A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, vol.271, issue.5251, pp.933-937, 1996.

W. P. Mcconnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent et al., Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays, Journal of Physical Chemistry B, vol.104, issue.38, pp.396-402, 1902.

M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar et al., Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Journal of Physical Chemistry B, vol.101, issue.29, pp.51-82, 1997.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil et al., Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts, Journal of the Chemical Society, Faraday Transactions, vol.2, issue.11, pp.739-746, 1970.

Y. Shiraishi and N. Toshima, Colloidal silver catalysts for oxidation of ethylene, Journal of Molecular Catalysis A: Chemical, vol.141, issue.1-3, pp.187-192, 1999.
DOI : 10.1016/s1381-1169(98)00262-3

S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger et al., Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.118, issue.32, pp.1800-1802, 2001.

M. J. Landry, A. Gellé, B. Y. Meng, C. J. Barrett, and A. Moores, Surface-Plasmon-Mediated Hydrogenation of Carbonyls Catalyzed by Silver Nanocubes under Visible Light, ACS Catalysis, vol.7, issue.9, pp.6128-6133, 2017.

J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park et al., Silver nanoparticles as a new generation of antimicrobials, Biotechnology Advances, vol.3, issue.1, pp.76-83, 2007.

D. R. Stewart, C. D. Gutsche, S. Kanamathareddy, C. D. Gutsche, E. U. Thoden-van-velzen et al., Synthesis and conformational properties of calix[6]arenes bridged on the lower rim: self-anchored rotaxanes, Isolation, Characterization, and Conformational Characteristics ofp-tert-Butylcalix[9?20]arenes1, vol.121, pp.3782-3792, 1981.

S. P. Bew and S. V. Sharma, An expedient one-pot synthesis of p-tert-butylcalix[8]-and [9]arene, (98) Lehn, J.-M., Supramolecular chemistry. Science, vol.260, pp.1762-1763, 1993.

S. B. Heidelberg, J. S. Kim, and D. T. Quang, Calixarene-derived fluorescent probes, Chemical Reviews, vol.1, issue.100, pp.3780-3799, 1990.

S. H. Kim, H. J. Kim, J. Yoon, and J. S. Kim, In Calixarenes in the nanoworld, vol.15

J. Vicens and J. Harrowfield, , 2007.

B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coordination Chemistry Reviews, vol.205, issue.1, pp.3-40, 2000.

N. Kumar, Q. Pham-xuan, A. Depauw, M. Hemadi, N. Ha-duong et al., New sensitive and selective calixarene-based fluorescent sensors for the detection of Cs+ in an organoaqueous medium, New Journal of Chemistry, vol.41, issue.15, pp.7162-7170, 2017.

J. H. Lee, S. H. Jung, S. S. Lee, K. Y. Kwon, K. Sakurai et al., Ultraviolet Patterned Calixarene-Derived Supramolecular Gels and Films with Spatially Resolved Mechanical and Fluorescent Properties, ACS Nano, vol.2017, issue.4, pp.4155-4164
DOI : 10.1021/acsnano.7b00997

Y. Zhou, C. Liu, H. Xu, H. Yu, Q. Lu et al., Study on the fluorescence behavior of psulfonated calix[4,6]arene in cationic surfactant cetyltrimethylammonium bromide solution and its analytical application, Spectrochim Acta A Mol Biomol Spectrosc, vol.66, issue.4-5, pp.919-923, 2007.

N. V. Rathod, K. Joshi, A. S. Jadhav, V. S. Kalyani, K. Selvaraj et al., A novel interaction study of Th(IV) and Zr(IV) with 4-sulfonatocalix[6]arene: Experimental and theoretical investigation, Polyhedron, vol.137, pp.207-216, 2017.

M. A. Qazi, U. Ocak, M. Ocak, and S. Memon, An excellent copper selective chemosensor based on calix[4]arene framework, Anal Chim Acta, vol.761, pp.157-168, 2013.
DOI : 10.1016/j.aca.2012.11.026

B. Lotfi, A. Tarlani, P. Akbari-moghaddam, M. Mirza-aghayan, A. A. Peyghan et al., Multivalent calix[4]arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment, Biosens Bioelectron, vol.90, pp.290-297, 2017.
DOI : 10.1016/j.bios.2016.11.065

A. Wei, Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials, Chem Commun (Camb), issue.15, pp.1581-1591, 2006.
DOI : 10.1002/chin.200631285

B. Kim, R. Balasubramanian, W. Pérez-segarra, A. Wei, B. Decker et al., Self-assembly of Resorcinarene-stabilized Gold Nanoparticles: Influence of the Macrocyclic Headgroup, Journal of Materials Chemistry, vol.17, issue.1-2, pp.105-112, 2005.

