M. Alves, S. Dadalto, A. Gonçalves, G. De-souza, V. Barros et al., Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses, Proteomes, vol.2, pp.85-106, 2014.

N. J. Atkinson and P. E. Urwin, The interaction of plant biotic and abiotic stresses: from genes to the field, Journal of Experimental Botany, vol.63, pp.3523-3543, 2012.

N. J. Atkinson, C. J. Lilley, and P. E. Urwin, Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses, PLANT PHYSIOLOGY, vol.162, pp.2028-2041, 2013.

E. Ballini, T. T. Nguyen, and J. Morel, Diversity and genetics of nitrogeninduced susceptibility to the blast fungus in rice and wheat, Rice (N Y), vol.6, p.32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506291

R. P. Birkenbihl, S. Liu, and I. E. Somssich, ScienceDirect Transcriptional events defining plant immune responses, Current Opinion in Plant Biology, vol.38, pp.1-9, 2017.

D. Boyes, A. Zayed, R. Ascenzi, A. Mccaskill, N. Hoffman et al., Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants, Plant Cell, vol.13, pp.1499-1510, 2001.

G. Camanes, V. Pastor, M. Cerezo, J. Garcia-andrade, B. Vicedo et al., A Deletion in NRT2.1 Attenuates Pseudomonas syringae-Induced Hormonal Perturbation, Resulting in Primed Plant Defenses, PLANT PHYSIOLOGY, vol.158, pp.1054-1066, 2012.

S. Dérozier, F. Samson, J. Tamby, C. Guichard, V. Brunaud et al., Exploration of plant genomes in the FLAGdb, Plant Methods, vol.7, pp.1-10, 2011.

C. R. Dietrich, H. Ploß, and K. , Constitutive and induced resistance to pathogens in, pp.1-11, 2004.

C. Dordas, Role of nutrients in controlling plant diseases in sustainable agriculture. A review, Agron. Sustain. Dev, vol.28, pp.33-46, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886444

T. Eulgem, Regulation of the Arabidopsis defense transcriptome, Trends in Plant Science, vol.10, pp.71-78, 2005.

M. Fagard, A. Launay, G. Clement, J. Courtial, A. Dellagi et al., Nitrogen metabolism meets phytopathology, Journal of Experimental Botany, vol.65, pp.5643-5656, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01563731

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01203869

Y. Galon, R. Nave, J. M. Boyce, D. Nachmias, M. R. Knight et al., , 2008.

, Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis, FEBS Letters, vol.582, pp.943-948

K. J. Gupta, Y. Brotman, S. Segu, T. Zeier, J. Zeier et al., The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco, Journal of Experimental Botany, vol.64, pp.553-568, 2013.

E. Hoffland, M. Jeger, and M. Van-beusichem, Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen, Plant Soil, pp.1-9, 2000.

B. Huot, J. Yao, B. L. Montgomery, and S. Y. He, Growth-Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness, Molecular Plant, vol.7, pp.1267-1287, 2014.

G. Liu, Y. Ji, N. H. Bhuiyan, G. Pilot, G. Selvaraj et al., Amino Acid Homeostasis Modulates Salicylic Acid-Associated Redox Status and Defense Responses in Arabidopsis, Plant Cell, vol.22, pp.3845-3863, 2010.

C. Lurin, Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Annals of Botany, vol.105, pp.1141-1157, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203920

K. M. Miranda, M. G. Espey, and D. A. Wink, A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite, Nitric Oxide, vol.5, pp.62-71, 2001.

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al., , 2012.

L. A. Mur, C. Simpson, A. Kumari, A. K. Gupta, and K. J. Gupta, Moving nitrogen to the centre of plant defence against pathogens, Annals of Botany, p.179, 2016.

K. Nakashima, Y. Ito, Y. , and K. , Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses, PLANT PHYSIOLOGY, vol.149, pp.88-95, 2009.

V. Pastor, J. Gamir, G. Cama-es, M. Cerezo, P. Bel et al., Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina, Front. Plant Sci, vol.5, pp.838-854, 2014.

C. M. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, and S. C. Van-wees, Hormonal Modulation of Plant Immunity, Annu. Rev. Cell Dev. Biol, vol.28, pp.489-521, 2012.

, R: A language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, 2005.

S. Rasmussen, P. Barah, M. C. Suarez-rodriguez, S. Bressendorff, P. Friis et al., Transcriptome Responses to Combinations of Stresses in Arabidopsis, PLANT PHYSIOLOGY, vol.161, pp.1783-1794, 2013.

A. Ruepp, The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes, Nucleic Acids Research, vol.32, pp.5539-5545, 2004.

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, pp.1-25, 2004.

S. Snoeijers, A. Pé-rez-garcíagarcía, M. H. Joosten, D. Wit, and P. , , 2000.

J. D. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proc Natl Acad Sci, vol.100, pp.9440-9445, 2003.

N. Suzuki, R. M. Rivero, V. Shulaev, E. Blumwald, and R. Mittler, Abiotic and biotic stress combinations, New Phytologist, vol.203, pp.32-43, 2014.

H. Adachi, T. Nakano, N. Miyagawa, N. Ishihama, M. Yoshioka et al., Wrky Transcription Factors Phosphorylated by Mapk Regulate a Plant Immune Nadph Oxidase in Nicotiana Benthamiana, Plant Cell, vol.27, issue.9, pp.2645-2663, 2015.

S. Ahmad, M. Van-hulten, J. Martin, C. M. Pieterse, S. C. Van-wees et al., Genetic Dissection of Basal Defence Responsiveness in Accessions of Arabidopsis Thaliana, Plant Cell and Environment, vol.34, issue.7, pp.1191-1206, 2011.

L. Almagro, L. V. Ros, S. Belchi-navarro, R. Bru, A. R. Barcelo et al., Class Iii Peroxidases in Plant Defence Reactions, Journal of Experimental Botany, vol.60, issue.2, pp.377-390, 2009.

N. Amiour, S. Imbaud, G. Clement, N. Agier, M. Zivy et al., The Use of Metabolomics Integrated with Transcriptomic and Proteomic Studies for Identifying Key Steps Involved in the Control of Nitrogen Metabolism in Crops Such as Maize, Journal of Experimental Botany, vol.63, issue.14, pp.5017-5033, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000350

V. Ancona, W. T. Li, and Y. F. Zhao, Alternative Sigma Factor Rpon and Its Modulation Protein Yhbh Are Indispensable for Erwinia Amylovora Virulence, Molecular Plant Pathology, vol.15, issue.1, pp.58-66, 2014.

M. Andargie and J. Li, Arabidopsis Thaliana: A Model Host Plant to Study PlantPathogen Interaction Using Rice False Smut Isolates of Ustilaginoidea Virens, Frontiers in Plant Science, vol.7, 2016.

D. Arbelet, P. Malfatti, E. Simond-cote, T. Fontaine, L. Desquilbet et al., Disruption of the Bcchs3a Chitin Synthase Gene in Botrytis Cinerea Is Responsible for Altered Adhesion and Overstimulation of Host Plant Immunity, Molecular Plant-Microbe Interactions, vol.23, issue.10, pp.1324-1334, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01719950

N. J. Atkinson and P. E. Urwin, The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field', Journal of Experimental Botany, vol.63, issue.10, pp.3523-3543, 2012.

E. Ballini, N. T. Thu-thi, and J. Morel, Diversity and Genetics of NitrogenInduced Susceptibility to the Blast Fungus in Rice and Wheat, vol.6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506291

P. Bellemann and K. Geider, Localization of Transposon Insertions in Pathogenicity Mutants of Erwinia-Amylovora and Their Biochemical-Characterization', Journal of General Microbiology, vol.138, pp.931-940, 1992.

D. Bellin, S. Asai, M. Delledonne, and H. Yoshioka, Nitric Oxide as a Mediator for Defense Responses, Molecular Plant-Microbe Interactions, vol.26, issue.3, pp.271-277, 2013.

L. Bertini, L. Leonardi, C. Caporale, M. Tucci, N. Cascone et al., Pathogen-Responsive Wheat Pr4 Genes Are Induced by Activators of Systemic Acquired Resistance and Wounding, Plant Science, vol.164, issue.6, pp.1067-1078, 2003.

M. D. Bolton and B. Thomma, The Complexity of Nitrogen Metabolism and Nitrogen-Regulated Gene Expression in Plant Pathogenic Fungi, Physiological and Molecular Plant Pathology, vol.72, issue.4-6, pp.104-110, 2008.

M. Bosch, S. Berger, A. Schaller, and A. Stintzi, Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta, vol.14, 2014.

C. Broekgaarden, L. Caarls, I. A. Vos, C. M. Pieterse, and S. C. Van-wees, Ethylene: Traffic Controller on Hormonal Crossroads to Defense, Plant Physiology, vol.169, issue.4, pp.2371-2379, 2015.

A. Brutus, F. Sicilia, A. Macone, F. Cervone, and G. Lorenzo, A Domain Swap Approach Reveals a Role of the Plant Wall-Associated Kinase 1 (Wak1) as a Receptor of Oligogalacturonides, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.9452-9457, 2010.

G. Camanes, V. Pastor, M. Cerezo, J. Garcia-andrade, B. Vicedo et al., A Deletion in Nrt2.1 Attenuates Pseudomonas Syringae-Induced Hormonal Perturbation, Resulting in Primed Plant Defenses, Plant Physiology, vol.158, issue.2, pp.1054-1066, 2012.

