34 and Csf1 transcripts are expressed in the cortex, but in complementary 

regions [61]. At E15.5 IL-34 is restricted to the marginal zone while Csf-1 is present in the 

subventricular and the ventricular zone. From P0-P20, IL-34 is found in cortical layers V to II, while 

Csf-1 expression is restricted to layer VI. This complementary expression patterns suggests 

different functions of these CSF-1R ligands during embryonic CNS invasion by microglia.  

Additional studies have shed light on the attractive cues for microglia inside the cortex by using 

multiple gene KO and inhibitor approaches [62, 63]. Arno et al. demonstrated that microglia in the 

embryonic cortex accumulate in the VZ/SVZ, regions where C-X-C motif chemokine 12 (CXCL12, 

alternatively SDF-1) is highly expressed by basal progenitors located within these zones [62]. 

CXCL12 signals through binding on microglial CXCR4 and CXCR7 [62]. They found that ablation of 

basal progenitors as well as impairing their production of CXCL12 through genetic depletion or 

pharmacologically interfering with its signaling axis, resulted in local 20-40% decreases in 

microglial density in the embryonic cortex depending on the method [62]. So the CXCL12/CXCR4 

signaling axis is involved in microglial recruitment to the VZ/SVZ. The role of this signaling axis in 

microglial migration inside the parenchyma is further investigated in Chapter 4. In addition, Lelli 

et al. showed that microglial density in the SVZ of nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase 2 (NOX2) deficient P3 mice, had decreased ~2.7 fold [63]. This effect was not 
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due to a defect in microglial proliferation and it was not observed in embryos, only in pups [63]. 

They further found that Nox2 acts downstream of vascular endothelial growth factor receptor 1 

(VEGFR1) and CSF-1R signaling in primary microglia. Accordingly, microglial precursors inside the 

ventricle of newborn mice that lack the VEGFR1-tyrosin kinase domain necessary for signaling of 

this receptor, did not show Nox2 activation and consequently microglial infiltration into the SVZ 

was decreased by ~3.3-fold at P3. Presumably, hydrogen peroxide generated by Nox2 at the front 

edge of microglial extensions, controls remodeling of the actin cytoskeleton and promotes 

microglial migration [63]. However, the effect of Nox2 absence was transient since at P10 the 

abnormal microglial distribution had restored, possibly by a combination of proliferation and 

migration of nearby microglial cells [63]. Together, during early postnatal (P0-P3), but not 

embryonic development, microglia depend on VEGFR1-mediated Nox2 activation to escape from 

the lateral ventricles and infiltrate into the SVZ of the cortex [63]. Kierdorf et al. have investigated 

the contribution of other chemokines in microglial recruitment to the CNS [52]. They found that 

yolk sac progenitors express high mRNA levels of the following chemokine and chemokine receptor 

pairs: Cxcl4 and Cxcr3, Cx3cl1 and Cx3cr1, Ccl2 and Ccr2, Ccl9 and Ccr1. However none of these 

genes influenced microglial numbers and morphology at E14.0 in single KO strains [52]. Microglial 

density in CX3CR1 KO mice was transiently decreased by on average ~1.4 fold in the postnatal 

hippocampus between P8 and P28 [64] and by ~3 fold in the somatosensory barrel cortex at P6-

P7, but was not changed at embryonic ages [65]. On the contrary, in 5 day old CX3CR1 KO 

animals, the density of microglia increased ~1.4 fold in the subcortical white matter [66]. 

Additionally, mRNA for matrix metalloproteinases (MMPs) 8 and 9, enzymes involved in remodeling 

of the extracellular matrix, was highly expressed in microglial progenitors that still needed to 

invade the mouse CNS parenchyma [52]. Upon maternal administration of MMP inhibitors at E13.0, 

microglial presence in the E14.0 brain had diminished roughly by half, suggesting that MMPs play a 

role in microglial migration/invasion into the brain [52]. Further, progranulin-a, a soluble growth 

factor expressed inside the early developing brain possibly attracts microglia into neuroepithelial 

tissues of the in vivo developing zebrafish [67]. In this case, decreased proliferation of microglial 

precursors outside the brain cannot be excluded as the cause for decreased numbers of retinal 

microglia in progranulin-a absence since besides cell migration, this molecule stimulates cell 

proliferation [67]. 

Next to chemokines and growth factors, a role for apoptotic neurons resulting from the naturally 

occurring PCD during development, in microglial attraction inside the brain has been hypothesized 

[16]. Microglia have been found in close association with apoptotic cells in different CNS regions 

during development [16]. Factors released by these dying neurons, such as CXCL1, 

lysophosphatidylcholine, sphingosine 1 phosphate and Adenosin triphosphate (ATP) and Uridine 

triphosphate, might attract microglial cells [16]. Xu et al. indeed found that apoptotic neurons and 

lysophosphatidylcholine promoted microglial colonization in the zebrafish optic tectum [68]. Also in 

quails, microglial entry and dispersion into retinal explants, mimicking the in situ developing retina, 

relies on purinergic signaling by extracellular ATP and Uridine diphosphate and coincides with an 

increase in retinal cell detah, suggesting microglial cells are attracted towards those dying cells 

[69]. However, live imaging studies in the excised developing mouse hippocampus have shown 

that microglial mobilization is not dependent on developmental cell death [70]. Whether apoptotic 
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cues are important for microglia recruitment towards the mammalian brain has not been 

investigated yet [4]. Other molecules such as semaphorins, netrins, Monocyte chemotactic protein 

1 (MCP1 or alternatively CCL2), Macrophage inflammatory protein (MIP) 1-α and the purinergic 

receptors P2X4R and P2Y12R, might be involved in the recruitment process as well, but will not be 

discussed here because of lack of in vivo evidence (for review see [16]). 

Together, these studies indicate that CXCR4, VEGFR-1, CX3CR1 signaling and MMP expression are 

involved in the attraction and invasion of microglial cells to the CNS during either embryonic, for 

CXCR4 and MMP8 and 9, or postnatal development, for VEGFR-1 and CX3CR1. After initial 

recruitment to the CNS, microglia intensively migrate (depending on the region in combination with 

proliferation) throughout the parenchyma in order to reach their final positions and to exert their 

manifold tasks [71-73]. It is however not known which molecules microglia use to migrate inside 

the parenchyma. This is further investigated in Chapters 3 and 4. 

 Colonization pattern 

Microglia colonize the CNS through two waves of invasion, characterized by a steep increase in 

microglial cell number. The first wave starts in the early embryo and the second one start around 

birth. These waves have been documented in different CNS regions in humans, rabbits, rodents 

and quails [37, 55, 74-81]. Although microglia are already detectable in the embryonic human 

brain around 4.5-5.5 gestational weeks, the major influx and distribution begins around 16 weeks, 

around 22 weeks microglia with increased ramifications are widely distributed in the intermediate 

zone and by 35 weeks the microglial population is highly ramified [56, 82, 83]. Microglial 

proliferation and colonization during embryonic spinal cord development is dependent on P2X7 

signaling [84]. Microglial numbers in different brain regions increase significantly to reach a peak 

during the first two postnatal weeks, when about 95% of microglial population has been 

established [26, 35, 64, 85-88]. Alliot et al. concludes that the postnatal increase in microglial 

numbers is due to in situ proliferation of microglial cells, though this percentage decreased steadily 

from 45% at P0 to 4% at P14 [85]. However in the rat developing brain, proliferation percentages 

were much higher, peaking at 99% at P9 [77]. Despite variations across regions, species and 

proliferation marker used, microglial proliferation seems to decrease steadily during the second 

postnatal week in rodents [16, 77, 89, 90]. Active proliferation is thus a key underlying mechanism 

of the colonization of the spinal cord, retina, corpus callosum, hippocampus and cortex by microglia 

during development and can be regulated by Granulocyte-macrophage colony-stimulating factor 

(GM-CSF), CSF-1, NT-3, IL-4 and 5, Migration inhibitory factor 1-α [16, 62, 91]. In addition to 

proliferation, attraction of microglia from outside the CNS seems a plausible explanation for the 

increase in cell number. Accordingly, Askew et al. reported an infiltrating monocyte wave into the 

parenchyma proper that peaked at P3 in mice but found that this population quickly underwent 

apoptosis between P3 and P6 and did not contribute to the adult microglial population [86]. The 

function of this monocyte-derived wave is unknown, though the authors speculate about a role in 

inducing cell death in a subpopulation of yolk sac-derived microglia [86]. Because this monocyte 

wave rapidly disappears, it cannot account for the peak in microglial density at P14. This suggest 

that microglia might be recruited from microglial precursors already formed and waiting outside the 

nervous parenchyma, for example in the ventricle, to infiltrate the CNS at the appropriate time 
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points, as reported by Lelli et al. [63]. Nevertheless, multiple lines of evidence in rodents indicate 

that the adult microglial density is acquired after a rapid decrease of 50% in cell number between 

the third and the sixth postnatal week resulting from decreased proliferation and increased 

apoptosis, to remain steady during adulthood [26, 55, 64, 86]. These major events in microglial 

development during embryogenesis are summarized in Fig. 1.5. 

After invading the CNS, microglia distribute into the parenchyma according to specific 

spatiotemporal patterns that are well studied throughout development in different species, such as 

humans, rodents, avians and zebrafish [92]. Live imaging in the developing zebrafish brain shows 

that microglia have a high capacity to patrol throughout the parenchyma, which allows them to 

explore the dense neuroepithelium efficiently and possibly deliver signaling molecules [93]. The 

exact infiltration route into the CNS is not yet fully known, but histological studies mainly from 

birds and humans suggest that microglia might enter the brain from the meninges, the ventricles 

and through blood vessels [16, 55, 92] (Fig. 1.4). These proposed entry routes are based on the 

presence of microglia inside the ventricles [57], on the high microglial density in the meninges [57, 

94] and their near association with blood vessels [92]. When the brain is vascularized but the BBB 

is not yet fully established (in the cortex the BBB becomes fully functional at E16.5 [22]), it has 

been suggested that microglial progenitors may enter the parenchyma by crossing the blood vessel 

wall [37, 94]. Once inside the neuroepithelium, microglial colonization occurs dorsally to ventrally 

and rostrally to caudally [92]. Studies in the developing quail retina, optic tectum and cerebellum 

have suggested that microglia in regions of laminar organization use definite routes to migrate to 

their final destinations, namely tangential and radial routes [95-97]. First, microglia spread in a full 

single layer throughout each CNS region and this seems to occur along long tangential oriented 

axonal fascicles, which pass near the microglial entry “hot spots”. Tangential migration of microglia 

in the retina occurs using the end-feet of Müller cells, the local radial glia [78]. Doing so, microglia 

adopt a flat morphology, probably because of the laminar environment, with extensive 

lamellipodia. Some microglia were clearly polarized in the movement direction, others were non-

polarized with projections radiating in all directions. This could indicate that microglial cells explore 

their microenvironment in order to orient their movement. In other CNS regions made of axonal 

fascicles, microglia appear more rounded but show similar morphological characteristics as 

described above. Additionally, they are in close contact with their substrate [78, 91]. Then, the 

cells change direction, to migrate perpendicularly to the surface of the CNS to populate the 

different layers of the nervous parenchyma [57, 91]. This radial migration towards the pial surface 

has been described in the retina, optic tectum and cerebellum of the quail embryo [91]. In the 

developing human cortex, microglia migrate towards the cortical plate and accumulate at its 

ventral border, at the junction with the subplate [57]. This layer contains mature neurons that 

receive afferent input from thalamic neurons.  

In the developing brain, microglia are not homogenously distributed. Instead they are found in 

specific locations, such as in areas of cell death, in association with the developing vasculature and 

radial glia, in regions containing developing axon fascicles and acellular spaces (reviewed in [92]). 

These associations are mainly related to locally exerted functions of microglia as later discussed in 

Point 1.2.7. Nevertheless, structures such as blood vessels and radial glia might aid microglia in 
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their turn to spread throughout the nervous parenchyma (Fig. 1.4). In different CNS regions and 

species, including human, microglia interact with blood vessels during development [35, 92]. 

Adhesion molecules present on blood vessels, such as intercellular adhesion molecule (ICAM)-1 and 

its receptor lymphocyte function-associated antigen (LFA)-1 (alternatively CD11a or integrin αLβ2) 

on microglia could mediate migration along blood vessels [98]. Effectively, microglia can use blood 

vessels to migrate along in a model of acute brain damage [99]. In this way, it is clear that blood 

vessels can function as substrates for migration, so obviously a reciprocal interaction exists 

between blood vessels and microglia [21]. The molecular basis for this contact is further explored 

upon in Chapter 3. Contact between microglia and radial glia was also observed in several CNS 

regions and species and extracellular matrix (ECM) deposition along radial glia could serve as a 

mechanical substrate mediating migration (see Point 1.3.1) [92]. In the E13.5 ventral part of the 

developing mouse spinal cord, 50% of microglial cells were found to interact with radial glial fibers, 

which suggest that radial glia may guide radial migration of microglial cells into the spinal cord 

parenchyma [37]. In the retina, microglia adhered to the processes of Müller cells, proposing these 

cells as a mechanical substrate for radial migration [91]. Indeed, a subsequent study indicated that 

radially migrating microglia in the developing quail retina use the processes of laminin (an 

extracellular matrix glycoprotein)-expressing Müller cells as a substratum and that they ramify 

while migrating [81]. Of note, the studies mentioned above are all based on immunohistochemical 

analysis and lack live approaches to follow microglial migration along these structures in real time 

during embryonic development. 

Microglial colonization of the CNS seems to be a highly conserved process among species and this 

pattern is likely related to the functions that these cells exert during development. Whether the 

same microglial migration phases and substrates occur in a more complex structure of the 

mammalian CNS, such as the neocortex, and whether in situ findings can be extrapolated to the in 

vivo setting, remain open questions. The microglial colonization pattern of the cortex together with 

the cell’s characteristics are investigated in Chapter 2. 

 

 

 

 

  



General introduction and aims 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

Fig. 1.4. Hypothetical scheme of microglial colonization of the neocortex. 1. Primitive myeloid 

progenitors arise in the yolk sac around E7.5 and travel to the CNS between E8.5 and E9.5 via the developing 

circulation.2. Once arrived in the CNS, microglial precursors are thought to invade the brain parenchyma in 

amoeboid forms by crossing the ventricular lining (2a), the pia (2b) or in a later phase by penetrating the 

blood vessel wall (grey filled structures) (2c). 3. Next, microglia actively proliferate and migrate throughout 

the tissue to reach their final destinations. Migration can be guided through interaction with radial glia (orange) 

and/or blood vessels. 4. In a last phase, these cells differentiate into fully ramified microglia, characterized by 

multiple thin processes, constantly scanning the microenvironment for changes. Drawings are not to scale. 

Adapted from Master thesis Smolders SMT (2011). E, embryonic day; CNS, central nervous system. 
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1.2.3 Microglial maturation inside the CNS 

Once inside the CNS, microglia gradually mature. Research in zebrafish larvae shows that at these 

early time points these so called immature cells already move their processes, suggesting an active 

contribution to brain development [93]. However, the mechanisms underpinning this event in vivo 

are poorly understood up to date, though transcriptional profiling studies bring valuable information 

to the field.  Maturation can be considered from different angles: morphology, function and 

transcriptional profile (reviewed in [16]).  

In culture, astrocyte-derived soluble factors including cytokines (transforming growth factor-β 

(TGF-β), M-CSF and GM-CSF and purines (ATP and adenosine) induce microglial ramification even 

in the absence of physical contact with astrocytes [16]. Another in vitro study however shows that 

the physical contact (even in fixed conditions) is essential to influence the ramification process 

[100]. Recently, it was confirmed in vivo that the level of microglial process ramification in the 

adult brain is under control of purinergic signaling [101]. In vivo, the actual transformation of 

microglia from "amoeboid" to "ramified" was reported to start around P10, when transcription 

factor Runx1 is lost [102, 103]. By P28 the ramification process is complete [102, 104] (overview 

in Fig. 1.5). Several studies in human fetuses describe a general “pattern of microglial 

differentiation”, which is associated with displacement of microglia from the deeper layers of the 

cerebral hemispheres towards the cortical plate, with increasing ramification and with a gradual 

loss of expression of several markers such as CD68, CD45, CD11b and Human leukocyte antigen-

antigen D related (HLA-DR, or Major histocompatibility complex class II molecule, MHCII in mice) 

(reviewed in [82]). It is not clear yet whether the same pattern of differentiation is observed in 

rodents as well.  

Functional (electrophysiological) maturation coincides in general with increasing ramification, 

although high heterogeneity remains in the microglial electrophysiological phenotypes at the same 

age [16, 35]. Amoeboid, embryonic microglia show an inward K+ current while this current declines 

during postnatal maturation and transiently switches for a outward K+ current. In contrast, adult 

microglia are almost devoid of voltage-dependent currents, which are usually observed only in 

activated microglia under pathological circumstances [35]. Astrocyte-derived diffusible factors such 

as TGF-β control the upregulation of outward K+ currents [16]. The function of these voltage-

dependent K+ currents mediated through Kv1.3 channels in embryonic microglia has not yet been 

elucidated, but might encompass a deactivation process [105] or alternatively, Kv1.3 might be 

related to integrin-mediated adhesion and migration (see Point 1.3) of microglia during postnatal 

development [35, 106-108]. In addition, microRNA-124 downregulates motility and phagocytic 

capacity and thus impairs the functional maturation of microglia in in vivo zebrafish larva [109]. 

microRNA-101a might also be involved in regulating the microglial morphology and immune 

response in the adult brain [110]. Further, CX3CR1 signaling is necessary for morphological 

maturation (ramification) and functional maturation such as the acquirement of an outward 

rectifying K+ current and the ability to send out protrusions in response to ATP [111]. 

Matcovitch-Natan et al. demonstrated that microglia develop following discrete transcriptional 

phases: “early microglia” (E10.5 to E14), “pre-microglia” (E14 to P9), and “adult microglia” (4 
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weeks postnatal and onwards) [112] (overview in Fig. 1.5). The emergence of an adult 

transcriptional profile remarkably coincides with a drop in microglial density after 4 weeks postnatal 

and the establishment of the mature ramified morphology at P28 [16, 102, 112]. The study of 

Butovsky et al. corroborates these findings and shows that microglia gain their mature 

transcriptional signature possibly a bit earlier than P21, but for sure after P4 in mice [113]. At that 

point, their transcriptional profile is already distinct from macrophages recruited to the CNS in 

disease settings, from primary microglial cultures (from P1-2), from embryonic stem cell derived 

microglia and from the most common used microglia cell lines (BV2 and N9). Interestingly, they 

found that the transcriptional signature from freshly sorted newborn (P1) and cultured primary 

microglia mimicked the in vivo adult microglial signature the best [113]. Together, both studies 

found marked differences between the embryonic and the adult microglia transcriptome, which 

stresses that the series of maturation events are possibly regulated by the rapidly changing local 

environment [112, 113]. In addition, the different tasks microglia fulfill depending on the 

developmental needs might be reflected in their transcriptional signature. 

Recently, expression of Sall1 and other genes important for microglial development and function, 

was shown to be under control of NRROS, a myeloid expressed transmembrane protein in the cell’s 

endoplasmatic reticulum [114]. In addition, MafB, one of the principal transcription factors highly 

elevated upon the shift from pre-to adult microglia, turns out to be a key regulatory gene in 

microglial homeostasis as well [112]. MafB critically influences the ability of microglia to acquire an 

adult transcriptional signature and is an important “off” signal that regulates the anti-viral response 

[112]. Furthermore, recent evidence demonstrates a role for the gut microbiota, i.e the microflora 

that colonizes the gut, in regulating microglial maturation as well [112, 115]. In the absence of the 

microbiota, microglia display morphological characteristics and a gene expression profile that 

correlates to an immature status, which is maintained throughout adulthood [112, 115]. In 

addition, developmental maturation of the microglial transcriptional signature appears to be 

delayed in males compared to females [116]. 

In summary, microglia constitute the only macrophage population that in the adult steady state is 

derived mainly or maybe entirely from yolk sac-derived progenitors. After initial maturation from 

precursors at the places where they originate, they mature further in the brain in specific 

transcriptional phases. From postnatal week 4 they have acquired an adult and matured 

morphologic and transcriptional phenotype.  

1.2.4 Homeostasis of microglia in the adult CNS 

In the rodent adult brain in steady state conditions, microglia are dispersed ubiquitously 

throughout both white and gray matter while each cell occupies its own (variable) micro territory 

[29, 34, 86]. Microglial cell bodies are dispersed at 50 to 60 µm distance from each other [34] and 

are seeded in densities of about 240 cells/mm² in the adult rodent cortex, which remains stable 

over the animal’s lifetime [86, 113]. Askew et al. recently discovered that microglia have a 

surprisingly fast turnover rate of 0.79% per day in mice [86]. They calculated that the whole 

microglial population renews itself in 95 days by coupled proliferation and apoptosis (Fig. 1.5). 

Further investigation on microglial proliferation rates in the homeostatic mouse brain revealed high 
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differences in proliferation rates between brain regions [117]. The microglial proliferation rate 

corresponds to the overall level of proliferation in their local environment and results in a long-lived 

population of cortical microglia while olfactory bulb microglia are replaced in 8 weeks [117]. Of 

note, 14C analyses demonstrate that also the human cortical microglial population shows a slow and 

nearly complete turnover over the life span of an individual with some cells possibly being decades 

old [118]. While some studies using depletion approaches suggested that microglia proliferate from 

local nestin-positive progenitors, this was not true in the normal undisturbed brain [58, 86, 117, 

119]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.5. Regulation of the microglial population. Scheme is not to scale. Timing of events is approximately 

and can vary across CNS regions. CNS, Central nervous system; E, Embryonic day; P, Postnatal day. 

1.2.5 Undersigned, I, the microglial cell 

Cell-fate mapping and transcriptional profiling studies have revealed that tissue macrophages 

possess a highly specialized gene expression signature, depending on their local environment [120-

125]. This holds true equally well for microglia: both the location where they reside inside the CNS 

and the age of the organism contribute to differences in gene expression and function [40, 43, 112, 

113, 116, 124, 126-130]. For example microglia from cortex, spinal cord, hippocampus and 

olfactory bulb show subtle differences in gene expression levels, while microglia from cerebellum 

and eyes seem to be less comparable to microglia from the previously mentioned regions [113] 

and spinal cord microglia react more intense to traumatic injury than their counterparts in the brain 

[128]. 
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Over the past 4 years a plethora of studies have established a microglia (CNS resident) vs. 

macrophage (non-CNS resident) specific transcriptional signature (Table 1.1 and Fig. 1.6), which 

is also established in zebrafish and humans (for review see [31]). This unique genetic signature 

clearly distinguishes microglia from any other brain or (infiltrating) immune cell. Microglia and 

recruited monocytes during neuroinflammation maintain their own molecular signature, as was 

validated in experimental autoimmune enchepahlomyelitis chimeric mice [113]. However, a study 

on the human brain showed that the homeostatic microglial signature is lost in multiple sclerosis 

lesions (for example P2Y12R expression), which indicates that the microglial signature might not be 

entirely stable under all circumstances [131]. 

1.2.6 Parenchymal and non-parenchymal CNS macrophages 

Two recent studies established important discrepancies with regard to origin, gene and protein 

expression between CNS parenchymal macrophages, i.e. microglia, and CNS non-parenchymal 

macrophages such as meningeal macrophages, perivascular macrophages and choroid plexus 

macrophages [123, 126] (Table 1.1 and Fig. 1.6), all of which have been mostly grouped under 

the numerator of “microglia”. Importantly, Goldmann et al. found that all but one CNS resident 

macrophage populations originate from progenitors in the yolk sac and have no contribution from 

HSCs in the bone-marrow [126] (see Point 1.2.1). Choroid plexus macrophages form the 

exception: they are partially derived from HSCs and turn over more rapidly (Table 1.1) [126]. 

These studies established that adult parenchymal microglia have a unique transcriptional profile 

that is characterized by high expression of the genes P2ry12, Hexb and Sall1 and Tmem119 [123, 

126, 132].  

From the multiple transcriptional profiling studies and microglia-specific gene depletion models, 

Sall1 and TGF-β1 emerged as the guards of the adult microglial cell identity and function [113, 

123]. Sall1 is exclusively expressed by the parenchymal microglia population and by no other CNS 

resident or non-resident macrophage and is therefore the preferred gene to perform microglia 

specific manipulations in vivo [123]. However, it must be noted that neuronal and glial progenitors 

during embryogenesis highly express Sall1, which unfortunately precludes this gene for microglia-

specific approaches during development [133]. In the steady state, microglia specific depletion of 

Sall1 or TGF-β1 resulted in a shift from a resting microglia to an inflammatory macrophage 

phenotype [123]. Thus, Sall1 and TGF-β1 are key genes that keep microglia in a homeostatic 

phenotype. For an extensive and recent review on how microglial phenotypes are transcriptionally 

controlled in healthy and pathological circumstances, see Holtman et al. (2017) [134]. 

In summary, CNS parenchymal macrophages, i.e. microglia, have a unique gene expression 

signature depending on the CNS environment that enables differentiation from other CNS and 

peripheral macrophages. 
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Fig. 1.6. Origin and tunrover of CNS resident tissue macrophages. CNS macrophages are derived from 

prenatal sources (left) and have no exchange with blood cells in the healthy adult brain (right). A transient 

early wave of myeloid cell development (left) takes place at E7.0–E8.0. At this time, EMP cells develop in blood 

islands of the yolk sac. Their progeny further proliferate, differentiate and populate several tissues, including 

the brain (left). CX3CR1+ A2 progenitor cells derive from c-Kit+CX3CR1− A1 cells and differentiate within the 

brain into microglia, perivascular macrophages (pvMΦ), meningeal macrophages (mMΦ) and choroid-plexus 

macrophages (cpMΦ). Factors important for proper CNS macrophage development are PU.1, IRF8 and CSF-1R, 

whereas all these cells develop independently of MYB. During further development, myelopoiesis is taken over 

by progenitor cells found from E12.5 in the fetal liver. Maturing myeloid cells continue to engraft in all tissues 

beyond E14.5–E15.5; however, due to the BBB, the microglia and largely non-parenchymal CNS macrophages 

are thought to be excluded from a fetal contribution. Starting around birth (right), myelopoiesis is thought to be 

restricted to bone marrow. Whereas choroid-plexus macrophages are the only cells with a substantial 

contribution from bone-marrow progenitors, meningeal macrophages and perivascular macrophages exhibit 

extreme longevity and self-renewal potential. Bone-marrow cells can enter CNS compartments only under 

disease conditions or following irradiation. From Prinz et al. (2017) with permission [135]. BBB, Blood-brain 

barrier; CNS, central nervous system; EMP, erythromyeloid precursor; HSC, hematopoietic stem cell. 
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Table 1.1.Origin and markers for macrophages at central nervous system interfaces in the mouse.  

Myeloid Cell 
Type 

Location Origin   Turnover rate  Transcriptional 
signature 

Protein markers TFs for 
develop-

ment 

TFs for 
survival 

in vivo 
behaviour 

 

CNS resident Mononuclear phagocytes 
 
 

Microglia 
 

 

CNS Parenchyma Yolk sac  
(E7.25 - 

E8.0)   
[20, 52, 

53, 85, 
126] 

 After 46 weeks still 
steady 

[126] 
 

95 days for whole 
population self-renewal 

[86] 
 

Region dependent 
[117] 

P2ry12 hi [113, 126] 
Hexb hi [113, 126] 

Sall1 hi [113, 123] 
Lyve1 int [123] 

Tgfbr1 [113] 
Gpr34 [113] 

Tmem119 
[113, 132, 136] 

Fcrls [113] 
Olfml3 [113]  

 

P2RY12 [113] 
Ly6C lo [123] 

CD45 lo [123] 
MHCII lo [123] 

TMEM 119 [132]  
 

 

Pu.1[52] 
Csf1r [20] 

Irf8 [52] 
 

Csf1r  
[58, 86, 123] 

Stationary, 
scanning [34, 

36, 126] 
 

Perivascular 
macrophages 

 
 

 

Sandwiched 
between 

endothelial and 
glial basement 

membranes [126] 
 

Yolk sac 
[126]  

 

 After 46 weeks still 
steady  

[126] 

Mrc1 [126] 
Lyve1 hi [123]  

Sall1 lo[123] 
Cd163 [135] 

Hpgd [135] 
Slc40a1 [135] 

F13a1 [135] 

CD206 [126] 
Ly6C lo [123] 

CD36 [126] 
CD45 hi [123] 

MHCII lo [123] 
 

 

Pu.1 
Csf1r 

Irf8 NA 
[126] 

Csf1r  
[58, 86, 123] 

Stationary, 
scanning along 

blood vessel 
wall 

[126] 
 

Meningeal 
macrophages 

 
 

 

Subdural 
meninges 

Close vicinity to 
ER-TR7+ fibroblast 

like cells [126] 

Yolk sac 
[126] 

 

 After 46 weeks still 
steady  

[126] 

Sall1 NA [123]  CD206 [135] 
MHCII hi [135] 

Pu.1 
Csf1r 

Irf8  
[126] 

Csf1r  
[58, 86, 123] 

Tendency to 
migrate, more 

amoeboid 
morphology 

[126]  
 

Choroid plexus 
macrophages 

 
 

 

Stroma and 
epithelial layer of 

choroid plexus 
[126] 

Yolk sac 
[126] 

Bone 
marrow  

[126] 
 

 

 35 weeks to half in 
[126] 

Lyve1 int [123] CD206 [123] 
CD45 hi [123] 

Ly6C lo [123] 
MHCII hi [123] 

 

Pu.1 
Csf1r 

Flt3 [126] 
Irf8 indep. 

[126] 

Csf1r  
[58, 86, 123] 

NA 
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Non-CNS resident Mononuclear Phagocytes 

 
 

Patrolling 
monocytes 

[48] 

Blood HSCs after 
E11.5 [48, 

137] 

 5-7 days [138] Sall1 neg [123] 
P2ry12 neg [113] 

 

Ly6C lo or neg 
CCR2 lo [48, 137] 

CX3CR1 hi [137] 
CD45 hi [123] 

Lyve1 int [123] 
MHCII lo [123] 

Csf1r dep 
[48] 

Myb 
NUR77 [48, 

137] 
CX3CR1 [48] 

 
 

Csf1r [48] 
NUR77 [48] 

 

 

Inflammatory 

monocytes [48] 
 

Pathogenic site HSCs [48]  8 -20 hours  [48, 138]  Ly6C hi 

CCR2 hi [137] 
CX3CR1 lo [137] 

CD45 hi [123] 
Dependent on activation 

status 
 

Myb 

GM-CSF 
[137] 

 

  

Other tissue-
resident 
macrophages* 

Tissue-specific E8.5-E9.0 
yolk sac 
but later 

re-placed 
° 

  

  P2ry12 lo [113] 
 

 Csf1r [20] 
Myb indep 
and dep  

Pu.1 
[48] 

 

  

          

 

Involved genes and markers are considered only under homeostatic conditions. 
All cells in this table express CX3CR1, Iba-1, CD11b, MERTK  [135, 139]. Development of all macrophages is Batf3 indepenbent, besides monocytes [126]. Ly6C is the rodent equivalent of human 
CD14, KIT (CD117), FLT3 (CD135). Protein markers to differentiate CNS resident macrophages from non-resident infiltrated macrophages are CCR2 and Ly6C (both not in CNS resident Mφ), 

TMEM119 (only in resident Mφ from P14 onwards [132]), CD45 hi/lo (Parenchymal microglia CD45 lo), Sall1 and P2RY12 (both ony in parenchymal microglia), MHCII (not in parenchymal microglia) 
[135]. 

Not all microglia contacting blood vessels are pvMφ (Fig. 1 in [126]). pvMφ are not yet fully developed by E16. 
* Other tissue-resident macrophages include macrophages from spleen red-pulp, lung alveoli, epidermis (Langerhans) cells), liver (Kupffer cells), peritoneum, pancreas (F4/80 bright cells), kidney 

and the heart. 
dep., dependent; Hi, high; HSCs, hematopoietic setm cells; indep., independent; Lo, low; NA, Not assessed in general or in the study reffered to; TF, transcription factor. 

         Not searched for in literature.  

For review publications on this topic see  [31, 47, 135, 140]. 

Dependent on 
activation 

status 

Dependent on 
activation 

status 
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1.2.7 Physiological functions of microglia  

 in the developing CNS 

Microglia exert a plethora of functions during CNS development (Fig. 1.7). One of microglia’s most 

evident tasks comprises clearing enormous amounts of dead cells resulting from PCD. A recurrent 

question is whether microglia merely serve as housekeeping cells to clean up the debris, or 

whether they actually trigger cell death themselves. Factors secreted by microglia in vitro,  such as 

TNF-α and NGF, promote cell death [16]. Further in vivo evidence shows that microglia bear 

cerebellar Purkinje cell derived inclusions and that elimination of microglia resulted in a reduced 

Purkinje cell apoptosis, which is otherwise promoted by the microglial respiratory burst [141]. 

Further, microglial CD11b and the immunoreceptor DNAX activation protein of 12kDa (DAP12) act 

in convergent pathways to control microglial superoxide ion release which results in neuronal cell 

death [142]. In vitro as well as in vivo evidence shows that microglia can both decrease and 

increase the number of neural precursor cells within proliferative zones in the primate and rodent 

neocortex [10, 62, 143, 144]. With respect to decreasing the neuronal precursor population, this 

regulation occurs through phagocytosis of viable neurons, a process named phagoptosis, and does 

not depend on the typical eat-me signals [145]. Notably, the microglial phenotype (pro- or anti-

inflammatory) influences whether progenitors are phagocytosed or not [145].  

Next to killing and cleaning up neurons, microglia can provide trophic support to promote neuronal 

survival and proliferation. This support occurs through secretion of  factors known to promote 

neuronal survival such as BDNF, NT-3 and glial-derived neurotrophic factor (GDNF) [16, 146, 147]. 

In vitro, microglial derived soluble factors increase the proliferation of cerebellar granule cells and 

neural precursors [16]. Notably, two recent in vivo studies established a clear trophic action of 

microglia on developing neurons. Neuronal survival was stimulated in layer V of the cortex at early 

postnatal stages through neurotrophic insulin-like growth factor 1 (IGF-1) and CX3CL1 signals 

[66]. Comparable neurotrophic (and also oligotrophic) support was reported in the underlying 

cortical SVZ at the same ages, while here not IGF-1 but microglial release of IL-1β, IL-6, tumour 

necrosis factor-α (TNF-α) and interferon (IFN)-γ were involved [54, 148]. Interestingly, a certain 

state of microglia activity was needed for proper neurogenesis as well as for oligodendrogenesis 

[54, 148]. In its turn, the microglial cytokine production, phagocytosis and migration can be 

regulated by neural progenitors that release VEGF and CXCL12 (alternatively SDF-1) [62, 149]. 

Together, these studies indicate that like in the adult, there is a bi-directional communication 

between developing neurons and microglia with regard to proliferation/survival and attraction [59, 

62].  
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Fig. 1.7. Microglial functions during CNS embryonic development. From Frost et al. (2016) with 

permission [8]. CR3, complement receptor 3; DAP12, DNAX-activation protein 12; IGF, insulin-like growth 

factor 1; IL, interleukin; LIF, leukaemia inhibitory factor; NF-kB, nuclear factor-kappaB; NGF, nerve growth 

factor; NPC, neural precursor cell; OPC, oligodendrocyte precursor cell. 

 

In vitro and in vivo studies indicate a role for microglia in regulating radial glia differentiation, 

possibly through nitric oxide production by nitric oxide synthase 2 (NOS2) or iNOS, known to be 

expressed by microglia during embryonic development [92, 150]. Of note, NOS1 and NOS3 are 

expressed by neurons and endothelial cells respectively. Further, the spatiotemporal distribution 

pattern of microglia in the intermediate zone and subplate (predominant zones where astrocyt 

differentiation takes place) preceeding the differentiation of astrocytes has led to speculations on a 

role in astrocyte differentiation [4, 92]. In vitro, microglia secrete factors, such as IL-1β, IL-6 and 

LIF that are known to stimulate astrocyte proliferation and differentiation [92]. Further, microglial-

derived soluble factors indeed promote astrocyte differentiation in vitro [143]. In contrast, another 

study found increased numbers of astrocytes after microglia depletion, which points to a inhibiting 

role for microglia in astrocytogenesis [54]. In addition, microglia also phagocytose radial glial 

processes postnatally, which indicates these cells might regulate the transformation into astrocytes 

[89]. Microglia were recently found to regulate oligodendrogenesis and myelination as well [43]. 

Subpopulations of amoeboid and highly metabolically active microglia residing in myelintaing 

regions of the mouse brain during the first postnatal weeks were found to be crucial for 
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oligodendrocyte progenitor maintenance - also in the adult brain - and maturation and the 

following myelination process [43]. 

During embryonic development, Squarzoni et al. spotted microglia accumulating at the crossroads 

of important highways for neuronal migration and along axonal fiber tracts [151]. In particular, 

microglia were found in association with progenitor zones, the corpus callosum and the external 

capsule. They also make contacts with incoming dopaminergic axons in the ventral telencephalon. 

At these hotspots, microglia regulate outgrowth of dopaminergic axons, they contribute to corpus 

callosum fasciculation [152] and impact on the laminar positioning of Lhx6 expressing 

interneurons, through CX3CR1 and DAP12 signaling [151].  

In addition to the contribution of microglial BDNF to synaptogenesis (explained on p25), in vitro 

work showed a role for thrombospondin, an extracellular matrix protein that is produced by 

microglia during development, in neurite outgrowth [153, 154]. During brain development excess 

synaptic connections are formed and in order to establish properly functioning neuronal networks, 

many of these immature synapses are removed by “synaptic pruning”. How microglia molecularly 

sculpt these structures is addressed on p25. The recognition process most likely occurs through 

find-me (for example neuronal secretion of CX3CL1) and eat-me (C1q and C3 expression by 

neurons) signals [155]. In addition, CX3CR1 KO mice show transient synaptic pruning defects 

leading to an immature connectivity and behavioural deficits [64, 156]. Also, in the developing 

somatosensory cortex,  a delay of microglia recruitment in the in CX3CR1 KO mice resulted in 

immature thalamocortical synapses [65]. 

Microglia invade the brain before blood vessels start to sprout inside the neuroepithelium and are 

often found in close contact with blood vessels in vivo during development and in the adult [34, 35, 

92].  Thus, these CNS resident macrophages are ideally positioned to influence the development 

and remodeling of the CNS vasculature. Indeed, microglial depletion studies pinpointed that these 

cells are necessary for augmenting the vascular density/branching in the developing retina and 

hindbrain by facilitating anastomosis but not tip cell extension [157-159]. However, microglia do 

neither seem to be essential for maintaining the adult CNS vascular system [158], nor for BBB 

integrity [58]. In contrast, branching inhibiting effects have been demonstrated for microglia in the 

deep retinal plexus in vivo, mediated by Wnt-Flt signaling [160] and in a retina culture model ex 

vivo [161]. Concerning the underlying mechanisms of promoting vessel branching, microglia do not 

contribute significantly to the VEGF pool, which attract tip cells (described on p4), and VEGF does 

neither affect microglial survival nor attraction [159]. Additionally, VEGF-A and soluble Flt1 are not 

amongst the microglial-derived major soluble factors that mediate branching [162]. These findings 

suggest a different mechanism for microglia-mediated branching than the VEGF-based vascular 

sprouting [21]. In this respect, it was found that microglia-blood vessel contact enhances but is not 

essential to promote branching [162]. Further, Notch signaling in microglia is involved in mediating 

microglia-endothelial cell interactions in the retina [163]. It is further not known how microglial 

contact with blood vessels is mediated on the molecular level in other parts of the brain. This issue 

is further explored upon in Chapter 3. So, microglia clearly affect vascular branching, though the 

outcome depends on the local environment, but the underlying molecular mechanisms remain to 

be elucidated. 
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In summary, microglia are involved in neuro- and gliogenesis, in developmental cell death and 

clearing of debris, in outgrowth of axons, in positioning of interneurons, in synapse formation and 

maturation, and in blood vessel branching during CNS development and homeostasis. 

 in the adult CNS 

Research into the non-immunological functions of microglia has been booming since the findings of 

Nimmerjahn and Davalos in 2005 [34, 36, 164]. These researchers concluded that the energy the 

brain invests in the constantly moving microglial processes should serve a purpose, a hypothesis 

that triggered the clockwork in many researchers’ minds [165]. Although microglia also interact 

with neurons in the aging and pathological brain (see Point 1.2.8) [73, 166], the next paragraphs 

address the function of their interactions with neurons in the healthy adult CNS. 

In the in vivo adult somatosensory and visual cortex microglial processes make direct contact with 

synaptic terminals during four to five minutes at a frequency of once per hour [167]. This contact 

is dependent on neuronal activity: the frequency of these contacts decreases with decreasing 

neuronal activity and the duration of contact increases in pathological circumstances. Research in 

zebrafish larvae confirmed these findings and revealed that neuronal activity itself is regulated by 

microglial contact [168]. The mechanism underlying the microglial scanning activity and contact 

formation was found to depend on extracellular ATP, released through neuronal and astrocytic 

Pannexin-1 hemichannels, that binds to purinergic P2 receptors on microglia [36, 168, 169]. 

The dynamic contact of microglia with synapses implies they exert local tasks. Microglia indeed 

remodel these structures dependent on activity and age through inducing the formation of dendritic 

spines and eliminating synaptic elements, a process called synaptic pruning [167, 170]. The 

underlying signaling mechanisms have mainly emerged from research during postnatal 

development in vivo. Research between P8 and P11 determined that formation of new spines 

involves microglial BDNF [171, 172] and direct contact with the dendrite, which leads to Ca2+ 

currents, actin accumulation and filopodia formation in the latter [104]. Synapse elimination is 

based on TGF-β-induced expression of complement (C)1q followed by C3 tagging of the synapses 

to be pruned [173-175]. In general, tagged synapses harbor less active pre-synaptic inputs, as 

shown at P5 and P15 [64, 174] and microglia recognize and sculpt away these synapses through 

their complement receptor 3 (CR3, alternatively CD11b/CD18). Flagging of C1q and C3 likely 

happens in an activity-dependent way as well. Accordingly, in vitro findings indicate that neurons 

secrete exosomes based on their activity and these exosomes stimulate synaptic pruning by 

microglia [176]. Of note, microglial CR3 expression does not necessarily promote clearance of 

material, as shown by the CR3-limiting influence on Aβ clearance in a mouse model of Alzheimer’s 

disease [177]. 

Microglia also mediate functional synaptic plasticity, which encompasses strengthening or 

weakening of the synapse based on its activity. These immune cells regulate long-term 

potentiation, which is an increase in synaptic strength involved in learning and memory, through 

CX3CL1/CX3CR1 signaling [178], and modulate γ-aminobutyric acid (GABA)-ergic transmission 

through BDNF and ATP in vivo [179, 180]. In addition, P2Y12R, DAP12 and CD200R function in 
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microglia are vital for synaptic plasticity [55, 64, 155, 181]. Cell and tissue culture studies support 

the role of microglia in the regulation of synaptic strength during adulthood and provide additional 

mechanistic details, such as the involvement of TNF-α, NOX, glycine, glutamate and GABA 

(reviewed in [155, 182]). In addition, a recent study revealed that microglia instantly control 

inhibitory neurotransmission [183]. Lipopolysacharide (LPS) stimulation of microglia in spinal cord 

explants induced lateral diffusion of glycine receptors, but not GABAA receptors, away from the 

synaptic site and resulted in decreased glycinergic postsynaptic currents. The underlying 

mechanism encompasses microglial secretion of Prostaglandin E2, eliciting protein kinase A (PKA) 

signaling in neurons, possibily phosphorylating glycine receptors [183]. 

In the adult neurogenic zones, namely the subgranular zone of the hippocampal dendate gyrus and 

the subventricular zone of the cortex, microglia regulate proliferation and differentiation of 

neuronal precursors [55, 123, 184-186]. TNF-α signaling via TNF receptors 1 and 2, IGF-1, IL-1β 

and CX3CL1 signaling are involved in regulating neurogenesis [184]. Microglia also control the 

number of newborn neurons in the hippocampus through phagocytosis. Apoptotic cells, expressing 

phosphatidylserine, may be recognized by microglia through their phosphatidylserine receptors 

[55, 123, 184-186]. 

In summary, microglia contribute actively to adult CNS homeostasis by responding to (aberrant) 

neuronal activity, by regulating synaptic plasticity important for learning and behavioural 

adaptation and by influencing adult neurogenesis to the environment. 

1.2.8 Functions of microglia in pathology 

Microglia constitute the first line defense in the CNS and are involved in both the innate and 

adaptive immune system. They are in the front seat of regulating the inflammatory response by 

producing cytokines, chemokines and free radicals, such as TNF-α, IL-1β and nitric oxide (NO) 

[187]. Immune activated microglia are capable of proliferation, migration, antigen presentation, 

inducing cell death and phagocytosis and upregulate surface markers such as CD11b, MHCII, CD68 

and Mac-2 [187, 188]. The roles of microglia in neuroinflammation and degeneration have been 

widely studied. Microglia adopt a customized phenotype that can be both neuroprotective and 

neurotoxic, depending on the stimulus and their microenvironment [189, 190]. The M1/M2 

nomenclature used to categorize macrophages into “classically” activated (M1, driven by 

production of pro-inflammatory cytokines), or alternatively activated (M2, related to an anti-

inflammatory reaction and tissue repair) was initially used for microglia as well. However, these 

extreme classifications oversimplify the plethora of in vivo phenotypes [191]. To accommodate the 

inconsistencies with regard to ontogeny-, stimulus- and tissue-specific responses of macrophages, 

Ginhoux and co-workers recently proposed the “Multidimensional model of macrophage activation” 

[192]. The authors stress that future research should encompass high-resolution, single-cell and 

deep phenotyping techniques in order to develop therapeutic approaches that target specific 

subsets of macrophages.  
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 Injury and regeneration 

Despite the limitations of the M1/M2 classifications, research on this respect has yielded valuable 

insights into the divergent functions of microglia/macrophages during CNS injury and repair. For 

example after spinal cord injury trauma, microglia/macrophages migrate towards the lesion at 

different time points and have distinct roles [193]. M1 macrophages arrive first after injury while 

the M2 repsonse is mostly delayed [194]. M1 microglia/macrophages secrete IFN-γ, TNF-α, IL-6, 

IL-23 and reactive oxygen species which together are crucial for host defense but unfortunately 

damage the healthy tissue as well. The M1 phenotype contributes to axonal retraction and the 

formation of a growth-inhibitory glial scar - through excessive production of chondroitin sulphate 

proteoglycans (CSPGs) - that impairs axon regeneration [195-197]. M2 microglia/macrophages 

produce IL-10, IL-4, TGF-β, BDNF and GDNF so as to promote neuronal/axonal survival and 

regeneration and to degrade the inhibitory glial scar components [197-199]. M2’s also produce 

matrix metalloproteinase-13 (MMP-13) and hereby degrade CSPGs [200] as well as internalize and 

degrade collagen [199, 201], all leading to improvement of scar resolution. Unfortunately, from 

day 7 post-injury, M1 microglia/macrophages outnumber M2’s and stay present much longer at the 

lesion site [202]. In multiple sclerosis and related animal models, both detrimental and beneficial 

roles have been described for microglia as well  that are mainly linked to oligodendrocyte survival, 

differentiation and clearance of myelin debris [203]. Here as well the phenotype of activated 

microglia/macrophages influences their function in myelin repair. At the start of remyelination 

microglia changed from an M1 to an predominant M2 phenotype that was indispensable for 

oligodendrocyt differentiation both in vitro and in vivo and this effect was mediated by activin-A 

[204].  

Because of these M1/M2 dual roles, influencing microglia polarization has gained large interest in 

the search for therapeutic approaches to improve recovery. Hopeful approaches include 

transplantation of M2 microglia/macrophages, administration of protective factors secreted by M2 

cells and inducing the switch from M1 to M2 through for example siRNA packed into nanoparticles 

that cross the BBB, lentiviral delivery of M2 inducers such as IL-10 or liposomal delivery of 

microRNAs or their inhibitors (for example targeted to microRNA-155) into macrophages [73, 205, 

206].  

 The scapegoat in neurodevelopmental disorders?  

