F. Fercoq, E. Remion, S. Frohberger, N. Vallarino, A. Hoerauf et al., Microfilaremia in Litomosoides sigmodontis infected BALB/c mice is associated with lung pathology

G. Karadjian, F. Fercoq, N. Pionnier, N. Vallarino-lhermitte, E. Lefoulon et al., Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung, PLOS
URL : https://hal.archives-ouvertes.fr/hal-01607058

N. Pionnier, N. Brotin, G. Karadjian, P. Hemon, F. Gaudin-nomé et al., Neutropenic mice provide insight into the role of skin-Infiltrating Neutrophils in the host protective Immunity against Filarial Infective Larvae, Congrès: Presentations orales, 2016.

F. Fercoq, G. Karadjian, N. Pionnier, N. Vallarino-lhermitte, E. Lefoulon et al., New insights into filarial biology : What Litomosoides sigmodontis model has taught us about larval migration into lymphatics and lungs?, 26th International Conference of the World Association for the Advancement of Veterinary Parasitology, 2017.

F. Fercoq, G. Karadjian, N. Pionnier, N. Vallarino-lhermitte, S. Specht et al., Filarial infection and pulmonary inflammation in the Litomosoides sigmodontis murine model of filariasis. EMOP XII-The European Multicolloquium of Parasitology, pp.20-24, 2016.

G. Karadjian, F. Fercoq, N. Pionnier, N. Vallarino-lhermitte, S. Specht et al., Migration des stades infestant de la filaire murine Litomosoides sigmodontiset réponse inflammatoire associée chez la souris BALB/c. Congrès de la Société Française de Parasitologie. Grenoble. 23-24 Mars, 2016.

G. Karadjian, F. Fercoq, N. Pionnier, N. Vallarino-lhermitte, S. Specht et al., Litomosoides sigmodontis filarial infective larvae migrate through the lungs increasing S100A9 in neutrophils, Molecular and Cellular Biology of Helminth Parasites IX, 2015.

G. Karadjian, F. Fercoq, N. Vallarino-lhermitte, S. Specht, L. Carlin et al., Unravelling the filarial larvae migrations : lessons from Litomosoides sigmodontis mouse model, Molecular and Cellular Biology of Helminth Parasites IX, 2015.

, Annexe 2. Décollement des cellules mésothéliales de la plèvre viscérale

, Des souris BALB/c ont été infestées avec 40 L3 de L. sigmodontis par voie sous-cutanée. 70 jours après infection, les poumons ont été récupérés. (A) Observation en microscopie électronique à balayage du mésothélium d'une souris Mf neg montrant des zones desquamées

O. Bain, Y. Mutafchiev, and K. Junker, Order Spirurida, 2014.

E. Lefoulon, O. Bain, J. Bourret, K. Junker, R. Guerrero et al., Shaking the Tree: Multi-locus Sequence Typing Usurps Current Onchocercid (Filarial Nematode) Phylogeny, PLoS Negl Trop Dis, vol.9, p.4233, 2015.

O. Bain, S. Babayan, J. Gomes, G. Rojas, and R. Guerrero, First account on the larval biology of a Litomosoides filaria, Parassitologia, vol.44, pp.89-92, 2002.

R. C. Anderson, Nematode parasites of vertebrates : their development and transmission, p.650, 2000.

S. Uni, M. Udin, A. S. Agatsuma, T. Saijuntha, W. Junker et al., Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia, vol.10, p.194, 2017.

D. L. Lee, The biology of nematodes, 2002.

B. G. Chitwood and M. B. Chitwood, An introduction to nematology. Section I. Anatomy, 1950.

O. Bain and A. G. Chabaud, The mechanism controlling the crossing of the vector's stomach wall by microfilariae, 1975.

, C R Acad Sci Hebd Seances Acad Sci D, vol.281, pp.1199-1202

A. Nieguitsila, R. Frutos, C. Moulia, N. Lhermitte-vallarino, O. Bain et al., Fitness cost of Litomosoides sigmodontis filarial infection in mite vectors; implications of infected haematophagous arthropod excretory products in host-vector interactions, Biomed Res Int, p.584105, 2013.

O. Bain, S. Wanji, P. N. Vuong, P. Marechal, L. Goff et al., Larval biology of six filariae of the sub-family Onchocercinae in a vertebrate host, Parasite, vol.1, pp.241-254, 1994.

P. Wenk, , 1967.

, Z Parasitenkd, vol.28, pp.240-263

E. Lefoulon, O. Bain, B. L. Makepeace, C. Haese, S. Uni et al., Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts, PeerJ, vol.4, p.1840, 2016.

N. Lo, M. Casiraghi, E. Salati, C. Bazzocchi, and C. Bandi, How many wolbachia supergroups exist?, Mol Biol Evol, vol.19, pp.341-346, 2002.

F. Landmann, J. M. Foster, B. Slatko, and W. Sullivan, Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues, PLoS Negl Trop Dis, vol.4, p.758, 2010.

K. Fischer, W. L. Beatty, D. Jiang, G. J. Weil, and P. U. Fischer, Tissue and stage-specific distribution of Wolbachia in Brugia malayi, PLoS Negl Trop Dis, vol.5, p.1174, 2011.

F. Landmann, O. Bain, C. Martin, S. Uni, M. J. Taylor et al., Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes, Biol Open, vol.1, pp.536-547, 2012.

T. Bouchery, E. Lefoulon, G. Karadjian, A. Nieguitsila, and C. Martin, The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis, Clin Microbiol Infect, vol.19, pp.131-140, 2013.

M. J. Taylor, A. Hoerauf, and M. Bockarie, Lymphatic filariasis and onchocerciasis, Lancet, vol.376, pp.1175-1185, 2010.
DOI : 10.1016/s0140-6736(10)60586-7

F. Landmann, D. Voronin, W. Sullivan, and M. J. Taylor, Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes, Plos Pathogens, vol.7, p.1002351, 2011.

F. Landmann, J. M. Foster, M. L. Michalski, B. E. Slatko, and W. Sullivan, Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment, PLoS Negl Trop Dis, vol.8, p.3096, 2014.

M. P. Huebner, L. E. Layland, and A. Hoerauf, Lymphatic and Tissue Filariasis, Helminth Infections and their Impact on Global Public Health, pp.367-409, 2014.

P. E. Simonsen, A. W. Onapa, and S. M. Asio, Mansonella perstans filariasis in Africa, Acta Trop, vol.120, 2011.

H. G. Zoure, S. Wanji, M. Noma, U. V. Amazigo, P. J. Diggle et al., The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA), PLoS Negl Trop Dis, vol.5, p.1210, 2011.

N. F. Lima, V. Aybar, C. A. , D. Juri, M. J. Ferreira et al., Mansonella ozzardi: a neglected New World filarial nematode, Pathog Glob Health, vol.110, pp.97-107, 2016.

, Global programme to eliminate lymphatic filariasis: progress report, Wkly Epidemiol Rec, vol.91, pp.441-455, 2015.

K. D. Ramaiah and E. A. Ottesen, Progress and impact of 13 years of the global programme to eliminate lymphatic filariasis on reducing the burden of filarial disease, PLoS Negl Trop Dis, vol.8, p.3319, 2014.

, Progress report on the elimination of human onchocerciasis, Wkly Epidemiol Rec, vol.91, pp.505-514, 2016.

, Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.388, pp.1545-1602, 2015.

M. G. Basanez, S. D. Pion, T. S. Churcher, L. P. Breitling, M. P. Little et al., River blindness: a success story under threat, PLoS Med, vol.3, p.371, 2006.

R. A. Cheke, Factors affecting onchocerciasis transmission: lessons for infection control, Expert Rev Anti Infect Ther, vol.15, pp.377-386, 2017.

W. G. Metzger and B. Mordmuller, Loa loa-does it deserve to be neglected?, Lancet Infect Dis, vol.14, pp.353-357, 2014.
DOI : 10.1016/s1473-3099(13)70263-9

P. J. Diggle, M. C. Thomson, O. F. Christensen, B. Rowlingson, V. Obsomer et al., Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty, Ann Trop Med Parasitol, vol.101, pp.499-509, 2007.

D. H. Molyneux, A. Hopkins, M. H. Bradley, and L. A. Kelly-hope, Multidimensional complexities of filariasis control in an era of large-scale mass drug administration programmes: a can of worms, Parasit Vectors, vol.7, p.363, 2014.

J. P. Akue, D. Nkoghe, C. Padilla, G. Moussavou, H. Moukana et al., Epidemiology of concomitant infection due to Loa loa and Mansonella perstans in Gabon, PLoS Negl Trop Dis, vol.5, p.1329, 2011.

S. D. Pion, P. Clarke, J. A. Filipe, J. Kamgno, J. Gardon et al., Co-infection with Onchocerca volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting, Parasitology, vol.132, pp.843-854, 2006.

E. Ferri, O. Bain, M. Barbuto, C. Martin, N. Lo et al., New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species, PLoS One, vol.6, p.20843, 2011.

P. B. Keiser, Y. Coulibaly, J. Kubofcik, A. A. Diallo, A. D. Klion et al., Molecular identification of Wolbachia from the filarial nematode Mansonella perstans, Mol Biochem Parasitol, vol.160, pp.123-128, 2008.

C. Gehringer, A. Kreidenweiss, A. Flamen, J. S. Antony, M. P. Grobusch et al., Molecular evidence of Wolbachia endosymbiosis in Mansonella perstans in Gabon, Central Africa, J Infect Dis, vol.210, pp.1633-1638, 2014.

O. Bain, Y. Mutafchiev, K. Junker, R. Guerrero, C. Martin et al., Review of the genus Mansonella Faust, 1929 sensu lato (Nematoda: Onchocercidae), with descriptions of a new subgenus and a new subspecies, Zootaxa, vol.3918, pp.151-193, 2015.

S. Wanji, D. B. Tayong, L. E. Layland, D. Poutcheu, F. R. Ndongmo et al., Update on the distribution of Mansonella perstans in the southern part of Cameroon: influence of ecological factors and mass drug administration with ivermectin, Parasit Vectors, vol.9, p.311, 2016.

L. B. Debrah, N. Nausch, V. S. Opoku, W. Owusu, Y. Mubarik et al., Epidemiology of Mansonella perstans in the middle belt of Ghana, Parasit Vectors, vol.10, p.15, 2017.

S. Manguin, M. J. Bangs, J. Pothikasikorn, and T. Chareonviriyaphap, Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes, Infect Genet Evol, vol.10, pp.159-177, 2010.

S. Chakraborty, G. Manokaran, D. Zawieja, and M. Muthuchamy, Lymphatic Filariasis: Perspectives on Lymphatic Remodeling and Contractile Dysfunction in Filarial Disease Pathogenesis, Microcirculation, vol.20, pp.349-364, 2013.

R. K. Shenoy, T. K. Suma, V. Kumaraswami, S. Padma, N. Rahmah et al., Doppler ultrasonography reveals adult-worm nests in the lymph vessels of children with brugian filariasis, Ann Trop Med Parasitol, vol.101, pp.173-180, 2007.

S. Sucharit, C. Harinasuta, and W. Choochote, Experimental transmission of subperiodic Wuchereria bancrofti to the leaf monkey (Presbytis melalophos), and its periodicity, Am J Trop Med Hyg, vol.31, pp.599-601, 1982.

C. Harinasuta, S. Sucharit, and W. Choochote, The susceptibility of leaf monkeys to bancroftian filariasis in Thailand, Southeast Asian J Trop Med Public Health, vol.12, pp.581-589, 1981.

J. R. Palmieri, D. H. Connor, . Purnomo, and H. A. Marwoto, Bancroftian filariasis. Wuchereria bancrofti infection in the silvered leaf monkey (Presbytis cristatus), Am J Pathol, vol.112, pp.383-386, 1983.

A. M. Khan, P. Dutta, S. Das, A. K. Pathak, P. Sarmah et al., Microfilarial periodicity of Wuchereria bancrofti in Assam, Northeast India, J Vector Borne Dis, vol.52, pp.208-212, 2015.

J. P. Thurston, The periodicity of microfilariae. I. The distribution of microfilariae in the body, Trans R Soc Trop Med Hyg, vol.45, pp.307-328, 1951.

J. H. Schroeder, D. Mccarthy, T. Szestak, D. A. Cook, M. J. Taylor et al., Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner, PLoS Negl Trop Dis, vol.11, p.5592, 2017.

R. J. Post, E. Onyenwe, S. A. Somiari, H. B. Mafuyai, J. L. Crainey et al., A guide to the Simulium damnosum complex (Diptera: Simuliidae) in Nigeria, with a cytotaxonomic key for the identification of the sibling species, Ann Trop Med Parasitol, vol.105, pp.277-297, 2011.

A. P. Plaisier, G. J. Van-oortmarssen, J. Remme, and J. D. Habbema, The reproductive lifespan of Onchocerca volvulus in West African savanna, Acta Trop, vol.48, pp.271-284, 1991.

T. Attout, A. Hoerauf, G. Denece, A. Y. Debrah, Y. Marfo-debrekyei et al., Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human onchocerca nodule, PLoS One, vol.4, p.8234, 2009.

P. N. Vuong, O. Bain, J. Cabaret, G. Petit, J. Prod'hon et al., Forest and savanna onchocerciasis: comparative morphometric histopathology of skin lesions, Trop Med Parasitol, vol.39, pp.105-110, 1988.

J. E. Allen, O. Adjei, O. Bain, A. Hoerauf, W. H. Hoffmann et al., Of mice, cattle, and humans: the immunology and treatment of river blindness, PLoS Negl Trop Dis, vol.2, p.217, 2008.

M. Banla, S. Tchalim, P. K. Karabou, R. G. Gantin, A. I. Agba et al., Sustainable control of onchocerciasis: ocular pathology in onchocerciasis patients treated annually with ivermectin for 23 years: a cohort study, PLoS One, vol.9, p.98411, 2014.

F. Tamarozzi, A. Halliday, K. Gentil, A. Hoerauf, E. Pearlman et al., Onchocerciasis: the role of Wolbachia bacterial endosymbionts in parasite biology, disease pathogenesis, and treatment, Clin Microbiol Rev, vol.24, pp.459-468, 2011.

O. Bain, S. Wanji, P. Enyong, G. Petit, F. Noireau et al., New features on the moults and morphogenesis of the human filaria Loa loa by using rodent hosts consequences, Parasite, vol.5, pp.37-46, 1998.

L. K. Eveland, V. Yermakov, and M. Kenney, Loa loa infection without microfilaraemia, Trans R Soc Trop Med Hyg, vol.69, pp.354-355, 1975.

T. C. Orihel and M. L. Eberhard, Loa loa: development and course of patency in experimentally-infected primates, Trop Med Parasitol, vol.36, pp.215-224, 1985.