R. Dietrich, K. Ploss, and M. Heil, Constitutive and Induced Resistance to Pathogens in Arabidopsis Thaliana Depends on Nitrogen Supply, Plant Cell and Environment, vol.27, issue.7, 2004.

P. N. Dodds, G. J. Lawrence, A. M. Catanzariti, T. Teh, C. I. Wang et al., Direct Protein Interaction Underlies Gene-for-Gene Specificity and Coevolution of the Flax Resistance Genes and Flax Rust Avirulence Genes, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.8888-8893, 2006.

C. Dordas, Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review, Agronomy For Sustainable Development, vol.28, issue.1, pp.33-46, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886444

Y. Duan, Y. Z. Jiang, S. L. Ye, A. Karim, Z. Y. Ling et al., Ptrwrky73, a Salicylic Acid-Inducible Poplar Wrky Transcription Factor, Is Involved in Disease Resistance in Arabidopsis Thaliana, Plant Cell Reports, vol.34, issue.5, pp.831-841, 2015.

M. Fagard, A. Launay, G. Clement, J. Courtial, A. Dellagi et al.,

C. Soulie and . Masclaux-daubresse, Nitrogen Metabolism Meets Phytopathology, Journal of Experimental Botany, vol.65, issue.19, pp.5643-5656, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01563731

S. Ferrari, J. M. Plotnikova, G. D. Lorenzo, and F. M. Ausubel, Arabidopsis Local Resistance to Botrytis Cinerea Involves Salicylic Acid and Camalexin and Requires Eds4 and Pad2, but Not Sid2, Eds5 or Pad4, Plant Journal, vol.35, issue.2, pp.193-205, 2003.

C. H. Foyer, G. Noctor, and M. Hodges, Respiration and Nitrogen Assimilation: Targeting Mitochondria-Associated Metabolism as a Means to Enhance Nitrogen Use Efficiency, Journal of Experimental Botany, vol.62, issue.4, pp.1467-1482, 2011.

S. Gagnot, J. Tamby, M. Martin-magniette, F. Bitton, L. Taconnat et al.,

J. Aubourg, A. Renou, V. Lecharny, and . Brunaud, , 2008.

, Arabidopsis Transcriptome Data from the Urgv-Catma Platform, No. Database issue, vol.36, pp.986-90

S. Gaudriault, L. Malandrin, J. Paulin, and M. Barny, Dspa, an Essential Pathogenicity Factor of Erwinia Amylovora Showing Homology with Avre of Pseudomonas Syringae, Is Secreted Via the Hrp Secretion Pathway in a Dspb-Dependent Way, Mol Microbiol, vol.26, issue.5, pp.1057-69, 1997.

J. Glazebrook, Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Pathogens, Annual Review of Phytopathology, vol.43, pp.205-227, 2005.

L. Gomez-gomez, G. Felix, and T. Boller, A Single Locus Determines Sensitivity to Bacterial Flagellin in Arabidopsis Thaliana, Plant Journal, vol.18, issue.3, pp.277-284, 1999.

G. E. Gudesblat, J. Schneider-pizon, C. Betti, J. Mayerhofer, I. Vanhoutte et al., Speechless Integrates Brassinosteroid and Stomata Signalling Pathways, vol.14, pp.548-214, 2012.
DOI : 10.1038/ncb2471

L. Han, G. Li, K. Yang, G. Mao, R. Wang et al., MitogenActivated Protein Kinase 3 and 6 Regulate Botrytis Cinerea-Induced Ethylene Production in Arabidopsis, Plant Journal, vol.64, issue.1, pp.114-127, 2010.
DOI : 10.1111/j.1365-313x.2010.04318.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2010.04318.x

P. Hilson, J. Allemeersch, T. Altmann, S. Aubourg, A. Avon et al.,

M. Bitton, B. Caboche, V. Cannoot, C. Chardakov, V. Cognet-holliger et al.,

P. Ares, P. Reymond, G. Rouzé, M. Sandberg, C. Segura et al., Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications, Genome Res, vol.14, issue.10B, pp.2176-89, 2004.

R. J. Horst, C. Zeh, A. Saur, S. Sonnewald, U. Sonnewald et al., The Ustilago Maydis Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient Induction of Filamentous Growth, Eukaryotic Cell, vol.11, issue.3, pp.368-380, 2012.

Y. Hu, Q. Dong, and D. Yu, Arabidopsis Wrky46 Coordinates with Wrky70 and Wrky53 in Basal Resistance against Pathogen Pseudomonas Syringae, Plant Science, vol.185, pp.288-297, 2012.

K. Ishiyama, E. Inoue, A. Watanabe-takahashi, M. Obara, T. Yamaya et al., Kinetic Properties and Ammonium-Dependent Regulation of Cytosolic Isoenzymes of Glutamine Synthetase in Arabidopsis, Journal of Biological Chemistry, vol.279, issue.16, pp.16598-16605, 2004.

Q. L. Jin, W. Q. Hu, I. Brown, G. Mcghee, P. Hart et al., Visualization of Secreted Hrp and Avr Proteins Along the Hrp Pilus During Type Iii Secretion in Erwinia Amylovora and Pseudomonas Syringae', Molecular Microbiology, vol.40, pp.1129-1139, 2001.

J. Jones and J. Dangl, The Plant Immune System, vol.444, pp.323-332, 2006.

J. D. Jones and J. L. Dangl, The Plant Immune System, vol.444, pp.323-329, 2006.

H. Kaku, Y. Nishizawa, N. Ishii-minami, C. Akimoto-tomiyama, N. Dohmae et al., Plant Cells Recognize Chitin Fragments for Defense Signaling through a Plasma Membrane Receptor, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.11086-11091, 2006.

D. S. Kim and B. K. Hwang, An Important Role of the Pepper Phenylalanine Ammonia-Lyase Gene (Pal1) in Salicylic Acid-Dependent Signalling of the Defence Response to Microbial Pathogens, Journal of Experimental Botany, vol.65, issue.9, pp.2295-2306, 2014.

C. Kissoudis, C. Van-de-wiel, R. G. Visser, and G. Van-der-linden, Enhancing Crop Resilience to Combined Abiotic and Biotic Stress through the Dissection of Physiological and Molecular Crosstalk, Frontiers in Plant Science, vol.5, 2014.

A. P. Kloek, M. L. Verbsky, S. B. Sharma, J. E. Schoelz, J. Vogel et al.,

. Kunkel, Resistance to Pseudomonas Syringae Conferred by an Arabidopsis Thaliana Coronatine-Insensitive (Coi1) Mutation Occurs through Two Distinct Mechanisms, Plant Journal, vol.26, issue.5, pp.509-522, 2001.

J. M. Koczan, B. R. Lenneman, M. J. Mcgrath, and G. W. Sundin, Cell Surface Attachment Structures Contribute to Biofilm Formation and Xylem Colonization by, 2011.
DOI : 10.1128/aem.05138-11

URL : http://aem.asm.org/content/77/19/7031.full.pdf

, Erwinia Amylovora', Applied and Environmental Microbiology, vol.77, issue.19, pp.7031-7039

J. M. Koczan, M. J. Mcgrath, Y. Zhao, and G. W. Sundin, Contribution of Erwinia Amylovora Exopolysaccharides Amylovoran and Levan to Biofilm Formation: Implications in Pathogenicity.', Phytopathology, vol.99, pp.1237-1281, 2009.

J. M. Koczan, M. J. Mcgrath, Y. F. Zhao, and G. W. Sundin, Contribution of, 2009.

, Erwinia Amylovora Exopolysaccharides Amylovoran and Levan to Biofilm Formation: Implications in Pathogenicity', Phytopathology, vol.99, pp.1237-1244

M. Lancien, M. Martin, M. H. Hsieh, T. Leustek, H. Goodman et al., Arabidopsis Glt1-T Mutant Defines a Role of Nadh-Gogat in the Non-Photorespiratory Ammonium Assimilatory Pathway, Plant Journal, vol.29, issue.3, pp.347-358, 2002.

A. Launay, O. Patrit, E. Wenes, and M. Fagard, Dspa/E Contributes to Apoplastic Accumulation of Ros in Non-Host a-Thaliana, Frontiers in Plant Science, vol.7, 2016.

F. Lecompte, M. Abro, and P. Nicot, Contrasted Responses of Botrytis Cinerea Isolates Developing on Tomato Plants Grown under Different Nitrogen Nutrition Regimes, Plant Pathology, vol.59, issue.5, pp.891-899, 2010.

S. W. Lee, S. W. Han, M. Sririyanum, C. J. Park, Y. S. Seo et al., A Type I-Secreted, Sulfated Peptide Triggers Xa21-Mediated Innate Immunity (Retraction of, vol.326, pp.191-191, 2009.

S. Lehmann, M. Serrano, F. L'haridon, S. E. Tjamos, and J. P. Metraux, Reactive Oxygen Species and Plant Resistance to Fungal Pathogens, vol.112, pp.54-62, 2015.
DOI : 10.1016/j.phytochem.2014.08.027

URL : http://doc.rero.ch/record/257083/files/met_ros.pdf

R. Li, J. Zhang, J. C. Li, G. X. Zhou, Q. Wang et al., Prioritizing Plant Defence over Growth through Wrky Regulation Facilitates Infestation by Non-Target Herbivores, vol.4, 2015.

A. F. Lopez-millan, F. Morales, S. Andaluz, Y. Gogorcena, A. Abadia et al., Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use, Plant Physiology, vol.124, issue.2, pp.885-897, 2000.

