E. Abonneau, P. Baron, C. Berthon, L. Berthon, A. Béziat et al., , 2008.

, Spent nuclear fuel assay data for isotopic validation. State-of-the-art Report, Nuclear Science, 2011.

L. San-felice, R. Eschbach, and P. Bourdot, Experimental Validation of the DARWIN2.3 Package for Fuel Cycle Applications, Nucl. Technol, vol.184, issue.2, p.217, 2013.

A. Gourgiotis, M. Granet, H. Isnard, A. Nonell, C. Gautier et al., Simultaneous uranium/plutonium separation and direct isotope ratio measurements by using CO 2 as the gas in a collision/reaction cell based MCICPMS, J. Anal. At. Spectrom, vol.25, issue.12, p.1939, 2010.

M. Granet, A. Nonell, G. Favre, F. Chartier, H. Isnard et al., Cs-Ba separation using N 2 O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples, Spectrochim. Acta B, vol.63, issue.11, p.1309, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348457

F. Guéguen, A. Nonell, M. Granet, G. Favre, H. Isnard et al., Eu isotopic measurements with in situEu/Gd/Sm separation using O 2 as a reactant gas in collision/reaction cell based MC-ICP-MS, J. Anal. At. Spectrom, vol.25, issue.2, p.201, 2010.

H. Isnard, M. Aubert, P. Blanchet, R. Brennetot, F. Chartier et al., Determination of 90 Sr / 238 U ratio by double isotope dilution inductively coupled plasma mass spectrometer with multiple collection in spent nuclear fuel samples with in situ 90Sr / 90Zr separation in a collision-reaction cell, Spectrochim. Acta B, vol.61, issue.2, p.150, 2006.

F. Chartier, M. Aubert, and M. Pilier, Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionization mass spectrometry after separation by high-performance liquid chromatography, Fresenius J. Anal. Chem, vol.364, p.320, 1999.

H. Isnard, R. Brennetot, C. Caussignac, N. Caussignac, and F. Chartier, Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC ICPMS, Int. J. Mass Spectrom, vol.246, issue.1-3, p.66, 2005.

S. Cotton, The Lanthanides-Principles and Energetics, Lanthanide and Actinide Chemistry, p.9, 2006.

R. D. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, vol.32, issue.SEP1, p.751, 1976.

R. G. Pearson, Hard and soft acids and bases, p. 3533. 13. Vitorge, P., Chimie des actinides, vol.85, 1963.

J. E. Sonke and V. J. Salters, Disequilibrium effects in metal speciation by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS); theory, simulations and experiments, Analyst, vol.129, issue.8, p.731, 2004.

N. B. Mili? and T. M. ?uranji, Hydrolysis of the uranyl ion in sodium nitrate medium, Z. Anorg. Allg. Chem, vol.489, issue.1, p.197, 1982.

G. R. Choppin, Utility of oxidation state analogs in the study of plutonium behavior, Radiochim. Acta, vol.85, p.89, 1999.

J. M. Cleveland, The chemistry of plutonium, 1979.

C. Walther, H. R. Cho, C. M. Marquardt, V. Neck, A. Seibert et al., Hydrolysis of plutonium(IV) in acidic solutions: no effect of hydrolysis on absorption-spectra of mononuclear hydroxide complexes, Radiochim. Acta, vol.95, issue.1, p.7, 2007.

I. I. Chapitre, Techniques analytiques II.1. L'électrophorèse capillaire, p.40

, LVSS), vol.51

, Etat de l'art sur la séparation des actinides par électrophorèse capillaire (EC) ______ 57

, Spectrométrie de masse à source plasma et multicollection (ICPMS-MC) ______________ 62 II.2.1. Principe de l

, La torche à plasma __________________________________________________________ 64

, Le système d'extraction et de focalisation ________________________________________ 65

, Mesures isotopiques et phénomènes induits _________________________________ 72

A. Pitois, L. A. De-las-heras, and M. Betti, Determination of fission products in nuclear samples by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS), Int. J. Mass. Spectrom, vol.270, issue.3, p.118, 2008.

