C. Heintz, Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans, Nature, vol.541, pp.102-106, 2017.

H. J. Weir, Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling, Cell metabolism, vol.26, pp.884-896, 2017.

C. C. Escoubas, C. G. Silva-garcia, and W. B. Mair, Deregulation of CRTCs in Aging and AgeRelated Disease Risk, Trends Genet, vol.33, pp.303-321, 2017.

Y. Zhang, Neuronal TORC1 and AMPK coordinately modulate longevity via cell

C. C. Escoubas, C. G. Silva-garcia, and W. B. Mair, Deregulation of CRTCs in Aging and Age-Related Disease Risk, Trends Genet, vol.33, pp.303-321, 2017.

B. K. Kennedy, Linking Aging to Chronic Disease, Cell, vol.159, pp.709-713, 2014.

W. Mair and A. Dillin, Aging and survival: the genetics of life span extension by dietary restriction. Annual review of biochemistry, vol.77, pp.727-754, 2008.

C. Reitz, C. Brayne, and R. Mayeux, Epidemiology of Alzheimer disease, Nature reviews. Neurology, vol.7, pp.137-152, 2011.

M. P. Mattson, Pathways towards and away from Alzheimer's disease, Nature, vol.430, pp.631-639, 2004.

J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics, Science, vol.297, pp.353-356, 2002.

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, pp.184-185, 1992.

D. J. Selkoe, Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior, Behavioural brain research, vol.192, pp.106-113, 2008.

E. Rogaeva, The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease, Nature genetics, vol.39, pp.168-177, 2007.

N. A. Shirwany, D. Payette, J. Xie, and Q. Guo, The amyloid beta ion channel hypothesis of Alzheimer's disease, Neuropsychiatr Dis Treat, vol.3, pp.597-612, 2007.

R. A. Nixon, Autophagy, amyloidogenesis and Alzheimer disease, J Cell Sci, vol.120, pp.4081-4091, 2007.

M. J. Berridge, Calcium hypothesis of Alzheimer's disease, Pflugers Archiv : European journal of physiology, vol.459, pp.441-449, 2010.

Q. Jiang, ApoE promotes the proteolytic degradation of Abeta, Neuron, vol.58, pp.681-693, 2008.

K. Offe, The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, pp.1596-1603, 2006.

A. Goate, Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease, Nature, vol.349, pp.704-706, 1991.

R. Sherrington, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease, Nature, vol.375, pp.754-760, 1995.

E. I. Rogaev, Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene, Nature, vol.376, pp.775-778, 1995.

E. Levy-lahad, Candidate gene for the chromosome 1 familial Alzheimer's disease locus, Science, vol.269, pp.973-977, 1995.

G. D. Schellenberg and . Early, Alzheimer's disease genetics, Journal of Alzheimer's disease : JAD, vol.9, pp.367-372, 2006.

A. A. Sorensen, Alzheimer's disease research: scientific productivity and impact of the top 100 investigators in the field, Journal of Alzheimer's disease : JAD, vol.16, pp.451-465, 2009.

M. G. Moreno-trevino, J. Castillo-lopez, and I. Meester, Moving away from amyloid Beta to move on in Alzheimer research, Frontiers in aging neuroscience, vol.7, 2015.

H. Geerts, P. Roberts, A. Spiros, and R. Carr, A strategy for developing new treatment paradigms for neuropsychiatric and neurocognitive symptoms in Alzheimer's disease, Front Pharmacol, vol.4, 2013.

H. Braak and K. Del-tredici, Alzheimer's pathogenesis: is there neuron-to-neuron propagation?, Acta neuropathologica, vol.121, pp.589-595, 2011.

J. L. Cummings, J. Ringman, and H. V. Vinters, Neuropathologic correlates of trial-related instruments for Alzheimer's disease, Am J Neurodegener Dis, vol.3, pp.45-49, 2014.

P. T. Nelson, Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature, J Neuropathol Exp Neurol, vol.71, pp.362-381, 2012.

S. L. Rosenthal and M. I. Kamboh, Late-Onset Alzheimer's Disease Genes and the Potentially Implicated Pathways. Current genetic medicine reports 2, pp.85-101, 2014.

O. Thibault, J. C. Gant, and P. W. Landfield, Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store, Aging Cell, pp.307-317, 2007.

M. J. Berridge, Calcium signalling and Alzheimer's disease, Neurochemical research, vol.36, pp.1149-1156, 2011.

Z. S. Khachaturian, Calcium, membranes, aging, and Alzheimer's disease. Introduction and overview, Annals of the New York Academy of Sciences, vol.568, pp.1-4, 1989.

F. M. Laferla, Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease, Nature reviews. Neuroscience, vol.3, pp.862-872, 2002.

S. Camandola and M. P. Mattson, Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. Biochimica et biophysica acta 1813, pp.965-973, 2011.

G. P. Morris, I. A. Clark, and B. Vissel, Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease, Acta Neuropathol Commun, vol.2, p.135, 2014.

P. L. Mcgeer and E. G. Mcgeer, Local neuroinflammation and the progression of Alzheimer's disease, J Neurovirol, vol.8, pp.529-538, 2002.

C. Procaccini, Role of metabolism in neurodegenerative disorders, Metabolism: clinical and experimental, vol.65, pp.1376-1390, 2016.

S. K. Jha, N. K. Jha, D. Kumar, R. K. Ambasta, and P. Kumar, Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration, Biochimica et biophysica acta, 2016.

C. M. Mccay, M. F. Crowell, and L. A. Maynard, The effect of retarded growth upon the length of life span and upon the ultimate body size, Nutrition, vol.5, pp.155-171, 1935.

L. Fontana and L. Partridge, Promoting health and longevity through diet: from model organisms to humans, Cell, vol.161, pp.106-118, 2015.

L. Fontana, L. Partridge, and V. D. Longo, Extending healthy life span-from yeast to humans, Science, vol.328, pp.321-326, 2010.

D. Stangl and S. Thuret, Impact of diet on adult hippocampal neurogenesis, Genes Nutr, vol.4, pp.271-282, 2009.

M. S. Zainuddin and S. Thuret, Nutrition, adult hippocampal neurogenesis and mental health, Br Med Bull, vol.103, pp.89-114, 2012.

L. R. Squire, The hippocampus and spatial memory, Trends in neurosciences, vol.16, pp.56-57, 1993.

N. Burgess, The hippocampus, space, and viewpoints in episodic memory, Q J Exp Psychol A, vol.55, pp.1057-1080, 2002.

J. Z. Tsien, On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus, Neurobiology of learning and memory, vol.105, 2013.

M. P. Mattson, Energy intake and exercise as determinants of brain health and vulnerability to injury and disease, Cell metabolism, vol.16, pp.706-722, 2012.