R. Makandar, V. J. Nalam, H. Lee, H. N. Trick, Y. Dong et al., Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat, Molecular PlantMicrobe Interactions, vol.25, issue.3, pp.431-439, 2012.

J. Malamy, J. P. Carr, D. F. Klessig, and I. Raskin, Salicylic-Acid-a Likely Endogenous Signal in the Resistance Response of Tobacco to Viral-Infection, vol.250, pp.1002-1004, 1990.

J. Mansfield, S. Genin, S. Magori, V. Citovsky, M. Sriariyanum et al.,

S. V. Verdier, M. A. Beer, I. Machado, G. Toth, G. D. Salmond et al., , p.10, 2012.

, Plant Pathogenic Bacteria in Molecular Plant Pathology, Molecular Plant Pathology, vol.13, issue.6, pp.614-629

G. H. Mao, X. Z. Meng, Y. D. Liu, Z. Y. Zheng, Z. X. Chen et al., Phosphorylation of a Wrky Transcription Factor by Two Pathogen-Responsive Mapks Drives Phytoalexin Biosynthesis in Arabidopsis, Plant Cell, vol.23, issue.4, pp.1639-1653, 2011.

T. J. Massad, L. A. Dyer, G. Vega, and C. , Costs of Defense and a Test of the CarbonNutrient Balance and Growth-Differentiation Balance Hypotheses for Two Co-Occurring Classes of Plant Defense, PLoS One, vol.7, issue.10, p.47554, 2012.

X. Meng, J. Xu, Y. He, K. Yang, B. Mordorski et al., Phosphorylation of an Erf Transcription Factor by Arabidopsis Mpk3/Mpk6 Regulates Plant Defense Gene Induction and Fungal Resistance, Plant Cell, vol.25, issue.3, pp.1126-1142, 2013.

X. Meng and S. Zhang, Mapk Cascades in Plant Disease Resistance Signaling, Annual Review of Phytopathology, vol.51, pp.245-266, 2013.

T. Mengiste, Plant Immunity to Necrotrophs, Annual Review of Phytopathology, vol.50, pp.267-294, 2012.

M. J. Merrick and R. A. Edwards, Nitrogen Control in Bacteria, Microbiological Reviews, vol.59, issue.4, p.604, 1995.

T. E. Mishina and J. Zeier, Bacterial Non-Host Resistance: Interactions of Arabidopsis with Non-Adapted Pseudomonas Syringae Strains, Physiologia Plantarum, vol.131, issue.3, pp.448-461, 2007.

L. V. Modolo, O. Augusto, I. M. Almeida, C. A. Pinto-maglio, H. C. Oliveira et al., Decreased Arginine and Nitrite Levels in Nitrate Reductase-Deficient Arabidopsis Thaliana Plants Impair Nitric Oxide Synthesis and the, 2006.

, Hypersensitive Response to Pseudomonas Syringae', Plant Science, vol.171

J. Monaghan and C. Zipfel, Plant Pattern Recognition Receptor Complexes at the Plasma Membrane, Current Opinion in Plant Biology, vol.15, issue.4, pp.349-357, 2012.

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al.,

. Fagard, Eds1 Contributes to Nonhost Resistance of Arabidopsis Thaliana against Erwinia Amylovora, Molecular Plant-Microbe Interactions, vol.25, issue.3, pp.421-430, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921325

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al.,

. Fagard, Eds1 Contributes to Nonhost Resistance of Arabidopsis Thaliana against, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921325

E. Amylovora, Mol Plant Microbe Interact, vol.25, issue.3, pp.421-451

D. C. Mundy and R. M. Beresford, Susceptibility of Grapes to Botrytis Cinerea in Relation to Berry Nitrogen and Sugar Concentration, New Zealand Plant Protection, vol.60, pp.123-127, 2007.

L. A. Mur, C. Simpson, A. Kumari, A. K. Gupta, and K. J. Gupta, Moving Nitrogen to the Centre of Plant Defence against Pathogens, Annals of Botany, vol.119, issue.5, pp.703-709, 2017.

S. Neumann, N. D. Paveley, F. D. Beed, and R. Sylvester-bradley, Nitrogen Per Unit Leaf Area Affects the Upper Asymptote of Puccinia Striiformis F.Sp Tritici Epidemics in Winter Wheat, Plant Pathology, vol.53, issue.6, pp.725-732, 2004.

B. M. O'leary, H. C. Neale, C. M. Geilfus, R. W. Jackson, D. L. Arnold et al., Early Changes in Apoplast Composition Associated with Defence and Disease in Interactions between Phaseolus Vulgaris and the Halo Blight Pathogen Pseudomonas Syringae Pv, Plant Cell and Environment, vol.39, issue.10, pp.2172-2184, 2016.

E. C. Oerke, Crop Losses to Pests, Journal of Agricultural Science, vol.144, pp.31-43, 2006.

H. C. Oliveira, G. C. Justino, L. Sodek, and I. Salgado, Amino Acid Recovery Does Not Prevent Susceptibility to Pseudomonas Syringae in Nitrate Reductase Double-Deficient Arabidopsis Thaliana Plants, Plant Science, vol.176, issue.1, 2009.

M. Orsel, K. Eulenburg, A. Krapp, and F. Daniel-vedele, Disruption of the Nitrate Transporter Genes Atnrt2.1 and Atnrt2.2 Restricts Growth at Low External Nitrate Concentration, vol.219, pp.714-721, 2004.

K. Pageau, M. Reisdorf-cren, J. F. Morot-gaudry, and C. Masclaux-daubresse, The Two Senescence-Related Markers, Gs1 (Cytosolic Glutamine Synthetase) and Gdh (Glutamate Dehydrogenase), Involved in Nitrogen Mobilization, Are Differentially Regulated During Pathogen Attack and by Stress Hormones and Reactive Oxygen Species in Nicotiana Tabacum L. Leaves, J Exp Bot, vol.57, issue.3, pp.547-57, 2006.

S. P. Pandey and I. E. Somssich, The Role of Wrky Transcription Factors in Plant Immunity, Plant Physiology, vol.150, issue.4, pp.1648-1655, 2009.

L. Perchepied, C. Balague, C. Riou, C. Claudel-renard, N. Riviere et al., Nitric Oxide Participates in the Complex Interplay of Defense-Related Signaling Pathways Controlling Disease Resistance to Sclerotinia Sclerotiorum in, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00697824

A. Thaliana and &. , Molecular Plant-Microbe Interactions, vol.23, issue.7, pp.846-860

A. Perez-garcia, S. Pereira, J. Pissarra, A. G. Gutierrez, F. M. Cazorla et al.,

F. M. Vicente and . Canovas, Cytosolic Localization in Tomato Mesophyll Cells of a Novel Glutamine Synthetase Induced in Response to Bacterial Infection or Phosphinothricin Treatment, vol.206, pp.426-434, 1998.

C. M. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, and S. C. Van-wees, Hormonal Modulation of Plant Immunity, Annual Review of Cell and Developmental Biology, vol.28, pp.489-521, 2012.

C. M. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. Van-wees et al.,

. Bakker, Induced Systemic Resistance by Beneficial Microbes, Annual Review of Phytopathology, vol.52, pp.347-375, 2014.

N. Pique, D. Minana-galbis, S. Merino, and J. M. Tomas, Virulence Factors of Erwinia Amylovora: A Review, International Journal of Molecular Sciences, vol.16, issue.6, pp.12836-12854, 2015.

C. M. Prasch and U. Sonnewald, Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks, Plant Physiology, vol.162, issue.4, pp.1849-1866, 2013.

S. Ranf, L. Eschen-lippold, P. Pecher, J. Lee, and D. Scheel, Interplay between Calcium Signalling and Early Signalling Elements During Defence Responses to Microbeor Damage-Associated Molecular Patterns, Plant Journal, vol.68, issue.1, pp.100-113, 2011.

S. Rasmussen, P. Barah, M. C. Suarez-rodriguez, S. Bressendorff, P. Friis et al., Transcriptome Responses to Combinations of Stresses in Arabidopsis, Plant Physiology, vol.161, issue.4, pp.1783-1794, 2013.
DOI : 10.1104/pp.112.210773

URL : http://www.plantphysiol.org/content/plantphysiol/161/4/1783.full.pdf

D. Ren, Y. Liu, K. Yang, L. Han, G. Mao et al., A Fungal-Responsive Mapk Cascade Regulates Phytoalexin Biosynthesis in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.5638-5643, 2008.

R. M. Rivero, T. C. Mestre, R. Mittler, F. Rubio, F. Garcia-sanchez et al., The Combined Effect of Salinity and Heat Reveals a Specific Physiological, Biochemical and Molecular Response in Tomato Plants, Plant Cell and Environment, vol.37, issue.5, pp.1059-1073, 2014.

C. Robert, M. O. Bancal, and C. Lannou, Wheat Leaf Rust Uredospore Production and Carbon and Nitrogen Export in Relation to Lesion Size and Density, Phytopathology, vol.92, issue.7, pp.762-768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01959678

H. C. Rowe, J. W. Walley, J. Corwin, E. K. Chan, K. Dehesh et al., Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Botrytis Cinerea Pathogenesis, Plos Pathogens, vol.6, issue.4, 2010.
DOI : 10.1371/journal.ppat.1000861

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1000861&type=printable

A. Santino, M. Taurino, S. De-domenico, S. Bonsegna, P. Poltronieri et al.,

. Flors, Jasmonate Signaling in Plant Development and Defense Response to, 2013.