F. Hawking, P. Moore, K. Gammage, and M. J. Worms, Periodicity of microfilariae. XII. The effect of variations in host body temperature on the cycle of Loa loa, Monnigofilaria setariosa, Dirofilria immitis and other filariae, Trans R Soc Trop Med Hyg, vol.61, pp.674-683, 1967.

M. Boussinesq, Loiasis. Ann Trop Med Parasitol, vol.100, pp.715-731, 2006.

E. Peel and M. Chardome, Sur des Filaridés des Chimpanzés Pan paniscus et Pan satyrus au Congo Belge, Ann Soc Belg Med Trop, pp.117-156, 1946.

R. T. Habermann and R. W. Menges, Filariasis (Acanthocheilonema perstans) in a gorilla, Vet Med Small Anim Clin, vol.63, pp.1040-1043, 1968.

B. O. Duke, The uptake of the microfilariae of Acanthocheilonema streptocerca by Culicoides grahamii, and their subsequent development, Ann Trop Med Parasitol, vol.48, pp.416-420, 1954.

M. L. Cerqueira, Sôbre a transmissao da Mansonella ozzardi, Journal Brasileiro de Medicina, pp.900-914, 1959.

T. C. Orihel, R. C. Lowrie, J. Eberhard, M. L. Raccurt, C. Kozek et al., Susceptibility of laboratory primates to infection with Mansonella ozzardi from man, Am J Trop Med Hyg, vol.30, pp.790-794, 1981.

P. Manson, The filaria Sanguinis hominis major and minor, two new species of haematozoa, The Lancet, vol.137, pp.4-8, 1891.

S. M. Asio, P. E. Simonsen, and A. W. Onapa, Mansonella perstans filariasis in Uganda: patterns of microfilaraemia and clinical manifestations in two endemic communities, Trans R Soc Trop Med Hyg, vol.103, pp.266-273, 2009.

G. Dreyer, J. Noroes, J. Figueredo-silva, and W. F. Piessens, Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective, Parasitol Today, vol.16, pp.544-548, 2000.

K. M. Cahill and R. L. Kaiser, Lymphangiography in Bancroftian Filariasis, Trans R Soc Trop Med Hyg, vol.58, pp.356-362, 1964.

R. K. Shenoy, Clinical and pathological aspects of filarial lymphedema and its management, Korean J Parasitol, vol.46, pp.119-125, 2008.

K. M. Pfarr, A. Y. Debrah, S. Specht, and A. Hoerauf, Filariasis and lymphoedema, Parasite Immunol, vol.31, pp.664-672, 2009.

D. O. Freedman, T. Bui, D. Almeida-filho, P. J. Braga, C. et al., Lymphoscintigraphic assessment of the effect of diethylcarbamazine treatment on lymphatic damage in human bancroftian filariasis, Am J Trop Med Hyg, vol.52, pp.258-261, 1995.

A. Y. Debrah, S. Mand, M. R. Toliat, Y. Marfo-debrekyei, L. Batsa et al., Plasma vascular endothelial growth Factor-A (VEGF-A) and VEGF-A gene polymorphism are associated with hydrocele development in lymphatic filariasis, Am J Trop Med Hyg, vol.77, pp.601-608, 2007.

J. Noroes, D. Addiss, A. Cedenho, J. Figueredo-silva, G. Lima et al., Pathogenesis of filarial hydrocele: risk associated with intrascrotal nodules caused by death of adult Wuchereria bancrofti, Trans R Soc Trop Med Hyg, vol.97, pp.561-566, 2003.

S. Babu and T. B. Nutman, Immunopathogenesis of lymphatic filarial disease, Seminars in Immunopathology, vol.34, pp.847-861, 2012.

F. E. Udwadia and V. V. Joshi, A Study of Tropical Eosinophilia, Thorax, vol.19, pp.548-554, 1964.

T. B. Nutman, V. K. Vijayan, P. Pinkston, V. Kumaraswami, C. Steel et al., Tropical pulmonary eosinophilia: analysis of antifilarial antibody localized to the lung, J Infect Dis, vol.160, pp.1042-1050, 1989.

V. K. Vijayan, Tropical pulmonary eosinophilia: pathogenesis, diagnosis and management, Curr Opin Pulm Med, vol.13, pp.428-433, 2007.

J. K. Webb, C. K. Job, and E. W. Gault, Tropical eosinophilia: demonstration of microfilariae in lung, liver, and lymphnodes, Lancet, vol.1, pp.835-842, 1960.

P. Sharma, A. Sharma, A. L. Vishwakarma, P. K. Agnihotri, S. Sharma et al., Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages, J Leukoc Biol, vol.99, pp.619-628, 2016.

L. R. Hall, R. K. Mehlotra, A. W. Higgins, M. A. Haxhiu, and E. Pearlman, An essential role for interleukin-5 and eosinophils in helminth-induced airway hyperresponsiveness, Infect Immun, vol.66, pp.4425-4430, 1998.

R. K. Mehlotra, L. R. Hall, A. W. Higgins, I. A. Dreshaj, M. A. Haxhiu et al., Interleukin-12 suppresses filaria-induced pulmonary eosinophilia, deposition of major basic protein and airway hyperresponsiveness, Parasite Immunol, vol.20, pp.455-462, 1998.

R. K. Mehlotra, L. R. Hall, M. A. Haxhiu, and E. Pearlman, Reciprocal immunomodulatory effects of gamma interferon and interleukin-4 on filaria-induced airway hyperresponsiveness, Infect Immun, vol.69, pp.1463-1468, 2001.

E. Lobos, A. Ondo, E. A. Ottesen, and T. B. Nutman, Biochemical and immunologic characterization of a major IgE-inducing filarial antigen of Brugia malayi and implications for the pathogenesis of tropical pulmonary eosinophilia, J Immunol, vol.149, pp.3029-3034, 1992.

E. Lobos, R. Zahn, N. Weiss, and T. B. Nutman, A major allergen of lymphatic filarial nematodes is a parasite homolog of the gamma-glutamyl transpeptidase, Mol Med, vol.2, pp.712-724, 1996.

A. S. Gounni, K. Spanel-borowski, M. Palacios, C. Heusser, S. Moncada et al., Pulmonary inflammation induced by a recombinant Brugia malayi gamma-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses, Mol Med, vol.7, pp.344-354, 2001.

E. Lobos, T. B. Nutman, J. S. Hothersall, and S. Moncada, Elevated immunoglobulin E against recombinant Brugia malayi gamma-glutamyl transpeptidase in patients with bancroftian filariasis: association with tropical pulmonary eosinophilia or putative immunity, Infect Immun, vol.71, pp.747-753, 2003.

R. C. Collins, R. Lujan, H. Figueroa, and C. C. Campbell, Early formation of the nodule in Guatemalan onchocerciasis, Am J Trop Med Hyg, vol.31, pp.267-269, 1982.

R. M. Parkhouse, M. Bofill, A. Gomez-priego, and G. Janossy, Human macrophages and T-lymphocyte subsets infiltrating nodules of Onchocerca volvulus, Clin Exp Immunol, vol.62, pp.13-18, 1985.

G. Wildenburg, S. Korten, and D. W. Buttner, Mast cell distribution in nodules of Onchocerca volvulus from untreated patients with generalized onchocerciasis, Parasitology, vol.116, pp.257-268, 1998.

N. W. Brattig, D. W. Buttner, and A. Hoerauf, Neutrophil accumulation around Onchocerca worms and chemotaxis of neutrophils are dependent on Wolbachia endobacteria, Microbes Infect, vol.3, pp.439-446, 2001.

P. E. Simonsen, A. Hoerauf, A. Fischer, and G. Weil, Manson's Tropical Diseases, pp.737-765, 2013.

D. W. Buttner, G. Von-laer, E. Mannweiler, and M. Buttner, Clinical, parasitological and serological studies on onchocerciasis in the Yemen Arab Republic, Tropenmed Parasitol, vol.33, pp.201-212, 1982.

W. E. Kershaw, B. O. Duke, and F. H. Budden, Distribution of microfilariae of O. volvulus in the skin; its relation to the skin changes and to eye lesions and blindness, Br Med J, vol.2, pp.724-729, 1954.

B. O. Duke, The population dynamics of Onchocerca volvulus in the human host, Trop Med Parasitol, vol.44, pp.61-68, 1993.

J. L. Crainey, J. F. Medeiros, C. Pessoa, F. A. , B. Luz et al., , pp.383-403, 2017.

N. W. Brattig, Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria, Microbes Infect, vol.6, pp.113-128, 2004.

C. Timmann, R. S. Abraha, C. Hamelmann, D. W. Buttner, B. Lepping et al., Cutaneous pathology in onchocerciasis associated with pronounced systemic T-helper 2-type responses to Onchocerca volvulus, Br J Dermatol, vol.149, pp.782-787, 2003.

M. M. Ali, O. Z. Baraka, S. I. Abdelrahman, S. M. Sulaiman, J. F. Williams et al., Immune responses directed against microfilariae correlate with severity of clinical onchodermatitis and treatment history, J Infect Dis, vol.187, pp.714-717, 2003.

S. Korten, A. Hoerauf, J. T. Kaifi, and D. W. Buttner, Low levels of transforming growth factor-beta (TGF-beta) and reduced suppression of Th2-mediated inflammation in hyperreactive human onchocerciasis, Parasitology, vol.138, pp.35-45, 2011.

J. Satoguina, M. Mempel, J. Larbi, M. Badusche, C. Loliger et al., Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis), Microbes Infect, vol.4, pp.1291-1300, 2002.

I. Petralanda and W. F. Piessens, Pathogenesis of onchocercal dermatitis: possible role of parasite proteases and autoantibodies to extracellular matrix proteins, Exp Parasitol, vol.79, pp.177-186, 1994.

A. Haffner, A. Z. Guilavogui, F. W. Tischendorf, and N. W. Brattig, Onchocerca volvulus: microfilariae secrete elastinolytic and males nonelastinolytic matrix-degrading serine and metalloproteases, Exp Parasitol, vol.90, pp.26-33, 1998.

G. Katawa, L. E. Layland, A. Y. Debrah, C. Von-horn, L. Batsa et al., Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells, PLoS Negl Trop Dis, vol.9, p.3414, 2015.

M. T. Rubio-de-kromer, M. Garza, C. E. Brattig, and N. W. , Differences in eosinophil and neutrophil chemotactic responses in sowda and generalized form of onchocerciasis, Acta Trop, vol.60, pp.21-33, 1995.

A. Hoerauf, K. Pfarr, S. Mand, A. Y. Debrah, and S. Specht, Filariasis in Africa-treatment challenges and prospects, Clin Microbiol Infect, vol.17, pp.977-985, 2011.

I. Gillette-ferguson, K. Daehnel, A. G. Hise, Y. Sun, E. Carlson et al., Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis, Infect Immun, vol.75, pp.5908-5915, 2007.

K. Gentil and E. Pearlman, Gamma interferon and interleukin-1 receptor 1 regulate neutrophil recruitment to the corneal stroma in a murine model of Onchocerca volvulus keratitis, Infect Immun, vol.77, pp.1606-1612, 2009.

A. Abiose, Onchocercal eye disease and the impact of Mectizan treatment, Ann Trop Med Parasitol, vol.92, pp.11-22, 1998.

A. Saint-andre, N. M. Blackwell, L. R. Hall, A. Hoerauf, N. W. Brattig et al., The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness, Science, vol.295, pp.1892-1895, 2002.

E. Pearlman and I. Gillette-ferguson, Onchocerca volvulus, Wolbachia and river blindness, Chem Immunol Allergy, vol.92, pp.254-265, 2007.

L. R. Hall, E. Diaconu, R. Patel, and E. Pearlman, CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness), J Immunol, vol.166, pp.4035-4041, 2001.

S. Pion and C. Chesnais, Loiasis, 2017.

D. W. Buttner, S. Wanji, C. Bazzocchi, O. Bain, and P. Fischer, Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa, Filaria J, vol.2, p.10, 2003.

D. M. Penafiel-freire and M. Herranz-aguirre, Loiasis, a Subconjunctival Manifestation, J Pediatr, 2017.

F. Varenne, J. Fillaux, M. Porterie, J. Soler, M. Cassagne et al., , 2016.

, J Fr Ophtalmol, vol.39, pp.193-194

D. Mandal, D. Roy, D. K. Bera, and B. Manna, Occurrence of gravid Loa loa in subconjunctival space of man: a case report from West Bengal, India. J Parasit Dis, vol.37, pp.52-55, 2013.

F. Gobbi, C. Postiglione, A. Angheben, S. Marocco, G. Monteiro et al., Imported loiasis in Italy: an analysis of 100 cases, Travel Med Infect Dis, vol.12, pp.713-717, 2014.

J. A. Herrick, S. Metenou, M. A. Makiya, C. A. Taylar-williams, M. A. Law et al., Eosinophil-associated processes underlie differences in clinical presentation of loiasis between temporary residents and those indigenous to Loaendemic areas, Clin Infect Dis, vol.60, pp.55-63, 2015.

S. Ali, M. Fisher, and G. Juckett, The African eye worm: a case report and review, J Travel Med, vol.15, pp.50-52, 2008.

T. B. Nutman, K. D. Miller, M. Mulligan, and E. A. Ottesen, Loa loa infection in temporary residents of endemic regions: recognition of a hyperresponsive syndrome with characteristic clinical manifestations, J Infect Dis, vol.154, pp.10-18, 1986.

D. Nzolo, F. Anto, S. Hailemariam, D. Bakajika, D. Muteba et al., Central and Peripheral Nervous System Disorders Following Ivermectin Mass Administration: A Descriptive Study Based on the Democratic Republic of Congo Pharmacovigilance System, Drugs Real World Outcomes, 2017.

D. Bhalla, M. Dumas, and P. M. Preux, Neurological manifestations of filarial infections, Handb Clin Neurol, vol.114, pp.235-242, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925647

J. Kamgno, M. Boussinesq, F. Labrousse, B. Nkegoum, B. I. Thylefors et al., Encephalopathy after ivermectin treatment in a patient infected with Loa loa and Plasmodium spp, Am J Trop Med Hyg, vol.78, pp.546-551, 2008.

M. Boussinesq, J. Gardon, N. Gardon-wendel, and J. P. Chippaux, Clinical picture, epidemiology and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon, Filaria J, vol.2, 2003.

C. Mackenzie, T. Geary, R. Prichard, and M. Boussinesq, Where next with Loa loa encephalopathy? Data are badly needed, Trends Parasitol, vol.23, pp.237-238, 2007.

D. F. Cully, D. K. Vassilatis, K. K. Liu, P. S. Paress, L. H. Van-der-ploeg et al., Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans, Nature, vol.371, pp.707-711, 1994.