S. K. Park and T. A. Prolla, Lessons learned from gene expression profile studies of aging and caloric restriction, Ageing research reviews, vol.4, pp.55-65, 2005.

A. M. Stranahan and M. P. Mattson, Bidirectional metabolic regulation of neurocognitive function, Neurobiology of learning and memory, vol.96, pp.507-516, 2011.

M. M. Adams, Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability, Experimental neurology, vol.211, pp.141-149, 2008.

A. Kuhla, Lifelong caloric restriction increases working memory in mice, PloS one, vol.8, p.68778, 2013.

M. Q. Steinman, K. K. Crean, and B. C. Trainor, Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice, Eur J Neurosci, vol.33, pp.361-370, 2011.

T. Murphy, G. P. Dias, and S. Thuret, Effects of diet on brain plasticity in animal and human studies: mind the gap, Neural plasticity, vol.563160, 2014.

P. K. Shetty, F. Galeffi, and D. A. Turner, Age-Induced Alterations in Hippocampal Function and Metabolism, Aging and disease, vol.2, pp.196-218, 2011.

S. N. Burke and C. A. Barnes, Neural plasticity in the ageing brain, Nature reviews. Neuroscience, vol.7, pp.30-40, 2006.

N. Pitsikas and S. Algeri, Deterioration of spatial and nonspatial reference and working memory in aged rats: protective effect of life-long calorie restriction, Neurobiology of aging, vol.13, pp.369-373, 1992.

T. Komatsu, Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8, Experimental gerontology, vol.43, pp.339-346, 2008.

L. W. Means, J. L. Higgins, and T. J. Fernandez, Mid-life onset of dietary restriction extends life and prolongs cognitive functioning, Physiology & behavior, vol.54, pp.503-508, 1993.

S. Goto, R. Takahashi, Z. Radak, and R. Sharma, Beneficial biochemical outcomes of lateonset dietary restriction in rodents, Annals of the New York Academy of Sciences, vol.1100, pp.431-441, 2007.

M. Kaur, S. Sharma, and G. Kaur, Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction, Biogerontology, vol.9, pp.441-454, 2008.
DOI : 10.1007/s10522-008-9168-0

A. Mladenovic-djordjevic, Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat, Neurochem Int, vol.56, pp.250-255, 2010.

J. Lee, W. Duan, J. M. Long, D. K. Ingram, and M. P. Mattson, Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats, Journal of molecular neuroscience : MN, vol.15, pp.99-108, 2000.

C. K. Martin, Effect of calorie restriction on resting metabolic rate and spontaneous physical activity, Obesity, vol.15, pp.2964-2973, 2007.

P. J. Smith, Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure, Hypertension, vol.55, pp.1331-1338, 2010.

E. Ravussin, A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity, J Gerontol A Biol Sci Med Sci, vol.70, pp.1097-1104, 2015.

A. V. Wittea, M. Fobkerb, R. Gellnerc, S. Knechta, and A. Floel, Caloric restriction improves memory in elderly humans, PNAS, vol.106, pp.1255-1260, 2009.

G. M. Pasinetti and J. A. Eberstein, Metabolic syndrome and the role of dietary lifestyles in Alzheimer's disease, J Neurochem, vol.106, pp.1503-1514, 2008.

A. Maruszak, A. Pilarski, T. Murphy, N. Branch, and S. Thuret, Hippocampal neurogenesis in Alzheimer's disease: is there a role for dietary modulation, Journal of Alzheimer's disease : JAD, vol.38, pp.11-38, 2014.
DOI : 10.3233/jad-131004

P. Wu, Calorie restriction ameliorates neurodegenerative phenotypes in forebrainspecific presenilin-1 and presenilin-2 double knockout mice, Neurobiology of aging, vol.29, pp.1502-1511, 2008.
DOI : 10.1016/j.neurobiolaging.2007.03.028

S. Gillette-guyonnet and B. Vellas, Caloric restriction and brain function, Curr Opin Clin Nutr Metab Care, vol.11, pp.686-692, 2008.
DOI : 10.1097/mco.0b013e328313968f

Y. E. Geda, Caloric intake, aging, and mild cognitive impairment: a population-based study, Journal of Alzheimer's disease : JAD, vol.34, pp.501-507, 2013.
DOI : 10.3233/jad-121270

D. Gustafson, E. Rothenberg, K. Blennow, B. Steen, and I. Skoog, An 18-year follow-up of overweight and risk of Alzheimer disease, Arch Intern Med, vol.163, pp.1524-1528, 2003.
DOI : 10.1001/archinte.163.13.1524

URL : http://archinte.jamanetwork.com/data/journals/intemed/5449/ioi20559.pdf

S. Oddo, Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction, Neuron, vol.39, pp.409-421, 2003.
DOI : 10.1016/s0896-6273(03)00434-3

URL : https://doi.org/10.1016/s0896-6273(03)00434-3

V. K. Halagappa, Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease, Neurobiology of disease, vol.26, pp.212-220, 2007.

W. Mair, Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB, Nature, vol.470, pp.404-408, 2011.
DOI : 10.1038/nature09706

URL : http://europepmc.org/articles/pmc3098900?pdf=render

D. Stenesen, Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies, Cell metabolism, vol.17, pp.101-112, 2013.

R. Lage, C. Dieguez, A. Vidal-puig, and M. Lopez, AMPK: a metabolic gauge regulating whole-body energy homeostasis, Trends in molecular medicine, vol.14, pp.539-549, 2008.
DOI : 10.1016/j.molmed.2008.09.007

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature reviews. Molecular cell biology, vol.13, pp.251-262, 2012.
DOI : 10.1038/nrm3311

URL : http://europepmc.org/articles/pmc5726489?pdf=render

D. G. Hardie and M. L. Ashford, AMPK: regulating energy balance at the cellular and whole body levels, Physiology (Bethesda), vol.29, pp.99-107, 2014.
DOI : 10.1152/physiol.00050.2013

URL : http://physiologyonline.physiology.org/content/nips/29/2/99.full.pdf

D. G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nature reviews. Molecular cell biology, vol.8, pp.774-785, 2007.

B. Xiao, Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, pp.230-233, 2011.

S. A. Hawley, Characterization of the AMP-activated Protein Kinase Kinase from Rat Liver and Identification of Threonine 172 as the Major Site at Which It Phosphorylates AMP-activated Protein Kinase, J. Biol. Chem, vol.271, pp.27879-27887, 1996.

S. A. Hawley, Complexes between the LKB1 tumor suppressor, STRADa/b and MO25a/b are upstream kinases in the AMP-activated protein kinase cascade, J. Biol, vol.2, p.28, 2003.

