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Abstract

Position information provides useful data for a wide range of applications, including tracking,
assisting, automation, energy saving, etc. There are a number of technologies which can be
used for positioning task. With the popularity of smartphones and tablets in daily life, the task
of finding users’ position through their phones gains much attention from both the research
and industry communities. Technologies integrated in smartphones such as GPS, Wi-Fi, Blue-
tooth and camera are all capable for building a positioning system. Among those technologies,
GPS approaches have become a standard and achieved much success for the outdoor envi-
ronment. Meanwhile, Wi-Fi, inertial sensors and Bluetooth are more preferred for positioning
task in indoor environment. In our work, the performance of the three above technologies

for positioning users by their smartphones in indoor environment is studied.

For smartphone positioning, Wi-Fi fingerprinting based approaches are well established
within the field. Generally speaking, the approaches attempt to learn the mapping function
from Wi-Fi signal characteristics to the real world position. They usually require a large
amount of data for finding a good mapping. When the available training data is limited, the
fingerprinting-based approach has high errors and becomes less stable. In our work, we want
to explore different approaches of Wi-Fi fingerprinting methods for dealing with a lack of
training data. Based on the performance of the individual approaches, several ensemble strat-
egies are proposed to improve the overall positioning performance. All the proposed methods
are tested against a published dataset, which is used as the data for the competition at the
IPIN 2016 Conference with offsite track (Track 3). For detecting the user’s floor, the accuracy
can reach 93% of accuracy on the testing data. For computing the user’s position, standard
learning models could reach around 6m in average distance error. By combining these mod-

els, the mean distance error can be reduced to around 5.12m.



Besides the positioning system based on Wi-Fi technology, the smartphone’s inertial sensors
are also useful for the tracking task. The three types of sensors, which are acceleration, gyro-
scope and magnetic ones, can be employed to create a Step-And-Heading (SHS) system. Sev-
eral methods are tested in our approaches. The number of steps and user’s moving distance
are calculated from the accelerometer data. The user’s heading is calculated from the three
types of data with three methods, including rotation matrix, Complimentary Filter and Madg-
wick Filter. Between the step and heading component of the user’s movement, the heading
is usually more affected by noisy data and has more contribution to the tracking errors over-
time. Practically, it is difficult to have an error-free heading estimation method. Therefore, it
is reasonable to combine SHS outputs with the outputs from Wi-Fi because both technologies
are generally present in smartphones. Two combination approaches are tested. The first ap-
proach is to use directly the Wi-Fi outputs as pivot points for fixing the SHS tracking part. In
the second approach, we rely on the Wi-Fi signal to build an observation model, which is then
integrated into the particle filter approximation step. The combining paths have a significant
improvement from the SHS tracking only and the Wi-Fi only. Although, SHS tracking with Wi-
Fi fingerprinting improvement achieves promising results, it has a number of limitations such
as dependence on the user’s walking styles and restriction on smartphone handling position

and orientation.

In the context of multiple users, Bluetooth technology on smartphones could provide the ap-
proximated distance between users. The relative distance is calculated from the Bluetooth
inquiry process. It is then used to improve the output from Wi-Fi positioning models. We study
two different combination methods. The first method aims to build an error function which
is possible to model the noise in the Wi-Fi output and Bluetooth approximated distance for
each specific time interval. It ignores the temporal relationship between successive Wi-Fi out-
puts. Position adjustments are then computed by minimizing the error function. The second
method considers the temporal relationship and the movement constraint when the user
moves around the area. The tracking step are carried out by using particle filter. The observa-
tion model of the particle filter is a combination between the Wi-Fi data and Bluetooth data.

Both approaches are tested against real data, which include up to four different users moving



in an office environment. While the first approach is only applicable in some specific scenar-
ios, the second approach has a significant improvement from the position output based on

Wi-Fi fingerprinting model only.

Key words: indoor positioning, smartphone-based tracking, Wi-Fi, fingerprinting, inertial sen-

sors, Bluetooth, collaborative positioning.
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Chapter 1  Introduction

Position information is useful data for a wide range of real applications, including tracking,
assisting, automation, energy saving, etc. Basically, the task of a positioning system is to iden-
tify the position of the users or moving objects within an area. There are a number of tech-
nologies which can provide useful information for positioning. Depending on the technologies
in use, the accuracy of the positioning estimation can vary from sub-meter to several meters
or room sized accuracy. Other aspects like robustness, deployment and management cost,

and user friendliness may also play an important role in designing such systems.

With the popularity of smartphones and tablets, the task of finding user’s position through
their phone gains much attention from both the research and industry communities. There
are more than ten kinds of sensors which are present in most of smartphones nowadays.
Based on the localization purpose, the sensors can be classified into three separate groups,
including wireless-based technology, optical-based technology and sensors-based technol-
ogy. The wireless-based technology includes GPS, cellular, Wi-Fi and Bluetooth. The optical-
based technology is the smartphone’s camera(s). The inertial-sensors-based technology in-
volves the data from accelerometer sensor, gyroscope sensor and magnetic sensor. There are
also other sensors such as light sensor and microphone, which could be employed for deter-
mining the user’s positioning. However, they are not as popular as those in the above three

groups.

Within the wireless technology based methods for user positioning task, the GPS has already
become an industrial solution for smartphones. Its advantages include the global coverage
with meter-accuracy in outdoor environment. Meanwhile, the GPS-solution is not stable
enough for indoor environment because the quality of GPS signal decreases by the building.
For the remaining technologies, the cellular-based positioning also does not work well in in-

door environment for the same reasons. The usage of smartphone’s camera requires heavy
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computing efforts and is not user-friendly. Therefore, Wi-Fi, Bluetooth and inertial sensors

are considered as alternative solutions for indoor environment.

Wi-Fi and Bluetooth work in a similar way. However, the range of Wi-Fi is about two to three
times to that of Bluetooth. Wi-Fi is also much more popular than Bluetooth because it is the
main technology for high-speed and low-cost wireless network access. Wi-Fi access points
nowadays appear in almost every public area. Therefore, Wi-Fi is one of the most interesting
technology for smartphone-based positioning. To date, the accuracy of Wi-Fi is expected to
be around 5m in terms of mean distance error. The fingerprinting-based approach is among
the mostly used approaches for Wi-Fi indoor positioning thanks to the full exploitation of de-
ployment Wi-Fi access points. The main drawback of fingerprinting methods is that the fin-
gerprinting model is required to collect a Wi-Fi signal map for the entire area. This task is
usually a time consuming step, which should be done by an expert. However, to make the
approach flexible for a large public area, we explore a more user-friendly context of data col-
lecting process. The data is published by the IPIN 2016 Conference with offsite track compe-
tition (Track 3) [Torres-Sospedra et al. 2017]. The published data could be collected in an easy
way and does not require much labor cost. As a trade-off, it results in less training data than
the traditional Wi-Fi fingerprinting database. The limited training data raises many difficulties
for learning the mapping from the noisy Wi-Fi signal to the real position. To reduce the effect
of noise in the learning phase, we employ several learning methods and feature sets. A further
layer of combinations between various models could be added for improving the fingerprint-

ing model.

Besides the data for Wi-Fi technology, smartphone’s inertial sensors provide an alternative
way to localize the user’s phone. The inertial sensors include the accelerometer sensor, gyro-
scope sensor, and magnetic sensor, that could be grouped for building Step-Heading-System
(SHS) tracking. The smartphone is usually restricted to be handled and pointed forward when
the user is walking. Due to this restriction, the phone’s direction has high correlation to the
user’s moving direction. The SHS system attempts to compute the step and heading of the
user’s movement. It then tracks the movement of the user from a given starting point. How-
ever, the smartphone’s sensors come at a low cost, which results in some degree of noise in

the data. Other sources of noise could be the non-calibrated gyroscope and magnetic sensors.

2
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In addition to that, the speed and heading error from each computing step are added up by
times. This result leads to a huge drifting in the output position. Therefore, it is mandatory to
have an alternative positioning model for reducing the drifting effects. In our work, we choose
the output from Wi-Fi fingerprinting model as an additional source of information for making
the SHS more reliable. The SHS system is built from the standard step counter and heading
estimation. In order to reduce the effect of noise, the two computed values are combined by
a particle filter approximation. Several ways to fuse the Wi-Fi and SHS position information
are introduced and tested. The first fusing method uses the position output from Wi-Fi scans
and adjusts the SHS tracking paths directly. In the second fusion approach, the Wi-Fi output
is integrated into an observation model for the SHS’s particle filter step. The two proposed
fusion approaches could reduce the noise from both the Wi-Fi data and inertial-sensors data
significantly. Although the fusion-based approaches have prominent results, several weak-
nesses of the SHS approaches are difficult to improve, such as the restriction on the phone

holding position.

Beside the inertial-sensors data, the Bluetooth technology is considered as another source of
data for positioning. Among the available communication on the smartphone, Bluetooth is
able to provide information about the neighborhood devices. In a multiple-user context,
where multiple smartphones could be simultaneously present, we could employ the infor-
mation for improving the individual positioning. From the Bluetooth inquiry process, the sig-
nal strength from one smartphone to another could be acquired and then used to compute
the relative distance between the two devices. Alternatively, the relative distance could be
estimated by knowing the two devices’ position. We rely on the Wi-Fi data with fingerprinting
model for deriving such distance. In an ideal situation, the two computed distance values
should be the same. However, because both the Bluetooth estimated distance and Wi-Fi es-
timated positions are affected by noise, they would be different in general. In our approach,
error functions based on the mismatch between the two distances are built. The user’s posi-
tion is then updated based on the minimal values of the functions. Two types of functions are
proposed. The first one neglects the temporal relationship between successive user’s esti-
mated positions. It only focuses on the errors of individual technologies. Two separate Gauss-

ians error distribution models are employed for the Bluetooth data and Wi-Fi data. In the



Introduction

second approach, the movement of the users are included into the error function. We employ
particle-filter-based tracking for minimizing the error function. The particle filter tracks the
user by a simple motion model. Additional map-based information is added for removing bad
particles. The observation model of the particle filter is combined from the Bluetooth data
and Wi-Fi data. Both approaches are tested with real scenarios which include multiple de-
vices. The testing results show that Bluetooth-based relative distance could provide sufficient

information for improving the user’s localization results in a multiple-user context.



Chapter 2  Literature Review

Nowadays, different sources of information, which come from various underlying technolo-
gies, can be used for localization purpose. These technologies are present in different types
of devices, such as cameras, motion sensors, identity cards or smartphones. In general, each
technology comes with a set of parameters such as type of data, update rate, cover area and
the amount of noise. Therefore, the methods to extract the user’s position from one specific
technology will mostly differ to another technology. At the highest abstract level, these meth-
ods can be roughly divided into three main categories: optical-based methods, wireless-based
methods and inertial-sensor-based methods. In this chapter, we first start to review some
positioning methods for localization purpose. In the second part, user localization by

smartphone are presented.

2.1 Optical-based Methods

With the recent advances of technology in image processing area, optical-based positioning
has become one of the dominating technique for indoor positioning, which can achieve a high
level of accuracy [Mautz and Tilch, 2011]. These systems can be divided into two separate
categories, including mobile cameras and fixed cameras. With fixed-camera approach, one or
more cameras are placed at several locations in the environment. The cameras then detect
and track moving objects through the scene. In the mobile-camera approach, the camera cap-

tures the scene while it is moved around.

For both categories, various image-processing techniques are employed to detect specific
patterns within the captured imaged. The patterns represent moving objects or specific land-
marks. The transformation between the image coordinates and the world coordinates could

be established by standard collinearity model:
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Equation ( 1) is introduced in photogrammetric reference books such as Luhmann et al.
[2006]. The two points (X,Y, Z) and (X€,Y¢, Z€) are the positions of the interested patterns
and the camera center in world coordinates respectively. Constant A is the distance factor
and R is the rotation matrix. The point (x, y) is given in the image coordinates with (x,, y;,)
as the principal point and c is the principal distance. The values of R, (x,,¥,) and c are in-
volved in the intrinsic and extrinsic parameters of the camera. Parameters which describe the

camera distortion could be added to Equation ( 1) for a more robust transformation.

2.1.1 Fixed Cameras

The works for fixed-camera tracking are usually referred as visual tracking. All the necessary
information, the camera’s intrinsic and extrinsic parameters and camera’s position are as-
sumed to be known. Therefore, it is possible to establish the coordinate transformation from
the image coordinates to the real world coordinates by Equation ( 1 ). This task is then evolved
to find the tracking objects within an image or a set of images. The area of object is usually
named as the region of interest (ROI) or target region. Novel approaches include environment
modeling, motion segmentation and object classification. More details for each approach
could be found in [Hu et al. 2004]. Recently, deep convolution neural networks (CNN) are

applied for visual tracking purpose, such as in Nam and Han [2016] and Wang et al. [2015].

For the localization purpose, the visual tracker also needs to identify the moving objects
across a sequence of images. Therefore, it should be able to combine the results from differ-
ent frames into stable object trajectories. When more than one objects are tracked, the
tracker is also required to differ between each of the objects’ region. In early works, Trucco
and Plakas [2006] discussed in depth these methods, which include window tracking, feature
tracking, planar rigid shapes, solid rigid shapes, contours tracking and visual learning. In more
recent works, the trackers are divided by several characteristics such as tracking region, ap-
pearance model, motion model and update methods. A novel model for tracker is presented

in Smeulders et al. [2014] (Figure 1).
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Figure 1. Model for objects tracking in a sequence of images [Smeulders et al., 2014]

The model involves a representation model and then a matching step for two consecutive
frames in a sequence of images. The representation of object could be a rectangle of image-
like data, histogram based or feature-vector based. The matching step usually depends on the
object representation. Methods based on gradient ascent, subspace matching or discrimina-
tive supervised classifier are available. The performance of the novel tracking methods is com-
pared in Smeulders et al. [2014]. Recently, in the Visual Object Tracking challenge 2015, Kris-
tan et al. [2015] presents the results of 62 trackers. The challenge focuses on the tracking
context of single-camera, single-target, model-free, casual-trackers and short-term. The da-
taset contains several visual attributes such as occlusion, illumination change, motion change,
size change and camera motion. Deep CNN based approaches are among the top perfor-

mance trackers.

For tracking users at large scale, multiple cameras could be involved. The use of multiple cam-
eras is needed as the point of view from one single camera has issues for covering a large
area, especially in indoor environment. The existence of walls and objects in indoor environ-
ment would block the line-of-sight between the camera and the tracking targets. A general

framework for multiple cameras surveillance is proposed by Hu et al. [2004] (Figure 2).
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Figure 2. General framework for video surveillance across multiple cameras [Hu et al.,
2004]

In general, when the tracking task is expanded from one camera to multiple cameras, the
main challenge is the association between target objects appearing in the fields of view of
different cameras. The camera installation and location also play an important part in such
systems. The installation is usually required to have overlapping regions between cameras’
field of view. It is also need a calibration process for transforming image-coordinates from
one camera to other cameras. For example, Zhang et al. [2009] propose a calibration ap-
proach, which maps the point in each camera’s field of view to a global map by a semi-auto-

matic process. The approach is able to fuse the tracking results up to 50 individual cameras.

In a non-overlap multiple camera setup, the tracking system should be able to identify the
user, who disappears from one camera and reappears under the field of view of another cam-
era. This issue usually arises for the indoor environment where it is difficult to get the over-
lapping field of view from different corridors, doors and rooms. For instance, one setup for
indoor environment is presented by Thi-Thanh-Thuy et al. [2016] (Figure 3). There are four

cameras which are placed at different places in the office environment. The setup is mixed
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between sharing fields of view and non-sharing fields of view, thus, makes the tracking task
become more challenging. For tracking people in the entire area, it is required a matching
step through the images of different cameras. The work discusses in-depth several challenges
of tracking across multiple cameras, such as user’s pose, scale in variation and user’s occlu-
sion. In order to solve the re-identification tasks, they propose a support vector machine rank-
ing method using Kernel Descriptors as the image-based features for the person [Bo et al.,
2010]. The proposed work has achieved prominent results, though, it is still necessary to have
an additional wireless-based position system to stabilize the person matching performance.
The other challenges for multiple camera tracking include calibration of cameras, camera’s

setup topology and information fusion [Wang and Lu, 2017].
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Figure 3. A setup for tracking with non-overlap area between multiple cameras [Thi-
Thanh-Thuy et al., 2016]

2.1.2 Mobile Camera

The task of tracking when the camera moves is also known as visual navigation. The position
of the camera is calculated based on the received image sequence. It is usually needed an
additional reference database to be able to calculate the camera position. The standard ap-

proach is based on image reference database. For example, Figure 4 illustrates this approach.
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Computer vision algorithm is used to compare the similarity between different images. How-
ever, as the camera is moving, the matching computation needs to be done in real time, which
is one of the main challenges of this approach. The other challenges include the error accu-
mulated over time and environmental changing. The work proposed by Ido et al. [2009] uses
a camera mounted on the head of a humanoid robot for indoor navigation purpose in the
indoor environment. In Deretey et al. [2015], the authors collect a large amount of images of
a specific scene to build the entire structured of the scene. The image reference database is
converted into a feature database. To positioning task is reduced from the standard image
matching to feature matching, which make the computation less heavy. The results are re-

ported at less than 10mm for an office and a laboratory environment.

Figure 4. Reference image database (left) is used for calculating the camera position
(right image) [Mautz and Tilch, 2011]

In order to reduce the computational complexity of the image reference database approach,
specific type coded targets could be deployed as landmarks. For instance, Atiya and Hager
[1993] propose a method of using stereo images for robot positioning. The landmarks’ role is
to provide a robust matching between image-coordinate system and real-world-coordinate
system. The proposed approach first detects the landmarks through various robot poses and
tries to match it with known landmarks’ coordinates in the database. Then, a geometric-based
solution is developed to find the robot’s pose and position. Figure 5 illustrates their experi-
ment setups. An error of less than 1 centimeter is reported. Camera distortion effects and
computation complexity are also discussed in the article. In some recent works, the localiza-
tion task could be considered as a sub-task in the field Simultaneous Localization And Map-

ping (SLAM). SLAM is the task of building the environment map and then using this map to
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deduce the object location at the same time [Aulinas et al., 2008]. When the cameras are used
as the main sensors, the task is referred as visual SLAM [Se et al., 2005]. In visual SLAM, the
landmarks are discovered and registered their positions automatically when the camera is
moved around the scene. There are several novel approaches for visual SLAM such as PTAM
[Strasdat et al., 2011], CD-SLAM [Pirker et al., 2011] and ORB-SLAM [Mur-Artal et al., 2015].
Although visual SLAM could provide a good solution for robot localization, the system’s per-
formance still varies on the specific type of environment. Complex, dynamic or visual-repeti-
tive environments are among the challenged environments for visual SLAM approaches

[Fuentes-Pacheco et al., 2015].

random position 1 Aoar
= ] 0

random position 2

v

Figure 5. Using installed landmarks for robot localization. The landmarks are drawn as
circles in the floor plan and are used to differ between two random positions [Atiya
and Hager, 1993].