, Multiple (a)Biotic Stresses', Plant Cell Reports, vol.32, issue.7, pp.1085-1098

B. Sattelmacher, Tansley Review No. 22-the Apoplast and Its Significance for Plant Mineral Nutrition, New Phytologist, vol.149, issue.2, pp.167-192, 2001.

C. Scheler, J. Durner, and J. Astier, Nitric Oxide and Reactive Oxygen Species in Plant Biotic Interactions, Current Opinion in Plant Biology, vol.16, issue.4, pp.534-539, 2013.

B. M. Schober and T. Vermeulen, Enzymatic Maceration of Witloof Chicory by the Soft Rot Bacteria Erwinia Carotovora Subsp Carotovora: The Effect of Nitrogen and Calcium Treatments of the Plant on Pectic Enzyme Production and Disease Development, European Journal of Plant Pathology, vol.105, issue.4, pp.341-349, 1999.

N. Sewelam, Y. Oshima, N. Mitsuda, and M. Ohme-takagi, A Step Towards Understanding Plant Responses to Multiple Environmental Stresses: A Genome-Wide Study, Plant Cell and Environment, vol.37, issue.9, pp.2024-2035, 2014.

T. Shimizu, T. Nakano, D. Takamizawa, Y. Desaki, N. Ishii-minami et al.,

K. Minami, H. Okada, H. Yamane, N. Kaku, and . Shibuya, Two Lysm Receptor Molecules, Cebip and Oscerk1, Cooperatively Regulate Chitin Elicitor Signaling in Rice, Plant Journal, vol.64, issue.2, pp.204-214, 2010.

M. Sinha, R. P. Singh, G. S. Kushwaha, N. Iqbal, A. Singh et al., Current Overview of Allergens of Plant Pathogenesis Related Protein Families, vol.2014, pp.543195-543195, 2014.

S. S. Snoeijers, A. Perez-garcia, M. Joosten, and P. De-wit, The Effect of Nitrogen on Disease Development and Gene Expression in Bacterial and Fungal Plant Pathogens, European Journal of Plant Pathology, vol.106, issue.6, pp.493-506, 2000.

P. S. Solomon and R. P. Oliver, The Nitrogen Content of the Tomato Leaf Apoplast Increases During Infection by Cladosporium Fulvum, vol.213, pp.241-249, 2001.

G. C. Song, H. K. Choi, and C. Ryu, Gaseous 3-Pentanol Primes Plant Immunity against a Bacterial Speck Pathogen, Pseudomonas Syringae Pv. Tomato Via Salicylic Acid and Jasmonic Acid-Dependent Signaling Pathways in Arabidopsis, Frontiers in Plant Science, vol.6, 2015.

V. Swarupa, K. V. Ravishankar, and A. Rekha, , 2014.

, Fusarium Oxysporum and Strategies to Develop Tolerant Genotypes in Banana, vol.239, pp.735-751

D. Tang, M. T. Simonich, and R. W. Innes, Mutations in Lacs2, a Long-Chain AcylCoenzyme a Synthetase, Enhance Susceptibility to Avirulent Pseudomonas Syringae but Confer Resistance to Botrytis Cinerea in Arabidopsis, Plant Physiology, vol.144, issue.2, pp.1093-1103, 2007.

V. Tavernier, S. Cadiou, K. Pageau, R. Lauge, M. Reisdorf-cren et al.,

. Masclaux-daubresse, The Plant Nitrogen Mobilization Promoted by, 2007.

, Colletotrichum Lindemuthianum in Phaseolus Leaves Depends on Fungus Pathogenicity, vol.58, pp.3351-3360

M. Torres, J. Jones, and J. Dangl, Reactive Oxygen Species Signaling in Response to Pathogens, Plant Physiol, vol.141, issue.2, pp.373-381, 2006.

W. Underwood, S. Zhang, and S. Y. He, The Pseudomonas Syringae Type Iii Effector Tyrosine Phosphatase Hopao1 Suppresses Innate Immunity in Arabidopsis Thaliana, Plant Journal, vol.52, issue.4, pp.658-672, 2007.

S. R. Uppalapati, Y. Ishiga, T. Wangdi, B. N. Kunkel, A. Anand et al.,

. Bender, The Phytotoxin Coronatine Contributes to Pathogen Fitness and Is Required for Suppression of Salicylic Acid Accumulation in Tomato Inoculated with, 2007.

P. Pseudomonas-syringae, Tomato Dc3000, Molecular Plant-Microbe Interactions, vol.20, issue.8, pp.955-965

G. Vandenackerveken, R. M. Dunn, A. J. Cozijnsen, J. Vossen, H. W. Vandenbroek et al., Nitrogen Limitation Induces Expression of the Avirulence Gene Avr9 in the Tomato Pathogen Cladosporium-Fulvum, Molecular & General Genetics, vol.243, issue.3, pp.277-285, 1994.

A. Vega, P. Canessa, G. Hoppe, I. Retamal, T. C. Moyano et al., Transcriptome Analysis Reveals Regulatory Networks Underlying Differential Susceptibility to Botrldis Cinerea in Response to Nitrogen Availability, 2015.

S. Lycopersicum, Frontiers in Plant Science, vol.6

A. Verhage, C. Vlaardingerbroek, N. M. Raaymakers, M. Van-dam, S. C. Dicke et al., , 2011.

, Arabidopsis During Insect Herbivory, Frontiers in Plant Science, vol.2

V. Verma, P. Ravindran, and P. P. Kumar, Plant Hormone-Mediated Regulation of Stress Responses, Bmc Plant Biology, vol.16, 2016.

I. A. Vos, C. M. Pieterse, and S. C. Van-wees, Costs and Benefits of HormoneRegulated Plant Defences, Plant Pathology, vol.62, pp.43-55, 2013.

I. A. Vos, A. Verhage, R. C. Schuurink, L. G. Watt, C. M. Pieterse et al., , 2013.

, Jasmonate-Dependent Defenses Is Activated by Abscisic Acid, Frontiers in Plant Science, vol.4

K. Vrancken, M. Holtappels, H. Schoofs, T. Deckers, and R. Valcke, Pathogenicity and Infection Strategies of the Fire Blight Pathogen Erwinia Amylovora in Rosaceae: State of the Art, Microbiology-Sgm, vol.159, pp.823-832, 2013.

D. Walters and M. Heil, Costs and Trade-Offs Associated with Induced Resistance, Physiological and Molecular Plant Pathology, vol.71, issue.1-3, pp.3-17, 2007.

D. R. Walters and I. J. Bingham, Influence of Nutrition on Disease Development Caused by Fungal Pathogens: Implications for Plant Disease Control, Annals of Applied Biology, vol.151, pp.307-324, 2007.

Z. Wei, B. Sneath, and S. Beer, Expression of Erwinia Amylovora Hrp Genes in Response to Environmental Stimuli, J Bacteriol, vol.174, issue.6, pp.1875-82, 1992.

M. Wiermer, B. Feys, and J. Parker, Plant Immunity: The Eds1 Regulatory Node, Curr Opin Plant Biol, vol.8, issue.4, pp.383-392, 2005.

J. L. Wray, Genetics and Regulation of Nitrite Reduction in Higher-Plants, Physiologia Plantarum, vol.89, issue.3, pp.607-612, 1993.

B. Yun, A. Feechan, M. Yin, N. B. Saidi, T. Le-bihan et al.,

E. Kang, S. H. Kwon, J. A. Spoel, G. J. Pallas, and . Loake, S-Nitrosylation of Nadph Oxidase Regulates Cell Death in Plant Immunity, vol.478, pp.264-161, 2011.

M. Zarattini, A. Launay, M. Farjad, E. Wénès, L. Taconnat et al., The Bile Acid Deoxycholate Elicits Defenses in Arabidopsis and Reduces Bacterial Infection, Mol Plant Pathol, vol.18, issue.4, pp.540-544, 2017.

Q. Zeng and G. W. Sundin, Genome-Wide Identification of Hfq-Regulated Small Rnas in the Fire Blight Pathogen Erwinia Amylovora Discovered Small Rnas with, 2014.

, Virulence Regulatory Function, Bmc Genomics, vol.15

Y. F. Zhao, R. Thilmony, C. L. Bender, A. Schaller, S. Y. He et al., Virulence Systems of Pseudomonas Syringae Pv. Tomato Promote Bacterial Speck Disease in Tomato by Targeting the Jasmonate Signaling Pathway, References AbuQamar S, vol.36, pp.28-44, 2003.

S. Asai and H. Yoshioka, Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana, Molecular Plant-Microbe Interactions, vol.22, pp.619-629, 2009.

B. Asselbergh, K. Curvers, S. C. Franca, K. Audenaert, M. Vuylsteke et al., Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis, Plant Physiology, vol.144, pp.1863-1877, 2007.

L. Avila-ospina, M. Moison, K. Yoshimoto, and C. Masclaux-daubresse, Autophagy, plant senescence, and nutrient recycling, Journal of Experimental Botany, vol.65, pp.3799-3812, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204073

R. F. Baker, K. A. Leach, and D. M. Braun, SWEET as sugar: new sucrose effluxers in plants, Molecular Plant, vol.5, pp.766-768, 2012.

E. Ballini, T. T. Thi, N. Morel, and J. , Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat, Rice, vol.6, p.32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506291

D. Balmer, V. Flors, G. Glauser, B. Mauch-mani, D. Bellin et al., Metabolomics of cereals under biotic stress: current knowledge and techniques, Molecular Plant-Microbe Interactions, vol.4, pp.271-277, 2013.