L. Vio, G. Crétier, F. Chartier, V. Geertsen, A. Gourgiotis et al.,

. Rocca, Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides, J. Anal. At. Spectrom, vol.27, issue.5, p.850, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00876095

O. Stern, Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol.30, p.508, 1924.

D. L. Chapman, A contribution to the theory of electrocapillarity, Philos. Mag. A, vol.25, issue.148, p.475, 1913.

M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Theor. Appl, vol.9, issue.1, p.457, 1910.

W. Kok, Capillaries and the Electroosmotic Flow, Capillary Electrophoresis: Instrumentation and Operation, p.28, 2000.

C. Ambard, La spéciation du plutonium à l'état de traces par le couplage électrophorèse capillaire-spectrométrie de masse à source plasma couplée par induction, 2007.

J. Mahenc, V. Sanchez, and É. , , 1980.

S. Wren, T. A. Berger, K. S. Boos, H. Engelhardt, E. R. Adlard et al., The Principles of Separation in CE, The Separation of Enantiomers by Capillary Electrophoresis, p.15, 2001.

V. Hruska and B. Gas, Kohlrausch regulating function and other conservation laws in electrophoresis, Electrophoresis, vol.28, issue.1-2, p.3, 2007.

F. Kitagawa and K. Otsuka, Recent applications of on-line sample preconcentration techniques in capillary electrophoresis, J. Chromatogr. A, vol.1335, p.43, 2014.

Z. Malá, L. K?ivánková, P. Gebauer, and P. Bo?ek, Contemporary sample stacking in CE: A sophisticated tool based on simple principles, Electrophoresis, vol.28, issue.1-2, p.243, 2007.

Z. Mala, A. Slampova, L. Krivankova, P. Gebauer, and P. Bocek, Contemporary sample stacking in analytical electrophoresis, Electrophoresis, vol.36, issue.1, p.15, 2015.

J. P. Quirino and S. Terabe, Sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow, J. Chromatogr. A, vol.850, issue.1-2, p.339, 1999.

J. P. Quirino and S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis, J. Chromatogr. A, vol.902, issue.1, p.119, 2000.

S. L. Simpson, J. P. Quirino, and S. Terabe, On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications, J. Chromatogr. A, vol.1184, issue.1-2, p.11, 1979.

D. S. Burgi and R. L. Chien, Optimization in sample stacking for high-performance capillary electrophoresis Analytical Chemistry, vol.63, p.2042, 1991.

R. L. Chien and J. C. Helmer, Electroosmotic properties and peak broadening in fieldamplified capillary electrophoresis, Analytical Chemistry, vol.63, issue.14, p.1354, 1991.

Z. K. Shihabi, Stacking and discontinuous buffers in capillary zone electrophoresis, Electrophoresis, vol.21, issue.14, p.2872, 2000.

K. Bächmann, B. Göttlicher, I. Haag, M. Hannina, and W. Hensel, Sample stacking for charged phenol derivatives in capillary zone electrophoresis, Fresenius J. Anal. Chem, vol.350, issue.6, p.368, 1994.

P. Gil, E. , P. Ostapczuk, and H. Emons, Determination of arsenic species by field amplified injection capillary electrophoresis after modification of the sample solution with methanol, Anal. Chim. Acta, vol.389, issue.1-3, p.9, 1999.

C. Ambard, La spéciation du plutonium à l'état de traces par le couplage électrophorèse capillaire-spectrométrie de masse à source plasma couplée par induction, 2007.

L. Vio, Développement d'une plateforme analytique jetable basée sur l'isotachophorèse pour la séparation et la caractérisation isotopique des lanthanides, 2010.

W. Kok, The Background Electrolyte, Capillary Electrophoresis: Instrumentation and Operation, p.36, 2000.

W. Kok, Capillaries and the Electroosmotic Flow, Capillary Electrophoresis: Instrumentation and Operation, p.28, 2000.

L. Vio, G. Cretier, F. Chartier, V. Geertsen, A. Gourgiotis et al., Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry, Talanta, vol.99, p.586, 2012.
DOI : 10.1016/j.talanta.2012.06.041

URL : https://hal.archives-ouvertes.fr/hal-00876090

T. Hirokawa and Y. Hashimoto, Simultaneous separation of yttrium and lanthanide ions by isotachophoresis, J. Chromatogr. A, vol.772, issue.1-2, p.357, 1997.
DOI : 10.1016/s0021-9673(97)00055-1

T. Hirokawa, N. Aoki, and Y. Kiso, Complex-forming equilibria in isotachophoresis : VI. simulation of isotachophoretic equilibria of lathanoids and determination mobilities and stability constants of acetate and ?-hydroxyisobutyrate complexes, J. Chromatogr. A, vol.312, issue.0, p.11, 1984.

