Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées

Maxime Ducoux 1, 2
2 Géodynamique - UMR7327
INSU - CNRS - Institut national des sciences de l'Univers, UO - Université d'Orléans : UMR7327, BRGM - Bureau de Recherches Géologiques et Minières (BRGM), ISTO - Institut des Sciences de la Terre d'Orléans - UMR7327 : UMR7327
Abstract : The understanding of the processes and scenarios of the inversion of extensional systems, and more specifically of hyper-extended margins, in collision thrust belts is a major issue. The intracontinental belt of the Pyrenees is an example of inversion of hyper-extended margins, associated with a HT-LP metamorphism and then integrated within the orogenic wedge. The first part of this study is focused on the distribution of the HT-LP metamorphism associated with rifting and the exhumation of lithospheric mantle. A new set of TRSCM data allows the recognition of the geometry of the IMZ, characterized with temperature ranging from 400 to 630°C and shows the absence of a regional gradient at this scale. This study then shows significant temperature gaps across major faults and distinguishes lateral temperature gradients at the scale of the different basins constituting the IMZ, especially in the westernmost part of the belt, in the Nappe des Marbres Basin. This part of the study moreover shows the importance of a salt tectonics prior to the HT-LP metamorphism. The second part shows the existence of three main tectonics phases during the Pyrenean orogeny and the role played by the Late Triassic evaporites as a decollement level in the generalized allochthony of the IMZ. A left-lateral component along the main faults within and along the boundaries of the North Pyrenean Zone (ZNP) is also shown. The interpretation of these observations is that the IMZ and ZNP form a single tectonic unit, decoupled from the Variscan basement by the decollement in the Late Triassic deposits and displaced above shallow-dipping thrust faults inherited from the rifting episode, during the first stages of the convergence. Deformation mode is then thin-skinned and becomes thick-skinned when the two paleomargins collide, with the development of major steeper faults linked with the exhumation of basement blocks (North Pyrenean Massifs) that dissected the IMZ.
Document type :
Theses
Complete list of metadatas

Cited literature [1344 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01887025
Contributor : Abes Star <>
Submitted on : Wednesday, October 3, 2018 - 3:10:09 PM
Last modification on : Friday, May 10, 2019 - 1:54:18 PM
Long-term archiving on: Friday, January 4, 2019 - 2:28:41 PM

File

maxime-ducoux_3464.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01887025, version 1

Collections

Citation

Maxime Ducoux. Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées. Sciences de la Terre. Université d'Orléans, 2017. Français. ⟨NNT : 2017ORLE2026⟩. ⟨tel-01887025⟩

Share

Metrics

Record views

285

Files downloads

170