Many of the developmental processes discussed in Point 1.2.7, which involve proper microglia 

functioning, are often found to be disturbed in neurodevelopmental disorders such as schizophrenia 

and autism spectrum disorders (ASDs), and in corresponding animal models [28, 207-211]. ASDs 

is the general name for a group of developmental disorders that includes a wide spectrum of 

symptoms, skills and levels of disability (National Institutes of Health definition) and is 

characterized by impairments in social, behavioural, intellectual, communicative and sometimes 

cognitive functions. ASDs affects 12-15% of the population worldwide [212]. Strong sex differences 

exist with respect to this prevalence: males are about four times more likely to be diagnosed with 

ASDs than females [213]. Schizophrenia and ASDs arise from complex interactions between both 

genes, which is well documented, and environment. Concerning the latter, cumulating 
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epidemiological and animal studies have now established a strong association between an activated 

immune system in the mother during pregnancy and the risk for the offspring to develop one of 

both disorders (reviewed in [208, 214]).  

Maternal immune activation (MIA) can be caused for example by a bacterial or a viral infection, 

such as rubella and influenza virus, during pregnancy. In animal models, immune stimulations are 

mostly induced through LPS, an endotoxin from the outer membrane of gram-negative bacteria, or 

through polyinosinic:polycytidylic acid (Poly (I:C)) injections. Poly (I:C) is synthetic double 

stranded RNA and mimics the immune response following a viral infection through activating Toll-

like receptor (TLR)-3  and raising systemic IFN-1, IFN-β TNF-α, IL-6, IL1-β and IL-17a [215-217]. 

The offspring from Poly (I:C) injected (and also LPS-injected [218]) pregnant mice and primates 

displayed core abnormalities associated with ASDs, such as deficits in social, communication and 

repetitive behaviours, which were also present in the offspring of pregnant mice that suffered from 

a viral infection [216, 217, 219-223]. MIA in rodents creates an inflammatory environment in the 

fetal brain by elevating levels of pro-inflammatory mediators, such as IL-6 and IL-17a [208, 216, 

217]. Maternal systemic IL-6 and more in particular its downstream signaling cytokine IL-17a are 

key mediators of altered brain development and behavioural abnormalities in the offspring of Poly 

(I:C) induced MIA mice [216, 217].  

Because (i) microglia are the immune cells of the CNS and possess the necessary receptors to 

sense changes in cytokine levels and react upon them [32] and (ii) they guide brain development 

[8] (Point 1.2.7), it is tempting to suspect these cells to be in the driver’s seat of the fetal 

inflammatory response and to be the executioners that disturb brain development and 

performance. Indeed several studies in patients with schizophrenia or ASDs report increased 

cytokine levels in the cerebrospinal fluid or in the fetal environment along with microglial 

alterations (recently reviewed in [224]). Several post mortem studies in patients with 

schizophrenia found increased serum levels of pro-inflammatory cytokines, including IL-6, 

neuropathological changes in microglial morphology and increased CD68 and HLA-DR expression, 

suggesting microglial activation [225-228]. Likewise, microglial activation and increased density 

was reported in cortical tissue from ASD patients alongside elevated levels of cytokines, including 

IL-6, in their cerebrospinal fluid [229-231]. Moreover, in vivo Positron emission tomography (PET) 

studies in patients with neurodevelopmental disorders show increased radioligand binding to 

translocator protein (TSPO), which suggests microglial activation (reviewed in [228, 231]). In 

contrast, one recent study using a novel second-generation TSPO radioligand did not find evidence 

for microglial activation in patients at high risk for psychosis [232]. Although several studies do 

indicate that microglia/macrophages are the main source of TSPO in CNS pathology [73], TSPO PET 

data should be interpreted with caution. TSPO is also expressed by macrophages, astrocytes and 

endothelial cells and is thus rather a marker for general glial and endothelial cell activation [233-

235]. Moreover, the increase in TSPO expression after pro-inflammatory activation in microglia 

might only be the case in rodents and not in humans [236]. Nevertheless, transcriptional profiling 

indicates an association between ASDs and the elevation of genes involved in microglial immune 

activation [237]. In addition, MIA models show structural and functional abnormalities in the 

offspring, such as a smaller thickness of the neocortex and hippocampus, expression of reelin in 



CHAPTER 1

 

29 

 

the forebrain and increased GFAP immunoreaction, cell death, macrophage infiltration, presynaptic 

hippocampal deficits, impaired learning and memory in the adult offspring [217, 222, 238-247], 

which could be mediated by aberrant microglia-neuroglial crosstalk. Accordingly, LPS-induced MIA 

evoked microglial immune activation and augmented phagocytosis of neural precursors prenatally 

in rats [144]. Whether Poly (I:C)-induced MIA during embryogenesis activates embryonic microglia 

in terms of immune marker expression, is investigated in Chapter 5. Lastly, fetal brain cytokine 

production increased following MIA during late gestation at E17 while it did not after mid gestation 

MIA at E9 [248], at which microglia do not reside yet in the embryonic CNS parenchyma. These 

studies point to the involvement of microglia in mediating MIA induced deficits in the offspring 

[248].  

Despite the suggested involvement of microglial cells in the neurodevelopmental disorders 

(reviewed in [73, 249]), the chicken-or-the-egg problem remains. Microglia could be the first cells 

to sense the maternally induced fetal pro-inflammatory cytokines. This sensibilization might lead to 

abnormal task exertion during CNS development, which could ultimately result in behavioural 

disturbances. Or, the cytokine storm could directly alter neuro- and gliogenesis and network 

formation [250-252], to which microglia subsequently react. Although today no conclusive answer 

exists for this question, some animal studies point to a causative role for microglia dysfunction in 

the development of behavioural deficits reminiscent of neurodevelopmental disorders [151]. They 

also show that MIA can have comparable effects on connectivity and brain wiring as can microglial 

dysfunction, as discussed next [151].  

Upon genetically or pharmacologically disturbing microglial function, cognitive or behavioural 

abnormalities arise in adolescent and adult mice. For example, CX3CR1 KO led to impaired 

connectivity (increased dendritic spines and immature synapses), impaired social interactions and 

increased repetitive behaviour [64, 156]. However, it is not clear yet whether the behavioural 

deficits are caused by a lack of CX3CR1 or by increased IL-1β signaling in CX3CR1 KO mice [178]. 

Deficits in microglial mediated synaptic pruning might impair the brain’s excitatory versus 

inhibitory balance, which is frequently suggested as a common mechanism in a variety of 

neurodevelopmental disorders [253]. Mutation of DAP12 (only expressed in immune cells) in mice 

elicits a transient increase in microglial density at P0 along with the exhibition of a pro-

inflammatory profile and impaired long-term potentiation [254]. Another study showed that DAP12 

mutation as well as MIA resulted in microglia with a down regulation in genes involved in neurite 

formation together with subsequent malformations in the corpus callosum [152]. In parallel, DAP12 

mutation in humans results in the development of an early form of dementia (Nasu-Hakola 

disease) [255]. Interestingly, LPS-induced MIA in wild type mice generated synaptic alterations 

reminiscent of the phenotype caused by DAP12 mutation [152, 256]. Additionally, another study 

showed that DAP12 KO as well as CX3CR1 KO partially mimicked the effect by LPS injection in 

pregnant mice which resulted in a laminar positioning impairment of a subtype of inhibitory 

interneurons (Lhx6 subtype) that integrates into the cortical plate [151]. Notably, genetic and 

pharmacologic microglial depletion established the same phenotype [151]. Ultimately, DAP12 KO 

results in behavioural alterations, such as reduced startle response and lowered prepulse inhibition 

which are associated with schizophrenia [257]. Next, microglia depletion as well as microglia-
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specific KO of BDNF resulted in reduced motor learning and decreased fear response [171] and 

microglia were responsible for anxiety development after stress through recruiting of IL1β 

producing monocytes to the brain endothelium [258]. Knockout of homeobox protein b8 (Hoxb8), a 

Hox gene normally involved in establishing body plans, resulted in compulsive grooming behaviour, 

causing hair loss and skin lesions together with deficits in synaptic pruning [259]. Hoxb8 is 

specifically expressed by roughly 40% of microglia from P14 onwards and is also involved in 

maintenance and differentiation of myeloid progenitor cells. Symptoms caused by Hoxb8 deficiency 

are similar to the obstructive compulsive disorder “trichotillomania” in humans [259]. Progranulin 

deleted specifically in microglia resulted in excessive grooming as well and this could be prevented 

by inhibiting nuclear factor κB (NF-κB) in microglia [260]. Knockout of methyl-CpG-binding protein 

2 (MECP2) in mice causes a Rett Syndrome-like phenotype, characterized by retarded growth, 

apneas, tremor, impaired gait and locomotor function and a short life expectancy [261]. In two 

studies this phenotype could be rescued by bone-marrow transplantation from wild type mice [261, 

262], while another study could not reproduce the rescue [263]. A fourth and most recent study in 

the visual system determined that the excessive synaptic pruning in MECP2 KO mice mediated by 

microglia was independent on MECP2 expression in microglia themselves [264]. Further, mutations 

and allelic polymorphisms in microglial-related genes, such as Csf1r, Triggering receptor expressed 

on myeloid cells 2 (Trem2), CD33, Irf8, P2x7r and NRROS are associated with an increased 

likelihood to develop a plethora of neurological diseases, ranging from Alzheimer’s disease to 

schizophrenia [8, 114, 265]. Most interestingly, the presence of microglia during the first two 

weeks of postnatal development is crucial for brain development and behaviour [266]. Transient 

reduction of the microglial population with 50% through depletion during the first postnatal week 

already resulted in enlarged ventricles and a thinned cortex by P10. Notably, this transient 

depletion caused sustained alterations in neonatal, juvenile and adult behaviours ranging from 

deficient prosocial behaviours to working memory deficits to male-specific impairments in sex 

behaviours [266].  

Although some findings are still controversial, most studies described above point to a central role 

for microglia in neurodevelopmental disorders. It is however not clear yet if microglial dysfunction 

might initiate disease. 

1.2.9 Gender differences 

During the last years, important differences between males and females with regard to microglial 

density, morphology and function have been revealed [267, 268]. Microglial density varies notably 

between males and females in the parietal cortex, amygdala, hippocampus and preoptic area (POA) 

at different stages throughout life [267, 269]. The POA is the brain region essential for male sexual 

behaviour and shows clear anatomical differences between both sexes. Estradiol, the aromatized 

form of testosterone, has emerged as the dominant masculinising hormone in the rodent brain 

[269]. By P4, the male POA shows higher numbers of amoeboid microglia characterized by an 

enlarged soma, fewer ramifications and shorter process length compared to female POA. Treatment 

of female pups with estradiol at P0 and P1 leads to the masculinisation of microglial numbers and 

an increase in the number of ameboid microglia [270]. The microglial reactivity in males is also 

necessary to induce the masculine pattern of dendritic spines in the POA, which contributes to the 
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adult sexual behaviour in males [269, 270]. Further, the microglial immune reactivity and response 

to neuropathic pain and chronic stress also varies amongst genders [55, 116]. Masculinisation of 

the rodent brain occurs in a critical period between the last days of gestation and the end of the 

first postnatal week and coincides with key programs during development known to be influenced 

by both sexual differentiation and microglia, such as neural progenitor proliferation, cell survival, 

PCD, synaptogenesis and synaptic pruning [268, 269].  It has to be noted that sex differences in 

microglial function only can occur from late gestation, when the critical period starts [268]. 

Recently, one study found that the presence of microglial cells during this period is essential for 

development of juvenile and adult sex behaviour [266]. This central role of microglia in sex 

differentiation of the brain and behaviour has implications for the incidence of neurodevelopmental 

disorders in both sexes, as described in Point 1.2.8 [267]. 

In conlusion of this section on microglial physiology, it is important to remember that microglia are 

yolk sac derived immune cells and constitute a well-established fraction of the total brain cell 

population. They maintain themselves through regular proliferation and apoptosis. These CNS 

macrophages actively survey and shape the nervous parenchyma and exhibit customized gene 

expression profiles and responses based on the trigger, the local environment and the gender. 

Microglia’s ability to migrate is an important aspect of their physiology, but the cellular and 

molecular mechanisms underpinning this process, especially during development, are largely 

unknown.  

1.3 Cell Migration  

Cell migration is crucial for an organism to exist. It is most obviously critical for the organism to 

develop, as discussed for the establishment of the cortical layers and the colonization of the CNS 

by microglial cells in the previous sections. Cell migration is also indispensable for tissue 

maintenance and during pathology. Therefore, this field is extremely broad and evolves quickly 

with many dazzling discoveries over the past ten years.  

A cell senses its environment and then polarizes towards a cue in a certain direction. In order to 

move forward the cell needs to transduce its contractile forces to the substratum, mediated 

through the connections it has established with its surroundings. In vivo and often in vitro as well, 

the cell is embedded within or located on top of ECM. Connections with adhesive glycoproteins 

inside the ECM, such as laminins, tenascins, collagens and fibronectin are typically mediated 

through receptors on the cell surface, such as integrins [271, 272].  

Upon migration, the whole molecular and cytoskeletal machinery in the cell sets in motion which is 

crucial for the polarization of the cell into one direction, the coordinated outgrowth of protrusions 

and adhesion formation, the translocation of the cell body by contraction, the disassembly of 

adhesions and finally retraction of the rear [272]. This series of events are the major steps in cell 

migration and require well-coordinated molecular signaling in space and time. Focal adhesion 

kinase (FAK) binds to the cytoplasmic part of the integrin and promotes cell migration together 

with its downstream targets paxillin and p130Cas by signaling to Rho family guanosin triphosphate 

(GTP)-ases Rac, Rho and Cdc42 [272]. This molecular machinery regulating protrusion formation 
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and migration largely depends on the type of environment, e.g. 2D vs. 3D, which stresses the need 

for in vivo-approaching settings to extrapolate molecular data on migration to the in vivo situation 

[273]. 

In this section, the two major structures that are instructive for cell migration, the ECM and 

integrins, are explained, followed by a description of the current state of knowledge concerning 

ECM/integrin signaling in microglial physiology and migration. 

1.3.1 ECM 

ECM can be subdivided into the gel-like material distributed in between cells, called the interstitial 

matrix, and the one in close contact with the cells, such as basement membranes, called the 

pericellular matrix [274]. It is present throughout the whole body but its composition and 

viscoelastic properties can vary greatly between tissues and between specific regions or specialized 

microenvironments inside tissues [275, 276]. ECM is multifunctional as it not merely structurally 

supports the resident cells by providing points of anchorage. ECM also regulates a myriad of 

cellular processes such as proliferation, differentiation, migration, cell behaviour, cell-fate 

decisions, cell activation/metabolism (production of cytokines) and apoptosis. All these processes 

are mainly initiated through integrin signaling [271]. The regulation and outcome of these 

responses is highly complex and is influenced by all the facets associated with ECM, such as its 

composition [271], the conformation of ECM proteins [277-279], its biophysical properties such as 

rigidity and porosity [276, 280], its topography (structured vs. disorganized) and geometry 

(including 2D vs. 3D environments) [275, 281-283]. The matrix further controls the stability, 

movement, presentation and signaling of growth factors [271, 275, 276, 279]. ECM is not static 

and can be remodeled by the resident cells through the secretion of new ECM proteins, degradation 

and incorporation of newly formed matrix molecules, and exertion of traction forces [271, 275]. 

Finally, ECM is of uttermost importance for the organism, since fibronectin, collagen and laminin 

KO mice die at embryonic ages [271].  

 Types of ECM molecules 

ECM molecules are typically classified as glycoaminoglycans, proteoglycans and glycoproteins. 

Glycoaminoglycans, such as hyaluronan, chondrotin sulfate and heparin sulfate are linear 

unbranched polysaccharides that are negatively charged and thus regulate water flux causing the 

interstitial space to swell. All glycoaminoglycans but hyaluronan covalently attach to core proteins 

to form proteoglycans, which are then termed for example chondrotin sulfate proteoglycans and 

heparin sulfate proteoglycans. Hyaluronan non-covalently assembles with aggregating 

proteoglycans, such as versican and aggrecan, for the constitution of pericellular matrices, such as 

the perineuronal nets in the brain which are discussed below [271, 284, 285].  

The family of glycoproteins consists of collagens, which are well described in literature [286] but 

not further elaborated upon in this work because of low presence in the brain, and non-collagenous 

proteins such as laminins, tenascins and fibronectin. These proteins are encoded by multiple genes, 

in case of laminins, or by a single gene, in case of fibronectin and tenascins [271, 287]. Alternative 

splicing of tenascins and fibronectin increases complexity of molecular composition and the cellular 
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responses evoked [279, 287, 288]. Laminins are heterotrimeric proteins with a high molecular 

weight between 400 and 800 kDa, built up of three chains (α, β, γ) [289]. Tenascins are oligomers 

with subunits that range between 190 and 300 kDa each and fibronectin associates in dimers of 

each 220 to 250 kDa [279, 287]. All these glycoproteins can interact with other matrix components 

and have both adhesive and signaling properties through cell-surface receptor binding, which are 

primarily integrins [274]. 

 ECM organization in the brain 

The major components of adult brain ECM, which constitutes 10-20% of the brain volume, are 

hyaluronan, proteoglycans and tenascins [284, 285]. Fibronectin, laminin and collagens in the adult 

brain mainly localize to basement membranes while only low amounts can be detected in the 

interstitial matrix in some parts of the brain [290]. The adult’s brain ECM localizes into three 

compartments, namely the basement membrane, the perineuronal nets and the neural interstitial 

matrix (ECM molecules dispersed into the parenchyma) (Fig. 1.8). The basement membrane 

forms the boundary between endothelial cells and the nervous tissue and is highly present in the 

pial membrane, surrounding the CNS. It is one of the three components of the BBB and consists of 

type IV collagen, laminins, fibronectin and proteoglycans [276, 284]. Perineuronal nets are dense 

mesh-like structures made up from proteoglycans (mainly of the chrondroitin sulphate type), 

hyaluronan, tenascin-R and link proteins. They start forming at P14 (or before, but at least not at 

P7) in the cerebral cortex and are fully established by P40 [291]. The perineuronal nets compactly 

wrap around neuronal cell bodies and proximal dendrites and leave openings at synapses [284, 

292]. Perineuronal nets protect neurons from oxidative stress and excitotoxicity through buffering 

ions, they control synaptic stabilization and plasticity, and hinder the deposition of aggregates 

proteins [284, 285, 293]. The neural interstitial matrix forms a dense network of proteoglycans, 

hyaluronan, tenascins, link proteins, small amounts of fibrous proteins (collagens and elastin) and 

adhesive glycoproteins, such as laminin and fibronectin [284].  

 The changing ECM landscape during brain development 

The ECM’s main function during development is to support cell proliferation, differentiation, 

migration, axonal outgrowth and synaptogenesis, while during adulthood its focus is on cell 

survival, synaptic plasticity and the response to damage [285]. Considering this shift in function, it 

is not surprising that the ECM landscape is significantly modified between development and 

adulthood. Of note, ECM composition changes drastically as well in pathology [276, 279, 284, 285, 

294]. A few studies have assessed the developmental changes in mammalian brain cortical ECM 

composition [295-298]. In the rodent embryonic brain, the glycosaminoglycane molecule 

hyaluronic acid is widely distributed throughout the cortex and other brain regions [299, 300]. 

During brain development 90% of hyaluronic acid is associated with water and therefore creates a 

permeable and easily remodelable environment to promote cell migration [298]. Between P7 and 

P10 in rats hyaluronic acid levels decrease with 50% and reach stable levels of 28% of their peak 

concentration by P18 [298].  

 



General introduction and aims

 

34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8. ECM in the brain. Extracellular matrix (ECM) is arranged into three major compartments. (A) 

basement membranes that lie outside cerebral blood vessels, (B) condensed as perineuronal nets around the 

cell bodies and dendrites of neurons or (C) diffusely distributed as the neural interstitial matrix between cells of 

the CNS parenchyma. Pink cells depict astrocytes, oligodendrocytes and microglia. Cells are not drawn 

truthfully. From Lau et al. (2013) with permission [284].  

Other studies on embryonic mouse brains describe that during development, chondroitin sulphate 

proteoglycans and the glycoproteins laminin, fibronectin and tenascin are present in specific 

spatiotemporal patterns. The laminin and fibronectin deposition pattern changes from a diffuse 

deposition around E10 in rodents to a marginal zone and subplate layer restricted presence upon 

cortical layer formation at E12-E13 and subsequently fades away [296, 297]. Radial glia produce 

the early fibronectin, while migrating neurons produce and align the late fibronectin along radial 

fibers [301]. The fading of the punctuate laminin staining is in conflict with the results of Lathia et 

al. in which the authors report on immunoreactivity for α2 and α4 laminin chains in the mouse 

brain cortex from E10 to E15 [295]. Also here, fibronectin was only detected in basement 

membranes and not in the parenchyma from E12 onwards. Chondroitin sulphate proteoglycan 

deposition showed a similar profile as did fibronectin, while tenascin starts to be detected in the 

marginal zone and subplate at E16, the time point at which laminin, fibronectin and chondroitin 

sulphate proetoglycans almost or already have disappeared [296]. From E17 to P2, tenascin 

labeling becomes widespread throughout the cortex and then gradually declines [296]. Also in 

humans similar to rodents, fibronectin, laminins and tenascin are expressed in the human foetus 

A 
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[302]. Here, a similar fibronectin expression pattern localizing to periventricular zones during early 

gestation changed to the outer zones in later gestation. 

Over embryonic development, the SVZ also becomes stiffer and these biomechanical changes were 

found to be instrumental for correct axon growth and neuronal migration [303]. The roles of the 

specific spatiotemporal deposition of ECM proteins are linked to neural stem cell proliferation and 

differentiation, neuronal migration along radial glial cells and terminal translocation and gliogenesis 

[275, 296, 304-306]. 

In summary, the ECM mediates a plethora of functions and is actively shaped by the cells residing 

in it. The brain has a specific ECM composition that changes drastically during development. 

Whether the changing ECM environment might influence microglial migration is addressed in 

Chapter 3. 

1.3.2 Integrins  

Integrins are transmembrane heterodimeric cell adhesion receptors composed of a non-covalently 

linked α and β subunits. Twenty four different integrin heterodimers (18 α and 8 β subunits) are 

described in vertebrates with varying ligand binding properties (eg. collagen, fibronectin, laminin) 

and cell and tissue distributions. Integrin heterodimer binding specificity is mainly determined by 

the α subunit and can vary between one specific or multiple ECM molecules, while one ECM 

molecule can be recognized by one or multiple integrins [307, 308]. Integrins are however 

classified into four subclasses based on their specificity for a recognition sequence, ligand or cell 

type: (i) arginine-glycine-aspartic acid (RGD) sequence-binding integrins binding fibronectin and 

vitronectin, (ii) laminin-binding integrins, (iii) collagen-binding integrins and (iv) leukocyte-specific 

integrins, which mediate cell-cell interactions between leukocytes and endothelial cells  (Fig. 1.9). 

Classification into β1, β2 and αV-dimerizing integrins is also common [308]. The ß1 subunit is the 

most ubiquitous since it interacts with the majority of the α subunits and is present in three of the 

four integrin subclasses [307, 308]. Not surprisingly, loss of ß1 results in embryonic death already 

at E6.5 [308].  

 Outside-in vs. inside-out signaling and integrin activation 

Integrins can adopt two extreme conformations: extended, often referred to as “active”; or bent, 

“inactive” [309, 310]. The stretched conformation shows the highest affinity for the ligand, while 

the bent form shows weak affinity for the ligand [309, 311, 312]. During outside-in signaling, a 

ligand (ECM) binds the extracellular heads of the integrin and recruits intracellular adhesion 

signaling proteins, such as talin and kindlin to the cytoplasmic tail of the β subunit. On the 

contrary, during inside-out signaling talin and kindlin are recruited upon a signal coming from 

inside the cell itself, rather than from outside. Binding of talin or kindlin separates the integrin’s 

cytoplasmic α and β tails, induces the extended conformation and connects the integrin with the 

actin cytoskeleton of the cell. Multiple signaling proteins (further referred to as the adhesome) will 

subsequently associate with the preformed complex, such as paxillin, FAK and Src to strengthen 

the connection and induce signaling [272]. The β subunit with bound talin not only physically links 

the ECM with the actin cytoskeleton enabling the cell to transduce forces necessary for soma 
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displacement [272], but it also switches on intracellular signaling pathways involved in a broad 

array of cell responses, as discussed previously in Point 1.3.1 (Fig. 1.9) [271, 308, 313]. 

Whether the ligand first has to bind the extracellular domain of the integrin in order to cause 

conformational stretching is debated [314], yet the αVβ3 integrin was reported to bind its ligand 

fibronectin in a bent conformation [315]. Ligand affinity can be increased by binding of Mg2+ or 

Mn2+ to cation coordination (MIDAS) sites on the extracellular domain of the integrin, by chelating 

Ca2+ which inhibits integrin activation through binding to ADMIDAS sites, by traction forces or 

collision with other membrane proteins and as discussed above by binding of talin and kindlins to 

the β-integrin tail which can be mediated through inside-out activation [310, 316]. The latter 

process often involves binding of chemokines or growth factors to their cellular receptors, which 

elicits Rap1-RIAM signaling that in its turn controls talin binding  as fast as within 1 second [310, 

314, 317]. On the contrary, integrin activation can be suppressed through inhibiting talin binding to 

the β-tail [310] or by integrin inactivators such as SHANK-associated RH domain interacting protein 

and filamins [318].  

 Biological relevance of integrin activation  

Integrin activation is important in many physiological situations, such as in circulating blood cells or 

during development when timely migration of cells, or parts of cells such as axons, is required. 

External cues, such as injury to the vasculature or inflammatory signaling also impact on integrin 

activation [314]. Non-active integrins have low affinity for ligands and thus (almost) not engage in 

binding to ECM neither in intracellular signaling. As described above growth factors and chemokines 

play major roles in this process, especially in immune and cancer cells the link between chemokine 

signaling, such as CXCL12, and β1 integrin activation is well described [317, 319-321]. Often 

immune cell homing, rolling and extravasation or cancer cell proliferation and metastasis is 

influenced by chemokine and growth factor/integrin crosstalk, through increased adhesion to ECM 

molecules such as ICAM-1 or fibronectin. In fact, all processes that involve cell adhesion, such as 

proliferation, cell survival and migration can be influenced through inside-out and outside-in 

activation. Common intracellular signaling pathways launched through integrin activation are FAK, 

ERK, MAPK and Rho family, calcium entry, NF-κB and PI3K [322]. 
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Fig. 1.9. Integrin heterodimer combinations, ligands and conformations. (A) Integrin subclasses based 

on their recognition sequences. (B) Integrin conformations. From Hynes (2002) and Zent et al.(2010) [308, 

314]. 

 

 Adhesion dynamics  

How strong an integrin binds to its ligand is determined by affinity and avidity regulations. Affinity 

is regulated by the integrin’s conformational status, while avidity depends on clustering of the 

integrins in the cell membrane. In practice, new and immature or “nascent” cell adhesions are 

formed through clustering of about 50 integrins per adhesion site [323] in the absence of acto-

myosin-dependent force [324]. Despite most nascent adhesions turn over already after ~1 min, 

some stabilize and progress to “focal complexes”, which can further mature into “focal adhesions”. 

During this stabilization process the adhesion grows in size by attracting additional adhesion 

molecules such as α-actinin, non-muscle myosin II and RhoA, and changes in adhesion protein 

phosphorylation states occur [324-326]. Ultimately, α5β1-integrins can interact with tensin, an 

adaptor protein, to form long lasting and stable “fibrillar adhesions” on fibronectin [326]. During 

each maturation step the mechanical strength between the integrin and the actin cytoskeleton 

increases through association of more and more adhesion signaling proteins with the preformed 

adhesome at the integrin tails. Since adhesions mature centripetally from the lamellipodium 

towards the soma, nascent adhesions localize to the edges of the leading lamellipodium, focal 

contacts localize more proximal and focal adhesions appear at the ends of actin bundles. In order 

to form fibrillar, adhesions α5β1-integrins translocate further towards the cell body [327]. Over 

2400 proteins have been identified in the adhesome, which underscores the complexity of adhesion 

regulation. In addition, the involvement of these molecules depends on multiple factors ranging 

from the integrin heterodimer to ECM rigidity and dimension [328-330]. 

In order for cells to migrate efficiently, adhesions must turn over (or disassemble) in a specific 

spatiotemporal manner. This process involves microtubule mediated endocytosis of the integrin, its 

targeting to an early endosome, followed by further modification or degradation; or by the 

recycling back to the plasma membrane [331]. Also, when the cell migrates further, integrins can 

be ripped off the membrane and left behind on the substrate [324-326]. 

A B 
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 Adhesion strength vs. migration speed 

Migration speed is determined by the balance between cell-matrix adhesion strength and 

contractility of the cytoskeleton [332]. More in particular the strength of an adhesion is influenced 

at multiple levels: by the density of the ligand, by the density of the integrins engaged (defined as 

“valency”), by the ligand-binding affinity (discussed in the previous section on integrin activation), 

by the mechanical forces exerted on the adhesion, by the the size of the molecular adhesion 

complex (or maturation level) and by ECM stiffness [283, 330, 333-335]. Adhesion strength has a 

biphasic effect on migration speed [333, 336]. Migration speed increases between low and 

intermediate adhesion strength and slows down between intermediate and high adhesion strength. 

Importantly, molecular mechanisms of 3D migration are different from 2D migration [273, 330]. 

 Integrin functions in the CNS 

Integrins recognize ECM molecules, so they share most functions with ECM, such as roles in cell 

migration and intracellular signaling. The study of integrin function in the CNS, more specific with 

regard to neuronal development and migration, has received wide attention. Research over the 

past 30 years shows that integrins are implicated in (i) neuroepithelial cell division and fate 

(reviewed in [275]), (ii) neuronal migration and lamination (reviewed in [337, 338]), (iii) synapse 

formation, plasticity and behaviour (reviewed in [337, 339, 340]) and (iv) CNS angiogenesis and 

BBB integrity (reviewed in [337, 341, 342]).  

β1 integrin appears to be a central player in all these processes. For example with regard to (i) 

neuroepithelial cell division and fate, β1 signaling regulates the attachment of neural stem cells to 

the inner surface of the ventricle and impacts on the amount and type of cell division of the neural 

stem cells in a non-cell autonomous way [343-345]. For (ii) neuronal migration and lamination, 

some controversy exists with regard to defects in neuronal migration which are possibly due to the 

use of conditional integrin KO models versus acute loss-of-function models using function blocking 

antibodies. Nevertheless, these studies point to important functions of β1 integrins in the 

maintenance of the radial glial scaffold and the migration of neurons establishing the cortical layers 

[343, 345-350]. More in particular, α6- and α5β1 integrins are implicated in the migration of neural 

precursors and their terminal translocation in the cortex, respectively [304, 350, 351]. With 

respect to (iii) synapse formation, plasticity and behaviour, β1 integrins influence dendritic arbor 

size and spine density, control actin remodeling and NMDA receptor trafficking, thereby regulating 

structural and functional plasticity [339, 340, 352, 353]. Loss of β1 results in behavioural 

alterations often associated with neurological disorders [339]. With regard to (iv) CNS angiogenesis 

and BBB integrity, endothelial cells show a developmental regulation in the expression of different 

β1 subtypes and a general increase in β1 expression [354]. In addition, β1 integrins anchor the 

endothelial cells to the basement membrane and regulate the permeability of the BBB [341, 354, 

355]. 

Research has shed considerable light on integrin activation, its signaling pathways, functions, and 

their involvement in adhesion dynamics. Nevertheless, the specific integrin subtypes involved in 

the functions of integrins in the CNS remain largely unknown. At least, it is clear that β1 integrins 
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are indispensable molecules for CNS development and homeostasis. ECM/integrin signaling in 

microglia has received less attention and is discussed in the next section. 

1.3.3 ECM/integrin signaling in microglia and their mobility 

Most information available to date on microglial integrin expression and their functions originates 

from in vitro studies using primary rodent microglia or microglial cell lines. Cultured microglia 

derived from early postnatal mice express various integrins of the three main classes: β1, β2, and 

αV (Fig. 1.10) [356]. These immune cells specifically express the β1 integrins α4β1, α5β1, and 

α6β1, and the β2 integrins αLβ2 and αMβ2 (for alternative names see Fig. 1.10). αLβ2 and αMβ2 

are also expressed by microglia in the normal developing and adult rodent CNS [37, 98, 357]. 

αMβ2 integrin is mostly known as Mac-1, CD11b or CR3 and plays a major function in microglial 

phagocytosis and synaptic remodelling [174]. From the αV heterodimer class, microglia express 

αVβ1, αVβ3, αVβ5 and αVβ8 [294, 356, 358, 359]. Like αMβ2, αVβ5 also plays a role in microglial 

phagocytosis [360]. Microglia do not express α1, α2, αX, β4, β3, β6, β7 and β8 [356]. Microglial 

activation and integrin expression are further influenced by exposure to cytokines, such as ILs, 

TNF, TGF-β and IFNs, as well as by the ECM [356]. Also, cultivation on fibronectin and vitronectin 

increases expression of the α4β1, α5β1 and αMβ2 integrins, while cultivation on laminin increases 

αV expression, most likely through outside-in signaling. All three ECM substrates increase 

expression of αLβ2 integrins. Additionally, fibronectin and vitronectin promote microglial pro-MMP9 

expression through α5β1 and αvβ5 integrins respectively [294]. Microglia adhere strongly to 

plastic, fibronectin, and vitronectin, but only weakly to laminin, unless they are stimulated [361] 

(Fig. 1.10). It is not known whether vitronectin is expressed in the embryonic brain, but it is 

deposited in the brain in pathological circumstances such as during Multiple sclerosis [294]. 

Adhesion to laminin and astrocyte ECM is regulated via PKC-dependent activation of α6β1 integrin 

[361]. Which integrins are expressed by embryonic microglia and their putative functions at those 

stages are explored in Chapters 3 and 4. 

In addition to influencing microglial adhesion and MMP production, the ECM also influences 

microglial morphology through integrin signaling: fibronectin and vitronectin promote the amoeboid 

phenotype while laminin evokes a rounded-up phenotype which is weakly adherent [356]. These 

results are conform another study which shows that fibronectin promotes transformation of primary 

amoeboid microglia into the process-bearing morphology with a decreased phagocytosis capacity 

while laminin reversed this phenotype [362]. These results suggest that fibronectin and laminin 

play a role in the maturation of amoeboid, developing microglia towards the adult ramified 

phenotype.  

 Purinergic signaling, integrins and microglial mobility 

In vitro as well as in vivo, purinergic signaling and the concurrent intracellular calcium increase 

seems to play central roles in promoting microglial mobility, which is used to refer to soma 

translocation (migration) and process remodeling (motility) together [71]. More in particular ATP, 

ADP and adenosine signaling through P2Y12R, P2X4R, A2AR are mostly implicated in regulating 

microglial process dynamics and chemotaxis [36, 363-371]. β1 integrin signaling occurs 
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downstream of purinergic receptor activation and plays pivotal roles in regulating microglial 

mobility. As such, ATP signaling through P2Y12R induces increased adhesion of microglia to 

collagen, which can be inhibited with RGD peptides, β1 integrin blocking antibodies and P2Y12R 

antagonists [372]. In particular, RGD and β1 integrin inhibitors inhibit process extension and lead 

to accumulations of β1 integrin in the protruding tip [372]. β1 integrin further regulates microglial 

migration towards α-synuclein [373] and towards human immunodeficiency virus-1 (HIV-1) Tat 

protein [374]. In primary rat microglia, the latter induces activation of non-muscle myosin light 

chain kinase (nmMYLK), followed by inside-out activation of microglial β1 integrin, outside-in 

signaling upon ligand binding and finally actin polymerization [374]. β3 integrin was not involved in 

microglial migration towards Tat [374]. ADP induces β1 integrin translocation to membrane ruffles 

(the motile areas on the cell surface that contain a meshwork of newly polymerized actin filaments) 

and in the presence of fibronectin substrate it induces β1-dependent chemotaxis through 

P2Y12/13R signaling [370]. Details of the signaling pathway(s) generated by β1 integrin 

translocation and the effect of this outside-in signaling on microglial chemotaxis are not known 

[370]. Regarding the role of β2 integrins, conflicting results are reported: αLβ2 integrin 

(alternatively CD11a or LFA-1) is necessary for normal migration of microglia to sites of excitotoxic 

injury [375] while microglial migration to injured neurons is unaffected in β2 deficient mice in 

cultured slices [376].  

In addition to integrin signaling leading to adhesion and cytoskeleton remodeling, ion channels 

regulating sodium, chloride, potassium and calcium fluxes mediate protrusion formation and 

migration in microglia by inducing actin polymerization and regulation of local swellings and 

shrinking [368, 377-383]. Involvement of non-selective cation channels, such as Transient receptor 

potential (TRP) channels in microglial activation and migration has been extensively described as 

well [384]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10. Integrins reported in microglia in vitro. CD, cluster of differentiation; FN, fibronectin; ICAM, 

intercellular adhesion molecule; LFA, leukocyte function antigen; LM, laminin, VCAM, vascular cellular adhesion 

molecule; VLA, very late antigen; VN, vitronectin; Thrombsp, Thrombospondin [294, 356, 358, 359, 361].  
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 Molecular signaling in microglial mobility 

Though molecular signaling pathways underlying in vivo microglial migration remain largely 

unknown, in vitro studies proposed some mechanistic and signaling events underlying microglial 

chemotaxis/migration [385]. Primary microglia do not demonstrate classic types of adhesions 

during migration but instead form podosomes, 0.4-1µm multimolecular structures with an F-actin 

core surrounded by a ring of adhesion and structural proteins. Through calcium signaling in these 

podosomes, microglia were able to adhere to and degrade fibronectin substrates using matrix 

metalloproteinases [386, 387]. Podosome based migration seems a plausible mechanism for in vivo 

microglial migration, but this remains to be tested. The phosphatidylinositide 3-kinase (PI3K) 

signaling pathway appears to be one of the major signaling pathways in microglia chemotaxis. The 

activation of PI3K and its localization towards the leading edge membrane is instructive for 

microglial cell polarity through inducing F-actin polymerization at the cell front [385]. Activation of 

this pathway through purinergic receptors P2X4, P2Y12 is also involved in microglial migration and 

process outgrowth in response to ATP and ADP [372, 388-390]. Although ATP-stimulated 

chemotaxis in microglia requires PI3K activation, membrane ruffling (which can be considered as 

process motility) does not [388]. Of note, chemotaxis and chemokinesis occur through two distinct 

molecular pathways in microglia [391]. Chemotaxis is the directed migration towards a chemical 

source while chemokinesis in a non-directional increase of migration in response to a chemical 

stimulus. ATP stimulates a combination of both chemokinesis and chemotaxis, which are mediated 

by the ROCK signaling, while C5a stimulates only chemotaxis mediated by Rac1 signaling. Further, 

PI3K is only required for random basal microglial cell migration and not for directional migration 

[391]. P2Y12R signaling following TLR2 activation results in PI3K/Akt and Rac activation, which 

controls chemotaxis [392]. Next to inducing cytoskeletal remodeling, PI3K also induces MMP 

expression [393].  

Intracellular Ca2+ -independent phospholipase A(2) (iPLA2) was found to activate PI3K-Akt signaling 

in microglia through directing Src activation [390]. Active Src phosphorylates paxillin at Tyr31, 

which is essential for focal adhesion assembly and microglial migration [394]. iPLA2 also controls 

the recycling of α6 integrin vesicles and their delivery to focal adhesion during microglial 

chemotaxis [395]. Akt activation can also be regulated by a phosholipase C (PLC) mediated 

increase in intracellular calcium after P2Y12R signaling [389]. In addition, ERK1/2 (alternatively 

MAP kinase) signaling is directly involved in promoting chemotaxis by regulating phospohorylation 

states of adhesome proteins such as paxillin, required for adhesion dynamics [394].  

While iPLA2, PI3K-Akt and ERK1/2 signaling promote migration, PKA signaling inhibits it and this 

can occur also through ADP stimulation of P2Y12R [396]. In this case, P2Y12R signaling induced 

increased levels of cAMP, PKA activation which leads to phosphorylation of vasoldilator-stimulated 

phosphoprotein (VASP). However, prolonged phosphorylation of VASP by PKA disturbs focal 

adhesion formation/maturation and membrane ruffle formation resulting in a defective chemotaxis. 

A balanced regulation of phosphorylation and dephospohorylation of VASP is necessary for efficient 

chemotaxis [396]. On the contrary, ATP signaling through P2Y12R was found to decrease adenylyl 

cyclase levels, which normally lead to increased cAMP and PKA activation, and to induce increased 

microglial adhesion to collagen [372]. Also ADP stimulation through P2Y12R causes β1 to 
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translocate to membrane ruffles in order to promote migration and this is negatively regulated by 

PKA [370]. How PI3K-Akt and Ras-ERK1/2 pathways are involved in microglial migration in ex vivo  

embryonic brain slices, is explored in Chapter 4. 

It is clear that microglia can detect changes in ECM composition through their expression of a wide 

range of integrins and changes in ECM reciprocally influence microglial metabolism. Upon 

purinergic stimulation microglia effectively use these integrins in regulating their mobility and β1 

integrin, more than β2 and β3, plays a major role in this process. The underlying molecular 

signaling pathways are beginning to emerge as well. iPLA2, Scr, PI3K-Akt and ERK1/2 signaling 

pathways converge on promoting adhesion formation, membrane ruffling, F-actin polymerization 

and thereby promoting microglial chemotaxis. In contrast, PKA can negatively regulate chemotaxis.  

1.4 Study aims 

Studies of the last decade have established pivotal roles for microglia in normal brain development. 

However, many aspects of the microglial physiology and how they colonize the embryonic mouse 

brain are still unresolved. After all, microglia must be present in the brain in order to coordinate 

brain development. The experiments conducted during this dissertation were designed (1) to 

unravel  the microglial colonization mechanisms and (2) to assess the microglial population’s 

sensitivity to external adverse conditions during development, such as maternal inflammation 

which is well known to increase the risk for neurodevelopmental disorders in the offspring (Fig. 

1.11). To this end, first (1A) the pattern of invasion, surface marker expression, proliferation rate 

and morphology of the microglial cells is mapped from the start of their appearance in the brain 

until late gestation (Chapter 2). Second (1B), the dynamic migration behavior of the microglial 

cells in the embryonic brain and the role of ECM-adhesion (fibronectin-integrin) mechanisms 

underpinning this migration are assessed (Chapter 3). Third (1C), the role of a candidate 

chemokine CXCL12 in steering microglial movement once inside the brain and its link with β1 

integrin mediated migration is assessed (Chapter 4). Last (2), the effect of maternal immune 

activation during pregnancy on the microglial activation status in the embryonic offspring is 

determined (Chapter 5). 
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Fig. 1.11. Study aims. Green cells represent microglial cells. Arrowheads with dotted line indicate cell 

displacement. Drawings are not to scale. CH, Chapter; E, Embryonic day. 
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2.1 Abstract 

Microglia are the immune cells of the central nervous system. They are suspected to play important 

roles in adult synaptogenesis and in the development of the neuronal network. Microglial cells 

originate from progenitors in the yolk sac. Although it was suggested that they invade the cortex at 

early developmental stages in the embryo, their invasion pattern remains largely unknown. To 

address this issue we analysed the pattern of cortical invasion by microglial cells in mouse embryos 

at the onset of neuronal cell migration using in vivo immunohistochemistry and ex vivo time-lapse 

analysis of microglial cells. Microglial cells begin to invade the cortex at 11.5 days of embryonic age 

(E11.5). They first accumulate at the pial surface and within the lateral ventricles, after which they 

spread throughout the cortical wall, avoiding the cortical plate region in later embryonic ages. The 

invasion of the cortical parenchyma occurs in different phases. First, there is a gradual increase of 

microglial cells between E10.5 and E14.5. From E14.5 to E15.5 there is a rapid phase with a 

massive increase in microglia, followed by a slow phase again from E15.5 until E17.5. At early 

stages, many peripheral microglia are actively proliferating before entering the parenchyma. 

Remarkably, activated microglia accumulate in the choroid plexus primordium, where they are in 

the proximity of dying cells. Time-lapse analysis shows that embryonic microglia are highly 

dynamic cells. 

2.2 Introduction 

Microglia are the resident immune cells of the central nervous system (CNS). In the healthy adult 

CNS, microglial cells have a ramified morphology, with a small cell soma and long, thin processes 

that constantly scan their environment [34, 36]. Microglia can play a beneficial role, through 

phagocytosis of cellular debris, trophic and anti-inflammatory factor release, but they can also have 

detrimental effects through reactive oxygen species production and inflammatory cytokine 

production [172, 397]. In addition, there is increasing evidence that they can also participate in the 

regulation of neuronal network and cell assembly in the adult [82, 141, 172, 254, 398-400]. 

Microglia derive from primitive myeloid progenitor cells that arise in the mouse before E8 in the 

yolk sac and can be detected in the brain at early developmental stages, by day E9.5 in mice 

embryos [20, 53]. This is also the case in human, rabbit, rat and quail embryos [74-78, 80, 81]. In 

the mouse embryonic spinal cord, microglial cells begin to invade the parenchyma at the end of 

neuronal migration (E11.5), during which local neuronal networks become functional [37]. 

Remarkably, microglia begin to invade the brain [20] and spinal cord [37] at similar ages in mouse 

embryos, but at this stage the cortex is less mature than the spinal cord and is characterized by 

the beginning of cortical neurogenesis [13, 24, 401, 402]. It is therefore unclear whether the 

embryonic microglia, although of similar origin, will have similar functions in both embryonic 

structures according to their developmental stages. This remains an open question, as the invasion 

pattern of the cortex by embryonic microglia with respect to the developmental stages of this 

structure is poorly documented and their functions during early brain development remain poorly 

understood.  To address this issue, we investigated the colonization processes of the embryonic 
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cortex by microglia in vivo and ex vivo, with respect to the already known developmental pattern 

of the embryonic cortex. 

Using the transgenic CX3CR1-eGFP mouse, immunohistochemical methods and time-lapse imaging, 

we show that the invasion process of the embryonic cortex occurs in three phases, an initial phase 

from E10.5 until E14.5, a second one occurring between E14.5 and E15.5, and a third one after 

E15.5. During this process, microglia are showing a highly dynamic behaviour. In the same period, 

microglial cells accumulate within the choroid plexus primordium, close to dying cells. 

2.3 Materials and methods 

2.3.1 Animals 

Transgenic CX3CR1-eGFP knock-in mice [403] were used in order to visualize microglia in the 

embryonic cortex in vivo. In these animals, eGFP is expressed under the promoter of CX3CR1, also 

known as the fractalkine receptor, rendering all monocyte-derived cells, including microglia, green 

fluorescent [403]. All experiments were conducted in accordance with the European Community 

guiding principles on the care and use of animals and with the approval of the Ethical Committee 

on Animal Research of the Hasselt University. Mice were maintained in the animal facility of the 

Hasselt University in accordance with the guidelines of the Belgian Law and the European Council 

Directive. The heterozygous CX3CR1-eGFP +/- embryos that were used in this study were obtained 

by crossing homozygous CX3CR1-eGFP +/+ mice (mice were obtained from the European Mouse 

Mutant Archive – EMMA with the approval of Stephen Jung [403]) with wild type C57BL/6 mice. 

Females were checked for vaginal plugs each morning, the day of conception was designated as 

embryonic dag 0.5 (E0.5). Pregnant mice were sacrificed by means of cervical dislocation at the 

desired embryonic day and the embryos were removed. 

2.3.2 Tissue Preparation and Immunostaining 

The heads of E10.5 – E15.5 embryos were fixed in 4% paraformaldehyde for 3h at 4°C, 5h for 

E16.5 and E17.5 embryos. After fixation, the embryonic heads were cryoprotected overnight in 

phosphate-buffered saline (PBS) + 30% sucrose, frozen in optimal cutting temperature compound 

(Tissue-Tek) and stored at -80°C until sectioned. Ten and fifity-micrometer-thick coronal tissue 

sections were cut on a Leica CM1900 uv cryostat, mounted on Superfrost Plus glasses and stored 

at -20°C until staining.  

