Skip to Main content Skip to Navigation
Theses

Protéines infectieuses chez la levure Saccharomyces cerevisiae : un mal pour un bien ? Modulation de la propagation de prions de levure par le protéasome et les chaperons moléculaires durant la transition duauxique et la phase stationnaire

Abstract : “Proteinaceous infectious particles”, or prions, are self-perpetuating alternate conformations of proteins that are responsible for heritable non-Mendelian traits in mammals, filamentous fungi and yeast. On a more general note, protein misfolding and aggregation is at the origin of over forty protein folding disorders including devastating neurodegenerative diseases such as Alzheimer’s, Parkinson’s or Huntington’s diseases. The aggregated proteins responsible for these diseases (i.e. amyloid-β peptide/tau, α-synuclein and huntingtin) were shown to propagate from cell to cell in a prion-like manner. The yeast Saccharomyces cerevisiae hosts many prion or prion-like proteins, unrelated in sequence and function, which proved to be excellent models for understanding the dynamics of prion aggregation and distribution upon cell division.Sup35p and Ure2p which cause the [PSI+] and [URE3] heritable traits, respectively, stand out as the most studied and best characterized yeast prions to date. A plethora of cellular factors, mostly belonging to various molecular chaperone families, were shown to affect yeast prion formation and propagation. Clearance of protein aggregates and prion particles is however poorly understood and documented. Our laboratory showed that the 26S proteasome degrades both the soluble and prion-associated fibrillar forms of Sup35p. In the first part of my thesis, we investigated the role of the 26S proteasome in the degradation of the soluble and fibrillar forms of Ure2p. We found that, as with Sup35p, the 26S proteasome is able to degrade the soluble native Ure2p, generating an array of amyloidogenic N-terminal peptides and a C-terminal fragment which is resistant to proteolysis. The N-terminal prion domain was shown to act as a degron required for proteasomal engagement and degradation. In contrast to Sup35p, fibrillar Ure2p resisted proteasomal degradation. We expect the structural variability within prion assemblies in a cellular context to dictate their interaction with proteolytic machineries in general and the proteasome in particular.The biology of yeast prions has been mostly explored in the context of logarithmically dividing cells. In nature however, most cells are generally in a post-mitotic non-dividing quiescent state. Yet little is known about the fate and properties of prion particles upon yeast cells entry into the stationary or quiescent states and the physiological consequences of harboring these prions throughout the lifespan of yeast cells. In the second part of my thesis, we addressed this issue using the [PSI+] prion as a model. Structurally different conformers of Sup35p aggregates can lead to distinct [PSI+] strains with different prion phenotypes. We found that Sup35p prion particles undergo growth phase-dependent ultrastructural and functional changes. Indeed, the size distributions of SDS-resistant core-prion particles significantly change during growth without affecting the structural information specific to each prion strain. The infectious properties of Sup35p prion particles undergo dramatic growth phase-dependent changes. Importantly, we found that while [PSI+] has little to no effects on the growth rates of yeasts, it robustly prolongs their chronological lifespan. Furthermore, this beneficial effect can then be permanently and efficiently fixed in the cells even when [PSI+] is subsequently lost. Similar genetic fixation of [PSI+]-induced epigenetic characteristics were previously observed and suggested [PSI+] (and possibly other prions) can act as transient evolutionary capacitators.
Complete list of metadatas

Cited literature [325 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01885490
Contributor : Abes Star :  Contact
Submitted on : Tuesday, October 2, 2018 - 1:01:37 AM
Last modification on : Wednesday, October 14, 2020 - 3:46:37 AM
Long-term archiving on: : Thursday, January 3, 2019 - 12:43:02 PM

File

74378_WANG_2016_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01885490, version 1

Collections

Citation

Kai Wang. Protéines infectieuses chez la levure Saccharomyces cerevisiae : un mal pour un bien ? Modulation de la propagation de prions de levure par le protéasome et les chaperons moléculaires durant la transition duauxique et la phase stationnaire. Biochimie [q-bio.BM]. Université Paris Saclay (COmUE), 2016. Français. ⟨NNT : 2016SACLS212⟩. ⟨tel-01885490⟩

Share

Metrics

Record views

156

Files downloads

110