Q. Mao, Y. Hashimoto, Y. Manabe, N. Ikuta, N. Fumitaka et al., Separation of rare-earth ions by isotachophoresis and capillary zone electrophoresis, J. Chromatogr. A, vol.802, issue.1, p.203, 1998.

T. Hirokawa, W. Xia, and Y. Kiso, Isotachophoretic separation of rare earth ions I. Separation behaviour of yttrium and fourteen lanthanide ions forming complexes with tartaric acid and ?-hydroxyisobutyric acid, J. Chromatogr. A, vol.689, issue.1, p.149, 1995.

P. Kumar, P. G. Jaison, D. R. Rao, V. M. Telmore, A. Sarkar et al., Determination of lanthanides and yttrium in high purity dysprosium by rp-hplc using alphahydroxyisobutyric acid as an eluent, Journal of Liquid Chromatography & Related Technologies, vol.36, issue.11, p.1513, 2013.

P. G. Jaison, P. Kumar, and M. V. , Pu(IV) and Pu(VI) on a RP stationary phase in presence of ?-Hydroxyisobutyric acid as a chelating agent, Telmore Liquid chromatographic studies on the behaviour of Pu(III), vol.105, p.295, 2017.

N. M. Raut, P. G. Jaison, and S. K. Aggarwal, Separation and determination of lanthanides, thorium and uranium using a dual gradient in reversed-phase liquid chromatography, J. Chromatogr. A, vol.1052, issue.1, p.131, 2004.

F. Guéguen, H. Isnard, A. Nonell, L. Vio, T. Vercouter et al., Neodymium isotope ratio measurements by LC-MC-ICPMS for nuclear applications: investigation of isotopic fractionation and mass bias correction, J. Anal. At. Spectrom, vol.30, issue.2, p.443, 2015.

L. Rao, Z. Zhang, P. L. Zanonato, P. D. Bernardo, A. Bismondo et al., Complexation of thorium(IV) with acetate at variable temperatures, Dalton Trans, p.2867, 2004.

H. Fuping, P. R. Haddad, P. E. Jackson, and J. Carnevale, Studies on the retention behaviour of ?-hydroxyisobutyric acid complexes of thorium(IV) and uranyl ion in reversed-phase highperformance liquid chromatography, J. Chromatogr. A, vol.640, issue.1, p.187, 1993.

T. Kobayashi, T. Sasaki, I. Takagi, and H. Moriyama, Solubility of Thorium(IV) in the Presence of Oxalic and Malonic Acids, J. Nucl. Sci. Technol, vol.46, issue.11, p.1085, 2009.

A. Brachmann, G. Geipel, G. Bernhard, and H. Nitsche, Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS), Radiochim. Acta, vol.90, issue.3, p.147, 2002.
DOI : 10.1524/ract.2002.90.3_2002.147

B. Kuczewski, C. M. Marquardt, A. Seibert, H. Geckeis, J. V. Kratz et al., Separation of plutonium and neptunium species by capillary electrophoresis-inductively coupled plasma-mass spectrometry and application to natural groundwater samples, Analytical Chemistry, vol.75, issue.24, p.6769, 2003.
DOI : 10.1021/ac0347213

Z. Shiri-yekta, A. Nilchi, M. R. Yaftian, and H. Yousefnia, Separation and direct UV detection of complexed lanthanides, thorium and uranyl ions with 2-thenoyltrifluoroacetone by using capillary zone electrophoresis, J. Radioanal. Nucl. Chem, vol.302, issue.3, p.1143, 2014.
DOI : 10.1007/s10967-014-3306-8

L. Vio, G. Crétier, F. Chartier, V. Geertsen, A. Gourgiotis et al.,

. Rocca, Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides, J. Anal. At. Spectrom, vol.27, issue.5, p.850, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00876095

K. Vcelakova, E. Zuskova, B. Kenndler, and . Gas, Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis, Electrophoresis, vol.25, issue.2, p.309, 2004.