Embryonic sections were washed three times in PBS, blocked with serum and permeabilized with 

Triton X-100 (Sigma-Aldrich). Subsequently they were incubated with the primary antibody (Table 

2.1), this was performed overnight at 4°C, except for Ki-67 for which slices were incubated for 2h 

at room temperature. After washing, the sections were incubated with alexa-labeled secondary 

antibodies for 1h at room temperature and mounted with Vectashield (Vector laboratories) 

containing 4,6-diamidino-2-phenylindole (DAPI) to reveal cellular nuclei. All primary antibodies and 

working solutions are listed in Table 2.1. Staining controls for the secondary antibodies were 

performed by omitting the primary antibodies. 
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To determine if the CX3CR1 eGFP cells observed in the embryonic cortex were effectively microglial 

cells we used antibodies directed against ionized calcium binding adaptor molecule 1 (Iba-1) and 

cluster of differentiation (CD)68. Iba-1 is a marker for microglial cells, it is a small protein 

suggested to function as an adaptor molecule that mediates calcium signals in cells of the 

monocytic lineage, including microglia [404]. CD68, the murine homologue for macrosialin, is a 

transmembrane glycoprotein which is expressed in lysosomes and endosomes of monocytes, 

macrophages and microglia [405, 406]. 

In order to determine the activation state of the microglia present in the embryonic cortex, we 

used an antibody against Mac-2 (ATCC; Clone M3/38.1.2.8 HL.2). Mac-2, also known as galectin-3, 

is a member of the galectin family of β-galactoside binding lectins. It can be expressed by many 

cell types and is implicated in several processes. Expression of Mac-2 is a hallmark of microglial 

activation [407-412].    

A Ki-67 antibody was used to identify active proliferating microglial cells The antigen is expressed 

during all active phases (the G1, S, G2 and M phases) of the cell cycle and cannot be detected in 

resting cells (G0 phase) [413].  

Apoptotic cells were visualized using a cleaved caspase-3 antibody (Cell signaling; Asp175). This 

antibody detects endogenous levels of the large fragment (17/19 kDa) of activated caspase-3 and 

does not recognize the full length caspase-3 or other cleaved caspases [414].  

Table 2.1. Overview of the primary antibodies 

Primary Antibody Company Reference Dilution 

Anti-Iba-1  WAKO 019-19741 1:500 

Anti-CD68 AbD Serotec MCA1957GA 1:400 

Anti-Mac-2  ATCC 
TIB-166 

Clone M3/38.1.2.8 HL.2 
1:250 

Anti-Ki-67 Abcam ab15580 1:40 – 1:55 

Anti-Cl. caspase-3 Cell Signaling 9661 1:500 

 

2.3.3 Microscopy and Analysis of Immunostainings 

Quantitative analysis of microglial cells was performed on images of 10-µm-thick coronal 

embryonic brain sections, except when quantifying microglial morphology then 50-µm-thick 

sections were used. Images were taken with a Nikon Eclipse 80i microscope and a Nikon digital 

sight camera DS-2MBWc. The objectives used were from Nikon; a 10x Nikon plan objective 

(numerical aperture (NA) of 0.25), a 20x Plan Fluor objective (NA of 0.5) and a 40x Plan Fluor 

objective (NA of 0.75). Ki-67 stainings were examined with an inverted Zeiss Axiovert 200M 

microscope attached to a Zeiss LSM 510 Meta Confocal laser scanning system, the different 

fluorophores were sequentially imaged through a 20x Plan-Apochromat objective (NA of 0.75). 

Images (1600 x 1200 or 512 x 512 pixels) were analysed with ImageJ 1.45e software (NIH, USA; 

http://rsb.info.nih.gov/ij/). Only eGFP-positive cell bodies were taken into account for the 
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measurements. Quantifications were made per cortical slice (supplemental table 1). Afterwards, an 

average of the quantifications of all the slices per embryo was made, so only one value for each 

embryo was included in the statistical analysis (number of embryos = n). For the quantification of 

cell morphology 50 µm sections were used, all protrusions with a length equal or more than 1/2 of 

the cell soma were considered as a ramification.All values are expressed as mean ± S.E.M. 

Statistical significance was assessed by nonparametric Kruskal-Wallis test, p-values smaller than 

0.05 were considered significant. 

In order to determine the location of a microglial cell in the cortex, pictures were loaded in the 

home-made analysis program “Angle”, developed in the Matlab environment. The straight distance 

between the ventricular lining and the middle of the cell soma was measured together with the 

straight distance between the ventricular lining and the pia, running through the microglial soma in 

question and corresponding to the thickness of the cortex. The microglial location was expressed as 

the percentage of distance from the entire neocortex (measurements were performed on 3 

embryos per age, E12.5 until E17.5, number of cells = n). Based on the resulting data, a 

probability distribution of this location was estimated for every age by applying the Kernel 

Smoothing Density procedure with a Gaussian kernel (Matlab). 

2.3.4 Time-lapse imaging 

Pregnant mothers were euthanized at E12.5, E14.5 and E17.5. Embryonic brains were isolated in 

ice-cold PBS-glucose (pH 7.4; 25mM), embedded in 3% low melting agarose (Fisher Scientific) and 

sliced coronally at a thickness of 300 µm using a Microm HM650V Vibrating Blade Microtome. Slices 

were mounted on MilliCell organotypic inserts (Millipore) and maintained in semi-hydrous 

conditions at 37°C and 5% CO2. The tissue was allowed to equilibrate for approximately 60 

minutes before imaging. Migration media consisted of Neurobasal medium supplemented with 2mM 

L-glutamine, B27 supplement, N2 supplement and 0.5% penicillin-streptomycin (all from 

Invitrogen). 

For live imaging, slices were transferred on their insert to a glass bottom microwell dish (MatTek) 

in semi-dry conditions. The microscope chamber was heated by constant air provision at 37°C. 

Humified air with 5% CO2 was continuously applied to the slice. The eGFP positive microglia were 

excited by a Mai Tai DeepSee Ti:Saphire pulsed laser (Spectra-Physics) with a central wavelength 

tuned at 900 nm and visualized using a KP 650 nm dichroic mirror. For the analysis of migration 

speed a z-stack, spanning 72 µm with serial optical sections (1024 x 1024; 8-bit) every 8 µm, was 

recorded every 10 minutes for a total duration of 5 – 7 hours. For the analysis of microglial 

behaviour a z-stack, spanning 32 µm with serial optical sections (1024 x 1024; 8-bit) every 8 µm, 

was recorded every 2 minutes for a total duration of 1 hour.  Each time imaging started from a 

minimum depth of 50 µm under the cutting surface of the slice. A 20x EC plan-Neofluar objective 

(NA of 0.5 and 2 mm working distance) (Zeiss) was used, corresponding to a field of view 

measuring 450 x 450 µm. The ImageJ (NIH, USA; http://rsb.info.nih.gov/ij/) plug-in “MTrackJ” was 

used to manually track movement paths of microglia in 4D and to calculate migration speed [415]. 

The average distance the cells travel per step is plotted as a cumulative frequency. The migration 
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speed values are expressed as mean ± S.E.M.  Statistical significance was assessed by 

nonparametric Kruskal-Wallis test, p-values smaller than 0.05 were considered significant. 

2.4 Results 

In mice, neurogenesis and neuron migration start on E11 in the cortex and last to E17, when 

initiation of synaptogenesis and neuron differentiation begin [401, 402]. We focused our analysis 

on the cerebral cortex area located dorsally to the lateral ganglionic eminences (LGE) and medial 

ganglionic eminences (MGE), obtained from CX3CR1-eGFP +/- mouse embryos aged from E10.5 to 

E17.5. This region of the cortex is well characterized on the functional and cellular level and the 

two GE structures are the major sources of cortical interneurons during embryonic neurogenesis 

[416-418]. 

First we determined to what extent the CX3CR1-eGFP cells observed in the embryonic brain were 

effectively microglial cells. Most of the eGFP cells in the embryonic brain were immunoreactive for 

Iba-1. At E10.5 91.7 ± 8.3% of the eGFP cells in the cortex were expressing Iba-1. This 

percentage remained stable between E10.5 and E17.5, ranging from 97.6 ± 1.6% at E11.5 to 99.8 

± 0.2% at E17.5 (n = 4 – 9 embryos) (E12.5, 99.1 ± 0.9%; E13.5, 99.1 ± 0.6%; E14.5, 99.2 ± 

0.5%; E15.5, 99.6 ± 0.3%; E16.5, 100 ± 0%). The percentage of eGFP cells expressing Iba-1 

between E10.5 and E17.5 was not significantly different (p > 0.1). Like for the Iba-1 

immunoreactivity, most of the eGFP cells in the embryonic cortex were expressing CD68. At E10.5 

≈ 100% of the eGFP cells were CD68 positive and this percentage remained stable at all ages 

(E10.5, 100 ± 0%; E11.5, 86.1 ± 10.0%; E12.5, 85.8 ± 3.3%; E13.5, 93.9 ± 1.7%; E14.5, 88.2 

± 3.6%; E15.5, 95.4 ± 2.1%; E16.5, 98.2 ± 1.4%; E17.5, 97.1 ± 0.1% (n = 3 – 9 embryos). The 

percentage of eGFP cells expressing CD68 between E10.5 and E17.5 did not change significantly (p 

> 0.1). These results demonstrate that the eGFP cells present in the developing brain parenchyma 

are microglial cells or microglial precursors and will from now on be referred to as microglia. 

2.4.1 Invasion of the embryonic cortex and ganglionic eminences by microglia between 

E10.5 and E17.5 

The number of microglial cells present in the cortex significantly increased (p < 0.001; Kruskal-

Wallis test) between E10.5 and E17.5 (Fig. 2.2A). At the age of E10.5 (Fig. 2.1A, 2.2A) and 

E11.5 (Fig. 2.1B, 2.2A) almost no microglia could be observed in the cortex. At E10.5 and E11.5 

we observed 0.5 ± 0.2 cells per slice (n = 4 embryos) and 2.6 ± 0.2 cells per slice (n = 6 

embryos) respectively. Many faint eGFP positive cells were present at the pial surface of the cortex, 

their round morphology and prominent nucleus suggest that these cells were likely to be 

monocytes [37, 419]. At E12.5 (Fig 2.1C, 2.2A), microglial cells were still rarely observed in the 

cortical parenchyma, although their number (5.0 ± 0.4 cells per slice; n = 12 embryos) had 

doubled when compared to E11.5. The distribution of the microglial cells throughout the cortical 

wall was random. Between E12.5 and E14.5 the number of microglia remained stable (E14.5: 8.8 

± 0.6 cells per slice; n = 13 embryos; p > 0.05) (Fig. 2.1D, 2.1E, 2.2A), to rise abruptly to 31 ± 

2 cells per slice by the age of E15.5 (n = 8 embryos) (Fig. 2.1F, 2.2A). After this sudden rise at 

E15.5, the cell number remained stable (E17.5: 40 ± 1 cells per slice; n = 6 embryos; p > 0.05) 
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(Fig. 2.1H, 2.2A). From E15.5 the cortical wall can be divided into three layers: the ventricular 

zone, intermediate zone and the cortical plate zone [420, 421]. Remarkably few microglia (5 ± 1% 

of the eGFP cells per slice) were present in the cortical plate region from E15.5 to E17.5. 

During embryonic development, the surface of the cortex increases and its morphology becomes 

more complex (Fig. 2.1A – H and Fig. 2.2B). The surface area of the cortex significantly 

increased 14-fold (p < 0.001; Kruskal-Wallis test) from E10.5 (3.3 x 104 ± 0.6 x 104 µm²; n = 4 

embryos) to E17.5 (47 x 104 ± 3.5 x 104 µm²; n = 6 embryos). 

To determine if the increase in microglial cell number with age (Fig. 2.2A) reflects a true 

colonization process or is related to the increase of cortex area only, we quantified the change in 

microglial cell density with embryonic age. The microglial density significantly increased (p < 

0.001; Kruskal-Wallis test) 6-fold from E10.5 (1.5 x 10-5 ± 0.6 x 10-5 cells/µm²; n = 4 embryos) 

to E17.5 (9.1 x 10-5 ± 0.7 x 10-5 cells/µm²; n = 6 embryos) (Fig. 2.2C). During this 

developmental period microglial cell density significantly increased from E10.5 to E11.5 (p < 0.05), 

remained stable between E11.5 and E14.5 and then significantly increased after E14.5 (p < 0.05).  

Throughout development the general morphology of the cortical microglial cells significantly 

changed (p < 0.05; Kruskal-Wallis test) from an amoeboid form in the early stages, towards a 

more ramified one later in development. At E12.5 (n = 3 embryos) the majority of the microglial 

cells had an amoeboid form (61 ± 5 %) (Fig. 2.2D). While at E16.5, 76 ± 1% of the microglial 

cells had 1 or more protrusions (Fig. 2.2D). 
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Fig. 2.1. Invasion and distribution of microglial cells in the developing cortex. (A – H) Coronal sections 

of mouse E10.5 – E17.5 embryonic brains, eGFP cells in white. The DAPI channel was not shown to preserve 

the clarity of the pictures, instead the structures are contoured by a white line. The dotted lines mark out the 

investigated cortical areas (see Supplemental fig. 1 for a schematic description of these areas). The number of 

microglial cells gradually increases with the development of the cortex. Their morphology changed from a 

predominantly amoeboid form towards a branched one (Fig. insets). Many faint eGFP cells, probably 

monocytes, could be observed at the pial surface of the cortex. At all developmental stages single and groups 

of eGFP cells were present in the lateral ventricle, as free floating or attached to the ventricular wall, and many 

eGFP cells were lining the pial surface of the brain. Number of embryonic brains tested in each group: E10.5 n 

= 4; E11.5 n = 6; E12.5 n = 12; E13.5 n = 11; E14.5 n = 13; E15.5 n = 8; E16.5 n = 5; E17.5 n = 6. c, 

cortex; CP, cortical plate; ge, ganglionic eminence; IZ, Intermediate zone; v, ventricle; VZ, Ventricular zone. 

Scale bars = 100µm, inset = 10µm. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2

 

53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Quantification of microglial cell invasion. (A) The microglial cell number significantly increased 

during development in both the cortical wall as the GE region. At E10.5 almost no eGFP cells were observed in 

the cortical parenchyma. From E11.5 until E14.5, eGFP cells slowly invaded the cortex, afterwards there was a 

drastic increase in their cell number. In the ganglionic eminences the cell number slowly increased from E13.5 

until E17.5. (B) The cortex surface area significantly increases during development. From E10.5 to E11.5 the 

area stays constant and gradually started to increase from E11.5 on. The surface area of the GE region also 

significantly increases when the embryo ages. The area of the region stays constant between E13.5 and E15.5, 

after E15.5 it increases. (C) Cell density significantly increased during development in both the cortical wall as 

the GE region. In the cortex, two phases could be observed in eGFP cell density, a first small increase at E11.5 

after which the density remained stable up until E14.5, at E15.5 there was a second rise. In the ganglionic 

eminences a peak at E15.5 in eGFP cell density was also observed. Number of embryonic brains tested in cortex 

group: E10.5 n = 4; E11.5 n = 6; E12.5 n = 12; E13.5 n = 11; E14.5 n = 13; E15.5 n = 8; E16.5 n = 5; E17.5 

n = 6. Number of embryonic brains tested in ganglionic eminence group: E13.5 n = 9; E14.5 n = 8; E15.5 n = 

7; E16.5 n = 3; E17.5 n = 3. (D) The morphology of the eGFP cells present in the cortical parenchyma 

gradually changed from predominantly amoeboid cells towards branched cells. Number of embryonic brains 

tested : n = 3. (* p < 0.05; ** p < 0.01; *** p < 0.001). 

 

When looking at the microglial invasion of the region comprising the LGE and MGE, a similar 

pattern was observed as in the cortex from E13.5 to E17.5. The number of microglial cells 

significantly increased (p < 0.01; Kruskal-Wallis test) almost two-fold from E13.5 (10 ± 1 cells per 

slice; n = 9 embryos) to E17.5 (16.5 ± 0.7 cells per slice; n = 3 embryos) (Fig. 2.2A).  

During embryonic development, the surface area of the GE region significantly increased 1.5 times 

(p < 0.05; Kruskal-Wallis test) from E13.5 (14 x 104 ± 0.9 x 104 µm²; n = 9 embryos) to E17.5 

(21 x 104 ± 0.2 x 104 µm²; n = 3 embryos) (Fig. 2.2B). 

Similarly as in the cortex, the microglial cell density was significantly different (p < 0.05; Kruskal-

Wallis test) between E13.5 (6.7 x 10-5 ± 0.4 x 10-5 cells/µm²; n = 9 embryos) and E17.5 (7.8 x 

10-5 ± 0.3 x 10-5 cells/µm²; n = 3 embryos) (Fig. 2.2C). 
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In the mouse embryonic spinal cord, microglia proliferate before entering the parenchyma [37]. 

Hence, the percentage of microglia that was actively proliferating in the cerebral cortex was 

determined using a Ki-67 staining. As shown in Fig. 3, actively proliferating cells could be observed 

between E11.5 and E17.5 (Fig. 2.3A3, B3, C3), with the majority located in the ventricular zone 

of the cortex where many precursors are located [401, 422, 423]. In addition, the embryonic brain 

was surrounded by proliferating cells during this time span in embryonic development (Fig. 2.3A3, 

B3, C3), likely indicating the growth of blood vessels and the development of the meninges [424, 

425]. From E11.5 until E17.5, the number of microglial cells in the cortex that was positive for Ki-

67 remained constant (Fig. 2.3D) (E11.5: 0.7 ± 0.4 Ki-67 positive microglial cells per slice; n = 3 

embryos). However, the percentage of microglia that were actively proliferating in the cortex 

parenchyma significantly decreased (p < 0.01; Kruskal-Wallis test) during this period. At E11.5 

(Fig. 2.3A2, A4, A6 and E), 40 ± 18% of the microglial cells (n = 3 embryos) were 

immunoreactive for the proliferation marker Ki-67. This percentage decreased to 28 ± 5% (n = 6 

embryos) at E13.5 (Fig. 2.3B2, B4, B6 and E) and decreased even further to only 10 2% at 

E15.5 (Fig. 2.3C2, C4, C6 and E). At E17.5 only 3 ± 1% (n = 3 embryos) of the eGFP cells were 

positive for Ki-67 (Fig. 2.3E). We observed many eGFP cells in the meninges that were 

immunoreactive for Ki-67, likely corresponding to microglial progenitors and suggesting that the 

majority of these cells proliferate in the periphery, before they enter the cortical parenchyma. The 

number and percentage of eGFP cells proliferating in the pia followed the same tendency as that 

observed in the cortex. The absolute number of (Fig. 2.3D) proliferating microglia remained 

constant (E11.5: 1.6 ± 0.4 ki-67 positive microglial cells per slice; n = 5 embryos) while there was 

a significant decrease (p < 0.001; Kruskal-Wallis test) in the percentage (Fig. 2.3E) of 

proliferating microglial cells from E11.5 (71.5 ± 14.5% ; n = 5 embryos) to E17.5 (5.04 ± 1.47% ; 

n = 6 embryos). 
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Fig. 2.3. Proliferation in the developing mouse embryonic cortex and pia. (A1, B1, C1) Microglial cells 

(green) in coronal sections of E11.5 – E15.5 brains. (A3, B3, C4) Actively proliferating cells were identified 

using the Ki-67 antibody (red). The DAPI channel was not shown to preserve the clarity of the merged pictures 

(A5, B5, C5). (A2, A4, A6) At E11.5 and (B2, B4, B6) E13.5, a rather high percentage of microglial cells were 

Ki-67 positive. White arrowheads indicate Ki-67 expressing microglial cells. (C2, C4, C6) At E15.5 only a small 

percentage of the microglial cells were showing immunoreactivity against Ki-67. Open arrowheads indicate non-

proliferating microglia in the cortex. (D) The absolute number of microglial cells that were actively proliferating 

in the cortical parenchyma and at the pia remained constant throughout development. (E) The percentage of 

proliferating microglia significantly decreased as the embryo develops. Number of embryonic brains tested in 

each group for cortex: E11.5 and E17.5 n = 3; E12.5 – E15.5 n = 6. Number of embryonic brains tested in 

each group for pia: E11.5 n = 5; rest n = 6. c, cortex; v, ventricle. Scale bars = 100µm, insets = 20µm. (** p 

< 0.01; *** p < 0.001). 
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2.4.2 Microglia accumulate in the region of the choroid plexus primordium and associate 

with dying cells 

The choroid plexus primordium can be recognized from E11 on in the mouse embryonic brain 

[426]. An increased accumulation of microglial cells was observed in the region of the choroid 

plexus primordium from E11.5 until E14.5 (Fig. 2.4A1 and B1). The majority of microglial cells 

had an amoeboid morphology and endosomal-like compartments in their cell body (Fig. 2.4A2 

and B2). The number (Fig. 2.4C) and density (Fig. 2.4D) of the microglial cells in this 

accumulation remained stable between E11.5 and E15.5 (n = 13 – 15 embryos). By the age of 

E15.5, this accumulation became less apparent and was no longer visible at E16.5. Accordingly, the 

density of microglial in this structure significantly decreased (p < 0.05) from E15.5 (8.2 x 10-4 ± 

6.0 x 10-5 cells/µm²; n = 15 embryos) to E16.5 (4.6 x 10-4 ± 6.7 x 10-5 cells/µm²; n = 14 

embryos) (Fig. 2.4D).In rodents, it was shown that the choroid plexus is already mature at an 

early stage of embryonic development (E15 in rats) [427] and that a significant amount of 

apoptosis takes place during embryonic development of this structure [428-430]. Indeed, the 

presence of apoptosis in this structure was identified by cleaved caspase-3 immunoreactivity (Fig. 

2.4A3-6). To the contrary, no immuno-reactivity for cleaved caspase-3 was found in the cortical 

parenchyma (data not shown). 

Based on the presence of apoptosis and the morphology of the microglia that we observed in the 

choroid plexus, we hypothesized that the microglial cells in this structure acquired a phagocyte 

phenotype and cleared cellular debris from the apoptotic cells. To determine to what extent the 

microglial cells are activated, we performed an immunostaining for Mac-2/Galectin-3. Increased 

expression of Mac-2/Galectin-3 is related to the phagocyte phenotype in immune cells [407, 409, 

410]. When looking at Mac-2 expression, almost no Mac-2 immunoreactive microglial cells were 

observed in the cortex: at all ages tested, less than 5% of the microglia were positive for Mac-2 

(data not shown). At E11.5 only a few cells showed Mac-2 reactivity in the choroid plexus (7 ± 7%; 

n = 5 embryos). After E11.5 this percentage increased, to reach a peak at E14.5 (48 ± 6%; n = 4 

embryos) (Fig. 2.4B3-6). Subsequently this percentage decreased to 11 ± 2% (n = 6 embryos) 

at E16.5.  

As observed in the cortex and its periphery, many proliferating cells could be observed in the 

choroid plexus primordium (Fig. 2.5A3, B3, C3). Some microglial cells localized in the choroid 

plexus were also immunoreactive for Ki-67 (Fig. 2.5A6, B6, C6 white arrowheads), indicating 

active proliferation. The absolute number of microglial cell positive for Ki-67 significantly decreased 

(p < 0.001; Kruskal-Wallis test) from 2.8 ± 0.8 Ki-67 positive microglial cells per slice at E11.5 (n 

= 5 embryos) to 0.1 ± 0.1 at E17.5 (n = 7 embryos) (Fig. 2.5D). A same significant decrease (p 

< 0.01; Kruskal-Wallis test) was observed for the percentage of proliferating microglial cells in this 

area (Fig. 2.5E), being 28 ± 9% at E11.5 (n = 5 embryos) (Fig. 2.5A5, A6) and 1 ± 1% at 

E17.5 (n = 7 embryos). 
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Fig. 2.4. Activated microglia accumulate in the choroid plexus region during developmental cellular 

death. (A1, B1) Coronal sections of mouse E13.5 embryonic brains with cell nucleus staining in blue (DAPI) 

and eGFP cells in green. From E11.5 until E14.5, an accumulation of eGFP cells in the choroid plexus 

primordium was observed. These eGFP cells had a predominantly amoeboid or unipolar morphology with 

endosomal-like compartments in their cell body (A2, B2). (A3, A4) Apoptotic cells were identified using the 

cleaved caspase-3 antibody (red). (A5, A6) At E13.5 apoptotic cells were found in the region comprising the 

choroid plexus (primordium), especially at the epithelial lining. Microglial cells present in the accumulation were 

in close proximity of these apoptotic cells (A2, A4, A6 white arrowheads). Several of them showed endosomal-

like compartments and extended one or two processes through the epithelial lining of the plexus or around 

cleaved caspase-3 immunoreactive cells. (B3, B4) Immunohistochemical staining using a Mac-2 antibody (red) 

showed that the microglia present in this aggregate and close to the apoptotic cells are positive for the 

activation marker Mac-2 (B5, B6 white arrowhead). (C – D) In the choroid plexus primordium, the eGFP cell 

number (C) and density (D) significantly decreased throughout development. Number of embryonic brains 

tested in each group: E11.5 n = 5; E12.5 n = 6; E13.5 n = 6; E14.5 n = 9; E15.5 n = 6; E16.5 n = 3; E17.5 n 

= 3.  ch plx, choroid plexus; v, ventricle. Scale bars = 100µm, inset = 20µm. (*** p < 0.001). 
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Fig. 2.5. Proliferation in the developing mouse embryonic choroid plexus primordium. (A1, B1, C1) 

Microglial cells (green) in coronal sections of E11.5 – E15.5 brains, the DAPI channel was not shown to preserve 

the clarity of the pictures. (A3, B3, C3) Actively proliferating cells were identified using the Ki-67 antibody 

(red). (A2, A4, A6) At E11.5 and (B2, B4, B6) E13.5 a relative high percentage of the microglial cells in the 

plexus primordium were positive for Ki-67, white arrowheads indicate Ki-67 expressing microglial cells. (C2, 

C4, C6) At E15.5 a smaller percentage of the microglial cells were showing immunoreactivity against Ki-67. 

However, Ki-67 positive microglia could still be detected in the plexus primordium, white arrowheads indicate 

proliferating microglia. (D - E) The number (D) and the percentage (E) of microglia that were actively 

proliferating in the choroid plexus primordium significantly decreased as the embryo matures. Number of 

embryonic brains tested in each group: E12.5 and E14.5 n = 4; rest n = 3. ch plx, choroid plexus; v, ventricle. 

Scale bars = 100µm, insets = 20µm. (** p < 0.01; *** p < 0.001). 

  



CHAPTER 2

 

59 

 

2.4.3 Migration behaviour of microglial cells in the embryonic cortex 

To study the dynamic behaviour of microglia in the neocortex at the onset of their colonization 

process, we first quantified their location within the cortex and then analysed their migration and 

behaviour in acutely prepared brain slices of embryos using two-photon excitation time-lapse 

microscopy. In order to look at the developmental change in the distribution of microglia in the 

embryonic cortex, we analysed the distribution of these eGFP cells within the parenchyma with 

respect to the ventricular lining as a position reference (Fig. 2.6). At the onset of their invasion 

process (E12.5), the microglial cells accumulated at the ventricular wall (Fig. 2.6, dark bulb in 

E12.5 column at 0-20% region) and to the pial surface (Fig. 2.6, dark bulb in E12.5 column at 80-

100% region). Afterwards, they became randomly distributed within the cortical wall. During the 

second phase of invasion (E14.5 to E15.5), characterized by an abrupt increase in cell density (Fig. 

2.2B), the relative density of microglia at the pial side of the cortex progressively decreased, while 

most microglia accumulated in the area close to the ventricle at E17.5 (Fig. 2.6, dark bulb in E17.5 

column at 0-20% region). These observations suggest that microglia enter the cortex at early 

stages, both from the ventricular lining and pial surface. After E14.5 there was a reorganization of 

microglia distribution, which could be the result from changes in their dynamic behaviour during 

this developmental window. 

 

 

 

 

 

 

 

 

Fig. 2.6. Microglial distribution in the embryonic cortical wall. Absolute localization of the microglial cells 

in the cortical wall. The left axis represents the location of the microglia within the cortex relative to the entire 

thickness of the cortex (the distance between the ventricular lining and cell soma divided by the straight 

distance between ventricular lining and pia) shown in %, with 0% corresponding to the ventricular lining and 

100% to the pia. The right grey scale axis indicates by its darkness the percentage of microglial cells that are 

located at a specific position in the cortical wall. The darker the color is and the wider the width of the column, 

the higher the percentage of cells at that position in the cortical wall. At E12.5, microglial cells are mostly 

located close to the ventricular lining and to the pial surface (indicated by the dark groups between 0-20% and 

80-100%). From E13.5, these cells start to spread in order to populate the cortical layers in between. From 

E15.5 on the developing cortical plate is marked by an almost complete absence of microglial cells (indicated by 

the small, light groups between 80-100%). Measurements were performed on 3 embryos per age; number of 

cells in each age group: E12.5 n= 50; E13.5 n= 66; E14.5 n= 102; E15.5 n= 70; E16.5 n= 137 and E17.5 n= 

142. 
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Time series analysis in live brain slices at E12.5, E14.5 and E17.5 revealed the heterogeneous and 

dynamic nature of the embryonic microglial cells. At E12.5, few microglial cells were present in the 

cortex and most of them had a predominant amoeboid morphology, however some cells displayed 

motile processes. The mean microglial migration speed was 26 ± 4 µm/h (11 cells) (Fig. 2.7B and 

E). At E14.5, the migration speed was increased to 31 ± 2 µm/h (39 cells) (Fig. 2.7C and E). 

Cells located close to the pial surface were seen to exit this structure and enter the cortical 

parenchyma. Conversely, microglial cells located in the parenchyma were seen to migrate into the 

pial surface, suggesting a complex behaviour that cannot reflect the colonization process leading to 

the invasion of the cortex only. The main migration direction of the cells was from the outside 

(being the region at the pial surface and the region next to the ventricle) to the middle of the wall 

(Fig. 2.7C white arrow). At E17.5 the migration speed (22 ± 1 µm/h; 37 cells) had significantly 

decreased (p < 0.001; Kruskal-Wallis test) compared to E14.5 (Fig. 2.7D and E). Again the main 

migration direction of the cells was from the outside (being the region next to the ventricle) to the 

middle of the wall (Fig. 2.7D white arrow). Plotting for each age the cumulative frequency of the 

average distance the microglial cells travel per step (Fig. 2.7F) shows that this is significantly 

smaller at E17.5 compared to E14.5 (p < 0.001; Kruskal-Wallis test). 

In these relatively long imaging experiments (5 to 7 hours, with 10 minutes interval) we observed 

that microglial movement did not occur continuously, but was characterized by phases of active 

migration interspersed with stationary phases, a pattern that can be described as saltatory 

locomotion and, at E14.5 and E17.5, the cells displayed highly motile processes. Imaging for one 

hour with a 2 minute interval at E14.5 (Fig. 2.8) confirmed that the embryonic microglia are very 

dynamic cells, constantly sending out (Fig. 2.8 closed arrowheads) and retracting (Fig. 2.8 open 

arrowheads) processes, which suggests they can already survey their local environment, as 

observed in the adult [34]. 

 

 

 

 

 

(next page) Fig. 2.7. Microglial migration in the embryonic cortical wall. (A) Representation of the 

different axes in the tissue slice for time-lapse imaging experiments. (B) Representation of microglial migration 

at E12.5 (length recording = 5 hours). The pial surface is located closest to the coordinate 0 on the y-axis. 

Many eGFP cells are present at this pial surface (yellow arrowheads). Asterisks indicate the start position of the 

microglial cells.  (C) Representation of microglial migration at E14.5 (length recording = 7 hours). The 

orientation and marks are as described in panel B. There is some heterogeneity between microglia concerning 

their movement; some microglial cells migrate long distances whilst others remain approximately at their start 

position. White arrows indicate the main migration direction for cells located at the pial surface and cells located 

at the ventricular side. Dashed-dotted lines and dotted lines indicate respectively the beginning and ending 

positions in the y-direction. (D) Representation of microglial migration at E17.5 (length recording = 5 hours). 

The pial surface is located at the same side of the coordinate 0 on the y-axis however not visible due to the 

thickness of the wall at this age. Asterisks indicate the start position of the microglial cells. White arrow 

indicates the main migration direction for cells located at the ventricular side, dashed-dotted line and dotted 

line indicate respectively the begin and end position in the y-direction. (E) Migration speed of the microglial 

cells significantly changed during development with a peak at E14.5. (F) Plot showing the cumulative frequency 

of average distance the microglial cells migrate in between two steps during the whole recording session at 

E12.5 (red), E14.5 (green) and E17.5 (blue). The distance travelled by the cells significantly changed during 

development with a peak at E14.5.  (E-F) Number of cells in each age group: E12.5 n= 6; E14.5 n= 39 and 

E17.5 n= 37. The imaging for the time-lapse experiments always started from a minimum depth of 50 µm 

under the cutting surface of the slice. (*** p < 0.001). 
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Fig. 2.8. Time-lapse confocal imaging demonstration of microglial cell behaviour at E14.5. A 

microglial cell showing highly dynamic behaviour. It seems to be scanning the environment by constantly 

sending out (closed arrowheads) and retracting (open arrowheads) protrusions. At 30 minutes the cell starts 

sending out more protrusions in the same direction after which it drags the cell soma in the same path resulting 

in a displacement of the cell. Images are cropped z-projections (5 optical slices with a z-step of 8µm and time 

interval of 2 minutes). Scale bar = 20µm.  

 

2.5 Discussion 

In this work, we show that cortical invasion by embryonic microglia is a complex process. We 

provide evidence that microglial cells and/or precursors accumulate at the pial surface of the cortex 

before they invade the parenchyma. Within the parenchyma they display a “resting” 

immunohistochemical phenotype but they are far from being static cells. An accumulation of 

microglial cells is also present in the choroid plexus primordium, which is related to the presence of 

cell death in this structure. Consequently, microglial cells in the proximity of the dying cells present 

a phagocytic phenotype. 

2.5.1 Initial invasion of the embryonic cortex occurs in different phases  

The colonization of the embryonic cortex by microglia occurs in three phases. The first one is 

characterized by a slow increase of microglial cells between E10.5 and E14.5. From E14.5 to E15.5 

there is a rapid phase with a massive increase in microglia being followed by a second slow phase 

from E15.5 until E17.5. The increase in microglia cells during early development of the cortex could 

result from both microglia precursor cell invasion and microglial proliferation during invasion as 

suspected in the brain of the human fetus [57, 431]. Early in development (E11.5 – E13.5), more 
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than 20% of the microglial cells in the cortex are actively proliferating. After E14.5 there was a 

drastic increase in microglial cell number, which could not be explained by cell proliferation alone, 

since the percentage of proliferating microglia steeply decreased from E14.5 on. These 

observations suggest that proliferation of resident microglia plays an important role in the first 

invasion phase but lesser in the second one, which is probably the result of microglia entering the 

parenchyma from peripheral sources. These results are consistent with findings made by others in 

mouse embryos. In the embryonic mouse retina, the colonization occurs in two invasion waves, 

although at earlier developmental stages than in the cortex, with the first one occurring between 

E11.5 and E12.5, and the second one from E12.5 on [432]. In the embryonic mouse spinal cord 

the massive rise in cell number and cell density was observed earlier (around E12.5) than in the 

cortex [37]. 

At E12.5, most microglial cells in the cortex were located close to the pial surface and to the lateral 

ventricles.In addition, at all developmental stages single and groups of microglial cells were 

present in the lateral ventricle, as free floating or attached to the ventricular wall, and many eGFP 

cells were lining the pial surface of the brain. This suggests that microglia have entered the cortical 

parenchyma by crossing the pial membrane and ventricular wall, as suggested earlier by others 

[91]. Afterwards they spread throughout the entire cortical wall. From E15.5 on, when the third 

invasion phase takes place, the microglial cells are mainly located in the ventricular and 

intermediate zones of the cortical wall, avoiding the cortical plate region. This suggests that 

microglia could play a role in the proliferation and development of the progenitor cells located in 

the ventricular zone of the cortex. Indeed, studies on primary cultures indicate that microglial cells 

can influence progenitor proliferation, at least in vitro, as well as neurogenesis and astrogenesis 

[400, 433]. 

Since only a small number of microglial cells were present in the cortical plate region from E15.5 

on we suggest that at these later ages the microglial cells use a different route to enter the cortical 

parenchyma than just the “simple” crossing of the pial surface. Based on our observations (data 

not shown) we hypothesize that, when the complexity of the cortical wall increases, the microglia 

travel along the pial surface towards the interhemispheric fissure and enter the cortex via the 

hippocampal primordium, whereupon they travel tangentially and radially to reach their final 

position in the cortical parenchyma. 

2.5.2 Microglial cells accumulate in a region where developmental cell death occurs 

At early developmental stages, an accumulation of activated microglial cells was observed in the 

choroid plexus primordium. In mice, the choroid plexus structure first appears at E11 and 

subsequently undergoes major morphological changes, which in turn results in an already well 

differentiated and quite extensive structure by the age of E14. [426, 428, 429]. The presence of 

this microglial aggregation and activation coincides with the occurrence of developmental cell death 

in this structure, as was visualized by cleaved caspase-3. The phagocytic morphology of the 

microglia in the choroid plexus primordium and their immunoreactivity for Mac-2 indicate that 

these cells have acquired a phagocytic phenotype in order to clear the apoptotic cells. An 

observation that has also been made in the brain of zebrafish embryos [434] and mouse embryonic 
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spinal cord [37]. It has been shown that microglial cells promote neuronal cell death in the 

developing mouse cerebellum [141] and hippocampus [142]. Accordingly, it is reasonable to 

hypothesize that the microglia observed in the choroid plexus primordium can also influence the 

developmental apoptosis in this structure.  

2.5.3 Embryonic microglial cells are highly dynamic cells that scan their local 

environment during their migration process 

Time-lapse imaging demonstrates that embryonic microglia have a highly dynamic nature with a 

high motility during their invasion process, a property that has also been described in the 

embryonic zebrafish [93, 435]. This is in contrast with microglia in the healthy, adult brain in which 

they are generally randomly localized and display no migration pattern. Surprisingly, besides the 

wandering of these cells throughout the parenchyma, live imaging showed that the embryonic 

microglial cells were constantly sending out and retracting processes during their migration 

process. This behaviour has already been described for microglia in the adult mammal CNS [34] 

but not in the embryonic brain. This scanning property of embryonic microglia processes was 

observed at E14.5 and E17.5 (and to a lesser extent also at E12.5) and probably reflects their 

capability to continuously scan their local environment, as described in the adult [34, 436]. During 

development, we saw an increase in the proportion of microglia with extensions; in addition to a 

simple change in their morphology and activation state this could also reflect a change in their 

dynamic nature. This suggests that classification of microglia according to their morphology highly 

reflects their momental shape, and thus not necessarily reflects their maturation. Accordingly, 

quantitative analysis of microglial morphology showed that at the age of E14.5, approximately 60% 

of the microglial cells had a branched morphology. 

2.5.4 Conclusion 

In conclusion, our results demonstrate that microglial cells invade the cortical parenchyma in three 

waves. During this colonization process the microglia display a dynamic behaviour. Our data 

indicate that although the embryonic microglial cells have the same origin, their invasion pattern 

and behaviour differ depending on the CNS structure they invade. Probably, the local environment 

plays an important role in determining their function during embryonic development. 
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Age-specific function of α5β1 integrin in 

microglial migration during early colonization of 

the developing mouse cortex 
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3.1 Abstract 

Microglia, the immune cells of the central nervous system, take part in brain development and 

homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and 

colonize the brain mainly through intensive migration. During development, microglial migration 

speed declines which suggests that their interaction with the microenvironment changes. However, 

the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we 

aimed to better characterize the migration behaviour and to assess the role of matrix-integrin 

interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-

fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro 

work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse 

microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory 

pattern and is developmentally regulated. Most importantly, there is an age-specific function of the 

α5β1 integrin during microglial cortex colonization. At embryonic day (E)13.5, α5β1 facilitates 

migration while as from E15.5, it inhibits migration. These results indicate a developmentally 

regulated function of α5β1 integrin in microglial migration during colonization of the embryonic 

brain. 

3.2 Introduction 

Microglia, the immune cells of the central nervous system (CNS), are renowned as the first line 

defense during brain disease. The last decade researchers have been exploring the plentiful non-

immunological tasks of these cells and found them to be involved in normal brain development and 

homeostasis, through influencing neurogenesis, axonal growth, synapse refinement, blood vessel 

branching and clearance of dying neurons [8, 437]. Microglial cells originate from primitive myeloid 

progenitor cells that arise from the yolk sac at embryonic day (E) 7.5 in mice. Primitive 

macrophages migrate to the CNS using the blood circulation and adopt a microglia phenotype when 

they invade the brain and spinal cord parenchyma around E10.5 and E11.5, respectively [20, 37, 

72]. Several signaling pathways were recently proposed to be involved in microglia recruitment to 

the embryonic brain in vivo, including components such as colony stimulating factor-1 receptor 

(CSF1R), matrix metalloproteinases (MMPs), vascular endothelial growth factor receptor (VEGFR), 

Fractalkine receptor (CX3CR1) and stromal cell-derived factor 1 (SDF-1)/CXCR4 [59, 62]. Cortical 

colonization depends mainly on microglial invasion and migration since only a minority of these 

cells proliferates within the parenchyma during this developmental period [72]. Despite the fact 

that parenchymal migration of microglia is essential to brain colonization, the mechanisms allowing 

microglial dispersion have never been investigated in vivo [59, 71]. 

Cell migration relies on interactions with the extracellular matrix (ECM). Cell-ECM adherence is 

regulated through integrins, which are transmembrane heterodimeric cell adhesion receptors 

composed of a non-covalently linked α and β subunit. Upon activation, the β subunit physically 

links the ECM with the cytoskeleton and enables the cell to transduce forces necessary for soma 

displacement [272]. Twenty four different integrin heterodimers exist in vertebrates with varying 

ligand binding properties and cell and tissue distributions. They translate ligand binding signals to a 

broad array of cell responses, such as cytokine production, proliferation, differentiation and 
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migration [308]. Our research group previously showed that microglial migration speed changes 

during cortex colonization in the mouse embryo [72] which suggests the interaction of microglia 

with their local environment changes during the course of early development. Several in vitro 

findings point to a possible functional role of microglial interactions with fibronectin (an ECM 

protein) in migration during embryonic development. Fibronectin, a heterodimeric glycoprotein 

abundant in most tissues, is an important component of basement membranes. It is expressed in 

the developing mouse CNS [284, 290, 296] and is essential for normal embryonic development 

[438] where it regulates cell differentiation and migration in general [313, 438]. Microglia in vitro 

express the corresponding major fibronectin receptor, α5β1 integrin [356, 359] and it has been 

shown in vitro that these cells can migrate along fibronectin matrix [356, 370]. Moreover, they can 

interact with blood vessels that are known to express fibronectin during development [92, 99, 296, 

313, 354, 439, 440].  

Here, we explore the role of microglia-fibronectin interactions, mediated through α5β1 integrin, 

when the developing embryonic neocortex is colonized by microglia. We use ex vivo acute brain 

slice preparations in order to maintain the physiologic 3D brain environment, which is essential for 

studying normal migration behaviour [283, 441, 442]. We first extensively characterize microglial 

migration behaviour at E13.5, E15.5 and E17.5 using 2-photon time-lapse microscopy. We then 

analyse the presence of fibronectin in the developing cortex using immunofluorescence and 

western blotting and determine the expression level of α5β1 integrin receptor using flow cytometry 

on acutely isolated embryonic microglia. Finally, we assess the functional importance of fibronectin-

α5β1 interactions during microglia contact with blood vessels and during parenchymal migration.  

3.3 Materials and Methods 

3.3.1 Animals 

Wild type mus musculus C57BL/6 JOlaHsD females (Harlan, The Netherlands) were mated 

overnight with CX3CR1eGFP/eGFP knock-in males, obtained from the European Mouse Mutant Archive 

(EMMA) with the approval of Jung et al. [403]. The next morning, females were checked for the 

presence of a copulation plug and designated E0.5. Pregnant mothers were sacrificed at E13.5, 

E15.5, E17.5 by cervical dislocation. Resulting CX3CR1+/eGFP embryos harbor green fluorescent 

microglia, monocytes and subsets of natural killer cells and dendritic cells, without the 

disadvantages of a full CX3CR1 gene deletion [403]. All experiments were conducted in accordance 

with the European Community guiding principles on the care and use of animals and with the 

approval of the Ethical Committee on Animal Research of Hasselt University. Mice were maintained 

in the animal facility of Hasselt University in accordance with the guidelines of the Belgian Law and 

the European Council Directive. 

3.3.2 Markers 

The following primary antibodies were used: anti-fibronectin (1:100 for immunohistofluorescence, 

1:1000 for western blotting, #Ab2413, Abcam), anti-β-actin antibody (1:10.000, #Sc47778, Santa 

Cruz), anti-α5-Phycoerythrin (clone 5H10-27 (MFR5), 1.5µg/ml, #557447, BD Biosciences). 

Isolectin GS-IB4 from Griffonia simplicifolia conjugated to Alexa568 (5µg/ml for time-lapse imaging, 
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10µg/ml for immunohistofluorescence, #I21412, Life Technologies) was used to mark blood 

vessels. For blocking experiments, anti-α5β1 (clone BMC5, 10µl/ml, #NBP2-29788, Novus) or 

isotype control (clone RTK4174, 10µl/ml, #400710, Biolegend) were used. The following secondary 

antibodies were used for immunohistofluorescence: anti-rabbit-Alexa555 (1:500, #A31572, Life 

Technologies), anti-rabbit-Alexa647 (1:500, #A21245, Life Technologies); and for western 

blotting: anti-rabbit and anti-mouse-HRP (1:2000, #P0217 and 1:5000, #P0447, DAKO). 

To label fibronectin, we used a polyclonal anti-fibronectin antibody [443]. Fibronectins are 

disulphide linked heterodimeric molecules of 235–270 kDa. Fibronectin molecular isoforms arise via 

alternative splicing of a single gene. Specificity was determined by the manufacturer by western 

blotting on different mouse tissue lysates and a single band was obtained around 250 kDa as 

predicted for the molecular weight of a single fibronectin subunit [313]. In time-lapse experiments 

related to microglia-blood vessel contact assessments, isolectin GS-IB4-Alexa568 was added to the 

migration medium to visualize blood vessels [444]. It is widely used to label blood vessels and 

microglial cells in slice cultures and does not activate microglial cells [445]. To label α5β1 integrin 

on microglial cells dissociated from cortex homogenates for flow cytometry, we used a monoclonal 

anti-α5-Phycoerythrin conjugated antibody [446]. Because the α5 integrin subunit (alternatively 

named CD49e and VLA-5) exclusively associates with the β1 subunit, we consider its presence to 

be in heterodimeric form with β1 [337].  

3.3.3 Time-lapse imaging 

E13.5, E15.5 and E17.5 embryonic brains were isolated and sliced as described before [72]. Slices 

were transferred to MilliCell organotypic inserts (Merck Millipore) in a 24-well plate designed for 

confocal microscopy (IBIDI) and maintained in semidry conditions as described before [72]. Slicing 

quality was verified using the dissection microscope and slices that showed aberrant morphology 

(ruptures, insufficient flatness) were excluded from time-lapse measurements. In blocking 

experiments, migration medium was supplemented with either a function blocking antibody 

specifically targeting the α5ß1 integrin dimer [447] or with isotype control. Specificity of the α5ß1 

antibody was verified by the manufacturer by the antibody’s ability to immunoprecipitate α5ß1 

heterodimers from (125)-I-surface labelled cells, by reciprocal depletion of α5ß1 antigen from cell 

lysate with antiserum against the cytoplasmatic domain of the α5 subunit, and by 

immunoprecipitation of α5ß1 integrin from cells known to express this integrin.  

Image acquisition started after 1 h of tissue equilibration at 35°C with 5% CO2 and within 3.5 h 

after decapitation. During measurements humidified air with 5% CO2 was continuously applied to 

the slice, kept at 35°C. Per experiment (1 mother animal), six slices were imaged sequentially and 

this was repeated every 10 min during 6 h using the ‘multitime macro’ in the Zeiss LSM510 

software (version 4.2 SP1, Zeiss) on an inverted Zeiss Axiovert 200M microscope with a Zeiss LSM 

510 Meta confocal laser scanning system and a 20x EC plan-Neofluar objective (NA of 0.5 and 2 

mm working distance). A Mai Tai DeepSee Ti:Saphire laser (Spectra-Physics) with a central 

wavelength tuned at 900 nm was used to visualize eGFP positive microglial cells and isolectin GS-

IB4-A568 labeled blood vessels. Z-stacks spanning 30 μm, with serial optical sections (voxel size 
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0.88 x 0.88 x 3.3 µm) were recorded starting from a minimal depth of 50 μm beneath the surface 

of the slice to avoid cells activated by slicing [448, 449].  

