J. Achard, S. Achard, and C. Jutten, Identifiability of post-nonlinear mixtures, IEEE Signal Processing Letters, vol.12, issue.5, pp.423-426, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00379438

. Altmann, Unsupervised post-nonlinear unmixing of hyperspectral images using a hamiltonian monte carlo algorithm, IEEE Transactions on Image Processing, vol.23, issue.6, pp.2663-2675, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00992112

. Altmann, Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery, IEEE Transactions on Image Processing, vol.21, issue.6, pp.3017-3025, 2012.

M. Babaie-zadeh-;-babaie-zadeh, On blind source separation in convolutive and nonlinear mixtures, 2002.

. Babaie-zadeh, Sparse ICA via cluster-wise PCA, Neurocomputing, vol.69, issue.13, pp.1458-1466, 2006.
DOI : 10.1016/j.neucom.2005.12.022

URL : https://hal.archives-ouvertes.fr/hal-00097157

. Babaie-zadeh, A geometric approach for separating post non-linear mixtures, Signal Processing Conference, vol.3, pp.1-48, 2002.

. Baringhaus, Some elementary proofs of the normality of XY, 1988.

, Computers & Mathematics with Applications, vol.15, issue.11, pp.943-944

. Sejnowski, A. J. Bell, and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural computation, vol.7, issue.6, pp.1129-1159, 1995.

[. Belouchrani, A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.434-444, 1997.

[. Blaschke, Independent slow feature analysis and nonlinear blind source separation, Neural computation, vol.19, issue.4, pp.994-1021, 2007.

Z. Bofill, P. Bofill, and M. Zibulevsky, Underdetermined blind source separation using sparse representations, Signal Processing, vol.81, pp.2353-2362, 2001.

[. Buchner, Blind source separation for convolutive mixtures exploiting nongaussianity, nonwhiteness, and nonstationarity, Conf. Rec. of the Seventh International Workshop on Acoustic Echo and Noise Control, 2003.

J. Cardoso, Blind signal separation: statistical principles, Proceedings IEEE, vol.9, pp.2009-2025, 1998.

. Bibliography-[cardoso, J. F. Laheld-;-cardoso, and B. H. Laheld, Equivariant adaptive source separation, IEEE Transactions on Signal Processing, vol.44, issue.12, pp.3017-3030, 1996.

J. F. Cardoso and A. Souloumiac, , 1993.

, An efficient technique for the blind separation of complex sources, Proceeding of IEEE Signal Processing Workshop on Higher-Order Statistics, pp.275-279

[. Cichocki, New algorithms for non-negative matrix factorization in applications to blind source separation, Proceedings. 2006 IEEE International Conference on, vol.5, 2006.

P. Comon, Independent component analysis, Signal Processing, vol.36, issue.3, pp.287-314, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00346684

J. Comon, P. Comon, and C. Jutten, Handbook of Blind Source Separation: Independent component analysis and applications, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460653

C. De-boor, A practical guide to splines, vol.27, 1978.

. De-lathauwer, Fetal electrocardiogram extraction by blind source subspace separation, IEEE Signal Processing Athos workshop on High-order statistics (HOS), pp.134-138, 1995.

. De-lathauwer, On the best rank-1 and rank-(r 1 , r 2 ,. .. , r n ) approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1324-1342, 2000.

P. Demartines and J. Hérault, , 1997.

, Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on neural networks, vol.8, issue.1, pp.148-154

. Deville, Y. Duarte-;-deville, and L. T. Duarte, An overview of blind source separation methods for linear-quadratic and postnonlinear mixtures, International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA), pp.155-167, 2015.

. Deville, Y. Hosseini-;-deville, and S. Hosseini, Blind identification and separation methods for linear-quadratic mixtures and/or linearly independent non-stationary signals, Signal Processing and Its Applications, pp.1-4, 2007.
DOI : 10.1109/isspa.2007.4555477

URL : https://hal.archives-ouvertes.fr/hal-00289312

. Dobigeon, Nonlinear unmixing of hyperspectral images: Models and algorithms, IEEE Signal Processing Magazine, vol.31, issue.1, pp.82-94, 2014.
DOI : 10.1109/msp.2013.2279274

URL : https://hal.archives-ouvertes.fr/hal-00915663

K. Dogancay, Blind compensation of nonlinear distortion for bandlimited signals, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.52, issue.9, pp.1872-1882, 2005.
DOI : 10.1109/tcsi.2005.852936