R. J. Shaw, The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, PNAS, vol.101, pp.3329-3335, 2004.

A. Woods, LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390855

P. Tsou, B. Zheng, C. H. Hsu, A. T. Sasaki, and L. C. Cantley, A fluorescent reporter of AMPK activity and cellular energy stress, Cell metabolism, vol.13, pp.476-486, 2011.

S. A. Hawley, Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell metabolism, vol.2, pp.9-19, 2005.

A. Woods, Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell metabolism, vol.2, pp.21-33, 2005.

M. Momcilovic, S. P. Hong, and M. Carlson, Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro, The Journal of biological chemistry, vol.281, pp.25336-25343, 2006.

D. G. Hardie, AMPK-sensing energy while talking to other signaling pathways, Cell metabolism, vol.20, pp.939-952, 2014.

L. Garcia-haro, The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, MIN6 beta cells, vol.24, pp.5080-5091, 2010.

B. Viollet, AMPK inhibition in health and disease, Crit Rev Biochem Mol Biol, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00489848

T. Chida, N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells, Biochem J, vol.449, pp.741-749, 2013.

G. J. Gowans, S. A. Hawley, F. A. Ross, and D. G. Hardie, AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation, Cell metabolism, vol.18, pp.556-566, 2013.

J. S. Oakhill, AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase, Science, vol.332, pp.1433-1435, 2011.

D. G. Hardie, B. E. Schaffer, and A. Brunet, AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs, Trends in cell biology, vol.26, pp.190-201, 2016.

S. Dale, W. A. Wilson, A. M. Edelman, and D. G. Hardie, Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I, FEBS letters, vol.361, pp.191-195, 1995.

J. Weekes, K. L. Ball, F. B. Caudwell, and D. G. Hardie, Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides, FEBS letters, vol.334, pp.335-339, 1993.

J. W. Scott, D. G. Norman, S. A. Hawley, L. Kontogiannis, and D. G. Hardie, Protein kinase substrate recognition studied using the recombinant catalytic domain of AMPactivated protein kinase and a model substrate, Journal of molecular biology, vol.317, pp.309-323, 2002.

K. Sakamoto and G. D. Holman, Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic, Am J Physiol Endocrinol Metab, vol.295, pp.29-37, 2008.

K. M. Geraghty, Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR, Biochem J, vol.407, pp.231-241, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478803

J. T. Treebak, Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle, Diabetologia, vol.52, pp.891-900, 2009.

S. Chen, D. H. Wasserman, C. Mackintosh, and K. Sakamoto, Mice with AS160/TBC1D4Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking, Cell metabolism, vol.13, pp.68-79, 2011.
DOI : 10.1016/j.cmet.2010.12.005

URL : https://doi.org/10.1016/j.cmet.2010.12.005

K. Barnes, Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK), Journal of Cell Science, vol.115, 2002.

A. S. Marsin, Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Current biology : CB, vol.10, pp.1247-1255, 2000.

A. S. Marsin, C. Bouzin, L. Bertrand, and L. Hue, The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6phosphofructo-2-kinase, The Journal of biological chemistry, vol.277, pp.30778-30783, 2002.

S. B. Jørgensen, The 2-5 AMP-Activated Protein Kinase Is a Site 2 Glycogen Synthase Kinase in Skeletal Muscle and Is Responsive to Glucose Loading, Diabetes, vol.53, 2004.

S. H. Koo, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.437, pp.1109-1111, 2005.

M. M. Mihaylova, Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis, Cell, vol.145, pp.607-621, 2011.
DOI : 10.1016/j.cell.2011.03.043

URL : https://doi.org/10.1016/j.cell.2011.03.043

D. D. Habets, Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36mediated long-chain fatty acid uptake into cardiomyocytes, Biochimica et biophysica acta, vol.1791, pp.212-219, 2009.

G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, AICA riboside increases AMPactivated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, pp.1107-1112, 1997.
DOI : 10.1152/ajpendo.1997.273.6.e1107

Y. Li, AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell metabolism, vol.13, pp.376-388, 2011.
DOI : 10.1016/j.cmet.2011.03.009

URL : https://doi.org/10.1016/j.cmet.2011.03.009

S. P. Davies, D. Carling, M. R. Munday, and D. G. Hardie, Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets, Eur J Biochem, vol.203, pp.615-623, 1992.

M. , D. M. Seefeld, K. Witters, L. A. Coleman, and R. A. , AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochem. J, vol.338, pp.783-791, 1999.

P. R. Clarke and G. D. Hardie, Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver, EMBO J, vol.9, pp.2439-2446, 1990.

S. Horman, Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis, Current Biology, vol.12, 2002.

K. Inoki, T. Zhu, K. L. Guan, and . Tsc2, Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, vol.115, pp.577-590, 2003.

D. M. Gwinn, AMPK phosphorylation of raptor mediates a metabolic checkpoint, Molecular cell, vol.30, pp.214-226, 2008.

R. J. Dowling, M. Zakikhani, I. G. Fantus, M. Pollak, and N. Sonenberg, Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells, Cancer Res, vol.67, pp.10804-10812, 2007.

S. Hoppe, AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply, PNAS, vol.106, pp.17781-17786, 2009.

Z. Wang, W. A. Wilson, M. A. Fujino, and P. J. Roach, Antagonistic Controls of Autophagy and Glycogen Accumulation by Snf1p, the Yeast Homolog of AMP-Activated Protein Kinase, and the Cyclin-Dependent Kinase Pho85p, Molecular and Cellular Biology, vol.21, pp.5742-5752, 2001.

C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, Network organization of the human autophagy system, Nature, vol.466, pp.68-76, 2010.

D. F. Egan, Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, vol.331, pp.456-461, 2011.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nature cell biology, vol.13, pp.132-141, 2011.

R. C. Russell, ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nature cell biology, vol.15, pp.741-750, 2013.

J. Kim, Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy, Cell, vol.152, pp.290-303, 2013.

C. Canto, Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle, Cell metabolism, vol.11, pp.213-219, 2010.

J. Lin, C. Handschin, and B. M. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell metabolism, vol.1, pp.361-370, 2005.

S. Jager, C. Handschin, . St, J. Pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, PNAS, vol.104, pp.12017-12022, 2007.

C. Canto, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, pp.1056-1060, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00383329

H. J. Weir, Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling, Cell metabolism

L. A. O'neill and D. G. Hardie, Metabolism of inflammation limited by AMPK and pseudostarvation, Nature, vol.493, pp.346-355, 2013.

W. and W. W. , Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, J Appl Physiol, vol.88, pp.2219-2226, 2000.

V. A. Narkar, AMPK and PPARdelta agonists are exercise mimetics, Cell, vol.134, pp.405-415, 2008.

E. Kim, AMPK gamma2 subunit gene PRKAG2 polymorphism associated with cognitive impairment as well as diabetes in old age, Psychoneuroendocrinology, vol.37, pp.358-365, 2012.