3.3.4 Migration tracking and analysis 

Image processing and migration tracking were performed using open source Fiji software (ImageJ 

2.0.0-rc-643/1.50i). Time series were first corrected for 3D drift using the 3D drift correction plugin 

and microglial migration was manually tracked in 4D using the MTrackJ plugin designed by Erik 

Meijering [415]. Only cells remaining in the field of view for at least 100 min were included in the 

analysis. Per experiment, at least one control and/or isotype condition were performed.  

Average migration speed (μm/h) was calculated as the total length of the travelled path divided by 

the duration of the track. The immobile fraction was calculated as the percentage of total microglia 

that did not migrate further than 45 µm over the total imaging time span. This threshold 

corresponds to 3 times the average cell diameter and was applied because of small errors due to 

residual tissue drift after 3D drift correction and manual tracking. Relative idling time was 

calculated using a custom made Excel macro developed by Gorelik et al [450] and is defined as the 

percentage of time the cell spent on pausing, further designated as idling, with regard to the total 

duration of the track. The threshold for idling was set at roughly half a cell diameter (8 µm) per 10 

minutes and was verified by inspecting subsequent displacements of non-migratory cells in 

MTrackJ. Instantaneous speeds of the active migration events (vinst. act. = µm/min), i.e. events 

above the idling threshold of 0.8 µm/min, were calculated as the distance travelled between each 

time frame, divided by the frame interval (10 min). Migration parameters are grouped under 

treatment and age. At least 8 slices from embryos of 5 different mothers were quantified. For zone 

specific analysis of migration speed (Fig. 3.8), the respective zones were cropped from the 

dataseries based on the transmission image and cells were tracked as described above. 

3.3.5 Fixed tissue preparation and immunohistofluorescence 

Pregnant mice were sacrificed and embryonic tissue was processed as described before [72]. 10-20 

µm coronal sections were cut on a Leica CM3050S cryostat, mounted on Superfrost Plus slides 

(ThemoFisher) and stored at −20°C until staining. For fibronectin stainings, sections were washed 

and blocked during 1 h with PBS-20% NXS (Normal Goat or Donkey Serum, Chemicon). All steps 

occurred at room temperature (RT) unless stated otherwise. Primary antibody was diluted in PBS-

1% NXS and incubated overnight at 4°C. For fibronectin-isolectin GS-IB4 double labelling, the 

isolectin was incubated at 10µg/ml together with the primary antibody overnight at RT. Sections 

were washed 3 x 10 min in PBS and incubated 1 h with the secondary antibody diluted in PBS-1% 

NXS. Sections were washed 3 x 5 min in PBS, submerged in distilled water and mounted using 

vectashield including 4,6-diamidino-2-phenylindole (DAPI) (Vector, Burlingame). For negative 

controls, primary antibodies were omitted. Secondary antibodies were centrifuged 5 min at 5000 

revolutions per minute prior to use.  
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3.3.6 Microscopy and mean grey value assessment 

Images of fibronectin immunostainings were acquired using a Digital sight DS-2MBWc fluorescence 

camera adapted on a Nikon Eclipse 80i microscope. Fibronectin presence was quantified in the 

embryonic cerebral cortex area located dorsally to the lateral ganglionic eminences (LGE) and 

medial ganglionic eminences as previously described [72]. Background signal was determined 

using the line plot profile tool in Fiji for each image separately. Signal below 2.5 times the 

background was removed. In each slice a region of interest (ROI; white dotted lines Fig. 3.4 A) 

was determined including the entire cortex but excluding the meninges. The mean grey value, 

defined as the average grey value of all pixels inside the ROI, was assessed using the ‘Measure’ 

function in Fiji. These measurements resulted in a mean grey value per pixel (0.16 µm²) 

automatically corrected for the surface of the ROI and therefore also for the size of the growing 

cortex. Slices were from 3 different embryos of at least 2 different mothers. 

Images of fibronectin-isolectin GS-IB4-A568 double immunostainings (20 µm tissue sections) were 

acquired using an inverted Zeiss Axiovert 200M microscope with a Zeiss LSM 510 Meta confocal 

laser scanning system. An Arg-ion laser at 488 nm, a HeNe laser at 543 and 633 nm and a Mai Tai 

DeepSee Ti:Saphire laser (Spectra-Physics) tuned at 710 nm were used for excitation of eGFP, 

Alexa568, Alexa647 and DAPI, respectively. Overview pictures (voxel size 0.44 x 0.44 x 1 µm; 10-

15 µm Z-stacks) were acquired using a 40x LD C-Apochomat/1.1 W Korr UV-Vis-IR objective 

(NA=1.1) with the Zeiss Laser scanning microscope LSM510 software. A 4x confocal zoom was 

applied to cells of interest (voxel size 0.11 x 0.11 x 2 µm). 

3.3.7 Western blotting  

Embryonic brains were isolated as described before [72], the meninges were removed, cortices 

were excised and stored at -80°C. Cortices were lysed in cold RIPA buffer (50mM Tris pH 7.4; 

150mM NaCl; 1mM EDTA; 1% NP-40; 0.25% Na-deoxycholate; protease inhibitor (#11873580000, 

Roche)). Protein concentrations of individual cortices were determined by the BCA protein assay kit 

(#23225, Thermo Fisher). Samples containing equal amount of proteins (10 µg) were separated on 

a 12% SDSPAGE gel, transferred to a polyvinylidene fluoride (PVDF) membrane and blocked for 1 h 

with Tris buffered saline-0.1% Tween 20 (TBS-T) containing 5% milk powder (Marvel) followed by 

incubation overnight at 4°C in the presence of anti-fibronectin antibody. Mouse anti-β-actin 

antibody was subsequently incubated for 2 h followed by horseradish peroxidase-conjugated 

secondary antibodies incubation for 1 h. All antibodies were diluted in blocking buffer and 

incubations were at RT unless stated otherwise. Enhanced chemiluminescence using the Pierce ECL 

Plus Western Blotting Substrate (#32132, Thermo Scientific) was used before imaging with the 

ImageQuant LAS4000 mini (GE Healthcare Life Sciences). Quantification was performed using 

ImageQuantTL.   

3.3.8 Microglia isolation and flow cytometry  

Cortical microglia from CX3CR1+/eGFP E13.5, E15.5 and E17.5 brains were isolated as described 

before [451] with modifications. The tissue was mechanically homogenized in neurobasal medium 

(Gibco, Thermo Fisher Scientific) supplemented with 2mM L-glutamine, N2 supplement, B27 
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supplement and 1% penicillin/streptomycin (all from Thermo Fisher Scientific). The homogenate 

was centrifugated 5 min at 700 g at 4°C, the pellet was resuspended in cold PBS and stained with 

Fixable Viability stain 620 (FVS620) (BD Biosciences) during 10 min at RT. Cell suspensions were 

fixed in 4% PFA during 10 min, washed and dissolved in PBS. Cells were incubated for 15 min on 

RT with an α5- Phycoerythrin conjugated antibody in PBS. After washes, cells were acquired in a 

FACS Fortessa (BD Biosciences) and analysed with FACS Diva 8.0.1 software (BD Biosciences). 

Within the living cell population (FVS620 low) the eGFP positive microglia (110-4799 cells per tube) 

were gated. Within the microglial population, the percentage of α5 positive microglia and its 

median fluorescence intensity (MFI) were analysed. Because α5 measurements were part of a 

panel not further described here, Fluorescence-minus-one (FMO) controls (for justification see 

[452]) were used to gate the positive cell population. At E13.5, embryos were pooled per 2 or 3 

(N=8). At E15.5 (N=16) and E17.5 (N=20), embryos were analysed separately. Data were 

obtained from 3 different mothers (M=3). 

3.3.9 Microglia-blood vessel contact analysis 

To quantify microglia-blood vessel interactions, we added isolectin GS-IB4-A568 (see section ‘Time-

lapse imaging’) in the imaging medium  1 h prior to imaging onset to visualize blood vessels. 

Quantification occurred on the 30 µm Z-stacks acquired from 3 h after onset of imaging, in order 

for the GS-IB4 labeling to sufficiently penetrate the tissue, until 6 h. Only cells located in the 

parenchyma and that were visible during at least 9 subsequent time points were included in the 

analysis. For each cell throughout the Z-stack at each time point, the type of contact was noted as 

full soma, touching with a process or no contact (free). Microglia that made contact with a blood 

vessel (soma or process) during 1 or more frames, were considered to be in contact with blood 

vessels for the analysis in Fig. 3.5C and a percentage was calculated per slice. The percentage of 

time each cell spent on a particular contact (Fig. 3.5D) was calculated and data from cells were 

pooled per treatment and age. At least 7 different embryonic brain slices (N=7) of 3 different 

mothers (M=3) were quantified per treatment. All blood vessel contact analyses were performed 

blinded. 

3.3.10 BV-2 Transwell assay 

The immortalized mouse microglial BV-2 cell line was cultured in Dulbecco's Modified Eagle's 

medium (DMEM (D5796), Sigma) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% 

penicillin-streptomycin (P/S, Invitrogen). For transwell assays, cells were serum starved overnight.  

Confluent cell cultures were detached by trypsin-EDTA treatment (T3924, Sigma) after rinsing with 

PBS. BV-2 cell basal migration assays were performed using Corning transwell membrane filters (8 

μm pore size, Corning Costar). Inserts were precoated with fibronectin (0.1; 1 and 10 μg/ml; 

Sigma) for 1 h at 37°C, washed twice in PBS and placed in a 24 well plate containing serumfree 

medium. Cells (1x105/100µl) were preincubated during 30 min in the top well in serum free 

medium. Serumfree medium in the bottom well was then changed for serumfree medium 

containing the integrin α5β1 function blocking antibody (5µg/ml) or isotype control (5µg/ml) (see 

“3.3.2 Markers”). After 6 h, cells were fixed in 4% PFA and stained with 0,05% crystal violet for 2 

min. Remaining cells were removed from the upper side of the membrane using cotton swabs. 
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Three non-overlapping regions (1141µm x 856µm, 10x objective) were photographed per insert 

using a Zeiss Primovert microscope coupled to an Axiocam camera. Median grey values of whole 

images were determined, averaged per insert and considered as a measure for migration, further 

referred to as “migration index”. Treatment conditions were normalized to control (serumfree 

bottom well). Data are from 4 independent experiments (N). Each insert represents n=1.  

3.3.11 Statistical analysis 

The number of analysed cells, steps or inserts is indicated as “n”, the number of embryos or slices 

as “N” and the number of mothers or independent experiments as “M”. The #cells/#embryos or 

slices/#mothers is thus designated in the text as n/N/M unless stated otherwise. The reader is 

referred to the figure legends for details about the sample size used for statistical analysis. Data 

are described in the text as “median [interquartile range (IQR)]” according to standards for 

describing nonparametric data [453]. Statistical analyses and graphs were produced using SAS 

JMP® Pro 12.1.0. Data are represented as box plots with whiskers to 1.5x the IQR (Tukey 

representation). Data distributions were assessed for normality (Shapiro-Wilk) and equality of 

variance (Brown-Forsythe). In case these assumptions were met for all groups, a Student t-test in 

case of 2 groups or ANOVA was performed in case of three groups followed by Tukey HSD post-

hoc, correcting for multiple comparisons. In Fig. 3.4D, 4H and 9C data were transformed on a 

log10 scale to meet the equality of variance assumption, though the original scales were used for 

data presentation for ease of interpretation. When data distribution of least one group was non-

gaussian, nonparametric tests such as Mann-Whitney in case of two groups or Kruskal-Wallis with 

Dunn’s multiple comparison post-hoc in case of three groups were performed. P-values smaller 

than 0.05 were considered significant with * P<0.05, ** P<0.01 and *** P<0.001. P-values 

smaller than 0.1 were considered as a trend (~).  

3.4 Results 

3.4.1 Microglial migration speed decreases with development  

Microglial colonization of the embryonic mouse brain cortex occurs in three phases based on 

microglial density: an initial phase of fast increasing cell density from E10.5 until E14.5, followed 

by a plateau phase between E14.5 and E15.5, and a third invasion phase after E15.5 [72]. During 

mammalian development these cells are already highly mobile, with the capacity to phagocytose 

dying cells and scan the microenvironment as observed in the adult brain [34, 71, 72, 454]. Two-

photon time-lapse microscopy was used in this study to investigate developmental changes in 

microglial migration within the time frame of ongoing neuronal migration [72, 455]. To this end, 

acute brain slices obtained from E13.5, E15.5 and E17.5 CX3CR1+/eGFP embryos were used, 

representing the 3 aforementioned phases in microglial development. Migration was analysed 

starting from E13.5, because on E12.5 very few cells reside yet in the cortical parenchyma and 

mobility is low [72]. We focused our analysis on the cerebral cortex area located dorsally to the 

lateral ganglionic eminences (LGE) and medial ganglionic eminences (MGE) (see also Fig. 3.4A a1, 

b1 and c1) [72]. Representative Z-projections of time-lapse experiments with overlaid migration 

tracks are shown for each age in Fig. 1A.  



CHAPTER 3

 

73 

 

The cell average migration speed within one brain slice was highly variable (Fig. 3.1B). The 

median average speed at E13.5 (33.4 µm/h [IQR: 22.5-44.4]) did not differ significantly from the 

speed at E15.5 (33.63 µm/h [IQR: 21.2-47.4]) (Fig. 3.1B and C). At E17.5 average migration 

speed significantly decreased (24.2 µm/h [IQR: 15.7-34.3]) compared to E13.5 and E15.5 (Fig. 

3.1B and C). The decrease in speed suggests that with development, microglia start to acquire 

their final locations. To evaluate this presumption, we analysed the percentage of immobile cells 

per slice from E13.5 to E17.5 and found that the immobile fraction rose significantly from 0.0% 

[IQR: 0.0-2.1] at E13.5 to 9.1% [IQR: 3.1-15.1] at E17.5 (Fig. 3.1D). To rule out that the 

decrease in migration speed was solely due to an increase in immobile fraction, we reassessed the 

average migration speed of the mobile fraction. We also found a significant decrease in speed with 

development (E13.5 vs. E17.5 or E15.5: P<0.001, Kruskal-Wallis with Dunn’s post test) (data not 

shown).  

The parallel decrease in migration speed and increase in immobile fraction suggest that microglial 

migration speed is developmentally regulated during early colonization of the embryonic cortex. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Microglial migration is developmentally regulated. Microglia movement was recorded in acute 

brain slices during 6 h using 2-photon time-lapse imaging and cell somas were manually tracked. (A) 

Representative microglial migration tracks in different colors at E13.5 (left panel), E15.5 (middle panel) and 

E17.5 (right panel) (eGFP/microglia, green). The meninges is located at the top of the image and the ventricle 

at the bottom (not visible at E15.5 and E17.5). (B) Microglial average migration speed vav. (µm/h) decreased 

significantly over development (Kruskal-Wallis with Dunn’s, E17.5 vs E13.5 and E15.5, P<0.001). (C) 

Cumulative probability plots of migration speed with matching colors for the ages in (B). E17.5 migration speed 

distribution shows a shift to lower average speeds. (D) The percentage of immobile microglia significantly rose 

from E13.5 to E17.5 (Kruskal-Wallis with Dunn’s, P=0.014). Sample size (A-C) as n=cells /N=slices/M=mothers 

at E13.5: 160/18/12; E15.5: 170/10/8; E17.5: 341/14/9. n (cells) was used as sample size in statistical tests. 

Sample size (D) as N=slices/M=mothers at E13.5: 18/12; E15.5: 10/8; E17.5: 14/9. N (slices) was used as 

sample size in statistical tests. Scale bar=100 µm.  
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3.4.2 Microglia adopt a saltatory migration pattern over development  

In their migration process microglia first scan their environment, send out one or multiple 

processes, and displace their soma in the direction of one of the protrusions while retracting the 

others. Subsequently the cell idles, i.e. the migration of the cell body pauses, explores the 

environment again and the cycle is repeated (Fig. 3.2A; zoom-ins Fig. 3.3). This locomotion 

pattern can be described as saltatory and was observed at each age tested. To visualize this 

saltatory behaviour, the speed between two subsequent time points, defined as instantaneous 

speed, was plotted in function of time for three microglial cells that are representative for cells with 

high, intermediate and low average speeds (Fig. 3.2B). To better characterize the saltatory 

behaviour over development and to find the underlying mechanism of changes in average speed, 

the median relative idling time and the median instantaneous speed of the migration events above 

the idling threshold were determined [450]. For example, average speed can be decreased because 

the cells spend more time idling, and/or because when migrating, distances between subsequent 

time points become shorter. The relative idling time was calculated as the percentage of the time 

the cell spends on idling with regard to the total track duration [450] and was significantly 

increased over development (E13.5: 77.0% [IQR: 64.3-88.6], E15.5: 74.3% [IQR: 63.2-86.1], 

E17.5: 82.8% [IQR: 72.8-91.7]) (Fig. 3.2C). Instantaneous speed (µm/min) was calculated as the 

travelled distance between subsequent time points, divided by the frame interval and was found to 

be significantly decreased only between E15.5 (1.4 µm/min [IQR: 1.1-2.0]) and E17.5 (1.3 µm/min 

[1.0-1.8]) (Fig. 3.2D and E). 

Our results thus show that microglia during early colonization of the embryonic cortex migrate with 

jumps and that the developmental decrease in microglial average migration speed is due to the 

cells spending more time pausing and additionally migrating in smaller steps. 
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Fig. 3.2. Microglial migration behaviour. Experimental set-up see Fig. 3.1. (A) Z-projections (30 µm) of 

representative time-lapse sequences showing characteristic microglial jumping behaviour during migration at 

E13.5. The microglial soma (arrowheads) translocates in jumps. They first scan their environment (=idling, 

frames with red arrowheads) by sending out and retracting multiple processes and then migrate in the direction 

of one process (indicated by yellow arrows). The cell soma then displaces in the direction of that process 

(=active migration, frames with blue arrowheads) followed by a stationary phase during which the cells 

explores its environment again (=idling, frames with red arrowheads). The action of the cell towards the next 

time frame (interval=10min) determines the color of the arrowhead. Zoom-ins see Fig. 3.3. (B) Representative 

instantaneous velocity in function of time plots of a cell migrating at high (left panel), intermediate (middle 

panel) and low (right panel) speed. Plots show phases of active migration interspersed with idling, defined as an 

instantaneous speed lower than the threshold of 0.8 µm/min (dotted line). (C) Relative idling time increased 

significantly over development (Kruskal-Wallis, E17.5 vs E13.5 and E15.5, P=0.004 and P<0.001). (D) 

Instantaneous speed of the active migration events (v inst. act.) decreased over development (Kruskal-Wallis, 

E15.5 vs E15.5, P<0.001). (E) Cumulative probability plots of the data presented in (D) showing a shift to 

lower instantaneous speeds at E17.5. Sample size (C) as n=cells/N=slices/M=mothers at E13.5: 150/18/12; 

E15.5: 170/10/8; E17.5: 349/14/9. n (cells) was used as sample size in statistical tests. Sample size (D) as 

n=steps from cells in (C) at E13.5: n=832; E15.5: n=972; E17.5: n=1740. n (steps) was used as sample size 

in statistical tests. Scale bar=30 µm. 
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Fig 3.3. Microglial morphology changes during saltatory migration in the cortex at E13.5. Zoom-ins 

from the microglial cell in Fig. 3.2. Yellow arrows point to the process that is chosen to initiate directive 

migration. Frame interval=10 min. Scale bar=15 µm. 

3.4.3 Cortical fibronectin presence decreases over development 

Developmental changes in microglial migration might result from changes in the microenvironment. 

ECM proteins, such as fibronectin, are developmentally regulated [296]. Nevertheless, the 

deposition pattern of fibronectin in the embryonic mouse brain remains controversial [296, 439, 

440]. To bring clarity on this pattern at the ages relevant for this study, fibronectin’s deposition 

pattern in the embryonic cortex during the microglial colonization phase from E13.5 to E17.5 was 

analysed using immunostaining (Fig. 3.4A) and cortical mean grey value quantification (Fig. 

3.4B). Fibronectin was localized throughout the entire cortex at E13.5 as thick aggregates (Fig. 3.4 

A, a1-a4). At E15.5 (Fig. 3.4A, b1-b4) and E17.5 (Fig. 3.4A, c1-c4), fibronectin staining was 

less dense when compared to staining at E13.5. Mean grey value assessment (gray value scale 0-

255; immunostaining intensity) indicated that fibronectin deposition decreased (Fig. 3.4B) during 

the microglial colonization phase of the embryonic cortex. The median cortical fibronectin grey 

values were 13.8 [IQR: 11.7-7.2] at E13.5, 8.5 [IQR: 6.2-11.5] at E15.5 and 2.9 [IQR: 1.4-5.4] on 

E17.5, which all significantly differ from each other (Fig. 3.4B). To confirm the mean grey value 

measurements, the fibronectin protein content was determined on isolated embryonic cortices 

using western blotting (Fig. 3.4C). Quantification of fibronectin relative to β-actin showed that the 

cortical fibronectin contents at E13.5 (51.6 [IQR:33.1-77.3]) and at E15.5 (32 [IQR:22.9-37.9]) 

were significantly higher than at E17.5 (7.6 [IQR:4.3-17]) (Fig. 3.4D). 

Though fibronectin was diffusely localized in the parenchyma, developing blood vessels marked by 

isolectin-GS-IB4 (Fig. 3.4 E, e4) were highly immunoreactive for fibronectin (Fig. 3.4E, yellow 

arrowheads in e1, e3 for zoom-in), as reported extensively in literature [296, 354, 439, 440]. As 

previously described [37, 52, 92, 99] microglia were often found in close proximity with blood 

vessels (Fig. 3.4E).  

Thus, cortical fibronectin decreases with development and it is also deposited along blood vessels. 
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3.4.4 Fibronectin receptor α5β1 is expressed by microglia and is developmentally 

downregulated  

Microglia-ECM contacts are likely to be mediated by fibronectin-integrin interactions. In vitro 

adhesion of microglia to a fibronectin coated surface is regulated through fibronectin receptors, 

such as α5β1 integrin [356, 358, 359, 361]. This integrin heterodimer is described as the major 

fibronectin receptor and is well characterized on the molecular as well as the signaling level [278, 

308]. To determine the expression of α5β1 integrin on embryonic microglia in vivo, E13.5, E15.5 

and E17.5 cortices were isolated and the fibronectin receptor was immediately analysed after 

isolation using flow cytometry. Because the α5 integrin subunit exclusively associates with the β1 

subunit, a monoclonal antibody raised against α5 was used to identify α5β1 expression on 

microglial cells [337]. Microglial cells were gated based on eGFP expression, after exclusion of dead 

cells (Fig. 3.4 F). At E13.5, 99.8% [IQR: 98.8-100.0] of the microglial population expressed the α5 

subunit (Fig. 3.4G). This percentage did not change at E15.5 (99.9% [IQR: 99.5-100.0]), but it 

was significantly different at E17.5 (98.9% [IQR: 97.6-99.4]) compared to E15.5 (Fig. 3.4G). The 

median fluorescence intensity (MFI), an indicator of the expression level per cell, of the α5 positive 

microglia significantly decreased from E13.5 (12356 MFI [IQR: 11678-14330]) to E15.5 (9558 MFI 

[IQR: 8825-10207]) and to E17.5 (4479 MFI [IQR: 4202-4796]) (Fig. 3.4H).  

In conclusion nearly all embryonic microglia expressed the α5β1 integrin receptor but the 

expression level decreased in the course of development. 
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Fig. 3.4. Cortical fibronectin and fibronectin receptor on microglia decrease over development. (A) 

E13.5 (a1-4), E15.5 (b1-4), E17.5 (c1-4) coronal brain sections (DAPI, blue) with insets zooming in on the 

cortex (a2, b2, c2), indicating ROIs for analysis (white dotted lines in a3, b3, c3) and fibronectin staining (red, 

a4, b4, c4). Fibronectin was detectable as dense aggregates at E13.5 and with lower density at E15.5 and 

E17.5. (B) Mean grey value (MGV, 0-255) quantifications of the fibronectin immunostainings in the cortical 

areas marked in a3, b3 and c3. Fibronectin presence was significantly higher at E13.5 than at E15.5 (P=0.041) 

and E17.5 (P<0.001), while presence at E15.5 was significantly higher than at E17.5 (P<0.001) (Kruskal-Wallis 

with Dunn’s). (C) Representative western blotting for fibronectin deposition in the cortex at E13.5, E15.5 and 

E17.5 with β-actin as loading control. (D) Fibronectin western blotting quantification relative to β-actin. 

Fibronectin deposition was significantly higher at E13.5 compared to E17.5 (P<0.001), while deposition at 

E15.5 was significantly higher compared to E17.5 (P=0.001) (ANOVA with Tukey HSD on log10 transformed 

data). (E) Laser scanning microscopy images (Z-projections) showing E13.5 cortex (e1) with microglia (eGFP, 

green, e2), nuclear staining (DAPI, blue), fibronectin (greys, e3) and blood vessels (GS-IB4, red, e4). Microglia 

are frequently observed in the vicinity of blood vessels (inset zoom) and blood vessels show high fibronectin 

reactivity (e5, yellow arrowheads in e1). (F) Flow cytometry gating strategy to assess α5 integrin (fibronectin 

receptor) expression on microglial cells in panels G and H. (G) The percentage of α5 positive microglial cells 

subtly, however significant, decreased from E15.5 to E17.5 (Kruskal-Wallis with Dunn’s, P<0.001). (H) The 

expression level (median fluorescence intensity, MFI) of the α5 positive population significantly decreased from 

E13.5 to E15 to E17.5 (ANOVA with Tukey HSD on log10 transformed data, all P<0.001). At E13.5 embryos 

were pooled per 2-3 and at E15.5-E17.5 individual embryos were analysed. Sample size (B) as 
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n=slices/N=embryos/M=mothers at E13.5: 28/3/3; E15.5: 21/3/3; E17.5: 39/3/2. n (slices) was used as 

sample size in statistical tests. Sample size (D) as N=embryos/M=mothers at E13.5: 8/3; E15.5: 9/3; E17.5: 

9/3. N (embryos) was used as sample size in statistical tests. Sample size (G,H) as N=embryos/M=mothers at 

E13.5: 8/3; E15.5: 16/3; E17.5: 20/3. N (embryos) was used as sample size in statistical tests. FN, 

Fibronectin. Scale bar (A)=500 µm in a1, b1, c1; 100 µm in insets (all other panels). Scale bar (E) =50 µm in 

e1, 20 µm in e5. 

 

3.4.5 α5β1 integrin is dispensable for microglia contact with blood vessels 

Microglia are often observed in contact with blood vessels in the developing and adult CNS and in 

physiologic as well as in pathologic conditions [21, 92, 99]. However, the mechanical basis for this 

contact is unknown [21, 92, 456]. Based on our previous findings, the α5β1 integrin was suspected 

to mediate microglia attachment to blood vessels. Since microglia were reported to migrate along 

blood vessels after injury in rat postnatal slice preparations [99] and they made transient contacts 

with blood vessels in the developing zebrafish from 6 to 10 days post fertilization (dpf) [457], it 

was first determined whether α5β1 integrin could be important in the capability of microglia to 

migrate along blood vessels. Time-lapse imaging showed that microglia can use blood vessels as 

substrates to migrate in the cortex of the mouse embryo (Fig. 3.5A upper panel). However, α5β1 

blockage using a blocking antibody specifically targeting the α5β1 integrin dimer did not impair this 

capability of microglia to migrate along the surface of blood vessels (Fig. 3.5A lower panel). To 

confirm this observation, the percentage of microglia contacting a blood vessel was determined in 

the time-lapse sequences starting from 3 h after application of the α5β1 blocking. Two modes of 

contact were observed: full soma alignment (Fig. 3.5B left panel) and “touching” contacts between 

blood vessels and microglial cell processes (Fig. 3.4B middle panel). Because the process contact 

mode was less frequently observed, both contact modes were grouped under “microglia-blood 

vessel contact”. For comparison purposes, a free microglia not contacting a blood vessel is shown 

in Fig. 3.5B (right panel). At E13.5 and E17.5, 50.0% [IQR: 36.7-81.3] and 100% [IQR: 85.1-

100.0] of microglial cells contacted blood vessels in the presence of the isotype and the percentage 

did not change after α5β1 blockage (E13.5: 50.0% [IQR: 40.0-66.7], E17.5: 86.6% [IQR: 61.1-

100.0]) (Fig. 3.5C). The percentage of microglia contacting blood vessels significantly increased 

with development (Fig. 3.5C).  

Blocking α5β1 might have subtle effects on microglia behaviour, such as dynamic changes in 

contacts with blood vessels, which cannot be revealed by the analysis described above. Therefore 

we next investigated the percentage of time that each cell spent on contacting blood vessels - 

either by full soma contact, process contact or no contact as illustrated in Fig. 3.5B. The 

percentage of time spent on a particular contact was highly variable (Fig. 3.5 D). At E13.5 in 

control conditions, the median percentage of time microglia spent on contacting a blood vessel 

using their soma or using processes was 0.0% [IQR: 0.0-92.1] and 0.0% [IQR: 0.0-5.3], 

respectively. 84.2% [0.0-100.0] of the time, the cells made no contact. These values did not 

change after α5β1 blockage (5.3% [0.0-89.9], 0.0% [0.0-5.8] and 84.2% [5.6-100.0], for Soma, 

Process or no contact, respectively). At E17.5 in control conditions, the median percentage of time 

microglia spent on contacting a blood vessel using their soma or using processes was 21.1% [IQR: 

0.0-80.3] and 21.1% [IQR: 0.0-48.7], respectively. 23.7% [0.0-63.2] of the time, the cells made 
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no contact. These values did not change after α5β1 blockage (20.5% [0.0-59.2], 25.7% [0.0-54.0] 

and 10.5% [0.0-79.0], for Soma, Process or no contact, respectively).  

All together, these results indicate that α5β1 integrin is neither essential for the capability of 

microglia to migrate along blood vessels nor for microglia-blood vessel contact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. α5β1 integrin is not essential for microglia–blood vessel contact. (A) Time-lapse sequences 

(30 µm Z-projections) at E17.5 showing microglial cells (eGFP, green) capable to migrate (arrowheads) along 

the surface of blood vessels (GS-IB4, red) in control as well as after α5β1 integrin blockage in acute brain slices. 

Frame interval=10 min. (B) Modes of microglia-blood vessel contact: Full soma (left panel), touching with a 

process (middle panel) and free or no contact (right panel). (C) The percentage of microglia that made contact 

with a blood vessel during time-lapse recordings (3-6 hours after blocking onset) was not significantly different 

after α5β1 integrin blockage compared to isotype at E13.5 (Student t-test, P=0.813) nor at E17.5 (Mann-

Whitney, P=0.169). The percentage of microglia that made contact with a blood vessel rose significantly from 

E13.5 to E17.5 (Mann- Whitney, P=0.003). (D) The percentage of time spent per cell on a particular contact 

was not significantly affected by α5β1 blockage (Mann-Whitney, P=0.683; 0.802; 1.000 for % Soma; % 

Process; % Free at E13.5 and P=0.173; 0.343; 0.974 for % Soma; % Process; % Free at E17.5, respectively). 

Sample size (C) as N=slices/M=mothers at E13.5: 9/7 (Iso) and 7/3 (Ab); E17.5: 10/7 (Iso) and 12/3 (Ab). N 

(slices) was used as sample size in statistical tests. Sample size (D) as n=cells/N=slices/M=mothers at E13.5: 

41/9/7 (Iso) and 33/7/3 (Ab); E17.5: 86/10/7 (Iso) and 82/12/3 (Ab). n (cells) was used as sample size in 

statistical tests. Scale bar (A,B)= 30 µm. 
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3.4.6 α5β1 integrin blockage has opposite effects on microglia migration during the 

embryonic cortical development 

Based on the parallel decrease in microglial average migration speed, cortical fibronectin deposition 

and α5β1 integrin expression level on microglia during the developmental period analysed, it was 

hypothesized that the functional importance of this receptor during microglial migration would 

diminish over time. To address this issue, the same migration parameters as analysed for control 

migration (Figs. 3.1 and 3.2) were assessed, but in the presence of the α5β1 blocking antibody or 

isotype control in E13.5, E15.5 and E17.5 acute brain slices (Fig. 3.6). Representative time-lapse 

Z-projections overlaid with migration tracks are shown in Fig. 6A. There was no effect of isotypes 

on migration (Fig. 3.6B, Fig. 3.7, Fig. 3.1B).  

At E13.5 α5β1 integrin blockage caused a significant reduction (~25%) of the average migration 

speed (23.5 µm/h [IQR: 15.7-37.8]) when compared to isotype control (31.5 µm/h [IQR: 19.6-

44.0]) (Figs. 6B and D). Conversely, α5β1 integrin blockage at E15.5 and E17.5 significantly 

increased the migration speed to 41.3 µm/h [IQR: 27.8-56.7] (~14%) and 31.6 µm/h [IQR: 19.7-

50.9] (~17%) compared to isotype (E15.5: 36.2 µm/h [IQR: 23.7-49.3], E17.5: 27.0 µm/h [IQR: 

17.7-37.2]) (Figs. 6B, 6D). The effect of the antibody was indeed significantly different across 

ages (dotted lines with asterisks, Fig. 3.6B). Upon α5β1 blockage, the immobile fraction was 0.0% 

[IQR: 0.0-9.1] at E13.5, 0.0% [IQR: 0.0-8.3] at E15.5 and 3.1% [IQR: 0.0-8.0] at E17.5, which 

were not significantly different from isotype (0.0% [IQR: 0.0-13.2] at E13.5; 5.0% [IQR 0.0-7.7] 

at E15.5 and 5.0% [IQR: 0.0-10.9] at E17.5) (Fig. 3.6C). The effect of the antibody did not differ 

across ages. After exclusion of the immobile fraction in the average speed analysis, we found the 

same significant differences between isotype and α5β1 blockage (E13.5: P=0.016, E15.5: P=0.013, 

E17.5: P<0.001, Kruskal-Wallis with Dunn’s post test) (data not shown). This confirms that α5β1 

blockage does not affect the immobile microglial population.  

These results indicate that α5β1 integrin blockage affects the microglial average migration speed in 

opposite ways depending on the embryonic age, without affecting the proportion of immobile 

microglia. 
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Fig. 3.6. α5β1 integrin blockage at E13.5 decreases while at E15.5 and E17.5 it increases microglial 

migration speed. Microglia movement was recorded in acute brain slices in the presence of an α5β1 blocking 

antibody or isotype control during 6 h using 2-photon time-lapse imaging. Cell somas were manually tracked. 

(A) Representative microglial (eGFP, greys) migration tracks in different colors at E13.5, E15.5 and E17.5. The 

meninges is located at the top of the image and the ventricle at the bottom (not visible at E15.5 and E17.5). 

(B) At E13.5 α5β1 integrin blockage significantly diminished microglial migration speed vav. (µm/h) compared to 

isotype (P=0.017) while it caused an increase in migration speed at E15.5 (P=0.009) and at E17.5 (P<0.001) 

(all Kruskal-Wallis with Dunn’s). The effect of the blocking antibody was significantly different across ages 

(dotted lines; E13.5 vs. E15.5: P<0.001; E13.5 vs. E17.5: P<0.001; E15.5 vs. E17.5: P=0.001; all Kruskal-

Wallis with Dunn’s). (C) Immobile fractions after α5β1 integrin blockage at E13.5, E15.5 and E17.5 did neither 

differ significantly from isotype (all ages P=1.000), nor from control (E13.5 P=1.000; E15.5 P=0.525; E17.5 

P=0.146) (all Kruskal-Wallis with Dunn’s). The effect of the blocking antibody did not differ across ages (all 

ages P=1.000; all Kruskal-Wallis with Dunn’s). (D) Cumulative probability distributions (control in black, 

isotype in grey and α5β1 Ab in red) of average migration speed data in α5β1 blockage conditions show clear 

shifts from isotype and control distributions. Sample size as n=cells/N=embryos/M=mothers at E13.5: 

135/15/8 (Ab), 128/16/11 (Iso); E15.5: 227/11/6 (Ab), 180/11/7 (Iso); E17.5: 213/11/6 (Ab), 246/10/5 (Iso). 

n (cells) was used as sample size in statistical tests. For sample size control condition see Fig. 3.1. Isotypes did 

not affect normal (control) migration. Scale bar=100 µm. 
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Fig. 3.7. α5β1 integrin blockage affects idling and instantaneous speed. Experimental set-up see Fig. 

3.7. (A) α5β1 blockage at E13.5 significantly increased relative idling time compared to isotype, while at E15.5 

and E17.5 it significantly decreased idling (Kruskal-Wallis with Dunn’s, E13.5 P=0.013; E15.5 P=0.015; E17.5 

P<0.001). (B) Instantaneous speed of the active migration events (vinst. act.) significantly increased at E17.5 

after blockage compared to isotype (Kruskal-Wallis with Dunn’s, P<0.001). (C) Cumulative probability plots 

(control in black, isotype in grey and α5β1 Ab in red) of the data presented in (B) at E13.5, E15.5 and E17.5 

showing a shift to higher instantaneous speeds at E17.5 after α5β1 blockage. Sample size (A) as 

n=cells/N=slices/M=mothers at E13.5: 121/15/8 (Ab), 134/16/11 (Iso); E15.5: 228/11/6 (Ab), 178/11/7 

(Iso); E17.5: 222/11/6 (Ab), 247/10/5 (Iso). n (cells) was used as sample size in statistical tests. Sample size 

(B) as n=steps from cells in (C) at E13.5: 605 (Ab), 795 (Iso); E15.5: 1749 (Ab), 1076 (Iso); E17.5: 1399 

(Ab), 1338 (Iso). n (steps) was used as sample size in statistical tests. For sample size control condition see 

Fig. 3.1. Isotypes did not affect normal (control) idling and instantaneous speed. 

 

To determine whether the change in average speed was due to the cells spending more or less 

time idling and/or to a change in instantaneous speed, we determined the median relative idling 

time and the median instantaneous speed of the events above the idling threshold (Fig. 3.7). After 

α5β1 blockage, the median relative idling time was 84.6% [IQR: 72.1-91.7] at E13.5, 67.4% [IQR: 

51.9-78.9] at E15.5 and 77.0% [IQR: 60.1-86.2] at E17.5 (Fig. 3.7A). They were all significantly 

different compared to isotype (76.9% [IQR: 66.6-88.3] at E13.5, 71.8% [IQR: 60.0-83.8] at E15.5 

and 80.0% [IQR: 70.6-88.9] at E17.5). After α5β1 blockage the instantaneous velocities of 

migration events were 1.3 µm/min [IQR: 1.0-1.9] at E13.5, 1.4 µm/min [IQR: 1.1-2.0] at E15.5 

and 1.4 µm/min [IQR: 1.1-2.1] at E17.5 (Fig. 3.7B and C). Only at E17.5, after blockage 

microglia migrated with a significantly higher instantaneous speed compared to isotype control (1.4 

µm/min [IQR: 1.0-2.0] at E13.5, 1.5 µm/min [IQR: 1.1-2.0] at E15.5, 1.4 µm/min [IQR: 1.0-1.8] 

at E17.5) (Fig. 3.7B and C). Additionally, after α5β1 blockage at all ages, microglia still migrated 
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saltatory (see Supplementary Movies). In conclusion, α5β1 blockage mainly affects the time the 

cells spend idling without affecting the saltatory migration pattern. 

3.4.7 α5β1 integrin zone-specifically regulates microglial migration at E15.5 

Given the unexpected though intriguing effects of α5β1 blockage on microglial migration speed 

depending on the embryonic age, we next aimed to clarify the cause of this change in function over 

embryonic development. Since the micro-environment has a major influence on the microglial gene 

expression profile and possibly their function as well [31, 124], and fibronectin deposition 

decreases markedly in the cortex from E13.5 to E17.5 (Fig. 3.4A-D), we speculated that the 

fibronectin density might influence the function of the integrin. It was shown indeed that integrins 

can sense the density of glycoproteins in the ECM followed by changes in cell signaling [458, 459]. 

More importantly, recent evidence points to a role of fibronectin concentration in the substrate 

since this factor determined whether α5β1 integrin promoted or inhibited migration of glioblastoma 

cells in culture [460]. Blandin et al. showed that in glioblastoma cells cultured in spheroids on a 

high fibronectin density (10µg/ml), α5 integrin promoted migration out of the spheroid. Using α5 

shRNA or function blocking antibodies, this egression decreased. When fibronectin was absent from 

the microenvironment, α5 integrin limited migration out of the spheroid or in other words, it 

promoted cell-cell and/or cell-matrix interactions inside the spheroid. When α5 was depleted in this 

setting, cells started to egress from the spheroid [460].  

Though fibronectin deposition decreases with embryonic age (Fig. 3.4A-D), its dispersion over the 

cortex is not uniform and this might affect the effect of blocking α5β1 integrin [460]. At E13.5, 

fibronectin deposition is high and homogenous throughout the cortex (Fig 3.4A-D). In contrast, 

cortical fibronectin deposition at E15.5 and E17.5 is decreased and not distributed uniformly (Fig. 

3.4A-D). From E15.5 three well defined anatomical zones can be distinguished based on a nuclear 

DAPI staining or a transmission image, namely the ventricular zone (VZ), closest to the ventricle, 

the intermediate zone (IZ) and the cortical plate (CP) (Fig. 3.8A) [72]. These zones markedly 

differ in their presence of fibronectin (Fig. 3.8A) with a notably lower deposition in the IZ. In time-

lapse recordings at E13.5 the entire cortex was imaged, while from E15.5 mostly the CP and IZ, in 

were imaged due to field of view restrains. Since microglia from E15.5 avoid the CP (Fig. 3.6A) 

[72], we can state that we recorded microglial migration at E13.5 in a fibronectin-high 

environment, while at E15.5 and E17.5 we recorded migration in a fibronectin-low environment. 

Based on the fibronectin concentration-dependent effects on microglial migration upon α5β1 

blockage observed by Blandin et al. in glioblastoma spheres [460], we speculated that the outcome 

of α5β1 blockage might be zone (thus fibronectin density) related. More specifically, we expected 

the microglial cells in the VZ at E15.5 to migrate slower upon blockage, comparable to E13.5, while 

the cells in the IZ would increase their migration speed. We assessed this question at E15.5, 

because at that age the fibronectin deposition is at an intermediate level and the effect of the 

blocking antibody is most clearly opposite to the one at E13.5 (Fig. 3.4 and 3.6). Microglial 

migration speed after α5β1 blockage was indeed significantly lower in the VZ than in the IZ, with a 

median speed of 29.7 µm/h [IQR: 20.6-39.7] and 43.3 µm/h [IQR:31.6-58.0] respectively (Fig. 

3.8B). However, migration speed in the VZ after α5β1 blockage did not differ from treatment with 

isotype control (25.3 µm/h [IQR: 18.8-38.9] (Fig. 3.8A). 
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Together, these results show that at E15.5 in contrast to microglia residing in the IZ (low 

fibronectin), microglia of the VZ (high fibronectin) do not rely on α5β1 integrin for regulating 

migration speed. 

 

 

 

 

 

 

 

Fig. 3.8. α5β1 integrin blockage does not affect microglial migration speed in the ventricular zone. 

Experimental set-up see Fig. 3.7. (A) Zone-specific fibronectin deposition and effect of α5β1 integrin blockage 

on microglial migration. Anatomical distinction of different zones (Ventricular zone, VZ; Intermediate zone; IZ; 

Cortical plate, CP) in the E15.5 dorsal forebrain using DAPI (blue, top left), differential deposition of fibronectin 

in these zones (red, top right), transmission image of the dorsal forebrain (bottom left) and 6h time-lapse 

recording of microglial migration in the VZ and IZ under blockage and isotype conditions. (B) α5β1 blockage 

did not change microglial migration speed in the VZ (Kruskal-Wallis with Dunn’s, P=0.682). Effects of α5β1 

blockage differ significantly between zones (Kruskal-Wallis with Dunn’s, P<0.001). Sample size as 

n=cells/N=slices/M=mothers: 67/4/4 (VZ iso), 95/8/4 (VZ Ab), 117/4/4 (IZ Ab). n (cells) was used as sample 

size in statistical tests. Scale bar =100 µm. 

 

3.4.8 Fibronectin concentration does not influence the outcome of α5β1 integrin 

blockage in vitro 

Given the observation that microglia in different cortical zones that harbor different fibronectin 

densities, reacted differentially to the α5β1 blocking antibody (Fig. 3.8), we next aimed to find out 

whether this could be due to the fibronectin concentration. We tackled this question in a simple in 

vitro transwell migration assay, in which basal mobility of the microglia-like BV-2 cell line was 

measured on different concentrations of fibronectin coating (0, 0.1 and 10 µg/ml) and in the 

presence of the α5β1 function blocking antibody or isotype control (Fig. 3.9). In the absence of 

fibronectin (0 µg/ml), median relative to control migration indices were 159.1% [IQR: 128.4-

189.3] with α5β1 antibody and 122.0% [IQR: 102.0-139.9] with isotype. On low density 

fibronectin coating (0.1 µg/ml), the indices were 136.8% [IQR: 124.5-149.9] with antibody and 

108.7% [IQR: 96.2-118.6] with isotype. On high density fibronectin coating, the indices were 

129.0% [IQR: 118.1-133.8] with antibody and 100.7% [IQR: 93.3-110.8] with isotype. 

Irrespective of the fibronectin coating, α5β1 blockage caused a significant (or a trend towards, in 

case of fibronectin absence) increase in the relative migration index compared to control and 

isotype, while the isotype itself did not induce a change in relative migration index compared to 

control (Fig. 3.9A and B). The fibronectin density however did not affect the extent to which the 

α5β1 Ab caused increased migration relative to the isotype treatment (Fig. 3.9C). Relative 
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medians were 126.4% [IQR: 120.5-142.0], 123.1% [IQR: 116.8-127.8] and 122.9% [IQR: 110.6-

141.7] for 0, 0.1 and 10 µg/ml fibronectin, respectively. 

To determine whether the fibronectin concentration affected migration, migration indices were 

determined relative to the 0 µg/ml fibronectin coating (Fig. 3.9D). In control treatment, median 

migration indices were 118.1% [IQR: 99.9-124.2] for 0.1 µg/ml FN and 130.1% [IQR: 101.8-

134.1] for 10 µg/ml FN, of which the high density almost (trend) significantly differed from the 

condition without fibronectin. Upon isotype treatment, median migration indices were 97.6% [IQR: 

92.1-102.0] for 0.1 µg/ml FN and 105.0% [IQR: 102.5-115.3] for 10 µg/ml FN, of which the high 

density was significantly different from the two others. Upon α5β1 blockage median migration 

indices were 99.5% [IQR: 91.5-101.5] for 0.1 µg/ml FN and 108.6% [IQR: 96.2-110.9] for 10 

µg/ml FN, which were not significantly different, neither from 0 µg/ml FN (Fig. 3.9D).  

Together, these results show that α5β1 integrin blockage in microglia-like cells induces increased 

migration and that the fibronectin concentration in the microenvironment does not influence this 

process in vitro.  
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(previous page) Fig. 3.9. α5β1 integrin blockage increases migration in vitro. BV-2 cell basal migration 

was assessed in transwell assays in the presence of the α5β1 function blocking antibody (Ab). Membranes were 

coated with different concentrations of FN (0, 0.1 and 10 µg/ml). The migration index is an indirect measure for 

the quantity of migrated cells and it is calculated from the median grey values of pictures from the bottom of 

the insert relative to a control or to 0 µg/ml fibronectin. (A) Representative pictures of migrated cells at the 

bottom of the membrane. (B) The relative to control migration index (RT.Ctr) significantly increased in the 

presence of the α5β1 Ab compared to isotype on 0.1 and 10µg/ml FN coatings (Kruskal-Wallis with Dunn’s at 

0.1 FN P=0.027; ANOVA with Tukey HSD at 10 FN P=0.0001). A trend towards an increase was observed in the 

absence of FN (Kruskal-Wallis with Dunn’s, 0 FN P=0.065). (C) FN concentration did not change the effect size 

of α5β1 blockage relative to the isotype (RT.Iso) (ANOVA with Tukey HSD on log10 transformed data, all 

P>0.863). (D) A high FN concentration significantly increased the relative to 0 FN (RT.0FN) migration index in 

comparison to low or absent FN in case of isotype treatment (Kruskal-Wallis with Dunn’s, 10 vs. 0 FN P=0.044; 

10 vs. 0.1 FN P=0.004), and induced a trend towards increased migration in the control treatment (Kruskal-

Wallis with Dunn’s, 10 vs. 0 FN P=0.056). FN concentration did not affect migration in the presence of the α5β1 

Ab (Kruskal-Wallis wit Dunn’s, all P>0.107). Sample size as n=inserts/N=independent experiments: 8/4 in all 

cases expect 7/4 for 0.1 FN Ab and 10 FN control. n (inserts) was used as sample size in statistical tests. 