J. E. Prest, S. J. Baldock, P. R. Fielden, N. J. Goddard, and B. J. Treves-brown, Analysis of amino acids by miniaturised isotachophoresis, J. Chromatogr. A, p.221, 2004.

J. Pospichal, P. Gebauer, and P. Bocek, Measurement of mobilities and dissociation constants by capillary isotachophoresis, Chem. Rev, vol.89, issue.2, p.419, 1989.

B. D. Johnson, N. Grinberg, G. Bicker, and D. Ellison, The quantitation of a residual quaternary amine in bulk drug and process streams using capillary electrophoresis, J. Liq. Chromatogr. Related Technol, vol.20, issue.2, p.257, 1997.

Y. Kiso and T. Hirokawa, Correlation between formula weights and absolute mobilities obtained by isotachophoresis for alkylammonium and carboxylate ions, Chem. Lett, vol.8, issue.8, p.891, 1979.

H. T. Feng, W. S. Law, L. J. Yu, and S. F. Li, Transient ITP in Nonaqueous CE by Introducing Ions with a Long Hydrophobic Chain as Terminating Ions, vol.63, p.513, 2006.

P. Gebauer and P. Boc, Complex formation in cationic isotachrophoresis: termination of acidic systems, J. Chromatogr. A, vol.242, issue.2, p.245, 1982.

P. Bocek, P. Gebauer, and M. Deml, Migration behavior of the hydrogen-ion and its role in isotachophoresis of cations, J. Chromatogr, vol.217, p.209, 1981.

P. Bo?ek, P. Gebauer, and M. Deml, Concept of the effective mobility of the hydrogen ion and its use in cationic isotachophoresis, J. Chromatogr. A, vol.219, issue.1, p.21, 1981.

Z. Mala, P. Pantuckova, P. Gebauer, and P. Bocek, Advanced electrolyte tuning and selectivity enhancement for highly sensitive analysis of cations by capillary ITP-ESI MS, Electrophoresis, vol.34, issue.5, p.777, 2013.

P. Gebauer, L. K?ivánková, and P. Bo?ek, Inverse electrolyte systems in isotachophoresis : Impact of the terminating electrolyte on the migrating zones in cationic analysis, J. Chromatogr. A, vol.470, issue.1, p.3, 1989.

A. M. Gaffney, A. Hubert, W. S. Kinman, M. Magara, A. Okubo et al., Round-robin 230 Th-234 U age dating of bulk uranium for nuclear forensics, J. Radioanal. Nucl. Chem, vol.307, issue.3, p.2055, 2015.

Z. Varga, K. Mayer, C. E. Bonamici, A. Hubert, I. Hutcheon et al., Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations, Appl. Radiat. Isot, vol.102, p.81, 2015.

S. K. Aggarwal, A review on the mass spectrometric analysis of thorium, Radiochim. Acta, vol.104, issue.7, 2016.

M. J. Kristo, A. M. Gaffney, N. Marks, K. Knight, W. S. Cassata et al., Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control, Annu. Rev. Earth Planet. Sci, vol.44, issue.1, p.555, 2016.

Z. Varga, A. Nicholl, M. Wallenius, and K. Mayer, Development and validation of a methodology for uranium radiochronometry reference material preparation, Anal. Chim. Acta, vol.718, p.25, 2012.
DOI : 10.1016/j.aca.2011.12.048

I. V. Chapitre,

, IV.1. Introduction, vol.123

I. V. , Matériels et conditions expérimentales ___________________________________ 124

, IV.2.1. Instrumentation, vol.124

, IV.2.1.1. Alimentation électrique _______________________________________________________ 125

, IV.2.1.2. Gestion des fluides et des pressions _____________________________________________ 127

, IV.3.2. Transposition de la séparation pour U-Pu _____________________________________ 139

, Application de la séparation à une solution de combustible MOX ______________________ 154

, IV.5. Références bibliographiques ____________________________________________ 163

I. V. Chapitre, Séparation électrophorétique de l'U, du Pu et du bloc lanthanides IV.5. Références bibliographiques

B. Kuczewski, C. M. Marquardt, A. Seibert, H. Geckeis, J. V. Kratz et al., Separation of plutonium and neptunium species by capillary electrophoresis-inductively coupled plasma-mass spectrometry and application to natural groundwater samples, Analytical Chemistry, vol.75, issue.24, p.6769, 2003.