The laser scanning based positioning could also be grouped into this category. For example,
Light Detection and Ranging (LiDAR) based system is a preferred approach for the GPS-denied
environments [Miller et al., 2010]. The LiDAR system provides the distance to the nearest
obstacle within a large angle. The information then is used to build a point cloud, which is
then matched to the stored point cloud database. By combining with the inertial measure-
ments, Soloviev et al. [2007] propose a laser scanner based approach which could reach sub-

meter accuracy.
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Because of the requirements for computational capacity and the camera’s position, most of
the proposed approaches with the mobile cameras only work on moving robots. For extend-
ing the work to user localization, it requires the camera to be carried by the user at a specific
position. Marouane et al. [2016] proposes a method for step detector from a user carrying

camera. The camera setup is illustrated in Figure 6.

Figure 6. User-carrying camera setup for step detection [Marouane et al., 2016]

The results show that the proposed system is able to compete against other step counting
methods, which are produced by Apple iPhone 6 and Apple iPod Nano (6th generation). In
Mulloni et al. [2009], a landmark-based method is proposed for localizing smartphones in the
indoor environment. The approach, first, requires the markers to be deployed at some spe-
cific locations within the environment. The user is required to scan the available markers in
the area. The Figure 7 gives an illustration of the scan step with a phone’s camera. The images
are then processed to compute the phone’s position. The works have developed and tested

in real world deployment.

12
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Figure 7. A user scans the marker with the smartphone [Mulloni et al.,2009]

To summarize, depending on the application of the positioning task and the type of camera
in use, the accuracy of optical-based systems could range from less than 1cm to 0.5m [Mautz

and Tilch, 2011].

2.2 Wireless-based Methods

Compare to optical-based methods, wireless based approach brings more flexible options for
the positioning tasks. It covers a great range in terms of real world applications such as self-
organizing sensor networks, location sensitive billing, ubiquitous computing, context-depend-
ent information services, tracking and guiding [Liu et al., 2007]. The hardware implementation
usually includes a set of base stations and tracked devices. The base stations can be called the
landmarks, which positions could be available or unavailable based on specific localization
approaches. The tracked devices are the mobile devices. The mobile devices have a certain
form of communication with the base stations. Their locations are then calculated based on
the data of this communication. In most of the systems, the base stations play the role of the
signal transmitter and the mobile devices are the signal receivers. The type of signal could be
radio wave or sound wave. The propagation properties depend on the wave length and the
environment. Popular technologies are GPS-based, mobile cellular network, wireless local
area network (WLAN), radio frequency identification (RFID), Bluetooth and Ultra-Wide Band

(UWB). The techniques also vary based upon the specific technologies. Generally, the popular
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approaches for wireless-based positioning can be grouped into geometry-based approaches,

fingerprinting-based approach and proximity-based approach.
2.2.1 Techniques

2.2.1.1 Geometry-based

The geometry based measures the object position by the related geometry characteristic be-
tween the tracked device and the base stations. The most widely used properties are distance
between the two. It is often required that the position of the base stations is available. By
knowing the distance between the mobile device and one of the base stations, we could de-
duce that the object position would be on a sphere. The exact position then can be calculated

by intersections of those spheres.

Formally, let the object location be (X, Y, Z), which need to be calculated. The base stations
are located at (x;, ¥;, Z;) and have the distances d; to the object. In case of three stations only,
the positioning problem can be converted to solve the a system of equations with the un-

knowns are (x,y, z):

\/(x—x1)2+(y—y1)2+(z—21)2 =d,
VE—x)2+ @ —y,)2+ (z—2)2 =d, (2)
VE—x3)2+ (7 —y3)2 + (2 — 23)? = ds

Figure 8 illustrates the way to find the object location in a geometric way. Equation ( 2 ) could

results in two possible solutions. One of the two possible solutions could be excluded by add-
ing constraints. The main obstacle of this approach is to find the distances d; accurately. There
are several techniques, such as Time of Arrival (TOA), Time Difference of Arrival (TDOA),

Round Time of Flight (RTOF) and Received Signal Strength (RSS) based.
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Figure 8. An object location (X,Y,Z) could be identified by knowing its distance to
three base stations

The TOA approach uses the straightforward approach, which calculates the distances d; from
the signal’s velocity and the signal’s travel time. The signal between the tracked device and
each base station is transmitted with the timestamp of transmission. The travel time then can
be derived from the timestamp. This approach is usually required both the base stations and
the receiver are synchronized properly. There are several technologies using this technique.
They include Global Position System (GPS) [BH-Wellenhof and Collins, 1997; Misra and Enge,
2006], Ultra-Wide Band [Fontana and Gunderson, 2002] and Wireless Local Area Networks
[Ali and Omar, 2005; Golden and Bateman, 2007].

In Priyantha et al. [2000], TDOA is used for measuring the distance between two devices. The
authors implement a system which transmits simultaneously two types of signal, a radio-
based signal and a sound-based signal. The received time difference at the receivers is then
used to calculate the distance from the transmitter to the receivers. Gentner and Jost [2013]

use the multipath effects for calculating the TDOA.

With the RTOF approaches, one of the two ends acts as a reflect unit. The signal is reflected

to the transmitter and the time is calculated based on the time of a round trip flight [Glnther
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and Hoene, 2005]. Therefore, it is not required to synchronize time between the tracked de-

vice and the base stations like in the TOA-based approach.

In RSS based approach, the distance is calculated from the signal strength at the receiver.
When the signal is transmitted from the base station to the mobile device, its propagation
properties could be modeled as a function of frequency, distance and environment’s factors.
Generally, it is difficult to create a general model for covering all the possible situations. For
the positioning purpose, the log-distance path loss model (LDPL) model and its variation are
widely used. It provides a simple estimation of the signal power based on its distance. The

signal power P(d) at distance d from the base station is computed as:
P(d) = P(d) — 10nlog- (3)
0

where P(d,) is the value at a reference point with the distance d, and n is the path loss
exponent. While the value of P, needs to be measured directly for each specific system setup,
the path loss exponent n mostly depends on the type of environment. Some values of n are
presented in the Table 1 [Rappaport et al., 1996]. If the signal strength P(d) can be measured
at the mobile device, it is able to compute the distance between the device to the base station

by using the formula in Equation ( 3 ).

Table 1. The path loss exponent values in some popular environments [Rappaport et

al., 1996]
Environment n
In building line of sight | 1.6 to 1.8
Free space 2
Urban area 2.7t03.5
Shadowed urban 3to5
Obstructed in building 4t06

With the presence of many obstacles in the environment, the Wall Attenuation Factor (WAF)
is proposed by Bahl and Padmanabhan [2000] as an alternative version of LDPL model. It de-

scribes the relationship between the signal strength loss and the obstacles:

wx WAF ifw<(C

C «WAF ifw=>C (4)

P(d) = P(dy) — 10nlogdi0 —{
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where C is the maximum number of obstructions which can makes a difference in signal
power, w is the number of obstructions which the signal has to pass. The path loss model and
others derived formulas are popular among the WLAN technologies and Bluetooth because
the technology infrastructure are well supported for the RSS reading. Using the model in
Equation ( 4 ) a resolution of 4.3m can be achieved with 50" percentile. To get a better per-
formance, more complex models are proposed to simulate the propagation properties of ra-
dio signal as proposed by Chintalapudi et al. [2010]; Della Rosa et al. [2010] and Bose and Foh
[2007]. These models include a number of parameters and require calibration processes to

find an optimization set of parameters.

It is likely that approaches like TOA and RSS-based results in inaccurate distance. Therefore,
more base stations could be added to the Equation ( 2 ) for improving the system perfor-
mance. The task of finding the value (X, Y, Z) is then transformed into a constrained minimi-
zation problem. More specifically, each known distance d; between the mobile device and

the base station i*" is used to form a cost function f;:

fi=Jox—x)2+ @ —-y)?+(@z-2)*—d; (5)

where (x;,y;, ;) is the position of the i‘" base station. It is needed to find (X, Y, Z) which

minimizes the sum of cost functions [Liu et al., 2007]:
F=Z§V=1ai2fi2 (6)

where N is the number of base stations and «; reflects the reliability of the distance estima-
tion at base station i. The least-square algorithm could be employed to find the appropriate
value of (X,Y,Z) [Blewitt, 1997; Cheung et al., 2004]. In practice, it usually revolves more
than three base stations to make the above method applicable. When there are less than
three base stations, the function F in Equation ( 6 ) is unusable for finding the object position
(X,Y,Z). For example, in case of GPS-based technologies, it is difficult to measure the GPS
receiver position when the signals from satellites to the receiver are blocked by buildings in

indoor environment.

Apart from the distance based approach, the angle is also a geometric property could be em-
ployed for localization task. In Niculescu and Nath [2003], the authors propose the Angle Of
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Arrival (AOA) positioning method. They design a sensor networks which include AOA-capable
nodes. The main principal is explained in Figure 9. Four points A, B, C and D are AOA-capable
nodes. The three points A, B, C plays the role of landmarks which positions are known. For
computing the position (x,y) of D, it is required to know the AOA of D, which includes ADB,

BDC and CDA. The position (x,y) is the intersection of the three respective circles each of

AB, BC and CA side.

A}(:’l'a s Ya)

O

B(xp, Yb)

Figure 9. AOA approach for positioning, proposed by Niculescu and Nath [2003]

2.2.1.2 Fingerprinting-based

The fingerprinting based techniques focuses on the signal pattern at each specific location. It
bases on the assumption that for each specific position has a unique signal pattern. Normally,
a fingerprinting based technique includes two separate phases. The first one is site surveying,
in which the signal patterns around the site are collected to build a database. Because the
signal can vary over time at a specific place, multiple signals from base stations are recorded
in a period of time. Assume that we have N base stations, namely B,, B,, ..., By. At a specific
point P(x, y, z), the signal characteristics are represented by r;. Mostly, the 7; is the received
signal strength (RSS) or the received signal strength index (RSSI). It can be explained by the
highly correlation between the position P with the distance to the base station, which then
results in the value of RSS. Beside the RSS/RSSI values, other signal characteristics such as
direction of arrival could be used for representing the signal features [Tayebi et al., 2009].
Even in more simple cases, the values of 7; could be the presence signal from the base stations
it" which can have 0 or 1 value. The whole signal characteristics of the point P at is created

by joining each value of ; into ¥ = {r;,7,,...,ry}. Itis not required that all the base stations
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value r; are present at the position P. For example, if the mobile device and the base station
are too far from each other, the RSS value is not available. The results of the first phase are
described as a signal map. The map would contain a list of elements. Each element is a pair of
the position P and the signal characteristics vector ", There are usually multiple signal char-

acteristics vectors rf for each position.

In the second phase, the tracked device scans the signal and matches the scan results with
the signal map to find its location. Generally, this step can be considered as a standard regres-
sion task if the positions are continuous values, or a classification task if the positions are
treated as discrete values. One of the pioneer works in the field is described in Bahl and Pad-
manabhan [2000]. This paper proposes the framework of Wi-Fi fingerprinting approach,
which introduces several methods for matching RSS-based signal vectors. For comparing the
similarity between signal characteristics vector, they employ random selection, strongest
base station selection and multiple nearest neighbors. Other issues of fingerprinting approach
such as number of points, number of samples per point and device orientations are also dis-
cussed in the paper. In the experiments of tracking a mobile user, a median error of 3.5m is
reported. Following works in the field mainly focuses on the ways for finding the most appro-
priate matching methods. There are many possible approaches such as Probabilistic method
[Kontkanen et al., 2004], K-Nearest Neighbors (KNN) [Bahl and Padmanabhan, 2000; Saha et
al., 2003; Li et al., 2006], Artificial Neural Network [Fang and Lin, 2008; Zhou et al., 2010, Dinh-
Van et al., 2017], Support Vector Machine [Wu et al., 2004; Brunato and Battiti, 2005] and

Random Forest [Jedari et al., 2015].

In general, the fingerprinting approach suffers the noisy propagation of signal in the environ-
ment, especially in the indoor environment. Potential factors that affect the signal character-
istics are various such as the presence of wall, door, human, hardware and software depend-
ent [Chen et al., 2005; King et al., 2006]. Thus, it is impossible to find an exact matching signal

characteristics vectors from the collected database.
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2.2.1.3 Proximity-based

In the proximity-based approach, the positioning areas are split into separated regions. The
system then identifies which region the mobile device is belong to. The regions can be se-
lected in different principles regarding the environment, the underlying wireless technologies
and the signal characteristics. For example, mobile network based techniques are able to use
the cell identification (Cell-id) approaches to get a rough estimation of the mobile device [Tre-
visani and Vitaletti, 2004]. In the proposed system, whenever the device connects to a cell
tower of network, its will be positioned at the tower’s location. In Wang et al. [2012], the
authors suggest a way to cluster Wi-Fi signal into landmarks of 4m? area approximately. The
landmarks then are combined with other technologies to provide a more accurate tracking
results. The proximity-based approach can be used together with the Bluetooth technology
to locate stationary mobile users at room level [Bargh and de Groote, 2008]. The advantage
of the proximity-based approach is that it would be easier to find the region of the object’s
position than to calculate the object’s exact position. In practice, some applications such as

home automation, can work on a room level accuracy efficiently.

2.2.2 Technologies

There are various technologies used in wireless positioning. Most of them are radio signal,
which comes with a specific wave length and communication protocol. Technologies like GPS
or Bluetooth iBeacon are designed for the positioning purpose from the beginning. Mean-
while, technologies like Cellular Network or Wi-Fi are designed for the communication pur-
pose. In general, the later type of technologies comes up with more challenges to build a good
positioning system. However, the effort to build a system based on those communication
purpose ones could be justified as a way to exploit the available infrastructure. Beside radio-
based technologies, sound-based technologies are also capable for positioning purpose. In
term of performance, the GPS-based technology is a dominant approach for outdoor posi-
tioning. It provides a global coverage with meter-level accuracy. Nevertheless, there is an ob-
vious significant decrease of accuracy for the indoor positioning with GPS-based systems. The
other approaches could get to a more reliable performance for the indoor environment. Sev-

eral popular technologies are discussed in the next section.
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2.2.2.1 GPS

GPS-based approach is a prominent solution for localization purpose. The most important
characteristics is its world-wide coverage. Basically, the underlying mathematical model is the
distance based on Equation ( 2 ) with TOA approach. In GPS system, the base stations are
satellites. They orbit the Earth and send signals to GPS receivers, which act as tracked devices.
Both satellites and GPS receivers are time-synchronized precisely. Therefore, when the signal
with timestamp is received at the GPS receivers, the travel time can be calculated and the

distance is calculated by multiplying the time with the signal’s speed.

Let [x;, i, Z;, t;] is the received information of the GPS receiver from the GPS satellite i*". The
first three values are the satellite’s coordinates and t; is the time stamp when the message is
sent. At the receiver, the time of message reception is t,.. Although the clocks between each
endpoint are synchronized, GPS introduces the clock bias b at the GPS receiver, which results
in the true reception time at the receiver is t,. = t, + b. Then, the distance d; between the

satellite i*" and the receiver is:
di= (- +b—-t)V (7)
where V is the speed of signal propagation, which is generally known.

The receiver is at the surface of the sphere which has the center at [x;, y;, z;] and the radius

t;. The relationship is presented in the form of a sphere equation:
(x—x)*+ (- y)?* +(z—2)* = ([t + b — t;]V)? (8)

There are four unknown parameters which are x,y,z and b in Equation ( 8 ). To solve the
equations, at least 4 satellites are required to be visible by the GPS receiver. If the number of

satellites is less than 4, it could result in an inaccurate position [Abel and Chaffee, 1991].

There are a number of issues with the geometry approach in GPS based localization. Firstly,
the distances are calculated based on the speed of signal. Therefore, high precision in the
synchronization step, message sending and receiving time at the both ends are required. In
addition, considering the long way of travelling distance, signal inference in the Earth surface

atmosphere can affect to the speed of signal in an unexpected way. Multipath and missing
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sky visibility are other sources of error, especially in the indoor environment. Because of those
errors, additional methods are employed to obtain a more stable performance, such as dif-
ferential GPS [Moore, 2002] or pseudo-satellites [Wang, 2002]. Assisted GPS (AGNSS, AGPS)
is a system which integrates GPS with other wireless communication means [Van Diggelen,
2009]. AGPS uses external data, which is mostly from cellular communication, to enhance the
system’s performance in poor satellite signal condition. While AGPS has an acceptable accu-
racy for outdoor environment, its performance in indoor environment is not reliable due to
the obstruction of building. The High Sensitive GPS method for indoor environment employs
a number of techniques for a more accuracy distance estimation. These are improving low
signal to noise ratio and reducing the computing time of satellite messages. With various in-
door environment, the study in Zhang et al. [2010] concludes that accuracy from 20m to 60m
can be achieved. It is noted that GPS-based positioning has a long respond time and should

be combined with other types for a finer tracking.

Besides GPS-based systems, there are other systems taking the same approach [Fernandez-
Prades et al., 2011]. The most notable systems include the Russian Global Navigation Satellite
System, Galileo Positioning System and China’s BeiDou Nagivation Satellite. However, com-
pared to the GPS, which is developed from the 1960s, all of the three systems are relatively

new and still under development.

2.2.2.2 Mobile Cellular Networks

Cellular networks are the basic technologies for communication of mobile phones in many
countries. The technologies for cellular networks are Global System for Mobile communica-
tion (GSM) or Code Division Multiple Access (CDMA). The cellular communication uses signal
frequency at around 300 MHz to near 3 GHz. A mobile device is tracked based on the signal
exchange between the mobile device and the cellular towers. The range between mobile de-
vice and tower can reach up to 35km. Because of its great range, the propagation signal is
highly depending on the environment’s condition such as weather and the building. Like GPS-
based technology, cellular network positioning is also available in commercial positioning sys-

tems, for example Google Mobile Maps [Zandbergen, 2009].
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Three main approaches for GSM-based localization are RSSI fingerprinting, distance based
and angle based. RSSI fingerprinting method relies on the variation of GSM signal when the
phone’s position is changed. In Varshavsky et al. [2007], the authors show that the GSM signal
is less affected by the condition of the outside environment. With a sufficiently-dense enough
RSSI samples position, they conclude that using RSSI fingerprinting can reach the accuracy of
2m. The experiment is carried out in a multi-floor building and with 29 GSM channels. How-
ever, Popleteev [2011] reports that GSM signal can be less reliable due to the effect of
weather, and construction. With distance based approach, it is difficult to find a proper model
for GSM signal propagation taking into account its great travelled distance. lkegami et al.
[1984] propose a model which includes building heights, antenna heights and street widths.
An accuracy of 100m is feasible with this type of approach according to Gustafsson and Gun-
narsson [2005]. Similar accuracy can be achieved with AOA-based approach [Shen and Oda,
2010]. Driusso et al. [2016] employs the TOA approach with the new mobile communication
standard, Long Term Evolution (LTE). It is able to achieve a root mean square distance error
of 9.61m. However, the proposed system requires to have access to multiple base stations

with different service providers. It is thus a limitation to daily usage.