J. M. Notestein, E. Iglesia, and A. Katz, Photoluminescence and Charge-Transfer Complexes of Calixarenes Grafted on TiO2Nanoparticles, Chemistry of Materials, vol.19, issue.20, pp.4998-5005, 2007.

P. Zhang and T. K. Sham, X-ray studies of the structure and electronic behavior of alkanethiolatecapped gold nanoparticles: the interplay of size and surface effects, Physical Reviews Letters, vol.90, issue.24, p.245502, 2003.

P. Zhang and T. K. Sham, Tuning the electronic behavior of Au nanoparticles with capping molecules, Applied Physics Letters, vol.81, issue.4, p.736, 2002.

J. L. Coffer, R. R. Chandler, C. D. Gutsche, I. Alam, R. F. Pinizzoto et al., An examination of the interfacial interactions between quantum-confined cadmium sulfide clusters and aminocalixarene stabilizer molecules, Journal of Physical Chemistry, vol.97, issue.3, pp.696-702, 1993.

M. Neouze and U. Schubert, Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatshefte für Chemie-Chemical Monthly, vol.139, pp.183-195, 2008.

A. R. Kongor, V. A. Mehta, K. M. Modi, M. K. Panchal, S. A. Dey et al., Calix-Based Nanoparticles: A Review, Topics in Current Chemistry, vol.374, issue.3, p.28, 2016.
DOI : 10.1007/s41061-016-0029-z

. Springer, , 2016.

J. M. Ha, A. Katz, A. B. Drapailo, and V. I. Kalchenko, Mercaptocalixarene-Capped Gold Nanoparticles via Postsynthetic Modification and Direct Synthesis: Effect of Calixarene CavityMetal Interactions, Journal of Physical Chemistry C, vol.113, pp.1137-1142, 2009.

J. M. Ha, A. Solovyov, and A. Katz, Postsynthetic Modification of Gold Nanoparticles with Calix[4]arene Enantiomers: Origin of Chiral Surface Plasmon Resonance, Langmuir, vol.25, pp.153-158, 2009.

V. Huc and K. Pelzer, A new specifically designed calix[8]arene for the synthesis of functionalized, nanometric and subnanometric Pd, Pt and Ru nanoparticles, Journal of Colloid & Interface Science, vol.318, issue.1, pp.1-4, 2008.

B. A. Makwana, D. J. Vyas, K. D. Bhatt, S. Darji, and V. K. Jain, Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions, Applied Nanoscience, vol.6, issue.4, pp.555-566, 2015.

D. J. Vyas, B. A. Makwana, H. S. Gupte, K. D. Bhatt, and V. K. Jain, An Efficient One Pot Synthesis of Water-Dispersible Calix[4]arene Polyhydrazide Protected Gold Nanoparticles-A "Turn Off" Fluorescent Sensor for Hg[II] Ions, Journal of Nanoscience and Nanotechnology, vol.12, issue.5, pp.3781-3787, 2012.

A. Wei, B. Kim, S. V. Pusztay, S. L. Tripp, and R. Balasubramanian, Resorcinarene-Encapsulated Nanoparticles: Building Blocks for Self-Assembled Nanostructures, Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol.41, issue.1/4, pp.83-86, 2001.

X. Chen, K. Vimalanathan, W. Zang, A. D. Slattery, R. A. Boulos et al., Self-assembled calixarene aligned patterning of noble metal nanoparticles on graphene, Nanoscale, vol.6, issue.9, pp.4517-4520, 2014.

J. M. Ha, A. Solovyov, and A. Katz, Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles, Langmuir, vol.25, issue.18, pp.10548-10553, 2009.

J. Ha, A. Solovyov, and A. Katz, Accessibility in Calix[8]arene-Bound Gold Nanoparticles: Crucial Role of Induced-Fit Binding ?, Journal of Physical Chemistry C, issue.38, pp.16060-16070, 2010.