D. Bellincampi, F. Cervone, V. Lionetti, S. Berger, A. K. Sinha et al., Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions, Journal of Experimental Botany, vol.5, pp.4019-4026, 2007.

A. Besson-bard, A. Pugin, and D. Wendehenne, New insights into nitric oxide signaling in plants, Annual Review of Plant Biology, vol.59, pp.21-39, 2008.

M. Boccara, C. E. Mills, J. Zeier, C. Anzi, C. Lamb et al., Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host, The Plant Journal, vol.43, pp.226-237, 2005.

M. D. Bolton, Primary metabolism and plant defense-fuel for the fire, Molecular Plant-Microbe Interactions, vol.22, pp.487-497, 2009.

M. D. Bolton and B. Thomma, The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi, Physiological and Molecular Plant Pathology, vol.72, pp.104-110, 2008.

C. J. Botanga, G. Bethke, Z. Chen, D. R. Gallie, O. Fiehn et al., Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity, Molecular Plant-Microbe Interactions, vol.25, pp.1628-1638, 2012.

N. Bouche and H. Fromm, GABA in plants: just a metabolite?, Trends in Plant Science, vol.9, pp.110-115, 2004.

S. Brauc, D. Vooght, E. Claeys, M. Hofte, M. Angenon et al., Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana, Journal of Plant Physiology, vol.168, pp.1813-1819, 2011.

V. Buchanan-wollaston, The molecular biology of leaf senescence, Journal of Experimental Botany, vol.48, pp.181-199, 1997.

G. Camanes, V. Pastor, M. Cerezo, P. Garcia-agustin, F. Herrero et al., A deletion in the nitrate high affinity transporter NRT2.1 alters metabolomic and transcriptomic responses to Pseudomonas syringae, Plant Signaling and Behavior, vol.7, pp.619-622

G. Camanes, V. Pastor, M. Cerezo, J. Garcia-andrade, B. Vicedo et al., A deletion in NRT2.1 attenuates pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses, Plant Physiology, vol.158, pp.1054-1066, 2012.

C. Chaffei, K. Pageau, A. Suzuki, H. Gouia, and M. H. Ghorbel, Masclauxand Cell Physiology, vol.45, pp.1681-1693

M. Choquer, E. Fournier, C. Kunz, C. Levis, J. Pradier et al., Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen, FEMS Microbiology Letters, vol.277, pp.1-10, 2007.

A. K. Das and D. K. Mitra, The effect of little leaf disease on nitrogen metabolism in brinjal, International Journal of Tropical Plant Diseases, vol.11, pp.193-196, 1993.

P. R. Davidsson, T. Kariola, O. Niemi, and E. T. Palva, Pathogenicity of and plant immunity to soft rot pectobacteria, Frontiers in Plant Science, vol.4, pp.191-191, 2013.

J. Dechorgnat, O. Patrit, A. Krapp, M. Fagard, and F. Daniel-vedele,

, Characterization of the Nrt2.6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress, PLoS One, vol.7, p.42491

A. Degrave, M. Moreau, A. Launay, M. Barny, M. Brisset et al., The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen, Molecular Plant Pathology, vol.14, pp.506-517, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190557

M. Delledonne, Y. J. Xia, R. A. Dixon, and C. Lamb, Nitric oxide functions as a signal in plant disease resistance, Nature, vol.394, pp.585-588, 1998.

M. Delledonne, J. Zeier, A. Marocco, and C. Lamb, Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response, Proceedings of the National Academy of Sciences, vol.98, pp.13454-13459, 2001.
DOI : 10.1073/pnas.231178298

URL : http://www.pnas.org/content/98/23/13454.full.pdf

D. Virgilio, C. Loewith, and R. , Cell growth control: little eukaryotes make big contributions, Oncogene, vol.25, pp.6392-6415, 2006.

R. Dietrich, K. Plob, and M. Heil, Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply, Plant, Cell and Environment, vol.27, pp.896-906, 2004.

C. Dordas, Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, vol.28, pp.33-46, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886444

J. Durner, D. Wendehenne, and D. F. Klessig, Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose, Proceedings of the National Academy of Sciences, USA 95, pp.10328-10333, 1998.

E. Fernandez and A. Galvan, Inorganic nitrogen assimilation in Chlamydomonas, Journal of Experimental Botany, vol.58, pp.2279-2287, 2007.

M. Fujita, Y. Fujita, Y. Noutoshi, F. Takahashi, Y. Narusaka et al., Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks, Current Opinion in Plant Biology, vol.9, pp.436-442, 2006.

S. Gagnot, J. Tamby, M. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

A. Galatro, S. Puntarulo, J. J. Guiamet, and M. Simontacchi, Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons, Plant Physiology and Biochemistry, vol.66, pp.26-33, 2013.

J. Glazebrook, A. Gojon, G. Krouk, F. Perrine-walker, and E. Laugier, The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Govrin EM, Levine A, vol.43, pp.751-757, 2000.

K. J. Gupta, Y. Brotman, and S. Segu, The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco, Journal of Experimental Botany, vol.64, pp.553-568, 2013.

K. J. Gupta and A. U. Igamberdiev, The anoxic plant mitochondrion as a nitrite:NO reductase, Mitochondrion, vol.11, pp.537-543, 2011.
DOI : 10.1016/j.mito.2011.03.005

C. Ho, S. Lin, H. Hu, and Y. Tsay, CHL1 functions as a nitrate sensor in plants, Cell, vol.138, pp.1184-1194, 2009.

R. J. Horst, C. Zeh, A. Saur, S. Sonnewald, U. Sonnewald et al., The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth, Eukaryotic Cell, vol.11, pp.368-380, 2012.

D. M. Huber and R. D. Watson, Nitrogen form and plant disease, Annual Review of Phytopathology, vol.12, pp.139-165, 1974.

N. Hugouvieux-cotte-pattat, H. Dominguez, and J. Robertbaudouy, Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937, Journal of Bacteriology, vol.174, pp.7807-7818, 1992.

I. S. Hwang, S. H. An, and B. K. Hwang, Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens, The Plant Journal, vol.67, pp.749-762, 2011.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

S. D. Kale and B. M. Tyler, Entry of oomycete and fungal effectors into plant and animal host cells, Cellular Microbiology, vol.13, pp.1839-1848, 2011.

H. Kim and C. P. Woloshuk, Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides, Fungal Genetics and Biology, vol.45, pp.947-953, 2008.

M. Kumar and M. Prasad, Organic nitrogen metabolism of crucifer seedlings in relation to their response towards Xanthomonas campestris pv. campestris, Zentralblatt für Mikobiologie, vol.147, pp.92-102, 1992.

F. Lecompte, M. Abro, and P. Nicot, Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes, Plant Pathology, vol.59, pp.891-899, 2010.

T. Lemaître, L. Gaufichon, S. Boutet-mercey, C. A. Masclauxdaubresse, and C. , Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession, Plant and Cell Physiology, vol.49, pp.1056-1065, 2008.

W. Li, Y. Wang, M. Okamoto, N. M. Crawford, M. Y. Siddiqi et al., Dissection of the AtNRT2.1:tNRT2.2 inducible high-affinity nitrate transporter gene cluster, Plant Physiology, vol.143, pp.425-433, 2007.

D. Little, H. Rao, S. Oliva, F. Daniel-vedele, A. Krapp et al., The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues, Proceedings of the National Academy of Sciences, vol.102, pp.13693-13698, 2005.

G. Liu, Y. Ji, N. H. Bhuiyan, G. Pilot, G. Selvaraj et al., Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis, The Plant Cell, vol.22, pp.3845-3863, 2010.

M. S. Lopez-berges, N. Rispail, R. C. Prados-rosales, D. Pietro, and A. , A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB, The Plant Cell, vol.22, pp.2459-2475, 2010.

F. Machin, B. Medina, F. J. Navarro, M. D. Perez, M. Veenhuis et al., The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha, Yeast, vol.21, pp.265-276, 2004.

K. K. Mandadi and K. Scholthof, Plant immune responses against viruses: how does a virus cause disease?, The Plant Cell, vol.25, pp.1489-1505, 2013.

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Annals of Botany, vol.105, pp.1141-1157, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203920

T. J. Massad, L. A. Dyer, and C. G. Vega, Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense, PLoS One, vol.7, p.47554, 2012.

H. Matsumoto, P. Jitareerat, Y. Baba, and S. Tsuyumu, Comparative study of regulatory mechanisms for pectinase production by Erwinia carotovora subsp carotovora and Erwinia chrysanthemi, Molecular PlantMicrobe Interactions, vol.16, pp.226-237, 2003.

M. W. Mckee, Some effects of Eastern X-disease on the nitrogen metabolism of peach leaves, Hortscience, vol.7, pp.393-394, 1972.

T. Mengiste, Plant immunity to necrotrophs, Annual Review of Phytopathology, vol.50, pp.267-294, 2012.

S. Michaeli, A. Fait, and K. Lagor, A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism, The Plant Journal, vol.67, pp.485-498, 2011.