M. Ducorps, N. Gardon-wendel, S. Ranque, W. Ndong, M. Boussinesq et al., , 1995.

, Bull Soc Pathol Exot, vol.88, pp.105-112

M. Mackerras, Filarial parasites (Nematoda : Filarioidea) of Australian animals, Australian Journal of Zoology, vol.10, pp.400-457, 1962.

T. Bhaskara-menon, B. Ramamurti, S. Rao, and D. , Lizard filariasis. an experimental study, Trans R Soc Trop Med Hyg, vol.37, pp.373-386, 1944.

F. K. Sevimli, E. Kozan, A. Bulbul, F. M. Birdane, M. Kose et al., Dirofilaria immitis infection in dogs: unusually located and unusual findings, Parasitol Res, vol.101, pp.1487-1494, 2007.
DOI : 10.1007/s00436-007-0665-x

F. Simon, M. Siles-lucas, R. Morchon, J. Gonzalez-miguel, I. Mellado et al., Human and animal dirofilariasis: the emergence of a zoonotic mosaic, Clin Microbiol Rev, vol.25, pp.507-544, 2012.

M. D. Sonin, Filariata of animals and man and diseases caused by them, 1968.

M. D. Sonin, Filariata of animals and man and diseases caused by them, 1968.

L. N. Measures, J. Gosselin, and E. Bergeron, Heartworm, Acanthocheilonema spirocauda (Leidy, 1858), infections in Canadian phocid seals, Canadian Journal of Fisheries and Aquatic Sciences, vol.54, pp.842-846, 1996.
DOI : 10.1139/f96-342

O. Bain and R. Guerrero, Bisbalia vossi n. g., n. sp. (Nematoda: Onchocercidae), a filarial worm from a geomyoid rodent, Heteromys anomalus, in Venezuela, Syst Parasitol, vol.54, pp.145-151, 2003.

L. R. Ash and J. M. Riley, Development of Brugia pahangi in the jird, Meriones unguiculatus, with notes on infections in other rodents, J Parasitol, vol.56, pp.962-968, 1970.

A. L. Vincent, S. P. Frommes, and L. R. Ash, Brugia malayi, Brugia pahangi, and Brugia patei: pulmonary pathology in jirds, Meriones unguiculatus, Exp Parasitol, vol.40, pp.330-354, 1976.
DOI : 10.1016/0014-4894(76)90100-4

A. S. Dissanaike and D. C. Paramananthan, On Brugia (Brugiella subgen. nov.) buckelyi n.sp., from the heart and blood vessels of the Ceylon hare, J Helminthol, vol.35, pp.209-220, 1961.

R. C. Anderson and R. S. Freeman, Cardiofilaria inornata (Anderson, 1956) from Woodcock with a Review of Cardiofilaria and Related Genera (Nematoda: Filarioidea), Transactions of the American Microscopical Society, vol.88, pp.68-79, 1969.
DOI : 10.2307/3224660

A. Sazmand, M. H. Tafti, S. Hekmatimoghaddam, and I. Moobedi, Dipetalonema evansi infection in camels of Iran's central area, Pak J Biol Sci, vol.16, pp.647-650, 2013.
DOI : 10.3923/pjbs.2013.647.650

URL : https://scialert.net/qredirect.php?doi=pjbs.2013.647.650&linkid=pdf

O. Bain, G. Petit, and S. Berteaux, Description of two new species and infective stages of filariae from the genus Litomosoides, 1980.

, Ann Parasitol Hum Comp, vol.55, pp.225-237

J. Aggarwal, K. Kapila, A. Gaur, and J. P. Wali, Bancroftian filarial pleural effusion, Postgrad Med J, vol.69, pp.869-870, 1993.

R. C. Anderson, Study of two filarioid nematodes,Chandlerella chitwoodae n.sp. From Padda oryzivora (L.) and Protofilaria furcata Chandler, Canadian Journal of Zoology, vol.39, pp.317-323, 1929.

M. D. Sonin, Filariata of animals and man and diseases caused by them, 1966.

S. W. Mullin and S. Balasingam, Dunnifilaria ramachandrani gen. n., sp. n. (Nematoda: Filarioidea) from the Long-Tailed Giant Rat (Rattus sabanus) in Malaysia, The Helminthological Society of Washington, vol.40, pp.47-49, 1973.

J. M. Pletcher, J. Boomker, V. De-vos, and C. H. Gardiner, Lesions in the Heart and Lungs of Greater Kudu (Tragelaphus strepsiceros) Caused by Cordophilus sagittus (Nematoda: Filarioidea), Journal of Zoo and Wildlife Medicine, vol.20, pp.465-470, 1989.

C. Bartlett and R. C. Anderson, Paronchocerca struthionus n.sp. (Nematoda: Filarioidea) from ostriches (Struthio camelus), with a redescription of Paronchocerca ciconiarum Peters, 1936 and a review of the genus, Canadian Journal of Zoology, vol.64, pp.2480-2491, 1986.

C. Bartlett and R. C. Anderson, Ornithofilaria algonquiensis n. sp. From Hirundo erythrogaster with a revision of the genera Paramicipsella Chow, Canadian Journal of Zoology, vol.33, pp.107-112, 1937.

C. P. Hibler, New Species of Onchocercidae (Nematoda: Filarioidea) from Pica Pica Hudsonia (Sabine, 1823), J Parasitol, vol.50, pp.667-674, 1964.

C. Bartlett and R. C. Anderson, On the filarioid nematodes (Splendidofilaria spp.) from the pulmonary arteries of birds, Canadian Journal of Zoology, vol.63, pp.2373-2377, 1985.

M. D. Sonin, Filariata of animals and man and diseases caused by them, 1977.

F. Dantas-torres and D. Otranto, Dirofilariosis in the Americas: a more virulent Dirofilaria immitis?, Parasit Vectors, vol.6, p.288, 2013.

G. Cancrini, R. Romi, S. Gabrielli, L. Toma, M. Dip et al., First finding of Dirofilaria repens in a natural population of Aedes albopictus, Med Vet Entomol, vol.17, pp.448-451, 2003.

D. Otranto, F. Dantas-torres, E. Brianti, D. Traversa, D. Petric et al., Vector-borne helminths of dogs and humans in Europe, Parasit Vectors, vol.6, p.16, 2013.

A. Haro, S. Tamiya, and A. Nagashima, A rare case of human pulmonary dirofilariasis with a growing pulmonary nodule after migrating infiltration shadows, mimicking primary lung carcinoma, Int J Surg Case Rep, vol.22, pp.8-11, 2016.

S. Kume and S. Itagaki, On the life-cycle of Dirofilaria immitis in the dog as the final host, British Veterinary Journal, pp.16-24, 1955.

T. C. Orihel, Morphology of the larval stages of Dirofilaria immitis in the dog, J Parasitol, vol.47, pp.251-262, 1961.

T. Kotani and K. G. Powers, Developmental stages of Dirofilaria immitis in the dog, Am J Vet Res, vol.43, pp.2199-2206, 1982.

P. Supakorndej, J. W. Mccall, and J. J. Jun, Early migration and development of Dirofilaria immitis in the ferret, Mustela putorius furo, J Parasitol, vol.80, pp.237-244, 1994.

M. Hayasaki, Re-migration of fifth-stage juvenile Dirofilaria immitis into pulmonary arteries after subcutaneous transplantation in dogs, cats, and rabbits, J Parasitol, vol.82, pp.835-837, 1996.

S. Wanji, J. Cabaret, J. C. Gantier, N. Bonnand, and O. Bain, The fate of the filaria Monanema martini in two rodent hosts: recovery rate, migration, and localization, Ann Parasitol Hum Comp, vol.65, pp.80-88, 1990.

O. Bain, S. Wanji, P. N. Vuong, G. Petit, B. Breton et al., Cardio-pulmonary location of lymphatic filariae, Lymphology, vol.27, pp.385-388, 1994.

D. D. Bowman and C. E. Atkins, Heartworm biology, treatment, and control, Vet Clin North Am Small Anim Pract, vol.39, pp.1127-1158, 2009.

K. Suresh and L. A. Shimoda, Lung Circulation. Compr Physiol, vol.6, pp.897-943, 2016.

J. F. Munnell, J. S. Weldon, R. E. Lewis, D. E. Thrall, and J. W. Mccall, Intimal lesions of the pulmonary artery in dogs with experimental dirofilariasis, Am J Vet Res, vol.41, pp.1108-1112, 1980.

R. G. Schaub, C. A. Rawlings, and J. C. Keith, Platelet adhesion and myointimal proliferation in canine pulmonary arteries, Am J Pathol, vol.104, pp.13-22, 1981.

J. Gonzalez-miguel, R. Morchon, E. Carreton, J. A. Montoya-alonso, and F. Simon, Surface associated antigens of Dirofilaria immitis adult worms activate the host fibrinolytic system, Vet Parasitol, vol.196, pp.235-240, 2013.

E. Carreton, J. Gonzalez-miguel, J. A. Montoya-alonso, R. Morchon, F. Simon et al., D-dimer deposits in lungs and kidneys suggest its use as a marker in the clinical workup of dogs with heartworm (Dirofilaria immitis) disease, Vet Parasitol, vol.191, pp.182-186, 2013.

L. Venco, L. Mihaylova, and J. A. Boon, Right Pulmonary Artery Distensibility Index (RPAD Index). A field study of an echocardiographic method to detect early development of pulmonary hypertension and its severity even in the absence of regurgitant jets for Doppler evaluation in heartworm-infected dogs, Vet Parasitol, vol.206, pp.60-66, 2014.

A. Muro, C. Genchi, M. Cordero, and F. Simon, Human dirofilariasis in the European Union, Parasitol Today, vol.15, pp.386-389, 1999.
DOI : 10.1016/s0169-4758(99)01496-9

M. Stone, I. Dalal, C. Stone, and B. Dalal, 18-FDG Uptake in Pulmonary Dirofilariasis, J Radiol Case Rep, vol.9, pp.28-33, 2015.
DOI : 10.3941/jrcr.v9i4.1869

URL : https://doi.org/10.3941/jrcr.v9i4.1869

J. Araya, Y. Kawabata, N. Tomichi, K. Kaneko, K. Hayashi et al., Allergic inflammatory reaction is involved in necrosis of human pulmonary dirofilariasis, Histopathology, vol.51, pp.484-490, 2007.
DOI : 10.1111/j.1365-2559.2007.02822.x

G. Karpathiou, A. Batistatou, P. Steiropoulos, D. Stefanou, and M. E. Froudarakis, An Unexpected Pulmonary Coin Lesion, Int J Surg Pathol, vol.24, pp.328-329, 2016.
DOI : 10.1177/1066896915623362

A. Villeneuve, La dirofilariose canine propositions de traitement et de prévention appropriées au québec. Faculté de médecine vétérinaire Sainte-Hyacinthe, 2014.

Y. Hirano, H. Kitagawa, and Y. Sasaki, Relationship between pulmonary arterial pressure and pulmonary thromboembolism associated with dead worms in canine heartworm disease, J Vet Med Sci, vol.54, pp.897-904, 1992.

E. R. Bregani, F. Tantardini, and A. Rovellini, , 2007.

, Parassitologia, vol.49

C. A. Fux, B. Chappuis, B. Holzer, C. Aebi, G. Bordmann et al., Mansonella perstans causing symptomatic hypereosinophilia in a missionary family, Travel Med Infect Dis, vol.4, pp.275-280, 2006.

J. B. Kahn, Pleural effusion associated with Dipetalonema perstans (Acanthocheilonema perstans), J Infect Dis, vol.147, p.166, 1983.
DOI : 10.1093/infdis/147.1.166

L. Kabego, J. B. Kasengi, P. Mirindi, V. Ruhanya, D. Lupande et al., Pulmonary localization of Mansonella perstans in a 16 months-old male patient in a tertiary care hospital in Bukavu, Democratic Republic of Congo. Germs, vol.6, pp.151-154, 2016.

H. Asgeirsson, A. Harling, and S. Botero-kleiven, Successful treatment of 2 imported cases of Mansonella perstans infection, PLoS Negl Trop Dis, vol.11, p.5452, 2017.

Y. Mutafchiev, O. Bain, Z. Williams, J. W. Mccall, and M. L. Michalski, Intraperitoneal development of the filarial nematode Brugia malayi in the Mongolian jird (Meriones unguiculatus), Parasitol Res, vol.113, pp.1827-1835, 2014.

H. J. Mcsorley, Y. M. Harcus, J. Murray, M. D. Taylor, and R. M. Maizels, Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia malayi, J Immunol, vol.181, pp.6456-6466, 2008.

T. V. Rajan, L. Ganley, N. Paciorkowski, L. Spencer, T. R. Klei et al., Brugian infections in the peritoneal cavities of laboratory mice: kinetics of infection and cellular responses, Exp Parasitol, vol.100, pp.235-247, 2002.

D. I. Grove, R. S. Davis, and K. S. Warren, Brugia malayi microfilaraemia in mice: a model for the study of the host response to microfilariae, Parasitology, vol.79, pp.303-316, 1979.

M. Tanaka, Clearance of inoculated microfilariae of Brugia malayi by monoclonal antibodies in BALB/c mice, Jpn J Exp Med, vol.56, pp.169-175, 1986.

S. Wanji, N. Tendongfor, P. N. Vuong, P. Enyong, and O. Bain, The migration and localization of Loa loa infective and fourth-stage larvae in normal and immunosuppressed rodents, Ann Trop Med Parasitol, vol.96, pp.823-830, 2002.

N. Tendongfor, S. Wanji, J. C. Ngwa, M. E. Esum, S. Specht et al., The human parasite Loa loa in cytokine and cytokine receptor gene knock out BALB/c mice: survival, development and localization, Parasit Vectors, vol.5, p.43, 2012.

A. M. Lange, W. Yutanawiboonchai, P. Scott, and D. Abraham, IL-4-and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cBYJ mice, J Immunol, vol.153, pp.205-211, 1994.

E. H. Johnson, S. Schynder-candrian, T. V. Rajan, F. K. Nelson, S. Lustigman et al., Immune responses to third stage larvae of Onchocerca volvulus in interferongamma and interleukin-4 knockout mice, Parasite Immunol, vol.20, pp.319-324, 1998.

A. E. Bianco, M. B. Mustafa, and P. J. Ham, Fate of developing larvae of Onchocerca lienalis and O. volvulus in micropore chambers implanted into laboratory hosts, J Helminthol, vol.63, pp.218-226, 1989.

G. Petit, M. Diagne, P. Marechal, D. Owen, D. Taylor et al., Maturation of the filaria Litomosoides sigmodontis in BALB/c mice; comparative susceptibility of nine other inbred strains, Ann Parasitol Hum Comp, vol.67, pp.144-150, 1992.