C. H. Graser, N. Banik, K. A. Bender, M. Lagos, C. M. Marquardt et al., Sensitive Redox Speciation of Iron, Neptunium, and Plutonium by Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma Sector Field Mass Spectrometry, vol.87, p.9786, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01904326

H. Zanker and C. Hennig, Colloid-borne forms of tetravalent actinides: a brief review, J. Contam. Hydrol, vol.157, p.87, 2014.

M. A. Brown, A. Paulenova, and A. V. Gelis, Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA, vol.51, p.7741, 2012.

F. Gandolfo, D. Amorello, V. Romano, and R. Zingales, Complex Formation of the Uranyl (UO 2 2+ ) Ion with the Diethylene Triaminopentaacetate (DTPA) Ligand at 25 °C in 3 M Sodium Perchlorate, J. Chem. Eng. Data, vol.56, issue.5, p.2110, 2011.

T. S. Grimes and K. L. Nash, Acid dissociation constants and rare earth stability constants for DTPA, J. Solution Chem, vol.43, issue.2, p.298, 2014.

J. P. Quirino and P. R. Haddad, Separation and sweeping of metal ions with EDTA in CZEESI-MS, J. Sep. Sci, vol.34, p.2872, 1920.

K. L. Chen, S. J. Jiang, and Y. L. Chen, Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis, Anal. Bioanal. Chem, vol.409, issue.9, p.2461, 2017.

S. Leguay, T. Vercouter, S. Topin, J. Aupiais, D. Guillaumont et al., New insights into formation of trivalent actinides complexes with DTPA, Inorg. Chem, vol.51, issue.23, p.12638, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00781196

J. M. Moreno, M. Betti, and J. I. Garcia-alonso, Determination of Neptunium and Plutonium in the Presence of High Concentrations of Uranium by Ion Chromatography-Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom, vol.12, issue.3, p.355, 1997.

N. Vajda and C. K. Kim, Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology, Analytical Chemistry, vol.83, issue.12, p.4688, 2011.

P. G. Jaison, P. Kumar, and M. V. , Pu(IV) and Pu(VI) on a RP stationary phase in presence of ?-Hydroxyisobutyric acid as a chelating agent, Telmore Liquid chromatographic studies on the behaviour of Pu(III), vol.105, p.295, 2017.

, Références Bibliographiques

M. Costas-rodríguez, J. Delanghe, and F. Vanhaecke, High-precision isotopic analysis of essential mineral elements in biomedicine: natural isotope ratio variations as potential diagnostic and/or prognostic markers, TrAC Trends. Anal. Chem, vol.76, p.182, 2016.

A. N. Halliday, D. C. Lee, J. N. Christensen, M. Rehkamper, W. Yi et al., Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography, Geochim. Cosmochim. Acta, vol.62, issue.6, p.919, 1998.

W. D. Hoffmann and G. P. Jackson, Forensic Mass Spectrometry, Annu. Rev. Anal. Chem, vol.8, p.419, 2015.

T. R. Ireland, Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry, Rev. Sci. Instrum, vol.84, issue.1, p.11101, 2013.

J. Irrgeher and T. Prohaska, Application of non-traditional stable isotopes in analytical ecogeochemistry assessed by MC ICP-MS-A critical review, Anal. Bioanal. Chem, vol.408, issue.2, p.369, 2016.

D. Malinovsky and F. Vanhaecke, Mass-independent isotope fractionation of heavy elements measured by MC-ICPMS: a unique probe in environmental sciences, Anal. Bioanal. Chem, vol.400, issue.6, p.1619, 2011.

E. Paredes, E. Avazeri, V. Malard, C. Vidaud, P. E. Reiller et al., Evidence of isotopic fractionation of natural uranium in cultured human cells, Proceedings of the National Academy of Sciences of the United States of America, vol.113, p.14007, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758782

F. Albarède, P. Telouk, J. Blichert-toft, M. Boyet, A. Agranier et al., Precise and accurate isotopic measurements using multiple-collector ICPMS, Geochim. Cosmochim. Acta, vol.68, issue.12, p.2725, 2004.

