Skip to Main content Skip to Navigation

Neutrino physics with SoLid and SuperNEMO experiments

Abstract : Neutrinos are the most abundant fundamental particles of matter in the Universe. They were detected for the first time in 1956. Since then, several experiments have tried to unveil their mysteries. They only interact weakly so they are difficult to detect. It is known that their masses are very low and that they can oscillate between three leptonic flavours. However, several questions remain about their masses, their nature or the existence of sterile neutrinos. This thesis addresses the last two questions with two different experiments: SuperNEMO and SoLid. The goal of the SuperNEMO experiment is to understand the nature of neutrinos, whether it is its own antiparticle (Majorana particle) or not (Dirac particle). This is investigated by searching for neutrinoless double beta decay as this process is possible only if neutrinos are Majorana particles. Source foils of the double beta emitter ⁸²Se are installed at the center of the SuperNEMO demonstrator which is being assembled at the Modane Underground Laboratory. This detector is composed of a wire chamber to detect the tracks of the two electrons emitted in the decays and a calorimeter to measure their energies. Neutrinoless double beta decay measurement is very difficult because if this process exists, it is extremely rare. An important work has thus to be done to decrease backgrounds from cosmic rays or natural radioactivity. In this thesis, different backgrounds have been simulated to understand their impact on the measurement of the energy of the two electrons from ⁸²Se double beta decay. It is shown that radioactivity from photomultipliers glasses will not be negligible but it will be possible to measure it precisely in dedicated channels. Copper foils have also been simulated in the source strips to demonstrate that they can help to control efficiently the backgrounds. Following this work, it has been decided to install copper foils in addition to ⁸²Se foils. The second experiment investigated in this thesis is the SoLid experiment which is looking for the existence of sterile neutrinos. Several experimental anomalies could be explained by oscillations of reactor antineutrinos toward sterile neutrinos. The SoLid detector is looking for an oscillation signal at the Belgian BR2 reactor by measuring the antineutrino flux as a function of their energy and their traveling distance thanks to a fine segmentation. The reactor antineutrinos are detected via inverse beta decay. The antineutrino interaction signal is thus the emission in coincidence of a positron and a neutron. Positrons are detected by plastic scintillator cubes in PVT and neutrons are detected by ⁶LiF:ZnS sheets placed on 2 faces of each cube. A first prototype, SM1, has demonstrated the advantages of this technology, particularly to discriminate backgrounds. A part of the work of this thesis consisted in developing and exploiting a test bench to optimize the light collection of the detector in order to improve the energy resolution of the SoLid detector. By testing different materials and configurations, the test bench measurement demonstrated that an energy resolution of 14 % can be achieved for SoLid phase I, while it was 20 % for the SM1 prototype. The improvements proposed have been taken into account for the SoLid detector construction that was achieved in 2017. An analysis of the first detector data is also presented to show SoLid sensitivity to reactor antineutrino detection.
Complete list of metadatas

Cited literature [119 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, October 1, 2018 - 5:09:08 PM
Last modification on : Wednesday, October 14, 2020 - 4:00:19 AM
Long-term archiving on: : Wednesday, January 2, 2019 - 3:05:13 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01885274, version 1



Delphine Boursette. Neutrino physics with SoLid and SuperNEMO experiments. High Energy Physics - Experiment [hep-ex]. Université Paris-Saclay, 2018. English. ⟨NNT : 2018SACLS272⟩. ⟨tel-01885274⟩



Record views


Files downloads