S. Babayan, M. N. Ungeheuer, C. Martin, T. Attout, E. Belnoue et al., Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are associated with early differences in parasite development and in localized immune reactions, Infect Immun, vol.71, pp.6820-6829, 2003.

T. Bouchery, G. Denece, T. Attout, K. Ehrhardt, N. Lhermitte-vallarino et al., The chemokine CXCL12 is essential for the clearance of the filaria Litomosoides sigmodontis in resistant mice, PLoS One, vol.7, p.34971, 2012.

S. V. Brant and S. L. Gardner, Phylogeny of species of the genus Litomosoides (Nematatoda : Onchocercidae): Evidence of rampant host switching, Journal of Parasitology, vol.86, pp.545-554, 2000.

M. Diagne, G. Petit, P. Liot, J. Cabaret, and O. Bain, The filaria Litomosoides galizai in mites; microfilarial distribution in the host and regulation of the transmission, Ann Parasitol Hum Comp, vol.65, pp.193-199, 1990.

O. Bain, T. Attout, S. Babayan, W. Kozek, and C. Martin, Biology of Filariae in the Vertebrate Host: Litomosoides sigmodontis Casts Light on Several "Grey Areas, 2004.

D. S. Bertram, Dynamics of parasitic equilibrium in cotton rat filariasis, Adv Parasitol, vol.4, pp.255-319, 1966.

S. A. Babayan, A. F. Read, R. A. Lawrence, O. Bain, and J. E. Allen, Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy, PLoS Biol, vol.8, p.1000525, 2010.

T. Attout, C. Martin, S. A. Babayan, W. J. Kozek, C. Bazzocchi et al., Pleural cellular reaction to the filarial infection Litomosoides sigmodontis is determined by the moulting process, the worm alteration, and the host strain, Parasitol Int, vol.57, pp.201-211, 2008.

W. Hoffmann, G. Petit, H. Schulz-key, D. Taylor, O. Bain et al., Litomosoides sigmodontis in mice: reappraisal of an old model for filarial research, Parasitol Today, vol.16, pp.387-389, 2000.

P. Marechal, L. Goff, L. Petit, G. Diagne, M. Taylor et al., The fate of the filaria Litomosoides sigmodontis in susceptible and naturally resistant mice, Parasite, vol.3, pp.25-31, 1996.

G. Karadjian, D. Berrebi, N. Dogna, N. Vallarino-lhermitte, O. Bain et al., Co-infection restrains Litomosoides sigmodontis filarial load and plasmodial P. yoelii but not P. chabaudi parasitaemia in mice, Parasite, vol.21, p.16, 2014.

A. L. Graham, M. D. Taylor, L. Goff, L. Lamb, T. J. Magennis et al., Quantitative appraisal of murine filariasis confirms host strain differences but reveals that BALB/c females are more susceptible than males to Litomosoides sigmodontis, Microbes Infect, vol.7, pp.612-618, 2005.

D. R. Wharton, Pathological changes in natural and experimental filariasis in the cotton rat, J Infect Dis, vol.80, pp.307-318, 1947.

C. R. Schneider, L. S. Blair, J. L. Schardein, L. K. Boche, and P. E. Thompson, Comparison of early Litomosoides carinii infections in cotton rats and gerbils, J Parasitol, vol.54, 1968.

M. P. Rebollo and M. J. Bockarie, Can Lymphatic Filariasis Be Eliminated by 2020?, Trends Parasitol, vol.33, pp.83-92, 2017.

M. Boussinesq, Loiasis: new epidemiologic insights and proposed treatment strategy, J Travel Med, vol.19, pp.140-143, 2012.

D. H. Molyneux, L. Savioli, and D. Engels, Neglected tropical diseases: progress towards addressing the chronic pandemic, Lancet, vol.389, pp.312-325, 2017.

M. K. Kouam, J. B. Tchatchueng-mbougua, M. Demanou, M. Boussinesq, S. D. Pion et al., Impact of repeated ivermectin treatments against onchocerciasis on the transmission of loiasis: an entomologic evaluation in central Cameroon, Parasit Vectors, vol.6, p.283, 2013.

J. F. Medeiros, J. L. Crainey, C. Pessoa, F. A. , B. Luz et al., Mansonelliasis, pp.405-426, 2017.

A. Hoerauf, Mansonella perstans-the importance of an endosymbiont, N Engl J Med, vol.361, pp.1502-1504, 2009.

J. Gardon, J. Kamgno, N. Gardon-wendel, N. Demanga, B. O. Duke et al., Efficacy of repeated doses of ivermectin against Mansonella perstans, Trans R Soc Trop Med Hyg, vol.96, pp.325-326, 2002.

Y. I. Coulibaly, B. Dembele, A. A. Diallo, E. M. Lipner, S. S. Doumbia et al., Klion AD (2009) A randomized trial of doxycycline for Mansonella perstans infection, N Engl J Med, vol.361, pp.1448-1458

P. U. Fischer, C. L. King, J. A. Jacobson, and G. J. Weil, Potential Value of Triple Drug Therapy with Ivermectin, Diethylcarbamazine, and Albendazole (IDA) to Accelerate Elimination of Lymphatic Filariasis and Onchocerciasis in Africa, PLoS Negl Trop Dis, vol.11, p.5163, 2017.

E. K. Thomsen, N. Sanuku, M. Baea, S. Satofan, E. Maki et al., Efficacy, Safety, and Pharmacokinetics of Coadministered Diethylcarbamazine, Albendazole, and Ivermectin for Treatment of Bancroftian Filariasis, Clin Infect Dis, vol.62, pp.334-341, 2016.

A. D. Bryceson, D. A. Warrell, and H. M. Pope, Dangerous reactions to treatment of onchocerciasis with diethylcarbamazine, Br Med J, vol.1, pp.742-744, 1977.

H. R. Taylor, R. P. Murphy, H. S. Newland, A. T. White, D. Anna et al., Treatment of onchocerciasis. The ocular effects of ivermectin and diethylcarbamazine, Arch Ophthalmol, vol.104, pp.863-870, 1986.

S. R. Doyle, C. Bourguinat, N. -. Djeunga, H. C. Kengne-ouafo, J. A. Pion et al., Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity, PLoS Negl Trop Dis, vol.11, p.5816, 2017.

F. Cobo, Determinants of parasite drug resistance in human lymphatic filariasis, Rev Esp Quimioter, vol.29, pp.288-295, 2016.

T. G. Geary, Are new anthelmintics needed to eliminate human helminthiases?, Curr Opin Infect Dis, vol.25, pp.709-717, 2012.

D. M. Yates, V. Portillo, and A. J. Wolstenholme, The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans, Int J Parasitol, vol.33, pp.1183-1193, 2003.

P. N. Vuong, S. Traore, S. Wanji, S. Diarrassouba, A. Balaton et al., Ivermectin in human onchocerciasis: a clinical-pathological study of skin lesions before and three days after treatment, Ann Parasitol Hum Comp, vol.67, pp.194-196, 1992.

C. Ballesteros, L. Tritten, M. O'neill, E. Burkman, W. I. Zaky et al., The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach, PLoS Negl Trop Dis, vol.10, p.4929, 2016.

E. I. Ette, W. O. Thomas, and J. I. Achumba, Ivermectin: a long-acting microfilaricidal agent, DICP, vol.24, pp.426-433, 1990.

M. Y. Osei-atweneboana, K. Awadzi, S. K. Attah, D. A. Boakye, J. O. Gyapong et al., Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus, PLoS Negl Trop Dis, vol.5, p.998, 2011.

N. Kanesa-thasan, J. G. Douglas, and J. W. Kazura, Diethylcarbamazine inhibits endothelial and microfilarial prostanoid metabolism in vitro, Mol Biochem Parasitol, vol.49, pp.11-19, 1991.

R. M. Maizels and D. A. Denham, Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug, Parasitology, vol.105, pp.49-60, 1992.

C. A. Peixoto and B. S. Silva, Anti-inflammatory effects of diethylcarbamazine: a review, Eur J Pharmacol, vol.734, pp.35-41, 2014.

J. Horton, Albendazole: a review of anthelmintic efficacy and safety in humans, Parasitology, vol.121, pp.113-132, 2000.

A. Hoerauf, S. Specht, M. Buttner, K. Pfarr, S. Mand et al., Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study, Med Microbiol Immunol, vol.197, p.335, 2008.

A. Y. Debrah, S. Specht, U. Klarmann-schulz, L. Batsa, S. Mand et al., Doxycycline Leads to Sterility and Enhanced Killing of Female Onchocerca volvulus Worms in an Area With Persistent Microfilaridermia After Repeated Ivermectin Treatment: A Randomized, Placebo-Controlled, Double-Blind Trial, Clin Infect Dis, vol.61, pp.517-526, 2015.

M. Walker, S. Specht, T. S. Churcher, A. Hoerauf, M. J. Taylor et al., Therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness, Clin Infect Dis, vol.60, pp.1199-1207, 2015.

U. Klarmann-schulz, S. Specht, A. Y. Debrah, L. Batsa, N. K. Ayisi-boateng et al., Comparison of Doxycycline, Minocycline, Doxycycline plus Albendazole and Albendazole Alone in Their Efficacy against Onchocerciasis in a Randomized, Open-Label, Pilot Trial, PLoS Negl Trop Dis, vol.11, p.5156, 2017.

A. Y. Debrah, S. Mand, Y. Marfo-debrekyei, L. Batsa, K. Pfarr et al., Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti, Trop Med Int Health, vol.12, pp.1433-1441, 2007.

S. Mand, A. Y. Debrah, U. Klarmann, L. Batsa, Y. Marfo-debrekyei et al., Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial, Clin Infect Dis, vol.55, pp.621-630, 2012.

A. Kwarteng, S. T. Ahuno, and F. O. Akoto, Killing filarial nematode parasites: role of treatment options and host immune response, Infect Dis Poverty, vol.5, p.86, 2016.

C. D. Mackenzie and T. G. Geary, Flubendazole: a candidate macrofilaricide for lymphatic filariasis and onchocerciasis field programs, Expert Rev Anti Infect Ther, vol.9, pp.497-501, 2011.

H. Zahner and G. Schares, Experimental chemotherapy of filariasis: comparative evaluation of the efficacy of filaricidal compounds in Mastomys coucha infected with Litomosoides carinii, Acanthocheilonema viteae, Brugia malayi and B. pahangi, Acta Trop, vol.52, pp.221-266, 1993.

L. Moreno, L. Alvarez, L. Mottier, G. Virkel, S. S. Bruni et al., Integrated pharmacological assessment of flubendazole potential for use in sheep: disposition kinetics, liver metabolism and parasite diffusion ability, J Vet Pharmacol Ther, vol.27, pp.299-308, 2004.

L. Ceballos, C. Mackenzie, T. Geary, L. Alvarez, and C. Lanusse, Exploring the potential of flubendazole in filariasis control: evaluation of the systemic exposure for different pharmaceutical preparations, PLoS Negl Trop Dis, vol.8, p.2838, 2014.

A. Dominguez-vazquez, H. R. Taylor, B. M. Greene, A. M. Ruvalcaba-macias, A. R. Rivas-alcala et al., Comparison of flubendazole and diethylcarbamazine in treatment of onchocerciasis, Lancet, vol.1, pp.139-143, 1983.

L. Ceballos, L. Alvarez, C. Mackenzie, T. Geary, and C. Lanusse, Pharmacokinetic comparison of different flubendazole formulations in pigs: A further contribution to its development as a macrofilaricide molecule, Int J Parasitol Drugs Drug Resist, vol.5, pp.178-184, 2015.

D. J. Tweats, G. E. Johnson, I. Scandale, J. Whitwell, and D. B. Evans, Genotoxicity of flubendazole and its metabolites in vitro and the impact of a new formulation on in vivo aneugenicity, Mutagenesis, vol.31, pp.309-321, 2016.

M. Guest, K. Bull, R. J. Walker, K. Amliwala, O. Connor et al., The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans, Int J Parasitol, vol.37, pp.1577-1588, 2007.

A. Hoerauf, J. Satoguina, M. Saeftel, and S. Specht, Immunomodulation by filarial nematodes, Parasite Immunol, vol.27, pp.417-429, 2005.

S. Bonne-annee and T. B. Nutman, Human innate lymphoid cells (ILCs) in filarial infections, Parasite Immunol, 2017.

S. Babu and T. B. Nutman, Immunology of lymphatic filariasis, Parasite Immunol, vol.36, pp.338-346, 2014.

K. Wolff and G. Stingl, The langerhans cell, J Invest Dermatol, vol.80, pp.17-21, 1983.

R. T. Semnani and T. B. Nutman, Toward an understanding of the interaction between filarial parasites and host antigen-presenting cells, Immunol Rev, vol.201, pp.127-138, 2004.

L. Goff, L. Loke, P. Ali, H. F. Taylor, D. W. Allen et al., Interleukin-5 is essential for vaccine-mediated immunity but not innate resistance to a filarial parasite, Infect Immun, vol.68, pp.2513-2517, 2000.

C. Martin, M. Saeftel, P. N. Vuong, S. Babayan, K. Fischer et al., B-cell deficiency suppresses vaccine-induced protection against murine filariasis but does not increase the recovery rate for primary infection, Infect Immun, vol.69, pp.7067-7073, 2001.

M. Saeftel, M. Arndt, S. Specht, L. Volkmann, and A. Hoerauf, Synergism of gamma interferon and interleukin-5 in the control of murine filariasis, Infect Immun, vol.71, pp.6978-6985, 2003.

S. R. Chirgwin, S. U. Coleman, K. H. Porthouse, and T. R. Klei, Tissue migration capability of larval and adult Brugia pahangi, J Parasitol, vol.92, pp.46-51, 2006.

N. Pionnier, E. Brotin, G. Karadjian, P. Hemon, F. Gaudin-nome et al., Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae, PLoS Negl Trop Dis, vol.10, p.4605, 2016.

J. Ajendra, S. Specht, S. Ziewer, A. Schiefer, K. Pfarr et al., NOD2 dependent neutrophil recruitment is required for early protective immune responses against infectious Litomosoides sigmodontis L3 larvae, Sci Rep, vol.6, p.39648, 2016.

L. Goff, L. Martin, C. Oswald, I. P. Vuong, P. N. Petit et al., Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae, Parasitology, vol.120, pp.271-280, 2000.

C. Martin, K. M. Al-qaoud, M. N. Ungeheuer, K. Paehle, P. N. Vuong et al., IL-5 is essential for vaccine-induced protection and for resolution of primary infection in murine filariasis, Med Microbiol Immunol, vol.189, pp.67-74, 2000.