M. Moche, S. Stremlau, L. Hecht, C. Goebel, I. Feussner et al.,

, Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles, Planta, vol.231, pp.425-436

L. V. Modolo, O. Augusto, I. Almeida, J. R. Magalhaes, and I. Salgado,

, Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae, FEBS Letters, vol.579, pp.3814-3820

L. V. Modolo, O. Augusto, I. Almeida, C. Pinto-maglio, H. C. Oliveira et al., Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae, Plant Science, vol.171, pp.34-40, 2006.
DOI : 10.1016/j.plantsci.2006.02.010

S. Morcx, C. Kunz, M. Choquer, S. Assie, E. Blondet et al., Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6), Fungal Genetics and Biology, vol.52, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004081

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al., EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora, Molecular Plant-Microbe Interactions, vol.25, pp.421-430, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921325

H. Navarova, F. Bernsdorff, A. Doering, and J. Zeier, Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity, The Plant Cell, vol.24, pp.5123-5141, 2012.

F. Olea, A. Pérez-garcia, F. R. Canton, E. M. Rivera, R. Canas et al., Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae, Plant and Cell Physiology, vol.45, pp.770-780, 2004.

H. C. Oliveira, G. C. Justino, L. Sodek, and I. Salgado, Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient Arabidopsis thaliana plants, Plant Science, vol.176, pp.105-111, 2009.

M. Orsel, K. Eulenburg, A. Krapp, and F. Daniel-vedele, Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration, Planta, vol.219, pp.714-721, 2004.
DOI : 10.1007/s00425-004-1266-x

K. Pageau, M. Reisdorf-cren, J. F. Morot-gaudry, and C. Masclauxdaubresse, The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves, Journal of Experimental Botany, vol.57, pp.547-557, 2006.

L. Perchepied, C. Balague, C. Riou, C. Claudel-renard, N. Riviere et al., Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana, Molecular Plant-Microbe Interactions, vol.23, pp.846-860, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00697824

A. Pérez-garcia, D. Vicente, A. Canton, F. R. Cazorla, F. M. Codina et al., Light-dependent changes of tomato glutamine synthetase in response to Pseudomonas syringae infection or phosphinothricin treatment, Physiologia Plantarum, vol.102, pp.377-384, 1998.

A. Pérez-garcia, S. Pereira, J. Pissara, G. Gutiérrez, A. Cazorla et al., Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection of phosphinothricin treatment, Planta, vol.206, pp.426-434, 1998.

C. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, V. Wees et al., Hormonal modulation of plant immunity, Annual Review of Cell and Developmental Biology, vol.28, pp.489-521, 2012.

A. Pitzschke, A. Schikora, and H. Hirt, MAPK cascade signalling networks in plant defence, Current Opinion in Plant Biology, vol.12, pp.421-426, 2009.

E. Planchet, K. J. Gupta, M. Sonoda, and W. M. Kaiser, Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport, The Plant Journal, vol.41, pp.732-743, 2005.

C. M. Prasch and U. Sonnewald, Simultaneous application of heat, drought, and virus to arabidopsis plants reveals significant shifts in signaling networks, Plant Physiology, vol.162, pp.1849-1866, 2013.

S. Rasmussen, P. Barah, M. C. Suarez-rodriguez, S. Bressendorff, P. Friis et al., Transcriptome responses to combinations of stresses in Arabidopsis, Plant Physiology, vol.161, pp.1783-1794, 2013.

S. Reverchon, D. Expert, J. Robertbaudouy, and W. Nasser, The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi, Journal of Bacteriology, vol.179, pp.3500-3508, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01997070

A. Robert-seilaniantz, M. Grant, and J. Jones, Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism, Annual Review of Phytopathology, vol.49, pp.317-343, 2011.

P. Rockel, F. Strube, A. Rockel, J. Wildt, and W. M. Kaiser, Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro, Journal of Experimental Botany, vol.53, pp.103-110, 2002.

P. S. Solomon and R. P. Oliver, The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum, Planta, vol.213, pp.241-249, 2001.

P. S. Solomon and R. P. Oliver, Evidence that gamma-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato, Planta, vol.214, pp.414-420, 2002.

C. Stohr, F. Strube, G. Marx, W. R. Ullrich, and P. Rockel, A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta, vol.212, pp.835-841, 2001.

D. J. Stuehr, J. Santolini, Z. Q. Wang, C. C. Wei, and S. Adak, Update on mechanism and catalytic regulation in the NO synthases, Journal of Biological Chemistry, vol.279, pp.36167-36170, 2004.
DOI : 10.1074/jbc.r400017200

URL : http://www.jbc.org/content/279/35/36167.full.pdf

H. Svennerstam, U. Ganeteg, C. Bellini, and T. Nasholm, Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids, Plant Physiology, vol.143, pp.1853-1860, 2007.

P. J. Swarbrick, P. Schulze-lefert, and J. D. Scholes, Metabolic consequences of susceptibility and resistance (race-specific and broadspectrum) in barley leaves challenged with powdery mildew, Plant, Cell and Environment, vol.29, pp.1061-1076, 2006.

L. Szabados and A. Savoure, Proline: a multifunctional amino acid, Trends in Plant Science, vol.15, pp.89-97, 2010.
DOI : 10.1016/j.tplants.2009.11.009

Y. Tao, Z. Y. Xie, W. Q. Chen, J. Glazebrook, H. S. Chang et al., Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae, The Plant Cell, vol.15, pp.317-330, 2003.

V. Tavernier, S. Cadiou, K. Pageau, R. Laugé, M. Reisdorf-cren et al., The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity, Journal of Experimental Botany, vol.58, pp.3351-3360, 2007.

B. Thomma, T. Nurnberger, and M. Joosten, Of PAMPs and effectors: the blurred PTI-ETI dichotomy, The Plant Cell, vol.23, pp.4-15, 2011.

N. N. Tun, C. Santa-catarina, T. Begum, V. Silveira, W. Handro et al., Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective, Microbiology and Molecular Biology Reviews, vol.47, pp.628-695, 2006.

P. E. Verslues and T. E. Juenger, Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments, Current Opinion in Plant Biology, vol.14, pp.240-245, 2011.

D. Walters and M. Heil, Costs and trade-offs associated with induced resistance, Physiological and Molecular Plant Pathology, vol.71, pp.3-17, 2007.

D. R. Walters and I. J. Bingham, Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control, Annals of Applied Biology, vol.151, pp.307-324, 2007.

K. Wang, M. Senthil-kumar, C. Ryu, L. Kang, and K. S. Mysore, Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast, Plant Physiology, vol.158, pp.1789-1802, 2012.

P. Wang, Y. Du, Y. Li, D. Ren, and C. Song, Hydrogen peroxidemediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis, The Plant Cell, vol.22, pp.2981-2998, 2010.

J. Ward, S. Forcat, and M. Beckmann, The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato, The Plant Journal, vol.63, pp.443-457, 2010.

Z. M. Wei, B. J. Sneath, and S. V. Beer, Expression of Erwinia amylovora Hrp genes in response to environmental stimuli, Journal of Bacteriology, vol.174, pp.1875-1882, 1992.

V. Weiss, G. Kramer, T. Dunnebier, and A. Flotho, Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli, Journal of Molecular Microbiology and Biotechnology, vol.4, pp.229-233, 2002.

R. Wimalasekera, C. Villar, T. Begum, and G. Scherer, COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid-and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction, Molecular Plant, vol.4, pp.663-678, 2011.

K. H. Wong, M. J. Hynes, and M. A. Davis, Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi, Eukaryotic Cell, vol.7, pp.917-925, 2008.

T. Yaeno and K. Iba, BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000, Plant Physiology, vol.148, pp.1032-1041, 2008.

A. Yamamoto-katou, S. Katou, H. Yoshioka, N. Doke, and K. Kawakita, Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana, Plant and Cell Physiology, vol.47, pp.726-735, 2006.

P. Zimmermann, M. Hirsch-hoffmann, L. Hennig, and W. Gruissem, GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox, Plant Physiology, vol.136, pp.2621-2632, 2004.

O. Bouchabke, F. Chang, M. Simon, R. Voisin, G. Pelletier et al., Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses, PLos One, vol.3, p.1705, 2008.

J. P. Crow, Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species, Nitric Oxide, vol.1, pp.145-157, 1997.

M. Crowe, C. Serizet, V. Thareau, S. Aubourg, P. Rouz-e et al., CATMA: a complete Arabidopsis GST database, Nucleic Acids Res, vol.31, pp.156-158, 2003.

T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi, and W. R. Scheible, Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis, Plant Physiol, vol.139, pp.5-17, 2005.

A. Dave, I. A. Graham, A. Degrave, M. Fagard, C. Perino et al., Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(1)212-oxo-phytodienoic acid (cis-OPDA), Mol. PlantMicrobe Interact, vol.3, pp.1076-1086, 2008.

A. Degrave, M. Moreau, A. Launay, M. A. Barny, M. N. Brisset et al., The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen, Mol. Plant Pathol, vol.14, pp.506-517, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190557

C. Denoux, R. Galletti, N. Mammarella, S. Gopalan, D. Werck et al., Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings, Mol. Plant, vol.1, pp.423-445, 2008.

M. Fagard, A. Launay, G. Clement, J. Courtial, A. Dellagi et al., Nitrogen metabolism meets phytopathology, J. Exp. Bot, vol.65, pp.5643-5656, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01563731

S. Gagnot, J. Tamby, M. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Res, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

L. Gallego-giraldo, L. Escamilla-trevino, L. A. Jackson, and R. A. Dixon, Salicylic acid mediates the reduced growth of lignin down-regulated plants, Proc. Natl. Acad. Sci. USA, vol.108, pp.814-834, 2011.

A. Gomes, E. Fernandes, and J. L. Lima, Fluorescence probes used for detection of reactive oxygen species, J. Biochem. Biophys. Methods, vol.65, pp.45-80, 2005.