Isotypes did not affect migration. FN, Fibronectin; RT., Relative To. Scale bar (A, white)=200 µm. 

 

3.5 Discussion 

In this study, we show that during early colonization of the embryonic cortex microglia migrate in a 

saltatory fashion and that their average migration speed is developmentally regulated. We 

demonstrate that the adhesion molecules fibronectin and its receptor the α5β1 integrin play an 

important role in regulating embryonic microglial migration. The presence of cortical fibronectin 

and the expression of α5β1 integrin on microglia decreased throughout development, but as a 

paradox we found that α5β1 integrin has opposite functions in microglial migration depending on 

the embryonic age. Blockage of the α5β1 integrin decreased migration speed at E13.5 while it led 

to an increased migration speed at E15.5 and E17.5, without affecting the size of the immobile 

fraction. 

3.5.1 Microglia exhibit a saltatory migration behaviour while speed decreases during 

embryonic corticogenesis  

The behaviour of microglial cells invading the embryonic cortex from E13.5 to E17.5 is 

characterized by a saltatory migration pattern. This pattern consists of pausing phases during 

which the microglial cell explores its surroundings interspersed with active phases of migration in 

the direction of a selected protrusion. This saltatory migration pattern of microglia in the mouse 

embryonic brain, which is maintained during the developmental period studied here, is similar to 

the migration behaviour of microglia described in vivo in the developing zebrafish larvae [461], 

suggesting that this particular behaviour of microglia during brain development is evolutionary 

conserved over species.  

We observed a decrease in the microglial average migration speed over embryonic development 

and this resulted from both an increased idling time and a lower instantaneous speed. Our 

observations are similar to what has been observed between postnatal ages P2 and P6 in the 

mouse hippocampus [70] and between 3.5 and 5 dpf in the zebrafish optic tectum [457]. The 

decrease in average speed at E17.5 coincided with an increase in the immobile fraction of 

microglial cells and could indicate that some microglial cells acquire their final locations in the 

cortex between E13.5 and E17.5. However, we cannot exclude that the rise in immobile fraction 
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over early development reflects a long lasting transitory resting state between active migration 

phases, since the cortical development proceeds postnatally [462, 463]. The immobile fraction was 

insensitive to α5β1 blockage from E13.5 to E17.5. This suggests that α5β1 does not essentially 

contribute to the integrin-ECM interactions tightly anchoring the cell in place. The decrease in 

microglial migration speed is likely to result from changes in the local environment. We show that 

the fibronectin deposition and the expression of fibronectin receptor α5β1 integrin on microglia, 

decrease from E13.5 to E17.5 in the cortex. Indeed, changes in ECM composition alter microglial 

adhesion to substrates, which could impact their migration [294, 337]. Accordingly microglial 

migration speed was decreased in the newborn rabbit brain as a consequence of in utero 

inflammation and it was suspected to result from changes in adhesion molecule expression after 

inflammation [454].  

3.5.2 Developmental decrease in fibronectin and microglial fibronectin receptor α5β1 

integrin expression in the embryonic cortex 

All three parameters, microglial average migration speed, the cortical fibronectin deposition and 

microglial α5β1 integrin expression levels decreased from E13.5 to E17.5. This concurrent decrease 

indicates that the interaction between fibronectin and α5β1 integrin might regulate microglia 

migration speed supporting the hypothesis that the ECM plays an important role in migration 

during early colonization of the cortex by these immune cells. Throughout development, fibronectin 

is highly expressed by blood vessels and along radial glial processes [296, 354, 439, 440], which 

makes these structures ideal scaffolds to guide microglial migration. Accordingly, changes in 

microglial migration speed observed in the presence of the α5β1 integrin blocking antibody may 

result from an alteration of interactions between microglia, blood vessels and/or radial glial fibers.  

3.5.3 No essential role for α5β1 integrin in mediating microglial contact with blood 

vessels 

Contact between microglia and blood vessels during development has been reported in zebrafish, 

quails, mice, rats as well as humans [92]. Although α5β1 integrin is implicated in the adhesion of 

CNS endothelial cells to fibronectin [354], we did not find any evidence for a major role of this 

receptor in the dynamic interaction between microglia and blood vessels during the developmental 

period investigated here. Neither the capability of microglia to use blood vessels as guiding 

substrates for migration, nor the fraction of these cells contacting blood vessels, nor the time spent 

on soma or process contact was altered in the presence of the blocking antibody. Other ECM 

proteins, such as laminin or Intercellular Adhesion Molecule (ICAM)-1 or 2, expressed along 

developing blood vessels might mediate contact [98, 464] as microglia in vitro do express the 

receptors for these ligands [98, 356]. Alternatively, integrins other than α5β1, such as α4β1 and/or 

αvβ1 might be working in concert with α5β1 to mediate adhesion to fibronectin expressed by blood 

vessels [356, 358]. Lack of effect of the blocking antibody on microglia interaction with blood 

vessels does not preclude disturbances of microglial interactions with other cell types, such as 

radial glia which produce and align fibronectin along their processes [296, 301, 465]. Dense 

packing of these radial glial fibers may however hamper reliable quantification of interactions with 

microglia in the cortex. 
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3.5.4 Age-specific role of α5β1 integrin in microglial migration 

Although almost all microglia from E13.5 to E17.5 expressed α5β1 integrin, its expression level 

decreased over development. This might indicate that embryonic microglia are capable to interpret 

changes in fibronectin deposition. This idea is supported by in vitro work showing that after 

cultivation on fibronectin primary microglia upregulate α5β1 integrin [356]. Based on the 

developmental decrease in both adhesion molecules, we expected that blocking α5β1 would largely 

decrease migration speed at E13.5 while it would affect migration less at E17.5. Surprisingly our 

experiments indicate that this is not the case. After α5β1 blockage, migration speed indeed 

decreased at E13.5, but it increased at E17.5.  

As observed here at E13.5, a decrease in migration after either α5β1 or general β1 integrin 

blockage was also reported in vitro in microglial chemotaxis and wound healing assays [370, 373, 

374]. Integrin blockage has led to various outcomes on migration depending on the cell type, the 

integrin heterodimer and the environmental dimensions. For example α5β1 depletion inhibited 

neuronal migration during mouse embryonic corticogenesis in vivo [351]. On the contrary, integrin 

blocking antibodies increased migration in platelets [466], neutrophiles [467], cancer cells (3D 

matrix) [468] and trophoblast cells [469] in vitro, as observed in our experiments at E17.5.  

 Variations in fibronectin affecting its function in migration? 

The age-specific function of the α5β1 integrin could be related to the decreasing amount and 

cortical zone-related presence of fibronectin from E13.5 to E17.5. In cultured glioblastoma cells, 

the fibronectin coating concentration determined whether α5β1 integrin promoted or inhibited 

migration [460]. On the contrary, we found that α5β1 blockage induced an increase in migration of 

BV-2 cells in transwell assays irrespective of the used fibronectin coating concentration and that 

the effect size did not differ between fibronectin concentrations. The increase in migration after 

α5β1 blockage is in line with the results of the ex vivo time-lapse studies at E15.5 and E17.5 

Additionally, in ex vivo slices at E15.5 we show that α5β1 integrin only plays an obvious role in 

microglia migrating in the IZ, while microglial cells of the VZ remained unaffected by the blocking 

antibody. Since both the E13.5 whole cortex and the E15.5 VZ are rich in fibronectin, and the α5β1 

blocking antibody only affected migration at E13.5, it is tempting to state that the fibronectin 

concentration does not seem to influence the function of α5β1 integrin. However, we did not 

determine the in situ zone-specific fibronectin concentrations, so we cannot rule out that E13.5 

whole cortex and E15.5 VZ harbor different fibronectin densities and thus do affect α5β1 integrin 

function. For example the E15.5 VZ fibronectin concentration could be intermediate between the 

one at E13.5 and at E15.5 IZ and could represent therefore a transition phase between high 

fibronectin causing the integrin to naturally promote migration (E13.5), and low fibronectin (E15.5 

IZ) causing the integrin to inhibit migration.  

In addition to the possible effect of fibronectin concentration on microglial migration, alternative 

splicing of fibronectin mRNA might alter its biological function and thereby influence its role in 

migration.  Fibronectin is assembled as a dimer and its two chains are not necessarily identical. 

Each chain is folded and consists of a linear arrangement of repeating units of amino acids, 
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classified as type I, II and III repeats. Each of these repeating units contain regions that can 

interact with a variety of molecules, such as fibrin, collagen, heparin, integrins and fibronectin itself 

[470]. The type III repeats include important domains involved in promoting cell adhesion such as 

the arg-gly-asp-ser (RGDS) amino acid sequence and the synergistic sequence pro-his-ser-arg-asn 

(PHSRN), which are recognized by the α5β1 integrin. Two exons code for type III repeats known as 

EIIIA and EIIIB - in between which the repeat (III10) containing the RGDS sequence is located - 

and are spliced to be either totally included or excluded. The III connecting segment (IIICS), also 

known as the variable (V) region, may be spliced at several locations to completely/partially/not 

exclude the V region depending on the species and cell type [438, 470, 471]. Splicing of the LDV 

cell binding sequence (also known as CS1) within the V region appears an evolutionary conserved 

property of fibronectin during development and has been attributed important roles in migration 

though binding to the α4β1 integrin. Loss of this LDV sequence after development, could allow for a 

form of fibronectin more appropriate in cell stability than in dynamic processes such as migration 

[471]. Alternative splicing of fibronectin can influence its cell binding properties through a variety 

of mechanisms. First, splicing of the EIIIA, EIIIB and V regions can alters the integrin’s affinity for 

the RGD sequence (presence of a synergistic site (PHSRN sequence) in between the EIIIA and 

EIIIB regions) or simply alter recognition by α4β1 integrin (for the V region). Second, splice regions 

can alter the conformation of the RGD sequence, with one conformation favouring binding to α5β1 

integrin and the other favouring binding to αvβ3. Third, incorporation of extra repeats with a 

certain rotation might alter the spatial relationship between the RGD sequence and any adjacent 

synergistic sites and thereby affect the affinity of integrin binding [471]. Given the fact that 

expression of isoforms changes during embryogenesis (with during embryogenesis in rodents a 

higher expression of the splice variants containing the regions EIIIA, EIIIB and V and thus the 

binding sites for α5β1), the function of fibronectin in mediating cell adhesion/migration might be 

altered as well [278, 288, 471-475].  

In addition, cellular traction forces can alter the tensional state of the fibronectin molecule so as to 

expose cryptic integrin-binding sites that induce changes in cell behavior. In its turn, tensed 

fibronectin induces activation of α5β1 integrin through traction forces within the cell [278, 279, 

476]. Fibronectin can also autocrosslink into multimers known as superfibronectin with functional 

consequences as to enhance cell adhesion and to reduce cell migration [477]. However, since we 

did not assess the presence of different isoforms, conformations or tensional states of fibronectin in 

the cortex of E13.5-E17.5 mouse embryos, we cannot exclude that fibronectin has different 

functions in cell adhesion/migration over development. 

 Why paradoxical functions of α5β1 during CNS development? 

On a molecular level, the observed opposite functions of α5β1 integrin during cortical development 

might be explained by a maturation of the adhesion involving α5β1. Generally, cell migration 

involves unstable nascent adhesion (physical interaction between the ECM, the integrin and the 

cytoskeleton) formation which undergoes rapid turnover. When a protrusion rests, the nascent 

adhesion can “mature” into a highly stable focal adhesion. This means the adhesion grows in size 

and stability by attraction and posttranslational modifications of intracellular adaptor proteins that 

constitute the link between the integrin and the cytoskeleton. When the cell migrates further, the 
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ECM-cytoskeleton link is disrupted [272, 478]. The stability of the adhesion is important for overall 

cell migration speed and can be regulated at the level of the ECM, the integrin and the adaptor 

proteins [272, 273, 283, 478]. Interestingly, adhesion strength has a biphasic effect on migration 

speed: the speed increases between low and intermediate adhesion strength and slows down 

between intermediate and high adhesion strength [272, 336]. We therefore speculate that at E13.5 

α5β1 is involved in unstable adhesions which favor migration while from E15.5 onwards, the 

integrin is linked to more stable, mature adhesions that cause tighter anchoring of the cell body. 

When the ability to form these unstable adhesions is impaired upon blockage at E13.5, the cell will 

not find an anchor point to transduce force in order to migrate. At E17.5 α5β1 linked adhesions 

would be more stable, causing a decrease in migration speed. When the integrin-matrix link is 

disrupted by the blocking antibody, microglia could be released and could be free to migrate faster 

using other integrins. Plausible candidates for mediating migration could be α4β1, α6β1, αvβ1, 

αvβ3, αvβ8, αLβ2 or αMβ2, since microglia express these integrins at least in vitro [356, 359, 361]. 

Alternatively, the paradoxical effects of α5β1 antibody-mediated blockage on migration speed 

might reflect not changes in adhesion strength over development but rather variations in the 

balance of α4β1/α5β1 function. α4β1 (binding to the CS1 site) was shown to work in concert with 

α5β1 (binding amongst others to the RGDS site) in order to promote migration along fibronectin by 

binding to the V region of fibronectin in neurcal crest and lymphoma cell migration [479, 480]. 

Migration experiments including the blockage of α4β1 integrin as well would aid in sorting out 

whether these integrins work together at different ages and what their functions are. 

3.5.5 α5β1 integrin might sense fibronectin concentration 

When α5β1 integrin was blocked in in vitro transwell assays, migration increased on all fibronectin 

concentrations but the effect of the fibronectin concentration as observed in control conditions was 

lost. This suggests that α5β1 integrin mediates the fibronectin concentration-specific effect on 

migration, while the integrin itself is not involved in the migration process itself. Our results thus 

point to an intracellular signaling function of α5β1 leading to increased mobility. For example, α5β1 

could be involved in sensing the fibronectin density in the environment through translating the 

amount of integrin clustering to intracellular signaling (also called mechanotransduction) leading to 

increased cytoskeletal dynamics [276]. In an environment lacking fibronectin, α5β1 could mediate 

cell-cell interactions via binding to other α5β1 integrins, as reported for mesenchymal cells in the in 

vivo developing zebrafish larvae [481], or it could mediate direct interactions with the 

polycarbonate insert membranes, which has not been described in literature yet. In these cases, 

α5β1 would promote cell cohesion and thus limit migration. Since the fibronectin concentration-

dependent effect is lost upon α5β1 blockage, we assume that fibronectin concentration sensing and 

signaling occurs through this integrin only. 

3.5.6 Fibronectin affecting microglial reactivity? 

Interestingly, in the control BV-2 transwell assays the high fibronectin coating caused increased 

migration. It must be noted that we did not rule out the possibility that the fibronectin coating or 

blockage of α5β1 integrin induces proliferation in BV-2 cells, so the increase in migration should be 

interpreted with caution. In any case, these phenomenons might be related to the transformation 
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of the cell into a more alerted or immune-active state as shown by the upregulation of integrins, 

MHC class I, the production of MMPs and an amoeboid morphology after exposure to fibronectin 

coating [294, 356]. The increase in migration on fibronectin is in accordance with the increased 

activation of microglia at sites of fibronectin upregulation in case of lesions and blood-brain barrier 

breakdown during neuroinflammation [294].  

3.5.7 Study limitations 

This study is the first to dig deeper into molecular mechanisms of physiologic migration of microglia 

during development. A limitation of the use of brains slices in this study might be that microglial 

migration in slice preparations does not reflect the true physiologic behaviour during development. 

Microglia at the slice surface could be activated in terms of phagocytosis and velum-like pseudopod 

formation as observed in slices of rat facial nucleus following peripheral axotomy [449]. 

Nevertheless, microglia within the tissue depth did not show such behaviours. This indicates that 

deep tissue imaging, as performed in our study, is likely to allow analyzing behaviour of the 

microglial population close to physiologic conditions [70, 71, 449]. It is important to note that 

microglial mobility in the in vivo developing zebrafish was also high [457, 461]. Finally, an in utero 

embryonic brain imaging [482, 483], although challenging, would be required to fully confirm that 

the intense microglial migration behaviour we observed in slices truly reflects the microglial 

behaviour in the developing brain of the intact embryo. 

Migrating neurons, radial glia and blood vessels in the developing brain are known to express the 

α5β1 integrin [351, 354, 484] which could indirectly interfere with the alteration of microglia 

migration we observed in the presence of the blocking antibody. This is unlikely to be the case at 

the blood vessel level since we did not observed any difference in microglia-blood vessels 

interactions in the presence of the blocking antibody. Knock-down of this integrin in neural 

precursors resulted in a decreased radial migration and affected their morphology and 

differentiation capacity [351]. To our knowledge it is yet unknown if neuronal migration can affect 

microglia mobility. So far it has been shown that SDF-1-expressing basal progenitors in the 

ventricular/subventricular zone promote microglia recruitment into the subventricular [62]. 

Nevertheless, we cannot completely exclude that interactions between developing neurons and 

microglia might be altered after blockage. Finally β1 integrins in radial glia control the 

morphological differentiation of both glia and neurons [345] but the alterations of these processes 

by impairing β1 integrin expression occur in a time scale that is incompatible with the time scale 

observed for microglia behaviour alteration. 

Changes in microglial migration speed observed in the presence of the blocking antibody are 

apparently modest (14-25% changes), but they are in the range of those observed on neurons 

migration speed after blocking glycine receptors [485] or on microglia migration after blocking the 

CC chemokine receptor 5 [486]. It is likely that α5β1 integrin is not the sole integrin dimer to play 

a role in microglial migration [354]. The long term consequences of defective integrin dependent 

microglial migration on brain development and neuronal network functionality remain unknown and 

require further attention. This might be a challenging task regarding the fact that genetically 
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engineered integrin knock-outs can suffer from functional compensation of other integrins [314, 

338]. 

3.5.8 Conclusion 

Our results strongly indicate that α5β1 integrin regulates the microglial migration process during 

embryonic microglial colonization of the mouse cortex, without playing an essential role in contact 

with blood vessels. We report for the first time opposing age-dependent functions of the α5β1 

integrin. At E13.5 the α5β1 integrin promotes while at E15.5 and E17.5 it inhibits microglial 

migration. We hypothesize that during development, the stability of the α5β1-linked adhesion 

changes and therefore blockage of the fibronectin receptor leads to different outcomes. What 

causes microglial migration to decrease and how changes in α5β1 integrin function are molecularly 

regulated - cell intrinsically and/or environmentally - are questions that require further 

investigation.  
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4.1 Abstract 

During embryonic brain development microglia, myeloid-derived cells originating from the yolk sac, 

already invade the brain at E10.5 in mice. CXCL12 signaling through its receptor CXCR4 was found 

to recruit microglial cells to the cortex, but the underlying mechanisms were not clarified. We 

previously demonstrated the involvement of α5β1 integrin during microglial migration in the 

embryonic mouse cortex and β1 integrin is a downstream target of CXCR4 in cancer and immune 

cells and increases adhesion and invasion after CXCL12 signaling. We therefore hypothesized that 

the CXCL12/CXCR4/β1 integrin signaling axis drives microglial migration during embryonic brain 

development. We found that BV-2 cells, a microglia/macrophage cell line, showed increased 

migration towards CXCL12 in the presence of fibronectin, which was inhibited by blocking CXCR4. 

This was not observed in primary cultures of microglia. Blockage of integrin β1, PI3K and MEK1/2 

reduced BV-2 cell migration towards control levels, while β2 integrin blockage did not affect 

migration. Blockage of integrin β1, PI3K and MEK1/2 in acute brain slices at embryonic day (E)13.5 

and E17.5 differentially affected microglial migration speed, while CXCR4 blockage did not have 

any effect. Our results support the presence of a CXCL12/CXCR4/β1 integrin signaling axis in BV-2 

cells in vitro only. They argue against an involvement of CXCR4 signaling in regulating microglial 

migration speed in vivo after these cells have invaded the brain parenchyma in the developing 

embryo. 

4.2 Introduction 

Microglia are highly migratory in the embryonic brain cortex and this behaviour most likely relates 

to their plentiful physiological tasks in CNS development [16, 72, 93, 487]. Microglia originate from 

myeloid progenitors in the yolk sac and invade the parenchyma tissue around E10.5 in mice [20, 

72]. Several molecules were shown to be involved in establishing the microglial population inside 

the CNS, such as colony stimulating factor 1 (CSF-1), interleukin (IL)-34 and their receptor CSF1R, 

Matrix metalloproteinases, Fractalkine receptor (CX3CR1), NADPH oxidase-2 (NOX2) and CXCL12 

(alternatively Stromal derived factor-1 (SDF-1)) and are therefore thought to recruit microglia to 

the brain [59, 62]. It is however not clear whether these molecules either attract microglial 

progenitors towards the brain and enable their invasion, or mediate their dispersion once inside the 

brain parenchyma.  

CXCL12 is a chemokine with multiple functions in the developing CNS, such as regulating neural 

progenitor cell proliferation and migration, maintaining tangential migration of interneurons, 

maintaining radial glial scaffold integrity and mediating axonal guidance and pathfinding [488-490]. 

Additionally, CXCL12/CXCR4 signaling was recently demonstrated to impact on the microglial 

density in the embryonic cortex, where this chemokine is produced by basal progenitors in the 

ventricular (VZ) and subventricular (SVZ) zones [62]. However, the downstream effects of this 

CXCR4 activation in microglia are unknown. Upon CXCL12 binding to CXCR4, which is a Gi protein 

coupled receptor, intracellular signaling pathways might be activated that lead to the binding of 

talin and kindlin to the intracellular portion of integrins. This association will induce a 
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conformational stretching of the integrin which enhances extracellular matrix (ECM) binding, a 

process called inside-out signaling [314].  

Studies in cancer cells have demonstrated a clear link between CXCR4 signaling and β1 integrin 

activation and subsequent adhesion to ECM molecules, including fibronectin [319-321]. For 

example, Hartmann et al. found that CXCL12-CXCR4 signaling induced β1-integrin activation in 

small lung cancer cells and this resulted in an increased adhesion to the ECM adhesive protein 

fibronectin. They determined that the adhesion was mediated by α2, α4, α5 and β1-integrins, along 

with CXCR4 activation and this could be inhibited by CXCR4 antagonists. Blocking the α5 subunit 

led to a stronger decrease in adhesion to fibronectin than blocking of the α4 subunit [319]. In 

acute lymphoblastic leukemia, lymphoblasts show increased migration towards bone marrow 

fibroblasts by ß1 integrin induced adhesion following CXCL12 stimulation [321]. Also in ovarian 

cancer cells and prostate cancer cells the CXCL12/β1 integrin axis enhances invasion of cancer cells 

by upregulation of ß1 integrins [491-493]. Human lung cancer cells increase their migration, as 

well as their expression of ß1 and ß3 integrins by regulation of the ERK and NF-κB dependent 

pathway following CXCL12 stimulation [494]. In addition CXCR4 couples to Gi proteins and 

activated Gi is able to, amongst others, activate the Src family of tyrosine kinases [320] while in its 

turn, Src can phosphorylate tyrosines of the NpxY motif of β-integrin tails and thereby mediate 

talin-integrin interactions, which are indispensable for integrin inside out activation [314]. Further, 

CXCL12 binding also induces activation of PI3K, resulting in the activation of more downstream 

targets such as PyK2, Akt, the downstream NF-κB pathway and MAPK pathways including ERK, JNK 

and p38 signaling. All these induced pathways are involved in chemotaxis, transcription, 

proliferation and cell survival [489, 494-497]. Also in hematopoietic, immune and radial glial cells 

evidence was found for CXCR4/β1 crosstalk. In hematopoietic stem cells, CXCL12 induced 

activation of αLβ2 and α4β1 integrins to bind their ligand and mediate migration [498]. In 

neutrophils, CXCL12/CXCR4 signaling mediates adhesion to VCAM-1 and bone marrow retention 

through α4β1, which can be blocked by CXCR4 and α4 antagonists [499]. In radial glial cells, 

CXCL12/CXCR4 signaling promoted their adhesion to pial basement membrane components 

through β1 integrin activation [490]. Also, we recently showed that microglia inside the embryonic 

cortical parenchyma can interact with fibronectin and age-specifically rely on integrin α5β1 during 

microglial migration in embryonic development [487]. Together, these studies suggest that 

CXCL12/CXCR4/β1-integrin signaling drives microglial migration along fibronectin inside the 

parenchyma. 

In this exploratory study, we aim to analyse the presence of a functional CXCL12/CXCR4/β1-

integrin signaling axis in the process of microglial migration. To this end, we study the role of 

CXCR4, β1 integrin, PI3K/Akt and Raf-ERK signaling pathways during migration of cultured 

microglia in transwell assays and during embryonic microglial migration ex vivo in acute brain 

slices using multiphoton excitation time-lapse microscopy. To functionally block the signaling axis, 

we use a CXCR4 blocker (AMD3100), a general β1 integrin function blocking antibody and PI3K and 

MEK1/2 (ERK) inhibitors throughout the study.  
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4.3 Materials and Methods 

4.3.1 BV-2 cell line 

The immortalized murine microglial BV-2 cell line was cultured in Dulbecco's Modified Eagle's 

medium (DMEM (D5796), Sigma) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% 

penicillin-streptomycin (P/S, Invitrogen) at 37°C in a humidified atmosphere with 5% CO2. 

Confluent cell cultures were passaged by trypsin-EDTA treatment (T3924, Sigma) after rinsing with 

1x Phosphate Buffered Saline (PBS, Lonza). The trypsin reaction was stopped by the addition of 

supplemented DMEM. Cells were used until passage 10. Cells were placed on serumfree medium 

(DMEM 5796) supplemented with 1% P/S overnight preceding an experiment.  

4.3.2 Primary microglia  

Primary microglia were obtained from brain isolation of C57BL/6 wildtype pups at postnatal day 2. 

Pups were decapitated and brains were isolated in ice-cold HBSS buffer (Gibco) supplemented with 

7 mM HEPES buffer solution (Gibco). Brains were transferred to DMEM D5796 with 1% P/S and 

kept on ice. Tissue was titruated in 1 ml DMEM supplemented with 1% P/S using glass pipets 

precoated with horse serum (HS, ThermoFisher). The cell suspension was passed through a 70 µm 

cell strainer and centrifugated for 5 min at 400g at 4°C. Cell pellets were resolved in DMEM 

supplemented with 10% FBS, 10% HS and 1% P/S (DMEM 10.10.1) preheated at 37°C and seeded 

in poly-D-lysine (PDL, 20µg/ml, Sigma) precoated T175 flasks, at a concentration of 2 brains/flask. 

Cells were cultured for 7-10 days in DMEM 10.10.1 in a humidified atmosphere with 5% CO2 at 

37°C. After 10 days, the medium was changed for fresh medium supplemented with 10 ml 

conditioned colony stimulating factor 1 (CSF-1) medium. CSF-1 was produced in-house, as 

described below (Point 4.3.3). After 3-5 days, a shake-off was performed for 3 h at 230 rpm at 

37°C. Medium containing detached cells was collected and passed through a 70 µm cell strainer. 

The cell suspension was centrifugated for 10 min at 300g, resuspended in 37°C preheated DMEM 

10.10.1 and seeded in a 24 well plate precoated with PDL at 2.105 cells/well or immediately used 

for experiments.  

4.3.3 In-house Colony stimulating factor 1 production 

The mouse fibroblast cell line L929 was cultured in DMEM supplemented with 10% FBS, 1% P/S, 

1% non-essential amino acids (NEAA, M7145, Sigma) and 1% L-glutamine (G7513, Sigma). Cells 

were cultured in T175 as a confluent monolayer and excreted CSF-1. The medium containing CSF-1 

was collected after 10-11 days of culturing, sterile filtered (0.2µm) and stored at -20°C. 

4.3.4 Animals 

All protocols for animal experiments were conducted following the European Community guiding 

principles about the care and use of animals and with the approval of the Ethical Committee on 

Animal Research of Hasselt University. Mice were maintained in the animal facility of the Hasselt 

University in accordance with the guidelines of the Belgian Law and the European Council Directive. 

For flow cytometry and time-lapse imaging experiments, embryos were obtained by mating 

transgenic Cx3cR1-eGFP knock-in males [403] (European Mouse Mutant Archive (EMMA) with 
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approval of Stephen Jung) with C57BL/6 wild type females. In these knock-in mice the Cx3cR1 

gene is exchanged for eGFP, hence all macrophages, including microglial cells, express eGFP [403]. 

In order to produce primary microglia cultures, wildtype C57BL/6 males and females were crossed. 

Mice were mated overnight and females with vaginal plugs the next morning were designated E0.5.  

4.3.5 Flow cytometry 

 BV-2 and primary microglial cells 

Cells were washed with PBS and centrifugated for 5 min at 400 g at 4°C followed by staining for 30 

min on ice with the monoclonal antibodies anti-CD29 and anti-CD184 (Table 4.1) in FACS buffer 

(PBS, 2% FCS, sodium azide, 50 µl/well). After 2 washes, the pellet was resolved in FACS buffer. 

Cells were analysed with a FACS Aria II and the FACS Diva 6.1.3 software (BD Biosciences). Each 

tube of cells is considered as a sample (N=1). 

 Embryonic microglia  

Cortical microglia from CX3CR1+/eGFP E13.5, E15.5 and E17.5 brains were isolated as described 

before in Smolders et al. (2015) with modifications (Chapter 5) [451]. Cortical tissue freed from 

meninges was mechanically homogenized in neurobasal medium (Gibco, Thermo Fisher Scientific) 

supplemented with 2mM L-glutamine, N2 supplement, B27 supplement and 1% 

penicillin/streptomycin (all from Thermo Fisher Scientific). The homogenate was centrifugated 5 

min at 700 g at 4°C, the pellet was resuspended in cold PBS and stained with Fixable Viability stain 

620 (FVS620) (BD Biosciences) during 10 min at room temperature (RT). Cell suspensions were 

fixed in 4% PFA during 10 min, washed in PBS by centriguation at 400 g for 5 min and 

resuspended in PBS. Cells were incubated for 15 min on RT with a panel of monoclonal antibodies 

against α integrin subunits known to pair up with the β1-subunit, and against β1 integrin (listed in 

Table 4.1) in 50µl PBS/well in a V-bottom shaped 96 well plate. After 2 washes in PBS cells were 

acquired in a FACS Fortessa (BD Biosciences) and analysed with FACS Diva 8.0.1 software (BD 

Biosciences). Within the living cell population (FVS620 low) the eGFP positive microglia (110-4799 

cells per tube) were gated. Within the microglial population, the percentage of α-subunit positive 

microglia and their median fluorescence intensity (MFI) were analysed. Fluorescence-minus-one 

(FMO) controls (for justification see (Maecker and Trotter 2006)) were used to gate the positive cell 

population. At E13.5, embryos were pooled per 2 or 3 (N=8). At E15.5 (N=16) and E17.5 (N=20), 

embryos were analysed separately. Data were obtained from 3 different mothers (M=3). 
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Table 4.1: Antibodies and isotypes used for flow cytometry. 

Antibody Fluorescent 

label 

Dilution  

cells  

Dilution 

embryo 

Company  Cat. 

nr. 

Isotype 

CD29 

(β1) 

APC-Cy7 1:1000 1:250 Biolegend 102225 Ham 

IgG 

CD184 

(CXCR4) 

Alexa Fluor 

647 

1:100 1:25 Biolegend 146503 Rat 

IgG2b 

CD49d 

(α4) 

PE-Cy7 / 1:250 Biolegend 103617 Rat 

IgG2b 

CD49e 

(α5) 

PE / 1:25 BD 557447 Rat 

IgG2a 

CD49f 

(α6) 

APC / 1:250 eBioscience 17-

0495 

Rat 

IgG2a 

CD51   

(αv) 

BV421 / 1:250 BD 740062 Rat 

IgG1 

 

4.3.6 Transwell migration assay 

 BV-2 cells 

Migration assays were performed using Corning transwell membrane filters (8 µm pore size, 

Corning Costar, New York, USA). BV-2 cells were serum starved overnight on DMEM 5796 with 1 % 

P/S, from now on referred to as serumfree medium, and harvested the next morning by 

trypsinisation, centrifugation for 10 min at 400 g, washes in PBS and resuspension in serumfree 

medium. If mentioned, inserts were precoated with fibronectin (10 µg/ml) for 1 h at 37 °C before 

the start of the assay. After 1 h filters were washed twice in PBS and placed in a 24 well plate 

containing 400 µl serumfree medium. Cells were seeded at a density of 1.105 cells/insert in 100 µl 

serum free medium with or without blockers and isotypes. Cells were preincubated for 30 min with 

the following blockers or the matching isotype: AMD3100 (4 µM, A5602, Sigma), ß1 function 

blocking antibody (5 µg/ml, clone HMB-1, #102210, Biolegend), ß1 isotype (5 µg/ml, Hamster IgG 

isotype control, #400916, Biolegend), ß2 function blocking antibody (5 µg/ml, clone GAME-46, 

#557440, BD Biosciences), ß2 isotype (5 µg/ml, Rat IgG1 isotype control, #53922, BD 

Biosciences), LY294002 (10 µM, Sigma) or U0126 (10 µM, Sigma). After 30min, serumfree medium 

in the bottom well was changed for medium containing CXCL12 (100 ng/ml, Peprotech) [62, 497] 

or serumfree medium (control). Cells were allowed to migrate for 6 h at 37°C in a humidified 

atmosphere with 5 % CO2. Cells were fixed for 5 min in 4 % PFA, washed with PBS and stained 

with for 2 min with 0,05 % crystal violet. Migrated cells were present at the bottom side of the 

filter and filter tops were cleaned with cotton buds. From each filter pictures were taken on 10X 

magnification in black and white modus at three different non-overlapping locations using a Zeiss 

Primovert microscope and Axiocam camera. Pictures were thresholded using the Default threshold 

and manual adjustments in Fiji and the mean grey value of the total picture measured. Mean grey 

values were averaged per filter (migration index (MI)) and calculated relative to the control MI. 

Each filter is considered as a sample (N=1).  
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 Primary microglia 

Migration assays with primary microglia were performed similarly as described for BV-2 cells. Cells 

were seeded immediately after shake-off on filters precoated with fibronectin (10 µg/ml) in DMEM 

(D5796) supplemented with 10 % FCS, 10 % horse serum (HS) and 1 % P/S. Migration assays 

were conducted for 24 h at 37°C in a humidified atmosphere with 5 % CO2. MI was determined as 

described for BV-2 cells. 

4.3.7 Adhesion assay  

Serum starved BV-2 cells were harvested as described above. A flat bottom-96 well plate was 

uncoated or precoated during 1 h at 37 °C with fibronectin (10 µg/ml, Sigma) or 1 % BSA. Wells 

were washed twice with PBS after coating. Cells were seeded at a concentration of 5.104 cells in 

100 µl serumfree medium. The assay was performed in the presence or absence of CXCL12 (100 

ng/ml) in combination with either AMD3100 (4 µM), a ß1 function blocking antibody (5µg/ml) or 

Hamster IgG isotype control (5 µg/ml). Cells were allowed to attach for 6 h. Non-adherent cells 

were washed away with PBS, adherent cells were fixed for 5 min with 4 % PFA and stained with 

crystal violet. One overview picture/well was taken at 4X magnification with the Zeiss Primovert 

microscope. Pictures were processed and adhesion relative to fibronectin coating only was 

calculated as described for the MI. Each filter is considered as a sample (N=1). 

4.3.8 ex vivo time-lapse imaging 

Time-lapse imaging was performed as described before [487]. For blocking experiments, the 

recording medium was supplemented with either AMD3100 (40 µM), LY294002 (20 µM), U0126 (20 

µM), a β1 function blocking antibody (10 µg/ml, clone HMB-1), an α5β1 function blocking antibody 

(clone BMC5, 10µl/ml, #NBP2-29788, Novus), a combination of α5β1 and β1 antibodies or 

matching isotype controls (Hamster IgG isotype control for β1 or clone RTK4174 for α5β1, 10µl/ml, 

#400710, Biolegend). Microglial soma tracking and quantification of the average migration speed 

(µm/h) occurred as described before in Fiji using the MTrackJ Plugin written by Erik Meijering 

[487]. Average speed was calculated as the total length of the traveled path divided by the 

duration of the track. The number of cells is referred to as “n”, the number of slices as “N” and the 

number of mother animals corresponding to independent experiments as “M”. 

4.3.9 Statistics 

Sample sizes are described in the figure legends as n=cells/N=tubes, filters or 

wells/M=independent experiments or mother animals. The reader is referred to the figure legends 

for details about the sample size and the statistical test, and to the supplement p155 for population 

descriptors per figure. Data are presented as scatter plots were each dots corresponds to 1 sample, 

the horizontal line to the median and bars to the interquartile ranges (IQR). In case of box plots 

(used when sample size exceeded 25), whiskers extend to 1.5x the IQR (Tukey representation). 

Statistical analyses were performed using SAS JMP® Pro 12.1.0. Data distributions were assessed 

for normality (Shapiro-Wilk) and equality of variance (Brown-Forsythe). In case these assumptions 

were met for all groups, a Student t-test in case of 2 groups or ANOVA was performed in case of 
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three groups followed by Tukey HSD post-hoc, correcting for multiple comparisons. In Fig. 2D and 

9C, data were transformed on a log10 scale to meet the equality of variance assumption, though 

the original data were used for presentation for ease of interpretation. When the distribution of at 

least one group was non-gaussian, nonparametric tests such as Mann-Whitney in case of two 

groups or Kruskal-Wallis with Dunn’s multiple comparison post-hoc in case of three groups were 

performed. P-values smaller than 0.05 were considered significant with * P<0.05, ** P<0.01 and 

*** P<0.001.  

4.4 Results 

4.4.1 CXCL12/CXCR4 signaling evokes β1 integrin-dependent migration in microglia-like 

cells in vitro  

In order to explore the CXCL12/CXCR4/β1 signaling axis and associated intracellular signaling 

pathways in microglia, we first assessed whether BV-2 cells and primary microglia express CXCR4 

and β1 integrin. The BV-2 cell line, although highly debated with regard to its low resemblance to 

in vivo microglia [113], is a practical and easy first approach to study this signaling axis in 

microglia-like cells. Using flow cytometry, we found that more or less 90% of BV-2 and at least 

70% of primary microglial cells express both receptors (Fig. and Suppl. Table 4.1.). 

We next assessed whether CXCL12 could attract BV-2 cells and primary mouse microglia and 

whether this effect was mediated through CXCR4. Since we hypothesized that microglia use the 

CXCL12/CXCR4/β1 signaling axis to migrate along fibronectin, we coated the surfaces in the in 

vitro experiments with fibronectin. Using transwell assays and a well known inhibitor specifically 

targeting CXCR4, AMD3100, we demonstrated that CXCL12 works as an effective chemoattractant 

in BV-2 cells leading to increased migration to the bottom of the filter compared to the control 

condition, which contained only serumfree medium in the bottom well (Fig. 4.2 A, B). This 

increased migration was fully abolished by co-administration of AMD3100 (Fig. and Suppl. Table 

4.2A, B). In primary microglia we did not find a chemoattractive effect of CXCL12, though 

AMD3100 induced a decrease in migration compared to CXCL12 administration and control (Fig. 

and Suppl. Table 4.2C). When transwell assays were conducted in the absence of fibronectin 

(uncoated filters), primary microglia did not migrate at all (data not shown) and CXCL12 did no 

longer attract BV-2 cells (Fig. and Suppl. Table 4.2D). These results show that CXCL12 is an 

effective chemoattractant for BV-2 cells only. Migration towards CXCL12 necessitates the presence 

of extracellular matrix supporting β1 integrin binding, such as fibronectin.  
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Fig. 4.1. Cultured microglia-like cells express CXCR4 and β1 integrin. Percentage of (A) BV-2 cells and 

(C) Primary microglia positive for CXCR4 or β1 integrin evaluated by flow cytomtery. (B, D) Representative 

fluorescence intensity histograms. Sample size BV-2: CXCR4 N=11/M=4; β1 N=10/M=4); and PM N=4/M=2. 

Iso,Isotype; Pos., Positive; PM, Primary microglia. 
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Fig. 4.2. CXCL12 attracts microglia-like cells in the presence of fibronectin coating. (A) Transwell 

assay of BV-2 cells on fibronectin coating in serumfree (control), CXCL12 and CXCR4 blocking (AMD3100) 

conditions showing thresholded pictures of filter bottoms. (B-D) Quantifications of transwell assays depicting 

the migration index (MI) relative to control on fibronectin coated and uncoated filters in BV-2 and primary 

microglial cells. (B) AMD3100 attenuated CXCL12-induced migration of BV-2 cells on fibronectin. (C) AMD3100 

inhibited migration of primary microglia on fibronectin in the presence of CXCL12 while the latter did not elicit 

increased migration. (D) In the absence of fibronectin, CXCL12 had no attractive properties on BV-2 cells. BV-2 

and PM FN coated and PM: Kruskal-Wallis test with Dunn’s. BV-2 uncoated: ANOVA + Tukey on Log10 

transformed values of Migration index RT.Ctr. Sample size BV-2 FN coated: control N=25/M=4; CXCL12 

N=24/M=14; AMD N=14/M=7; Primary microglia: all N=8/M=4; BV-2 uncoated: all N=6/M=3. PM, primary 

microglia;  RT.Ctr, Relative to control; FN, Fibronectin. Scale bar=300µm  



CHAPTER 4

 

105 

 

To determine whether CXCL12-induced migration of BV-2 cells involved primarily β1 integrin, we 

performed transwell assays in the presence of β1 and β2 function blocking antibodies. We found 

that co-administration of CXCL12 and an antibody targeting β1, fully abolished CXCL12-induced 

migration of BV-2 cells compared to isotype application, as was also reported for CXCR4 blockage 

using AMD3100 (Fig. and Suppl. Table 4.2A, B). On the contrary, a β2 targetting antibody did 

not influence CXCL12 induced migration (Fig and Suppl. Table 4.3). Thus, BV-2 cells specifically 

rely on β1 and not on β2 integrin signaling for migrating towards a CXCL12 source. 

 

 

 

 

 

 

 

 

 

Fig. 4.3. CXCL12-induced migration specifically involves β1 integrin. Transwell assay during 6 h in BV-2 

cells. The β1 blocking antibody inhibited BV-2 cell migration induced by CXCL12 compared to isotype, while a 

β2 blocking antibody did not (Kruskal-Wallis tests with Dunn’s for β1 -full lines- and β2 -dotted lines- 

separately). Sample size control N=25/M=14; CXCL12 N=24/M=14; β1 Ab N=11/M=7; Iso β1 N=11/M=7; β2 

Ab N=7/M=5; Iso β2 N=7/M=5. Ab, antibody, FN, Fibronectin, RT.Ctr, Relative to control, ns, not significant.  

 

It must be noted that the observed decreased migration after inhibitor application in transwell 

assays could be a consequence of decreased adhesion of the cells to the filter instead of a 

decreased capacity to migrate. To rule out this possibility, we performed adhesion assays in the 

same conditions as for transwell assays (6 hours). To ensure that the adhesion was not an artifact 

of the duration of the assay, we included a negative control (1% BSA coating) in which BV-2 

adhesion should be impaired. As a control we used fibronectin coating only and calculated the 

others conditions relative to this one. We found that in case wells were coated with fibronectin, cell 

adherence more than doubled compared to 1% BSA coating (Fig. and Suppl. Table 4.3). 

Administration of CXCL12, AMD3100, β1 blocking antibodies or isotype did not result in changes in 

adhesion (Fig. and Suppl. Table 4.3). Therefore, we assume that the decrease in migration after 

inhibitor application is truly due to an impairment in migration capacity and not to a decreased cell 

adherence to the filter. 

All together, this set of in vitro experiments show that BV-2 cells use β1 integrins in order to 

migrate along fibronectin towards CXCL12 and that this signaling occurs through CXCR4. This was 

however not the case for primary microglia, which could indicate the absence of a 

CXCL12/CXCR4/β1 signaling axis for migration of primary microglial cells.   



The CXCR4/β1 integrin axis in microglial migration

 

106 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. AMD3100 and β1 function blocking antibody do not impair BV-2 cell adhesion to the FN 

coating. (A) Thresholded pictures of BV-2 cells adhesion assay on 1% BSA (negative control), only FN, FN with 

CXCL12 and the latter condition supplemented with the different blockers or isotype control. (B) 1% BSA 

coating impaired BV-2 adhesion in comparison to other conditions. No significant difference in pairwise 

comparsions between all other groups. Kruskal-Wallis test with Dunn’s. Sample size 1% BSA and Iso N=9/M=3; 

rest N=15/M=4. Ab, antibody, FN, Fibronectin, Iso, Isotype, RT.Ctr, Relative to control, ns, not significant. 

Scale bar=500µm. 

 

4.4.2 CXCL12 induced migration is regulated by PI3K-Akt and Ras-ERK signaling 

pathways in microglia-like cells in vitro 

To further shed light on the molecular signaling pathways involved in CXCL12-induced BV-2 cell 

migration, we investigated the functions of PI3K (part of the PI3K-Akt pathway, using Ly294002) 

and MEK1/2 (part of the Ras-ERK pathway, using U0126) using transwell assays (Fig. & Suppl. 

Table 4.5). Both kinases have been described to regulate the activation of integrins downstream 

of CXCR4 signaling [319, 321, 495], but they also signal downstream of integrins [314, 500]. For 

example PI3K signaling through Rac influences cytoskeleton dynamics which allows the cell to 

migrate [272, 501]. In addition, the PI3K-Akt and Ras-ERK signaling pathways are the main 

mechanisms of the cell to control processes from cell survival to metabolism and motility in 

response to extracellular cues [502]. Co-administration of CXCL12 and Ly294002 or U0126 fully 

abolished migration to control levels (Fig. & Suppl. Table 4.5). These results show that both the 

PI3K-Akt and Ras-ERK pathways play essential roles in CXCL12-induced BV-2 cell migration. 
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Fig. 4.5. PI3K-Akt and Ras-ERK signaling are necessary for migration in BV-2 cells. Transwell assay 

during 6 h in BV-2 cells in the presence of PI3K and MEK 1/2 inhibitors, Ly294002 and U0126. Both inhibitors 

attenuated CXCL12-induced migration (Kruskal-Wallis test with Dunn’s). Sample size control N=25/M=14; 

CXCL12 N=24/M=14; Ly249004 and U0126  N=7/M=5. FN, Fibronectin, RT.Ctr, Relative to control. 

 

4.4.3 β1 integrins, but not CXCR4, age-specifically regulate microglial migration speed in 

acute brain slices 

To investigate the role of CXCR4 signaling in migration of embryonic microglia during their 

colonization of the embryonic cortex, we first determined the presence of CXCR4 and β1 integrin on 

the cell surface of acutely isolated embryonic microglia. We found that around half or less of the 

microglial population at E15.5 and E17.5 expressed CXCR4, which is in contrast with our 

observations in primary microglia. The percentage of CXCR4 positive microglia was highly variable 

at E17.5 (Fig. and Suppl. Table 4.6). To the contrary, almost all microglial cells expressed the β1 

subunit at E13.5, E15.5 and E17.5 (Fig. and Suppl. Table 4.6). These findings suggest that 

targeting these receptors would affect some to all embryonic microglia.  