2.2.2.3 Wireless Local Area Networks

Wireless local area network (WLAN) is a popular method for connecting two or more devices.
WLANs are based on IEEE 802.11 standard and are often referred with the name of Wi-Fi.
WLAN devices use the frequency of 2.4 GHz and 5 GHz bands for communicating. The under-
lying hardware includes a WLAN card which can send and received WLAN data. An infrastruc-
ture of a WLAN system consists of base stations, namely Wi-Fi access points, which are nor-
mally deployed within a building. A device supporting WLAN technology can scan the de-
ployed access points and connect to the access points within a given range. The typical range
between the station and device is 30-50m. However, with the presence of obstacles such as
wall, the ranges could be reduced significantly. The advantage of WLAN-based for positioning
purpose is the popularity of WLAN infrastructure in indoor environment. With the present of
Internet, the WLAN technology is preferred in daily use because of its simple in installation
and operation. Moreover, the mobile devices such as mobile phones, tablets and laptops,

supports the capability to read the base station MAC address and the received signal strength.
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These two parameters play an important role for the building of a positioning system. In gen-
eral, it is feasible to implement a WLAN-based positioning system without additional hard-

ware installation.

The device’s reported RSS or RSSI values of WLAN-based communication have a great corre-
lation with the distance between the Wi-Fi access point and the device. In the geometry based
approach, the signal strength value is used to calculate the distance by some propagation
models. Popular models include the LDPL model, given in the Equation ( 3 ), and its variants.
For example, the work in Bose and Foh [2007] uses the Hata-Okumara model for calculating
the distance. Compared to the standard LDPL model, the antenna gain parameters and signal
wavelength are added [Hata, 1980]. Both cases of line-of-sight and non-line-of-sight are
tested, and resulted in the mean errors of 2.3m and 2.9m, respectively. Several parameters
for controlling the signal propagation behaviors are introduced with the model. To find the
specific value of those parameters, the authors use a genetic algorithm which minimizes the
cost function on collected Wi-Fi data. Apart from the usage of RSS and RSSI values, it is able
to use TOA approach with WLAN technology. Ali and Omar [2005] propose the use of super
resolution matrix pencil algorithm to estimate TOA. The matrix is built based on the frequency
domain transfer function of radio signal propagation. This approach, however, is only appli-

cable for a direct ray signal.

With the pervasive deployment of WLAN infrastructure in indoor environment, the finger-
printing based approach is likely the most benefit one [He and Chan, 2016]. Roughly speaking,
the approach could use the installed access point stations as features to increase its discrim-
inative power. RADAR [Bahl and Padmanabhan, 2000] is the earliest system using fingerprint-
ing approach for localization purpose. The system performs a site surveys to build a Wi-Fi
signal map of location database. Then, the location is determined by matching with the most
matched signal strength in the database. The distance error is reported in the range of 2-3
meters in average. More calibration efforts can result in a robust system. An improvement of
RADAR is introduced in Horus system [Youssef and Agrawala, 2005]. It uses probabilistic
method to compute the most probable location by exploiting the structure of RSSI vector at

a given point is used. The reported accuracy is 1.4 meters in 90% of the time. The study is
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taken in a 68.2m by 25.9 m area with around 180 positions. The positions are randomly se-
lected and distributed along the corridors and inside the rooms. Each position is covered by
6 access points in average and has 100 samples. However, the result is only reported in the
scenario of static object positioning. Another study in King et al. [2006] reports an average
distance of 1.6m. The map is created with a grid of 1m distance. Each point has about 110
RSSI measurements and calibration at 8 directions. In Dinh-Van et al. [2017], Wi-Fi fingerprint-
ing-based approaches are employed for tracking indoor intelligent vehicle. The mean distance
error is reported at 2.25m over 1000m moving distance, which is capable of replacing GPS for
indoor environment. Other popular systems in this approach are Place Lab [Cheng et al., 2005]
and Active Campus [Griswold et al., 2004]. There are some commercial systems for localiza-
tion purpose. Gallagher et al. [2009] report the performance of those systems, including the
Skyhook and Ekahau. The Skyhook system collects the RSSI of WLAN access points by car and
builds a global database. They achieve the accuracy of 10m to 20m in outdoor environments
and 30m to 50m in indoor environments The Ekahau Real-Time Location System uses the ap-
proach of RSSI fingerprinting to track at 1m to 3m accuracy. The infrastructure of the system
and building RSSI map is generated by the system providers. The average accuracy in indoor

environments is reported at 7m.

In general, the fingerprinting could handle the none-line-of-sight issue to some extent. How-
ever, there are several disadvantages. Firstly, the database building phase is a costly process
and difficult to apply in a large scaled area. To overcome these disadvantages, robots can be
used to collect the signal map automatically. Kothari et al [2012] employ a robot with laser
range finder for building the RSSI database. In the test path with 120m length, the database
results in a mean error of 15m with standard deviation of 10m. Park et al. [2010] take the
approach of an organic system. Instead of using experts for building the signal map, the users
are prompted their positions to construct the signal strength map throughout the time. The
system then updates, refines and expands the map. This approach can reach 5m mean accu-
racy after 9 days of testing. Fully automatic approaches based on SLAM are introduced in
Ferris et al. [2007]; Huang et al. [2011]. The SLAM approaches use the results from Wi-Fi scan-

ning process as the sensor data for observing the environment.
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Secondly, the RSS/RSSI values at the mobile device are highly affected by the noisy propaga-
tion of Wi-Fi radio signal, especially in indoor environments. The unstable characteristics of
Wi-Fi signal have been mentioned in works of Kaemarungsi and Krishnamurthy [2004] or
Haeberlen et al. [2004]. In these works, the authors present that giving the same Wi-Fi access
points configuration, there are still variances of Wi-Fi patterns at the same places. In Chen et
al. [2005], the authors suggest that the dynamic of environment has a large contribution the
presence of those noise. For example, the moving of the indoor furniture, changes of access
points or open/closed doors could make the RSS fluctuate. Other factors, which are able to
contribute to the noisy RSS/RSSI values, are the device’s orientation [Xiang et al., 2004] or the
influence of user’s body [King et al., 2006]. Apart from those environment factors, the device
diversity also has a great effect on the RSS/RSSI values. In general, the RSS/RSSI values depend
on the specific hardware of the receivers. When the mobile device, which is used in the data-
base collection process, is differ to the tested one, the RSS/RSSI signal matching process likely
results with unexpected errors. There are several works for stabilizing the RSS/RSSI fluctua-
tion across different mobile devices. Wang et al. [2013] apply mean normalization to elimi-
nating the RSS difference between devices. It is also able to use mapping function for RSS
values. The mapping function transforms the RSS values from one device to another. In Ber-
nardos et al. [2010], the authors rely on the assumption that the transform function is linear.
They then proposed a least mean squares optimization to find the transform’s parameter.
Tsui et al. [2009] employ several approaches, including online linear regression algorithm,
expectation maximization and neural network. The approaches, however, is needed addi-
tional data for calibrating between difference devices. There are also calibration free meth-
ods, such as Dong et al. [2009]; Kjaergaard and Munk [2008]. Although all the proposed cali-
brating methods are reported with some degree of success, the device diversity is still a prac-
tical challenge for Wi-Fi fingerprinting, especially in a large scale application [He and Chan,

2016].

A systematic study in Liu et al. [2012] shows that a reasonable accuracy of around 3 —4m can

be achieved. However, the larger errors (e.g., 6 - 8m) are always appeared. This degree of
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error is unacceptable in many scenarios and makes the Wi-Fi-based approach become unre-
liable. The authors conclude these errors are mainly from an intrinsic phenomenon of the

radio signal propagation and fundamental limit of Wi-Fi methods.

2.2.2.4 Bluetooth

The Bluetooth protocol is a wireless technology standard for data transferring. The Bluetooth
standard is specified in IEEE 802.15. There are a number of major versions of Bluetooth rang-
ing from 1.0 to 4.0. It operates in the band of 2.4 to 2.485 GHz. Its properties are similar to
WLAN but has a shorter communicated range. The preferred range of Bluetooth is between
5m to 10m. The propagation of Bluetooth signal is also affected by non-line of sight and other
indoor conditions. Compared to the popular WLAN technology, the Bluetooth’s advantages
are low-power consumption, low price and high portability. For the usage in positioning task,
the standard Bluetooth protocol have some limitations, including a long-period of inquiry and
a hardware/software dependency, as shown by Madhavapeddy and Tse [2005]. Besides that,
missed detections can happen frequently when more devices participate in the network [Pei

et al. 2010].

There are some works for indoor localization using Bluetooth technology. The Bluetooth RSSI
can be used for find location with the average error of 2m within a small room [Bandara et
al., 2004]. Pei et al. [2010] uses finger printing to reach an accuracy of 5.1m error in average
in dynamic indoor positioning scenario. The high error value is explained by the low number
of Bluetooth inquiry packets. The reported inquiry rate is around 20 samples for 2 minutes.
To overcome this drawback with Bluetooth technology, Hay and Harle [2009] propose a
method for inferring the distance from the Bluetooth pair-connection. The moving Bluetooth
device is connected to the beacon stations within the environment. The pair-connection is
then used to query the RSSI, Link Quality and echo response time. These values then can be
used for positioning purpose. It is reported that the connection can be established within 1.28
seconds, in comparison to 10.24 seconds of a Bluetooth inquiry-based searching. In the work
of Bargh and de Groote [2008], the author use inquiry respond rate from the inquiry process
to locate the device. After obtaining the rate from the device, the device’s position is com-

puted by a relative entropy approach. With the room level, this approach has the accuracy of
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98%. However, this approach requires the device to be stationary in a long period of time and

cannot apply for real time scenarios.

More recently, Bluetooth Low Energy (BLE) is introduced [Gomez et al., 2012]. The technology
allows to create cheap and small devices, which act as beacons. A BLE beacon has a low-power
consumption and can be powered by coin cell battery for several years. In a positioning sys-
tem, its role can be viewed as the base station. Therefore, positioning techniques like geom-
etry-based and fingerprinting are feasible with BLE technology. Faragher and Harle [2014]
study the performance of BLE system for indoor positioning. In a test-bed with sufficient den-
sity of beacons, the accuracy of tracking mobile devices is around 2.6m in 95% of time. In
Zhuang et al. [2016], the authors propose a combination of polynomial regression model and
fingerprinting for smartphone-based indoor localization with BLE devices. With a dense bea-

cons setup, the system could reach 2.56m in 90% of time.
2.2.2.5 Radio Frequency Identification

Radio Frequency ldentification (RFID) uses the radio waves to communicate between a RFID
reader and a RFID tag. The communicated frequencies are various and divided into small cat-
egories. These categories are Low Frequencies (at 30 kHz to 500 kHz), High Frequencies (at 3
MHz to 30 MHz), Ultra High Frequencies (at 433 MHz and 868 MHz to 930 MHz) and micro-
wave (at 2.4 GHz to 2.5 GHz and 5.8 GHz). The communication ranges between the reader
and the tag is from several meters to around 30m, depending on the specific equipment and
environment. The radio wave in a RFID system also suffers the effect of signal propagation
through obstacles in the indoor environment as other types of wireless based system. The

signal strength loss issue of higher frequencies is more serious than the lower ones.

In the market, there are two types of tag: active tags and passive tags. For the localization
purpose, the active tags can work similarly as the other radio wave technology like WLAN or
Bluetooth. The active tags carry their own battery power and can be detected within a long
range. The exchange information is not only the tag’s ID but also the RSSI or the time stamp.
Hence, the active tags provide more flexible approaches for localization than the passive

types. Their disadvantages are large size and high cost. The passive tags are generally smaller
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because they do not require an additional battery. They operate by the energy transmitted

from the reader.

The LANDMARC system proposed by Ni et al. [2004] employs the active RFID tags for indoor
localization. The RFID readers are placed at specific locations and the RFID tag is carried for
locating purpose. The detection ranges between the reader and the tag is around 40m and
the exchanged data are signal strength values. After collecting the signal strength at a specific
location, the system uses a K-nearest-neighbors approach to find the tag’s location. With 4
fixed readers, the reported accuracy is 1m of error distance with 50% percent and the maxi-
mum error distances is less than 2m. However, these experiments are carried out with static
objects. Seco et al. [2010] use a fingerprinting approach with the collected RSS values from
active RFID tags. The active tags are fixed and continuously transmit their codes every time
interval. Then, the readers are used to decode the messages for obtaining the signal strength
values. Gaussian processes are used to find the reader’s location. With 71 tags in an area of

1600m?, the reported accuracy is 1.70m in average and 3.08m within 90 % of error.

In comparison to the active tags, passive tags operate without needing battery and receive
the power directly from radio waves of the RFID reader, then transmit back its identification
code to the scanner. The passive tag’s advantage is its small size, low price and can be em-
bedded fully into the environment. Using passive tags, one can design a proximity based lo-
calization, which is the Cell of Origin. Chon et al. [2004] proposes an approach of vehicle lo-
calization by using RFID technology. The tags are placed along the road, under the ground.
Then, the reader is carried by a vehicle and scans the placed tags. The position of the vehicle
is returned under a proximity based result. Hahnel et al. [2004] uses passive RFID tags along
the corridor environment for robot localization. The tags have a detection range of approxi-
mately 6m. The accuracy of system consisting only of RFID technology is around 2m. A better
accuracy can be achieved with a dense network. Park and Hashimoto [2009] places the tags
on the floor in a grid with spacing of 34cm (Figure 10). Using this setup, a moving robot at

speed of 12.2cm/s can be located around 10cm accuracy in average.
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Figure 10. A grid of passive RFID tag for localization purpose [Park and Hashimoto, 2009]

2.2.2.6 Sound-based

Basically, sound signal has the capable of the radio signal in term of designing a positioning
system. In additional to that, the sound velocity has a low velocity. Techniques like TOA thus
suffer less from the distance measurement errors. Harter et al. [2002] use a small ultrasonic
tracker, namely Bat. The Bat emits ultrasound signals to the receivers. The receivers then cal-
culate the distance based on the TOA method. The proposed system is able to locate the Bat
device within 9cm in 95% of time. It is also able to detect the orientation of the tracked device
with a sufficiently dense receiver. The Cricket system in Priyantha et al. [2000] uses ultrasonic
receivers with the radio frequency beacons to calculate the device’s orientation. Hazas and
Hopper [2006] use broadband ultrasound technology to create a fine-grained location sens-
ing. Compared to the narrowband technologies, the broadband technologies provide a
greater bandwidth and a more robust performance in the presence of noise. In a small office

environment, distance errors of less than 2.3cm for 95% of time can be achieved.

2.2.2.7 Others

Other popular technologies include Ultra-Wide Band (UWB) and magnetic. UWB transmits
signals over a large bandwidth (>500MHz) with ultra-short pulses [Gezici et al., 2005]. The
wide bandwidth improves the chance of going through obstacles such as walls. The short
pulses make the noise from multipath propagation easy to filter. Therefore, it comes with
several advantages for the indoor positioning. UWB technology is applicable with most of the
positioning technique include TOA/TDOA, AOA, signal strength based and proximity based.
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Ubisense system [Cadman, 2003] is reported to reach less than 1m in accuracy. Though, UWB
approach is usually considered as a commercial product for indoor localization because of its

high cost.

The magnetic sensor is able to be used with the fingerprinting approach for positioning pur-
pose [Gozick et al., 2011]. However, it is usually combined with other inertial sensors to create

Step-and-Heading positioning systems.

2.3 Inertial-Sensors-Based Methods

The inertial sensors include accelerometer, gyroscope and magnetic sensors. They are usually
combined into an inertial measurement unit (IMU). Figure 11a illustrates an Xsens MTi-G type
sensor. The accelerometer and gyroscope sensors measure the device’s acceleration and an-
gular rate. Both values are relative to the device frame. The magnetic sensor measures the
magnetic field. It is also referred as the compass component of the IMU. The magnetic vector
is expected to point to the earth North magnetic pole in a noisy-free magnetic field. There are
also other types of sensors that be integrated into IMU. For example, the Xsens MTi-G sensor
includes a barometer and GPS. In this section, we only discuss the user’s tracking based on

accelerometer, gyroscope and magnetic sensors.

(a) Xsens MTi-G IMU (b) IMU with foot mounted position

Figure 11. Using IMU for PDR tracking [Feliz Alonso et al., 2009]

User tracking system by the IMU is known as Pedestrian Dead Reckoning (PDR) system. The
user is required to carry the IMU. The data from inertial sensors then can be used to find the

trajectory of the user. Figure 11b presents a foot mounted IMU for the PDR system. Because
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the user’s moving pattern is highly correlated to the swing of the foot, foot is a preferred
mounting position for the IMU setup. The approach is proposed in several systems such as
Foxlin [2005], Godha and Lachapelle [2008], Feliz Alonso et al. [2009] and Bird and Arden
[2011]. In case of tracking through the smartphone’s inertial sensors, the phone could be han-

dled or put in the pocket [Steinhoff and Schiele, 2010].

The approaches for PDR can be divided into two categories, Inertial Navigation System (INS)
and Step-Heading-System (SHS) [Harle, 2013]. The INS attempts to track the IMU’s movement
in 3D, which includes the movement distance and a 3D-direction vector at each step. Nor-
mally, the IMU’s movement is not identical to the user’s movement in terms of tracking pur-
pose. For example, in foot mounted setup, the IMU’s movement would reflect the foot’s
movement. A further step is needed to convert the foot’s movement to the real user’s moving
path. The SHS takes a more specific approach which attempts to track the distance and the
user’s heading in 2D. Figure 12 expresses a comparison between the two approaches. For PDR

applications, SHS approaches are more preferred ones thanks to its simplicity.

A

INS positions (3D)

SHS steps (2D)

Figure 12. Illustration for INS and SHS approach [Harle, 2013]
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IMU units are usually built on Micro Electro-Mechanical Systems (MEMS) technology. These
MEMS sensors are lightweight, inexpensive and portable. However, the measured data con-
tains high percentage of noise. The noise then results in the errors of derived velocity and
direction values. Unlike the absolute positioning approaches as in wireless-based systems, the
Dead Reckoning could make the errors accumulate overtime. This effect is usually known as
the drifting errors. For example, a report in Woodman [2007] shows that integration of MEMS
sensors could only be stable under around 1 minutes of tracking. Computing movement dis-

tance and heading of SHS should take into account the effect of noise overtime.

2.3.1 Movement Distance

In SHS approach, the movement distance can be computed from the number of user’s step.
The steps are usually represented as local maxima in the accelerometer sensor data. There-
fore, peak detection is quite a popular technique for the counting purpose [Henk Muller,
2003; Dippold, 2006; Wang et al., 2010]. In addition, a threshold on the accelerometer mag-
nitude could be sufficient [Krach and Roberston, 2008]. It is also possible to rely on the gyro-
scope data [Feliz Alonso et al., 2009] and magnetometer data [Jimenez et al., 2009]. In terms
of accuracy, the system performance depends largely on the user’s walking pattern. In Rai et
al. [2012], the authors propose a Normalized Auto-correlation based Step Counting algorithm
which can reach a false positive rate of 0% and false negative rate of 0.6%. The experiments
were carried out on smartphone accelerometer’s sensor. Recently, Edel and Képpe [2015] use
recurrent neural network based approach for counting the steps. The network is trained with
10 hours of data collected by an IMU device. Several device’s position are included in the data
such as foot mounted, in pocket and handle. To be able to calculate the velocity from the
number of steps, it is necessary to know the step’s length. Most of the works in the field
assume the length to be constant. However, in practice, the step length could vary in a large
range because of changing in the walking pattern. In Qian et al. [2015], the authors introduce

a set of conditions for detecting such patterns.