W. Bleiss, U. Oberlander, S. Hartmann, R. Adam, A. Marko et al., Protective immunity induced by irradiated third-stage larvae of the filaria Acanthocheilonema viteae is directed against challenge third-stage larvae before molting, J Parasitol, vol.88, pp.264-270, 2002.

D. Abraham, O. Leon, S. Schnyder-candrian, C. C. Wang, A. M. Galioto et al., Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae, Infect Immun, vol.72, pp.810-817, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00095050

S. Specht, M. Saeftel, M. Arndt, E. Endl, B. Dubben et al., Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection, Infect Immun, vol.74, pp.5236-5243, 2006.

S. Specht, J. K. Frank, J. Alferink, B. Dubben, L. E. Layland et al., CCL17 controls mast cells for the defense against filarial larval entry, J Immunol, vol.186, pp.4845-4852, 2011.

R. T. Semnani, M. Law, J. Kubofcik, and T. B. Nutman, Filaria-induced immune evasion: suppression by the infective stage of Brugia malayi at the earliest host-parasite interface, J Immunol, vol.172, pp.6229-6238, 2004.

R. N. Cotton, R. Mcdonald-fleming, A. Boyd, K. Spates, T. B. Nutman et al., Brugia malayi infective larvae fail to activate Langerhans cells and dermal dendritic cells in human skin, Parasite Immunol, vol.37, pp.79-91, 2015.

A. G. Hise, K. Daehnel, I. Gillette-ferguson, E. Cho, H. F. Mcgarry et al., Innate immune responses to endosymbiotic Wolbachia bacteria in Brugia malayi and Onchocerca volvulus are dependent on TLR2, TLR6, MyD88, and Mal, but not TLR4, TRIF, or TRAM, J Immunol, vol.178, pp.1068-1076, 2007.

J. D. Turner, R. S. Langley, K. L. Johnston, G. Egerton, S. Wanji et al., Wolbachia endosymbiotic bacteria of Brugia malayi mediate macrophage tolerance to TLR-and CD40-specific stimuli in a MyD88/TLR2-dependent manner, J Immunol, vol.177, pp.1240-1249, 2006.

J. D. Turner, R. S. Langley, K. L. Johnston, K. Gentil, L. Ford et al., Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis, J Biol Chem, vol.284, pp.22364-22378, 2009.

N. W. Brattig, C. Bazzocchi, C. J. Kirschning, N. Reiling, D. W. Buttner et al., The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4, J Immunol, vol.173, pp.437-445, 2004.

G. Karadjian, Coinfections naturelles et experimentales : interactions hôteparasites chez les oiseaux (Haemosporidies de rapaces) et dans un modèle murin (Plasmodium sp./Litomosoides sigmodontis). Muséum National d'Histoire Naturelle, 2014.

K. Gentil, C. S. Lentz, R. Rai, M. Muhsin, A. D. Kamath et al., Eotaxin-1 is involved in parasite clearance during chronic filarial infection, Parasite Immunol, vol.36, pp.60-77, 2014.
DOI : 10.1111/pim.12079

A. Boyd, K. Killoran, E. Mitre, and T. B. Nutman, Pleural cavity type 2 innate lymphoid cells precede Th2 expansion in murine Litomosoides sigmodontis infection, Exp Parasitol, vol.159, pp.118-126, 2015.
DOI : 10.1016/j.exppara.2015.09.006

URL : http://europepmc.org/articles/pmc4679599?pdf=render

S. Babayan, T. Attout, S. Specht, A. Hoerauf, G. Snounou et al., Increased early local immune responses and altered worm development in high-dose infections of mice susceptible to the filaria Litomosoides sigmodontis, Med Microbiol Immunol, vol.194, pp.151-162, 2005.

P. Loke, A. S. Macdonald, and J. E. Allen, Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naive CD4(+) T cells, Eur J Immunol, vol.30, pp.1127-1135, 2000.
DOI : 10.1002/(sici)1521-4141(200004)30:4<1127::aid-immu1127>3.0.co;2-#

H. Batra and V. B. Antony, Pleural mesothelial cells in pleural and lung diseases, J Thorac Dis, vol.7, pp.964-980, 2015.

J. E. Allen and T. E. Sutherland, Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin, Semin Immunol, vol.26, pp.329-340, 2014.

M. D. Taylor, N. Van-der-werf, A. Harris, A. L. Graham, O. Bain et al., Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection, Eur J Immunol, vol.39, pp.192-206, 2009.

W. Hartmann, C. Schramm, and M. Breloer, Litomosoides sigmodontis induces TGFbeta receptor responsive, IL-10-producing T cells that suppress bystander T-cell proliferation in mice, Eur J Immunol, vol.45, pp.2568-2581, 2015.
DOI : 10.1002/eji.201545503

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.201545503/pdf

M. D. Taylor, A. Harris, S. A. Babayan, O. Bain, A. Culshaw et al., CTLA-4 and CD4+ CD25+ regulatory T cells inhibit protective immunity to filarial parasites in vivo, J Immunol, vol.179, pp.4626-4634, 2007.
DOI : 10.4049/jimmunol.179.7.4626

URL : http://www.jimmunol.org/content/jimmunol/179/7/4626.full.pdf

J. , L. H. Duncan, S. M. Magalhaes, M. S. Campbell, S. M. Maizels et al., Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation, Nat Commun, vol.7, p.12651, 2016.

K. M. Al-qaoud, B. Fleischer, and A. Hoerauf, The Xid defect imparts susceptibility to experimental murine filariosis-association with a lack of antibody and IL-10 production by B cells in response to phosphorylcholine, Int Immunol, vol.10, pp.17-25, 1998.

D. Ruckerl and J. E. Allen, Macrophage proliferation, provenance, and plasticity in macroparasite infection, Immunol Rev, vol.262, pp.113-133, 2014.

N. Van-der-werf, S. A. Redpath, M. Azuma, H. Yagita, and M. D. Taylor, Th2 cell-intrinsic hypo-responsiveness determines susceptibility to helminth infection, Plos Pathogens, vol.9, p.1003215, 2013.

M. D. Taylor, L. Legoff, A. Harris, E. Malone, J. E. Allen et al., Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo, J Immunol, vol.174, pp.4924-4933, 2005.
DOI : 10.4049/jimmunol.174.8.4924

URL : http://www.jimmunol.org/content/jimmunol/174/8/4924.full.pdf

L. E. Layland, J. Ajendra, M. Ritter, A. Wiszniewsky, A. Hoerauf et al., Development of patent Litomosoides sigmodontis infections in semi-susceptible C57BL/6 mice in the absence of adaptive immune responses, Parasit Vectors, vol.8, p.396, 2015.

K. Arndts, S. Deininger, S. Specht, U. Klarmann, S. Mand et al., Elevated adaptive immune responses are associated with latent infections of Wuchereria bancrofti, PLoS Negl Trop Dis, vol.6, p.1611, 2012.
DOI : 10.1371/journal.pntd.0001611

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0001611&type=printable

M. B. Rodrigo, S. Schulz, V. Krupp, M. Ritter, K. Wiszniewsky et al., Patency of Litomosoides sigmodontis infection depends on Toll-like receptor 4 whereas Toll-like receptor 2 signalling influences filarial-specific CD4(+) T-cell responses, Immunology, vol.147, pp.429-442, 2016.
DOI : 10.1111/imm.12573

URL : http://onlinelibrary.wiley.com/doi/10.1111/imm.12573/pdf

K. M. Pfarr, K. Fischer, and A. Hoerauf, Involvement of Toll-like receptor 4 in the embryogenesis of the rodent filaria Litomosoides sigmodontis, Med Microbiol Immunol, vol.192, pp.53-56, 2003.

E. M. Fox, C. P. Morris, M. P. Hubner, and E. Mitre, Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms, PLoS Negl Trop Dis, vol.9, p.3932, 2015.
DOI : 10.1371/journal.pntd.0003932

URL : https://doi.org/10.1371/journal.pntd.0003932

L. Volkmann, O. Bain, M. Saeftel, S. Specht, K. Fischer et al., Murine filariasis: interleukin 4 and interleukin 5 lead to containment of different worm developmental stages, Med Microbiol Immunol, vol.192, pp.23-31, 2003.

C. Martin, L. Goff, L. Ungeheuer, M. N. Vuong, P. N. Bain et al., Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice, Infect Immun, vol.68, pp.3651-3656, 2000.

E. T. Cadman, K. A. Thysse, S. Bearder, A. Y. Cheung, A. C. Johnston et al., Eosinophils are important for protection, immunoregulation and pathology during infection with nematode microfilariae, Plos Pathogens, vol.10, p.1003988, 2014.
DOI : 10.1371/journal.ppat.1003988

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1003988&type=printable

K. M. Al-qaoud, E. Pearlman, T. Hartung, J. Klukowski, B. Fleischer et al., A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5, Int Immunol, vol.12, pp.899-908, 2000.

E. Marieb, Anatomie et physiologie humaines, vol.1194, 1999.

J. Tomashefeski and C. Farver, Anatomy and Histology of the Lung. Dail and Hammar's Pulmonary Pathology, pp.20-48, 2009.

D. Negrini and A. Moriondo, Pleural function and lymphatics, Acta Physiol (Oxf), vol.207, pp.244-259, 2013.
DOI : 10.1111/apha.12016

N. S. Wang, The regional difference of pleural mesothelial cells in rabbits, Am Rev Respir Dis, vol.110, pp.623-633, 1974.

S. E. Mutsaers, The mesothelial cell, Int J Biochem Cell Biol, vol.36, pp.9-16, 2004.

S. E. Mutsaers, Mesothelial cells: their structure, function and role in serosal repair, Respirology, vol.7, pp.171-191, 2002.

J. R. Rock, S. H. Randell, and B. L. Hogan, Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling, Dis Model Mech, vol.3, pp.545-556, 2010.
DOI : 10.1242/dmm.006031

URL : http://dmm.biologists.org/content/dmm/3/9-10/545.full.pdf

J. F. Murray, The structure and function of the lung, Int J Tuberc Lung Dis, vol.14, pp.391-396, 2010.

C. Suarez, S. Dintzis, and C. Frevert, Respiratory. Comparative Anatomy and Histology : a Mouse and Human Atlas, pp.121-134, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00796444

A. Iwasaki, E. F. Foxman, and R. D. Molony, Early local immune defences in the respiratory tract, Nat Rev Immunol, vol.17, pp.7-20, 2017.
DOI : 10.1038/nri.2016.117

URL : http://europepmc.org/articles/pmc5480291?pdf=render

J. Knust, M. Ochs, H. J. Gundersen, and J. R. Nyengaard, Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs, Anat Rec (Hoboken), vol.292, pp.113-122, 2009.

M. I. Townsley, Structure and composition of pulmonary arteries, capillaries, and veins, Compr Physiol, vol.2, pp.675-709, 2012.
DOI : 10.1002/cphy.c100081

URL : http://europepmc.org/articles/pmc3630377?pdf=render

E. R. Weibel and D. M. Gomez, Use of quantitative methods establishes fundamental relations between size and number of lung structures, Science, vol.137, pp.577-585, 1962.

E. K. Birks, O. Mathieu-costello, Z. Fu, W. S. Tyler, and J. B. West, Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse, Respir Physiol, vol.97, pp.235-246, 1994.

G. Okiemy, C. Foucault, C. Avisse, G. Hidden, and M. Riquet, Lymphatic drainage of the diaphragmatic pleura to the peritracheobronchial lymph nodes, Surg Radiol Anat, vol.25, pp.32-35, 2003.

K. Ahmad, M. S. Gandhi, W. C. Smith, and K. T. Weber, Bilateral pleural effusions in congestive heart failure, Am J Med Sci, vol.335, pp.484-488, 2008.
DOI : 10.1097/maj.0b013e318160ede9

M. Riquet, L. Pimpec-barthes, F. Hidden, and G. , Lymphatic drainage of the pericardium to the mediastinal lymph nodes, Surg Radiol Anat, vol.23, pp.317-319, 2001.

M. Riquet, Bronchial arteries and lymphatics of the lung, Thorac Surg Clin, vol.17, pp.619-638, 2007.

C. M. Sevin and R. W. Light, Microscopic anatomy of the pleura, Thorac Surg Clin, vol.21, pp.173-175, 2011.

M. Riquet, Anatomic basis of lymphatic spread from carcinoma of the lung to the mediastinum: surgical and prognostic implications, Surg Radiol Anat, vol.15, pp.271-277, 1993.

A. J. Booth, R. Hadley, A. M. Cornett, A. A. Dreffs, S. A. Matthes et al., Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation, Am J Respir Crit Care Med, vol.186, pp.866-876, 2012.

I. Kang, I. A. Harten, M. Y. Chang, K. R. Braun, A. Sheih et al., Versican Deficiency Significantly Reduces Lung Inflammatory Response Induced by Polyinosine-Polycytidylic Acid Stimulation, J Biol Chem, vol.292, pp.51-63, 2017.

T. N. Wight, C. W. Frevert, J. S. Debley, S. R. Reeves, W. C. Parks et al., Interplay of extracellular matrix and leukocytes in lung inflammation, Cell Immunol, vol.312, pp.1-14, 2017.

S. L. Gibbings, S. M. Thomas, S. M. Atif, A. L. Mccubbrey, A. N. Desch et al., Three Unique Interstitial Macrophages in the Murine Lung at Steady State, Am J Respir Cell Mol Biol, 2017.

R. Pabst, The periarterial space in the lung: its important role in lung edema, transplantation, and microbial or allergic inflammation, Pathobiology, vol.71, pp.287-294, 2004.

F. Chen, W. Wu, A. Millman, J. F. Craft, C. E. Patel et al., Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion, Nat Immunol, vol.15, pp.938-946, 2014.

P. M. Wang, D. L. Kachel, M. F. Cesta, and W. J. Martin, Direct leukocyte migration across pulmonary arterioles and venules into the perivascular interstitium of murine lungs during bleomycin injury and repair, Am J Pathol, vol.178, pp.2560-2572, 2011.

M. Komai-koma, F. Brombacher, P. N. Pushparaj, B. Arendse, C. Mcsharry et al., Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice, Allergy, vol.67, pp.1118-1126, 2012.

N. Mizutani, T. Nabe, and S. Yoshino, Interleukin-33 and alveolar macrophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice, Immunology, vol.139, pp.205-218, 2013.

S. Katoh, N. Matsumoto, K. Kawakita, A. Tominaga, P. W. Kincade et al., A role for CD44 in an antigen-induced murine model of pulmonary eosinophilia, J Clin Invest, vol.111, pp.1563-1570, 2003.

T. Nishimura, S. Katoh, A. Mori, T. Ohtomo, M. Saeki et al., Critical role of CD44 in antigen-induced Th2-but not Th17-madiated murine airway inflammation, Allergol Int, vol.65, pp.59-61, 2016.