A. M. Turnley, Cellular Distribution and Developmental Expression of AMPActivated Protein Kinase Isoforms in Mouse Central Nervous System, J Neurochem, 1999.

C. Culmsee, J. Monnig, B. E. Kemp, and M. P. Mattson, AMP-Activated Protein Kinase is Highly Expressed in Neurons in the Developing Rat Brain and Promotes Neuronal Survival Following Glucose Deprivation, Journal of molecular neuroscience : MN, vol.17, 2001.

Y. Han, AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, vol.41, pp.1849-1864, 2016.

J. Poels, M. R. Spasic, P. Callaerts, and K. K. Norga, Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy, Bioessays, vol.31, pp.944-952, 2009.

G. V. Ronnett, S. Ramamurthy, A. M. Kleman, L. E. Landree, and S. Aja, AMPK in the brain: its roles in energy balance and neuroprotection, J Neurochem, vol.109, issue.1, pp.17-23, 2009.

M. R. Spasic, P. Callaerts, and K. K. Norga, AMP-Activated Protein Kinase (AMPK) Molecular Crossroad for Metabolic Control and Survival of Neurons, The Neuroscientist, vol.15, pp.309-316, 2009.

W. B. Potter, Metabolic regulation of neuronal plasticity by the energy sensor AMPK, PloS one, vol.5, p.8996, 2010.

K. Z. Shen, V. Yakhnitsa, A. C. Munhall, and S. W. Johnson, AMP kinase regulates KATP currents evoked by NMDA receptor stimulation in rat subthalamic nucleus neurons, Neuroscience, vol.274, pp.138-152, 2014.

M. A. Samuel, LKB1 and AMPK regulate synaptic remodeling in old age, Nature neuroscience, vol.17, pp.1190-1197, 2014.

N. Kuramoto, Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase, Neuron, vol.53, pp.233-247, 2007.

D. G. Hardie and B. G. Frenguelli, A Neural Protection Racket: AMPK and the GABAB Receptor, Neuron, vol.53, pp.159-162, 2007.

L. D. Mccullough, Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke, The Journal of biological chemistry, vol.280, pp.20493-20502, 2005.

T. Kobilo, AMPK agonist AICAR improves cognition and motor coordination in young and aged mice, Learning & memory, vol.21, pp.119-126, 2014.

S. J. Greco, S. Sarkar, J. M. Johnston, and N. Tezapsidis, Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells, Biochemical and biophysical research communications, vol.380, pp.98-104, 2009.

V. Vingtdeux, AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism, The Journal of biological chemistry, vol.285, pp.9100-9113, 2010.

J. Kim, Y. J. Park, Y. Jang, and Y. H. Kwon, AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells, Brain research, vol.1418, pp.42-51, 2011.

C. Thornton, N. J. Bright, M. Sastre, P. J. Muckett, and D. Carling, AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid beta-peptide exposure, Biochem J, vol.434, pp.503-512, 2011.

V. Vingtdeux, P. Davies, D. W. Dickson, and P. Marambaud, AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies, Acta neuropathologica, vol.121, pp.337-349, 2011.

M. Domise, AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo, Scientific reports, vol.6, 2016.

Y. Chen, Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription, PNAS, vol.106, 2009.

T. Ma, Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.34, pp.12230-12238, 2014.

K. A. Ditacchio, S. F. Heinemann, and G. Dziewczapolski, Metformin treatment alters memory function in a mouse model of Alzheimer's disease, Journal of Alzheimer's disease : JAD, vol.44, pp.43-48, 2015.

L. L. Du, AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats, Journal of Alzheimer's disease : JAD, vol.43, pp.775-784, 2015.

T. C. Ju, Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease, The Journal of cell biology, vol.194, pp.209-227, 2011.

T. C. Ju, AMPK-alpha1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease. Biochimica et biophysica acta 1842, pp.1668-1680, 2014.

Y. Xu, Activation of AMPK and inactivation of Akt result in suppression of mTORmediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease, Cellular signalling, vol.26, pp.1680-1689, 2014.

C. H. Ng, AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.14311-14317, 2012.

M. Dulovic, The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro, Neurobiology of disease, vol.63, pp.1-11, 2014.

N. D. Perera, Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models, PloS one, vol.9, p.90449, 2014.

N. D. Perera and B. J. Turner, AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis, Neurochemical research, vol.41, pp.544-553, 2016.

Y. J. Liu, Activation of AMP-activated protein kinase alpha1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis, Human molecular genetics, vol.24, pp.787-801, 2015.

M. A. Lim, Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.1123-1141, 2012.

N. Ghadernezhad, L. Khalaj, H. Pazoki-toroudi, M. Mirmasoumi, and G. Ashabi, Metformin pretreatment enhanced learning and memory in cerebral forebrain ischaemia: the role of the AMPK/BDNF/P70SK signalling pathway, Pharmaceutical biology, vol.54, pp.2211-2219, 2016.

J. L. Hill, Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome, J Neurochem, vol.139, pp.106-119, 2016.

C. Patrone, O. Eriksson, and D. Lindholm, Diabetes drugs and neurological disorders: new views and therapeutic possibilities, Lancet Diabetes Endocrinol, vol.2, pp.256-262, 2014.

B. , C. J. Path, M. R. Turner, and R. C. Metformin, NEJM, 1996.

M. E. Risner, Efficacy of rosiglitazone in a genetically defined population with mildto-moderate Alzheimer's disease, Pharmacogenomics J, vol.6, pp.246-254, 2006.

D. M. Nathan, . Initial, and . Of-glycemia, , 2002.

J. Tian, Association between apolipoprotein E e4 allele and arteriosclerosis, cerebral amyloid angiopathy, and cerebral white matter damage in Alzheimer's disease, Neurosurgery & Psychiatry, vol.75, pp.696-699, 2004.

E. Ferrannini, The target of metformin in type 2 diabetes, N Engl J Med, vol.371, pp.1547-1548, 2014.

T. J. Orchard, The Effect of Metformin and Intensive Lifestyle Intervention on the Metabolic Syndrome: The Diabetes Prevention Program Randomized Trial, Ann Intern Med, vol.142, 2005.

D. P. Group, REDUCTION IN THE INCIDENCE OF TYPE 2 DIABETES WITH LIFESTYLE INTERVENTION OR METFORMIN, NEJM, vol.346, 2002.

J. Jin, Metformin Protects Cells from Mutant Huntingtin Toxicity Through Activation of AMPK and Modulation of Mitochondrial Dynamics, Neuromolecular medicine, vol.18, pp.581-592, 2016.