[. Drumetz, Relationships between nonlinear and space-variant linear models in hyperspectral image unmixing, IEEE Signal Processing Letters, issue.99, pp.1-1, 2017.
DOI : 10.1109/lsp.2017.2747478

URL : https://hal.archives-ouvertes.fr/hal-01581520

[. Drumetz, Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability, IEEE Transactions on Image Processing, vol.25, issue.8, pp.3890-3905, 2016.
DOI : 10.1109/whispers.2015.8075417

URL : https://hal.archives-ouvertes.fr/hal-01336279

J. Duarte, L. T. Duarte, and C. Jutten, Design of smart ion-selective electrode arrays based on source separation through nonlinear independent component analysis. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, vol.69, pp.293-306, 2014.
DOI : 10.2516/ogst/2013194

URL : https://hal.archives-ouvertes.fr/hal-00962227

[. Duarte, , 2009.

, A bayesian nonlinear source separation method for smart ion-selective electrode arrays, IEEE Sensors Journal, vol.9, issue.12, pp.1763-1771

[. Duarte, A sparsity-based method for blind compensation of a memoryless nonlinear distortion: Application to ion-selective electrodes, IEEE Sensors Journal, vol.15, issue.4, pp.2054-2061, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164752

[. Ehsandoust, Blind source separation in nonlinear mixture for colored sources using signal derivatives, International Conference on Latent Variable Analysis and Signal Separation, pp.193-200, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226466

[. Ehsandoust, Blind source separation in nonlinear mixtures: Separability and a basic algorithm, IEEE Transactions on Signal Processing, vol.65, issue.16, pp.4339-4352, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552273

[. Ehsandoust, Blind compensation of polynomial mixtures of Gaussian signals with application in nonlinear blind source separation, Acoustics, Speech and Signal Processing, pp.4681-4685, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552278

[. Ehsandoust, Nonlinear blind source separation for sparse sources, 24th European Signal Processing Conference (EUSIPCO), pp.1583-1587, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400546

S. ;. Eisenberg, B. Eisenberg, and R. Sullivan, Why is the sum of independent normal random variables normal? Mathematics Magazine, vol.81, pp.362-366, 2008.

[. Fantinato, Gaussian processes for source separation in overdetermined bilinear mixtures, International Conference on Latent Variable Analysis and Signal Separation, pp.300-309, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480992

C. Févotte and N. Dobigeon, Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization, IEEE Transactions on Image Processing, vol.24, issue.12, pp.4810-4819, 2015.

[. Girolami, M. Fyfe-;-girolami, and C. Fyfe, Negentropy and kurtosis as projection pursuit indices provide generalised ICA algorithms, Advances in Neural Information Processing Systems, p.9, 1996.

[. Golbabaee, Compressive source separation: Theory and methods for hyperspectral imaging, IEEE Transactions on Image Processing, vol.22, issue.12, pp.5096-5110, 2013.

R. Gribonval and S. Lesage, A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges, ESANN'06 proceedings-14th European Symposium on Artificial Neural Networks, pp.323-330, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00544897

[. Halimi, Nonlinear unmixing of hyperspectral images using a generalized bilinear model, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.11, pp.4153-4162, 2011.

[. Halimi, , 2015.

, Unsupervised unmixing of hyperspectral images accounting for endmemBIBLIOGRAPHY ber variability, IEEE Transactions on Image Processing, vol.24, issue.12, pp.4904-4917

G. Hamedani and H. Volkmer, Certain characterizations of normal distribution via transformations, Journal of Multivariate Analysis, vol.77, issue.2, pp.286-294, 2001.

[. Henrot, Dynamical spectral unmixing of multitemporal hyperspectral images, IEEE Transactions on Image Processing, vol.25, issue.7, pp.3219-3232, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346918

J. Hérault and C. Jutten, Space or time adaptive signal processing by neural network models, AIP Conference Proceedings 151 on Neural Networks for Computing, pp.206-211, 1986.

[. Heylen, A review of nonlinear hyperspectral unmixing methods, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.6, pp.1844-1868, 2014.

J. Hosseini, S. Hosseini, and C. Jutten, On the separability of nonlinear mixtures of temporally correlated sources, IEEE Signal Processing Letters, vol.10, issue.2, pp.43-46, 2003.

C. Hwang, Simulated annealing: Theory and applications, Acta Applicandae Mathematicae, vol.12, issue.1, pp.108-111, 1988.