J. Hirose, H. Kawashima, Y. O. Tashiro, K. Miyasaka, and M. , Versican interacts with chemokines and modulates cellular responses, J Biol Chem, vol.276, pp.5228-5234, 2001.

Y. J. Wu, L. Pierre, D. P. Wu, J. Yee, A. J. Yang et al., The interaction of versican with its binding partners, Cell Res, vol.15, pp.483-494, 2005.

M. Kopf, C. Schneider, and S. P. Nobs, The development and function of lung-resident macrophages and dendritic cells, Nat Immunol, vol.16, pp.36-44, 2015.

L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, Tissue-resident macrophages, Nat Immunol, vol.14, pp.986-995, 2013.

N. Garbi and B. N. Lambrecht, Location, function, and ontogeny of pulmonary macrophages during the steady state, Pflugers Arch, vol.469, pp.561-572, 2017.

C. C. Bain and A. M. Mowat, CD200 receptor and macrophage function in the intestine, Immunobiology, vol.217, pp.643-651, 2012.
DOI : 10.1016/j.imbio.2011.11.004

S. J. Gardai, Y. Q. Xiao, M. Dickinson, J. A. Nick, D. R. Voelker et al., By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation, Cell, vol.115, pp.13-23, 2003.
DOI : 10.1016/s0092-8674(03)00758-x

URL : https://doi.org/10.1016/s0092-8674(03)00758-x

C. L. Scott, S. Henri, and M. Guilliams, Mononuclear phagocytes of the intestine, the skin, and the lung, Immunol Rev, vol.262, pp.9-24, 2014.

T. Kambara and R. A. Wilson, In situ pulmonary responses of T cell and macrophage subpopulations to a challenge infection in mice vaccinated with irradiated cercariae of Schistosoma mansoni, J Parasitol, vol.76, pp.365-372, 1990.

M. Breel, M. B. Van-der-ende, T. Sminia, and G. Kraal, Subpopulations of non-lymphoid cells in bronchus associated lymphoid tissue and lung of the mouse, Adv Exp Med Biol, vol.237, pp.607-613, 1988.

K. Ramaswamy, D. Sanctis, G. T. Green, F. Befus, and D. , Pathology of pulmonary parasitic migration: morphological and bronchoalveolar cellular responses following Nippostrongylus brasiliensis infection in rats, J Parasitol, vol.77, pp.302-312, 1991.
DOI : 10.2307/3283102

A. Loukas and P. Prociv, Immune responses in hookworm infections, Clin Microbiol Rev, vol.14, pp.689-703, 2001.
DOI : 10.1128/cmr.14.4.689-703.2001

URL : http://cmr.asm.org/content/14/4/689.full.pdf

J. C. Vetter and M. E. Van-der-linden, Skin penetration of infective hookworm larvae. I. The path of migration of infective larvae of Ancylostoma braziliense in canine skin, Z Parasitenkd, vol.53, pp.255-262, 1977.
DOI : 10.1007/bf00389941

F. Chen, Z. Liu, W. Wu, C. Rozo, S. Bowdridge et al., An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection, Nat Med, vol.18, pp.260-266, 2012.
DOI : 10.1038/nm.2628

URL : http://europepmc.org/articles/pmc3274634?pdf=render

L. Y. Hung, I. P. Lewkowich, L. A. Dawson, J. Downey, Y. Yang et al., IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms, Proc Natl Acad Sci U S A, vol.110, pp.282-287, 2013.
DOI : 10.1073/pnas.1206587110

URL : http://www.pnas.org/content/110/1/282.full.pdf

N. Isailovic, K. Daigo, A. Mantovani, and C. Selmi, Interleukin-17 and innate immunity in infections and chronic inflammation, J Autoimmun, vol.60, pp.1-11, 2015.
DOI : 10.1016/j.jaut.2015.04.006

T. E. Sutherland, N. Logan, D. Ruckerl, A. A. Humbles, S. M. Allan et al., Chitinase-like proteins promote IL-17mediated neutrophilia in a tradeoff between nematode killing and host damage, Nat Immunol, vol.15, pp.1116-1125, 2014.
DOI : 10.1038/ni.3023

URL : http://europepmc.org/articles/pmc4338525?pdf=render

O. Connell, A. E. Hess, J. A. Santiago, G. A. Nolan, T. J. Lok et al., Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice, Infect Immun, vol.79, pp.2770-2778, 2011.

S. Bonne-annee, L. A. Kerepesi, J. A. Hess, O. Connell, A. E. Lok et al., Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis, Infect Immun, vol.81, pp.3346-3355, 2013.

T. Bouchery, R. Kyle, M. Camberis, A. Shepherd, K. Filbey et al., ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms, Nat Commun, vol.6, p.6970, 2015.
DOI : 10.1038/ncomms7970

URL : http://www.nature.com/articles/ncomms7970.pdf

S. Thawer, J. Auret, C. Schnoeller, A. Chetty, K. Smith et al., Surfactant Protein-D Is Essential for Immunity to Helminth Infection, Plos Pathogens, vol.12, p.1005461, 2016.
DOI : 10.1371/journal.ppat.1005461

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005461&type=printable

J. E. Turner, P. J. Morrison, C. Wilhelm, M. Wilson, H. Ahlfors et al., IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation, J Exp Med, vol.210, pp.2951-2965, 2013.
DOI : 10.1084/jem.20130071

URL : http://jem.rupress.org/content/jem/210/13/2951.full.pdf

A. J. Coyle, G. Kohler, S. Tsuyuki, F. Brombacher, and M. Kopf, Eosinophils are not required to induce airway hyperresponsiveness after nematode infection, Eur J Immunol, vol.28, pp.2640-2647, 1998.
DOI : 10.1002/(sici)1521-4141(199809)28:09<2640::aid-immu2640>3.3.co;2-o

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291521-4141%28199809%2928%3A09%3C2640%3A%3AAID-IMMU2640%3E3.0.CO%3B2-X

C. M. Minutti, J. , L. H. Garcia-fojeda, B. Knipper, J. A. Sutherland et al., Local amplifiers of IL-4Ralpha-mediated macrophage activation promote repair in lung and liver, Science, vol.356, pp.1076-1080, 2017.

C. M. Minutti, J. A. Knipper, J. E. Allen, and D. M. Zaiss, Tissue-specific contribution of macrophages to wound healing, Semin Cell Dev Biol, vol.61, pp.3-11, 2017.
DOI : 10.1016/j.semcdb.2016.08.006

URL : https://doi.org/10.1016/j.semcdb.2016.08.006

B. J. Marsland, M. Kurrer, R. Reissmann, N. L. Harris, and M. Kopf, Nippostrongylus brasiliensis infection leads to the development of emphysema associated with the induction of alternatively activated macrophages, Eur J Immunol, vol.38, pp.479-488, 2008.

D. C. Webb, S. Mahalingam, Y. Cai, K. I. Matthaei, D. D. Donaldson et al., Antigen-specific production of interleukin (IL)-13 and IL-5 cooperate to mediate IL4Ralpha-independent airway hyperreactivity, Eur J Immunol, vol.33, pp.3377-3385, 2003.

N. Noben-trauth, L. D. Shultz, F. Brombacher, J. F. Urban, J. Gu et al., An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice, Proc Natl Acad Sci U S A, vol.94, pp.10838-10843, 1997.

M. Kopf, F. Brombacher, P. D. Hodgkin, A. J. Ramsay, E. A. Milbourne et al., IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses, Immunity, vol.4, pp.15-24, 1996.

M. P. Manitz, B. Horst, S. Seeliger, A. Strey, B. V. Skryabin et al., Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro, Mol Cell Biol, vol.23, pp.1034-1043, 2003.

K. Hoffmeister and P. Wenk, Experiments on the regulation of the worm load at the rodant filariae Litomosoides carinii (Nematoda Filaroidae) in Sigmoda hispidus, Mitt Österr Ges Tropenmed Parasitol, vol.13, pp.119-124, 1991.

P. Marechal, Deux filaires du genre Litomosoides chez la souris blanche, 1995.

V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky, Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps, J Cell Biol, vol.191, pp.677-691, 2010.

S. Masuda, D. Nakazawa, H. Shida, A. Miyoshi, Y. Kusunoki et al., NETosis markers: Quest for specific, objective, and quantitative markers, Clin Chim Acta, vol.459, pp.89-93, 2016.

S. A. Babayan, T. Attout, A. Harris, M. D. Taylor, L. Goff et al., Vaccination against filarial nematodes with irradiated larvae provides long-term protection against the third larval stage but not against subsequent life cycle stages, Int J Parasitol, vol.36, pp.903-914, 2006.

O. Bain and A. G. Chabaud, , 1986.

, Trop Med Parasitol, vol.37, pp.301-340

S. D. Armstrong, S. A. Babayan, N. Lhermitte-vallarino, N. Gray, D. Xia et al., Comparative analysis of the secretome from a model filarial nematode (Litomosoides sigmodontis) reveals maximal diversity in gravid female parasites, Mol Cell Proteomics, vol.13, pp.2527-2544, 2014.

A. M. Miller, Role of IL-33 in inflammation and disease, J Inflamm, p.22, 2011.

N. T. Martin and M. U. Martin, Interleukin 33 is a guardian of barriers and a local alarmin, Nat Immunol, vol.17, pp.122-131, 2016.

J. C. Nussbaum, S. J. Van-dyken, J. Von-moltke, L. E. Cheng, A. Mohapatra et al., Type 2 innate lymphoid cells control eosinophil homeostasis, Nature, vol.502, pp.245-248, 2013.

L. Van-rijt, H. Von-richthofen, and R. Van-ree, Type 2 innate lymphoid cells: at the cross-roads in allergic asthma, Seminars in Immunopathology, vol.38, pp.483-496, 2016.

D. H. Madsen and T. H. Bugge, Imaging collagen degradation in vivo highlights a key role for M2-polarized macrophages in extracellular matrix degradation, Oncoimmunology, vol.2, p.27127, 2013.

S. Jeyaseelan, R. Manzer, S. K. Young, M. Yamamoto, S. Akira et al., Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium, Am J Respir Cell Mol Biol, vol.32, pp.531-539, 2005.

T. L. Schagat, J. A. Wofford, and J. R. Wright, Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils, J Immunol, vol.166, pp.2727-2733, 2001.

S. Jaillon, M. R. Galdiero, D. Prete, D. Cassatella, M. A. Garlanda et al., Neutrophils in innate and adaptive immunity, Seminars in Immunopathology, vol.35, pp.377-394, 2013.

L. R. Prince, M. K. Whyte, I. Sabroe, and L. C. Parker, The role of TLRs in neutrophil activation, Curr Opin Pharmacol, vol.11, pp.397-403, 2011.

T. B. Clarke, K. M. Davis, E. S. Lysenko, A. Y. Zhou, Y. Yu et al., Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity, Nat Med, vol.16, pp.228-231, 2010.
DOI : 10.1038/nm.2087

URL : http://europepmc.org/articles/pmc4497535?pdf=render

N. Tamassia, F. Bazzoni, L. Moigne, V. Calzetti, F. Masala et al., IFN-beta expression is directly activated in human neutrophils transfected with plasmid DNA and is further increased via TLR-4-mediated signaling, J Immunol, vol.189, pp.1500-1509, 2012.
DOI : 10.4049/jimmunol.1102985

URL : http://www.jimmunol.org/content/jimmunol/189/3/1500.full.pdf

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat Rev Immunol, vol.13, pp.159-175, 2013.
DOI : 10.1038/nri3399

K. D. Metzler, C. Goosmann, A. Lubojemska, A. Zychlinsky, and V. Papayannopoulos, A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis, Cell Rep, vol.8, pp.883-896, 2014.
DOI : 10.1016/j.celrep.2014.06.044

URL : https://doi.org/10.1016/j.celrep.2014.06.044

W. M. Nauseef and N. Borregaard, Neutrophils at work, Nat Immunol, vol.15, pp.602-611, 2014.
DOI : 10.1038/ni.2921

A. Abdallah, D. S. Denkers, and E. Y. , Neutrophils cast extracellular traps in response to protozoan parasites, Front Immunol, vol.3, p.382, 2012.
DOI : 10.3389/fimmu.2012.00382

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2012.00382/pdf

N. Branzk, A. Lubojemska, S. E. Hardison, Q. Wang, M. G. Gutierrez et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens, Nat Immunol, vol.15, pp.1017-1025, 2014.
DOI : 10.1038/ni.2987

URL : http://europepmc.org/articles/pmc4236687?pdf=render

C. F. Urban, D. Ermert, M. Schmid, U. Abu-abed, C. Goosmann et al., Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans, Plos Pathogens, vol.5, 2009.
DOI : 10.1371/journal.ppat.1000639

URL : https://doi.org/10.1371/journal.ppat.1000639

S. Bonne-annee, L. A. Kerepesi, J. A. Hess, J. Wesolowski, F. Paumet et al., Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis, Microbes Infect, vol.16, pp.502-511, 2014.

C. J. Mccoy, B. J. Reaves, S. Giguere, R. Coates, B. Rada et al., Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release, PLoS Negl Trop Dis, vol.11, p.5279, 2017.

F. Tamarozzi, J. D. Turner, N. Pionnier, A. Midgley, A. F. Guimaraes et al., Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis, Sci Rep, vol.6, p.35559, 2016.
DOI : 10.1038/srep35559

URL : http://www.nature.com/articles/srep35559.pdf

J. Edgeworth, M. Gorman, R. Bennett, P. Freemont, and N. Hogg, Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells, J Biol Chem, vol.266, pp.7706-7713, 1991.

E. Bargagli, C. Olivieri, M. Cintorino, R. M. Refini, N. Bianchi et al., Calgranulin B (S100A9/MRP14): a key molecule in idiopathic pulmonary fibrosis, Inflammation, vol.34, pp.85-91, 2011.
DOI : 10.1007/s10753-010-9210-7

E. Lorenz, M. S. Muhlebach, P. A. Tessier, A. N. , D. Hite et al., Different expression ratio of S100A8/A9 and S100A12 in acute and chronic lung diseases, Respir Med, vol.102, pp.567-573, 2008.
DOI : 10.1016/j.rmed.2007.11.011

URL : https://doi.org/10.1016/j.rmed.2007.11.011

S. Tirkos, S. Newbigging, V. Nguyen, M. Keet, C. Ackerley et al., Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator, Respir Res, vol.7, p.51, 2006.

H. Kawai, Y. Minamiya, and N. Takahashi, Prognostic impact of S100A9 overexpression in non-small cell lung cancer, Tumour Biol, vol.32, pp.641-646, 2011.