H. Pintana, N. Apaijai, W. Pratchayasakul, N. Chattipakorn, and S. C. Chattipakorn, Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats, Life sciences, vol.91, pp.409-414, 2012.

J. S. Allard, Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice, Behavioural brain research, vol.301, pp.1-9, 2016.

F. Chen, Antidiabetic drugs restore abnormal transport of amyloid-beta across the blood-brain barrier and memory impairment in db/db mice, Neuropharmacology, vol.101, pp.123-136, 2016.

J. Li, J. Deng, W. Sheng, and Z. Zuo, Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice, Pharmacology, biochemistry, and behavior, vol.101, pp.564-574, 2012.

M. C. Chiang, Y. C. Cheng, S. J. Chen, C. H. Yen, and R. N. Huang, Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction, Experimental cell research, vol.347, pp.322-331, 2016.

W. H. Oliveira, Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice, Brain research, vol.1644, pp.149-160, 2016.

S. M. Mousavi, Beneficial Effects of Teucrium polium and Metformin on DiabetesInduced Memory Impairments and Brain Tissue Oxidative Damage in Rats, International journal of Alzheimer's disease, vol.493729, 2015.

S. P. Patil, P. D. Jain, P. J. Ghumatkar, R. Tambe, and S. Sathaye, Neuroprotective effect of metformin in MPTP-induced Parkinson's disease in mice, Neuroscience, vol.277, pp.747-754, 2014.

B. Lee, B. Sur, I. Shim, H. Lee, and D. H. Hahm, Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology, vol.16, pp.79-89, 2012.

D. K. Mostafa, C. A. Ismail, and D. A. Ghareeb, Differential metformin dose-dependent effects on cognition in rats: role of Akt, Psychopharmacology, vol.233, pp.2513-2524, 2016.

R. R. Zhao, Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice, Biochemical and biophysical research communications, vol.448, pp.414-417, 2014.

K. H. Alzoubi, O. F. Khabour, S. I. Tashtoush, M. H. , and M. N. , Metformin Eased Cognitive Impairment Induced by Chronic L-methionine Administration: Potential Role of Oxidative Stress, Current Neuropharmacology, vol.12, pp.186-192, 2014.

G. Ashabi, Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies, Canadian journal of physiology and pharmacology, vol.95, pp.388-395, 2017.

N. Thangthaeng, Metformin Impairs Spatial Memory and Visual Acuity in Old Male Mice, Aging and disease, vol.8, pp.17-30, 2017.

J. Wang, Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation, Cell Stem Cell, vol.11, pp.23-35, 2012.

J. Wang, CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain, Dev Cell, vol.18, pp.114-125, 2010.

L. He, Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein, Cell, vol.137, pp.635-646, 2009.

M. Guo, Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus, Clinical and experimental pharmacology & physiology, vol.41, pp.650-656, 2014.

J. A. Luchsinger, Metformin in Amnestic Mild Cognitive Impairment: Results of a Pilot Randomized Placebo Controlled Clinical Trial, Journal of Alzheimer's disease : JAD, vol.51, pp.501-514, 2016.

P. M. Herath, N. Cherbuin, R. Eramudugolla, and K. J. Anstey, The Effect of Diabetes Medication on Cognitive Function: Evidence from the PATH Through Life Study, p.7208429, 2016.

P. Imfeld, M. Bodmer, S. S. Jick, C. R. Meier, and . Metformin, other antidiabetic drugs, and risk of Alzheimer's disease: a population-based case-control study, J Am Geriatr Soc, vol.60, pp.916-921, 2012.

E. M. Moore, Increased risk of cognitive impairment in patients with diabetes is associated with metformin, Diabetes care, vol.36, pp.2981-2987, 2013.

A. K. Corsi, B. Wightman, and M. Chalfie, A Transparent Window into Biology: A Primer on Caenorhabditis elegans, Genetics, vol.200, pp.387-407, 2015.

A. Paix, A. Folkmann, D. Rasoloson, G. Seydoux, . High et al., HomologyDirected Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes, Genetics, vol.201, pp.47-54, 2015.

J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, The structure of the nervous system of the nematode Caenorhabditis elegans, Philos Trans R Soc Lond B Biol Sci, vol.314, pp.1-340, 1986.

S. Ward, N. Thomson, J. G. White, and S. Brenner, Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU, J Comp Neurol, vol.160, pp.313-337, 1975.

J. E. Sulston and H. R. Horvitz, Post-embryonic cell lineages of the nematode, Caenorhabditis elegans, Dev Biol, vol.56, pp.110-156, 1977.

J. E. Sulston, E. Schierenberg, J. G. White, and J. N. Thomson, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev Biol, vol.100, pp.64-119, 1983.

M. De-bono and A. V. Maricq, Neuronal substrates of complex behaviors in C. elegans, Annu Rev Neurosci, vol.28, pp.451-501, 2005.

B. H. Cheung, F. Arellano-carbajal, I. Rybicki, and M. De-bono, Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior, Current biology : CB, vol.14, pp.1105-1111, 2004.

J. M. Gray, Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue, Nature, vol.430, pp.317-322, 2004.

P. Y. Jeong, Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone, Nature, vol.433, pp.541-545, 2005.

S. W. Emmons, The structure of the nervous system of the nematode Caenorhabditis elegans, The beginning of connectomics: a commentary on White et, vol.370, 1986.

A. C. Giles, J. K. Rose, and C. H. Rankin, Investigations of learning and memory in Caenorhabditis elegans, Int Rev Neurobiol, vol.69, pp.37-71, 2006.

J. A. Hardaway, Forward genetic analysis to identify determinants of dopamine signaling in Caenorhabditis elegans using swimming-induced paralysis, vol.2, pp.961-975, 2012.

J. W. Barclay, A. Morgan, and R. D. Burgoyne, Neurotransmitter release mechanisms studied in Caenorhabditis elegans, Cell calcium, vol.52, pp.289-295, 2012.

E. R. Kandel and L. Tauc, Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans, J Physiol, vol.181, pp.28-47, 1965.

A. Barco, C. H. Bailey, and E. R. Kandel, Common molecular mechanisms in explicit and implicit memory, J Neurochem, vol.97, pp.1520-1533, 2006.

E. M. Skoulakis and S. Grammenoudi, Dunces and da Vincis: the genetics of learning and memory in Drosophila. Cellular and molecular life sciences : CMLS 63, pp.975-988, 2006.

E. L. Ardiel and C. H. Rankin, An elegant mind: learning and memory in Caenorhabditis elegans, Learning & memory, vol.17, pp.191-201, 2010.

X. Chen, J. W. Barclay, R. D. Burgoyne, and A. Morgan, Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases, Chemistry Central journal, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-00089677

C. and L. , Expressionofhuman f8-amyloidpeptideintransgenic Caenorhabditis elegans, 1995.

J. F. Morley, H. R. Brignull, J. J. Weyers, and R. I. Morimoto, The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.10417-10422, 2002.