33



Literature Review

2.3.2 Heading

The data from IMU provide different ways for calculating the heading. The magnetic sensor
or compass reading is the direction to the North magnetic sensors which could be used to
calculate the device’s heading. Moreover, the accelerometer values and compass values
could be combined into a rotation matrix which represents the device’s attitude. Integrating
the gyroscope data are another way to calculate the heading. However, the IMU data reading
would subject to noise. Magnetic data also subject to magnetic perturbation in the indoor
environment. For example, works in Afzal et al. [2011] and Rai et al. [2012] illustrate the effect

of the indoor environment to the compass direction.

In order to make the heading calculating more stable, popular approaches are to fuse differ-
ent types of data in IMU. Three popular approaches are Complimentary Filter, Kalman Filter
and Madgwick Filter. Complimentary Filter [Mahony et al., 2005] splits the direction into two
components. The first component, which has a low update rate, is the heading from accel-
erometer and compass. The second component, which has a high update rate, is the heading
from gyroscope integration calculation. The Kalman Filter approach uses covariance matrix to
model the noise from IMU data. Choukroun et al. [2006] propose a linear Kalman Filter for
heading estimation. The time update comes from gyroscope vector and the measurement
update comes from the accelerometer and magnetic vectors. An extended Kalman Filter for
PDR context is introduced by Renaudin and Combettes [2014]. Madgwick Filter [Madgwick,
2010] rewrites the heading calculation errors from accelerometer, magnetic and gyroscope

as a minimization problem. He then uses a gradient descent approach to find the solution.

In terms of performance, it is difficult to measure the accuracy of heading calculation in gen-
eral. For example, in case of Madgwick Filter, the root mean squared error is reported less
than 1 degree in several testing configurations [Madgwick, 2010]. However, a specific calibra-
tion process is required to reach the reported performance. More general comparison be-
tween different attitude estimation methods are described in Mourcou et al. [2015], Michel

et al. [2015] and Yadav and Bleakley [2014].

By combining moving distance output and heading output, it is able to track the user using

IMU data. The distance errors, however, depends on the specific testing setup. For example,
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in Beauregard et al. [2008], the tracking errors by using IMU alone is reported to be around

7.74m while it is reduced to 2.56m if there is a building plan as additional information.

2.4 Smartphone-based Indoor Positioning

Nowadays, smartphone has become a popular personal device in daily use. There are various
positioning technologies from the above sub-sections which can be developed on the smart
phone. Wi-Fi and inertial sensors have the most attention in the field. Bluetooth with recently
BLE technology, GPS, cellular-based, camera-based, sound-based and other types of
smartphone’s sensors are also capable for using in localization purpose. In general, the spe-
cific approaches for the technologies on smartphone positioning do not vary much when they
are developed in other platforms. It is important to note that the GPS-based positioning is
only feasible in the outdoor environment [Link et al., 2011]. Table 2 gives some popular ap-

proaches and its accuracy for indoor positioning purpose with smartphones.

Among the available technologies on smartphones, Wi-Fi and inertial sensors are the most
interesting for localization purpose in indoor environment. With Wi-Fi technology, the popu-
lar methods such as geometry or fingerprinting based are flexible enough for deploying in real
world scenarios. The accuracy of Wi-Fi based systems is expected to be around 5-10m. Dao
et al. [2013] employ the propagation model to build the distribution probability of the user.
This approach is able to exploit the RSS values from multiple access points. A grid optimization
process is used for speeding up the computation. For fingerprinting approach, the system
performance depends on the size of the Wi-Fi database. In a large database setup, it could
take some effort to collect sufficient training data. The work of Mathisen et al. [2016] requires
three days for collecting data in a 160,000 m? building. The best accuracy is reported at
6.09m. Similar performance could be seen in Moreira et al. [2015]. For reaching the distance
errors of 6.2m in average, they train several KNN-based models on a total of around 20,000
Wi-Fi fingerprinting samples. To reduce the cost of building database, a robot can be used for

an autonomous collecting process as in Kothari et al. [2012].
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Table 2.  Several works on indoor positioning with smartphone
Author Technology Approach Metric Accuracy Note
Zandbergen Cellular- Cell identification Median >500m -
[2009] based
Kothari et al. Wi-Fi Fingerprinting Mean 10m Wi-Fi data col-
[2012] lected by robot
Dao et al. [2013] Wi-Fi Geometry Mean 3-4m -
Moreira et al. Wi-Fi Fingerprinting Mean 6.2m Large data size
[2015]
Link et al. [2011] Inertial Step Counting . Mean 1.6m Map matching
Sensors Phone’s Compass
Zhou et al. [2014] Inertial Step Counting + - 1.3m Work on a
Sensors Calibrating Head- specific gyroscope
ing sensor
Faragher and BLE Fingerprinting Percentile 2.6m -
Harle [2014] 95%
Luca and Alberto BLE Fingerprinting Mean 1.7m Dense sample size
[2016]
Juri et al. [2016] Image- 3D map matching Mean 0.6m -
based
Xu et al. [2015] Light Proximity Based Precision 95% Peak detection for
sensors lights on ceiling
Filonenko et al. Ultrasound | Geometric based - - -

[2010]

Inertial-sensors-based approach could reach a better accuracy than Wi-Fi in general. Works

of Link et al. [2011], Zhou et al. [2014] and Qian et al. [2015] have reported a distance error

less than 2m. In order to control the natural drifting errors of the SHS, specific methods for

calibrating the output are implemented. For example, Link et al. [2011] and Qian et al. [2015]

employ map-matching method. The output path is adjusted to avoid crossing the wall in the

environment. Zhou et al. [2014] rely on a specific calibrating method for reducing the heading

errors. This method addresses the measurement error of the gyroscope sensor. The SHS

tracking with different positions of smartphone such as in pocket or in hand could be done

via a motion axis detection step, suggested by Steinhoff and Schiele [2010]. The unreliable

output of smartphone’s sensors also affects the SHS tracking approach. In Afzal et al. [2011],
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the authors study the effect of magnetic perturbations in different indoor environments. The
effects of linear acceleration and magnetic deviation to several attitude estimation ap-

proaches are discussed by Michel et al. [2015].

BLE technology offers a promising solution for indoor environment with smartphones. The
BLE beacons have several advantages such as low cost and low power consumption. The BLE
standard is also widely supported on smartphones. With the beacons installed in the environ-
ment, BLE provides the same infrastructure as Wi-Fi technology. In terms of accuracy, finger-
printing approach on BLE technology could reach 2m accuracy. The work in Faragher and
Harle [2014] also suggests that BLE fingerprinting outperforms Wi-Fi fingerprinting in the

same environment.

Other types of available technology on smartphone are still under development. The cellular-
based approach is highly affected by indoor environment. Its results are unreliable. The cam-
era based approach could achieve great accuracy. In Juri et al. [2016], the authors report an
average distance error of 0.6m for image-based approach. There are several disadvantages.
Firstly, it is required to build a 3D point cloud for the surrounding environment. Moreover,
the image is captured by using the phone’s camera, which makes the approach inconvenient
for tracking over longtime. The Perspective-n-Point in the later matching process is also a
heavy computing process. In the proposed approach, several improvements to decrease the
computational time were proposed. The smartphone’s light sensor can be used for a proxim-
ity-based positioning approach [Xu et al., 2015]. The light in the ceiling can be detected by the
peak illumination of the sensors. By discovering successive lights, the walking distance can be
calculated. The proposed approach, however, needs the phone to be handled facing up. Mo-
bile phone speakers can also be used for positioning purpose with TOA methods as described

in Filonenko et al. [ 2010].

Because a smartphone can have several feasible technologies for localization purpose, it is
possible to combine several of them. For example, Dao et al. [2014] use a weighted probabil-
istic approach from several types of sensor such as GPS, Wi-Fi, RFID and inertial sensors. In-

stead of an absolute positioning, the output of each type of technology is modeled by a dis-
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tribution functions. Moreover, the technologies are assigned with a precision value. The pre-
cision value is then used to combine different distribution functions into one. Deng et al.
[2016] use two different Extended Kalman Filters to combine WiFi, PDR and landmarks for
improving positioning results. The proposed approach achieved an error of 0.71m with stand-
ard deviation of 0.44m. Other works on combining multiple data sources for improving
smartphone positioning could be found in Rai et al. [2012], Chen et al. [2014], Correa et al.
[2016] and Wang et al. [2016].

2.5 Summary

In this chapter, popular technology and techniques for positioning have been mentioned.
Each comes with advantages and disadvantages. While the GPS-based technologies have
great success for positioning tasks in outdoor environment, it does not exist such similar ap-
proach in indoor environments. Optical-based methods come with low errors but have a high
computational cost. The methods also have some restrictions on user localization tasks. Wire-
less-based technologies provide a wide range of choices for building positioning system. Iner-
tial sensors also have comparative performances in the field. With the presence of camera,
wireless sensors and inertial sensors in smartphones nowadays, smartphone-based position-

ing has become a promising direction for user’s localization purpose.
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Chapter 3  Using Wi-Fi Fingerprinting for

Smartphone Indoor Positioning

3.1 Introduction

In a GPS-denied environment such as indoor environments, Wi-Fi based approaches are pop-
ular alternative choices for user positioning. It can benefit from the advantage of the under-
lying WLAN infrastructure, which is the existence of many Wi-Fi access points. Moreover, with
the popularity of smartphones nowadays, the need of carrying a signal-receiving device can
be easily solved. The smartphone could provide basic information of surrounding access
points and their RSS/RSSI measurements approximately. Based on the values, several locali-
zation techniques can be developed such as geometry-based approaches or fingerprinting-
based approaches. For a large public area, fingerprinting-based approaches are often more

preferred thanks to the presence of a large number of Wi-Fi access points.

There are usually two separated phases for building a fingerprinting-based localization sys-
tem. The first phase is collecting the Wi-Fi signal around the given area. Then, a learning model
is trained using the collected data. The model could be considered as a mapping from Wi-Fi
signals feature space to the real world positions. In the second phase, the trained model is
used to localize the phone based on the smartphone’s Wi-Fi scanned signals. In order to build
a stable localization system, the data collection in the first phase has an important role. Be-
cause of the high variances of radio signal propagation from access points to the phone, a
large amount of data is needed for modeling the relationship between the signals and posi-
tions. Most of the works in the field would assume that there are enough data to establish
such relationship. For example, in [King et al. 2006], the authors use a point grid of 1m-wide
cells for collecting the RSSI signals. Each point requires over 100 RSSI measurements. Bahl and

Padmanabhan [2000] also suggest that more calibration effort is needed to improve the Wi-
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Fi fingerprinting position accuracy. However, the need of a dense Wi-Fi signal map would cre-

ate difficulties for deploying the fingerprinting system in a large area.

When the available training data is limited, novel Wi-Fi fingerprinting methods are able to
produce the mapping from the RSS/RSSI signal to position. As a trade-off, the performance of
the positioning system could be affected. The output positions likely have high distance error
and variance. In our works, we want to explore different approaches of Wi-Fi fingerprinting
methods for dealing with such types of training data. Based on the performance of these ap-
proaches, several ensemble strategies are proposed to improve the overall positioning per-
formance. By combining a number of uncorrelated models, it is expected to reduce the errors

in cases of lacking training data.

Ensemble methods for improving learning models are a well-known approach in the field of
machine learning. For Wi-Fi fingerprinting-based positioning, the works of Torres-Sospedra et
al. [2016] propose an ensemble framework based on KNN models. The authors vary a set of
parameters and then combine all of the generated models to have a more stable perfor-
mance. These parameters include the number K of considered neighbors, the distance/simi-
larity measure of signal feature vector, the data representation and the method of filtering
out weak signals. However, because all the models are derived from KNN model, their learn-
ing capability could be highly correlated. Thus, it leads to an overfitting model when the en-
semble step is carried out, especially in the context of limited training data. We share the
similar idea of ensemble models but in a different way. Mostly, we aim to reduce the depend-

ent on KNN model by varying the Wi-Fi signal based features and the learning models.

In our approach, the Wi-Fi fingerprinting problem is first transformed into a standard learning
problem. The learning problem includes a set of feature vectors and its desired labels. The
label in this case is the coordinates of each sample. Two other features sets, which are filter-
based features and hyperbolic-based features, are derived directly from the default raw signal
features. The two additional features are reported with good performance for building Wi-Fi
fingerprinting models. Three different learning models, which are KNN, Random Forest and
Extreme Gradient Boost, are then used in the learning phase. The KNN model is a well-known

model for working with Wi-Fi fingerprinting data. Both Random Forest and Extreme Gradient
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Boost are tree based methods which have good performance against various types of data.
The two additional learning models are added to make the following ensemble step less rely
on the KNN method. The learning targets are also used selected between the regression and

the classification objective functions.

All the proposed methods are tested against a published dataset, which is used in the com-
petition data of the IPIN 2016 Conference with offsite track (track 3) [Torres-Sospedra et al.
2017]. As described in the work, the database is collected in a similar way to daily phone
usage. The setup only requires an ordinary user to carry a phone along some predefined
paths. It did not exist a specific set of sample points as in a standard Wi-Fi fingerprinting da-
tabase in building the signal map. Other issues of Wi-Fi fingerprinting database are also in-

cluded in the dataset such as out-of-training samples and device diversity.

Our experiment results on the published dataset shows that the proposed approaches yield
significant performance. For detecting the user’s floor, the accuracy can reach 0.93 of accu-
racy on the testing data. For computing the user’s position, standard learning models could
reach around 6m in average distance error. By combining these models, the mean distance

error can be reduced to around 5.12m.

3.2 Literature Review

The smartphone’s APl generally supports the scanning available Wi-Fi access points within the
environment. The received data includes the access point identifiers (SSID) and the RSS or
RSSI information. Both the RSS and RSSI provide values that can be used as an indicator spec-
ifying how strong the signal from the access point is received by the mobile device. Because
the difference between RSS and RSSI for localization purpose is not significant, it is able to use
the only term RSS for referring the signal strength information. Traditional approaches rely
on mathematical models to calculate the distance between device’s position and the access
point from the RSS value. For example, Dao et al. [2013] use the well-known LDPL model in
Equation ( 3 ) for building the probabilistic propagation model from a set of access points. For

measuring the wall attenuation component in the LDPL equation, the thickness of the walls
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and the arrival angles are included. Genetic algorithms are then used to find the optimal val-
ues for those parameters. In general, it is difficult to model the complex properties of radio

signal propagation in indoor environment.

Fingerprinting approaches rely on statistical models for dealing with the complexity of radio
signal propagation. The feature space is the RSS feature vector and the target is the device’s
position. For the learning model, KNN and its variations are preferred. For example, weighted
KNN is used in various works [Ma et al., 2015; Liu et al., 2016; Mathisen et al., 2016; Zhang et
al., 2016]. In Retscher and Joksch [2016], the authors provide a comprehensive study about
different distance metric to use in learning KNN model. Signal filtering could be added to
boost the position accuracy. Moreira et al. [2015] split the training data into smaller subsets.
Each subset is characterized by the strongest access points. Torres-Sospedra et al. [2016] in-
troduce several ways to vary the KNN parameters and end up in over 2000 sets of parameters.
Approximately, each set results in a different KNN model. By removing bad configurations

from over 2000 sets, the ensemble model could reach 6.19m in average distance error.

In general, fingerprinting techniques are widely accepted to get errors in the range of 5m to
7m on mean distance. The results, though, are site-dependent. The work in Mathisen et al. [
2016] collects data in 160,000m* with 589 installed access points within the experimental
area. Six different smartphones are used in the experiments. The mean distance errors are
reported in the range of 5.47m to 15.42m, which depends on the specific trips and the tested
phones. Two published datasets, Potorti et al. [2015] and Torres-Sospedra et al. [2017] ad-
dress the issues of comparison between various the Wi-Fi fingerprinting techniques. The first
dataset contains nearly 20000 training samples which are collected with more than 25 differ-
ent devices. The provided data are split into training data, validation data and testing data. It
also illustrates the change of Wi-Fi infrastructure where the set of visible access points are
different between each subset. Several works in Moreira et al. [2015], Berkvens et al. [2015]
and Knauth et al. [2015] have the mean distance error ranging from 6m to 8m. The second
one includes 4 different buildings with a limited amount of training data for Wi-Fi fingerprint-
ing. For Wi-Fi fingerprinting-based approach, the overall accuracy is reported at 6.33m mean
distance errors [Moreira et al., 2016]. Though, the results of the Wi-Fi fingerprinting models

across all the test buildings vary from 4m to 12m.
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3.3 Wi-Fi Fingerprinting Features

For building the fingerprinting models, it is necessary that the training Wi-Fi signal data are
collected at multiple points in the environment. Based on the collected data, signal charac-
teristics are determined for each specific point. In our approach, we start with the raw fea-
tures as the signal characteristics. The raw features only include the RSS value of all nearby
access points. The raw RSS value is expected to have a stable feature space for learning the
target positions. Besides that, as our target is to vary learning spaces, two feature sets, the
Filtering-based features [Marques et al. 2012] and the Hyperbolic Location Fingerprinting fea-
tures [Kjaergaard and Munk, 2008], are added. Generally, the two latter feature sets could be
considered as an improvement from the standard raw feature. We add some minor modifi-

cations to make the added features applicable with the lack of training Wi-Fi RSS data.

3.3.1 Raw Features

From the scanning process, the Wi-Fi access points in the surrounding environment ire usually
presented in the form of pair MAC address and RSS value. The MAC address is used as the
access point’s identifier and the RSS value is the access point’s signal quality at the position
of the mobile device. Each Wi-Fi data package within a short time window is grouped in a
same scanning cycle. The raw features are built from a list of these two values of a scanning
cycle. The length of a specific scanning cycle depends on the smartphone’s operating system.
For example, in our experimenting data from the IPIN 2017 track 3 competition, the scanning
times likely vary from 4s to 8s. Practically, one could use a fixed time interval for defining a

complete Wi-Fi scan process of smartphones.

In order to create a matrix representation of the raw features, it is necessary to collect all the
appeared access points within the collected data. With D access points, namely AP;, AP,, ...,
APp, the feature vector has exactly D dimensions. The AP;, AP,, ..., AP, are the access points
appeared in the training data only. If there is any access point, which appears only in test data,
it should be completely ignored. Assume at time t, there is a complete scan cycle at point P.

Each scan cycle is then used to create a fixed-length feature vector r as follows:

r=(r,r,...,7p) (9)
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Each value 7; is assigned with the RSS value of the access point AP; if AP; appears in the scan
at time t. In the other case, when AP; does not appear in the scan, the r{ value is assigned to
a minimum value MIN, . The MIN,; is selected to be lower than any other scanned RSS
values, which are appeared in the data. The selection of MIN,.,, could affect several types of
learning model, such as KNN-based approaches. More specifically, the KNN models use the
distance metrics for comparing the similarity between two feature vectors. Therefore, the
value of MIN,, can be selected to put more emphasize on the difference between the list of

unseen access points from each feature vectors.

3.3.2 Filtering-based Features

The filtering-based approach could be considered as a direct improvement from the standard
raw features. In the original version, Marques et al. [2012] split the whole feature space is
split into sub-regions based. The split criteria is the indices of 2 strongest access points of the
raw signal vector r. In the later version [Moreira et al., 2015], the number of considered
strongest access points is extended to 3. Both versions have good results when they are com-
bined with KNN-based learning models. However, the two results are tested in large training
data set (nearly 10000 samples). The large training samples allow the filtering step be able to
split the feature space to sufficient smaller subspaces. With a little training data, its perfor-

mance is moderate [Torres-Sospedra et al. 2017].