Y. Hiroshima, K. Hsu, N. Tedla, S. W. Wong, S. Chow et al., S100A8/A9 and S100A9 reduce acute lung injury, Immunol Cell Biol, vol.95, pp.461-472, 2017.
DOI : 10.1038/icb.2017.2

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1038/icb.2017.2

J. Zhao, I. Endoh, K. Hsu, N. Tedla, Y. Endoh et al., S100A8 modulates mast cell function and suppresses eosinophil migration in acute asthma, Antioxid Redox Signal, vol.14, pp.1589-1600, 2011.
DOI : 10.1089/ars.2010.3583

J. Nikitorowicz-buniak, X. Shiwen, C. P. Denton, D. Abraham, and R. Stratton, Abnormally differentiating keratinocytes in the epidermis of systemic sclerosis patients show enhanced secretion of CCN2 and S100A9, J Invest Dermatol, vol.134, pp.2693-2702, 2014.

M. J. Lee, J. K. Lee, J. W. Choi, C. S. Lee, J. H. Sim et al., Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis, PLoS One, vol.7, p.38801, 2012.

M. O. Henke, A. Renner, B. K. Rubin, J. I. Gyves, E. Lorenz et al., Up-regulation of S100A8 and S100A9 protein in bronchial epithelial cells by lipopolysaccharide, Exp Lung Res, vol.32, pp.331-347, 2006.

M. Frosch, D. Metze, D. Foell, T. Vogl, C. Sorg et al., Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis, Exp Dermatol, vol.14, pp.259-265, 2005.

K. Arai, T. Teratani, R. Kuruto-niwa, T. Yamada, and R. Nozawa, S100A9 expression in invasive ductal carcinoma of the breast: S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation, Eur J Cancer, vol.40, pp.1179-1187, 2004.

S. S. Cross, F. C. Hamdy, J. C. Deloulme, and I. Rehman, Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers, Histopathology, vol.46, pp.256-269, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00380191

J. Markowitz and W. E. Carson, Review of S100A9 biology and its role in cancer, Biochim Biophys Acta, vol.1835, pp.100-109, 2013.

B. W. Moore, A soluble protein characteristic of the nervous system, Biochem Biophys Res Commun, vol.19, pp.739-744, 1965.

J. Austermann, S. Zenker, and J. Roth, S100-alarmins: potential therapeutic targets for arthritis, Expert Opin Ther Targets, vol.21, pp.739-751, 2017.

R. Donato, S100: a multigenic family of calcium-modulated proteins of the EFhand type with intracellular and extracellular functional roles, Int J Biochem Cell Biol, vol.33, pp.637-668, 2001.

R. Donato, B. R. Cannon, G. Sorci, F. Riuzzi, K. Hsu et al., Functions of S100 proteins, Curr Mol Med, vol.13, pp.24-57, 2013.

S. R. Gross, C. G. Sin, R. Barraclough, and P. S. Rudland, Joining S100 proteins and migration: for better or for worse, in sickness and in health, Cell Mol Life Sci, vol.71, pp.1551-1579, 2014.

C. W. Heizmann, G. Fritz, and B. W. Schafer, S100 proteins: structure, functions and pathology, vol.7, pp.1356-1368, 2002.

H. Chen, C. Xu, J. Q. Liu, and Z. , S100 protein family in human cancer, Am J Cancer Res, vol.4, pp.89-115, 2014.

T. Ravasi, K. Hsu, J. Goyette, K. Schroder, Z. Yang et al., Probing the S100 protein family through genomic and functional analysis, Genomics, vol.84, pp.10-22, 2004.

I. Marenholz, C. W. Heizmann, and G. Fritz, S100 proteins in mouse and man: from evolution to function and pathology, 2004.

, Biochem Biophys Res Commun, vol.322, pp.1111-1122

D. Engelkamp, B. W. Schafer, M. G. Mattei, P. Erne, and C. W. Heizmann, Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E, Proc Natl Acad Sci U S A, vol.90, pp.6547-6551, 1993.

B. W. Schafer, R. Wicki, D. Engelkamp, M. G. Mattei, and C. W. Heizmann, Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family, Genomics, vol.25, pp.638-643, 1995.

A. Pietas, K. Schluns, I. Marenholz, B. W. Schafer, C. W. Heizmann et al., Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family, Genomics, vol.79, pp.513-522, 2002.

D. B. Zimmer, J. Chessher, and W. Song, Nucleotide homologies in genes encoding members of the S100 protein family, Biochim Biophys Acta, vol.1313, pp.229-238, 1996.

D. B. Zimmer, E. H. Cornwall, A. Landar, and W. Song, The S100 protein family: history, function, and expression, Brain Res Bull, vol.37, pp.417-429, 1995.

J. C. Deloulme, N. Assard, G. O. Mbele, C. Mangin, R. Kuwano et al., S100A6 and S100A11 are specific targets of the calcium-and zinc-binding S100B protein in vivo, J Biol Chem, vol.275, pp.35302-35310, 2000.

M. J. Hunter and W. J. Chazin, High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14, J Biol Chem, vol.273, pp.12427-12435, 1998.

T. Isobe, N. Ishioka, and T. Okuyama, Structural relation of two S-100 proteins in bovine brain; subunit composition of S-100a protein, Eur J Biochem, vol.115, pp.469-474, 1981.

Q. Yang, D. O&apos;hanlon, C. W. Heizmann, and A. Marks, Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma, Exp Cell Res, vol.246, pp.501-509, 1999.

I. P. Korndorfer, F. Brueckner, and A. Skerra, The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EFhand proteins, J Mol Biol, vol.370, pp.887-898, 2007.

R. J. Passey, E. Williams, A. M. Lichanska, C. Wells, S. Hu et al., A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption of the mouse embryo, J Immunol, vol.163, pp.2209-2216, 1999.

M. Pruenster, T. Vogl, J. Roth, and M. Sperandio, S100A8/A9: From basic science to clinical application, Pharmacol Ther, vol.167, pp.120-131, 2016.

T. Vogl, S. Ludwig, M. Goebeler, A. Strey, I. S. Thorey et al., MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes, Blood, vol.104, pp.4260-4268, 2004.

T. Vogl, A. L. Gharibyan, and L. A. Morozova-roche, Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes, Int J Mol Sci, vol.13, pp.2893-2917, 2012.

Y. Wang, H. Gao, C. W. Kessinger, A. Schmaier, F. A. Jaffer et al., Myeloidrelated protein-14 regulates deep vein thrombosis, JCI Insight, vol.2, 2017.

M. Bianchi, M. J. Niemiec, U. Siler, C. F. Urban, and J. Reichenbach, Restoration of antiAspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent, J Allergy Clin Immunol, vol.127, pp.1243-1252, 2011.

M. Pruenster, A. R. Kurz, K. J. Chung, X. Cao-ehlker, S. Bieber et al., Extracellular MRP8/14 is a regulator of beta2 integrin-dependent neutrophil slow rolling and adhesion, Nat Commun, vol.6, p.6915, 2015.

C. Ryckman, S. R. Mccoll, K. Vandal, R. De-medicis, A. Lussier et al., Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis, Arthritis Rheum, vol.48, pp.2310-2320, 2003.

N. Anceriz, K. Vandal, and P. A. Tessier, S100A9 mediates neutrophil adhesion to fibronectin through activation of beta2 integrins, Biochem Biophys Res Commun, vol.354, pp.84-89, 2007.

R. A. Newton and N. Hogg, The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils, J Immunol, vol.160, pp.1427-1435, 1998.

P. Ehlermann, K. Eggers, A. Bierhaus, P. Most, D. Weichenhan et al., Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products, Cardiovasc Diabetol, vol.5, p.6, 2006.

L. Wang, H. Luo, X. Chen, Y. Jiang, and Q. Huang, Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells, PLoS One, vol.9, p.90472, 2014.

D. Viemann, A. Strey, A. Janning, K. Jurk, K. Klimmek et al., Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells, Blood, vol.105, pp.2955-2962, 2005.

M. Atallah, A. Krispin, U. Trahtemberg, S. Ben-hamron, A. Grau et al., Constitutive neutrophil apoptosis: regulation by cell concentration via S100, 2012.

, A8/9 and the MEK-ERK pathway, PLoS One, vol.7, p.29333

S. Y. Lim, M. J. Raftery, and C. L. Geczy, Oxidative modifications of DAMPs suppress inflammation: the case for S100A8 and S100A9, Antioxid Redox Signal, vol.15, pp.2235-2248, 2011.

S. Y. Lim, M. J. Raftery, J. Goyette, and C. L. Geczy, S-glutathionylation regulates inflammatory activities of S100A9, J Biol Chem, vol.285, pp.14377-14388, 2010.

S. Y. Lim, M. J. Raftery, J. Goyette, K. Hsu, and C. L. Geczy, Oxidative modifications of S100 proteins: functional regulation by redox, J Leukoc Biol, vol.86, pp.577-587, 2009.

Y. Sun, Y. Lu, C. G. Engeland, S. C. Gordon, and H. Y. Sroussi, The anti-oxidative, antiinflammatory, and protective effect of S100A8 in endotoxemic mice, Mol Immunol, vol.53, pp.443-449, 2013.

L. H. Gomes, M. J. Raftery, W. X. Yan, J. D. Goyette, P. S. Thomas et al., S100A8 and S100A9-oxidant scavengers in inflammation, Free Radic Biol Med, vol.58, pp.170-186, 2013.

H. Y. Sroussi, Y. Lu, Q. L. Zhang, D. Villines, and P. T. Marucha, S100A8 and S100A9 inhibit neutrophil oxidative metabolism in-vitro: involvement of adenosine metabolites, Free Radic Res, vol.44, pp.389-396, 2010.

H. Y. Sroussi, Y. Lu, D. Villines, and Y. Sun, The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: implication of the protease-activated receptor-2, Mol Immunol, vol.50, pp.42-48, 2012.

S. M. Damo, T. E. Kehl-fie, N. Sugitani, M. E. Holt, S. Rathi et al., Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens, Proc Natl Acad Sci U S A, vol.110, pp.3841-3846, 2013.

B. D. Corbin, E. H. Seeley, A. Raab, J. Feldmann, M. R. Miller et al., Metal chelation and inhibition of bacterial growth in tissue abscesses, Science, vol.319, pp.962-965, 2008.

J. Austermann, J. Friesenhagen, S. K. Fassl, B. Petersen, T. Ortkras et al., Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions, Cell Rep, vol.9, pp.2112-2123, 2014.

B. Petersen, M. Wolf, J. Austermann, P. Van-lent, D. Foell et al., The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis, EMBO J, vol.32, pp.100-111, 2013.

K. Shimizu, P. Libby, V. Z. Rocha, E. J. Folco, R. Shubiki et al., Loss of myeloid related protein-8/14 exacerbates cardiac allograft rejection, Circulation, vol.124, pp.2920-2932, 2011.

R. L. Pagano, S. C. Sampaio, L. Juliano, M. A. Juliano, and G. R. , The C-terminus of murine S100A9 inhibits spreading and phagocytic activity of adherent peritoneal cells, Inflamm Res, vol.54, pp.204-210, 2005.

R. L. Pagano, N. F. Moraes, D. Lorenzo, B. H. , C. Sampaio et al., Inhibition of macrophage functions by the C-terminus of murine S100A9 is dependent on B-1 cells, Mediators Inflamm, p.836491, 2014.

D. Lorenzo, B. H. Godoy, L. C. , N. Brito, R. R. Pagano et al., Macrophage suppression following phagocytosis of apoptotic neutrophils is mediated by the S100A9 calcium-binding protein, Immunobiology, vol.215, pp.341-347, 2010.

P. Bjork, A. Bjork, T. Vogl, M. Stenstrom, D. Liberg et al., Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides, PLoS Biol, vol.7, p.97, 2009.

M. J. Robinson, P. Tessier, R. Poulsom, and N. Hogg, The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells, J Biol Chem, vol.277, pp.3658-3665, 2002.

S. Hoppmann, J. Steinbach, and J. Pietzsch, Scavenger receptors are associated with cellular interactions of S100A12 in vitro and in vivo, Int J Biochem Cell Biol, vol.42, pp.651-661, 2010.

C. Kerkhoff, C. Sorg, N. N. Tandon, and W. Nacken, Interaction of S100A8/S100A9arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells, Biochemistry, vol.40, pp.241-248, 2001.

K. Loser, T. Vogl, M. Voskort, A. Lueken, V. Kupas et al., The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells, Nat Med, vol.16, pp.713-717, 2010.

T. Vogl, K. Tenbrock, S. Ludwig, N. Leukert, C. Ehrhardt et al., Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock, Nat Med, vol.13, pp.1042-1049, 2007.
DOI : 10.1038/nm1638

T. Hibino, M. Sakaguchi, S. Miyamoto, M. Yamamoto, A. Motoyama et al., S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis, Cancer Res, vol.73, pp.172-183, 2013.
DOI : 10.1158/0008-5472.can-11-3843

URL : http://cancerres.aacrjournals.org/content/canres/73/1/172.full.pdf

K. Croce, H. Gao, Y. Wang, T. Mooroka, M. Sakuma et al., Myeloid-related protein-8/14 is critical for the biological response to vascular injury, Circulation, vol.120, pp.427-436, 2009.
DOI : 10.1161/circulationaha.108.814582

URL : http://circ.ahajournals.org/content/circulationaha/120/5/427.full.pdf

R. Gopal, L. Monin, D. Torres, S. Slight, S. Mehra et al., S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis, Am J Respir Crit Care Med, vol.188, pp.1137-1146, 2013.
DOI : 10.1164/rccm.201304-0803oc

URL : http://europepmc.org/articles/pmc3863739?pdf=render

H. Y. Park, J. O. Jin, M. G. Song, J. I. Park, and J. Y. Kwak, Expression of dendritic cell markers on cultured neutrophils and its modulation by anti-apoptotic and proapoptotic compounds, Exp Mol Med, vol.39, pp.439-449, 2007.
DOI : 10.1038/emm.2007.48

URL : http://www.nature.com/emm/journal/v39/n4/pdf/emm200748a.pdf

N. R. Lee, B. S. Park, S. Y. Kim, A. Gu, D. H. Kim et al., Cytokine secreted by S100A9 via TLR4 in monocytes delays neutrophil apoptosis by inhibition of caspase 9/3 pathway, Cytokine, vol.86, pp.53-63, 2016.
DOI : 10.1016/j.cyto.2016.07.005

C. Gebhardt, J. Nemeth, P. Angel, and J. Hess, S100A8 and S100A9 in inflammation and cancer, Biochem Pharmacol, vol.72, pp.1622-1631, 2006.
DOI : 10.1016/j.bcp.2006.05.017

B. Chen, A. L. Miller, M. Rebelatto, Y. Brewah, D. C. Rowe et al., S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns (DAMP) receptors in vitro and in vivo, PLoS One, vol.10, p.115828, 2015.
DOI : 10.1371/journal.pone.0115828

URL : https://doi.org/10.1371/journal.pone.0115828

H. S. Goodridge, F. A. Marshall, K. J. Else, K. M. Houston, C. Egan et al., Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62, J Immunol, vol.174, pp.284-293, 2005.
DOI : 10.4049/jimmunol.174.1.284

URL : http://www.jimmunol.org/content/jimmunol/174/1/284.full.pdf

P. G. Venugopal, T. B. Nutman, and R. T. Semnani, Activation and regulation of toll-like receptors (TLRs) by helminth parasites, Immunol Res, vol.43, pp.252-263, 2009.
DOI : 10.1007/s12026-008-8079-0

URL : http://europepmc.org/articles/pmc3398210?pdf=render

W. H. Hoffmann, A. W. Pfaff, H. Schulz-key, and P. T. Soboslay, Determinants for resistance and susceptibility to microfilaraemia in Litomosoides sigmodontis filariasis, Parasitology, vol.122, pp.641-649, 2001.