S. H. Satyal, Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.5750-5755, 2000.

T. J. Van-ham, elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging, PLoS genetics, vol.4, p.1000027, 2008.

H. R. Brignull, F. E. Moore, S. J. Tang, and R. I. Morimoto, Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, pp.7597-7606, 2006.

T. Zhang, P. C. Mullane, G. Periz, and J. Wang, TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling, Human molecular genetics, vol.20, 1952.

J. Wang, An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans, PLoS genetics, vol.5, p.1000350, 2009.

T. Kuwahara, A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans, Human molecular genetics, vol.17, pp.2997-3009, 2008.

R. Ved, Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans, The Journal of biological chemistry, vol.280, pp.42655-42668, 2005.

B. C. Kraemer, Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.9980-9985, 2003.

A. Teixeira-castro, Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways, Human molecular genetics, vol.20, pp.2996-3009, 2011.

J. A. Parker, Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.13318-13323, 2001.

F. , P. W. Alter, J. R. Macdonald, M. E. Hart, and A. C. , Polyglutaminemediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron, 1999.

M. Lakso, Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human ?-synuclein, Journal of Neurochemistry, vol.86, pp.165-172, 2004.

T. Miyasaka, Progressive neurodegeneration in C. elegans model of tauopathy, Neurobiology of disease, vol.20, pp.372-383, 2005.

S. Treusch, Functional Links Between A? Toxicity, Endocytic Trafficking and Alzheimer's Disease Risk Factors in Yeast, Science, 2011.

S. Brenner, The Genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

A. Fire, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, 1998.

L. Timmons and A. Fire, Specific interference by ingested dsRNA, Nature, vol.395, 1998.

A. G. Fraser, Functional genomic analysis of C. elegans chromosome I by systematic RNA interference, Nature, vol.408, 2000.

R. S. Kamath, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature, vol.421, 2003.
DOI : 10.1038/nature01278

URL : https://digital.csic.es/bitstream/10261/63159/1/accesoRestringido.pdf

L. Timmons, D. L. Court, and A. Fire, Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans, Gene, vol.263, pp.103-112, 2001.

C. C. Mello, A. Fire, and . Dna-transformation, Methods in cell biology, vol.48, pp.451-482, 1995.

C. C. Mello, J. M. Kramer, D. Stinchcomb, and V. Ambros, Efficient gene transfering C.elegans extrachromosomal maintenance and integration of transforming sequences, The EMBO journal, vol.10, pp.3959-3970, 1991.

C. I. Bargmann, E. Hartwieg, and H. R. Horvitz, Odorant-selective genes and neurons mediate olfaction in C. elegans, Cell, vol.74, pp.515-527, 1993.

C. I. Bargmann and H. R. Horvitz, Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans, Neuron, vol.7, pp.729-742, 1991.

A. L. Kauffman, J. M. Ashraf, M. R. Corces-zimmerman, J. N. Landis, and C. T. Murphy, Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age, PLoS biology, vol.8, p.1000372, 2010.

A. Kauffman, C.elegans positive butanone learning, short term and long terme associative memory assays, Jove, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00647300

A. , K. Murphy, and C. T. , elegans positive butanone learning, short term and long term associative memory assays, JOVE, 2011.

S. Saeki, M. Yamamoto, and Y. Iino, Plasticity if chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans, The Journal of Experimental Biology, 2001.

L. E. Dosanjh, M. K. Brown, G. Rao, C. D. Link, and Y. Luo, Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta, Journal of Alzheimer's disease : JAD, vol.19, pp.681-690, 2010.

E. Conti and E. Izaurralde, Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Current opinion in cell biology, vol.17, pp.316-325, 2005.

F. Cabreiro, Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism, Cell, vol.153, pp.228-239, 2013.

A. M. Bertholet, Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity, Neurobiology of disease, vol.90, pp.3-19, 2016.

L. Yang, Mitochondrial fusion provides an 'initial metabolic complementation' controlled by mtDNA. Cellular and molecular life sciences : CMLS 72, pp.2585-2598, 2015.

F. Legros, A. Lombes, P. Frachon, and M. Rojo, Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins, Molecular biology of the cell, vol.13, pp.4343-4354, 2002.

F. Legros, F. Malka, P. Frachon, A. Lombes, and M. Rojo, Organization and dynamics of human mitochondrial DNA, J Cell Sci, vol.117, pp.2653-2662, 2004.

V. Wilkens, W. Kohl, and K. Busch, Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution, J Cell Sci, vol.126, pp.103-116, 2013.

G. Twig, Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, The EMBO journal, vol.27, pp.433-446, 2008.

K. Mitra, Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation, Bioessays, vol.35, pp.955-964, 2013.

M. Liesa and O. S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure, Cell metabolism, vol.17, pp.491-506, 2013.

H. Sesaki, Y. Adachi, Y. Kageyama, K. Itoh, and M. Iijima, In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts, Biochimica et biophysica acta, vol.1842, pp.1179-1185, 2014.

C. Frohlich, Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein, The EMBO journal, vol.32, pp.1280-1292, 2013.

J. A. Mears, Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission, Nat Struct Mol Biol, vol.18, pp.20-26, 2011.

S. Meeusen, Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1, Cell, vol.127, pp.383-395, 2006.
DOI : 10.1016/j.cell.2006.09.021

URL : https://doi.org/10.1016/j.cell.2006.09.021

Z. Song, M. Ghochani, J. M. Mccaffery, T. G. Frey, and D. C. Chan, Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion, Molecular biology of the cell, vol.20, pp.3525-3532, 2009.
DOI : 10.1091/mbc.e09-03-0252

URL : http://europepmc.org/articles/pmc2719570?pdf=render

M. Roy, P. H. Reddy, M. Iijima, and H. Sesaki, Mitochondrial division and fusion in metabolism. Current opinion in cell biology, vol.33, pp.111-118, 2015.
DOI : 10.1016/j.ceb.2015.02.001

URL : http://europepmc.org/articles/pmc4380865?pdf=render

E. Smirnova, L. Griparic, D. L. Shurland, and A. M. Van-der-bliek, Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells, Molecular biology of the cell, vol.12, pp.2245-2256, 2001.
DOI : 10.1091/mbc.12.8.2245

URL : http://europepmc.org/articles/pmc58592?pdf=render

L. C. Gomes, G. Di-benedetto, and L. Scorrano, During autophagy mitochondria elongate, are spared from degradation and sustain cell viability, Nature cell biology, vol.13, pp.589-598, 2011.
DOI : 10.1038/ncb2220

URL : http://europepmc.org/articles/pmc3088644?pdf=render

H. Chen, Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development, The Journal of cell biology, vol.160, pp.189-200, 2003.
DOI : 10.1083/jcb.200211046

URL : http://jcb.rupress.org/content/jcb/160/2/189.full.pdf

T. Koshiba, Structural basis of mitochondrial tethering by mitofusin complexes, Science, vol.305, pp.858-862, 2004.
DOI : 10.1126/science.1099793

A. L. Chapman, E. J. Bennett, T. M. Ramesh, K. J. De-vos, and A. J. Grierson, Axonal Transport Defects in a Mitofusin 2 Loss of Function Model of Charcot-Marie-Tooth Disease in Zebrafish, PloS one, vol.8, p.67276, 2013.