A. A. Gust, F. Brunner, and T. Nuernberger, Biotechnological concepts for improving plant innate immunity, Curr. Opin. Biotechnol, vol.21, pp.204-210, 2010.
DOI : 10.1016/j.copbio.2010.02.004

A. Harb, A. Krishnan, M. M. Ambavaram, and A. Pereira, Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth, Plant Physiol, vol.154, pp.1254-1271, 2010.

Z. H. He, D. Z. He, and B. D. Kohorn, Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response, Plant J, vol.14, pp.55-63, 1998.

Z. H. He, I. Cheeseman, D. Z. He, and B. D. Kohorn, A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis, Plant Mol. Biol, vol.39, pp.1189-1196, 1999.

P. Hilson, J. Allemeersch, T. Altmann, S. Aubourg, A. Avon et al., Versatile gene-specific sequence tags for Arabidopsis functional genomics, Genome Res, vol.14, pp.2176-2189, 2004.

A. F. Hofmann, The continuing importance of bile acids in liver and intestinal disease, Arch. Intern. Med, vol.159, pp.2647-2658, 1999.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv. Bioinformatics, p.420747, 2008.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

S. E. Kevresan, D. R. Malencic, M. T. Popovic, K. N. Kuhajda, and J. E. Kandrac, The effect of cholic acid treatment on the oxidative status of soybean plants, J. Serb. Chem. Soc, vol.74, pp.857-865, 2009.

J. Koga, H. Kubota, S. Gomi, K. Umemura, M. Ohnishi et al., Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice, Plant Physiol, vol.140, pp.1475-1483, 2006.

B. D. Kohorn, M. Kobayashi, S. Johansen, J. Riese, L. F. Huang et al., An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth, Plant J, vol.46, pp.307-316, 2006.

B. D. Kohorn, S. Johansen, A. Shishido, T. Todorova, R. Martinez et al., Pectin activation of MAP kinase and gene expression is WAK2 dependent, Plant J, vol.60, pp.974-982, 2009.

A. Larionov, A. Krause, and W. Miller, A standard curve based method for relative real time PCR data processing, BMC Bioinformatics, vol.6, p.1, 2005.

K. Lawton, K. Weymann, L. Friedrich, B. Vernooij, S. Uknes et al., Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene, Mol. Plant-Microbe Interact, vol.8, pp.863-870, 1995.

C. Le-roux, S. Del-prete, S. Boutet-mercey, F. Perreau, C. Balague et al., The hnRNP-Q protein LIF2 participates in the plant immune response, PLoS One, vol.9, p.99343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204050

T. Li and J. Y. Chiang, Bile acid signaling in liver metabolism and diseases, J. Lipids, p.754067, 2011.

E. Luna, V. Pastor, J. Robert, V. Flors, B. Mauch-mani et al., Callose deposition: a multifaceted plant defense response, Mol. Plant-Microbe Interact, vol.24, pp.183-193, 2011.

C. Lurin, C. Andr-es, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

D. Malencic, S. Kevresan, M. Popovic, D. Stajner, B. Popovic et al., Cholic acid changes defense response to oxidative stress in soybean induced by Aspergillus niger, Cent. Eur. J. Biol, vol.7, pp.132-137, 2012.

T. Mengiste, Plant immunity to necrotrophs, Annu. Rev. Phytopathol, vol.50, pp.267-294, 2012.

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al., EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora, Mol. Plant-Microbe Interact, vol.25, pp.421-430, 2012.
DOI : 10.1094/mpmi-05-11-0111

URL : https://hal.archives-ouvertes.fr/hal-00921325

L. A. Mur, P. Kenton, R. Atzorn, O. Miersch, and C. Wasternack, The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death, Plant Physiol, vol.140, pp.249-262, 2006.

L. A. Mur, P. Kenton, A. J. Lloyd, H. Ougham, and E. Prats, The hypersensitive response; the centenary is upon us but how much do we know?, J. Exp. Bot, vol.59, pp.501-520, 2008.

C. Nawrath and J. P. , Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation, Plant Cell, vol.11, pp.1393-1404, 1999.

Y. Noutoshi, M. Ikeda, and K. Shirasu, Diuretics prime plant immunity in Arabidopsis thaliana, PLoS One, vol.7, p.48443, 2012.

Y. Noutoshi, Y. Jikumaru, Y. Kamiya, and K. Shirasu, ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid, Sci. Rep, vol.2, p.705, 2012.

Y. Noutoshi, M. Okazaki, T. Kida, Y. Nishina, Y. Morishita et al., , 2012.

M. Zarattini,

B. And and J. Wiley-&, SONS LTD chemical screening target salicylic acid glucosyltransferases in Arabidopsis, MOLECULAR PLANT PATHOLOGY, vol.24, pp.3795-3804, 2016.

E. C. Oerke and H. W. Dehne, Safeguarding production-losses in major crops and the role of crop protection, Crop Prot, vol.23, pp.275-285, 2004.

K. Okada, H. Abe, and G. Arimura, Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants, Plant Cell Physiol, vol.56, pp.16-27, 2015.

A. S. Okoli, T. Wadstrom, and G. L. Mendz, MiniReview: bioinformatic study of bile responses in Campylobacterales, FEMS Immunol. Med. Microbiol, vol.49, pp.101-123, 2007.

S. P. Pandey and I. E. Somssich, The role of WRKY transcription factors in plant immunity, Plant Physiol, vol.150, pp.1648-1655, 2009.

C. M. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, and S. C. Van-wees, Hormonal modulation of plant immunity, Annu. Rev. Cell Dev. Biol, vol.28, pp.489-521, 2012.

A. M. Rotunda, H. Suzuki, R. L. Moy, and M. S. Kolodney, Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution, Dermatol. Surg, vol.30, pp.1001-1008, 2004.

A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani et al., The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes, Nucleic Acids Res, vol.32, pp.5539-5545, 2004.

P. Rushton, I. Somssich, P. Ringler, and Q. Shen, WRKY transcription factors, Trends Plant Sci, vol.15, pp.247-258, 2010.

S. Savary, A. Ficke, J. N. Aubertot, and C. Hollier, Crop losses due to diseases and their implications for global food production losses and food security, Food Security, vol.4, pp.519-537, 2012.

K. Schreiber and D. Desveaux, Message in a bottle: chemical biology of induced disease resistance in plants, Plant Pathol. J, vol.24, pp.245-268, 2008.

M. Serrano, B. Wang, B. Aryal, C. Garcion, E. Abou-mansour et al., Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5, Plant Physiol, vol.162, pp.1815-1821, 2013.

T. Shimizu, Y. Jikumaru, A. Okada, K. Okada, J. Koga et al., Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells, Phytochemistry, vol.69, pp.973-981, 2008.

M. Torres, J. Dangl, and J. Jones, Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response, Proc. Natl. Acad. Sci. USA, vol.99, pp.517-522, 2002.

K. Tsuda and F. Katagiri, Comparing signaling mechanisms engaged in patterntriggered and effector-triggered immunity, Curr. Opin. Plant Biol, vol.13, pp.459-465, 2010.

K. Tsuda, M. Sato, T. Stoddard, J. Glazebrook, and F. Katagiri, Network properties of robust immunity in plants, PLoS Genet, vol.5, p.1000772, 2009.

T. A. Wagner and B. D. Kohorn, Wall-associated kinases are expressed throughout plant development and are required for cell expansion, Plant Cell, vol.13, pp.303-318, 2001.

C. Wasternack and B. Hause, Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany, Ann. Bot, vol.111, pp.1021-1058, 2013.

M. Zarattini, M. De-bastiani, G. Bernacchia, S. Ferro, and A. De-battisti, The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes, Ecotoxicology, vol.24, 1996.

C. Zipfel, Pattern-recognition receptors in plant innate immunity, Curr. Opin. Immunol, vol.20, pp.10-16, 2008.

, WRKY70 (WRKY DNA-binding protein 70), AT3G56400, pp.52-64

, AT5G52740 "heavy-metal-associated domain-containing protein" 2,33 8, pp.52-64

, AT2G29720 "CTF2B; monooxygenase" 2,32 1, pp.70-81

, AAA-type ATPase family protein" 2,31 1, pp.70-81

, AT2G24160 pseudogene 2,30 2, pp.56-67

, AT3G51660 "macrophage migration inhibitory factor family protein / MIF family protein" 2,30 2, pp.56-67

, AT5G04340 "C2H2; nucleic acid binding / transcription factor/ zinc ion binding" 2,29, vol.3, pp.41-52

, DNA binding / transcription factor/ transcriptional repressor" 2,29, vol.3, pp.41-52

, AT1G11330 "S-locus lectin protein kinase family protein" 2,27 6, pp.82-93

, MEK1 (mitogen-activated protein kinase kinase 1); MAP kinase kinase/ kinase" 2,23 1, AT4G26070, pp.70-80

. At1g61460-"s-locus-protein-kinase, , vol.23, pp.96-106

, AT4G22530 "embryo-abundant protein-related, vol.2, pp.64-74

, AT1G27980 "pyridoxal-dependent decarboxylase family protein, vol.2, pp.75-85

, RGXT1 (RHAMNOGALACTURONAN XYLOSYLTRANSFERASE, vol.1

. Udp-xylosyltransferase, , vol.2, pp.84-94

, CORI3 (CORONATINE INDUCED 1, JASMONIC ACID RESPONSIVE 2), AT4G23600, pp.77-87

, YLS2 (yellow-leaf-specific gene 2), AT3G51430, pp.29-39

, AT-HSFA4A (Arabidopsis thaliana heat shock transcription factor A4A)