A. W. Pfaff, H. Schulz-key, P. T. Soboslay, S. M. Geiger, and W. H. Hoffmann, Litomosoides sigmodontis: dynamics of the survival of microfilariae in resistant and susceptible strains of mice, Exp Parasitol, vol.94, pp.67-74, 2000.

S. Specht, M. D. Taylor, M. A. Hoeve, J. E. Allen, R. Lang et al., Over expression of IL-10 by macrophages overcomes resistance to murine filariasis, Exp Parasitol, vol.132, pp.90-96, 2012.
DOI : 10.1016/j.exppara.2011.09.003

B. Haas and P. Wenk, Elimination of microfilariae (Litomosoides carinii Filarioidea) in the patent and in the immunized cotton-rat, Trans R Soc Trop Med Hyg, vol.75, pp.143-144, 1981.

M. Vij, N. Kumari, and N. Krishnani, Microfilaria in liver aspiration cytology: an extremely rare finding, Diagn Cytopathol, vol.39, pp.521-522, 2011.
DOI : 10.1002/dc.21483

M. Vankalakunti, P. K. Jha, B. Ravishankar, S. Vishwanath, S. Rampure et al., Microfilariae-associated nephrotic range proteinuria, Kidney Int, vol.79, p.1152, 2011.
DOI : 10.1038/ki.2011.50

URL : https://doi.org/10.1038/ki.2011.50

R. Varghese, C. V. Raghuveer, M. R. Pai, and R. Bansal, Microfilariae in cytologic smears: a report of six cases, Acta Cytol, vol.40, pp.299-301, 1996.

P. Wenk, The function of non circulating microfilariae: Litomosoides carinii (Nematoda: Filarioidea), Dtsch Tierarztl Wochenschr, vol.93, pp.414-418, 1986.

O. Boucherat, J. Boczkowski, L. Jeannotte, and C. Delacourt, Cellular and molecular mechanisms of goblet cell metaplasia in the respiratory airways, Exp Lung Res, vol.39, pp.207-216, 2013.

Y. G. Alevy, A. C. Patel, A. G. Romero, D. A. Patel, J. Tucker et al., IL-13-induced airway mucus production is attenuated by MAPK13 inhibition, J Clin Invest, vol.122, pp.4555-4568, 2012.
DOI : 10.1172/jci64896

URL : http://www.jci.org/articles/view/64896/files/pdf

Z. B. Wang, M. Li, and J. C. Li, Recent advances in the research of lymphatic stomata, Anat Rec (Hoboken), vol.293, pp.754-761, 2010.

M. Ugorski, P. Dziegiel, and J. Suchanski, Podoplanin-a small glycoprotein with many faces, Am J Cancer Res, vol.6, pp.370-386, 2016.

S. Takagi, T. Oh-hara, S. Sato, B. Gong, M. Takami et al., Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis, Int J Cancer, vol.134, pp.2605-2614, 2014.

N. Kimura and I. Kimura, Podoplanin as a marker for mesothelioma, Pathol Int, vol.55, pp.83-86, 2005.
DOI : 10.1111/j.1440-1827.2005.01791.x

M. Saeftel, L. Volkmann, S. Korten, N. Brattig, K. Al-qaoud et al., Lack of interferon-gamma confers impaired neutrophil granulocyte function and imparts prolonged survival of adult filarial worms in murine filariasis, Microbes Infect, vol.3, pp.203-213, 2001.

L. Volkmann, M. Saeftel, O. Bain, K. Fischer, B. Fleischer et al., Interleukin-4 is essential for the control of microfilariae in murine infection with the filaria Litomosoides sigmodontis, Infect Immun, vol.69, pp.2950-2956, 2001.

L. Goff, L. Lamb, T. J. Graham, A. L. Harcus, Y. Allen et al., IL-4 is required to prevent filarial nematode development in resistant but not susceptible strains of mice, Int J Parasitol, vol.32, pp.1277-1284, 2002.

S. Ziewer, M. P. Hubner, B. Dubben, W. H. Hoffmann, O. Bain et al., Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis, PLoS Negl Trop Dis, vol.6, p.1558, 2012.

S. Takeuchi, K. Fukuda, T. Yamada, S. Arai, S. Takagi et al., Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation, Cancer Sci, vol.108, pp.696-703, 2017.
DOI : 10.1111/cas.13190

URL : http://onlinelibrary.wiley.com/doi/10.1111/cas.13190/pdf

D. M. Padgett, H. P. Cathro, M. R. Wick, and S. E. Mills, Podoplanin is a better immunohistochemical marker for sarcomatoid mesothelioma than calretinin, Am J Surg Pathol, vol.32, pp.123-127, 2008.
DOI : 10.1097/pas.0b013e31814faacf

T. A. Wynn and T. R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat Med, vol.18, pp.1028-1040, 2012.
DOI : 10.1038/nm.2807

URL : http://europepmc.org/articles/pmc3405917?pdf=render

M. Inomata, K. Kamio, A. Azuma, K. Matsuda, N. Kokuho et al., Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis, Respir Res, vol.15, p.16, 2014.
DOI : 10.1186/1465-9921-15-16

URL : http://doi.org/10.1186/1465-9921-15-16

R. J. Phillips, M. D. Burdick, K. Hong, M. A. Lutz, L. A. Murray et al., Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis, J Clin Invest, vol.114, pp.438-446, 2004.
DOI : 10.1172/jci20997

URL : http://www.jci.org/articles/view/20997/files/pdf

B. B. Moore, J. E. Kolodsick, V. J. Thannickal, K. Cooke, T. A. Moore et al., CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury, Am J Pathol, vol.166, pp.675-684, 2005.

T. Tsukui, S. Ueha, S. Shichino, Y. Inagaki, and K. Matsushima, Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis, Am J Pathol, vol.185, pp.2939-2948, 2015.

R. K. Hoyles, E. C. Derrett-smith, K. Khan, X. Shiwen, S. L. Howat et al., An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor beta receptor, Am J Respir Crit Care Med, vol.183, pp.249-261, 2011.

M. Takano, C. Nekomoto, M. Kawami, and R. Yumoto, Role of miR-34a in TGF-beta1and Drug-Induced Epithelial-Mesenchymal Transition in Alveolar Type II Epithelial Cells, J Pharm Sci, 2017.

J. S. Zolak, R. Jagirdar, R. Surolia, S. Karki, O. Oliva et al., Pleural mesothelial cell differentiation and invasion in fibrogenic lung injury, Am J Pathol, vol.182, pp.1239-1247, 2013.
DOI : 10.1016/j.ajpath.2012.12.030

URL : https://doi.org/10.1016/j.ajpath.2012.12.030

R. C. Stone, I. Pastar, N. Ojeh, V. Chen, S. Liu et al., Epithelial-mesenchymal transition in tissue repair and fibrosis, Cell Tissue Res, vol.365, pp.495-506, 2016.

N. Decologne, M. Kolb, P. J. Margetts, F. Menetrier, Y. Artur et al., TGF-beta1 induces progressive pleural scarring and subpleural fibrosis, J Immunol, vol.179, pp.6043-6051, 2007.
DOI : 10.4049/jimmunol.179.9.6043

URL : http://www.jimmunol.org/content/179/9/6043.full.pdf

Y. Wu, Q. Liu, X. Yan, Y. Kato, M. Tanaka et al., Podoplanin-mediated TGF-beta-induced epithelial-mesenchymal transition and its correlation with bHLH transcription factor DEC in TE-11 cells, Int J Oncol, vol.48, pp.2310-2320, 2016.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest, vol.119, pp.1420-1428, 2009.

S. E. Mutsaers, K. Birnie, S. Lansley, S. E. Herrick, C. B. Lim et al., Mesothelial cells in tissue repair and fibrosis, Front Pharmacol, vol.6, p.113, 2015.
DOI : 10.3389/fphar.2015.00113

URL : https://doi.org/10.3389/fphar.2015.00113

R. Prasad, M. K. Goel, P. K. Mukerji, and P. K. Agarwal, Microfilaria in bronchial aspirate, Indian J Chest Dis Allied Sci, vol.36, pp.223-225, 1994.

L. Anupindi, R. Sahoo, R. V. Rao, G. Verghese, and P. V. Rao, Microfilariae in bronchial brushing cytology of symptomatic pulmonary lesions. A report of two cases, Acta Cytol, vol.37, pp.397-399, 1993.

P. Gupta, S. M. Lai, J. Sheng, P. Tetlak, A. Balachander et al., Tissue-Resident CD169(+) Macrophages Form a Crucial Front Line against Plasmodium Infection, Cell Rep, vol.16, pp.1749-1761, 2016.
DOI : 10.1016/j.celrep.2016.07.010

URL : https://doi.org/10.1016/j.celrep.2016.07.010

V. Barrera, O. A. Skorokhod, D. Baci, G. Gremo, P. Arese et al., Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: a new paradigm of hemozoin action, Blood, vol.117, pp.5674-5682, 2011.
DOI : 10.1182/blood-2010-10-312413

URL : http://www.bloodjournal.org/content/117/21/5674.full.pdf

M. Klaas and P. R. Crocker, Sialoadhesin in recognition of self and non-self, Seminars in Immunopathology, vol.34, pp.353-364, 2012.
DOI : 10.1007/s00281-012-0310-3

U. R. Rao, R. Chandrashekar, and D. Subrahmanyam, Litomosoides carinii: characterization of surface carbohydrates of microfilariae and infective larvae, Trop Med Parasitol, vol.38, pp.15-18, 1987.

K. Karasawa, K. Asano, S. Moriyama, M. Ushiki, M. Monya et al., Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemiareperfusion injury, J Am Soc Nephrol, vol.26, pp.896-906, 2015.
DOI : 10.1681/asn.2014020195

URL : http://jasn.asnjournals.org/content/26/4/896.full.pdf

J. L. Barlow, S. Peel, J. Fox, V. Panova, C. S. Hardman et al., IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction, J Allergy Clin Immunol, vol.132, pp.933-941, 2013.
DOI : 10.1016/j.jaci.2013.05.012

D. Cheng, Z. Xue, L. Yi, H. Shi, K. Zhang et al., Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroidresponsive asthma, Am J Respir Crit Care Med, vol.190, pp.639-648, 2014.
DOI : 10.1164/rccm.201403-0505oc

URL : http://europepmc.org/articles/pmc4214109?pdf=render

R. Divekar and H. Kita, Recent advances in epithelium-derived cytokines (IL-33, IL25, and thymic stromal lymphopoietin) and allergic inflammation, Curr Opin Allergy Clin Immunol, vol.15, pp.98-103, 2015.
DOI : 10.1097/aci.0000000000000133

URL : http://europepmc.org/articles/pmc4346181?pdf=render

P. D. Mitchell, O. Byrne, and P. M. , Biologics and the lung: TSLP and other epithelial cellderived cytokines in asthma, Pharmacol Ther, vol.169, pp.104-112, 2017.
DOI : 10.1016/j.pharmthera.2016.06.009

C. M. Lloyd and S. Saglani, Epithelial cytokines and pulmonary allergic inflammation, Curr Opin Immunol, vol.34, pp.52-58, 2015.
DOI : 10.1016/j.coi.2015.02.001

C. A. Christianson, N. P. Goplen, I. Zafar, C. Irvin, J. T. Good et al., Alam R (2015) Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33, J Allergy Clin Immunol, vol.136, pp.59-68
DOI : 10.1016/j.jaci.2014.11.037

URL : http://europepmc.org/articles/pmc4494983?pdf=render

B. N. Lambrecht and H. Hammad, The immunology of asthma, Nat Immunol, vol.16, pp.45-56, 2015.

Y. Lei, J. A. Gregory, G. P. Nilsson, and M. Adner, Insights into mast cell functions in asthma using mouse models, Pulm Pharmacol Ther, vol.26, pp.532-539, 2013.
DOI : 10.1016/j.pupt.2013.03.019

R. D. Bennett, A. B. Ysasi, J. M. Belle, W. L. Wagner, M. A. Konerding et al., Laser microdissection of the alveolar duct enables single-cell genomic analysis, Front Oncol, vol.4, p.260, 2014.

M. Ikutani, K. Tsuneyama, M. Kawaguchi, J. Fukuoka, F. Kudo et al., Prolonged activation of IL-5-producing ILC2 causes pulmonary arterial hypertrophy, JCI Insight, vol.2, p.90721, 2017.

M. Ikutani, T. Yanagibashi, M. Ogasawara, K. Tsuneyama, S. Yamamoto et al., Identification of innate IL-5producing cells and their role in lung eosinophil regulation and antitumor immunity, J Immunol, vol.188, pp.703-713, 2012.

K. Yasuda, T. Muto, T. Kawagoe, M. Matsumoto, Y. Sasaki et al., Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice, Proc Natl Acad Sci U S A, vol.109, pp.3451-3456, 2012.

F. F. Almeida and G. T. Belz, Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection, Mucosal Immunol, vol.9, pp.1103-1112, 2016.

K. N. Ealey, K. Moro, and S. Koyasu, Are ILC2s Jekyll and Hyde in airway inflammation?, Immunol Rev, vol.278, pp.207-218, 2017.

E. Myburgh, R. Ritchie, A. Goundry, K. O&apos;neill, F. Marchesi et al., Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model, PLoS One, vol.11, p.168602, 2016.

S. Gross, S. T. Gammon, B. L. Moss, D. Rauch, J. Harding et al., Bioluminescence imaging of myeloperoxidase activity in vivo, Nat Med, vol.15, pp.455-461, 2009.

J. C. Tseng and A. L. Kung, vivo imaging of inflammatory phagocytes, vol.19, pp.1199-1209, 2012.