A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions on Neural Networks, vol.10, issue.3, pp.626-634, 1999.

A. Hyvärinen, Survey on independent component analysis, Neural computing surveys, vol.2, issue.4, pp.94-128, 1999.

[. Hyvärinen, Nonlinear independent component analysis: Existence and uniqueness results, John Wiley & Sons. BIBLIOGRAPHY [Hyvärinen and Pajunen, vol.46, issue.3, pp.429-439, 1999.

[. Jourjine, Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures, Acoustics, Speech, and Signal Processing, p.0, 2000.

, IEEE International Conference on, vol.5, pp.2985-2988, 2000.

C. Jutten-and-karhunen-;-jutten and J. Karhunen, Advances in nonlinear blind source separation, Proceeding of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), pp.245-256, 2003.

C. Jutten-and-karhunen-;-jutten and J. Karhunen, Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures, International Journal of Neural Systems, vol.14, issue.05, pp.267-292, 2004.

[. Kagan, Extension of darmois-skitcvic theorem to functions of random variables satisfying an addition theorem, Communications in Statistics-Theory and Methods, vol.1, issue.5, pp.471-474, 1973.

J. Kennedy, Particle swarm optimization, Encyclopedia of machine learning, pp.760-766, 2011.

[. Kiviluoto, K. Oja-;-kiviluoto, and E. Oja, Independent component analysis for parallel financial time series, ICONIP, vol.2, pp.895-898, 1998.

[. Larue, Markovian source separation in post-nonlinear mixtures, ICA, pp.702-709, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00097172

. Bibliography-[lee, Fast fixed-point independent vector analysis algorithms for convolutive blind source separation, Signal Processing, vol.87, issue.8, pp.1859-1871, 2007.

D. N. Levin, Performing nonlinear blind source separation with signal invariants, IEEE Transactions on Signal Processing, vol.58, issue.4, pp.2131-2140, 2010.
DOI : 10.1109/tsp.2009.2034916

URL : http://arxiv.org/pdf/0904.0643

D. N. Levin, Model-independent method of nonlinear blind source separation, Latent Variable Analysis and Signal Separation-13th International Conference, LVA/ICA 2017, pp.310-319, 2017.
DOI : 10.1007/978-3-319-53547-0_30

L. Li, Y. Li, and K. Liu, Adaptive blind source separation and equalization for multiple-input/multiple-output systems. Information Theory, IEEE Transactions on, vol.44, issue.7, pp.2864-2876, 1998.

. Liutkus, , 2011.

, Gaussian processes for underdetermined source separation, Trans. on SP, vol.59, issue.7, pp.3155-3167

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, pp.281-297, 1967.

J. Malek, Blind compensation of memoryless nonlinear distortions in sparse signals, 21st European Signal Processing Conference (EUSIPCO 2013), pp.1-5, 2013.

[. Marvasti, F. Jain-;-marvasti, and A. K. Jain, Zero crossings, bandwidth compression, and restoration of nonlinearly distorted band-limited signals, Journal of Optical Society of America A, vol.3, issue.5, pp.651-654, 1986.

. Bibliography-[meganem, Physical modelling and non-linear unmixing method for urban hyperspectral images, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp.1-4, 2011.

[. Meganem, Linear-quadratic blind source separation using nmf to unmix urban hyperspectral images, IEEE Transactions on Signal Processing, vol.62, issue.7, pp.1822-1833, 2014.

[. Mei, Blind source separation based on cumulants with time and frequency non-properties, IEEE Transactions on Audio, Speech, and Language Processing, vol.17, issue.6, pp.1099-1108, 2009.

. Merrikh-bayat, Linear-quadratic blind source separating structure for removing show-through in scanned documents, International Journal on Document Analysis and Recognition (IJDAR), vol.14, issue.4, pp.319-333, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643471

[. Muller, An introduction to kernel-based learning algorithms, IEEE transactions on neural networks, vol.12, issue.2, pp.181-201, 2001.

[. Naini, Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering, Neurocomputing, vol.71, issue.10, pp.2330-2343, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00272347

. Noorzadeh, Modeling quasi-periodic signals by a non-parametric model: Application on fetal ECG extraction, 36th Int. Conf. of EMBC, pp.1889-1892, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080120

. Bibliography-[noorzadeh, , 2015.