M. M. Nigra, J. Ha, and A. Katz, Identification of site requirements for reduction of 4nitrophenol using gold nanoparticle catalysts, Catalysis Science & Technology, vol.2013, issue.11, pp.2976-2983

S. Wang, X. Hang, X. Zhu, H. Han, G. Zhang et al., 1D morning glory-like calixarene-based coordination polymers as a support for Au/Ag nanoparticles, vol.130, pp.75-80, 2017.

Z. Wu, N. Song, R. Menz, B. Pingali, Y. W. Yang et al., Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare, Nanomedicine (Lond), vol.2015, issue.9, pp.1493-1514

A. Wang, J. Liu, S. Lin, T. Lin, and C. Mou, A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization, Journal of Catalysis, vol.233, issue.1, pp.186-197, 2005.

A. Wang, Y. Hsieh, Y. Chen, and C. Mou, Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support, Journal of Catalysis, vol.237, issue.1, pp.197-206, 2006.

H. L. Jiang, T. Akita, T. Ishida, M. Haruta, and Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, Journal of the American Chemical Society, vol.133, issue.5, pp.1304-1306, 2011.

C. Ferradini, J. Pucheault, and A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Reviews, vol.89, issue.5, pp.1861-1873, 1983.

S. Remita, P. Fontaine, E. Lacaze, Y. Borensztein, H. Sellame et al., X-ray radiolysis induced formation of silver nano-particles: A SAXS and UVvisible absorption spectroscopy study. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.263, pp.436-440, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00387601

A. Henglein, Electronics of Colloidal Nanometer Particles. Berichte der Bunsengesellschaft für physikalische Chemie, vol.99, pp.903-913, 1995.

M. Delcourt, J. Belloni, E. Janata, A. Henglein, and B. G. Ershov, Capture de précurseurs de l'hydrazine par les ions Cu+ au cours de la radiolyse de l'ammoniac liquide. Radiochemical and Radioanalytical Letters, Journal of Physical Chemistry, vol.13, issue.9, pp.10888-10890, 1973.

B. G. Ershov, E. Janata, A. Henglein, and A. Fojtik, Silver Atoms and Clusters in Aqueous Solution: Absorption Spectra and the Particle Growth in the Absence of Stabilizing Ag + Ions Journal of Physical Chemistry, vol.97, pp.4589-4594, 1993.

E. Janata, Structure of the Trimer Silver Cluster Ag3 2+, Journal of Physical Chemistry B, vol.107, issue.30, pp.7334-7336, 2003.

J. Amblard, O. Platzer, J. Ricard, and J. Belloni, Computerized Simulation of Silver Aggregation and Corrosion in Polymeric Membranes, Journal of Physical Chemistry, vol.96, issue.13, pp.2341-2344, 1992.

O. Platzer, J. Amblard, J. Marignier, and J. Belloni, 14) Belloni, J., Nucleation, growth and properties of nanoclusters studied by radiation chemistry, Journal of Physical Chemistry, vol.96, issue.3-4, pp.141-156, 1992.

J. Belloni, M. Mostafavi, H. Remita, J. Marignier, and M. Delcourt, Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids, New Journal of Chemistry, vol.22, issue.11, pp.1239-1255, 1998.

J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier, Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction, Nature, issue.6035, pp.344-345, 1985.

J. Belloni and J. L. Marignier, Electron-solvent interaction: Attachment solvation competition, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol.34, issue.1, pp.157-171, 1989.
DOI : 10.1016/1359-0197(89)90020-9

J. Belloni and M. O. Delcourt, Actions Biologiques et Chimiques des Rayonnements Ionisants, 2001.

J. J. Myron and G. R. Freeman, The Radiolysis of Ethanol III Liquid Phase, Canadian Journal of Chemistry, vol.43, pp.381-394, 1965.

J. C. Russell, G. R. Freeman, F. Jou, and G. R. Freeman, Radiolysis of ethanol. V. Reactions of the primary reducing species in the liquid phase, The Journal of Physical Chemistry, vol.71, issue.3, pp.909-915, 1967.