In our context, as there is only a small amount of available data, it is difficult to follow the
original approach. Instead, the feature space could be split indirectly by adding features to
the standard RSS feature vector. From the starting D dimensions, each corresponding to an
appeared access points, an additional D features s = (54, Sy, ..., Sp) is added to the standard
r = (1y,7,...,1p). The value of s; is computed by following rule:

_ {INFrSS if ; is one of two highest values of r,
P =

10
0 otherwise (10)

Then, the new feature vector q is a combination of the two vectors, r and s:

q= (75,7, 51,S2,---,Sp) (11)
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The purpose of using INF,.¢ instead of a simple value constant 1 is to let the combining vector
q can work with the several types distance metric. By selecting an appropriate value of INF,.,
itis able to put more weight to the differences in the s component rather than the differences

in ¥ component.

The resulting vector doubles the length of the standard vector. The number of strongest ac-
cess points could be selected as a tuning parameter. Normally, a value of 2 or 3 is chosen for
having an effective splitting of the standard RSS feature spaces. In comparison to the original
filter version, there is a minor modification in our implementation version. The authors in
[Marques et al. 2012] use an additional threshold for deciding the grouping process. More
specifically, if an access point B; is the strongest access point in two signal characteristics
vectors r® and r?, the difference between r and ? should be less than a given threshold. If
the condition is not met, 7% and 2 would not be grouped into the same feature vector sub-
space. The condition is not included in our implementation version. Instead of giving the ex-
plicit threshold on the RSS value difference, our modified feature set depends on the later

learning model for identifying the difference.

3.3.3 Hyperbolic Location Fingerprinting Features

For building the Wi-Fi RSS database, the collecting data process and the later testing phase
usually evolve more than one mobile devices. Because the RSS value is highly dependent on
the specific device, several methods are proposed to overcome the hardware dependent is-
sue. Those methods including mean normalization, applying linear transformations and using
signal calibration free approaches. Roughly speaking, all the three methods rely on the linear
relationship of RSS values between different devices. The calibration free approaches could
be considered more general approaches as it does not need additional calibrating data for
finding the linear transform. The methods encode the transforms’ parameters directly into
the feature vector. Popular methods include the different of signal strength [Dong et al., 2009]
and hyperbolic location fingerprinting (HLF) features [Kjaergaard and Munk, 2008. In our ap-
proach, we select the HLF features with the aim to deal with the presence of multiple

smartphones.
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For reducing the effect of noisy RSS value between different devices, the HLF takes relative
difference for every pair of access points. Other than that, the RSS values is transformed into
logarithm space. More specifically, from the standard raw features r with D dimension, the

HLF is a vector h which has the size of D * (D — 1) /2. The explicit values of h are given as:

diff(ry,12), ..., dif f(ry,1p),
h =\ diff(ry,13), .., dif f(ry,1D), ..., (12)
dif f(rp-1,7p)

The different operation between two RSS values 7; and 7; is defined as:

1

rmax

diff(r,7;) = log= — log (13)
rj

with the rmax is the maximum RSS value.

When there are hundreds of access points which can be appeared in the environment, the
transformation in Equation ( 12 ) results in thousands of dimensions in the feature spaces.
Thus, collecting enough data for training the HLF features could be problematic. Therefore,
we apply a further dimension reduction operator to get a suitable feature representation
from the generated HLF features. Several possible approaches are Random Tree Embedding
[Geurts et al., 2006] or Principle Component Analysis based methods. In our experiments, we
employ the Truncated-Single Value Decomposition, which is proposed by Halko et al. [2011],
to reduce the dimensions of from D *x (D — 1)/2 to D'. The value of D' can be selected as a

small value to make learning process in later training phase feasible.
After the feature selection step, the collected data could be represented as the lists of pairs:
S=(<XLPl><X2P2>,... ,<XMP">) (14)

with i € [1, M], X! is the correspondent N — dimensional vector, P! is the position of the
sample it". For simplicity, the notation X could be in one of three types of features, the raw
features r, the filters-based features s or the HLF-based features h. At this stage, it could
justify each sample’s position P* as triplet representing the coordinates in 3 dimensions: floor,

latitude and longitude.
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3.4 Learning Models

For learning the mapping from RSS-based vector to position, three family of models are se-
lected, which are Nearest Neighbors, Random Forest [Breiman, 2001] and Extreme Gradient
Boost [Chen and Guestrin, 2016]. While KNN model is a popular choice to work with the Wi-
Fi fingerprinting data, the others propose are tree based models. They are capable of learning
on a small amount of training data. Each type of model is tested with both options, i.e., clas-

sifier and regressor.

3.4.1 K-Nearest-Neighbor Model

The K-Nearest Neighbors (KNN) model requires a distance function between two vectors in
the feature space. The work in Retscher and Joksch [2016] compares the positioning results
of nine different distance functions. Similar distance errors could be achieved with a group of
distance functions including Cosine, Euclidean, Hellinger and Chi-square. We choose the Eu-
clidean function for measuring the distance between two feature vectors. Specifically, let a =
{ay,aq,...,ay}and b = {by, by, ..., by} be the two vectors in the N-dimension feature space,
the distance d®“c!*4¢(q, b) between a and b is calculated as:

deuclide(a b) = Y(ai-b;)?* (15)
’ N

For an input X™%, the standard KNN algorithm finds K samples in S which have the smallest
distance to X™". The distance between X™¢" and X' is computed by Equation ( 15 ). Assume

the list of K samples is:
nearest(X™eW, deuclide) = (< X¥1, Y% > < X¥2 Y42 > < XUK YUK >) (16)
The corresponding P™" is computed as the centroid of all P% in the above list:

K uj
Yj=1 P
K

Pnew —_

(17)

The parameter K defines how many nearest samples in the feature space are taken for the
computing of P™". A small value of K tends to make to model overfitting. For example, with

K =1, the P™®Y is the position with the nearest sample in the training set S. When the value
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of Kis increased, more nearest samples are taken into the computing process, thus make the
output more stable. However, if there are only a few data, the position of P™" could be
fluctuated between those nearest samples. In the specific task of Wi-Fi fingerprinting, K is

usually chosen from in the range of [1,10].

There are some variants of the KNN model. The most popular one is the weighted-KNN ap-
proach. In weighted-KNN, the position output P™¢" is calculated by a weighted sum of each
PYi. The specific weight is a function, which is computed from the similarity of between X™¢%

and X%,

3.4.2 Random Forest Model

Random Forest (RF) model bases on building a list of decision trees. Each tree would split the
feature space into random subspaces. Each subspace is expected to contain the samples
which have identical or similar target positions. The work in Lin and Jeon [2002] shows that

RF model can be justified as an adaptive weighted KNN model.

For training a standard decision tree, the training data S'is split from top down by a pair of
feature and values until some criterion are met. The criterion could be based on the depth of
the tree or errors within for defining a leaf node. Table 3 shows a set of three training samples
on the raw RSS data. A decision tree could be built as in Figure 13. In this example, the building
process stops when every leaf contains only one sample. There are also other decision trees

with different node splitting criteria which can split the tree samples X;, X, and X;.

Table 3.  An example dataset with raw RSS feature for 3 access points

Samples | AP; AP, AP;
X, -50dBm | -70dBm | -75dBm
X, -65dBm | -80dBm | -52dBm
X5 -70dBm | -65dBm | -76dBm
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Figure 13. A decision tree with two internal nodes and three leaf nodes for splitting
X1,X,,X5in Table 3

Given a training data set, there are several well-known methods for building a decision tree
such as ID3 [Quinlan, 1986] or CART [Breiman et al., 1984]. Because the building decision tree
process always seeks for an optimal way to split the feature space, the resultant tree is likely
overfitting. The RF model is introduced for overcoming the overfitting issue by building a set
of decision trees. In general, all the trees are not an optimal one but have a predictive capa-
bility. Bagging methods and random subset of features are employed for lowering the corre-
lation between each tree in the forest. The output of RF model is the mean of all the predic-

tions of each decision tree in the forest.

3.4.3 Extreme Gradient Boost Model

Extreme Gradient Boost (XGB) model is also a tree-based learning method. The training
method includes several rounds. Starting from a simple prediction, trees are added to the
model based on a boosting approach, which tries to reduce the error of the objective function
of the previous step. Popular objective functions for XGB model includes the mean square
error for regression or logistic function for classification. Apart from the objective function,
additional components which measure the model complexity are also added. The objective
functionis chosen in a way that it is able to compute gradient based on features values. There-

fore, at each splitting step, the built tree could choose the right ways to split the feature
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space. The model is also included with other techniques for prevent overfitting such as ran-

dom subset of features or early stopping criteria.

3.5 Experiments

The IPIN Competition 2016 track 3 propose tasks of tracking smartphones through a large,
multi-floor building. The data is separated into training log files and test log files. The training
log files can be used to train several types of models such as Wi-Fi fingerprinting model and
the test log files provide the data for the evaluating purpose. Both training and test log files
are collected with a same setup. A user is asked to carry the smartphone along predefined
paths. An Android-based application is used to collect several type of sensors such as Wi-Fi
scanning samples, accelerometer sensor, magnetic sensor and gyroscope sensor. In this chap-

ter, only the Wi-Fi scanning samples are mandatory for the experiments.

Apart from the smartphone’s sensors data, the log file is provided with the moving path of
the user. The moving path is present in the form of a list of checkpoints and their arrival
timestamp. Firstly, the checkpoints along the moving path are selected. In the data collecting
step, every time the user reaches a specific checkpoint, he then notices to the application.
From the checkpoints’ position and the time stamps, the full user’s moving path can be ap-
proximated by a linear interpolation step. From the approximate moving path, the user’s po-
sition at a specific timestamp are matched with the Wi-Fi scanning data for creating Wi-Fi
fingerprinting database. The main advantage of using path interpolation is its low acquisition
time. In fact, the data collecting process could integrate into daily smartphones easily. The
disadvantages are the limited amount of samples and the noise which is generated by the
moving of user during the scanning process. A standard collecting data process usually divides
the entire area into a dense grid of points. The user is required to stay at a specific point for
several minutes to. This ensures the captured Wi-Fi scanning data is good enough for model-
ing the variances of radio signal in indoor environment. However, this method would take
much effort for setup in a large area. By employing the path approximation setup, the cost of
building such database could be reduced. The proposed method is also integrated into users’

daily life activity easily.

50



Using W-Fi Fingerprinting Model

3.5.1 Data Preprocessing

The dataset is collected at four buildings. Because the nearest pair of buildings is around 300m
in distance, it is trivial to identify the buildings. In our experiments, we select the UAH building
which has the largest size of training and testing data. The UAH building is provided with six
train log files and other four log files for testing. The training files are split into three separated
paths. Each path is recorded with one of the two phone models (Samsung Galaxy S3 and/or
Samsung Galaxy S4). Figure 14 illustrates the route number 1 in the floor 1. There are two
separated paths in the test log files. The two paths are also collected with two above phone

models. The moving paths in training and in testing set are generally different.

4051%

Figure 14. An example of moving part given by the competition organizers

Among different data types in the log files, the Wi-Fi scanning information and the checkpoint
information are the two interested data for building the fingerprinting model. Both training

and testing files have a same data format. The Wi-Fi scanning data is marked with the WIFI
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tag and the checkpoint data is marked with the POSI tag in the log files. Table 4 and Table 5

present the format of the Wi-Fi scan data and checkpoint data in the log files.

Table 4. Samples of Wi-Fi data stream in one of the provided log files

AppTimestam | SensorTimeStamp SSID BSSID RSS
2.742 16169.500 congresos 04:bd:88:50:4b:60 | -77.0
2.742 16169.500 eduroam 04:bd:88:50:4b:61 | -78.0
2.742 16169.500 eduroam 04:bd:88:50:3d:c1 | -70.0
2.742 16169.500 matematicasUAH | 00:1¢:f0:62:62:d3 | -83.0
2.742 16169.501 eduroam 04:bd:88:50:4a:31 | -81.0

Table 5. Samples of user input checkpoint in one of the provided log files
AppTimestamp | Latitude | Longitude | Floor | Building
22.206 40.51360786 | -3.34883 0 20
34.676 40.51355224 | -3.34892 0 20
68.927 40.51335552 | -3.34923 0 20
92.021 40.51328754 | -3.34934 0 20
132.294 40.51328445 | -3.34934 1 20

Each Wi-Firecord is provided with application level timestamp (AppTimeStamp), sensor level
timestamp (SensorTimeStamp), the names of the seen access point (Name_SSID), the MAC
address of the seen access point (MAC_BSSID) and the received signal strength (RSS) to the
access point. For the Wi-Fi data only, there is not significant different between the application
level timestamps and the sensor level ones. We decide to take the application time stamp for

the next preprocessing step.

The path is recorded by a list of checkpoints. Each checkpoint record is provided with appli-
cation timestamp (AppTimeStamp) and the checkpoint’s position, which includes latitude,
longitude, floor and building identifier. The building identifier contains only one constant
which indicates the UAH building. Therefore, it can be excluded without the loss of infor-
mation. There are total four floors, which are assigned the values from 0 to 3. The moving
paths contain multiple floors. The users could use the stairs or the elevators for changing the
floor purpose. However, in the data, all of the appeared checkpoints are selected to have

integer values.
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From Table 4, it can be seen that the Wi-Fi records are only provided for a specific Wi-Fi access
point at a given time stamp. An additional grouping step is needed to create the standard raw
RSS feature vector. Generally, the reachable access points with the same or closed
timestamps could be grouped into one feature vector. In order to identify the time threshold
for grouping the closed Wi-Fi scans, one could base on the time differences of two consecu-
tive scans. For instance, Figure 15 plots rounded time differences from one of the training log
files. Apart from the peak at 0 second, there is another peak at around 4 seconds. A time
threshold of 4 or 5 seconds would be suitable for defining a complete scan Wi-Fi cycle for the
log file. There are also some long intervals which the data does not contain any Wi-Fi data.
These intervals last from one minute to several minutes. They are treated as the noisy inter-

vals in this step.
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Figure 15. Histogram of time difference between consecutive Wi-Fi scans in a training
log file
Table 6 gives the detailed information for the training Wi-Fi data from the provided log files.
The grouping process results in 878 training samples across 4 floors. Along the moving path,
there is less than one sample per meter. Average scanning time illustrates the time between

consecutive scans. The longest scanning time denote the longest interval which do not have
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any available Wi-Fi data. Nevertheless, it does not take much time for collecting the whole
data set. As reported by the timestamp in the log files, the training data of the UAH building

is collected in less than 2 hours.

There are 353 seen MAC addresses in total which results in a raw feature vector of D = 353
dimensions. For computing the default value of unseen access points, we plot the RSS value
distribution for the train data. Figure 16 illustrates the histogram distributions of RSS values
over all the access points of the data. As the RSS values hardly exceed -100dBm, it is reason-
able to pick the value of MIN, ;, = —120dBm. In addition, we use a cut-off threshold at -
95dBm. Every access point which has the RSS value less than -95dBm would be assigned the
MIN,¢¢ value. Another remark from this figure is that the range from -80dBm to -90dBm con-
tains the most RSS values. In practice, the region is considered as the low signal region where

the signal strength could fluctuate greatly and is highly affected by indoor obstacles.

Table 6. Summary of training data on UAH dataset

Number of access points 353

Average scanning time

5.25 seconds

Longest scanning time

168.5 seconds

Total number of training

878 samples

Total appeared floors 4
Total moving distance 2640.6m
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Figure 16. Distribution of the RSS values over the collected data
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For each grouped Wi-Fi scan from the above step, we assign it a position as the learning tar-
get. The position is a triplet with floor, latitude and longitude. The checkpoints, which are
manually input from user, are used to calculate the user’s trajectory. Because the log files
only contain the timestamp when a checkpoint is arrived, an approximation is needed step to
compute the entire user’s moving path at a given time t. More specifically, the complete Wi-
Fi scan could be created by Wi-Fi records in the interval [t — dt, t + dt] with dt is half value
of the scanning time. Then, the position P(t) can be computed by a linear interpolation be-
tween two consecutive checkpoints before and after t, which are P; and P;, respectively. The

position of P; and P; are (floory, latitude;, longitude;) and

j
(floor; latitude;, longitude;). The position (floor, latitude,, longitude,) of P(t) is cal-

culated by:

floory = floor; + (floorj — floori) *(t—=0/(—10)
latitude, = latitude; + (latitude; — latitude;) = (t —i)/(j —i)  (18)
longitude, = longitude; + (longitudej - longitudei) *(t—=0/(G—10)

The floor; would need a rounding to integer value if the user changes the floor in the process.
The linear approximation would produce some degree of noise for the output position. Within
a scanning cycle, the Wi-Fi data of all the seen access points are not likely arrival at the same
time. From the plot in Figure 15, a time window length of 1 second is expected. The specific
position for each seen access points, therefore, could be varied. The linear approximation
position in Equation ( 18 ) is an approximation from all the available positions. Assuming that

the user moves at 1.0m per seconds, the noise can be excluded.

For the test data, Table 7 gives information on the 4 testing log files. All of the testing files
come with a pair of same moving path but with different smartphone models. The test file 1
and test file 3 are one pair and test file 2 and test file 4 are the other pair. Because of the
hardware dependency, the number of complete Wi-Fi scans differ greatly for Samsung Galaxy
S3 (S3) and Samsung Galaxy (S4). The joined percentage with train data checks the sharing

points between the train data and the test data approximately.
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Table 7. Summary of 4 testing log files on UAH data
Test file 1 Test file 2 Test file 3 Test file 4
Phone model S3 S4 S4 S3
Total time 1477 seconds | 899 seconds | 1477 seconds | 899 seconds

Total travelled 763m 370m 763m 370m
Number of Wi-Fi scans 159 174 291 96

Joined percentage with train 94% 88% 94% 88%
Number of appeared floors 4 3 4 3
Number of changing floors 7 5 7 5

3.5.2 Floor Classification Results

For user localization, on one hand, one can use the position in 2.5-D as a training target. The
target includes a tuple of three values, which are floor, latitude and longitude. The floor is
given in integer type while the other values are floats. The KNN-based model could handle
such type of target naturally. With tree based model, some difficulties arise when creating a
suitable objective function. The function should be designed to handle the miss match in scale
between floor and the other two latitude and longitude values. An alternative approach is to
split the learning position task into two separated sub-tasks. The first sub-task is to identify
which floors the user is standing and the second sub-task is to compute the latitude and lon-

gitude. Both approaches are expected to have similar performance.

In our experiments, we select the second approach. The Table 8 provides the number of
training and testing samples of the building UAH. The number of training samples and testing
samples depend on the specific user’s walking part and the used phone model. The floor 0
has the highest training samples and the floor 3 has the least amount of samples. The test
data has the most samples in floor 1. There are two floors, floor 1 and floor 3, which have the
test samples larger than the train samples. Thus, it could result in a significant out-of-samples

issue for training the floor classification models.
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Table 8. Summary of training data for the floor classification task

Floor Id | Train Samples | Test Samples
0 334 126
1 233 298
2 215 147
3 96 149

3.5.2.1 Finding Baseline Model

The KNN model is selected as the base model for our testing, due to its effectiveness with the
Wi-Fi RSS data. Among the three types of features, we rely on the raw RSS value feature for
selecting the KNN model. There are many ways to vary the model parameters for a KNN model
approach. In our experiment, we select the K - the number of neighbor parameters as the

tuning parameters. The metric distance for the KNN model is the standard Euclidean distance.