Arno et al. [62] established in various ways that CXCL12/CXCR4 signaling is involved in 

establishing the microglial density in the embryonic cortex. They found that CXCL12 production by 

basal progenitors in the ventricular zones attract microglia. However, from this study it is not clear 

whether CXCL12/CXCR4 signaling instructs the microglial precursors to invade the brain or whether 

it functions in attracting microglial cells that are already present in the brain or a combination of 

both. To determine whether CXCR4 influences migration of microglia that already have invaded the 

brain, we administered AMD3100 to acute live CX3CR1+/eGFP embryonic brain slices at E13.5 and 

E17.5. This live tissue was imaged during 6 hours, starting within 3 hours after sacrificing the 

mother animal. Microglial cells (eGFP positive) were tracked in 3D and average migration speeds 

were calculated per cell (vav. in µm/h). At neither of both ages AMD3100 influenced migration 

speed (Fig. and Suppl. Table 4.7). These results indicate that CXCR4 signaling does not play a 

role in regulating microglial migration speed in the developing embryonic mouse brain. 
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Fig. 4.6. A modest fraction of the embryonic microglia population expresses CXCR4, while all 

express β1 integrins ex vivo. (A) Flow cytometry gating strategy to assess receptor expression on microglial 

cells in panels B and C. (B) The percentage of CXCR4  positive microglial cells does not change from E15.5 to 

E17.5 (Mann-Whitney test), nor does the percentage positive for β1 (Kruskal-Wallis test with Dunn’s). (C) All 

microglia at different embryonic ages express β1 integrins (Kruskal-Wallis test with Dunn’s). Sample size 

CXCR4: E15 N=3/M=1; E17 N=8/M=3; β1: E13 N=8/M=3; E15 N=16/M=3; E17 N=20/M=3.   
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Fig. 4.7. CXCR4 is not involved in regulating microglial migration speed in acute embryonic brain 

slices. Microglia movement was recorded in acute brain slices during 6 h using 2-photon time-lapse imaging 

and cell somas were manually tracked. (A) Representative Z-projections of microglial migration tracks at E13.5 

and E17.5 (eGFP/ microglia, green). Each cell track has its own color. The meninges is located at the top of the 

image and the ventricle at the bottom (not visible at E17.5). (B) Microglial average migration speed vav. (µm/h) 

did not change at either age in the presence of a CXCR4 inhibitor (AMD3100) (Student t-test). Sample size as 

n=cells/N=slices/M=mothers at E13.5: control n=161/N=18/M=12; AMD3100 n=68/N=6/M=5; at E17.5: 

control n=501/N=22/M=13; AMD3100 n=87/N=4/M=4. Scale bar=100 µm. 

 

We then quantified microglial migration speed in acute embryonic brain slices in the presence of 

the β1 function blocking antibody or its isotype at E13.5, E15.5 and E17.5 (Fig. and Suppl. Table 

4.8). Treatment with the β1 blocking antibody resulted in a decreased migration speed compared 

to controls. Surprisingly and in contrast to what we found in a previous study using an α5β1 

antibody, general β1 blockage at E15.5 led to a decreased migration speed compared to isotype 

and control (Chapter 3) [487]. In contrast to E15.5, but in accordance with the α5β1 antibody, 

general β1 blockage at E17.5 resulted in a small but significant increase in migration speed 

compared to controls (Fig. and Suppl. Table 4.8), which we also observed previously upon α5β1 

antibody application at E17.5 (Chapter 3) [487]. It must be noted that at E13.5, general β1 

blockage resulted in a higher decrease in speed compared to α5β1 blockage (P<0.001, Welch’s 

Test for unequal variances). On the contrary, at E17.5 general β1 blockage resulted in a lower 

increase in speed compared to α5β1 blockage (P<0.001, Welch’s Test for unequal variances). 



The CXCR4/β1 integrin axis in microglial migration

 

110 

 

To determine which specific β1 integrins could mediate these functions, we analysed the expression 

of α integrin subunits that pair up with β1 and that have been previously identified in primary 

microglial cells [361], on acutely isolated embryonic microglia using flow cytometry (Fig. and 

Suppl. Table 4.9). From E13.5 to E17.5 almost all microglia express α5, α6, and αv integrins, 

while their expression level decreases over development. On the contrary, about 15% of the 

embryonic microglia stably expressed the α4 subunit over development. In order for these α 

subunits to be expressed, β1 should be expressed as well and this was the case as shown in Fig. 

4.6. Thus based on expression, α5β1, α6β1, and αvβ1 integrins are likely to play more prominent 

roles in regulating migration when compared to α4β1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. Age-specific effects of β1 integrin blockage on microglial migration speed in acute 

embryonic brain slices. Experimental set-up see Fig. 4.7. (A) Representative Z-projections of microglial 

migration tracks at E13.5, E15.5 and E17.5 (eGFP/ microglia, green). Each cell track has its own color. The 

meninges is located at the top of the image and the ventricle at the bottom (not visible from  E15.5 onwards). 

(B) Treatment of slices with a β1 integrin function blocking antibody resulted in a decreased microglial average 

migration speed vav. (µm/h) at E13.5 and E15.5 while it elicited a subtle but significant increase in speed at 

E17.5, compared to isotype treatment (Kruskal-Wallis with Dunn’s at all ages). Sample size as 

n=cells/N=slices/M=mothers at E13.5: n=161/N=18/M=12 (control), n=91/N=8/M=5 (iso), n=83/N=9/M=5 

(Ab); at E15.5: n=170/N=10/M=8 (control), n=233/N=11/M=6 (iso), n=218/N=11/M=5 (Ab); at E17.5: 

n=501/N=22/M=13 (control), n=254/N=12/M=7 (iso), n=322/N=13/M=6 (Ab). Ab, antibody. Scale bar=100 

µm. 
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Fig. 4.9. Embryonic microglia express several types of β1 integrins. Flow cytometric analysis of α 

integrin subtypes known to pair up with β1 and previously identified in primary microglial cells. For gating 

strategy and β1 analysis see Fig. 4.6. (A) Percentage of microglial cells positive for different α subunits. Almost 

all microglia expressed α5, α6 and αv-integrins from E13.5 to E17.5 and the percentage of α5 integrin 

expressing microglia subtly decreased over development (Kruskal-Wallis with Dunn’s). α4 integrin was present 

on a small subset of microglial cells from E13.5 to E17.5. (B-E) The expression level (median fluorescence 

intensity, MFI) of all but α4 integrins decreased from E13.5 to E17.5 (All Kruskal-Wallis test with Dunn’s per α 

subunit except for α5: ANOVA with Tukey on log10 transformed data). Sample size E13 N=8/M=3; E15 

N=16/M=3; E17 N=20/M=3. MFI, Median fluorescence intensity; ns, not significant.  

 

The β1 function blocking antibody targets all β1 dimers, including α5β1. To validate our current and 

previous results (Chapter 3) [487], we combined α5β1 and β1 function blocking antibody treatment 

at E15.5. At this particular age the effects of both antibodies were clearly opposite: blocking α5β1 

resulted in a vast increase in migration speed (Chapter 3) [487], while β1 blockage resulted in a 

prominent decrease (Fig and Suppl. Table 4.8). Since the β1 antibody in theory blocks α5β1 

integrins along with other integrins, applying both blocking antibodies at the same time should still 

mimic the effect of a β1 blockage only. We found that indeed a combined application of both 

antibodies mimicked the effect of sole β1 antibody treatment (Fig and Suppl. Table 4.10). 

Migration speed upon combined treatment did not differ from β1 antibody application only, but did 
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differ from α5β1 antibody or combined isotype treatment. It must be noted that application of both 

isotypes together increased migration speed as well compared to control. Neverthless, these 

results certify that the β1 antibody functionally targets more integrins than only the α5β1 integrin 

and that β1 integrins other than α5β1, all together play a more prominent -and opposite - role in 

microglial migration than α5β1 at E15.5. 

All together, these ex vivo migration experiments argue against a role of CXCR4 in regulating 

embryonic microglial migration in vivo, though they reveal a surprising age-specific function of β1 

integrins in regulation microglial migration speed in the embryonic brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. β1 blockage overrules the effects of α5β1 blockage on microglial migration speed upon 

combined treatment in acute embryonic brain slices. Experimental set-up see Fig. 4.7. (A) 

Representative Z-projections of microglial migration tracks at E15.5 (eGFP/ microglia, green) in control 

conditions and upon treatment with function blocking antibodies or isotypes. Each cell track has its own color. 

The meninges is located at the top of the image and the ventricle at the bottom (not visible). (B) Treatment of 

slices with both α5β1 and β1 function blocking antibodies resulted in an effect on migration speed that was 

different (opposite) compared to treatment with α5β1 alone, control and both isotypes but not different 

compared to application of β1 alone. Treatment with both isotypes did not influence migration speed compared 

to control. All Kruskal-Wallis tests with Dunn’s. Sample size as n=cells/N=slices/ M=mothers: control 

n=170/N=10/M=8; α5β1 Ab n=252/N=11/M=6; β1 Ab n=218/N=11/M=5; α5β1+β1 Ab n=150/N=7/M=3; Isos 

n=140/N=6/M=2. Ab, antibody. Scale bar=100 µm. 
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4.4.4 PI3K and MEK 1/2 differentially regulate microglial migration speed in acute brain 

slices dependent on the embryonic age  

To further shed light on the molecular signaling pathways involved in microglial migration, conform 

the transwell assays in BV-2 cells (Fig. 4.5), we investigated the functions of PI3K (using 

Ly294002) and MEK1/2 (using U0126) at E13.5 and E17.5 in embryonic brain slices (Fig. & Suppl. 

Table 4.11). In both E13.5 and E17.5 embryonic brain slices Ly294002 treatment strongly 

decreased migration speed. In accordance, U0126 treatment at E13.5 also diminished migration 

speed, however this was not the case at E17.5 where U0126 had the opposite effect and 

augmented migration speed (Fig. & Suppl. Table 4.11). These results imply that the signaling 

pathways involved in microglial migration have different outcomes in terms of promoting or 

inhibiting the migration process in microglial cells during embryonic development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11. PI3K-Akt and Ras-ERK pathways  have age specific functions in regulating microglial 

migration speed in acute embryonic brain slices. Experimental set-up see Fig. 4.7. (A) Representative Z-

projections of microglial migration tracks at E13.5 and E17.5 (eGFP/ microglia, green) in control conditions and 

upon treatment with inhibitors for PI3K (Ly294002) or MEK1/2 (U0126). Each cell track has its own color. The 

meninges is located at the top of the image and the ventricle at the bottom (not visible at E17.5). (B) 

Treatment with Ly294002 at E13.5 and E17.5 resulted in a reduced migration speed compared to control. 

Treatment with U0126 decreased migration speed at E13.5 while it increased migration speed at E17.5 

compared to control. At E17.5 Ly294002 and U0126 elicited opposite effects on microglial migration speed. All 

Kruskal-Wallis tests with Dunn’s. Sample size as n=cells/N=slices/M=mothers at E13.5: 

n=161/N=18/M=12 (control), n=35/N=4/M=4 (Ly294002), n=44/N=4/M=4 (U0126); at E17.5: 

n=501/N=22/M=13 (control), n=110/N=5/M=5 (Ly294002), n=92/N=5/M=5 (U0126). Scale bar=100 µm. 
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4.5 Discussion 

During development, microglia migrate from the yolk sac to the brain and subsequently invade and 

disperse throughout the parenchyma. CXCL12/CXCR4 signaling was previously shown to attract 

microglial cells and to establish the microglial density in the normal developing embryonic mouse 

cortex [62]. In this exploratory study, we found indications for the presence of a 

CXCL12/CXCR4/β1 signaling axis in BV-2 cells that allows migration on β1-binding ECM substrates 

such as fibronectin. In cultured primary microglia and in the embryonic brain ex vivo, we found no 

evidence for a function of CXCR4 in determining the microglial migration speed, though for 

migration these cells rely on β1 integrins and their function changes throughout development. 

Further, we demonstrated that PI3K and MEK1/2 are part of important molecular signaling 

pathways involved in microglial migration. 

4.5.1 The CXCL12/CXCR4/β1 signaling axis in cultured microglia 

In this study, we showed that BV-2 cells efficiently migrate towards CXCL12 in case a fibronectin 

substrate is present and this attraction was fully reliant on CXCR4 function. Our results in BV-2 

cells are in accordance with previous reports showing functional CXCR4 and CXCL12-induced 

migration in both microglial cell lines and primary cultures [497, 503, 504]. It must be noted that 

although CXCR4 was long thought to be unique amongst chemokine receptors because it 

exclusively interacted with CXCL12, migration inhibitory factor was demonstrated to compete with 

CXCL12 for binding to CXCR4 [505]. In its turn, CXCL12 was also long considered to interact only 

with CXCR4 until recently CXCR7 was revealed as an alternative receptor for CXCL12 [504, 506, 

507]. However, CXCR4 still seems the most important receptor for signaling as CXCR7 could not 

compensate for the loss of CXCR4 [504]. Further it is noteworthy that in the developing and adult 

rat brain no expression of CXCR7 expression was found on microglial cells, which indicates that 

CXCL12 signaling through CXCR7 in the embryo is not very likely [507].  

Our findings in primary microglia are however in conflict with previous studies in which primary 

microglial cells did migrate towards CXCL12 and this could be blocked by AMD3100 [62, 504]. 

Nevertheless, since our sample size is rather small and variation is high, additional experiment 

should be performed. Further, it should be clarified whether primary microglia in our hands (effect 

of the used culture media) already produce CXCL12 themselves. Indeed, previous studies show 

that rat primary microglia express mRNA transcripts of CXCL12 [508] and  produce 3 ng/ml 

CXCL12 in control culture conditions [509]. In contrast, another study could not detect expression 

of CXCL12 in unstimulated human fetal microglial cultures using conventional 

immunocytochemistry [510]. If primary microglia in our transwell migration assays produce 

CXCL12, the endogenous CXCL12 could saturate their CXCR4 which explains the absence of a 

chemoattractive effect upon supplemental CXCL12 application. When CXCR4 is blocked, migration 

is inhibited to a level even lower than control without CXCL12, which might point to CXCL12 

induced chemokinesis, although this effect was excluded in a previous study [504]. Additional work 

is necessary to dissect out the contribution of CXCL12-induced proliferation in migration assays and 

to confirm the effects of CXCL12 and involved pathways in primary microglia. Proliferation and 

dose-response transwell assays would help in solving these issues. 
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In case fibronectin was absent, CXCL12 did not attract BV-2 cells. Since interaction with fibronectin 

occurs amongst others through ß1 integrins [511], migration of microglia-like cells along 

fibronectin is the first indication of ß1 involvement in CXCL12-induced migration. In order to 

confirm that CXCL12 signaling induces migration exclusively along fibronectin, migration along 

additional ECM molecules, such as laminin (another β1 binding ECM molecule), ICAM1 (β2 binding 

ECM). Further, we showed that CXCL12 stimulation concomitant with ß1 integrin blockage induced 

a complete abolishment of migration to control levels, while ß2 blockage did not affect migration at 

all, which points to a full dependency on integrin ß1 during CXCL12-induced migration. Here as 

well, additional migration blockage experiments using integrins binding fibronectin, but not through 

β1 such as αvβ3 and αvβ8 should be performed to conclusively state that the CXCL12 effect on 

microglia attraction is both fibronectin as well as β1 integrin specific. In any case, the ß1 subtypes 

involved in mediating CXCL12-induced migration remain to be determined. Our flow cytometry 

analyses on embryonic microglia and antibody titrations on BV-2 cells (not shown) suggest that α5, 

α6, αv integrins likely play a major role, while a minor role for α4 is envisioned, based on the 

percentage of microglia that express these markers. It should be noted however that not integrin 

expression level, but rather the conformation, or in other words activation state of the integrin, is 

functionally relevant[318, 322]. However, involvement of other α subunits cannot be excluded 

since our analysis was limited to the abovementioned α subunits. Nevertheless, cultured microglia 

were reported to only specifically express the β1 dimerizing α-subunits investigated in our study 

[356]. 

Although various studies in cancer and neuronal stem cells report on a link between CXCR4 and an 

increase of β1 integrin affinity or clustering followed by alterations in adhesion and/or migration 

[319, 321, 490, 494, 512, 513], this link is not established yet in microglial cells at embryonic 

stages, although our results provide indications for a link in BV-2 cells at least. In any case, the 

results obtained in this study were according to expectation based on findings in previous literature 

and have paved the way for additional experiments investigating whether CXCL12 induces β1 

integrin activation and subsequent intracellular signaling involved in cell migration.  

4.5.2 No role for CXCR4 in parenchymal migration of microglia in the embryo 

Using various in vivo approaches to disturb CXCL12/CXCR4 signaling, Arno et al. found a decreased 

microglial density in the embryonic cortex [62]. Their findings point to a function of CXCL12 in 

recruiting microglial cells into the brain and/or in regulating migration speed inside the 

parenchyma. In our ex vivo time lapse experiments in embryonic brain slices, only migration speed 

of microglia that have already entered the parenchyma could be analysed since all connections with 

the surrounding tissue and blood vessels were lost after isolating the brain. We found no influence 

of blocking CXCR4 on microglial migration speed at E13.5 neither at E17.5. In contrast to our 

findings in embryonic brain slices, CXCL12/CXCR4 signaling was previously shown to stimulate 

mobility of microglia in the neonatal retina [161]. Additionally, systemic application of agents that 

block CXCL12/CXCR4 signaling resulted in reduced numbers of macrophages/microglia in this study 

[161]. Further, the direction of migration might be affected instead of speed. Additional analyses 

with regard to directionality of migration and experiments in attempt to redirect microglial 

migration in slices after exogenous CXCL12 application will shed light on this matter. So, we 
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believe that the function of CXCR4 is most likely related to the recruitment of microglial cells into 

the brain. 

Given the fact that microglial recruitment was not completely abolished after suppressing CXCL12 

signaling in the study by Arno et al. it must be noted that only around one third of embryonic 

microglial cells expressed CXCR4 [62], other attractive cues are likely to regulate microglial 

migration into the brain. In that respect, microglial density was transiently altered in CX3CR1 KO 

mice [111], and in Nox2 and VEGFR1 impaired mice [63], which renders these proteins plausible 

candidates as well. Nevertheless, the effects observed in these studies were also transient and did 

not elicit complete abolishment of microglial presence in the brain. Microglial migration into and 

inside the brain is likely to be supported by a complex interplay between various chemoattractants 

and/or repellants, which still need to be identified. 

The lack of effect of CXCR4 blockage on microglial migration speed at E13.5 could be due to the 

lack of CXCR4 expression at this age. CXCR4 expression on microglial cells has been reported 

before [497, 503, 504]. However, expression levels of this receptor during embryonic development 

has never been examined, except at E15.5 by Arno et al who found similar results to our study 

[62]. In case the microglial CXCR4 expression at E13.5 is lower than at E15.5, it is not surprising 

that no change is observed after blockage. 

4.5.3 Age-specific role of β1 integrins in microglial migration  

Blockage of ß1 integrins resulted in a decreased microglial migration speed at E13.5 and E15.5 in 

embryonic brain slices, while at E17.5 ß1 blockage led to a subtle increase in migration speed. 

Thus, the sum of all ß1 integrins promotes migration at E13.5 and E15.5, while overall they exert a 

net migration inhibiting function at E17.5. We cannot explain what causes this shift in function, but 

a similar shift was also reported in a previous study of our group concerning the function of α5β1 

integrin, which occurred earlier between E13.5 and E15.5 [487]. Remarkably, α5β1 and β1 

blocking antibodies elicited opposing effects at E15.5: α5β1 blockage augmented migration speed 

while general β1 blockage reduced migration speed. Additionally, the β1 antibody did not perfectly 

mimic the effect size of the α5β1 antibody. This discrepancy could be explained by the putative 

blockage of other integrins, reported to be expressed by microglia in culture such as α4β1, α5β1, 

αvβ1 and α6β1 [356, 358, 511] and which we also identified on embryonic microglia from E13.5 to 

E17.5 as well. Apparently, the net function of all β1 integrin heterodimers summed together at 

E13.5 and E15.5, seems to be migration promoting versus slightly migration inhibiting at E17.5. As 

already brought forward in our previous study [487], we hypothesize that the stability of the 

adhesion coupled to the integrin changes over development from an unstable adhesion supporting 

fast migration on E13.5 to a more stabile adhesion causing the cell to gradually anchor in the ECM 

at E17.5. This change could cause different outcomes of integrin blockage on migration speed 

depending on the embryonic age [487]. 

In addition to β1 integrins, β2 integrins could play a role in microglial migration [514]. However, 

they are unlikely to be essential during microglial migration, because microglial activation and 

homing to injured neurons was unaffected in β2 integrin deficient mice [376]. Instead, integrins of 
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the β1, as shown in this study, or αv family are good candidates of modulating microglial 

morphology and migration along ECM proteins such as fibronectin [294, 361, 370, 374]. 

4.5.4 Roles of PI3K-Akt and Ras-ERK signaling in microglial migration 

The PI3K-Akt pathway is a well studied signaling pathway associated with growth factor and 

chemokine signaling that amongst other through communication with Rac can regulate 

cytoskeleton dynamics and migration [501, 502, 515]. Contradictory results have been obtained 

with regard to the role of this pathway in cell migration. PI3K is involved in the regulation of 

migration speed in neutrophils and in zebrafish during development [516, 517] and it was 

established that specifically PI3Kγ regulates migratory activity in BV-2 cells [518]. Although this 

enzyme seems to be a nodal point in the control of microglial motility, Lipfert et al. demonstrated 

that CXCL12-induced chemotaxis of microglial cells solely depends on Erk1/2 signaling (MAPK 

pathway) and not on PI3K signaling [504]. In this study, we found clear evidence for a prominent 

role of the PI3K-Akt pathway in facilitating both BV-2 cell migration and microglial migration in ex 

vivo in acute embryonic brain slices. We therefore expect when β1 antibody and Ly294002 (the 

PI3K blocker we used) are administered together, the effect of blocking PI3K would remain, since 

the cell needs cytoskeleton dynamics in order to migrate.  

The Ras-ERK signaling chain, similar to the PI3K-Akt pathway, is a chief pathway for regulating 

divergent cell responses to extracellular ligands, ranging from cell survival to motility [502]. We 

here demonstrated a prominent role of the Ras-ERK pathway in facilitating BV-2 cell migration after 

CXCL12 stimulation. In ex vivo brain slices at E13.5, Ras-ERK signaling accordingly promotes 

microglial migration. At E17.5 on the contrary, this pathway is negatively involved in microglial 

migration. The discrepancy between the role of Ras-ERK signaling in microglial migration  in vitro 

and ex vivo (at E17.5) might be due to the type of readout and the cue that is used, since 

molecular pathways might depend on the specific mechanism, cell type and environment studied. 

For example, Peled et al. showed that the processes of adhesion and migration are differentially 

regulated on a molecular level, so the importance of integrins during these processes can vary 

[498]. Recently, Meller et al. showed that molecular mechanisms for microglial migration differed 

between in vitro and in vivo settings, and that microglial motility processes in vivo also required 

different molecular signaling [519]. More in particular, in vivo Kindlin3-mediated integrin signaling 

was required for timely advancement of microglial protrusions towards the site of brain damage 

while Kindlin3 was dispensable for in vivo microglial migration in development as well as in chronic 

inflammation of the CNS [519]. Thus in vitro microglia-related findings should be interpreted with 

extreme caution. Indeed, it was recently shown that upon cultivation, microglia rapidly lose their 

signature gene expression profile [520, 521]. Nevertheless, it is very suprising that Ras-ERK 

signaling has opposite functions in microglial migration over development and this phenomen 

should be investigated further at other ages as well and using a microglia specific approach to rule 

out a microglia response secondary to changes in metabolism of the neighboring cells, since 

pharmacological blockage using U0126 (as for Ly249002) is not microglia specific (discussed in 

Point 4.5.5). 
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Going further into “specificity of effects”, Lipfert et al. found that CXCL12-induced proliferation of 

primary microglia is mediated through Erk1/2 and Akt signaling [504] and another study showed 

that CXCL12 slightly induced proliferation of BV-2 cells at the concentration we used in our study 

[497] (Chapter 4). This means that the effect we observed in BV-2 cells upon blockage of PI3K 

and MEK1/2 might arise from inhibition of CXCL12-induced proliferation and thus asks for 

additional experiments to rule out a proliferation effect of CXCL12 that could be interpreted as 

increased migration.  

In summary, these results imply that the PI3K-Akt and Ras-ERK signaling pathways have different 

functions in terms of promoting and inhibiting the migration process in microglial cells during 

embryonic development. Although in vitro work might yield helpful mechanistic information, 

verification with a microglia-specific approach in vivo is necessary, since microglial responses in 

vitro differ from in vivo. 

4.5.5 Study limitations 

An important point of attention of this preliminary study is the use of pharmacological or antibody 

mediated blockage on slices. Although our in vitro experiments show that a direct effect of these 

different compounds on migration of a microglia cell line is entirely possible, it must be taken into 

account that the changes in migration speed we observed in the ex vivo embryonic brain slices 

might not be microglia specific but rather a consequence of blockage of these proteins in on other 

cells present in the slice. 

CXCL12/CXCR4 signaling is implicated in multiple developmental processes such as neurogenesis, 

migration of interneurons and angiogenesis [161, 522, 523]. Further, CXCR4 signaling in 

astrocytes and microglia leads to tumournecrosis factor-α (TNF- α) production and subsequent 

glutamate release by astrocytes, which is involved in the regulation of neuronal apoptosis in rodent 

adult hippocampal slices [524]. Also, in developing spinal cord radial glia, CXCL12 controls the 

integrity of the radial glial scaffold by inducing adhesion of the radial cells to the ECM through β1 

integrin activation [490]. Accordingly, β1 integrins play key roles during embryonic development, 

such as during neural stem cell differentiation, maintenance of the radial glial scaffold and neuronal 

migration [343, 345-350]. Since microglia possess an arsenal of receptors to monitor the status of 

their surroundings [32], we cannot exclude that changes in microglial mobility are secondary to 

impairments in neuronal (progenitor) physiology. To overcome these possible non-specific effects, 

conditional knockout mice may be used to delete or alter Cxcr4 and/or β1 integrin specifically in 

microglia. Alternatively, slices may be electroporated to induce overexpression or a non-functional 

form of CXCL12 in radial glial cells and subsequently study the effect on microglial migration. 

However, since we did not observe an effect of general CXCR4 blockage on microglial migration 

speed in brain slices, we do not expect to observe effects in a microglia specific knockout either. It 

should also not be neglected that compensation mechanisms might occur after integrin knock out. 

  



CHAPTER 4

 

119 

 

4.6 Conclusion 

In this exploratory work we have paved the way for further research to connect CXCL12/CXCR4 

signaling to β1 integrin-dependent migration en intracellular siganling in cultured microglial cells. 

In the embryo however, CXCR4 does not seem to be implicated in regulating microglial dispersion 

inside the healthy parenchyma, after the cells have invaded the brain. Nevertheless, our results 

point to the necessity for PI3K-Akt signaling and to a complex and age dependent regulation of β1 

integrin function and Ras-ERK signaling during microglial migration in the embryonic brain ex vivo. 

 

4.7 Supplemental data description 

 

Suppl. Table 4.1. Statistical descriptors of data in Fig. 4.1 “Cultured microglia-like cells express CXCR4 and β1 

integrin”. Values correspond to percentage of population positive for a marker. 

 

 

 

 

 

 

NA, not applicable; Sample size: N=measured tubes, M=independent experiments 
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Suppl. Table 4.2. Statistical descriptors of data in Fig. 4.2 “CXCL12 attracts microglia-like cells in the presence of fibronectin coating”. Values correspond to the migration 

index calculated relative to control. 

 

 

 

 

 

 

 

 
   Sample size: N=filters, M=independent experiments 
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Suppl. Table 4.3. Statistical descriptors of data in Fig. 4.3 “CXCL12-induced migration specifically involves β1 integrin”. Values correspond to the migration index 

calculated relative to control. 

 

 

 

 

 

 

 

 

        Sample size: N=filters, M=independent experiments 
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Suppl. Table 4.4. Statistical descriptors of data in Fig. 4 “AMD3100 and β1 function blocking antibody do not impair BV-2 cell adhesion to the FN coating”. Values 

correspond to the adhesion index calculated relative to the fibronectin (FN) only condition. 

 

 

 

 

 

 

 

 

             Sample size: N=wells, M=independent experiments
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Suppl. Table 4.5. Statistical descriptors of data in Fig. 4.5 “PI3K and MEK1/2 signaling are necessary for 

migration in BV-2 cells”. Values correspond to the migration index calculated relative to control. 

 

 

 

 

 

 

 
 
 Sample size: N=filters, M=independent experiments 
 

 

Suppl. Table 4.6. Statistical descriptors of data in Fig. 4.6 “A modest fraction of the embryonic microglia 

population expresses CXCR4, while all express β1 integrins ex vivo”. Values correspond to the percentage of 

microglia positive for the marker. 

 

 

 

 

 

 

 

          Sample size: N=tubes with single or pooled embryonic brains, M=independent experiments 
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Suppl. Table 4.7. Statistical descriptors of data in Fig. 4.7 “CXCR4 is not involved in regulating microglial 

migration speed in acute embryonic brain slices”. Values correspond to average migration speeds per cell 

(µm/h). 

 

 

 

 

 

 

Sample size: n=cells, N=slices, M=mothers 

 

Suppl. Table 4.8. Statistical descriptors of data in Fig 4.8 “Age-specific effects of β1 integrin blockage on 

microglial migration speed in acute embryonic brain slices”. Values correspond to average migration speeds per 

cell (µm/h). Table continues on next page. 

 

 

 

 

 

 

 

Sample size: n=cells, N=slices, M=mothers 
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          Sample size: n=cells, N=slices, M=mothers 
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Suppl. Table 4.9. Statistical descriptors of data in Fig. 4.9 “Embryonic microglia express several types of β1 

integrins”. Values correspond to percentage of microglia positive for a marker or to the median fluorescence 

intensity (MFI), corresponding to the expression level of the marker on average per cell. Table continues on 

next page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
      Sample size: N=tubes with single or pooled embryonic brains, M=independent experiments 

 

  



CHAPTER 4

 

127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Sample size: N=tubes with single or pooled embryonic brains, M=independent experiments 
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Suppl. Table 4.10. Statistical descriptors of data in Fig. 4.10 “β1 blockage overrules the effects of α5β1 

blockage on microglial migration speed upon combined treatment in acute embryonic brain slices”. Values 

correspond to average migration speeds per cell (µm/h). 

 

 

 

 

 

 

 

   Sample size: n=cells, N=slices, M=mothers 

 

Suppl. Table 4.11. Statistical descriptors of data in Fig. 4.11 “PI3K and MEK1/2 have age specific functions in 

regulating microglial migration speed in acute embryonic brain slices”. Values correspond to average migration 

speeds per cell (µm/h). 

 

 

 

 

 

 

 

    Sample size: n=cells, N=slices, M=mothers 
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CHAPTER 5:  

 

Maternal immune activation evoked by 

polyinosinic:polycytidylic acid does not evoke 

microglial cell activation in the embryo 

 

 

 

 

Based on: Smolders S*, Smolders SMT*, Swinnen N, Gärtner A, Rigo JM°, Legendre P°, Brône B°. 

Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell 

activation in the embryo. Front Cell Neurosci, 2015. Aug 5;9:301.*° equally contributing. 

  

Own contribution: Participation in P(I:C) injections, sample collections, immunofluorescent 

stainings and their quantification, flow cytometry on brain suspension. Participation in figure 

preparation and writing of the manuscript. 
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5.1 Abstract 

Several studies have indicated that inflammation during pregnancy increases the risk for the 

development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities 

combined with deviations in the inflammatory status of the brain can be observed in patients of 

both autism and schizophrenia. It was shown that acute infection can induce changes in maternal 

cytokine levels which in turn are suggested to affect fetal brain development and increase the risk 

on the development of neuropsychiatric disorders in the offspring. Animal models of maternal 

immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia 

and autism. In this study the Poly (I:C) model was used to mimic viral immune activation in 

pregnant mice in order to assess the activation status of fetal microglia in these developmental 

disorders. Because microglia are the resident immune cells of the brain they were expected to be 

activated due to the inflammatory stimulus. 

Microglial cell density and activation level in the fetal cortex and hippocampus were determined. 

Despite the presence of a systemic inflammation in the pregnant mice, there was no significant 

difference in fetal microglial cell density or immunohistochemically determined activation level 

between the control and inflammation group. These data indicate that activation of the fetal 

microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring 

in this model. 

5.2 Introduction 

Schizophrenia and autism are neurodevelopmental disorders that can arise early during postnatal 

life. Although genetic deficits are important risk factors, perturbations of local environment, 

especially during pregnancy, are suspected to play a central role in the occurrence of these 

neurodevelopmental disorders. Maternal immune activation during pregnancy is considered as a 

risk factor for schizophrenia and autism in the offspring [525]. To study the mechanisms behind 

this association several animal models were developed in which pregnant rodents were infected 

with the influenza virus, polyinosinic:polycytidylic acid [Poly (I:C)] or lipopolysaccharide (LPS) 

[526]. These models confirmed that prenatal infection leading to maternal immune activation (MIA) 

can lead to behavioural and neurological disorders in the offspring [151, 222, 248, 527-530]. 

During MIA evoked by Poly (I:C), an elevated maternal serum cytokine, interleukin-6 (IL-6), was 

found to be critical for the development of these neurological deficits in the offspring [217, 531].  

Differences in behavioural abnormalities observed in the offspring at adult age are critically 

dependent on the time of maternal Poly (I:C) challenge, being related to differences in cytokine 

responses in the fetal brain shortly after the induction of MIA [248, 532].  However, the source of 

the cytokine response in the fetal brain remains a matter of debate as it can originate from  

maternal, placental and/or embryonic tissue. An endogenous increase in fetal brain cytokine 

production was demonstrated using mRNA analysis of the cytokine expression level upon maternal 

Poly (I:C) challenge during the late gestation stage in mice (17 embryonic days, E17) [248]. This 

was not oberved when maternal Poly (I:C) challenge was performed at mid gestation stage (E9) 

[248], a developmental age at which immature microglia, the resident immune cells of the brain, 

have not yet invaded the fetal central nervous system (CNS) [20, 37, 72].  
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Microglia colonize the brain early during embryonic development (E11.5 in the mouse embryo) [20, 

37, 72] and are known to control several developmental processes in the brain at perinatal 

developmental stages [73, 144, 151]. First, embryonic microglia have been shown to be involved 

in angiogenesis through close contact with vessel sprouts and endothelial tip cells and the secretion 

of soluble factors that stimulate angiogenesis during development [159, 162]. Secondly, during 

CNS development microglial cells clear cellular debris and induce programmed cell death in 

developing neurons via the production of superoxide ions [141, 142] and tumour necrosis factor 

(TNF)-α [533]. Thirdly, several studies have pointed towards an important role for microglia in 

synaptic remodeling and synapse elimination [64, 156, 174, 534]. Finally, microglial cells can also 

influence the development and differentiation of neural cells. Microglia-conditioned media can 

influence embryonic precursor migration and differentiation in primary cultures [535, 536]. In 

addition, microglial cells can regulate cortical precursor proliferation and astrogenesis [252]. 

Primary culture experiments on embryonic precursor cultures showed that microglial cells are 

important for precursor proliferation and astrogenesis. In microglia-depleted cultures and cultures 

from PU.1 knock out embryos proliferation and astrogenesis were decreased. Addition of microglia 

to these cultures restored both processes and an abnormal increase in microglial cell numbers 

resulted in increased astrogenesis [400]. Deactivation of embryonic microglia with tetracyclines or 

elimination via the macrophages suicide technique led to an increase in neural precursor cells, 

while microglial activation had the opposite effect [144]. 

MIA induces an imbalance in cytokines levels, of which maternal IL-6 has been shown to be a 

critical mediator in inducing the effects of MIA on brain development and behavioural changes 

[217]. IL-6 is known to induce activation of adult microglial cells; leading to the production of pro-

inflammatory factors, such as nitric oxide, reactive oxygen species, proteolytic enzymes and TNF-α 

by microglial cell cultures [537], microglial proliferation (in vitro) [538] and infiltration (in vivo) 

[539] or the upregulation of microglial CX3CR1, making them more sensitive to fractalkine 

signaling [540]. An imbalance in cytokine levels caused by MIA might thus be able to activate 

embryonic microglia, even at early developmental stages, and alter their normal functions. This can 

trigger a cascade of events that could lead to developmental defects observed in the offspring of 

LPS or Poly (I:C) treated pregnant mice. Indeed, MIA evoked by LPS injection evoked microglia 

activation and enhanced phagocytosis of neural precursors by microglia at prenatal stages in rats 

[144]. However, the question remains whether an endogenous increase in fetal brain cytokine 

production in response to maternal Poly (I:C) challenge is of microglial origin. Accordingly it 

remains unclear whether Poly (I:C)-induced MIA results in the activation of embryonic microglia 

during fetal development.  

To determine to what extent MIA evoked by Poly (I:C) can alter cortex invasion by microglia and/or 

change embryonic microglial cell activation state, we evoked MIA using a single (at E11.5) or a 

double injection (at E11.5 and E15.5) of Poly (I:C) [248, 541]. This developmental time window is 

an important time point for cortex invasion by immature microglia as their cell density dramatically 

increases during this period [72]. We show that Poly (I:C)-induced MIA does not affect microglial 

density and activation level during embryonic development suggesting that pathological activation 
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of embryonic microglial cells at the onset of their colonization processes cannot explain neurological 

deficits observed at postnatal stages in offspring after Poly (I:C)-induced MIA 

5.3 Materials and Methods 

5.3.1 BV-2 cell culture  

The immortalized mouse microglial cell line BV-2 (kindly provided by Dr. F. Stassen, Maastricht, 

The Netherlands) was cultured in Dulbecco's Modified Eagle Medium containing 10% fetal calf 

serum, 2mM glutamine and 1 % penicillin streptomycin (all from Life Technologies). Cells were 

detached by incubation with PBS-EDTA 20 mM for 10 minutes at room temperature before 

proceeding with filtering for flow cytometry. 

5.3.1 Animals 

All experiments were conducted in accordance with the European Community guiding principles on 

the care and use of animals and with the approval of the Ethical Committee on Animal Research of 

Hasselt University. Mice were maintained in the animal facility of the Hasselt University in 

accordance with the guidelines of the Belgian Law and the European Council Directive. To visualize 

microglia in the embryonic cortex the transgenic CX3CR1-eGFP knock-in mice [403] were used. 

The heterozygous CX3CR1-eGFP +/- embryos used in this study were obtained by crossing wild 

type C57BL/6 females with homozygous CX3CR1-eGFP +/+ male mice (obtained from the 

European Mouse Mutant Archive – EMMA with the approval of Stephen Jung [403]). The day of 

conception was designated as embryonic day 0.5 (E0.5).  

5.3.2 Maternal immune activation  

At day E11.5 (single injection) or at E11.5 and E15.5 (double injection) mice received i.p. a dose of 

Poly (I:C) (20mg/kg) (Polyinosinic–polycytidylic acid potassium salt; Sigma-Aldrich, Bornem, 

Belgium) or vehicle (saline). Five hours after injection the maternal blood was collected, the serum 

was aliquoted and stored at -80°C until the IL-6 assay was performed [217, 222]. The maternal IL-

6 concentrations were determined using the Mouse IL-6 ELISA Kit from Thermo Scientific 

(Rockford, Illinois, USA), following the manufacturer’s instructions. The analysis was conducted 

using a FLUOstar OPTIMA plate reader (BMG Labtech, Ortenberg, Germany).  

5.3.3 Fluorescent immunostaining of embryonic brains 

Pregnant mice were sacrificed and embryonic tissue processed as described before [72]. The heads 

of E11.5 and E12.5 embryos were fixed in 4% paraformaldehyde for 3 hours at 4°C and 5 hours for 

E17.5 embryos. After fixation, the embryonic heads were cryoprotected overnight in phosphate-

buffered saline (PBS) + 30% sucrose, frozen in optimal cutting temperature compound (Tissue-

Tek) and stored at -80°C until sectioned. Ten micrometer-thick coronal tissue sections were cut on 

a Leica CM1900 uv cryostat, mounted on Superfrost Plus glasses and stored at -20°C until staining.  

To check whether embryonic microglia can be directly activated by Poly (I:C), IL-6 or LPS, 300-µm 

thick coronal brain slices (E15.5) were cultured for 24 hours with either saline, Poly (I:C) (50 
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µg/ml), IL-6 (10 ng/ml) or LPS (1 µg/ml). To this end, pregnant mothers were euthanized at 

E15.5. Embryonic brains were isolated in ice-cold PBS-glucose (pH 7.4; 25mM), embedded in 3% 

low melting agarose (Fisher Scientific) and sliced coronally at a thickness of 300 µm using a 

Microm HM650V Vibrating Blade Microtome. Slices were mounted on MilliCell organotypic inserts 

(Millipore) and maintained in semi-hydrous conditions at 37°C and 5% CO2 for 24 hours. The 

media consisted of Neurobasal medium supplemented with 2mM L-glutamine, B27 supplement, N2 

supplement and 0.5% penicillin-streptomycin (all from Invitrogen) with either saline, Poly (I:C) (50 

µg/ml), IL-6 (10 ng/ml) or LPS (1 µg/ml) added. Afterwards slices were fixed for 1 hour in 4% PFA 

and cryoprotected overnight in PBS + 30% sucrose, frozen in optimal cutting temperature 

compound (Tissue-Tek) and stored at -80°C until sectioned. Ten micrometer-thick coronal tissue 

sections were cut on a Leica CM1900 uv cryostat, mounted on Superfrost Plus glasses and stored 

at -20°C until staining.  

In order to determine the activation state of the microglia, we used antibodies against interleukin 

(IL)-1β, inducible nitric oxide synthase (iNOS) and Mac-2/Galectin-3 [37, 144]. All primary 

antibodies and working solutions are listed in Table 5.1. 

Table 5.1. Overview of the antibodies used for immunostainings and flow cytometry experiments. 

 

 

5.3.4 Isolation of microglia and flow cytometry experiments 

Brains were isolated from CX3CR1-eGFP +/- E17.5 embryos from mothers subjected to a single 

saline or Poly (I:C) injection on E11.5, or a double Poly (I:C) injection on E11.5 and E15.5. All 

steps occurred at 4°C or on ice, unless stated otherwise, to avoid microglia activation. Meninges 

were removed, the cortical area identical to the immunohistochemical analysis was dissected out 

and incubated during 30min at 30°C in DMEM/F-12(1:1) + GlutaMAX (Life Technologies) containing 

48U/ml Papain from papaya latex (Sigma). Papain containing supernatants was discarded and the 

tissue was mechanically disrupted in medium through fast pipetting using a 1 ml pipet. Afterwards, 

the homogenate was centrifuged at 400g during 5 min, resuspended in 40% isotonic Percoll (GE 

Healthcare) and centrifuged at 700g during 10min without break. The pellet was resuspended in 

PBS and filtered through a 35µm cell strainer. Cell suspensions were fixed and permeablized in 

Cytofix/Cytoperm buffer (BD Cytofix/Cytoperm™ Plus Fixation/Permeabilization Kit, BD 

Biosciences) during 20 min on ice, washed and incubated on ice for 30 min in Perm/Wash buffer 

Antibody Company Reference Dilution 

Immunohistochemistry    

Anti-IL1β (rabbit polycl.) Abcam ab9722 1:100 

Anti-iNOS (rabbit polycl.) Abcam ab15323 1:250 

Anti-Mac-2 (rat monocl.) 
American Type Culture 

Collection 
TIB-166 1:250 

Flow cytometry    

Anti-IL1β PE (rat monocl.) LifeSpan BioSciences LS-C184791 1:300 

Anti-iNOS PE-Cy7 (rat monocl.) eBioscience 25-5920 1:300 

Anti-Mac-2 PE (rat monocl.) eBioscience 12-5301 1:300 
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with a mix of fluorochrome-conjugated rat anti-mouse antibodies: iNOS-PE-Cy7 (clone CXNFT, 

eBioscience),  Mac-2-PE (clone eBioM3/38, eBioscience) and IL1β-PE (clone 11n92, LifeSpan 

BioSciences) (Table 5.1). The following isotype controls were used: Rat IgG2aκ PE-Cy7, Rat 

IgG2aκ PE and Rat IgG2b PE (all from eBioscience). After washes, cells were resuspended in FACS 

buffer (PBS, 2% FCS, sodium azide), acquired in a FACS Aria II and analysed with FACS Diva 6.1.3 

software (BD Biosciences). Isotype-marker overlay graphs were created in FlowJo 10.0.8 Software. 

Inside the singlet population, the eGFP positive microglia (1000-12000 cells per experiment) were 

gated (Fig. 5.5A), and within this population, the percentage of Mac-2, iNOS and IL1β positive 

microglia was analysed. Isotype controls were used to gate the positive cell population (Fig. 5.5 B). 

Per group, embryos were derived from one to three different mothers (saline, single Poly (I:C), 

double Poly(I:C)). BV-2 cells (Suppl. Data) were used as positive controls for the different 

antibodies (Fig. 5.6). 

5.3.5 Analysis and statistics 

Quantitative analysis of microglial cells was performed on images of coronal embryonic brain 

sections. We focused our analysis on the cerebral cortex area located dorsally to the lateral 

ganglionic eminences (LGE) and medial ganglionic eminences (MGE), containing the frontal and 

pariental cortex on E11.5 and E12.5, and the somatosensory and motor cortex at E17.5. This 

region of the cortex is well characterized on the functional and cellular level and the two GE 

structures are the major sources of cortical interneurons during embryonic neurogenesis [416, 

418]. For the quantifications of the hippocampal area at E17.5 only the dorsal hippocampus was 

included in the analysis. 

Images were taken with a Nikon Eclipse 80i microscope and a Nikon digital sight camera DS-

2MBWc (10x Nikon plan objective (numerical aperture (NA) of 0.25) and a 20x Plan Fluor objective 

(NA of 0.5)). Images (1600 x 1200) were analysed with ImageJ 1.45e software (NIH, USA; 

http://rsb.info.nih.gov/ij/). Only eGFP-positive cell bodies were taken into account for the 

measurements. Density analysis was performed by counting the number of eGFP positive cell 

bodies per mm² [72]. For analysis of activation state we calculated the percentage of the eGFP 

positive cells that were also showing immunoreactivity for the activation marker. All values are 

expressed as mean ± S.E.M. The number of sections used is indicated as n, the number of 

embryos or blood samples as N; # sections/# embryos is thus designated in the text as n/N. 

Statistical significance was assessed by nonparametric Mann Whitney test or Kruskal-Wallis test, P-

values smaller than 0.05 were considered significant. 

5.4 Results 

An increase in IL-6 level in the maternal blood is a crucial factor in the development of MIA-induced 

deficits and changes observed in the offspring [217]. To control that the Poly (I:C) injection 

procedure we used evoked an increase in IL-6 level in the maternal blood, we analysed the IL-6 

level in the maternal serum samples 5 hours after injection of either saline or Poly (I:C). We found 

a significant increase (P < 0.0001; Mann Whitney test) in the level of IL-6 in the sera of female 

mice primed with Poly (I:C) (1876 ± 389.2 pg/ml, N = 22) when compared to those injected with 
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saline (14.8 ± 3.3 pg/ml, N = 26), thus indicating that the mice in the Poly (I:C) group effectively 

suffered from a systemic immune response.  

In response to brain injury, microglia proliferate and shift to beneficial or detrimental activation 

states depending on the local environment. When activated, microglial cells adopt a phagocytic 

phenotype in order to clear dying cells [32]. In pathological conditions, such as in the mouse model 

of LPS-induced MIA, phagocytosis of neuronal precursor cells by microglia was also increased, 

which resulted in a decrease in the size of the precursor cell pool in the cerebral cortex [144]. It 

must also be noted that microglial disturbances were also observed in patients suffering from 

autistic or schizophrenic disorders. Microglial activation has been observed in the brains of autistic 

[229, 230] and schizophrenic patients [226, 542, 543]. Recent studies also indicated that there is 

an increase in microglial density in different brain regions in the adult Poly (I:C) MIA offspring 

[544, 545]. 

To determine if Poly (I:C)-evoked MIA alters the embryonic microglial cell colonization process in 

the fetal brain we compared cell density after single injection of Poly (I:C), double injection of Poly 

(I:C) or saline treatments, in the cortex at E11.5, E12.5 and at E17.5 (single injection) or at E17.5 

(double injections) and in the hippocampal area at E17.5 (single and double injections). At all ages 

tested we did not find any significant difference in microglia cell density (Mann Whitney test; P > 

0.05, for detailed P-values see Table 5.2) in the cortex or in the hippocampus after a single or 

after double injections (Fig. 5.1 and Table 5.2), thus suggesting that Poly (I:C)-evoked MIA does 

not alter early invasion of the cortex and the hippocampus by microglial cells in the embryo. 