, 889 mmol, 1 equiv.) in dry DMF (50 mL) was added 1bromo-2-methoxyethane (8.97 mL, 94.23 mmol, 16 equiv.) at rt. The mixture was stirred for 30 min and the sodium hydride (3.769 g, 94.23 mmol, 16 equiv.) was carefully fed upon 6 h. The mixture was stirred and heated at 50 °C for 18 h under argon. The mixture was cooled down and MeOH were added to the mixture to neutralize NaH excess (around 15 mL). The mixture was diluted with water (100 mL), filtered and washed with water, The residue was stirred in CH2Cl2, vol.6, pp.p-octa

, The mixture was filtered and washed with CH2Cl2. The solvent was removed under vacuum. The product 6 was obtained as white powder in 81 % yield

H. Nmr, Ha); 6.61 (s, 16H, Hc), 300 MHz, CDCl3, ppm): ? 7.19 (m, p.40

, Cyclohexene (60 mL, 0.592 mol, 257 equiv.) and Pearlman's catalyst Pd(OH)2/C (20 % Pd, 3.55 g, 25.28 mmol, 11 equiv.) were added at rt under argon. To the mixture were added dry THF (100 mL) and dry EtOH (100 mL) successively. The mixture was stirred and heated to 75 °C overnight. The mixture was cooled down, filtered through celite and washed with THF. The filtrate was evaporated under reduced pressure at 40 °C. The residue was stirred in Et2O (100 mL) for 2 h and allowed to stand at-15 °C overnight. The mixture was filtered and washed with Et2O. The solvent was removed under vacuum, pp.p-octa

, 88 (s,8H, Ha); 6.34 (s, 16H, Hc); 3.83 (s, 16H, Hb)

H. E. Gottlieb, V. Kotlyar, A. Nudelman, D. V. Sanghani, P. J. Smith et al., A reinvestigation of some triphenylphosphine silver halide complexes and their reaction with stannous chloride: 119mSn Mössbauer and 31P FT NMR studies, Journal of Organic Chemistry, vol.62, issue.2, pp.203-206, 1982.

M. Halim, R. D. Kennedy, M. Suzuki, S. I. Khan, P. L. Diaconescu et al., Complexes of gold(I), silver(I), and copper(I) with pentaaryl[60]fullerides, Journal of the American Chemical Society, vol.133, issue.17, pp.6841-6851, 2011.

V. Huc, C. Martini, P. France-;-ray, D. V. Sanghani, P. J. Smith et al., A reinvestigation of some triphenylphosphine silver halide complexes and their reaction with stannous chloride: 119mSn Mössbauer and 31P FT NMR studies, Inorganica Chimica Acta, vol.59, issue.5, pp.203-206, 1982.

M. Halim, R. D. Kennedy, M. Suzuki, S. I. Khan, P. L. Diaconescu et al., Complexes of gold(I), silver(I), and copper(I) with pentaaryl[60]fullerides, Journal of the American Chemical Society, vol.133, issue.17, pp.6841-6851, 2011.

, Dans le cas où les nanoparticules sont greffées, la surface est homogène, avec une rugosité moyenne de 3,5 nm (Figure A5.1, à droite). Cette valeur, un peu plus grande qu'avant greffage, correspond à un greffage homogène des nanoparticules sur la surface, La surface d'or nue a une rugosité moyenne de 1-2 nm (Figure A5.1, à gauche)

, Les nanoparticules semblent donc greffées à la surface d'or sous la forme d'une monocouche

, Des analyses XPS sont en cours, afin de déterminer la nature des éléments présents à la surface et permettre de déterminer les interactions entre les éléments en question

, François Ozanam au laboratoire PMC de l'Ecole Polytechnique. En effet, selon certaines études, la fréquence de vibration d'une liaison S-Ag se situe entre 230 cm-1 et 280 cm-1. 1,2 En raison des faibles concentrations utilisées pour la synthèse des nanoparticules (5 10-4 M pour l'argent et 5 10-5 M pour le composé 5), les signaux infrarouges sont faibles et il n'a pas été possible d'observer un signal de vibration dans la zone spectrale sondée entre, Afin d'acquérir des signaux caractéristiques de l'interaction entre les atomes de soufre des calixarènes et les atomes d'argent des nanoparticules, des spectres infrarouges en ATR ont été réalisés avec le Dr

, De plus, une caractérisation par spectroscopie Raman a été réalisée à l'UPMC, avec le Dr

E. Maisonhaute, L'interprétation de ces données est en cours, Références bibliographiques, issue.1

J. Hu, B. Zhao, W. Xu, B. Li, and Y. Fan, Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.58, issue.13, pp.2827-2834, 2002.

L. Zhang, Y. Bai, Z. Shang, Y. Zhang, and Y. Mo, Experimental and theoretical studies of Raman spectroscopy on 4-mercaptopyridine aqueous solution and 4-mercaptopyridine/Ag complex system, Journal of Raman Spectroscopy, vol.38, issue.9, pp.1106-1111, 2007.