P. Rodriguez-gonzalez, V. N. Epov, C. Pecheyran, D. Amouroux, and O. F. Donard, Speciesspecific stable isotope analysis by the hyphenation of chromatographic techniques with MCICPMS, Mass. Spectrom. Rev, vol.31, issue.4, p.504, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01590298

H. Cheng, P. Li, J. Liu, and M. Ye, Coupling electrophoretic separation with inductively coupled plasma spectroscopic detection: interfaces and applications from elemental speciation, metal-ligand interaction to indirect determination, J. Anal. At. Spectrom, vol.31, issue.9, p.1780, 2016.

F. Guéguen, H. Isnard, A. Nonell, L. Vio, T. Vercouter et al., Neodymium isotope ratio measurements by LC-MC-ICPMS for nuclear applications: investigation of isotopic fractionation and mass bias correction, J. Anal. At. Spectrom, vol.30, issue.2, p.443, 2015.

I. Gunther-leopold, B. Wernli, Z. Kopajtic, and D. Gunther, Measurement of isotope ratios on transient signals by MC-ICP-MS, Anal. Bioanal. Chem, vol.378, issue.2, p.241, 2004.

L. Vio, G. Crétier, F. Chartier, V. Geertsen, A. Gourgiotis et al.,

. Rocca, Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides, J. Anal. At. Spectrom, vol.27, issue.5, p.850, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00876095

A. Gourgiotis, S. Bérail, P. Louvat, H. Isnard, J. Moureau et al., Method for isotope ratio drift correction by internal amplifier signal synchronization in MC-ICPMS transient signals, J. Anal. At. Spectrom, vol.29, issue.9, p.1607, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01590281

A. Gourgiotis, G. Manhes, P. Louvat, J. Moureau, J. Gaillardet-;-gourgiotis et al., Transient signal isotope analysis: validation of the method for isotope signal synchronization with the determination of amplifier first-order time constants, Rapid. Commun. Mass. Spectrom, vol.29, issue.18, p.1582, 2015.

M. Kamencev, N. Yakimova, L. Moskvin, I. Kuchumova, K. Tkach et al., Fast isotopic separation of 10 B and 11 B boric acid by capillary zone electrophoresis, Electrophoresis, vol.37, issue.22, p.3017, 2016.

M. Kamencev, N. Yakimova, L. Moskvin, I. Kuchumova, K. Tkach et al., Isotopic separation of lithium ions by capillary zone electrophoresis, Electrophoresis, vol.36, issue.24, p.3014, 2015.

C. A. Lucy and T. L. Mcdonald, Separation of Chloride Isotopes by Capillary Electrophoresis Based on the Isotope Effect on Ion Mobility, Analytical Chemistry, vol.67, issue.6, pp.1074-1078, 1995.

J. Aupiais, L. Vio, G. Cretier, F. Chartier, V. Geertsen et al., Electrophoretic mobilities of the isotopes of chloride and bromide ions in aqueous solution at 25 °C and infinite dilution, J. Solution Chem, vol.40, issue.9, p.586, 2011.

J. C. Dubois, G. Retali, and J. Cesario, Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry, Int. J. Mass Spectrom. Ion Process, vol.120, issue.3, p.163, 1992.

G. Craig, C. Bouman, N. Lloyd, A. Trinquier, and J. B. Schwieters, Dynamic time correction for high precision isotope ratio measurements, p.2017

A. Gourgiotis, G. Manhès, B. Martelat, and H. Isnard, Deconvolution of the isotopic drift in LC-MC-ICPMS coupling: a new tool for studying isotope fractionation induced by sample introduction techniques, J. Anal. At. Spectrom, vol.32, issue.7, p.1428, 2017.

J. Fietzke, V. Liebetrau, D. Günther, K. Gürs, K. Hametner et al., An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates, J. Anal. At. Spectrom, vol.23, issue.7, p.955, 2008.

M. Bercovici, S. K. Lele, and J. G. Santiago, Open source simulation tool for electrophoretic stacking, focusing, and separation, J. Chromatogr. A, vol.1216, issue.6, p.1008, 2009.

S. Bhattacharyya, P. P. Gopmandal, T. Baier, and S. Hardt, Sample dispersion in isotachophoresis with Poiseuille counterflow, Phys. Fluids, vol.25, issue.2, p.22001, 2013.

M. Urbanek, A. Varenne, P. Gebauer, L. Krivankova, and P. Gareil, Determination of trace cationic impurities in butylmethylimidazolium-based ionic liquids: from transient to comprehensive single-capillary counterflow isotachophoresis-zone electrophoresis, Electrophoresis, vol.27, issue.23, p.4859, 2006.