A. L. Misko, Y. Sasaki, E. Tuck, J. Milbrandt, and R. H. Baloh, Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.4145-4155, 2012.
DOI : 10.1523/jneurosci.6338-11.2012

URL : http://www.jneurosci.org/content/32/12/4145.full.pdf

D. Pareyson, P. Saveri, A. Sagnelli, and G. Piscosquito, Mitochondrial dynamics and inherited peripheral nerve diseases, Neuroscience letters, vol.596, pp.66-77, 2015.
DOI : 10.1016/j.neulet.2015.04.001

C. Delettre, Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nature genetics, vol.26, pp.207-210, 2000.
DOI : 10.1016/s0002-9394(01)00852-2

S. Zuchner, Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-MarieTooth neuropathy type 2A, Nature genetics, vol.36, pp.449-451, 2004.

P. Amati-bonneau, OPA1 R445H mutation in optic atrophy associated with sensorineural deafness, Ann Neurol, vol.58, pp.958-963, 2005.
DOI : 10.1002/ana.20681

K. Verhoeven, MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2, Brain : a journal of neurology, vol.129, pp.2093-2102, 2006.
DOI : 10.1093/brain/awl126

URL : https://academic.oup.com/brain/article-pdf/129/8/2093/950420/awl126.pdf

P. I. Moreira, C. Carvalho, X. Zhu, M. A. Smith, and G. Perry, Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology, Biochimica et biophysica acta, vol.1802, pp.2-10, 2010.

G. Sweeney and J. Song, The association between PGC-1alpha and Alzheimer's disease, Anat Cell Biol, vol.49, pp.1-6, 2016.

K. Dolma, Presenilin influences glycogen synthase kinase-3 beta (GSK-3beta) for kinesin-1 and dynein function during axonal transport, Human molecular genetics, vol.23, pp.1121-1133, 2014.

L. Pagani and A. Eckert, Amyloid-Beta interaction with mitochondria, International journal of Alzheimer's disease, p.925050, 2011.

K. Hirai, Mitochondrial abnormalities in Alzheimer's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.21, pp.3017-3023, 2001.

S. M. Khan, Alzheimer's disease cybrids replicate beta-amyloid abnormalities through cell death pathways, Ann Neurol, vol.48, pp.148-155, 2000.

P. Mao and P. H. Reddy, Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics, Biochimica et biophysica acta, vol.1812, pp.1359-1370, 2011.

X. Wang, Impaired balance of mitochondrial fission and fusion in Alzheimer's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.29, pp.9090-9103, 2009.

M. J. Barsoum, Nitric oxide-induced mitochondrial fission is regulated by dynaminrelated GTPases in neurons, The EMBO journal, vol.25, pp.3900-3911, 2006.

X. Wang, Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins, Proceedings of the National Academy of Sciences of the United States of America 105, 2008.

Y. Rui, P. Tiwari, Z. Xie, and J. Q. Zheng, Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, pp.10480-10487, 2006.

H. J. Weir, Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling, Cell metabolism, vol.26, pp.884-896, 2017.

M. L. Toth, Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.8778-8790, 2012.

K. Burkewitz, Neuronal CRTC-1 Governs Systemic Mitochondrial Metabolism and Lifespan via a Catecholamine Signal, Cell, vol.160, pp.842-855, 2015.

V. Iourgenko, Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.12147-12152, 2003.

M. D. Conkright, TORCs: transducers of regulated CREB activity, Molecular cell, vol.12, pp.413-423, 2003.

J. Y. Altarejos, The Creb1 coactivator Crtc1 is required for energy balance and fertility, Nature medicine, vol.14, pp.1112-1117, 2008.

K. A. Kovacs, TORC1 is a calcium-and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.4700-4705, 2007.

Z. Wu, Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.14379-14384, 2006.

C. M. Alberini and D. Y. Chen, Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2, Trends in neurosciences, vol.35, pp.274-283, 2012.

R. Kim, R. Moki, and S. Kida, Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze, Mol Brain, vol.4, 2011.

Y. S. Lee and A. J. Silva, The molecular and cellular biology of enhanced cognition, Nature reviews. Neuroscience, vol.10, pp.126-140, 2009.

B. E. Lonze and D. D. Ginty, Function and regulation of CREB family transcription factors in the nervous system, Neuron, vol.35, pp.605-623, 2002.

Z. C. Xue, C. Wang, Q. W. Wang, and J. F. Zhang, CREB-regulated transcription coactivator 1: important roles in neurodegenerative disorders, Sheng Li Xue Bao, vol.67, pp.155-162, 2015.

L. Breuillaud, Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice, Biological psychiatry, vol.72, pp.528-536, 2012.

E. M. Meylan, O. Halfon, P. J. Magistretti, and J. R. Cardinaux, The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression, Neuropharmacology, vol.107, pp.111-121, 2016.

T. H. Ch'ng, Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus, Cell, vol.150, pp.207-221, 2012.

T. H. Ch'ng, Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Frontiers in molecular neuroscience 8, vol.48, 2015.

M. Nonaka, Region-specific activation of CRTC1-CREB signaling mediates longterm fear memory, Neuron, vol.84, pp.92-106, 2014.

A. Parra-damas, Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease-related stages, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.34, pp.5776-5787, 2014.

T. V. Bliss and G. L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, vol.361, pp.31-39, 1993.

S. J. Martin, P. D. Grimwood, and R. G. Morris, Synaptic plasticity and memory: an evaluation of the hypothesis, Annu Rev Neurosci, vol.23, pp.649-711, 2000.

Y. Zhou, Requirement of TORC1 for late-phase long-term potentiation in the hippocampus, PloS one, vol.1, p.16, 2006.

D. K. Binder and H. E. Scharfman, Brain-derived neurotrophic factor, Growth Factors, vol.22, pp.123-131, 2004.

H. Wu, Y. Zhou, and Z. Q. Xiong, Transducer of regulated CREB and late phase long-term synaptic potentiation, The FEBS journal, vol.274, pp.3218-3223, 2007.