, DNA binding / transcription factor" 2,19, vol.5, pp.88-98

, AT2G24600 "ankyrin repeat family protein" 2,19 6, pp.5-10

, AT3G45860 "receptor-like protein kinase, vol.18, pp.99-109

, AT4G23170 "EP1, vol.7, pp.93-103

, ATPT2 (PHOSPHATE TRANSPORTER 2); carbohydrate transporter/ phosphate transporter/ sugar porter" 2, AT2G38940, vol.17, issue.9, pp.97-107

, AT3G04720 "PR4 (PATHOGENESIS-RELATED 4, vol.17, pp.1-9

, ATTIM17-1 (Arabidopsis thaliana translocase inner membrane subunit 17-1), AT1G20350, pp.5-9

, AT1G72910 "disease resistance protein (TIR-NBS class), pp.93-102

, AT3E15070 2,08, vol.1, pp.21-29

, GTP binding / translation elongation factor" 2,08 1, pp.24-32

, AT2G34940 "vacuolar sorting receptor, vol.1, pp.34-42

, APK2A (PROTEIN KINASE 2A); kinase" 2,07 1, AT1G14370, pp.40-48

, AT3G08870 "lectin protein kinase, vol.1, pp.47-55

, ALF5 (ABERRANT LATERAL ROOT FORMATION 5); antiporter/ transporter" 2,06 1, AT3G23560, pp.67-75

, AT2G17120 "peptidoglycan-binding LysM domain-containing protein" 2,06 1, pp.93-101

, CYP72A8 (cytochrome P450, family 72, subfamily A, polypeptide 8), AT3G14620, pp.95-103

, CRCK1 (CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 1); kinase" 2,05 2, AT5G58940, pp.42-50

, WRKY58 (WRKY DNA-binding protein 58), AT3G01080, pp.10-18

, AT4G02220 "zinc finger (MYND type) family protein / programmed cell death 2 C-terminal domain-containing protein, vol.3, pp.23-31

. At2g32140, , pp.35-43

, WRKY25 (WRKY DNA-binding protein 25), AT2G30250, pp.7-8

. At5g20400-"oxidoreductase and . 2og-fe, , pp.19-27

, SAG21 (SENESCENCE-ASSOCIATED GENE 21, AT4G02380, vol.5, issue.2, pp.61-69

, AT3G29000 "calcium-binding EF hand family protein" 2,01 6, pp.46-54

, GLIP5 (GDSL-motif lipase 5), AT1G53920, pp.30-33

. At3g19010-"oxidoreductase and . 2og-fe, , pp.53-56

, ATP binding / nucleoside-triphosphatase/ nucleotide binding / protein binding / transmembrane receptor, vol.56, pp.59-62

, AT5G61250 "glycosyl hydrolase family 79 N-terminal domain-containing protein" 1, vol.55, pp.89-92

, RFL1 (RPS5-LIKE 1), AT1G12210

, ATP binding / protein binding" 1, vol.55, pp.96-99

, WAKL6 (WALL ASSOCIATED KINASE-LIKE 6), AT1G16110, pp.45-48

, AT1G67800 copine-related 1,53, vol.2, pp.97-100

, MAP2A (METHIONINE AMINOPEPTIDASE 2A), AT2G44180, pp.55-58

. At1g21100-"o-methyltransferase, , vol.52, pp.82-85

, MLO2 (MILDEW RESISTANCE LOCUS O 2), AT1G11310, pp.91-94

, AT1G30010 "intron maturase, type II family protein" 1,51, vol.4, pp.14-17

, DNA binding / transcription factor" 1,51, vol.4, pp.35-38

, AT4G12720 "AtNUDT7 (ARABIDOPSIS THALIANA NUDIX HYDROLASE HOMOLOG 7, pp.66-69

, AMY1 (ALPHA-AMYLASE-LIKE); alpha-amylase" 1,49 6, AT4G25000, pp.18-21

, ATMKK2 (MAP KINASE KINASE 2); MAP kinase kinase/ kinase" 1,49 6, AT4G29810, pp.60-63

, AT3G51890 "unknown protein" 1, vol.47, pp.61-64

, AT3G55450 "protein kinase, vol.47, pp.95-98

, ATGSTF2 (Arabidopsis thaliana Glutathione S-transferase (class phi) 2); glutathione transferase, AT4G02520, vol.46, issue.1, pp.21-23

, AT3G17910 "SURF1 (SURFEIT 1, vol.45, pp.40-42

, BON1 (BONZAI1); calcium-dependent phospholipid binding" 1,44 1, AT5G61900, pp.52-54

, AT5G61600 "ethylene-responsive element-binding family protein" 1,44 1, pp.53-55

, AT2G27310 "F-box family protein" 1, vol.44, pp.58-60

. At1g21110-"o-methyltransferase, , vol.44, pp.71-73

, AT1G17990 "12-oxophytodienoate reductase, vol.44, pp.72-74

. At3g44870-"s-adenosyl-l-methionine, , pp.73-75

, ATP binding / nucleoside-triphosphatase/ nucleotide binding / protein binding" 1,43, vol.1, pp.91-93

, APK2A (PROTEIN KINASE 2A); kinase" 1,43 2, AT1G14370, pp.10-12

, AT5G44070 "CAD1 (CADMIUM SENSITIVE 1)" 1,42, vol.2, pp.38-40

, ATCNGC10 (CYCLIC NUCLEOTIDE GATED CHANNEL 10); calmodulin binding / cyclic nucleotide binding / ion channel" 1,42 2, AT1G01340, pp.39-41

, AtMYB50 (myb domain protein 50), AT1G57560

, DNA binding / transcription factor" 1,42 2, pp.42-44

, AT1G52040 "MBP1 (MYROSINASE-BINDING PROTEIN 1)" 1,42, vol.2, pp.49-51

, AT2G40600 "appr-1-p processing enzyme family protein" 1, vol.40, pp.42-44

, AT3G28930 "AIG2 (AVRRPT2-INDUCED GENE 2)" 1,40, vol.3, pp.62-64

, ATMKK4 (MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4), AT1G51660, pp.90-92

, AT2G15220 "secretory protein, vol.39, pp.21-23

, YLS5 (yellow-leaf-specific gene 5, AT2G38860, vol.39, issue.4, pp.38-40

, AT3G13000 "transcription factor, vol.45, pp.50-52

, AT1G20470 "auxin-responsive family protein, vol.45, pp.37-39

, AT1G20190 "ATEXPA11 (ARABIDOPSIS THALIANA EXPANSIN A11, vol.47, pp.88-91

, AT1G61795 "unknown protein, vol.47, pp.49-52

, AT4G10150 "zinc finger (C3HC4-type RING finger) family protein"-1, vol.47, pp.23-26

, DNA binding / transcription factor, vol.4, pp.60-63

, AT3G16000 "MFP1 (MAR BINDING FILAMENT-LIKE PROTEIN 1, vol.52, pp.40-43

, AT3G53530 "heavy-metal-associated domain-containing protein, vol.54, pp.55-58

, PLA IIIB/PLP9 (Patatin-like protein 9); nutrient reservoir, vol.60, pp.8-12

, AT5G36910 "THI2.2 (THIONIN 2.2); toxin receptor binding, vol.61, pp.81-85

, AT2G37950 "zinc finger (C3HC4-type RING finger) family protein, vol.63, pp.42-46

, AT1G07450 "tropinone reductase, putative / tropine dehydrogenase, putative"-1,63, vol.4, pp.13-17

, GDSL-motif lipase/hydrolase family protein, vol.68, pp.34-38

, CYP96A12 (cytochrome P450, family 96, subfamily A, polypeptide 12); oxygen binding, AT4G39510, vol.74, issue.4, pp.0-5

, AT5G46690 "BHLH071, vol.71

, DNA binding / transcription factor, vol.78, pp.48-53

, AT2G34170 "unknown protein, vol.80, pp.96-102

, AT1G02180 ferredoxin-related-1, vol.83, issue.5, pp.5-6

, AT3G22540 "unknown protein, vol.83, pp.93-99

, AT1G53520 "chalcone-flavanone isomerase-related, vol.88, pp.66-72

, AT2G44800 "oxidoreductase, 2OG-Fe(II) oxygenase family protein, vol.89, pp.40-46

, AT3G17640 "leucine-rich repeat family protein, vol.89, pp.29-35

, AT1G06980 "unknown protein, vol.89, pp.28-34

, AT1G52250 "dynein light chain type 1 family protein, vol.92, pp.75-82

, AT2G27385 "unknown protein"-1,96, vol.2, pp.55-62

, AT2G21540 "SEC14 cytosolic factor, putative / phosphoglyceride transfer protein, vol.12, pp.96-105

, AT2G33330 "33 kDa secretory protein-related, pp.56-67

, ARR15 (RESPONSE REGULATOR 15); transcription regulator, AT1G74890, vol.31, issue.1, pp.70-81

, AT5G13140 "unknown protein, vol.31, pp.70-81

, AT5G35740 "glycosyl hydrolase family protein, vol.17, pp.70-81

, AT1G06360 "fatty acid desaturase family protein, pp.0-0

, AT1G23205 "invertase/pectin methylesterase inhibitor family protein, vol.55, pp.0-0

, LTP6 (Lipid transfer protein 6); lipid binding, AT3G08770, vol.57, issue.0, pp.0-0