Table 5.2. Microglial cell density in the cortex and hippocampal area of embryos derived from the 

control group and the group that was subjected to maternal inflammation at E11.5 or at E11.5 and 

E15.5. 

  

 Single injection at E11.5 

Brain structure Cortex   Hippocampus 

Embryonic age E11.5 E12.5 E17.5 E17.5 

Saline  48.6 ± 8.8 34.9 ± 2.8 59.6 ± 5.8 122.5 ± 4.9 

Poly (I:C) 32.2 ± 5.7 37.8 ± 2.9 56.5 ± 4.3 111.6 ± 5.7 

P  value 0.191 0.375 0.573 0.435 

 Double injection at E11.5 and E15.5 

Brain structure Cortex   Hippocampus 

Embryonic age E17.5   E17.5 

Saline 59.8 ± 3.1   95.3 ± 4.8 

Poly (I:C) 57.8 ± 2.2   91.0 ± 5.7 

P value 0.931   0.699 

Values are mean ± SEM of the number of microglial cells per mm², Mann Whitney test was used for statistical 
analysis. When injected at E11.5 the numbers of embryonic brains in the saline and Poly (I:C) group were 

respectively: E11.5 = 4/5; E12.5 = 12/7; E17.5 cortex = 6/8; E17.5 hippocampus = 5/8. When injected at 
E11.5 and E15.5 numbers of embryonic brains in the saline and Poly (I:C) group were respectively: E17.5 

cortex = 5/6; E17.5 hippocampus = 6/6. 
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Fig. 5.1. Embryonic microglial cell density is not increased after single and double injection of Poly 

(I:C). Microglial cell density in the cortex and hippocampal area was not affected after Poly (I:C)-induced MIA. 

Values are mean ± SEM of the number of microglial cells per mm², Mann Whitney test was used for statistical 

analysis. When injected at E11.5 the numbers of embryonic brains in the saline and Poly (I:C) group were 

respectively: E11.5 = 4/5; E12.5 = 12/7; E17.5 cortex = 6/8; E17.5 hippocampus = 5/8. When injected at 

E11.5 and E15.5 numbers of embryonic brains in the saline and Poly (I:C) group were respectively: E17.5 

cortex = 5/6; E17.5 hippocampus = 6/6. c, cortex; h, hippocampal area; (D), double injection. 

To determine if MIA induced a change in microglial activation level after a single Poly (I:C) injection 

(E11.5), we performed an immunostaining for three different activation markers: Mac-2/Galectin-3, 

iNOS and IL1β at E11.5 and E17.5.Mac-2/Galectin-3 is a marker of microglial phagocytic activation 

state [188, 546] while iNOS and IL1β are markers of a cytotoxic activation state [144]. At E11.5 

none of the microglia located in the cortex was immmunopositive for Mac-2 staining both after 

saline injection (n/N = 14/3) and after Poly (I:C) challenge (n/N = 18/3) (Fig. 5.2B1 and B2). At 

E17.5, 2.5 ± 0.5% (n/N = 38/4) of the microglia in the cortex (Fig. 5.2A1 and A2) and 3.2 ± 

0.7% (n/N = 27/4) of the microglia in the hippocampal area expressed Mac-2 after saline injection. 

We did not find any significant difference ((Kruskal-Wallis test; P = 0.448) after Poly (I:C) 

challenge. After Poly (I:C) challenge, 1.9 ± 0.7% (n/N = 23/4) of the microglia in the cortex and 

2.5 ± 1% (n/N = 15/4) of microglia in hippocampal area expressed Mac-2 (Fig. 5.2C1, C2, D1 

and D2). We next investigated the expression of IL1β and iNOS [144] to determine if embryonic 

microglia can adopt a cytotoxic activation state after a single injection of Poly (I:C). Induction of 

MIA by a single injection of Poly (I:C) did not result in a significant increase in the percentage of 

microglia expressing IL1β either at E11.5 and E17.5 (Kruskal-Wallis test; P = 0.136). In control 

conditions, 0 ± 0% (n/N = 6/3) and 2.2 ± 1% (n/N = 15/4) of microglia located in the cortex 

expressed IL1β at E11.5 and E17.5 (Fig. 5.3A1 and A2) respectively while 3.1 ± 1.3%  (n/N = 

17/4) expressed IL1β in the hippocampal area (E17.5). After Poly (I:C) challenge, 3.3 ± 3.3% (n/N 

= 10/3) and 3.5 ± 1% (n/N = 19/4) of microglia located in the cortex expressed IL1β at E11.5 

(Fig. 5.3 B1 and B2) and at E17.5 (Fig. 5.3C1 and C2) respectively, while 7.2 ± 2.6 %  (n/N = 

17/4) expressed IL1β in the hippocampal area (E17.5) (Fig. 5.3D1 and D2). We found similar 

results when analyzing iNOS expression at E11.5 and E17.5 in the cortex and in the hippocampal 

area (E17.5). Cortical iNOS expression in control conditions (E11.5: 8.3 ± 5.7%, n/N = 10/3; 

E17.5: 2.0 ± 1.1%, n/N = 15/4 (Fig. 5.4A1 and A2)) was not significantly different when 

compared to the Poly (I:C) condition (E11.5: 0 ± 0%, n/N = 8/3 (Fig. 5.4 B1 and B2); E17.5 :1.9 

± 1.1%, n/N = 12/4 (Fig. 5.4C1 and C2) (Kruskal-Wallis test; P = 0.471). In the hippocampal 
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area, 1.5 ± 1.0% of microglia (n/N = 14/4) express iNOS in control conditions while 0 ± 0%, of 

microglia (n/N = 10/4) express iNOS after Poly (I:C) challenge (Fig. 5.4 D1 and D2, being not 

significantly different (Kruskal-Wallis test; P = 0.471)).  

This lack of change in embryonic microglia activation state after a single Poly (I:C) injection could 

possibly lead only to a “primed” microglial state. Indeed, two injections of LPS were necessary in 

rat to elicit MIA induced microglia dysfunction during phagocytosis of cortical neural precursor cells 

[144], suggesting that the microglial phenotype could become only fully altered after the second 

inflammatory challenge. To determine if this is also the case for Poly (I:C) we reanalysed microglial 

density and activation level after a repeated injection of Poly (I:C). Consequently, the mothers 

suffered from a double immune stimulation (on E11.5 as well as on E15.5). Despite the presence of 

a maternal immune response after both injections, there was no significant increase in microglial 

cell density (Mann Whitney test; P > 0.05, for detailed P-values see Table 5.2) (Fig. 5.1 and 

Table 5.2). Microglial activation states were analysed at E17.5 as described above. We did not find 

any significant difference (Kruskal-Wallis test; Mac-2, P = 0.139; IL1β, P = 0.945; iNOS, P = 

0.093) in the percentage of microglia expressing Mac-2, IL1β or iNOS between control conditions 

and after double injections of Poly (I:C). After double injections of Poly (I:C) the percentage of 

microglia immunoreactive for Mac-2 antibody was 0 ± 0% (n/N = 29/6) in the cortex (Fig. 5.2E1 

and E2) and 2.0 ± 0.7% (n/N = 22/6) in the hippocampal area (Fig. 5.2F1 and F2). In the 

cortex (Fig. 5.3E1 and E2) and hippocampal area (Fig. 5.3F1 and F2) 1.4 ± 0.7% (n/N = 34/6) 

and 1.4 ± 1.0% (n/N = 25/6) of the microglial cells showed immunoreactivity for the IL1β 

antibody, while 1.8 ± 0.7% (n/N = 34/6) and 0 ± 0% (n/N = 23/6) of the microglia were positive 

for iNOS in the cortex (Fig. 5.4E1 and E2) and hippocampal area (Fig. 5.4F1 and F2), 

respectively. These results indicate that even double injections of Poly (I:C) did not evoke microglia 

activation in the embryo.   
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Fig. 5.2. Embryonic microglial cell population is poorly immunoreactive to the Mac-2/Galectine-3 

antibody after single and double injection of Poly (I:C). (A-F1) Coronal sections of embryonic brains, 

with cell nucleus staining in blue (DAPI) and microglial (CX3CR1-eGFP) cells in green. Immunohistochemical 

staining using a Mac-2 antibody (red) showed that at E17.5 almost no microglial cells in the cortex were 

immunoreactive for Mac-2 (A2) after injection with saline. At E11.5 (B2) and E17.5 (C2 and E2) in the cortex 

and E17.5 hippocampal area (D2 and F2) there was no increased percentage of microglial cells expressing the 

activation marker after Poly (I:C) challenge compared to control. White square indicates the location of the cells 

in the tissue showed in the inset; * indicates a Mac-2 positive eGFP cell. Examples of one control brain area and 

Poly (I:C) group only as they were not significantly different. Scale bar = 100 µm and for insets = 20 µm. 
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Fig. 5.3. Embryonic microglia show no increased expression of IL1β after  

single and double injection of Poly (I:C). (A-F1) Coronal sections of embryonic brains, with cell nucleus 

staining in blue (DAPI) and microglial (CX3CR1-eGFP) cells in green. Immunohistochemical staining using an 

IL1β antibody (red) showed that at E17.5 almost no microglial cells in the cortex were immunoreactive for IL1β 

(A2) after injection with saline. At E11.5 (B2) and E17.5 (C2 and E2) in the cortex and E17.5 hippocampal 

area (D2 and F2) there was no increased percentage of microglial cells expressing the activation marker after 

Poly (I:C) challenge compared to control. White square indicates the location of the cells in the tissue showed in 

the inset; * indicates an IL1β positive eGFP cell. Examples of one control brain area and Poly (I:C) group only 

as they were not significantly different. Scale bar = 100 µm and for insets = 20 µm. 
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Fig. 5.4. Embryonic microglia cell population is poorly immunoreactive to the iNOS antibody after 

single and double injection of Poly (I:C). (A-F1) Coronal sections of embryonic brains, with cell nucleus 

staining in blue (DAPI) and microglial (CX3CR1-eGFP) cells in green. Immunohistochemical staining using an 

iNOS antibody (red) showed that at E17.5 almost no microglial cells in the cortex were immunoreactive for 

iNOS (A2) after injection with saline. At E11.5 (B2) and E17.5 (C2 and E2) in the cortex and E17.5 

hippocampal area (D2 and F2) there was no increased percentage of microglial cells expressing the activation 

marker after Poly (I:C) challenge compared to control. White square indicates the location of the cells in the 

tissue showed in the inset. Examples of one control brain area and Poly (I:C) group only as they were not 

significantly different. Scale bar = 100 µm and for insets = 20 µm.  
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In addition to the immunohistochemical stainings, the presence of the activation markers on 

microglial cells at E17.5 was investigated by flow cytometry. The gating strategy and positive 

controls are shown in Fig. 5.5A,B and Fig 5.6. The results of the flow cytometric quantifications 

were similar to those obtained by immunohistochemistry. There was no significant difference in the 

proportion of microglial cells that were positive for Mac-2 after single Poly (I:C) injection (16.8 ± 

0.0 %; N = 10) or double Poly (I:C) injection (27.0 ± 4.6 %; N = 10) when compared to the 

control group (15.5 ± 4.3; N = 5) (Fig. 5.5C, left panel; Kruskal-Wallis test, P = 0.161). The 

proportion of microglial cells that were positive for IL1β in the control group (14.2 ± 3.1 %; N = 

10) was not significantly different (Fig. 5.5C, middle panel; Kruskal-Wallis test, P = 0.093) to the 

percentage of microglia that was positive for IL1β after a single (22.3 ± 3.9 %; N = 8) or double 

Poly (I:C) injection (16.0 ± 2.1 %; N = 6). The percentage of microglial cells positive for iNOS in 

the control group was 9.1 ± 2.8 % (N = 5). There was no significant effect (Fig. 5.5C, right panel; 

Kruskal-Wallis test, P = 0.816) of a single Poly (I:C) (7.1 ± 1.5 %; N = 10) or double Poly (I:C) 

challenge (9.9 ± 2.7 %; N = 10) on the percentage of microglia expressing this marker. 

 

 

 

 

 

 

 

 

 

 

 

 

(next page) Fig. 5.5. Flow cytometry reveals that embryonic microglial cells show a poor expression 

of activation markers Mac-2, IL1β and iNOS. (A) Gating strategies for the microglial cells. In the whole 

embryonic cortex cell suspension, a gate was created on the non-debris population (left). Inside this population, 

single cells were selected (middle) and within this population, the microglial cells were gated based on CX3CR1-

eGFP intensity (right). SSC, Side scatter; FSC, Forward scatter. (B) Gating strategies for positive Mac-2, iNOS 

and IL1β populations. Microglial cell count of representative samples is shown for Mac-2 (left), IL1β (middle) 

and iNOS (right; full lines) for embryos derived from saline, single Poly (I:C) and double Poly (I:C) injected 

mothers. Gates for positive populations were drawn based on the isotype fluorescence intensity (dotted lines). 

FI, fluorescence intensity. (C) Left panels: At E17.5 only a small percentage of microglial cells shows reactivity 

for Mac-2. There is no significant effect of Poly (I:C) injection on this percentage. Number of embryos tested: 

Saline N = 5; single Poly (I:C) N = 10 and double Poly (I:C) N = 10. Middle panels: In control conditions, less 

than 15 % of the microglial cells is positive for IL1β. There is no significant effect of Poly (I:C) injection on this 

proportion. Number of embryos tested: Saline N = 10; single Poly (I:C) N = 8 and double Poly (I:C) N = 6. 

Right panels: At E17.5 less than 10 % of the microglial cells is positive for iNOS. Poly (I:C) challenge has no 

significant effect on this percentage. Number of embryos tested: Saline N = 5; single Poly (I:C) N = 10 and 

double Poly (I:C) N = 10.  
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Fig. 5.6. BV-2 cells are positive for iNOS, Mac-2 and IL1 beta (A-D). BV-2 cells (A) were processed 

identical to the embryonic cortex cell suspension for flow cytometric staining. Using the same antibody 

concentration we find immune reactivity for iNOS (40.6%, B), Mac-2 (100%, C) and IL1 beta (95.4%, D) (full 

lines), which indicates that the antibody is capable to recognize the antigens. Gates for positive populations 

were drawn based on the isotype fluorescence intensity (dotted lines). 

 

 

The absence of activation marker expression by microglia after Poly (I:C) challenge raised the 

question whether fetal microglia can be directly activated by a Poly (I:C) challenge as suspected for 

LPS [144] and IL-6 [217]. To address this issue we analysed the activation state of microglia in 

short-term cultured embryonic brain slices (E15.5) after exposure to IL-6, Poly (I:C) or LPS. The 

percentage of microglial cells expressing Mac-2/Galectin-3, iNOS and IL1β were analysed 24 hours 

after immune challenge of the slices (Fig. 5.7D). Fig. 5.7 insets show examples of microglial cells 

that did (Fig. 5.7A-C2) or did not show immunoreactivity (Fig. 5.7A-C3) for the activation 

markers tested (Mac-2, IL1β and iNOS). In control conditions 31 ± 5.9%, (n/N = 23/4) of microglia 

were immunoreactive for Mac-2 antibody. This percentage was significantly higher (Kruskal-Wallis 

test; P < 0.0001) than that observed in vivo indicating that an in vitro environment promotes 

microglia phagocytic activation state. However there was no significant effect (Kruskal-Wallis test; 

P = 0.274) of IL-6, Poly (I:C) or LPS treatment on the percentage of microglia being 

immunoreactive to Mac-2 antibody (Fig. 5.7D), being 34 ± 5.5%  (n/N = 22/4) after IL-6 

exposure,  32 ± 6.7%, (n/N = 18/5) after Poly (I:C) exposure and 47 ± 7.5% (n/N = 21/5) after 

LPS exposure (Fig. 5.7D). As observed for Mac-2, the percentage of IL1β immunoreactive 

microglia was significantly higher than in in vivo conditions (in control conditions 52 ± 6.8%, (n/N 

= 27/4) (Kruskal-Wallis test; P < 0.0001)) and for iNOS a trend to a higher percentage was 

observed under control conditions (in control conditions 18 ± 5.7%, (n/N = 23/4) (Kruskal-Wallis 

test; P = 0.091)). As shown in Fig. 5.7D treatment with IL-6 or Poly (I:C) did not significantly 

change the percentage of microglia immunoreactive for IL1β or iNOS antibodies. When looking at 

IL1β immunoreactivity, 36 ± 7.2% (n/N = 16/4) of the microglia was positive after IL-6 exposure 

and 54 ± 7.5%, (n/N = 19/5) after Poly (I:C) exposure (Fig. 5.7D). For iNOS they were 30 ± 



Maternal immune stimulation does not activate embryonic microglia

 

144 

 

6.5% (n/N = 19/4) after IL-6 exposure and 25 ± 3.9%, (n/N = 25/5) after Poly (I:C) exposure 

(Fig. 5.7D). However we found that LPS, contrary to IL-6 or Poly (I:C), can directly activate 

microglia to a detrimental activation state. Indeed LPS exposure significantly increased the 

percentage of microglia immunoreactive for IL1β (Kruskal-Wallis test; P = 0.025) or iNOS 

antibodies (Kruskal-Wallis test; P = 0.025). In the presence of LPS 66 ± 5.5 (n/N= 22/5) and 42 ± 

7.1% (n/N = 21/5) of microglia were immunoreactive for IL1β antibody or iNOS antibody, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7. Microglial activation in short-term cultured brain slices. Example of activation marker stainings 

on short-term cultured slices treated with LPS. (A) Immunohistochemical staining for Mac-2/Galectin-3 (red), 

nuclei were visualized with DAPI (blue) (A1). Microglia (green) positive (A1 white square, A2) for Mac-

2/Galectin-3 (red) and microglia that do not express the marker (white triangle, A3) were present in the slice. 

(B) Immunohistochemical staining for for iNOS (red), nuclei were visualized with DAPI (blue) (B1). Microglial 

cells that were positive (white square B1, B2) and negative (white triangle B1, B3) for iNOS (red) were 

observed in the slice after LPS treatment. (C) Immunohistochemical staining for IL1β (red), nuclei were 

visualized with DAPI (blue) (C1). Microglial cells that were positive (white square C1, C2) and negative (white 

triangle C1, C3) for IL1β (red) were observed in the slice after LPS treatment. Examples of the different 

immunostainings were taken from slices treated for 24 hours with 1 µg/ml LPS. Scale bar = 50 µm and for 

inserts = 20 µm. White squares indicate the microglia positive for the marker and shown in higher 

magnification (A-C2), white triangles indicate microglia negative for the marker and shown in higher 

magnification (A-C3). (D) Quantification of the expression of three activation markers (Mac-2, iNOS and IL1β) 

by microglia in E15.5 brain slices cultured for 24 hours with IL-6 (10 ng/ml), Poly (I:C) (50 µg/ml) or LPS (1 

µg/ml). Kruskal Wallis test was used for statistical analysis. Number of treated slices in control and IL-6 group 

N = 4; LPS and Poly (I:C) group N = 5. Number of cryosections for Mac-2/iNOS/IL1β in: saline group n = 

23/23/27; IL-6 group n = 22/19/16; Poly (I:C) group n = 18/25/19; LPS group n = 21/21/22 (all derived from 

3 different embryos). (* p < 0.05).  
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5.5 Discussion 

MIA-induced behavioural and neurological alterations observed in the offspring at juvenile and 

adult stages in animals are supposed to be correlated with the etiology of neuropsychiatric 

disorders in humans [226, 229, 230, 542, 543]. Our study in mice demonstrates, for the first time, 

that MIA evoked by single or double Poly (I:C) injections does not change microglia density and 

their activation state in the embryo in vivo. This suggests that the behavioural and neurological 

alterations in the offspring cannot be related to the alteration of the activation state of embryonic 

microglial cells. Our in vitro studies indicated that microglia cannot be directly activated by Poly 

(I:C) or IL-6 exposure, contrary to the activation observed upon LPS application. 

5.5.1 Direct effects of infectious triggers on microglia 

Several observations suggest that the different infectious triggers induce differences in activation of 

embryonic microglia. The cytokine IL-6 can cross the placenta barrier in vivo when maternal 

inflammation was induced during mid-gestation [547-549], but it is not clear whether Poly (I:C) as 

well can cross the placenta [550]. LPS is shown to cross the placenta barrier in vivo when maternal 

inflammation was induced during early gestation [547, 551], but this was not the case when LPS 

was injected at late gestation [549]. Although extrapolation of these results to a Poly (I:C) 

challenge would suggest that embryonic microglia are directly or indirectly activated in response to 

Poly (I:C)-induced MIA at mid gestation, we could not find any evidence for microglia activation in 

this study. In addition our results suggest a different response of the embryonic brain to MIA 

depending on the trigger used.  

5.5.2 Microglial alterations following Poly (I:C) or LPS induced MIA 

Until now, only the study of Pratt et al. assessed microglial density in the embryonic mouse brain 

following maternal Poly (I:C) challenge and like us, report no changes in this aspect [552]. 

Changes in microglial number/density following Poly (I:C) challenge in the pregnant mice have only 

been found at postnatal or adult stages in a handful of studies and not necessarily in the same 

brain regions [544, 553-555]. On the contrary, other studies found no change in postnatal or adult 

microglial density [88, 556, 557]. The study of Pratt et al. showed changes in embryonic (E16.5) 

microglial IL1α, IL4, IL9, GM-CSF and M-CSF expression, but not in a series of other cytokines and 

chemokines, including IL1β similar to our findings [552]. Postnatal microglia in the offspring of 

Poly(I:C) injected pregnant mice neither show changes in immune-related protein expression [557-

559].  

More extensive literature exists on microglial alterations in the embryo following LPS challenge in 

the pregnant mother. In the fetal sheep brain, microglial cell numbers increased as well as the 

number of activated/amoeboid cells [241, 560, 561]; in the rat embryo the percentage of microglia 

expressing iNOS and IL1β was increased [144] and postnatally a changed immunoreactivity by 

microglial cells was still observed [551]; and in mice Iba-1 reactivity was increased during late 

embryonic and early postnatal stages [562]. It must be noted that the whole of MIA studies are in 

general characterized by a high variation in the protocol to induce MIA, with regard to gestational 

age of MIA trigger, dose, administration route and species exists between studies (both for Poly 
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(I:C) als for LPS). These variations might contribute to the contrasting results on microglial 

alterations. Also some studies use the mRNA and/or protein expression level of different cytokines 

as read-out [88] while others use immunohistochemistry [144, 530] or cell number [241, 553] to 

investigate microglial cell activation after MIA. In addition, the effect of MIA is studied on several 

different postnatal and adult time points. In that way it is of interest to compare in parallel the 

effect of MIA induced by different infectious agents using the same protocol on microglia at 

different time points ranging from embryonic development to postnatal development and adult life 

in different species.  

5.5.3 Effects of Poly(I:C)-induced MIA on CNS physiology 

MIA induces not only a cytokine response in the maternal unit but also alters several cytokine 

levels in the placenta and in the fetus [218, 552]. Under normal conditions cytokines are present in 

the placental unit where they play an important role in controlling the tissue homeostasis and 

balance of the different T-cell types present in this structure. In addition, toll-like receptors (TLR), 

such as TLR-2 and 4, are expressed on human chorionic villi [563]. Maternal injection with IL-6 is 

known to lead to endocrine changes in the placenta [564] and injection of a high dose of LPS 

results in placental inflammation [565] and induction of pro-inflammatory cytokines in the amniotic 

fluid [566]. In addition, a direct injection of LPS into the uteroplacental circulation leads to a 

reaction in the embryonic brain, suggesting the placental unit can contribute to perinatal brain 

damage through the induction of an inflammatory reaction as a response to infection during 

pregnancy [241]. This complicates elucidating the site where the cytokines act upon to potentially 

alter brain development since they can act directly on neural progenitors and neurons [250, 251]. 

For example, IL-6 and LIF can influence the differentiation of neural progenitor cells [252]. 

These data, in combination with the lack of microglial activation in our MIA study suggests that the 

acute maternal inflammation induced by Poly (I:C) could affect other systems or cell types during 

embryonic stages. These MIA-induced early abnormalities might result in an altered CNS 

environment in the offspring that in turn affects the microglial cells at later developmental stages. 

This hypothesis is supported by the observed changes in neurotransmitter systems in the adult 

offspring and not in the pre-pubertal period after challenge with Poly (I:C) [553]. GABAergic gene 

expression, like GABA receptor subunits and vesicular transporters, can be altered in the adult 

prefrontal cortex after Poly (I:C)-induced MIA [567]. In addition, serotonin and glutamate signaling 

was altered [568]. These changes were not present at pre-pubertal ages.  

It is also important to note that, although microglia do not invade the CNS of mouse embryo at E9 

[37, 72], Poly (I:C) challenge at this gestation stage resulted in the suppression of spatial 

exploration in the adult [248]. This reinforces the idea that embryonic microglia dysfunction, if any, 

is unlikely to be the main mechanism inducing developmental disorders featuring pathological 

behaviour. Accordingly, Poly (I:C) challenge at E9 did not evoke any increase in cytokine mRNA 

level in the fetal brain [248]. Poly (I:C) might thus induce developmental deficits via direct action 

on neuronal development. 
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5.5.4 Second hit hypothesis 

Our results cannot exclude that Poly (I:C) evokes an embryonic microglia priming resulting in an 

exaggerated response of microglia to homeostatic disturbances at postnatal or adult stages and 

subsequently aggravating neuronal dysfunction. In some neurodegenerative disease models in 

rodents (for example Alzheimer’s, Parkinson’s and prion disease) the injection of LPS or Poly (I:C) 

leads to a more severe pathology. The combined exposure of a prenatal immune challenge (Poly 

(I:C) at E9) and peripubertal stress (from P30 to 40) resulted in the development of sensorimotor 

gating deficiencies and led to increased dopamine levels in the adult hippocampus [530]. At 

peripubertal age of P41, the combination of both stressors resulted in altered neuroimmune 

responses, presented as increased microglial cell number and elevated levels of IL1β and TNFα in 

the hippocampus and prefrontal cortex [530]. These latter changes were transient, as they were 

not longer present in the adult. Finally, low doses of Poly (I:C) worsened the deficits in pre-pulse 

inhibition and latent inhibition in 16 week old mice with mutations in a schizophrenia susceptibility 

gene but had no effect in wild-type animals, thus indicating that genetic and environmental factors 

can interact to worsen the schizophrenia-related behaviour [569]. 





  

149 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6:  

 

General discussion and perspectives 



General discussion and perspectives

 

150 

 

Microglia are the immune cells of the brain and it is now established that they perform essential 

tasks during brain development and homeostasis. Microglial progenitors arise in the yolk sac and 

start to colonize the brain slightly before neurogenesis and neuronal migration begins. Despite of 

the recent advances in understanding the plentiful roles of microglia in brain development, many 

aspects of their physiology and mechanisms underpinning their migration behaviour remain 

unresolved.  

In this dissertation, we first described the colonization pattern and phenotype of microglia in the 

embryonic mouse brain based on the expression of surface markers (Chapter 2). Second, we 

characterized the microglial migration behaviour over development and herein assessed the role of 

extracellular matrix (ECM) (fibronectin)-integrin interactions (Chapter 3). Third, we investigated 

the presence of a chemotactic C-X-C motif chemokine (CXCL)-12/ C-X-C chemokine receptor type 

(CXCR)-4/β1 integrin signaling axis during microglial migration (Chapter 4). Fourth, the effect of 

maternal immune activation on the activation profile of microglia residing in the cortex and 

hippocampus of the embryonic offspring was investigated (Chapter 5). Fig. 6.1 shows a summary 

of the main results obtained in this work. 

In this last chapter, I critically reflect on the data generated in this dissertation with respect to the 

current state of knowledge in the field of developmental neuroscience. By integrating results from 

different chapters, I place our findings in a broader context and bring forward new points for 

discussion. Throughout this chapter, new questions pop up and I try to briefly suggest how these 

can be tackled from an experimental point of view. These outstanding questions are listed at the 

end of the chapter in Box 6.1. 

6.1 Properties of microglia during colonization of the embryonic brain  

In Chapter 2 we have demonstrated that the microglial colonization process occurs in three 

phases: in the first phase from E10.5 to E14.5 the microglial cell numbers increases modestly, 

followed by a steep increase from E14.5 to E15.5 and again a slow phase from E15.5 to E17.5. We 

also show that microglia proliferate mainly before entering the central nervous system (CNS) 

parenchyma, which was also observed in spinal cord [37]. Proliferation rates inside the cortical 

parenchyma decrease steadily to considerably low levels already at E15.5, which indicates that 

microglia colonize the cortex mainly through intensive migration instead of proliferation. We further 

demonstrate that microglia populate the brain mainly from hot spots near the pial membrane and 

the parenchyma lining the ventricle towards the inner zones of the cortex, but avoiding the cortical 

plate zone as of E15.5. This finding is further discussed in Point 6.4.  
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Fig. 6.1. Summary results dissertation. The blue gradient represents low (light blue) to high numbers (dark 

blue). White space = not studied. E, embryonic day; MFI, Median fluorescence intensity. 

 

6.1.1 Morphology and protein markers 

During early development, microglia in the cortical parenchyma show a more amoeboid 

morphology, with an oval cell body and few short and thick protrusions. With increasing embryonic 

age, microglia in the cortical wall gradually acquire protrusions (Chapter 2). The amoeboid 

morphology might be, but is not necessarily correlated with activation of the cell in terms of pro- or 

anti-inflammatory reactivity [35, 38-41]. This morphology could also point to an immature status 

of the cell, which was also suggested for microglia in the developing barrel cortex [35]. Indeed, in 

the embryonic cortex microglia show no signs of classical inflammatory activation such as Mac-2, 

inducible nitric oxide synthase (iNOS) or interleukin-1β (IL-1β)  expression (Chapter 5). For Mac-

2, cortical microglia show lower expression levels than microglia residing in the choroid plexus 

primordium, which are actually choroid plexus macrophages [126], or in the spinal cord [37] 

(Chapter 2). Nevertheless, all - or almost all in case of cluster of differentiation 68 (CD68) - these 
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cells are all immunoreactive for the classical microglia/macrophage markers Iba-1, CD11b 

(alternatively integrin αM, part of complement receptor 3; unpublished observations) and CD68 

(Chapter 2) [37, 570]. We further show that all cortical embryonic microglia express the β1 class 

integrins α5, α6 and αV from E13.5 to E17.5, while a minority expresses α4 integrin (Chapters 3 

and 4). While microglia remain positive for these integrins throughout embryonic development, 

their expression level of α5, α6 and αV decreases. The expression of α4β1, α5β1, αLβ2 integrins 

was found to correlate with activation status in primary microglia [361], but the decrease in 

integrin expression level could also relate to a progressing maturation of these cells over 

development, as observed for integrin expression on cortical neuronal progenitor cells [484].  

6.1.2 Maturation and the microenvironment 

The proposed microglial maturation could be steered by the microenvironment since primary 

microglia in culture adapt their integrin expression according to the type of extracellular matrix 

(ECM) present in their local environment [356] and we showed that the cortical fibronectin, an ECM 

protein, content diminishes with increasing embryonic age (Chapter 3). Unfortunately, we lack 

detailed information about the ECM composition during brain development in different CNS regions. 

Since the ECM is a major determinant of cell identity, phenotype and behaviour, and microglia 

express various receptors (integrins) that bind the ECM (Chapter 4) [356, 358, 359, 361], it is 

not unlikely that differences in ECM composition evoke microglial heterogeneity amongst brain 

regions. Indeed recent studies underscore the heterogeneity of the microglial transcriptome with 

regard to various brain areas and age in adult rodents, but these profiles are not yet known for 

embryonic developmental stages [39, 112, 113, 116, 117, 124, 127, 130]. Subsequent to invasion 

of the CNS microglia likely adopt tissue-specific signatures and functions imposed locally by the 

rapidly changing microenvironment during development [112, 571, 572]. Hence, we propose to 

describe the microglial phenotype during early development as “customized” or simply “embryonic” 

instead of “immature”. 

In summary, our results show a three-wave microglial invasion process of the embryonic brain and 

underscore that during CNS colonization the microglial phenotype and probably their function as 

well, is tailored to the CNS’s local environment. In the cortical parenchyma at least, embryonic 

microglia display a “resting” phenotype in terms of immune function-related protein expression. 

6.2 The microglial migration behaviour in the embryonic brain 

Although we found that in situ embryonic microglia display a “resting” phenotype, we show that 

these cells are not resting at all in terms of behaviour. Our ex vivo time-lapse imaging experiments 

in acute slice preparations show that embryonic microglia migrate throughout the cortical 

parenchyma, while scanning their surroundings. Their morphology rapidly changes every 2 minutes 

(Chapters 2 and 3). This active scanning behaviour is also a hallmark of microglia in the healthy 

adult mouse brain in vivo [34, 36]. Ex vivo, embryonic microglia adopt a saltatory motion pattern 

with intermittent phases of active migration and pauses during which the cell seem to scan its 

environment (Chapter 3). The vast majority of the cells are mobile. The movements of the 

embryonic microglia in our studies closely resemble those of microglia studied in late postnatal 
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cultured rat hippocampal slices [445]. In that study, Grinberg et al. describe the movements of a 

mobile microglial cell - of note, only 3% of the microglial cells are mobile in control conditions 

postnatally - as “Lévy flights”. Lévy flight motion consists of a random walk characterized by many 

small step-lengths with occasional relatively large step-lengths. This movement is associated with 

an optimal search pattern, which is also observed in organisms searching for food [445, 573]. 

Carbonell et al. also modeled microglial migration induced by injury in slice preparations as a 

random walk [486]. Microglia could adopt this Lévy flight search strategy to efficiently carry out 

their functions as sculptors and guardians of the brain [16, 574] (Chapter 1, Point 1.2.7). In 

order to know whether microglia in the embryonic brain adopt such patterns as well for migration, 

mathematical modeling should be applied to the XYZ-coordinates of our migration database.  

6.2.1 Microglial settlement during embryogenesis 

Our ex vivo time-lapse recordings also reveal a decrease in microglial migration speed over 

embryonic development (Chapters 2 and 3), which might indicate that microglia gradually 

acquire their final positions with increasing age. This reasoning is however in contrast with the 

measurements of Eyo et al. in hippocampal slices that point to a transient rise in microglial 

migration speed at postnatal ages. Migration speed at postnatal day (P)2 (~36 µm/h) was reported 

to be higher than in our E17.5 cortex measurements (~25 µm/h) and to decrease to ~17µm/h at 

P6 [70]. Because embryonic hippocampal migration was not measured in our studies and the 

cortex was not studied in Eyo and co-workers’ experiments, we cannot rule out that migration 

speed is influenced by region-specific ongoing developmental processes as well, as was already 

discussed for the heterogeneity in microglial phenotypes and transcriptional profiles in Point 6.1.2. 

Single cell transcriptomic and proteomic studies of microglia obtained from different regions of the 

brain and cortical zones, and at a one day interval during embryonic mouse brain development 

would certainly aid in finding correlations with changes in migration speed over development. 

If it is true that by E17.5 microglia start to acquire their final locations in the cortex, one might 

expect that the immobile cells in our slices show a more ramified morphology, which we did not 

observe. Literature states that microglia increase their amount of protrusions during embryonic 

development in mice [72], in zebrafish larvae [457] and in humans [57], but it does not seem to 

coincide with definitive settlement inside the parenchyma. Altough literature often postulates that 

microglia migrate to achieve their final location and start to ramify, the time point at which 

microglia become truly immobile (even regardless of the brain region) was never investigated in 

mammals. In developing zebrafish larvae settlement occurs at 5 days post fertilization [457]. The 

true ramification process might be triggered after E18 in mice when cortical neuronal migration has 

ceased and neuronal network maturation begins [575]. In the early mouse hippocampus microglial 

morphology was stable during the first postnatal week (2-3 primary ramifications) [70], so the 

complex ramification process has to start later. Indeed, the actual transformation from "amoeboid" 

to "ramified" was reported to start around P10, when transcription factor Runx1 is lost [102]. By 

P28 the ramification process is complete [102, 104]. The acquisition of a morphologic 

“adult/ramified” phenotype seems to coincide with the establishment of an adult gene expression 

profile in microglia by P28 in mice [112]. Time-lapse experiments in postnatal brain slices, or 
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ideally in the in vivo pup, at 1 day interval might aid to pinpoint the age at which microglia are fully 

settled in the brain. 

6.2.2 Regulation of microglial migration speed 

Microglial migration speed is likely influenced by changes in the local environment. Developmental 

neuronal apoptosis does not seem to instruct the decrease in microglial migration speed during 

development [70]. Interestingly, Zhang et al. reported a decrease in speed as a consequence of 

bacterial endotoxin-induced in utero inflammation in the newborn rabbit brain [454]. These 

findings concur with the results of Grinberg et al. who showed in cultured postnatal rat 

hippocampal slices that synaptic activity influences microglial migration speed [445]. More in 

particular, they found that microglial movement was significantly decreased by enhanced neuronal 

activity through lipopolysaccharide (LPS) administration or chemical long-term potentiation, and 

significantly increased by neuronal activity blockade using Tetrodotoxin (TTX). Thus, synaptic 

activity seems to restrain microglial cells in their current micro-territories and absence of synaptic 

activity sends them away to explore other parts of the parenchyma [445]. However, the observed 

effect of the administered compounds on microglial migration might occur through a direct effect 

on these cells and not necessarily through a change in synaptic activity since LPS was found to 

suppress migration and process extension in primary microglia cultures [365, 576, 577] and 

primary rat microglia might - though controversial - express TTX-sensitive voltage-operated Na+ 

channels [32]. Nevertheless, it is intriguing to speculate that in our experiments microglia 

migration speed might slow down between E15.5 and E17.5 (Chapter 3) because local 

spontaneous activity starts to emerge in the cortex. Indeed, the ventricular zone (VZ) of mouse 

embryonic slice preparations already shows spontaneous calcium transients, and already at E16 

some neurons in the mouse neocortex (marginal zone) show repetitive action potential discharges 

and spontaneous glutamatergic and γ-Aminobutyric acid (GABA)-ergic synaptic inputs [578]. If 

microglial migration speed is dependent on local depolarizing activity, this might explain the slow 

migration speed in the VZ at E15.5 (Chapter 3). Also, subplate neurons show functional 

thalamocortical synaptic transmission at E19 in rats [578], which means that towards the end of 

gestation synaptic activity increases. This finding is in favor of our hypothesis that with increasing 

neuronal activity, microglial migration speed decreases. A way to tackle this question might be to 

use optogenetic approaches to induce local neuronal firing and study simultaneously the microglial 

migration behavior in the in vivo animal [579]. 

Alternatively and additionally, regional and temporal differences in the expression of chemokines, 

cytokines and adhesion molecules might play a role in regulating microglial migration speed [62, 

283, 294, 337, 361, 442, 486, 580]. For example, microglial migration speed in the adult mouse 

hippocampus increases dependent on the stimulus type (stab lesion versus viral activation) and 

can be reduced by pharmacological blockade of the cysteine–cysteine chemokine receptor (CCR) 5 

[486]. Additionally, changes in ECM composition were found to alter microglial adhesion, 

morphology and surface marker expression which might impact on migration speed [294, 337]. A 

change in ECM protein expression seems a plausible explanation for the decrease in microglial 

migration speed since it is known that the ECM environment rapidly changes during embryonic 

development [296] (Chapter 1, Point 1.3.1).  
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We thus demonstrate that embryonic microglia are highly migratory cells that survey their 

microenvironment. They migrate in a saltatory fashion and their migration speed diminishes with 

increasing embryonic age, possibly reflecting the upcoming end of their colonization process. Their 

mobility is likely to be influenced by a combination of the local ECM composition and neuronal 

activity. Whether the intense microglial migration behaviour in slices truly reflects the microglial 

behaviour in the developing brain of the intact embryo, remains to be confirmed through in utero 

imaging [482, 483].  

6.3 Complex regulation of integrin function in microglial migration during 

development 

We propose a hypothetical model of varying function of different β1 integrin subtypes with 

embryonic age. We suggest that at E13.5, all or subsets of β1 integrins known to be expressed by 

microglia (α4β1, α5β1, αvβ1 and α6β1) (Chapter 4) are involved in nascent adhesion formation 

(as discussed in Points 1.3.2 and 3.5.4), since general β1 blockage decreased migration speed to 

a higher extend than α5β1 blockage did. At E15.5, the migration promoting role of α5β1 would shift 

to a migration inhibiting role. At that age, the function of α5β1 integrin is however still inferior to 

the migration promoting (opposite) roles of the ensemble of β1 integrins, because general β1 

blockage caused a decrease in migration speed. By E17.5, we speculate that the α5β1-linked 

adhesion has undergone maturation which translates to a more tightly anchored cell body into the 

ECM. When this tight connection is disrupted, microglia are released and free to migrate towards a 

yet unknown source, possibly using integrins of the β2, β3, β5 and/or β8 class as their presence 

was shown in primary cultured microglial cells [294, 356, 358, 359, 361]. At E17.5, the role of 

α5β1 is still migration inhibiting, but has become superior to a net migration promoting role of the 

ensemble of β1 integrins, because general β1 blockage resulted in an increased migration speed, 

but to a lower extent than α5β1 blockage (Chapter 4). Integrin usage is known to be dynamic: 

other integrins can take over the functions of the ones that are absent or functionally impaired 

[314, 338, 581]. Moreover, as brought forward in the introduction in Point 1.3.2, it is the 

conformation of the integrin that is biologically relevant for adhesion mechanisms, so this should be 

assessed as well in future experiments using for example conformation sensitive antibodies. Of 

note, we cannot exclude contributions of other β1 integrins such as α1, α2, α3 and so on [511] 

since we did not assess their presence on embryonic microglia. Nevertheless their involvement 

seems less likely because these integrins were not expressed by primary microglia [356, 358, 359, 

361]. It must also be noted that our integrin blockage approach (similar to pharmacological 

blockage of CXCR4, Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and Mitogen-activated 

protein kinase kinase (MEK) described in Chapter 4) is not specific for microglia. In order to fully 

exclude the possibility of indirect effects on microglial migration via possibly disturbed neural 

progenitor cells, neurons and endothelial cells, additional research using microglia specific 

knockouts is warranted. Our experiments in BV-2 cells (Chapters 3 and 4) do however show that 

migration of microglia-like cells can be directly affected by the integrin antibodies, and therefore 

strengthen our conclusion towards direct effects of the blocking antibodies on microglia in acute 

slices. Nevertheless, an effect observed in cultured microglia does not necessarily correlate with or 

predict the effect in vivo [519] (as discussed in Chapter 4). 
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Microglial migration in the embryo might alternatively be independent of integrins according to 

recent findings of Meller et al. [519]. The authors found that specific deletion of Kindlin3 (an 

intracellular protein involved in integrin activation, comparable to the function of Talin [314]) in 

microglia had no effect on microglial migration and population of the CNS during embryonic 

development [519]. However, it must be noted that compensation by Kindlin1 and/or 2 might have 

occurred, which could mask the true involvement of Kindlin3. Furthermore, since already 5% of 

total Kindlin3 level might be sufficient to be functional, proof that these animals are complete 

knockouts is necessary [582]. 

Altogether our results indicate that microglial migration in the embryonic cortical parenchyma is 

dependent on β1 integrins. Notably, integrin-mediated functions (migration promoting vs. 

inhibiting) seem to vary amongst integrin subtypes and likely switch and/or change importance 

during embryonic development. Such a switch might occur for α5β1 integrin and is in that case 

likely at E14, which is the age reported for mouse microglia to shift gene expression profile from 

“early microglia (E10.5-E14)” to “pre-microglia (E14-P9)” [112]. Which event or factor is causing 

this shift in integrin function remains an open question and additional research is essential to test 

this hypothesis on the molecular level. In order to test the plausibility of the change in nature of 

adhesion the α5β1 integrin is involved in, one might assess its activation state using antibodies 

recognizing the stretched conformation of the integrin, as well as degree of clustering [376]. The 

amount of focal adhesion proteins, such as zyxin and vinculin associated with the α5β1 integrin 

could be assessed since their presence is involved in regulating migration speed [273, 583]. Also, 

the long term consequences of defective integrin-dependent microglial migration on brain 

development and neuronal network functionality remain unknown and require further attention. In 

this respect, it should be first determined which molecules are essential in promoting parenchymal 

microglial migration in the embryo. The use of a series of microglia-specific conditional integrin or 

chemokine receptor knockouts (see Point 6.4.1) will aid in pinpointing targets. Then it will be 

important to inhibit the spreading of microglia during development and subsequently assess the 

effect of defective microglial migration on radial glia differentiation into neurons, astrocytes and 

oligodendrocytes, synaptogenesis, myelination and the functionality of neuronal networks 

postnatally and in the adult. 

6.4 Candidate cues for steering parenchymal microglial migration during 

development 

6.4.1 Chemoattractants and chemorepellants 

A few studies have shed light on the cues that attract microglia towards the CNS at embryonic 

stages, but could not pinpoint whether these molecules steer the parenchymal colonization of the 

cells [52, 62, 63, 67]. In acute embryonic brain slices we did not find a role for CXCR4 in regulating 

microglial migration speed, while β1 integrins are age-specifically involved in determining microglial 

migration speed (Point 6.3) (Chapter 4), so as to conclude that β1 integrin function is not 

downstream of CXCR4 signaling during microglial migration in the embryo ex vivo. Though it 

remains to be assessed whether CXCR4 signaling is involved in regulating directive migration, we 
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currently assume that CXCR4 most likely plays a role in solely recruiting microglial precursors 

towards the brain [62, 161]. 

Interestingly, we observe that from E15.5 the cortical plate is devoid of microglia (Chapter 2) and 

microglia avoid migrating through this zone (time-lapse imaging Chapter 2, 3 and 4). Instead it 

seems that microglia accumulate in the layers ventrally to the cortical plate, thus in the subplate, 

intermediate zone and ventricular zone, as if they are waiting for a launch signal to populate the 

cortical layers. This transient microglial absence in the cortical plate has been reported in the 

human, macaque and rat developing cortex as well [56, 57, 82, 144], but the signals leading to 

this phenomenon have never been disclosed. The specific localization of chemoattractive and 

chemorepellant molecules might underlie the transient absence of microglia in the cortical plate. 

Rezaie et al. suggested that in the human embryonic brain microglia could follow the gradient of C-

C motif chemokine ligand (CCL)-5 (also known as regulated on activation, normal T cell expressed 

and secreted (RANTES)) and CCL2 (also known as Monocyte chemotactic protein-1 (MCP-1)) which 

together form an increasing gradient from the subventricular zone to a peak in the subplate 

followed by low levels in the cortical plate [82]. After focal brain injury, as well as in vitro, 

microglial migration speed was dependent on CCR5 signaling, which is a receptor for CCL5 [486, 

584]. Also, the specific complementary expression of IL-34 and CSF1 during development might 

play in the role in the specific distribution of microglial cells [61]. At E15.5, IL-34 is restricted to 

the marginal zone while CSF-1 is present in the subventricular and the ventricular zone. From P0-

P20, IL-34 is found in cortical layers V to II, while CSF-1 expression is restricted to layer VI. This 

fits with the postnatal invasion of the cortical layers by microglia. Further, semaphorins could act 

as chemorepellants for microglia based on their repellant properties on axonal outgrowth and 

specific absence of mRNA from the intermediate zone and subplate between E16 and P0 in rats 

[585]. More in particular Semaphorin B mRNA is the only Semaphorin mRNA that is present in the 

cortical plate from E15 until E19 in rats, without concurrent expression in the neuroepithelium, 

where microglia tend to reside. Also, microglia can express plexin-B1, the receptor for Semaphorin 

4A and 4D, in pathologic settings, but it is not known whether embryonic microglia express these 

receptors [586]. Further, Slit1, another chemorepellant, is specifically expressed in the cortical 

plate around E15 in mice [587] and might also repel microglia through Robo signaling, the receptor 

for Slit proteins, since primary rat microglia were shown to express Robo2 [588].  