The results are shown in Figure 17. The best result on cross validation test is with by set the
number K of neighbors being 1, with 0.97 of accuracy. However, on test data, the best result
on test can be reach with K= 4 with around 0.929 of accuracy. With high value of K, both
performance on cross validation and test data are decrease. The mismatching between cross
validation results and the test results comes from the new paths in test set. The paths lead to
unseen samples in train data. It is reasonable that the baseline model should be choose as
the best cross validation performance, which is achieved with K= 1 in this case. However, the
value K = 1 could make the model bias easily because the floor output depends only on the
nearest RSS finger printing in the feature space. In the later experiments, we decide to choose
K = 3, which achieves good results on both cross validation and test data, and as the baseline

model.
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Figure 17. Accuracy of floor prediction by varying the number K of neighbors in cross vali-
dation results and test results

In the Figure 18, we plot the mean square distance for different values of Kagainst this base-
line model. With the KNN model, it is clear that the set of nearest neighbors will be extended
when Kincreases. Therefore, we ensure a high level of similarity between all of the models
when Kis varied from 1 to 10. The high correlation makes the later combining step have in-
significant improvement. For example, the ensemble model, which takes the average predic-

tion from K = 1to K = 5, reaches 0.925 of floor hit rate and does not improve the result.
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Figure 18. The similarity measure of 10 KNN models again the based line K = 3
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Similar experiments are extended to RF model and XGB model. The number of threes in RF
model and XGB model are selected using the same approach as in the KNN model. Figure 19

and Figure 20 present the result of the RF model and XGB model respectively.
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Figure 19. Accuracy of the RF model by varying the number of trees in cross validation
results and test results

0.98 ' , . :

0.97 | T T e T |

: — Cross Validation Results
0.93 b Testing Data Results

0.91 o

0.90 "

100 200 300 400 500 600 700 800 900 1000
number of trees

Figure 20. Accuracy of the XGB model by varying the number of trees in cross validation
results and test results

A similar pattern could be seen for the two select models. Both cross validation results and

testing results remain stable when the number of trees is varied. There is an accuracy bias
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between cross validation results and testing results. The cross validation results always stay
at 0.97 of accuracy while the test results are around 0.91 of accuracy. The highest accuracy
on test data can be reach with 700 trees for both RF model and XGB models. The accuracy of
both models, which is around 0.92, is slightly lower than the accuracy of the KNN model’s best
configuration. At this stage, combining all the models does not change much the outcome.
For instance, taking the mean all the prediction of the ten RF models results in an accuracy of
around 0.91. It is likely that the high correlation between the set of models make the results
decrease. Although there are other tuning parameters for both the RF and XGB models, it
takes a great effort to find the right combination. This is the reason for which we introduce a

different way to vary the set of models for floor classification task.

3.5.2.2 Floor Classification Results with Different Target Functions and Feature

Spaces

In the previous section, for the KNN model, it is showed that combining models with different
value of K is unable to improve the outcome. The similar difficulty could be observed in com-
bining RF and XGB models. In the work of Torres-Sospedra et al. [2016], the authors suggest
to alternate the distance similarity measures, the data representation and the filter on weak
signal. The results show that an improvement could be achieved with a proper number of
models. We apply the same idea, thus, with a different set of models. In our approach, based
on the three base line models, KNN, RF and XGB, the target function and feature space are

varied.

For the target function, it is straightforward to train a classifier for differing between floors.
Besides that, one could view the floor as a continuous value. The target is a real number indi-
cating the floor, and the output is also a real value x in the range of [0,3]. Then, regression
models can be trained for predicting the floor values. At later step, in order to convert from
the real value x to a floor number, we use a cut vector C = {c;, ¢,, c3}. A value x is classified
as the floor number i if i is the smallest value which satisfies x < ¢;,4, otherwise, x is classi-
fied as the Floor 3. The value of vector C could be computed directly on training data as a sub

optimization step. After the regression model is trained, we get the model’s prediction values
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on all the training data. Then, the cut vector C is selected in a way that maximizes the predic-

tion accuracy of the prediction values and the training targets.

For the feature space, apart from the standard RSS features, we add the filtering-based fea-
tures and HLF features. The filtering-based features are created by adding the indexes of
two strongest access points from the raw RSS features. With the HLF features, the value of

D’ after the dimensional reduction step is set to 25.

Table 9. Floor accuracy on the UAH dataset with different target functions and feature

spaces.
KNN RF XGB
Target Function | Feature Type - - :

Train | Test | Train | Test | Train | Test
Classifier Raw 0.960 | 0.924 | 0.969 | 0915 | 0.970 | 0.913
Regressor Raw 0.959 | 0.925 | 0.967 | 0.890 | 0.954 | 0.892
Classifier Filtering-based | 0.942 | 0.863 | 0.971 | 0.907 | 0.975 | 0.925
Regressor Filtering-based | 0.938 | 0.861 | 0.962 | 0.882 | 0.960 | 0.875
Classifier HLF 0.957 | 0933 | 0.965 | 0918 | 0.966 | 0.912
Regressor HLF 0.958 | 0.931 | 0.942 | 0.868 | 0.911 | 0.831

The Table 9 provides the floor hit rate on both train and test data. The result of train data is
reported by using a 5-fold cross valid setup. The best results on train data is 0.975 accuracy
when the XGB model is trained with the classifier target function on the filtering-based fea-
tures. Meanwhile KNN with HLF features has the highest accuracy on test data. The KNN
model with both target functions classifier and regressor reach 0.93 of accuracy approxi-
mately. Overall, the KNN model family has the best performance on test data, though, its
performance in the train data is less than the other two tree-based models. The tree-based
models likely have some overfitting issues. They have high accuracy on train cross validation
setup and low accuracy on the test results. In terms of correlation, all the tested models have
a high correlation between the train cross validation results and test results. Besides that, the
regressor approach performs less than the corresponding the classifier approach. While those
performance drops are insignificant with KNN, the drop can be seen clearly for the two tree

bases models. Given the size of training data, it is difficult to find a robust cut vector C.
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In terms of feature, the raw features are clearly the most stable features. They achieve good
performances in train and test regardless the models and the target functions. The other two
feature spaces result in different outcomes for each specific learning model. The filtering-
based features add more discriminant power for the tree-based models, RF and XGB models.
However, the features make the performance of KNN decrease significant. It seems the added
component of the filtering-based features affect the similarity measurement of the distance
functions. With the classifier target function, the HLF features have small effects on the tree-
based models. In term of the KNN model, the HLF features can be used for reducing the over-
fitting issue. The features perform well on test results but have a decrease performance in

train cross valid setup.

In order to improve the results on test data, Table 10 presents the accuracy of several ways
for combining models. From the 18-available approaches, four ways of combination are
tested, which include All, Remove Noise, All Classifiers and All Regressors. The All configura-
tion includes all the models. The Remove Noise ensemble approaches are constructed by ex-
cluding models have a low accuracy on the cross valid result such as using the RF model with
the regressor objective and HLF features. All Classifiers and All Regressors use all the model
with respective objection functions. By using all the available configurations, the ensemble
results reach around 0.925 of floor hitting rate. The best performance is 0.938 of accuracy if
the noisy models are removed from the ensemble result. For selection the noisy models, a
threshold of 0.95 with the accuracy on cross valid result is used. Moreover, the All Classifiers
setup results in a small improvement. The All Regressors has a significant lower performance.
Nevertheless, it is likely that the regression objective functions add more useful predictions
to the results. Two combining functions, mean and median, are tested and it can be concluded

that there is not significant difference between the two ones.
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Table 10. Accuracy on test data with several ways of ensemble models

Ensemble Method | Used Function | Accuracy

All Mean 0.923

All Median 0.925
Remove Noise Mean 0.938
Remove Noise Median 0.936
All Classifiers Mean 0.926
All Classifiers Median 0.926
All Regressors Mean 0.906
All Regressors Median 0.904

Table 11. Performance of the Remove Noise combination setup with mean function on
each test log file

Filename Phone Model Accuracy
Test file 1 S3 0.918
Test file 2 S4 0.938
Test file 3 S4 0.959
Test file 4 S3 0.909

Table 11 gives the floor accuracy of each test file with the best combining configuration. The
performance of the approach could depend on the tested phone model slightly. The S3 phone
model has lower accuracy than the S4 phone model. Within the for test files, the test file 4
has the lowest floor hit rate. We plot the path in the Floor 1 and Floor 2 of the test file 4 in
Figure 21. Itis interesting that all of the wrong prediction floors are near the stairs or elevators
area. In the plot, there are one pointin the left figure and two points in the right figure. Similar
wrong prediction patterns could be seen in the three remaining test files. It can be explained
by the high amount of Wi-Fi RSS noise in those area. When the user changes the floor, the
signal patterns from one floor to the next floor are usually overlap. Moreover, in case of using
elevators, the signal in the area the elevators could be blocked. Therefore, it makes the RSS

values change in an unexpected way.
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Figure 21. The floor prediction in Floor 1 (left) and Floor 2 (right) of test file 4. The green
dots are true predictions and the red dots are false ones.

3.5.3 Positioning Results

In the section, we present the results on the Wi-Fi based positioning given the same training
and test data. From the previous sections, the floor can be classified given the data. There-
fore, instead of working with the positions in 2.5D (position and floor), we are now able to
work with the position in 2D only. From this point, there are two ways for training the models.
The first one is to train only one model on all training data. In this case, the model should have
capability to distinct between different floors, given the same 2D coordinate. This could in-
troduce difficulty to create the right separating plane. Nevertheless, the model has quite a
good amount of data to work on. The second approach is to train a separate model for each
different floor. Noisy samples between different floors could be avoided with this approach.
The disadvantage of this approach is a significant reduction of training data for each model.
For example, from the data in Table 8, there are only around 200 samples per model in this
case even if we expected the same performance. For this reason, we selected the first ap-

proach, which needs to train only one model on the data.
3.5.3.1 Finding Baseline Model

From the three model families, KNN, RF and XGB, we run similar setup with 5-fold cross vali-

dation on the train data. For test data, the models are trained with all the train data and
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predict against the test data. The results are reported with in mean error and its standard
deviation (std). Metrics such as root mean square error, median error or distance error at
percentile 90", are relevant for comparing positioning output. All of those metrics though
have correlation at some degrees. Therefore, it is more convenient to rely only on mean error

and its std for evaluating a positioning model’s performance.
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Figure 22. Error distance of KNN model with std on both training and testing data when
the number of neighbors is varied

For KNN, the number of nearest neighbors, K, is varied from 1 to 10 and the results are com-
pared with each other. Figure 22 plots the results of the KNN model with those values of K.
The best result on train data has the errors around 3.0m with a std value of 3.20m. The result
can be reached by selecting the number of neighbors K = 2 for the KNN model. Meanwhile,
the best result on test data is twice this value at around 6.0m in mean error and has a std
value of 5.40m. Those results can be achieved with K = 3 or K = 5. Both train and test data
have better results with smaller values of K than larger ones. In the experiment, the highest

number of neighbors (K = 10) results in the worst performance.

Clearly, the trained model does not generalize well between train and test data. There is a
large gap of around 4m between the mean errors of cross-validation results on train and the
results on test data. If the std is taken into account, the expected error on test results stays
near the error region of 12m, while the errors on train data is around 7m. The cross validation

setup represents the situation where the test data is drawn randomly from the train data. In
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a practical context, if the collected data contains enough training points over the entire floor
and enough samples per point, the positioning errors are around 3.50m. When the training
data is not large enough to cover the test area, the results would decrease significant. In this
case, the errors of a trained KNN model increase from 3.50m to over 6.00m. Without adding
more data to the training step, it is difficult to fix the overfitting issue. A simple straightfor-
ward combination between 10 KNN models with different value of K does not affect much to

the overall results.

For identifying the baseline parameters of RF and XGB models, the number of trees is varied
in order to select the best configuration. The results for RF model and XGB model are illus-
trated in Figure 23 and Figure 24, respectively. Both models have more stable results then the
KNN model when the number of trees changes from 100 to 1000. In term of errors, they have
fewer errors than the KNN model, in both type of errors, train data and in test data. With RF
model, the best performance on train data and test data are around 4m and 5.75m, respec-
tively. The XGB models have a similar performance on train data and a higher error on test
data. In general, the number of trees does not affect much the models’ performance. The two

models also have an overfitting issue between cross validation errors and test errors.
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Figure 23. Error distance of RF model with std on both train and test when the number of
trees is varied
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Figure 24. Error distance of XGB model with std on both train and test when the number
of trees is varied

The cumulative distribution errors for the best configuration of three models on train data
and test data are plotted in Figure 26 and Figure 25. The three models have a quite closely
behavior regardless using train or test data. In the train data, the median values of three mod-
els stay around 3m, while the median values of the errors in test data are around 5m. In terms
of generalization, the results of RF model are slightly better than the other twos. 90% of time,

the errors of RF model are under 10m for both train and test data.

el — KNN
090 7 — RF
— XGB
0.75
Illl‘."
5 0.50 '.'"‘l::"
‘_‘-: 'n \\n
a {8
/|
'y
I s
| ,‘I'
0.25+ '.' i
I‘ 1‘!'
'A vI‘)
1
i
0,00 L2
0 5 10 15 20 25 0

Distance errors {in meter)

Figure 25. Cumulative distance error distribution on training data for the three models
with their best configuration
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Figure 26. Cumulative distance error distribution on testing data for the three models
with their best configuration

From the plot, it can be seen that there exists small amount of samples, which have excep-
tionally high errors value, which are well above 30m distance errors. By looking closely at
those samples, they are mostly recorded when the user is inside the elevators. In this case,
the signal from nearby access points is often blocked and the output positions are predicted

at the other part of the map.
3.5.3.2 Positioning Results with Different Target Functions and Feature Spaces

Different combinations between models and feature spaces are tested in this section. Alt-
hough the nature of localization is a regression task, a classifier-based task could be con-
structed by assigning a number which represents the two values latitude and longitude. From
all the possible user positions, closed positions can be aggregated into one group. Then, the
group identification could be used to represent the classification label of all the members in

the group.
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Figure 27. The green dots are the training WIFI points, and the blue dots denote the cen-
ter of the clusters. The radius of the clusters circle is 10m for visualizing purpose.

There are several ways to group the points. The most popular way is to divide the area into
smaller squares (cells). All points within a square would belong to one group. Another ap-
proach could involve manual picking of group by using the provided map. In our experiment,
we employ the standard K-means clustering for this step. From all the appeared positions in
the training data, the points are clustered into different centers based on the distance. Figure
27 illustrates the process of K-mean clustering. Then, for each training point, the correspond-
ing cluster number is used to replace the regression target of latitude and longitude. The clas-
sifier is trained with the cluster number the learning target. In the later prediction phase, after
get the output from the classifier as the label ¢, the position of the center ct" is then used as

the position output.

The errors on cross validation train data and test data with different combination of models,
features and objective functions are presented in Table 12 and Table 13, respectively. In the
process of clustering all training points, we select 50 clusters for the K-mean process. For the
two added features set, the same configuration from the floor classification is used. The fil-
tering-based features are created by adding the indexes of two strongest access points. With
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the HLF features, the full HLF features vector is reduced to 25-dimensional vector by applying

the Truncated-Single Value Decomposition method.

Table 12. Positioning results on the training set with 5-fold cross validation with differ-

ent combinations

Target Function | Feature Type KNN RF XGB
Classifier Raw 447m + 3.78 | 5.20m %+ 3.99 5.04m + 4.45
Regressor Raw 332m +3.39 | 42Im + 3.44 4.61m £ 3.42
Classifier Filtering-based | 6.35m + 5.79 | 5.36m %+ 4.03 5.11lm + 4.54
Regressor Filtering-based | 5.38m + 5.73 | 4.34m =+ 3.50 4.60m + 3.26
Classifier HLF 4.59m + 3.75 | 5.52m %+ 4.42 6.23m + 5.51
Regressor HLF 3.59m + 348 | 4.42m + 3.96 5.37m + 4.20

Table 13. Positioning results on the testing set with different combinations

Target function Feature type KNN RF XGB
Classifier Raw 6.49m + 545 | 6.46m + 4.44 | 6.56m + 5.34
Regressor Raw 6.1lm £+ 544 | 5.75m +3.94 | 6.10m *+ 4.10
Classifier Filtering-based | 7.27m 4+ 5.83 | 6.58m +4.49 | 6.40m + 4.99
Regressor Filtering-based | 7.0lm £+ 6.05 | 5.88m +4.04 | 6.12m + 4.07
Classifier HLF 6.33m £ 5.63 | 6.59m £+ 5.20 | 7.4Im + 5.90
Regressor HLF 5.92m + 5.61 | 5.95m +£4.71 | 6.43m £ 4.94

From the two tables, it can be seen that the results are varied across all the configurations.
The best result on cross validation setup of train data can be achieved with the KNN regressor
model on raw RSS features, while the best result on test data is the RF regressor model with
raw RSS feature. From the three selected feature spaces, it is clear that the default Raw fea-
ture has the best perform overall. In term of based line model, the KNN model has the best
performance on train data but its results decrease on the test data. The RF model has a more
stable performance. By the changing the target function from the standard regressor to the
classifier, the distance errors have an increment from 0.5m to 1.0m in term of errors. All the

configurations have a high correlation between the mean error and the std value.

On the cross validation setup, the KNN model can reach the mean error of around 3.5m with
raw feature and HLF features. It outperforms the results of RF and XGB by a large margin. The

best result of RF and XGB model are 4.21m and 4.61m, respectively. Both results are achieved
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with raw features and the standard regression approach. With the filtering-based feature
space, the KNN model’s performance has a big increase of 2m in mean errors, which make its

performance worse than the other two tree-based models.

For the test data, the results are quite stable between different models and feature space.
The mean errors are distributed in the range from 6.00m to 6.50m with some exceptions. The
best mean distant error is 5.75m with a std value of 3.94m by using the RF regressor on the
raw features. Changing the feature space to F or HLF makes the errors increase slightly. The
worst combinations are the XGB classifier with the HLF features with a mean error of 7.41m.

The combination of KNN with filtering-based features also have mean errors above 7.00m.

Based on the above results, several ways of ensemble model is introduced in Table 14. The
All configuration is formed by taking the mean of all the 18 models above. The Remove Noisy
Models is almost the same as the All configuration but exclude the bad combination of model
and feature set. Specifically, the combinations which have the mean distant error on test data
above 7.00m are excluded. The Regression Models Only configuration is to ensemble the nine
regression-based models. The Classifier Models Only configuration uses the same rule, but
with classifier-based models. The last configuration takes the combination of all the six RF-
based models. The combination function is the mean function. From a list of output positions,

we take the mean of each coordinate axis as the new coordinate in the output position.