Z. Benzo, D. Maldonado, J. Chirinos, E. Marcano, C. Gómez et al., Evaluation of dual sample introduction systems by comparison of cyclonic spray chambers with different entrance angles for ICP-OES, Microchem. J, vol.93, issue.2, p.127, 2009.

F. Gueguen, A. Nonell, H. Isnard, L. Vio, F. Chartier et al., Nd isotope ratio measurements by liquid chromatography coupled to MC-ICPMS with variable Faraday cup configurations during elution, Talanta, vol.162, p.278, 2017.

D. Kwiatek, G. Meinrath, and S. Lis, Hydrolysis contributions in U(VI) spectroscopic speciation in acetate media, Inorg. Chim. Acta, vol.426, p.113, 2015.

V. Sladkov, Uranyl complexation with acetate studied by means of affinity capillary electrophoresis, J. Chromatogr. A, vol.1289, p.133, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00842561

V. Sladkov, Interaction of uranyl with acetate in aqueous solutions at variable temperatures, J. Chem. Thermodyn, vol.71, p.148, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00957828

C. Alliot, Sorption de lanthanides et actinides en présence de complexants organiques simples, 2004.

H. Fuping, P. R. Haddad, P. E. Jackson, and J. Carnevale, Studies on the retention behaviour of ?-hydroxyisobutyric acid complexes of thorium(IV) and uranyl ion in reversed-phase highperformance liquid chromatography, J. Chromatogr. A, vol.640, issue.1, p.187, 1993.

S. Ramamoorthy, A. Raghavan, and M. Santappa, Complexes of uranyl ion with butyric and isobutyric acids, J. Inorg. Nucl. Chem, vol.31, issue.6, p.1765, 1969.

F. Gandolfo, D. Amorello, V. Romano, and R. Zingales, Complex Formation of the Uranyl (UO 2 2+ ) Ion with the Diethylene Triaminopentaacetate (DTPA) Ligand at 25 °C in 3 M Sodium Perchlorate, J. Chem. Eng. Data, vol.56, issue.5, p.2110, 2011.

C. De-stefano, A. Gianguzza, D. Milea, A. Pettignano, and S. Sammartano, Sequestering ability of polyaminopolycarboxylic ligands towards dioxouranium(VI) cation, J. Alloys Compd, vol.424, issue.1-2, p.93, 2006.

L. Magon, A. Cassol, and R. Portanova, Complexes of plutonium(III) with acetate, Inorg. Chim. Acta, vol.2, p.285, 1968.

E. Nebel and K. Schwabe, Spektrofotometrische Untersuchungen von PuIV-Acetatkomplexen in wäßriger Lösung, Z. Phys. Chem, vol.224, issue.1, p.29, 1963.

K. Schwabe and D. Nebel, Potentiometric studies on plutonium. I. Investigation of the complex formation between Pu (IV) and Pu (III) and acetate ions, Z. Phys. Chem.(Leipzig), vol.220, p.339, 1962.

S. H. Eberle, J. B. Schaefer, and E. Brandau, Spectrophotometry of plutonium(VI) complex reaction equilibria. Plutonyl acetate, Radiochim. Acta, vol.10, issue.1-2, p.91, 1968.

L. Magon, R. Portanova, and A. Cassol, Complex of plutonyl ion with acetate, Inorganica Chimica Acta, vol.2, p.237, 1968.

J. M. Cleveland, The chemistry of plutonium, 1979.

A. Datta, N. Sivaraman, K. S. Viswanathan, S. Ghosh, T. G. Srinivasan et al., Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation, Radiochim. Acta, vol.101, issue.2, p.81, 2013.

M. A. Brown, A. Paulenova, and A. V. Gelis, Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA, vol.51, p.7741, 2012.

L. Bonin, Etude de la spéciation des actinides vis-à-vis de ligands d'intérêt pour la décorporation, 2008.

L. Bonin, J. Aupiais, M. Kerbaa, P. Moisy, S. Topin et al., Revisiting actinideDTPA complexes in aqueous solution by CE-ICPMS and ab initio molecular dynamics, RSC Adv, vol.6, issue.67, p.62729, 2016.