6.4.2 Cell death and synaptogenesis 

In addition, the subplate is the first layer where developmental cell death occurs and where the 

first thalamocortical synapses are formed starting earliest at E15.5, which might attract microglial 

cells [11, 15, 16, 589]. However, we think the former event is not likely to underlie the specific 

distribution pattern of microglia, because as a first argument we did not detect any cleaved 

capsase-3 immunoreactivity in that region around E15.5 (Chapter 2). It must be noted however 

that the absence of cleaved caspase-3 immunoreactivity is no conclusive evidence for absence of 

apoptosis, since also caspase-independent apoptosis can occur [590]. As a second argument, 

microglia in the vicinity of dying cells, such as in the choroid plexus primordium (Chapter 2), 

mostly show a phagocytic morphology and Mac-2 immunoreactivity [37, 434], which we neither 

observed in the layers ventral to the cortical plate at E15.5 and E17.5.  Alternatively, 
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synaptogenesis in the subplate layer might be a more plausible event leading to the temporary 

accumulation of microglia, since microglia can sense neuronal activity [167, 168] and their 

migration speed is likely inversely correlated with neuronal and synaptic activity [445].  

Altogether, CXCL12/CXCR4 signaling likely plays a role solely in recruiting microglial cells to the 

CNS, although a role for this chemokine axis in directional microglial migration in the embryonic 

cortex remains to be assessed. Other factors steering parenchymal microglial migration likely 

include chemoattractants, chemorepellants and synaptic activity, but require further investigation. 

In utero imaging of conditional microglia-specific knock-out animals might be valuable in 

addressing the chemokine pathways involved in steering microglial migration. More feasible 

approaches for a first-base screening might be to the use of several 

chemoattractant/chemorepellant knockout or functional mutation (loss and gain of expression) 

models to determine the microglial dispersion within in the brain. 

6.5 Microglial interactions with blood vessels  

In Chapter 3 we aimed to disrupt the microglia-blood vessel contact by interfering with α5β1 

integrin and its ligand fibronectin, but neither the capability of microglia to use blood vessels as 

guiding substrates for migration, nor the fraction of these cells contacting blood vessels, nor the 

time spent on soma or process contact were altered in the presence of the α5β1 blocking antibody.  

6.5.1 Mechanisms of interaction 

Next to alternative integrins and ECM molecules acting in concert (Chapters 3 and 4) in 

mediating mechanical contact between microglia and blood vessels, Notch1-Dll4 signaling might be 

involved in microglia-endothelial cell interaction [21]. Notch1 signaling in microglia could induce 

the expression of integrins leading to attachment to blood vessels, similar to what is reported for 

vascular smooth muscle cells adhering to endothelial cells during vascular maturation [591]. 

Further, the involvement of cadherin-based cell-cell adhesion between microglia and blood vessels 

cannot be excluded, as cadherin expression was found in macrophages, though to our knowledge 

not reported yet in microglial cells [592-594]. Of note, cadherins are transmembrane receptors 

that mediate cell-cell adhesion and catenin-dependent intracellular signalling by reciprocal binding 

[595]. However,  how microglial contact with blood vessels is manifested mechanically, is unknown 

and needs further clarification. 

6.5.2 Attraction towards blood vessels 

The study of Rymo et al. demonstrated a strong directed migration of microglia towards blood 

vessels in aortic ring explants in vitro [162], but the factors that contribute to this chemotaxis 

remain generally unknown. In the postnatal rat brain, CXCL12 transcripts and protein were 

detected in endothelial cells [596]. So, microglia might be attracted towards CXCL12-producing 

developing blood vessels. Once arrived, microglia might attach to the blood vessel and 

downregulate CXCR4, conform a mechanism described in leukemic precursor-B cells [321] and in 

granular cells of the dendate gyrus [597]. This mechanism might explain why not all microglia 

express CXCR4 (Chapter 4). One would then expect all microglial cells to be stuck to blood 
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vessels around late embryonic development when the microglial colonization process is getting 

closer to its end, concomitant with a downregulation of the microglial CXCR4 expression. Indeed, 

we show that during late embryongenesis almost all microglia have made contact with blood 

vessels in a time span of six hours and that the majority of this time was spent on contacting blood 

vessels using their soma and/or protrusions (Chapter 3). Additional experiments at postnatal ages 

are necessary to determine whether microglia downregulate CXCR4. Further, we demonstrate an 

increasing microglia-blood vessel contact with increasing embryonic age, which indicates that 

microglia are gradually attracted by developing blood vessels during embryonic development 

(Chapter 3). It must be noted that we also observed microglia escaping from blood vessels 

(unpublished observations), which suggests that microglial cells can shift function and leave the 

blood vessels after fulfilling their tasks. To know if this hypothesis is plausible, it would be 

interesting to know the percentage of microglia in contact with blood vessels in adult mice, but this 

question was never assessed.  

Further, given the significant amount of time spent on contacting blood vessels, microglial cells 

likely use the developing vasculature as migration highways (Chapter 3). This possibility was also 

noted by del Rio-Hortega who stated “In its migration, it follows more or less closely the direction 

of the vessels” [82, 598]. More precise tracking analyses are necessary to assess how well the 

direction of migrating microglia relates with the direction of blood vessels in the developing cortex. 

In addition, specifically targeting factors secreted by the developing vasculature will help in 

elucidating what causes the attraction of microglia towards blood vessels.   

6.5.3 Mechanisms of influencing blood vessel branching 

The results of Rymo et al. suggest that although microglia-blood vessel contact enhances, it is not 

essential to induce branching [162]. However, it must be noted that in this study “contact” refers 

to the cells being present or absent at the aortic ring cultures. The authors did not test whether 

nearby presence or direct contact of microglial cells with angiogenic sprouts differentially affected 

branching [162]. The function of this direct and dynamic microglia-blood vessel contact deserves 

further investigation.  

The mechanisms or factors through which microglia influence vessel branching were questioned for 

a long time. Research clearly pointed to soluble factors secreted by microglia, but excluded 

microglial vascular endothelial growth factor (VEGF) [159, 162]. Recently, some of these secreted 

factors were identified [599, 600]. In the in vivo developing mouse brain Chen et al. found that 

signaling between CD95L secreted by microglia on one hand and its receptor CD95R on neurons 

and endothelial cells on the other hand promoted neurovascular development, including blood 

vessel branching, through intracellular signaling of src-family kinase (SFK) and PI3K intracellular 

signaling [599]. Another recent study, carried out mainly in vitro, points to the involvement of 

microglial basigin-2, an extracellular matrix metalloproteinase inducer, in angiogenesis [600]. In 

addition, it was recently discovered that γ3-containing laminins in the vascular basal membrane 

during postnatal mouse retinal angiogenesis under normal circumstances restrict branching, 

through tempering microglial recruitment and activation via β1 integrins (here, activation refers to 
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an increased percentage of amoeboid and CD68 expressing microglia and down-regulation of 

microglial TGF-β1 expression) [601]. 

In summary, microglia mediate blood vessel branching during CNS development and the 

underlying signaling mechanisms start to emerge. However, the importance of direct microglia-

blood vessel contact and the molecules mechanistically involved in this process remain unknown. 

Nevertheless, we excluded an essential role for α5β1 integrin in the contact between microglia and 

blood vessels in the ex vivo embryonic brain. Light can be shed on these questions through the use 

of microglia-specific integrin knockouts followed by electron microscopy assessment of contact 

between both. Once these molecues are identified, the effect of contact disruption can be studied 

on blood vessel branching.  

6.6 Does microglial activation by maternal immune activation lead to 

neurodevelopmental disorders?  

Until now, although deletion or mutations in microglia specific genes have been associated with 

neurodevelopmental and neurological disorders [8] (Point 1.2.8), it remains unclear whether 

microglial alterations after MIA lie on the basis of neuronal disorders or reflect a normal microglia 

response to neural dysfunctions. Several authors have speculated over such MIA-induced 

developmental dysfunctional microglia that could lead to neurodevelopmental disorders [8, 16, 

208, 211, 602-604]. In Chapter 5, we did not find evidence for MIA evoked by single or double 

Poly (I:C) injections to change microglial density or microglial expression of classical immune 

activation proteins. Our in vitro results also demonstrate that embryonic microglia cannot be 

directly activated by Poly (I:C) or IL-6 exposure, contrary to the activation observed upon LPS 

application (Chapter 5). Our results suggest that the behavioural and neurological alterations in 

the offspring cannot be related to the alteration of the activation state of embryonic microglial 

cells. It must be noted that we did not test whether our MIA offspring developed cognitive and 

behavioural deficits, although this model is validated and our pregnant mothers did show increased 

IL-6 serum levels, a hallmark and predictor for behavioural deficits in the offspring [207, 217, 

526]. 

6.6.1 Priming of microglia 

Yet, our results cannot exclude that the embryonic microglial cells become primed, which could 

result in a disturbed cytokine and neurotrophic factor production in response to a subsequent 

inflammatory stimulus or stressor during postnatal or juvenile life [208, 509, 605-607]. Most 

interestingly, the presence of microglia during the first two weeks of postnatal development is 

crucial for brain development and behaviour [266]. The early postnatal period is also the critical 

time window during which a second stimulus generates an altered microglial response [228, 530, 

608]. The first stimulus does not necessarily have to be of immune origin, but could also be genetic 

susceptibility, which illustrates the interaction between genetic and environmental factors in the 

etiology of neurodevelopmental disorders [569]. In this early postnatal time frame, the microglial 

density steeply increases, synaptic pruning by microglia is ongoing and microglia in the 

hippocampus between P14 and P28 undergo significant changes, such as  reduced cell density, 
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decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in 

inflammation and cell migration [174, 609]. 

6.6.2 Reported alterations in microglia upon MIA 

Possibly, microglial function during development is altered upon MIA, but is not per se detectable 

with the common classical activation markers and density/morphology analyses. Many recent 

studies point indeed to MIA-induced changes in the microglial epigenetics [214, 610] and 

transcriptomics associated with genes involved in the developmental functions of microglia, such as 

synaptogenesis and neuronal network formation [112, 151, 152, 611]. Of note, even prenatal 

stress can affect microglial morphology and functions from motility to cytokine, chemokine and 

growth factor production, which indicates that microglial function is extremely sensitive to 

environmental conditions [509, 612-615]. Matcovitch-Natan et al. describe that microglia from 

mice subjected to MIA and analysed at the pre-microglia stage (E14 to early postnatal weeks) were 

transcriptionally shifted towards a more advanced developmental stage [112]. This implies that 

MIA renders microglia more “mature”, which is in accordance with a recent microglial 

transcriptomics study suggesting an accelerated development of these cells in autism patients 

[116]. Interestingly, postmortem studies suggest that neurogenesis in ASD might be accelareted 

as well, based on higher neuronal density and accelerated brain growth in ASD subjects [616]. It is 

not clear how accelerated microglial development and accelerated neurogenesis relate to each 

other. Also, perturbed microglial maturation was reported upon early life stress [609].  

6.6.3 Controversies in microglial activation following MIA 

Although the prenatal intraperitoneal Poly (I:C) injection in the pregnant mother used in this work 

(Chapter 5) is a well established model to induce MIA, results between studies are not consistent 

with regard to effects on microglia. Despite the presence of synaptic or behavioural deficits, both 

absence [88, 247, 617] and presence [555, 618, 619] of microglial “activation” has been reported 

in MIA animal models. It must be noted that these few references used in this section only serve to 

illustrate the controversy and by no means encompass all “microglia during MIA” findings in 

literature. This controversy is caused by the high level of variation in the readout and the protocols 

of MIA studies. A first and major issue is the use of the term “microglial activation” as a readout. 

This term is vague and is often (mis)used to report increases in microglial density and changes in 

morphology [241, 553]. As discussed before, morphology does not correlate per se with function 

[35, 38-42]. In accordance, another study suggests that morphological changes observed in 

“activated” microglia are likely associated with an underlying change in transcriptome maturity and 

not necessarily “reactivity” [116]. So whenever microglia with fewer or thicker ramifications are 

detected, it does not mean that these cells have a detrimental cytokine secretion profile and 

disturb every cell in their vicinity. Some studies do use mRNA and/or protein expression level of 

different cytokines [88] or immunohistochemistry [144, 530] to assess whether the cells are 

immune-activated. Unfortunately, even then some studies fail to use inflammation markers such as 

TNFα, IL1β, IL-6, iNOS and Mac-2, and instead use Iba-1 and CD68 which are merely general 

markers to identify microglia/macrophages and are not specific for immune activation. Second and 

third sources of variations are the time and location of readout after MIA. The  effect of MIA on 
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microglia is studied in different brain regions and on several different embryonic, postnatal and 

adult time points. Microglial alterations may only be detected transiently at specific locations and 

only during postnatal and/or adult stages [88, 544, 553, 555]. Other sources of variations are the 

dosage and time of injection of the MIA-evoking trigger, since differences in behavioural 

abnormalities observed in the offspring at adult age are critically dependent on these factors [248, 

532]. This phenomenon might be related to the varying presence of other neural cells at different 

gestational time points, as demonstrated recently in co-cultures [620] and to the severity of the 

cytokine storm in the mother. Next, the trigger itself varies, which is mostly Poly (I:C) or LPS, 

sometimes IL-6 or a virus  [241, 560, 561]. Lastly, the investigated species also varies from mice, 

to rats, to sheep, to pigs, and to macaques [144, 151, 241, 617]. 

As already brought forward by others, attention should be paid to the involvement of astrocytes in 

MIA-induced pathology as well [16, 212, 621, 622]. After all, a complex interplay exist between 

microglia and astrocytes and the latter are important players of neural circuit development through 

their contribution in synaptogenesis, synapse elimination and functional modulation of synapses 

[623]. Additionally, astrocytic markers are altered upon MIA [624] and in schizophrenia [625]. 

Altogether, MIA studies measuring microglial “activation” are almost impossible to compare due to 

high variations in the readout (type, location and timing) and MIA model (type, dosage, timing of 

MIA induction and species). The field would benefit from a thorough systematic review, that 

bundles all these different approaches and aims at discovering correlations between the sources of 

variation and microglial anomalies. We hope future research with regard to MIA-induced microglial 

dysfunction will describe the precise readout, and not jump to any rash conclusions labeling 

microglia with “activated” or “not activated”.  Hence, a broader readout is necessary which in 

addition to the analysis of morphology, density and immune protein expression, encompasses 

transcriptomic and functional studies on microglia. Simultaneously analyzing the transcriptional 

profile of other cell populations in the brain, and this over multiple time points during embryonic 

and postnatal development, might aid in pinpointing which cell type is affected first by MIA. To 

assess whether dysfunctional microglia drive the neurological deficits following MIA, microglia 

depletion and repopulation with functional cells or a pharmacological approach specifically targeted 

at restoring homeostatic functions of microglia might aid in solving this question. Nevertheless, 

there is no smoke without a fire: accumulating evidence strongly points in the direction of at least 

a partially shared causative role for microglia in MIA-induced cognitive and behavioural deficits. In 

this respect, the interplay with astrocytes may not be forgotten.  

6.7 Limitations of this work 

The results presented in this work add considerable value to the field of developmental 

neuroscience and might aid on the long run in unraveling pathological mechanisms of neurological 

diseases. We hope that these data will contribute to the identification of new targets to treat or 

prevent neurological disorders or to the development of tools for early diagnosis. Nevertheless, it is 

important to keep in mind that the work presented here was conducted in mice and that the human 

brain and its development is far more complex and longer lasting than that of rodents. For 

example, P0-5 development in rats is estimated to correspond to the whole third trimester of 
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human brain development, P7-10 to the first year of life and P21 to the transition to the early 

juvenile stage in man [626, 627]. Although the overall structural and functional development of the 

cortex and several microglial characteristics are similar in humans and rodents, some important 

differences in microglial physiology have be noted as well and this might have implications for the 

extrapolation of findings on rodent microglia towards the human setting [9, 578, 628].  

Several features of the development of the microglial population are highly similar between rodents 

and humans such as their specfic distribution pattern (e.g transient absence from the cortical 

plate) and contact with radial glial cells and blood vessels in the developing brain [2, 56, 80, 402, 

431]. Both in mice and in humans, microglia turn over several times during the organisms’ life 

span [86]. Also many genes and their products on the transcriptional and protein level are similarly 

expressed in both species under control circumstances, such as Iba-1, PU.1, DAP12, CD11b, 

TMEM119 and P2Y12R (Reviewed in [132, 521, 628-630]. In contrast, a number of immune genes, 

including TLR, Fcγ and Sialic Acid-Binding Immunoglobulin-Like Lectin receptors, as well as cell 

cycle regulator proteins such as TAL1 and IFI16, were abundantly expressed in human microglia 

but not in their mouse counterparts or the other way around [521, 630]. These findings 

demonstrate that human microglia have their own specific gene signature. Interestingly, the sex 

difference in transcriptomic microglial maturation and immune reactivity profiles in mice is also 

found in humans, with even mouse models for neurodevelomental disorders showing the same 

transcriptomic anomalies as their human counterparts [116]. On the other hand, major 

discrepancies between both species’ microglial signatures arise during aging or in pro-inflammatory 

conditions [236, 630]. Further, important discrepancies in microglial gene expression profiles 

between mouse models for neurodegeneration and the corresponding human neurodegenerative 

diseases were identified, questioning the validity of mouse models for neurodegenerative diseases 

[631]. Thus, with the eye on development of therapeutics, it is vital to be aware of and to assess 

similarities and dissimilarities between rodent and human microglia. The use of the latest 

technological advances such as single cell transcriptomics and proteomics will certainly aid in 

clarifying these issues. 

A second “limit” - though at the same time an advantage - of this study is the use of acute brain 

slices. Slice preparations are optically accessible and convenient to study and manipulate cell 

behavior and molecular interactions while preserving the native 3D brain environment and thus 

mimic the in vivo situation [441, 442, 632]. Accordingly, microglial behavior and reaction to 

compounds is highly comparable between acute slice preparations and in vivo (cranial window) in 

the adult brain [366, 448]. While in case of in vivo imaging only superficial cortical layers can be 

imaged, brain slice preparations allow to study all brain structures. Most importantly, 2D molecular 

mechanisms involved in cell migration differ considerably from 3D, so in order to extrapolate 

results to the in vivo setting, studies in a physiological 3D environment are necessary [283, 633]. 

One might argue that microglial migration in slice preparations is a consequence of tissue damage 

and does not reflect the true physiological behavior during development. However, the fact that 

microglia in the in vivo developing zebrafish are highly mobile as well, is in favor of considering 

microglial migration in slices as physiological [457, 461]. Further, the fact that microglial migration 

is not observed in acute brain slices from adult mice, indicates that tissue injury due to slicing 
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alone is not enough to induce microglial mobilization [70]. Nevertheless, in utero embryonic brain 

imaging is of key importance to confirm the intense microglial migration behavior in the intact 

mammalian developing brain [70]. Although technically challenging, already some in utero 

embryonic brain imaging studies have been performed previously [482, 483]. 

In conclusion, the use of rodent models and acute slice preparations is indispensable to unravel key 

features of microglial physiology during embryonic development, but the validation of these 

findings in vivo and in humans is an important step towards identifying targets for intervention in 

the clinic. 

 

6.8 Outstanding questions 

Box 6.1. List of outstanding questions brought forward in the discussion 

 

Microglial colonization of the brain 

 Which cues guide microglial migration once inside the CNS parenchyma? 

 What signals are retaining microglia transiently from the cortical plate? 

 At which age do microglia become settled in the parenchyma?  

Microglial migration behaviour 

 Is the direction of microglial migration random? 

 Is the direction of migration determined by the arrangements of blood vessels? 

 Is the changing migration speed predicted by specific transcriptional signatures? 

 Is the changing migration speed caused by changes in neuronal activity over 

development? 

 Does the ex vivo migration behaviour of microglia correspond well to the in vivo 

behaviour?  

 What is the purpose of the intensive microglial migration?! Use of microglia-specific 

approaches 

Age-specific integrin functions 

 How can the shift in integrin function be explained at a molecular level? 

 What determines whether integrins exert migration promoting or inhibiting functions? 

 Does CXCR4 cross talk to β1 integrin causing changes in migration in microglial cells? 

Microglia and blood vessel interactions 

 What are the underlying mechanisms for microglia to attach to blood vessels? 

 What signals attract microglia towards blood vessels? 

 What is the function of the molecular contact with blood vessels? 

Microglia and neurodevelopmental disorders 

 Can microglial dysfunction during development cause behavioural and cognitive deficits 

during later life, alone or in combination with other factors?  

 Are microglial alterations merely a reaction to an already changed neuronal network after 

maternal immune activation? 

 Do microglia work together with astrocytes in shaping neuronal networks? 
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Résumé 

Les microglies sont des cellules hématogène mais prennent place dans le système nerveux central 

(SNC) au cours du développement embryonnaire pour constituer la population résidente des 

cellules immunitaires. Elles sont les médiateurs crucials du bon développement et de l'entretien des 

réseaux de neurones dans le SNC. De nombreux aspects de la physiologie microgliale et les 

mécanismes qui sous-tendent leurs fonctions au cours du développement embryonnaire du cerveau 

sont encore largement méconnues. Cette thèse de doctorat porte sur la migration des cellules 

microgliales au cours du développement embryonnaire du cortex et elle débouche sur trois grandes 

conclusions. (1) Les cellules microgliales embryonnaires in situ sont très dynamiques et adaptent 

leur phénotype à leur environnement local. (2) La vitesse de migration des microglies ex vivo 

dépend des intégrines beta1 qui exercent des fonctions à la fois inhibitrices et promotrices sur la 

migration selon l'âge embryonnaire. (3) Les microglies jouent probablement un rôle dans l'étiologie 

des troubles du développement neurologique, mais il faudrait que les futures recherches se 

concentrent sur le dysfonctionnement des microglies plutôt que sur leur activation immunitaire 

classique 

Mots clés: matrice extracellulaire; integrines; migration cellulaire; inflammation maternelle; 

développement; souris 
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Nederlandse samenvatting 

Microglia onstaan in het bloed maar reizen naar het centrale zenuwstelsel (CZS) tijdens de 

embryonale ontwikkeling om daar de residente populatie van immuuncellen te vormen. Microglia 

spelen een cruciale rol in de ontwikkeling en in het onderhoud van neuronale netwerken in het 

CZS. Vele aspecten van de fysiologie van microglia en de mechanismen waarmee ze hun taken 

uitvoeren tijdens embryonale hersenontwikkeling blijven echter onopgehelderd. Deze 

doctoraatsdissertatie focust op de migratie van microglia tijdens de ontwikkeling van de 

embryonale hersencortex. Uit dit werk kunnen drie grote conclusies getrokken worden. (1) In situ 

embryonale microglia zijn erg dynamische cellen die hun fenotype aanpassen aan de lokale 

omgeving waarin ze zich bevinden. (2) De snelheid waarmee microglia ex vivo migreren is 

afhankelijk van β1 integrines, dewelke zowel migratiefaciliterende als -inhiberende functies hebben 

die varieren naar gelang de ontwikkelingsleeftijd. (3) Microglia spelen hoogstwaarschijnlijk een rol 

in het ontstaan van neuroontwikkelingsstoornissen, maar verder onderzoek zoekt beter in de 

richting van defecten in de ontwikkelingsgerelateerde functies van microglia dan naar klassieke 

immuunactivatie. 

Sleutelwoorden: extracellulaire matrix; integrines; cellulaire migratie; maternale inflammatie; 

ontwikkeling; muizen 
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English summary 

Microglial migration and adhesion molecules during embryonic brain development 

Abstract: 

Microglia are blood-borne cells but take up residence in the central nervous system (CNS) during 

embryonic development to constitute the resident pool of immune cells. They are crucial mediators 

of the healthy development and maintenance of neural networks in the CNS. Many aspects of the 

physiology of microglia and the mechanisms underpinning their tasks during embryonic brain 

development are still unresolved. This doctoral dissertation focuses on migration of microglial cells 

during embryonic cortical development. All together, this dissertation brings forwards three major 

conclusions. (1) In situ embryonic microglia are highly dynamic cells that adapt their phenotype to 

their local environment. (2) Microglial migration speed ex vivo is dependent on β1 integrins that 

exert both migration promoting and inhibiting functions which are age-specifically regulated. (3) 

Microglia likely play a role in the etiology of neurodevelopmental disorders, but further research 

should focus on microglia dysfunction rather than classical microglial immune activation. 

Keywords: extracellular matrix; integrins; cellular migration; maternal inflammation; development, 

mice 
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was altijd heel aangenaam om jullie erbij te hebben. Hopelijk zien we elkaar nog eens. Dankjullie 

allemaal voor de leuke sfeer op Biomed en de gezellige momenten daarbuiten.  

Windelief, wat ben jij een brok energie. Het was altijd een plezier jou tegen te komen in de 

gangen of wanneer je binnensprong op de bureau. Ik zag je zelden slecht gezind, en als dat zo 

was, was je daar altijd heel open over. Je weet van aanpakken, kan supergoed koken en dus 

uiteraard kwam ik graag van je kookkunsten proeven (o.a. bij het Wiemesmeer). Daarnaast 

hebben we samen wel een deel restaurantjes geëvalueerd ;-). De avondjes stappen met jou waren 

altijd superleuk. Jouw dierenliefde is ongekend en moet vaak lachen als ik aan (onze) 

dierenverhalen denk. Zo kwam ik thuis met een jong en pluizig vrouwtjeskonijntje van bij jou, om 

bij mijn gecastreerd mannetje te zetten…en bleek dat later ook gewoon een mannetje te zijn. Ook 

met de Jan-van-gent vergelijking met Jerome (door Jerome zelf) heb ik me ziek gelachen, zó jij . 

Dankjewel om de gangen op te fleuren, voor je steun en voor de vele gezellige avondjes. 

Kaline, aan jou heb ik heel veel te danken. Zonder jou experimenteel werk was er maar een kleine 

Chapter 4 in dit boekje. Je bent je seniorstage bij mij komen doen en hebt eigenhandig de 

transwell en adhesie assays geoptimaliseerd, inclusief de analyse daarvan. Nog vele andere zaken 

heb je gedaan die niet in dit boekje staan. Je hebt erg goed je plan getrokken, want dit was een 

project waar je alleen op hebt gewerkt. Nooit was iets teveel, ook al deden we voor de 24ste keer 

flow cytometrie om de activatiestatus van het β1 integrine te detecteren, je gaf niet op. Dankjewel 

voor je harde werk en grote inzet tijdens je stage en voor de gezellige momenten aan de FACS, de 

confocale en tijdens het uit eten als we samen laat gewerkt of geredeneerd hadden over de 

resultaten. Heel veel succes met je doctoraat in Leuven! 

Quirinetje/Quirinemien/Q-tie. Jij bent echt een ongelooflijke madam én mama. Het hart op de 

tong. Wat heb ik me snel thuisgevoeld op Biomed dankzij jou. Je bracht leven in de brouwerij 

(lees: fysiologiegang) en bent altijd zo een beetje een lijm geweest binnen Biomed. Je hebt altijd 

een luisterend oor, goede raad, weet altijd wel wat spannends te vertellen en jij hield me meestal 

up to date over de laatste nieuwtjes binnen Biomed want ik wist en weet nog steeds nooit van iets. 

Ik kon echt met alles terecht bij jou. Ik denk dat we de afgelopen jaren heel wat gezaagd hebben 

tegen elkaar en het feit dat we dat konden heeft ons beiden goed gedaan (ook al denk jij dat jij 

teveel zaagde!!). Ik kan me zo al enkele momenten voor de geest halen waar we naar elkaar 

gebeld hebben in volle paniek :-D. Dankjewel om er altijd te zijn voor mij, ondanks alle drukte en 

ondanks de vele moeilijke momenten die je zelf hebt gekend. Je bent buiten een supercollega, ook 

een goede vriendin geworden. Ik ben heel blij voor u dat je eindelijk rust hebt en je nu volledig kan 

gaan voor wat je met hart en ziel doet: onderwijs. Je verdient het dubbel en dik. Ook dankjewel 

voor de fijne samenwerking tijdens “De cel als organisme” wat later “Celcommunicatie” werd, heb 

het altijd jammer gevonden dat je later je eigen opleidingsonderdelen kreeg en niet meer 
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meedraaide in het onze. Verder verdien je ook een hele grote dankuwel om een groot stuk van de 

inleiding in dit boekje grondig na te lezen en nuttige suggesties te geven, dat apprecieerde ik heel 

erg. Quirine, Biomed’s Supermama, ik kijk al uit naar je volgende kunstige creaties, je hebt talent! 

Silke … mijne mede-SSer, microglia- en doctoraatsklankbord. Je zou nog liever hebben dat ik 

gewoon “danku” schrijf hier zodat ik minder stress zou hebben en mijn thesis op tijd zou kunnen 

uploaden. Zo onbaatzuchtig jij, zolang iemand anders maar gelukkig is. Wat moet ik hier toch maar 

schrijven hier, er is zoveel te zeggen. Ook al lijken we voor vele mensen zusjes en voelt dat soms 

ook zo, we zijn toch merkbaar verschillend op een aantal vlakken ;-). Ik had initieel een beetje 

schrik dat er veel zou veranderen toen Val langs me wegging en er iemand nieuw in de plaats zou 

komen, maar die schrik was geheel onterecht. De rommel, papiertjes, vuile havermoutborden en 

bestek, en de muziek (bij u wel wat stiller ;-)) bleven gewoon bestaan :-P. Nu, die chaos nam ik er 

graag bij, want wat ben jij een supercollega, -vriendin en -mens gebleken. Jij verdraagt zoooveel. 

Oh god wat heb ik tegen je gezaagd en je blééf geïnteresseerd mijn “aflopen-gelijk-ne-wekker” en 

grommelbuien maar aanhoren. Engelengeduld heb je op vlak van mensen. Niets was je ooit teveel 

en je kwam altijd opgewekt - er zaten soms wel kleine variaties in je niveau van opgewektheid - de 

bureau binnen. Wat mis ik je “Goeiemorgend Phietje, hoe gaat ie?!” met je handtas, sporttas, zak 

met eten en autosleutels en portefeuille allemaal in je handen. Als jij er was, was er leven en wat 

ging de tijd snel als we samen op de bureau waren. Samen hebben we microglia onderzocht, de o-

zo-fijne tellingen gedaan, geredeneerd, gediscusieerd, onzelf gefrustreerd, gepresenteerd, 

gepubliceerd en noem maar op. Je hebt véél tegenslag gekend in je doctoraat, jij was precies de 

pechmagneet voor heel fysiologie. Ik hoop dat het tij nu voor je gekeerd is, ik ben zo fier op jou 

(nu, ben wel minder enthousiast over de lat die je zo hoog hebt gelegd voor mij :s ;-)). Dankjewel 

lieve Silke om er altijd te zijn voor me zowel voor werkgerelateerde als niet werkgerelateerde 

zaken.  

Sofie K, de nieuwe (inmiddels niet meer zó nieuw ) versterking van het microglia- én het 

fysiologie onderwijsteam. Wat ben ik blij dat jij er bent geweest tijdens mijn doctoraat want jij, 

samen met Elisia, hebben ervoor gezorgd dat er western blot in de integrine paper staat, wat toch 

een redelijke must was. Je bent altijd zo rustig en ik weet als ik iets aan u vraag, dat het goed 

komt. Ik sta vaak versteld wat je allemaal gedaan krijgt en hebt gekregen het afgelopen jaar (het 

was een vréselijk druk eerste jaar voor jou) en dat gaat precies maar allemaal zo, ik hoor je nooit 

klagen. Je leert erg snel en hebt veel maturiteit. Daarnaast ben je altijd even vriendelijk, begaan 

met iedereen en staat altijd klaar om te helpen. Je bent een echte aanwinst voor het team. Samen 

met Jolien zal je nog wel wat microglia-avontuurtjes beleven ;-). Veel succes met jouw 6 jaren, 

Jolien, jij met je 4 jaren die je zonet gestart bent. Komt allemaal goed! 

Verder wil ik graag een grote dankjewel uiten naar alle andere supercoole leden van het 

Fysiologie/Cardiologie team Jacobine, Jirka, Giovanni, Joris, Lize, Jens, Dorien, Maxim, 

Virginie en Ruth (temporarily a member of physiology). You all made my time here so much 

more fun. Thank you all for your valuable input during the labmeetings, your enthusiasm and your 

kind words. During the lab retreats or outside of work, I learned to know many of you better and I 

have laughed a lot with your jokes, pranks and dry humor. Lize en Dorien, de vaste waarden 

binnen het fysiologie onderwijsteam. We hebben samen veel gewerkt aan het onderwijs, ons 
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geamuseerd tijdens het lesgeven, maar ook erna want er was altijd wel vanalles te vertellen over 

wat we hadden meegemaakt in de lessen. Jacobine heeft ook verschillende jaren actief 

meegedraaid in de practica en in Thema 1, dankjewel voor je inzet en je mailtjes om te polsen hoe 

het me ging. Lize, de jogmomenten over de middag, samen fietsen (al gebeurde dat langs mijne 

kant niet zoveel ), de babbels over en het mogen verorberen van lekker eten (dankuwel Jaume) 

werden heel erg geapprecieerd, alsook het vele werk wat je stak in organiseren met de lab retreat 

samen met Silke, Sofie, Jens en Petra (vette pluim voor jullie allen by the way!). Dorien, jij stond 

ook altijd klaar om te helpen. Ook toen ik last minute kwam aankloppen voor qPCR, niets was 

teveel om me alles uit te helpen en me te helpen met primerontwikkeling. Ook voor celfysiologie 

heb je (extra) veel op je genomen, altijd was alles goed geregeld. Net zoals je thesis die eigenlijk 

al af is, wat ben je toch goed voorbereid, daar kunnen velen een puntje aan zuigen ;-). Many 

thanks to all of you for the super nice collaborations, the support over all these years and for the 

nice chats in good and bad times. For those who still have to finish their PhD, best of luck! 

Jo, Rosette en Petra, jullie drietjes zijn een gevestigde waarde binnen fysiologie. Jullie staan 

altijd paraat. Jo dankjewel voor de BV-2 celkweek en voor het verzorgen van mijn muisjes in de 

quarantaine ruimte. Hier en daar wat plagerijen, gezellige babbels en veel tips heb ik van je 

gekregen voor onze reizen in Spanje, dankjewel voor je vertrouwen. Rosette, wat was ik blij toen 

je meer uren kreeg bij ons. Jij hebt me heel veel geholpen het laatste jaar en we hebben vele 

gezellige momenten gehad samen in de isolatieruimte. Niets is je ooit teveel, je leert graag en snel 

nieuwe dingen bij en blijft altijd rustig, begripvol en vriendelijk (wat heel fijn was voor mij, want ik 

joeg me meestal op). Dankjewel voor je harde inzet en voor je interesse en steun buiten het werk 

om. Petra, jij bent paté nummer twee ;-). Jij brengt zoveel leven in de brouwerij, o.a. met je lach 

die je het verdiep onder of boven je nog hoort, staat altijd voor iedereen klaar en bent altijd op de 

hoogte van alle (sappige) nieuwtjes. Al hebben we niet echt veel “samengewerkt in het lab”, ik heb 

me rotgeamuseerd met u, meestal ging het dan om ludieke zaken zoals ideeën uitwerken voor 

grappige powerpoints, karaoke en dansen, lab retreat activiteiten. Jij was ook altijd begaan met 

ieder zijn geluk, dankjewel om naar me te luisteren en me verschillende harten onder de riem te 

steken. 

Monara, Juliette and Maria (visiting PhD student from Granada) thank you for being so awesome 

colleagues and friends, so glad we were all together in the same lab in Paris. You made my days so 

much brighter when I was there…and my pants so much smaller (after all <cafés gourmands>). I 

enjoyed our times together at lunch, for a coffee, for the after work dinners and make-up sessions. 

Monara, I even had the pleasure to welcome you in Hasselt and to do crossfit together! You are a 

strong woman in many ways. Thank you both for all your support, your comforting words and the 

feeling that we were in this together. Also many thanks to the other members of the DSCO group 

Barbara, Christine, Jean-Marie, Hervé, Antony, Hervé le petit (thank you for proof reading 

my French summary), Gonz, Dong dong, Quong, Silvia and the whole team of François 

Tronche. You made me feel at home by sharing with me your offices, going out for lunch together, 

doing or discussing research together (ISH-Barbara!), the funny conversations and your interest in 

my work. 
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Stefanie, we hebben samen gestudeerd en groepswerkjes gemaakt met Dorien H en Birgit. We 

hebben dat later doorgetrokken naar diner & dance en dan naar gezellige avondjes uit eten, 

drinken en bijbabbelen. Ik was erg blij toen je ons op Biomed bent komen vervoegen. Je zal je me 

misschien moeilijk geloven, maar jij bent een van de rustigste personen die ik ken en hebt altijd 

een erg kalmerend effect op mij. Zo lief en frivool als je bent, zo hard moet ik lachen als ik zie dat 

je je opjaagt en iets (of iemand :-D) om zeep wil helpen. Jij kan zo droog uit de hoek komen, ik 

amuseer me altijd bij je. Dankjewel om regelmatig bij me binnen te springen voor een babbel over 

het onderzoek, de vakantie, trouw of je huis en voor je steun tijdens het schrijven van dit boekje. 

Jouw bezoekjes op en buiten het werk waren altijd een welgekomen afleiding.  

Hannelore, want ben jij een straffe madam zeg. Een echte publiceermachine en wetenschapster in 

hart en nieren. Altijd tip top inorde, geconcentreerd, iedereen helpen, veel te veel onderwijs geven 

(en ook nog avondonderwijs hieromtrent volgen!), allemaal naast je full time onderzoek. Ik snap 

niet hoe je het allemaal combineert. We hebben ook ongeveer samen het schrijfproces 

doorgemaakt, en voor mij was dat alleszins een grote steun. Je hebt me hééél vaak een hart onder 

de riem gestoken, bleef me zelfs aanmoedigen toen ik in Parijs zat, leidde me naar de verschillende 

doelen in het schrijven van mijn thesis met een zelfgemaakte M&M kalender (hoe origineel !) en 

dat heeft goed gewerkt (misschien een tip voor iedereen die iets van mij gedaan wil krijgen: 

gebruik eten als lokmiddel. PS dat werkt ook zo met Bert :-P). Bedankt voor de vele bezoekjes en 

de fijne babbels over wat te doen na ons doctoraat, de experimenten, onderzoeksfrustraties, 

trouwen en verdedigen en voor je grote steun het afgelopen jaar. 

Tim VG, jou ken ik ook al lang en gelukkig ben je er nog steeds (tegen mijn originele 

verwachtingen in). We zaten regelmatig samen aan de bureau in de kelder toen we stage liepen. Jij 

één jaartje verder dan mij. We hadden enkele gemeenschappelijke interessepunten: sport 

(meerbepaald badminton en tennis), ijsjes en extracellulaire matrix met de bijbehorende 

antilichamen ;-). Wat heb ik me ziek gelachen met de stommiteiten (en ja dat waren er een aantal) 

die we aan elkaar uitwisselden “moet ge nu weer weten wat ik gedaan heb” en met uwe droge 

humor. Dankuwel voor de fijne sportmomenten, voor de vele oprechte hoe-gaat-het-met-u-Sophie-

s, voor je luisterend oor wanneer ik dipjes had maar ook wanneer het goed ging. Je bent echt een 

goede wetenschapper, altijd bereid om te helpen en neemt je taken erg serieus. Daarmee ben ik 

ook heel blij om samen met u aan een review te kunnen schrijven. Nu rest je enkel nog de 

eindspurt in te zetten voor het behalen van je doctoraat. Heel veel succes hiermee!  

Een hele grote dankuwel gaat uit naar alle technische en administratieve ondersteuning die 

iedereen en dus ook ik krijgt/heb gekregen op Biomed. Ik wil in het bijzonder Joke, Paul & wijlen 

Wilfried, Yennick en Melissa bedanken voor alle goede zorgen van de dieren, het reilen en zeilen 

van het animalium en de vele gezellige babbels daarbuiten. Dankuwel Kim P en iedereen van het 

ATP die telkens zorgden voor superleuke Biomeddagen en BBQ’s, wat houd ik hier onvergetelijke 

herinneringen aan over. Katrien W en Christel, wij hebben ook veel samengewerkt (alle, ik stond 

meestal aan jullie deur met vragen over de cryostaat, microscoop en FACS), dankjullie wel voor 

jullie hulp en de fijne babbels. Tom, Ivo en Marc, de EM experts, dankjullie wel voor al de tijd die 

jullie gespendeerd hebben aan staalverwerking en inspectie. Jammer genoeg wouden die microglia 

zich niet laten zien. Desalniettemin heel erg bedankt voor jullie torenhoge inzet. Regine, 
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dankjewel voor de piccobello afwas, het poetsen van de labo’s en de koffiemachines. Het was altijd 

fijn als ik je tegenkwam in de gangen om een snelle babbel te slaan, je was altijd even opgewekt. 

Véronique en Rani, jullie zijn zowat de ondersteunde ruggengraat van heel Biomed. Het is paniek 

als jullie er niet zijn. Dankjulliewel voor het dagelijkse reilen en zeilen op Biomed, voor het 

doorsturen van emails naar heel Biomed, voor de hulp met printen en Gmail aangelegenheden en 

specifiek Véronique voor alle administratieve ondersteuning tijdens de eindfase van mijn doctoraat. 

Dankjewel om je geduld niet te verliezen met mij. En oh ja, Véronique, danku voor mij niet 1x een 

blauwe plek te bezorgen bij de talkrijke bloednames. Danku aan alle ex- en huidige Biomed 

collega’s die mijn tijd hier en op congres onvergetelijk gemaakt hebben.  

Ook de steun van vrienden en familie heeft bijgedragen, en niet het minste, aan het behalen van 

mijn doctoraat. Birgit, mijn schat, mijn bestie, en maid of honor ;-). Jij bent er altijd voor me 

geweest, al van kinds af aan. We zijn eigenlijk altijd samen door het leven gegaan, het was pas na 

onze studies op ’t unief dat onze wegen letterlijk wat meer begonnen te scheiden maar niet 

figuurlijk. We hebben lief (letterlijk, haha ) en leed gedeeld. Zalig al die keren dat mijn kaken en 

buik pijn doen en dat de tranen over ons gezicht rollen van het lachen. We hoefden elkaar soms 

maar aan te kijken en we zijn vertrokken. Ik kan zoooovele grappige en leuke momenten 

bedenken die we gedeeld hebben: slakken uit de vijver vissen, sneeuwschool, koningrijk, Platja 

d’Aro en MJA Mallorca (oh god), onze 18-jarige feestjes, samen op kot, de vele filmavondjes met 

Buggles en Ben & Jerry’s, de verjaardags- en nieuwjaarsfeestjes, gezellig tafelen, welnessavondjes, 

trouwjurk kiezen, enz. Ik denk dat we het komende jaar nog veel van die anekdotes zullen 

bespreken ;-). Dankjewel voor je onvoorwaardelijke vriendschap en steun de afgelopen 

bijbenadering 22 jaar, het is een zaligheid jou als beste vriendin, en als deel van mijn familie te 

hebben.  

Verder wil ook graag mijn vriendinnen die ik over heb gehouden aan de tennis op ’t Demerstrand, 

Anouschka en Gwen, heel erg bedanken voor de aangename sportafleiding, de gezellige etentjes 

en ontbijtjes en de luisterende oortjes voor mijn doctoraatsfrustraties. Dankuwel Nathalie, ex-

collega en crossfit coach. Toen je nog op Biomed werkte als postdoc hebben we vaak fijn 

gebabbeld over eten, sport, voeding, onderwijs en je gaf graag goede raad, die ik graag opvolgde. 

Menig maal heb je me voorgesteld om eens te komen proberen op de crossfit en ik ben bezweken. 

De crossfit sleept me nog steeds doorheen mijn doctoraat. Het is een geweldige manier om al mijn 

frustraties kwijt te kunnen. Jij en Pieter hebben iets prachtigs opgebouwd, dikke proficiat. Bij deze 

ook dankuwel aan al mijn crossfitbuddies die steeds vragen hoe het met mij en met mijn boekje 

gaat. Jullie maken alle momenten van doodgaan toch een beetje aangenamer.  

Yves, mijn kleine maar toch oudere broer, Virginie, Bompa Wilfried, Marraine, wijlen Bompa 

Freyke en wijlen Nenen, mijn schoonouders Marina en Luc en schoonzus Jolien, dankjulliewel 

voor de fijne momenten van afleiding, de etentjes, tripjes en jullie jarenlange steun en interesse in 

hoe het met me ging “op school ”. Bompa Wilfried, jij wist me keer op keer te verbazen met je 

kennis over macrofagen en de hersenen, je hebt zelfs mijne integrine paper proefgelezen en ik ben 

blij dat je bijdrage vereeuwigd staat in de wetenschappelijke literatuur. 
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En HIER moetieke, hier is het stukje waar je naar opzoek bent. Je was het al aan het zoeken in 

mijn draft versie maar tevergeefs, ongeduldige curieuze neus (hihi, van wie zou ik dat toch geërfd 

hebben?)! Mama (moetieke), Papa (Smollieke), Dickske en Lieve, mijn vier ouders. Wat moet ik 

hier toch maar schrijven. Woorden komen te kort, papier kom ik te kort en voor de moment 

ontbreekt me ook een zakdoek. Jullie vier hebben mij altijd onvoorwaardelijk gesteund in welk 

opzicht dan ook. Zonder jullie had ik hier niet gestaan (afgezien van het feit dat mama en papa een 

biologische vereiste waren om mij ter wereld te brengen). Ik kan niet beschrijven hoe dankbaar ik 

jullie ben en hoe gelukkig ik ben met jullie als mijn ouders. We hebben allemaal zo een sterke band 

met elkaar, ook al hebben jullie me weinig gezien de afgelopen tijd of hoorden jullie me weinig, 

weet dat ik vaak aan jullie dacht. Jullie luisterende oortjes en bemoedigende woorden, de vele 

keren dat ik met mijn pootjes onder tafel mocht schuiven en zelfs niet hoefde op te ruimen, jullie 

bezoekjes in Parijs, de crèmekes van Dickske en de Vidékes van Lieve, de vele wijntjes, de dikke 

knuffels, de keren samen shoppen (o.a. voor een trouwjurk), en noem maar op: al deze momenten 

waren een immens plezier voor mij. Dankjulliewel om er voor me te zijn in lichte en in donkere 

dagen.  

Jeroen, dankzij jou ben ik blijven doorzetten. Jij hebt meegedoctoreerd met mij. Ook al heb je hier 

nooit voor gekozen. Geen enkele keer heb je gezucht als ik weer eens laat of in het weekend moest 

werken. Je hebt superveel geduld en begrip voor me getoond. Ik was de persoon die zat te zuchten 

en jij was gewoon weer fier op mij. Misschien was je ook gewoon blij dat je even van me verlost 

was en kon kijken op tv wat je wou, maar toch ben ik daar niet van overtuigd gezien de beperkte 

tijd die we samen hadden en hebben. Met meedoctoreren refereer ik niet enkel naar de volle 

emotionele lading die je kreeg te verwerken telkens er iets mislukte in het lab, of wanneer ik het 

niet meer zag zitten, of wanneer ik gestrest was voor presentaties, of wanneer de analyses 

nergens op uitdraaiden, enz. Je hebt ook macro’s in Excel voor me geschreven, mee met me in het 

lab gestaan, al was het dan om mijn time-lapse experimenten mee op te ruimen en tipjesdoosjes 

te vullen. Zelfs kooien van de muizen heb je me helpen uitkuisen in de kerstvakantie! Je was altijd 

even geïnteresseerd, je wou weten waar alles voor diende. Ik heb meer foto’s van jou in het lab 

dan van mezelf. Dankjewel om altijd klaar te staan om me op te vangen (dag en nacht), al ging 

het vaak over de telefoon en was je zelf overladen met werk. Dankjewel om mijn gefrustreerde ik 

te verdragen, ik geloof oprecht dat je met mij hebt afgezien. Dankjewel om zo hard in me te 

geloven, terwijl ik dat zelf amper deed, en me te blijven overtuigen. Dat moet een erg vermoeiend 

karweitje geweest zijn. Dankjewel om me zo vaak blij te maken met kleine dingetjes. Het laatste 

jaar is er veel van onze kostbare quality time opgeofferd geweest en ik beloof dat ik na vandaag 

weer beter voor jou ga zorgen. En in mei komend jaar, wordt die belofte vereeuwigd. Ik kan al niet 

wachten (ik heb natuurlijk ook al lang genoeg gewacht *kuch kuch* ;-))! Dankjewel dat jij mijn 

allesje wil zijn voor altijd . 

 

 

“Love only grows by sharing.  

You can only have more for yourself by giving it away to others.” 

 

Brian Tracy 