Table 14. Distance errors on several way of ensemble the position output

Ensemble Method Train Errors | Test Errors
All 397m £ 3.11 | 5.45m + 3.98

Remove Noisy Models | 3.39m + 2.80 | 5.12m + 3.68
Regression Models Only | 3.71m + 2.98 | 5.38m + 3.92
Classifier Models Only | 4.62m + 3.54 | 5.94m + 4.31
RF Based Models 4.65m £ 3.65 | 5.97m £+ 4.32

The results show that a simple taken mean of all the models could decrease the errors on test
data set. On the train data, the approach reach can also increase the performance overall,
however, does not outperform a single KNN model. It has a slightly higher mean distant error

but a significant lower std value. The second approach of ensemble could reduce the mean
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distant errors on test data to 5.12m and has an improvement in the std value. The Remove
Noisy Models approach also matches the best performance on cross validation test. Both the
approaches of Regression Models Only and Classifier Models Only increase the results of indi-
vidual models. On the other hand, the RF Based Models ensemble configuration decreases

the performance of the best RF models. It indicates that basing solely on one model could

make the ensemble results overfitting easily.
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Figure 28. Cumulative error distribution of five ensemble approaches on training data
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Figure 29. Cumulative error distribution of five ensemble approaches on testing data
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Figure 28 and Figure 29 illustrate the error distribution of five ensemble approaches on train
and test data. All of the approaches have a close performance in the low errors region. There
is a divergence range after the 75" percentile where the Remove Noisy Models approach
constantly has a better performance than the others. The best model has 90" percentile
errors is around 7.0m on the train data and 10.0m on the test data. At the higher-errors re-

gions, all of the models suffer from large distance errors as high as 20m.

The errors distribution of the Remove Noisy Models ensemble for each test file are illustrated
in Figure 30. The detailed information for each test file can be seen in Table 7. The test file 1
and test file 3 are the same route with different smartphones. By changing the collecting
phones from Samsung Galaxy S4 to Samsung Galaxy S3, the fingerprinting model’s perfor-
mance decreases significantly, especially at the higher errors regions. Similar conclusion can

be drawn by looking at the pair of test file 2 and test file 4.
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Figure 30. Cumulative error distribution for each specific test file

3.6 Summary

In this chapter, we study the Wi-Fi finger printing approach for indoor positioning. The work
focuses on reducing the labor-cost of collecting data with smartphones. As the Wi-Fi finger-
print data is expected to be collected in a simple way, its disadvantages are high noise rate

and inadequacy.
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Given the data, our approach is to vary feature spaces and learning models for dealing with
the noise of radio signals. Three types of features have been tested, including Raw RSS fea-
tures, Filter-based Features and HLF features. KNN, RF and XGB models are the selected train-
ing models. The propose approaches are tested on both train data with cross validation setup
and published test data. From the performance of a single model, several ensemble ap-
proaches are introduced. The best result achieved in test data is around 93.8% accuracy for
floor classifications and 5.12m mean distance error with a std of 3.68m for position output.
However, there are also several remaining problems. The floor predictions are unstable when
the user is in specific area such as stairs or elevators. In case of position output, there are
several high distance errors within our results, which make the proposed methods unreliable
for indoor applications. Moreover, the device-dependent issue contributes a large proportion
to the positioning errors. In order to improve the performance, combining the Wi-Fi data with

other available technology in smartphones should be considered.
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Chapter 4 Improving Inertial Sensors

Tracking Results on Smartphone with WIFI

4.1 Introduction

The accelerometer, gyroscope and magnetic sensors are widely integrated into smartphones
and tablets nowadays. Besides Wi-Fi based positioning system, the data from these sensors
provides a feasible solution to track the user’s movement in a GPS-denied environment. The
accelerometer sensor presents the acceleration data of the phone motion. The gyroscope
sensor contains the turning angular rate. The magnetic sensor contains the data of the mag-
netic field. By combining the three sensors, it is able to approximate the phone’s motion.

Then, the user’s movement could be derived from these results.

The two popular approaches for tracking the user by the inertial sensors could be split into
Inertial Navigation Systems (INS) and Step-and-Heading Systems (SHS). Both systems are able
to compute the relative position of the users from a starting point. While the former approach
focuses on tracking the movement of the users by a moving path in 3D, the latter evolves the
step and heading calculation of the movement. For the tracking user by their smartphone,
the SHS only requires finding the user’s speed and velocity in 2D coordinates. It could be con-
sidered as a simpler version of the INS. However, for most of the SHS approaches, the relative
smartphone’s position to the user’s body plays an important role. A standard position is that
the smartphone is handled in front of the user. In this case, there exists a great correlation
between the phone’s direction and the user’s moving direction. Therefore, it is easy to derive
the user’s direction from inertial data of the smartphone. Positions such as the phone in the

user’s pocket are still challenging for building the SHS system.

SHS approaches split the user movement into the moving distance and moving direction.
There are several ways to extract the speed, such as using the accelerometers or gyroscopes.
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Popular approaches include integrating accelerometer or detecting the moving pattern of the
user. Usually, additional information such as the user’s step length is needed for inferring the
moving distance. With the user’s direction, in a noise-free environment, the magnetic sensors
can use directly because it provides the direction to the North-magnetic of the Earth. Inte-
grating the gyroscope sensor values is another standard way for computing the heading val-
ues. In practice, the two methods are error sensitive. There are several sources of noise, which
come from the environment and the device itself. For example, the presence of wall and elec-
tronic devices in indoor environment could alternate the magnetic field. The gyroscope sen-
sor in the smartphone often measures the device’s angular rate with noise. It makes integrat-
ing the gyroscope’s angular rate become unreliable. In order to calculate the user’s heading
in a stable way, filtering methods are introduced to take care of the measurement errors and
fuse different sources of heading calculation. Popular filters are Complimentary filter [Ma-
hony et al., 2008], Kalman filter [Choukroun et al., 2006], and Madgwick filter [Madgwick,
2010].

Practically, it is difficult to have an error-free heading estimation methods. Moreover, with
the characteristics of relative tracking methods, the drifting effect from the errors at each
individual step could be a serious issue. Designing a stable SHS on smartphones for a long
working period requires a lot of calibration efforts. Other sources of information are usually
needed for adjusting the drifting errors. For example, several methods of opportunistic cali-
brating are introduced in the works of Zhou et al. [2014] and Qjan et al. [2015]. In a calibrating-
free environment, the SHS tracking would suffer a great decrease in performance. In many
cases, an additional positioning method is preferred such as GPS-based or Wi-Fi based. In
additional to that, the usage of additional position methods can be justified because the SHS

system needs an additional method to extract the starting position of the user effectively.

In our work, we study the performance of a standard SHS for such context. The work could be
divided into two phases. The first phase is illustrated in Figure 31. For determining the speed,
two popular methods, step counting and moving window approach, are employed. For deter-
mining the heading, three methods, which are the direction cosine matrix, Complimentary

Filter and Madgwick Filter are employed. Before combining the moving speed and the head-
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ing into a complete tracking solution, the performance of each individual approach are ana-
lyzed and the best approach for each part is selected. Then, a particle filter approximation
process is used to create the tracking results. We evaluate our system on the data from IPIN

2016 competition, track 3.
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Figure 31. Our propose framework for the SHS tracking

In the second part, the SHS tracking path is combined with the Wi-Fi positioning output. The
Wi-Fi data is introduced for two purposes. It provides an estimation of the starting point of
the user, which is needed in the SHS system. For reducing the drifting errors from the inertial
sensors tracking, the output positioning from Wi-Fi fingerprinting approach can be combined
with the SHS output. Two combination approaches are tested (Figure 32). The first approach
is to use directly the Wi-Fi output as a pivot point for fixing the SHS tracking part. In the second
approach, we rely on the Wi-Fi signal to build an observation model, which is then combined

with the above particle filter.
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Figure 32. Combine Wi-Fi data with SHS-based tracking

4.2 Literature Review

User tracking through smartphone sensors have been widely studied in recently years. The
work in [Kothari et al. 2012] provides a detailed study about the topics for several aspects.
They first build a SHS system, and then later, fusing with Wi-Fi and map information to cali-
brate the drifting errors. For the user’s moving speed, the approaches of counting step and
continuous moving window detection are used. For the user’s heading, the standard Compli-
mentary Filter is used. An additional particle filter approximation is used for dealing with the
noise in the moving distance and heading output. The distance results on the SHS system
alone is around 5.0m + 3.0m. By fusing with the Wi-Fi output, the error could be reduced to
3.0m + 3.0m in the online setup. Additional map information is used to remove bad particles.
In the paper, the phone’s position is handled and pointed forward throughout the walk. In
order to deal with other holding device positions, it is necessary to find the moving axis of the
smartphone. Steinhoff and Schiele [2010] attempt to track user’s movement with an in-
pocket device. For deriving the user’s direction, principal component analysis approach is
used to find the appropriate user’s motion direction. The work, though, is carried out with an

IMU, not a smartphone.
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Qian et al. [2015] propose a complex architecture for indoor tracing using smartphones (Fig-
ure 33). The architecture includes a calibrated module, context awareness module and a po-
sitioning error correction module. Several key challenges are addressed in this work. Acceler-
ation data is used to classify four possible phone usages, which are Texting, Calling, In-hand
and In-pocket. Specific rules are then built to find the expected step length for each usage.
The work also addresses the unstable magnetic field within indoor variations. An additional
local magnetic reference is added for detecting magnetic anomalies. The authors use a cali-
brating process for switching between a standard Complimentary Filter and a simple six-de-
gree heading calculations. From the computed moving distance and heading, particle filters
approximation and a vector graph of the area are employed for building the user’s moving

path.

Indoor Localization System

Pedestrian Step Particle
Dead-Reckoning Dataction Filter
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Error
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Figure 33. A proposed architecture for smartphone tracking in indoor environment by
Qian et al. [2015]

Between the user’s moving speed and the user’s heading, the latter is considered to contrib-
ute more to the drifting errors. As reported in the work of Zhou et al. [2014], angle tracking
errors could reach to 40° for over 3 minutes heading tracking. The authors propose A® ap-
proach, which is an opportunistic calibration algorithm, for stabilizing the heading estimation.
The proposed approach can reduce the angle errors to under 10°. Figure 34 presents their
results against the standard heading output of Android APIl. While the Android API’s path is
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completely lost after several turning points, the A* can provide the user’s position over four
walking cycles. The A®approach, however, requires a very specific tuning process and can only
work with a specific type of sensor device. In the work, the ADIS1626x series of MEMS gyro-

scopes are selected for the experiment.
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Figure 34. Tracking results comparison between direction from standard Android API
(the red line) and A*(the blue line) [Zhou et al., 2014]

Performances of different angle estimation methods on smartphone are reviewed in Mour-
cou et al. [2015]. The Madgwick Filter [Madgwick, 2010] and Mahony Filter [Mahony et al.,
2008] are tested against the default filter of several smartphone’s models. The result shows
that all the filters have errors less than one degree for each rotation. A robot arm is used to
replicate the angle movement. The experiment, however, only evaluates the reliability of
smartphone’s sensors for angle calculation purpose. Other sources of errors, such as from
environment, are not in the discussion. Afzal et al. [2011] study the effect of noisy magnetic
data or calculating the phone direction. The authors attempt to derive the heading based

solely on the smartphone’s magnetic sensor. Several parameters, such as sum of three mag-
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netic axis values and the inclination angle, are used to measure the magnetic field perturba-
tion. Then, a fuzzy combiner is built to compute the heading output. An error of over 16° could

be seen through the testing.

Reducing the SHS errors by fusing with Wi-Fi data is a quite popular approach. Evennou and
Marx [2006] improve the SHS output by the position output from KNN model. The work em-
ploy the standard particle filter approach with the motion model is derived from the inertial
data. The observation model is a Gaussian kernel function, which is built on the Wi-Fi output
position. The particles are then scored based on the distance between the particles’ position
and the Wi-Fi output position. Wall information from the environment is also employed for
adjusting the bad particles. The result of fusing system is 1.53m, which is better than the ac-
curacy of 1.86m from the SHS-based only approach. Similar observation models, which is built
from Wi-Fi positioning output are used in [Wang et al., 2007]. Chen et al. [2014] propose an-
other approach in combining SHS output with Wi-Fi output. After the trajectory is computed
by the inertial sensors data, it is shifted to the Wi-Fi output positions. The authors employ a
gradient descent-based search to find the most suitable shifted value. The proposed method
has significant improvements in comparison with the fusion algorithm in Evennou and Marx

[2006].

4.3 Standard SHS Approach

Generally, the SHS approach is split into two separated parts. The first part is to compute the
moving distance and the second path is the moving heading. The accelerometer can be used
to derive the moving distance efficiently. The heading is computed from the all three available
sensors, including accelerometer, gyroscope and magnetic sensors. In this section, we only
discuss the SHS tracking in the context of the standard phone holding position. In the standard

position, the phone is handed and pointed forward when the user moves.

4.3.1 Speed Calculation

The user’s moving distance can be calculated by using the Counting Step or Moving Window
approaches. In the Counting Step approach, by assuming that the smartphone is handled

when the user is moving, the Z-axis has the most fluctuated values over the 3 axes, as seen in
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Figure 35. The steps are defined as the walking patterns in the Z-axis values. A round trip from
a local maximization to the next local maximization could be counted as a step. When the
user stops, the pattern on Z-axis become more stable and less derivation from the gravity
accelerometer value. Therefore, the algorithm uses an additional threshold to differ between
standing and walking interval. From the number of step, it requires the step length for com-
puting the moving distance between walking intervals. The step length, on the other hand,
could not be derived from the accelerometer data alone. In our approach, we choose to rely

on the training data with the assumption that the user is the same for training and testing.
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Figure 35. Accelerometer sensor values overtime when the phone is handled

The Moving Window approach bases on the assumption that the accelerometer values of a
walking-action segment are higher than the accelerometer values of a standing-action seg-
ment. It then calculates the user’s speed from the std of Z-axis over a fixed length of time
interval. The computed std value is then compared with a threshold to differ whether the user
moves or stands for the whole interval. Figure 36 illustrates the cumulative density function
of the std over a fixed interval length of 0.5s. The point around 0.1 makes a significant change
for the std pattern. The value thus can be considered as a splitting point between moving and
standing actions of the user. If the pattern is categorized as moving, it is possible to assume
that the user moves with an average speed. From the provide training data, the std threshold

and the approximate user’s average speed could be estimated.
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Both Counting Step or Moving Window approaches are quite similar in a way that they can
only infer some explicit characteristics of the user’s movements. They have to depend on ad-
ditional information for computing the exactly moving distance. The biggest difference be-
tween the two approaches is that the average speed parameter in the Moving Window, which
is not as reliable as the step length parameter. For a user, the step length is usually stable in
normal walking action. In a more complicated context, advantage techniques could be em-
ployed to differ the walking patterns between short and long steps. However, it requires a

large number data to have a meaningful conclusion in practice.

LY
2 ,///
£ 050} i
g -
b -

025} S

f“
f"
0.00 =< ) L
0.0 0.1 0.2 0.3 0.4 0.5 0.6
std on Z axis (et

Figure 36. Cumulative distribution of std values for each interval length of 0.5 second

4.3.2 Heading Calculation

In a SHS tracking approach, the heading estimation usually involves the calculation of device’s
attitude in the global frame. Figure 37 illustrates the global frame and the phone frame. Both
frames have the same origin O at the device’s position. For simplicity, we could assume that
a vector v in phone frame is given by v = (Vx, vy, V;) and in global frame is given by Gy =
(vx, vy, V7). In the global frame, the OXYZ coordinates have the Y-axis point to the North
direction and Z-axis point to the Earth center. Roughly speaking, in the phone frame, the Y-

axis is given by the magnetic sensor output and the Z-axis is given by the accelerometer sensor
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output. The task of attitude estimation is to compute the rotation matrix which transforms

coordinates in phone frame to global frame.

There are several ways to represent the rotation operator in this case such as Euler angles,
direction cosine matrix and quaternion. The Euler angles method represents the phone atti-

tude in global frames by the rotation around each axis X, Y, Z:

Sw = (“yaw, Cpitch, “roll) (19)

Figure 37. Global frame (left) and device frame (right)

The matrix representation uses a 3x3 R for translating a vector from phone frames to global

frames. The relationship between v and Pv is expressed as:
v=RFv (20)

Quaternion representation use a unit-length vector g = (q,, q1, 92, q3) as the rotation vector.

The transformation between v and Pv could be expressed by:

“v=qg® v ® g1 (21)
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In the above equation, the notation @) represents the quaternion multiplication operator be-
tween a quaternion and a 4-dimnesional vector. All the three representations have ad-
vantages and disadvantages in describing the device’s attitude and are able to convert from
one form to other forms. Diebel [2006] gives a details view in mathematical aspect of the

three representations.

In our work, three approaches for computing the heading direction are tested. The first one
is to calculate the rotation matrix from accelerometer and magnetic sensors directly. In a
noise-free environment, the value of device’s accelerometer is aligned with the Z-axis of the
global frame and the value of device’s magnetic is aligned with the Y-axis of the global frame.
Therefore, it is straightforward to calculate the rotation matrix from the above 6 values. The
second approach is a complimentary filter-based approach. The integration values of gyro-
scope sensor are added to the angular vector from the first methods. The third one is Madg-
wick Filter [Madgwick, 2010]. Madgwick Filter provides an adjustment for the gyroscope er-

rors and magnetic distortion by gradient descent algorithm.

4.3.2.1 Use Accelerometer and Magnetic

Assume that at time ¢, the magnetic sensor value is Pm, and the accelerometer value is Fa,

which are both normalized to unit length. A way of computing rotation matrix R is given in
Kothari et al. [2012]. Three reference vectors ©I, P], PK which point along three axes in

global frame are calculated as:

PI = Pmx Pq (22)

Pr= Pr« P (23)

PK = Pq (24)
PI

R =7 (25)
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4.3.2.2 Complimentary Filter

There are several approaches for Complimentary Filter such as Mahony et al. [2005] or
Fourati [2015]. In our approach, we simply combine the angular vector from the above ap-

proach with the angular change from gyroscope.

Let the quaternion at time t — 1 be g,_4, at time t the gyroscope outputis fw =

w,, w,, W,). Then we have the quaternion derivative with respect to the gyroscope as:
x» Yy, Lz

qw,t = %%—1 Q@ fw (26)

Let g ¢ be the quaternion derived from the R at time t and A be the fusing weight, then the

angular vector is computed by:
Qt=/1qR,t+(1_/1)qw,t*At (27)
with At is the updated interval.

4.3.2.3 Madgwick Filter

Madgwick filter adds the measurement errors from accelerometer sensors and magnetic sen-
sors as an additional component to the computing process of quaternion derivative. The pre-
viously calculated quaternion q;_, is first used for constructing an error function of m; and

a;. A gradient descent step is employed for minimizing the errors.
The Earth magnetic field in global frame, basing on the quaternion in previous step g;_4, is:
‘h=q-1Q® "mQqy (28)
The magnetic field is then normalized to have a horizontal axis and a vertical axis:
¢p =[0,/hZ + hZ,0, h,] (29)
The gravity vector within the Earth frame has the normalize value: Gg =1[0,0,0,1]

From b and Gg, we can establish a function for computing the magnetic errors and accel-

erometer errors:
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- -1 P

f= e “9®qiti—a (30)
- -1 P

qr1 “b ® q;4—m

From the objective function f, it is able to calculate the Jacobian matrix J of f (as described

in Madgwick [2010]), and then the objective function gradient Vf as follow:

vi=J'f (31)

In his work, Madgwick proposes a one-step gradient descent. The needed adjustment for min-

imizing the error function f from stepttot — 1is:

Gorrors = Topi (32)

error,t — ||vf||

The total quaternion derivative includes two components, angular rate from gyroscope g,

from Equation ( 26 ) and the above adjustment quaterniongq,.. -

q, = qw,t — b qerror,t (33)

with B could be considered as the fusing weight between two types of quaternion derivatives.