, An application of Gaussian processes on ocular artifact removal from EEG, 37th Int. Conf. of EMBC, pp.554-557

. Noorzadeh, , 2015.

, A multi-modal approach using a non-parametric model to extract fetal ECG, ICASSP, pp.832-836

. Nuzillard, D. Bijaoui-;-nuzillard, and A. Bijaoui, Blind source separation and analysis of multispectral astronomical images, Astronomy and Astrophysics Supplement Series, vol.147, issue.1, pp.129-138, 2000.

S. ;. Parra, L. Parra, and C. Spence, Convolutive blind separation of non-stationary sources. Speech and Audio Processing, IEEE Transactions on, vol.8, issue.3, pp.320-327, 2000.
DOI : 10.1109/89.841214

. Pérez-cruz, Gaussian processes for nonlinear signal processing: An overview of recent advances, Signal Processing Magazine, vol.30, issue.4, pp.40-50, 2013.

[. Petersen, The matrix cookbook, vol.7, p.15, 2008.

D. T. Pham, Blind separation of instantaneous mixture of sources based on order statistics, IEEE Transactions on Signal Processing, vol.48, pp.363-375, 2000.

M. Quine, A result of Shepp, Applied Mathematics Letters, vol.7, issue.6, pp.33-34, 1994.
DOI : 10.1016/0893-9659(94)90089-2

URL : https://doi.org/10.1016/0893-9659(94)90089-2

W. ;. Rasmussen, C. E. Rasmussen, and C. K. Williams, Gaussian processes for machine learning, vol.1, 2006.

J. Reid, Normal functions of normal random variables, Computers & Mathematics with Applications, vol.14, issue.3, pp.157-160, 1987.

C. H. Reinsch, Smoothing by spline functions, Numerische mathematik, vol.10, issue.3, pp.177-183, 1967.
DOI : 10.1007/bf02162161

[. Revel, A linear-quadratic unsupervised hyperspectral unmixing method dealing with intra-class variability, IEEE Workshop on Hyperspectral Image and Signal Processing, 2016.
DOI : 10.1109/whispers.2016.8071726

, La bimodalité de la parole au secours de la séparation de sources, 2006.

[. Rivet, Visual voice activity detection as a help for speech source separation from convolutive mixtures, LVA/ICA, vol.49, pp.667-677, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00499184

[. Rivet, Nonparametric modelling of ECG: applications to denoising and to single sensor fetal ECG extraction, Int. Conf. on Latent Variable Analysis and Signal Separation, pp.470-477, 2012.

M. Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Advanced book program, 1965.

J. Taleb, A. Taleb, and C. Jutten, Source separation in post-nonlinear mixtures, IEEE Transactions on Signal Processing, vol.47, issue.10, pp.2807-2820, 1999.

[. Talmon, Diffusion maps for signal processing: A deeper look at manifoldBIBLIOGRAPHY learning techniques based on kernels and graphs, IEEE Signal Processing Magazine, vol.30, issue.4, pp.75-86, 2013.

. Tenenbaum, A global geometric framework for nonlinear dimensionality reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.

. Thouvenin, Hyperspectral unmixing with spectral variability using a perturbed linear mixing model, IEEE Transactions on Signal Processing, vol.64, issue.2, pp.525-538, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01273078

[. Tong, Indeterminacy and identifiability of blind identification, IEEE Transactions on Circuits and Systems, vol.38, issue.5, pp.499-509, 1991.

[. Tong, AMUSE: a new blind identification algorithm, IEEE International Symposium on Circuits and Systems, vol.3, pp.1784-1787, 1990.

S. Vaerenbergh, S. Vaerenbergh, and I. Santamaría, A spectral clustering approach to underdetermined postnonlinear blind source separation of sparse sources, IEEE Transactions on Neural Networks, vol.17, issue.3, pp.811-814, 2006.

[. Vigário, Independent component approach to the analysis of EEG and MEG recordings, Biomedical Engineering, vol.47, issue.5, pp.589-593, 2000.

N. Vilenkin and J. Weso?owski, Special Functions and the Theory of Group Representations. Translations of mathematical monographs, Are continuous mappings preserving normality necessarily linear? Applicationes Mathematicae, vol.24, pp.109-112, 1978.
DOI : 10.1090/mmono/022

. Zare, A. Ho-;-zare, and K. Ho, Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing, IEEE Signal Processing Magazine, vol.31, issue.1, pp.95-104, 2014.
DOI : 10.1109/msp.2013.2279177