Skip to Main content Skip to Navigation
Theses

Contribution au développement d’une pince universelle pour la manipulation des matériaux souples

Abstract : The work presented in this thesis concerns the development of a universal system for handling flexible textile materials. This is a universal gripper for manipulation, which consists of three technologies of manipulations, vacuum technology, intrusion technology, pinch technology. This new universal system was developed to handle a pieces of cut fabrics a square shape which had the dimensions of 100 mm×100 mm. The aims of this gripper are: Acquiring a single ply from a stack of woven fabrics Acquiring a single ply, handling and transfer it to the next station.The vacuum technology is the first technique developed in our research, it consists of a grippers which are « three pneumatic flat suction pads with stops » whose materials vary according to the manipulate textile materials, three level compensators for fixing the penumatic flat suction pads and a pneumatic vacuum generator to create the necessary vacuum thanks to a pressure regulator. The three pneumatic flat suction pads are precisely placed on the heads of an equilateral triangle, above the textile piece.The intrusion technology is the second technique developed in our research; this technique consists of two main parts: A party that gives movement and actuation of the gripper A party for gripping witch include the gripping elements that are needles The both parties are controlled, through a penumatic cylinder, by compressed air.The pinch technology is the third technique developed in our research; it comprises clamping grippers which are placed oppositely to moving alternately by two pneumatic cylinders.Two types of validation of the elements constituting of the gripper developed are performed, static validation by using a bracket, dynamic validation by using the robot arm.During the validation static, we found that the vacuum technology performs well for non-permeable materials and with the materials whose their porosity less of the 80 % and their air permeability less than 1500 L/m²/s under 200 pa.For the materials textiles whose their porosity more than 80 % and their permeability more than 1500 L/m²/s under 200 pa, the high consumption of compressed air prohibits the use of this technique, and the real force of attraction dependent on the following material manipulated properties: •Porosity of the material•Air permeability•Weight of the material.Concerning the intrusion technique, we found that this technique allows realizing an effective handling of textile materials which are difficult to handle by the vacuum technique. It performs very well for air permeable materials (plain weave fabrics, knitted fabrics), while damaging waterproof materials. The risk associated with this technique is the manipulation multiplies of the layers at a time if the depth of the piercing of the needles is not precisely controlled.During the static validation of the pinch technique, we found that this technique does not function well alone. To solve this problem, we used, the combination of two technologies: Intrusion technology Pinch technology and Vacuum technology Pinch technologyThe results found during the validation of this technique are: the vacuum technology associated with the pinch technology is the most effective combination and more reliable, by against one disadvantage of this technique is the control of the clamping forces to prevent the damage of the material surface manipulated.For the dynamic validation of the gripper developed, we used the robot manipulation STÄUBLI. We fixed the gripper on the end of the arm of robot and after setting it, we varied the speed of manipulation to determine the limits of the manipulation by each technology.These validation procedures have in evidence the limits of our new gripper in terms of capacity of the gripping, consumption of the compressed air, characteristics and limitations of the flexible materials handled. [...]
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01886607
Contributor : Abes Star :  Contact
Submitted on : Wednesday, October 3, 2018 - 8:19:06 AM
Last modification on : Monday, November 18, 2019 - 12:36:26 PM
Long-term archiving on: : Friday, January 4, 2019 - 12:32:21 PM

File

2014MULH8152_these_EBRAHEEM.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01886607, version 1

Collections

Citation

Yousef Ebraheem. Contribution au développement d’une pince universelle pour la manipulation des matériaux souples. Autre. Université de Haute Alsace - Mulhouse, 2014. Français. ⟨NNT : 2014MULH8152⟩. ⟨tel-01886607⟩

Share

Metrics

Record views

229

Files downloads

610