M. J. Sekeres, Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.17857-17868, 2012.

S. Uchida, CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene, Cell reports, vol.18, pp.352-366, 2017.

B. Wang, The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila, Cell metabolism, vol.7, pp.434-444, 2008.

Y. Hirano, Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies, Nature communications, vol.7, p.13471, 2016.

D. J. Clancy, Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein, Science, vol.292, pp.104-106, 2001.

Y. Hirano, Fasting Launches CRTC to Facilitate Long-Term Memory Formation in Drosophila, Science, 2013.

J. Espana, beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, pp.9402-9410, 2010.

M. Mendioroz, CRTC1 gene is differentially methylated in the human hippocampus in Alzheimer's disease, vol.15, 2016.

R. K. Chaturvedi, Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease, Human molecular genetics, vol.21, pp.3474-3488, 2012.

H. Jeong, Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway, Nature medicine, vol.18, pp.159-165, 2012.

W. Giblin, M. E. Skinner, and D. B. Lombard, Sirtuins: guardians of mammalian healthspan, Trends Genet, vol.30, pp.271-286, 2014.

L. Cui, Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration, Cell, vol.127, pp.59-69, 2006.

V. Lakhina, Genome-wide Functional Analysis of CREB/Long-Term MemoryDependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs, Neuron, vol.85, pp.330-345, 2015.

K. Burkewitz, Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal, Cell, vol.160, pp.842-855, 2015.

L. C. Reese, W. Zhang, K. T. Dineley, R. Kayed, and G. Taglialatela, Selective induction of calcineurin activity and signaling by oligomeric amyloid beta, Aging Cell, vol.7, pp.824-835, 2008.

E. L. Greer, An AMPK-FOXO pathway mediates the extension of lifespan induced by a novel method of dietary restriction in C. elegans, Current biology : CB, vol.17, pp.1646-1656, 2007.

P. Kapahi, With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging, Cell metabolism, vol.11, pp.453-465, 2010.

C. J. Kenyon, The genetics of ageing, Nature, vol.464, pp.504-512, 2010.

R. C. Taylor and A. Dillin, Aging as an event of proteostasis collapse. Cold Spring Harbor perspectives in biology, vol.3, 2011.

M. Vermulst, Transcription errors induce proteotoxic stress and shorten cellular lifespan, Nature communications, vol.6, 2015.

Y. Lee and D. C. Rio, Mechanisms and Regulation of Alternative Pre-mRNA Splicing, Annual review of biochemistry, vol.84, pp.291-323, 2015.

G. S. Wang and T. A. Cooper, Splicing in disease: disruption of the splicing code and the decoding machinery, Nature reviews. Genetics, vol.8, pp.749-761, 2007.

R. K. Singh and T. A. Cooper, Pre-mRNA splicing in disease and therapeutics, Trends in molecular medicine, vol.18, pp.472-482, 2012.

S. A. Rodriguez, Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging, Aging Cell, vol.15, pp.267-278, 2016.

D. Zheng, MET exon 14 skipping defines a unique molecular class of non-small cell lung cancer, Oncotarget, vol.7, pp.41691-41702, 2016.

C. Heintz, Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans, Nature, vol.541, pp.102-106, 2017.

H. Kuroyanagi, Y. Watanabe, Y. Suzuki, and M. Hagiwara, Position-dependent and neuron-specific splicing regulation by the CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans, Nucleic acids research, vol.41, pp.4015-4025, 2013.

M. A. Schreiber, J. T. Pierce-shimomura, S. Chan, D. Parry, and S. L. Mcintire, Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga1, PLoS genetics, vol.6, p.1000972, 2010.

X. M. Ma, S. O. Yoon, C. J. Richardson, K. Julich, and J. Blenis, SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs, Cell, vol.133, pp.303-313, 2008.

S. S. Schalm and J. Blenis, Identification of a conserved motif required for mTOR signaling, Current biology : CB, vol.12, pp.632-639, 2002.

P. P. Hsu, The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1mediated inhibition of growth factor signaling, Science, vol.332, pp.1317-1322, 2011.

I. Sanidas, Phosphoproteomics screen reveals akt isoform-specific signals linking RNA processing to lung cancer, Molecular cell, vol.53, pp.577-590, 2014.

Y. Yu, Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling, Science, vol.332, pp.1322-1326, 2011.

A. M. Robitaille, Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis, Science, vol.339, pp.1320-1323, 2013.

J. P. Ling, O. Pletnikova, J. C. Troncoso, and P. C. Wong, TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD, Science, 2015.

A. T. Jan, Perspective Insights into Disease Progression, Diagnostics, and Therapeutic Approaches in Alzheimer's Disease: A Judicious Update. Frontiers in aging neuroscience 9, vol.356, 2017.

A. I. Abushouk, Bapineuzumab for mild to moderate Alzheimer's disease: a metaanalysis of randomized controlled trials, BMC Neurol, vol.17, 2017.

H. Y. Xing, A novel monoclonal antibody against the N-terminus of Abeta1-42 reduces plaques and improves cognition in a mouse model of Alzheimer's disease, PloS one, vol.12, 2017.

J. Altman and G. D. Das, Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J Comp Neurol, vol.124, pp.319-335, 1965.

E. Castilla-ortega, C. Pedraza, G. Estivill-torrus, and L. J. Santin, When is adult hippocampal neurogenesis necessary for learning? evidence from animal research, Reviews in the neurosciences, vol.22, pp.267-283, 2011.

J. R. Epp, C. Chow, and L. A. Galea, Hippocampus-dependent learning influences hippocampal neurogenesis, Frontiers in neuroscience, vol.7, 2013.

M. L. Anderson, H. M. Sisti, D. M. Curlik, and T. J. Shors, Associative learning increases adult neurogenesis during a critical period, Eur J Neurosci, vol.33, pp.175-181, 2011.

P. Sampedro-piquero, Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis, Neurobiology of learning and memory, vol.151, pp.35-42, 2018.

J. H. Lee, Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations, Cell, vol.141, pp.1146-1158, 2010.

F. Pickford, The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice, The Journal of clinical investigation, vol.118, pp.2190-2199, 2008.

P. A. Jaeger and T. Wyss-coray, Beclin 1 complex in autophagy and Alzheimer disease, Arch Neurol, vol.67, pp.1181-1184, 2010.

A. Caccamo, S. Majumder, A. Richardson, R. Strong, and S. Oddo, Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments, The Journal of biological chemistry, vol.285, pp.13107-13120, 2010.

D. C. Rubinsztein, P. Codogno, and B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases, Nat Rev Drug Discov, vol.11, 2012.

, United Nations, Department of Economic and Social Affairs Population Division (2015) World Population Prospects: Key Findings and Advance Tables, United Nations Report, 2015.