The quaternion g, is derived from q,_; and q,:

gt = q¢-1 +q, 4t (34)

4.3.3 Path Approximation with Particle Filters

The speed and direction calculation process result in the speed vt and the heading value ht
at time t. Let (x°,y°) be the starting point of the phone. We can apply a standard Particle

Filter for removing noise from the calculation step. There are N particles from p4, py, ..., Dy

t1

which is initialize at (x°, y°). At time t,, for each particle i, the position (x;

Ly 1) of p* will

be compute from the pf, which is at (x{, y}) as follow:

P

{xtl = x! + v} * cos(hf) * (t; — t) (35)
vt =y +vf s sin(h) « (¢ — )

The value of v} and h! will be drawn from a Gaussian distribution having mean values v* and

ht respectively.

87



Improving Inertial Sensors Tracking with Wi-Fi Data

4.4 Combining Step-and-Heading Output with Wi-Fi Posi-
tion

There are two reasons for combining SHS output and WIFI-based position output. The first
one is to build a complete SHS for user tracking, one needs to find the starting position
(x9,¥0)- Forindoor environment, WIFI-based output provides this position with some degree
of errors. The second one is the drifting error issue of the SHS output. The noise from low cost
MEMS sensors would affect the speed and direction computing process. An uncalibrated gy-
roscope sensor, for example, could make the integration computing differ from the real value.
Another source of noise is the unreliable magnetic field within the indoor area. Moreover, the
errors, which are generated from those noisy values, can be added up overtime. Therefore, it

is necessary to calibrate the output position of SHS-based approach after some time.

The issue between SHS output and WIFI-based output is the mismatched sampling rates. Nor-
mally, the update rate of SHS positioning is aligned with the lowest update rate from the three
types of sensor, accelerometer, magnetic sensor and gyroscope sensor. The rate could be
around 10 to 20 position updates per second. Additional resampling process could be added
to reduce the update rate. Meanwhile, the update rate of WIFI scanning depends on a scan-
ning cycle time. In general, a time interval from 4 seconds to 6 seconds is expected for com-
pleting a scanning cycle. Therefore, it requires some techniques to combine two different

update rates.

4.4.1 Direct Adjustment based on Wi-Fi Output

Absolute adjustment could resample the particle around the output position from Wi-Fi finger
printing model. However, the errors would depend highly on the performance of Wi-Fi. The
contribution from the inertial sensors is minimal in this case. The step and heading output
only have effects on the path between the two consecutive Wi-Fi scans. Moreover, the track-

ing path is likely to be broken down into discrete segments.

In order to create smoothing combination between two methods, a fusing constant w is

added. The weighting w defines how far the particles would move to the direction of the Wi-
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Fi output. Besides that, there is also temporal information that should be added to the ad-
justing process. Assume that at step t, the Wi-Fi position output is Py,;_g;. Then, Py, _g; only
has impact to the particles within a time window At. The adjustment process should not up-
date the particles, which stay out of the time window [t — At, t]. Let p be the old position of
a particle at time t;, before the updating. The value of t; should be in the range of [t — At, t].

The new position p™¢" after the update is calculated as:

t—t
Atl) * Pyyi_py (36)

PV = (1—wx (1 - p+ws(1-

In equation ( 36 ), we add a smoothing function f(x) =1 — tA_—tx over the constant w. The

smoothing function makes the particle move slowly to the direction of Py,;_r; within the pre-
defined time window. At the start of the interval [t — At, t], the p™¢" is the same as p. At the
end of the interval, p™®" would be at the position of (1 —w) * p + w * Py;_g;, which is a
combination between the inertial positioning and Wi-Fi position with weight w. The effect of
the adjustment process is illustrated in Figure 38. The green path is the approximation path
based on fusing between Particle Filter approach and Wi-Fi output Py,;_r; attimet. The green
dot is the pre-adjusted path. The adjusting process would affect the green path in the interval
[t — At, t]. The gray labels of t and t — At means that the old position points which would
be moved to the new position by the adjustment process. In Figure 38a, when the SHS posi-
tion at time t and the point Py,;_p; are distant to each other, the path is moved to Py,;_g;
which would completely remove the dependence of the sub-path after ¢ and the sub-path
before t. In Figure 38b, by adding the weight w, the contribution between the SHS path and
the Wi-Fi output can be balanced. However, at time t — At, there is an immediately jump
between the old position and the new position. The resulting path would become discontin-
uous. In the Figure 38c, when the smoothing function is added to the combined path, the

jumping issue could be reduced.

89



Improving Inertial Sensors Tracking with Wi-Fi Data

n G

-

(a) Direct Adjust (b) Use w =0.5 and (c) Add smoothing
without weight time window At function over t

Figure 38. Three possible ways of adjusting the SHS path based on the position of Py;_r;

The direct adjustment approach has some drawbacks. Firstly, it depends on the relative posi-
tion of Py,;_r; to the real path. Regardless the distance errors, the addition of Py,;_r; could
make the path go in a wrong way. For example, in Figure 39(a), while both
Py i and P?y,;_g; have the same distance error to the real output Pt379¢t at time t, they
have different outcomes after the adjustment process. The point P1,;_r; could make the
fusion path go far away the real path (blue path), thus, increase the distance errors in general.
The point P?,;_r; would make the fusion path closed to the real path and decrease the dis-
tance errors. Without additional knowledge, it is difficult to identify the type of behaviors
Secondly, the shape of the path could be changed completely after the adjustment step. In
Figure 39(b), the path could change from turn left to turn right due to different values of
Pyi_ri- In general, when the output prediction from the Wi-Fi is too far from the SHS tracking
path, it would control the path’s characteristic. We want to address the problem by making
the Wi-Fi fingerprinting model be more informative. Instead of getting only one position for
each Wi-Fi scan, the output of the fingerprinting model is representing as a list of possible
positions. From the direct combination, the fusion step is changed into a voting scheme based

on the observation model of the particle filter step.
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(a) The position of P1,;_r; and P?y,;_p; (b) The shape of the path is changed
affect the output path attime t — At

Figure 39. Two cases where the adjusting process could produce unstable results

4.4.2 Local Observation Model

Building an observation model for the SHS tracking is a well-known approach to fix the drifting
error. In our work, we base on the Wi-Fi positioning model for scoring each particle at each
step. The observation model is constructed for dealing with the two weaknesses of the direct
adjustment methods. For removing the strong effects of a single output position Py,;_g;, the
output probability of the classifier is used. When the position problem changes from regres-
sion to classification, it is able to build a model, which predicts the likelihood of a list of points.
For the training part, a grouping step is used to group near training points into a cluster. The
cluster index can be used for the target input of the later learning phase (Section 3.5.3.2). In
the positioning step, given an input raw RSS feature vector X and N training cluster centers,

the classifier can produce the likelihood vector:
proby = {ay,a,,...,ay} (37)

where each q; is the probability of the output position is near the it" cluster. By using the
probability output vector, the Wi-Fi positioning is certainly more descriptive than only output

the position Py;_p;.

One could build a scoring function for the position p of a particle based on proby. The main

idea of the scoring function is to put high score for the particles which is stay near the high
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probability centers. For example, our original approach in Ta et al. [2016] focuses on the rel-
ative distance of p to three nearest centers. However, the function takes a long time to adjust
the path as it is lack of discriminative capability. Because the three nearest centers are likely
the same for each particle, the scores would be approximately identical. It thus makes the

later resampling step likely be a random sampling.

In order to fix the low discriminative power issue, the new function attempts to give each
particle a score based on its relative distance to a specific center. For the it" center, let C; be

its position. C; then adds to the score of p a value of:

d(p,Cy)—-dming,

) (37)

SCOTeci (P) =a; * (1 - dmaxci—dminci

where dmax., and dming, are the maximum and minimum distances from C; to all the par-
ticles. In the equation, a particle is scored based on the distance from it to the center C;. The
value is then linearly scaled against the maximum and minimum distances. The nearest parti-
cles, which have d(p, C;) = dminc,, would get the highest score a; with respect to C;. The
farthest particles, which have d(p, C;) = dmin, would receive a zero score for the center

C..

Figure 40. The scoring function for particles (gray dot) with two centers C; and C;. The
maximum and minimum distances are user to scale the observation probability
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The score of the particle p is the sum of each scorec, (p) for all N centers:

score(p) = $1L, scorec, () (38)

Figure 40 shows how multiple centers could affect the scoring function of each particle. Based
on the specific distance from the position p to each center, the contribution of each specific
element in proby could be varied. In general, a particle, which is closer to high probability

centers than other particles, would have the highest score.

The scores of all particles are normalized to unit vector and then used to resample the parti-
cles in the next step. The effect of the proby to the SHS path is limited within a time window
of [t,t + At], where t is scanning time of X and At is the effective window time of the Wi-Fi
scan X. When there is no Wi-Fi scan available, the scores of all particles are set to a constant.

Then, the next resampling step would be likely a random sampling step.

4.5 Experiments and Results

We perform our evaluation on the IPIN 2016 competition dataset. There are four test files in
total. Because each test file is recorded during quite a long time, around 900s and 1500s, we
split each test file into separate small segments where the user moves entirely within a floor.
The small segments make the SHS tracking less affected by drifting errors. In addition, as a
result from Wi-Fi floor classification, the changing floor point could be detected easily and
thus reset the localization process. Several segments then are selected for testing our ap-
proaches. The specific selected segments are presented in Figure 41. Each segment is rec-
orded with two different devices, Samsung Galaxy S3 (S3) and Samsung Galaxy S4 (S4). There

are eight testing segments in total.
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LT

(c) Segment 3 (d) Segment 4
Figure 41. The four selected testing segments from test data, with the number represent
the checkpoint visiting order of the user

4.5.1 Moving Distance Error

For computing the moving distance, The Counting Step or Moving Window methods requires
additional input values, which are the step length and the moving speed. We use the provided

training data for calculating the necessary parameters. Each users’ moving path in the data
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are recorded by clicking the specific checkpoint when it is reached. There are two assump-
tions. The first assumption is that the user moves directly between two checkpoints. With this
assumption, it is possible to calculate the moving distance from the two checkpoints’ coordi-
nates. The second one is that both the users’ step length and users’ moving speed do not
change much from one checkpoint to the next checkpoint. For a stable estimation, we remove

the segment when there is a floor change.

To determine the step length in the Counting Step approach, we rely on each sub-moving part
from one checkpoint to the next checkpoint. A threshold for local maximum on Z-axis is used.
The standing-action and walking-action are separated by this threshold. From the calculated
the moving distance and the number of steps between two consecutive checkpoints, the ap-

proximated step length of the specific moving part could be calculated.
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Figure 42. The step length distribution over the training data set

Figure 42 illustrates the distribution of step length with the counting step approach. By re-
moving the noisy tail of the greater domain, the step length could be seen as a normal distri-

bution with the mean value of Ugeprengetn = 0.36m and the std value of Osteprengen =
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0.12m. It can be seen clearly that the value of step length varies a lot through the training
data. Therefore, it is reasonable to take the step length mean value for computing the dis-

tance.

To determine the average moving speed in the Moving Window approach, the full moving
paths are also split into segments between each consecutive checkpoint. For each segment,
a moving window with length of 0.5s is used for identifying the std on the Z-axis of the accel-
erometer. The computed std is then compared with a threshold to find out whether the user
was moving or standing within the specific time window. Similar patterns can be seen with
the average speed (Figure 43). The average speed values also vary significantly through dif-
ferent walking segments. Its central is around 1.0m, with a little skew to the right of the cen-
tral. There is a tail range of the domain greater than 1.5m, which should be removed. It can
assume that the speed average has a normal distribution with the mean of u4y,gspeea =

0.97m and the std of §speeq = 0.28m.
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Figure 43. The speed average distribution over the training data set
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After finding the average of step length and average speed, we test the calculated values
against the eight selected sub-paths. The test sub-paths are also divided into several walks.
The user is assumed to move in a straight line from one checkpoint to the next checkpoint.
The ground truth length is calculated from the two checkpoints coordinates. The length is
then compared to the moving distance output from the Step Count method and the Moving

Window method.

Figure 44 shows the cumulative distribution of the absolute errors from two methods. The
Counting Step method performs better than the Moving Window method. There is an excep-
tion at the highest regions, where the Moving Window method is slightly better than the
Counting Step method. The maximum error of Moving Window is around 6.0m while the
Counting Step reaches 8.0m. The relative error with respect to the moving distance is 8% per
meter distance for the Counting Step approach and 12% per meter distance for the Moving
Window approach. Both approach suffers a similar error pattern. The reason is the usage of
fixed constants for calculating the distance, which are the average step length and the speed
average. In fact, the two values are varied through the entire data. However, with 3.0m error
at percentile 90th, it is acceptable to select the Counting Step for the later phase of particle

filter approximation.
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Figure 44. The absolute errors distribution of moving distance of two methods
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4.5.2 Heading Calculation Error

Three approaches, Rotation Matrix, Complimentary Filter and Madgwick Filter are used for
calculating the phone’s orientation. We assume that the azimuth axis of the phone is the same
as the user’s moving direction. The heading ground truth is then calculated based on the two
consecutive checkpoints in a similar way of the moving distance ground truth from the above

section.

Several pre-processing steps for the raw sensors’ data are used. First, it is necessary to down
sampling the entire three data streams to a proper update rate together because the raw
sensor values are provided with different updating rates. Usually, gyroscope sensor has the
highest rate which is around 150Hz - 200Hz. Accelerometer sensors and magnetic sensor are
updated with the frequency of around 50Hz. In this case, all the three sensors are resampled
at 50Hz. Second, the magnetic sensor of the smartphone is highly affected by hard and soft
iron noise. In practice, at the beginning, a calibration should be carried out to reduce the
errors. However, in the provided testing data, there is no such process. In our processing step,
we apply a zero-mean normalization step for the magnetic sensor data to reduce the effects

of the noise.

Figure 45 shows the distribution of absolute errors for the three selected approaches, the
accelerometer and magnetic heading (AccMag Heading), Complimentary Filter and Madgwick
Filter. Both the AccMag Heading and Complimentary Filter have a closed performance. Mean-
while the Madgwick Filter performs slightly worse than that. The gyroscope integration com-
ponent in Complimentary Filter could improve the results from the standard AccMag Heading
output. It also reduces the maximum angle error. In case of Madgwick Filter, the gradient

fixing step introduces more noise in the output heading.
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Figure 45. The cumulative distribution absolute errors of three approaches

Apart from the noisy magnetic sensors and gyroscope sensors, there are a number of other
reasons which contribute to the high heading errors over all. Firstly, some turning angles does
not reflect in the ground truth calculation. Throughout the collecting data process, there are
several ambiguous parts where the user needs to change the direction slightly to avoid ob-
stacles. The second reason is that the turning moment in the ground truth calculation is con-
sidered to be happened immediately. When the user marks his arrival at a new checkpoint,
the angle is changed to the next direction after that. The new angle should appear in the
sensor data stream within the interval of several seconds. It depends on the angular speed of

the user.

The Figure 46 plots the respected path and the calculated heading for the segment 1 of the
phone model Samsung Galaxy S3. Three methods are plotted as well as the ideal heading
output. From the plot, it can be seen that the AccMag Heading and Complimentary Filter can
keep up with the user’s changing direction to some extents. Complimentary Filter is more
stable against the noisy sensor data. However, it has an issue for the large turning point at
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the checkpoint number 5. The output of Madgwick Filter approach is quite unstable against

the direction change throughout the path. Nevertheless, there is also the checkpoint 1 in the

path, where all the algorithms recognize a pulse of changing direction which does not ap-

peared in the ground truth heading direction. Overall, the three methods are affected by small

drifting angles, around less than 10° in average. Using a simple zero-mean normalization is

unable enough to fix the indoor magnetic abnormal issues in this case.
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Figure 46. The moving path (a) and three heading calculation methods: AccMag
Heading (b), Complimentary Filter (c) and Madgwick Filter (d)
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The Figure 47 plots the respected path and the calculated heading for the segment 3 of the
phone model Samsung Galaxy S4. The path of segment 3 is more complicated than the seg-
ment 1. There are a total of 13 checkpoints with large turning angles. The path also goes
through places near the elevators. From the heading output, it can see clearly the highly fluc-
tuation when the user moves near the elevators from checkpoint number 1 to checkpoint
number 3. There are also two 180° turning points at checkpoints number 7 and number 11,

which adds up to a high variations of errors.
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Figure 47. The moving path of testing segment 3 (left figure) and the Complimentary
Filter output (right figure)

Overall, the mean heading errors of AccMag Heading and Complimentary Filter stay around
30°. As reported by several works, the type of high errors is expected in uncontrolled envi-
ronment. General methods as Complimentary Filter and Madgwick Filter have a limited capa-
bility to fix the errors from the noisy sensors output of the smartphone. In the future works,
opportunistic calibrating methods such as in Qian et al. [2015] and Zhou et al. [2014] could be

employed for reducing the errors.

4.5.3 Path Construction with Particle Filters

Basing on the results of the moving distance and phone’s heading, a particle filter approxima-
tion is used to create full moving path of each testing segment. We select the Step Counting
method for calculating the distance and Complimentary Filter for calculating the heading.

Again, as the individual results of two methods are not time aligned, an additional step of
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resampling both heading and moving distance values is required. We use the interval of 0.5
second as the new updating interval of the both values. At this stage, we assume that the
starting point of each path is known. The initial particles therefore are randomly created
around the starting point. The approximation step used 5000 particles. Each particle is then
updated with the calculated moving distance and heading values. The Gaussian noise is added
to model the calculation errors. With moving distance, the mean error per meter of the Count-
ing Step method is used as the std of the Gaussian distribution. With heading, the percentile
50" error of the Complimentary Filter is used for the same purpose. After each step, the out-

put position is taken as the mean position of all the available particles.

Table 15. Distance errors for each test segment file

Segment Phone Model | Distance error
Segment 1 S3 10.70m =+ 5.44
Segment 1 S4 10.29m + 6.34
Segment 2 S3 6.82m + 3.56
Segment 2 S4 9.7Im £ 5.11
Segment 3 S3 6.55m + 3.61
Segment 3 S4 7.16m £ 3.19
Segment 4 S3 6.61lm + 3.56
Segment 4 S4 5.59m + 3.18

Table 15 presents the mean distance errors and its std across the eight testing sub-path. The
best segment results are Segment 4, with the mean error of 6.61m and 5.59m for the S3
phone and S4 phone, respectively. Segment 1 has the worst results with the errors over 10m
for both tested phones. It is interesting that the most complicated segment, Segment 3, has
a better performance than the simple path, Segment 1. Figure 48(a) represents the worst
mean distance errors path and Figure 48(b) represent the best mean distance errors distance
errors path. For Segment 1, it is highly affected by the drifting errors. While the heading errors
stay around 10° for a large part of the segment, the moving straight action of the user makes

the distance errors grow overtime. In case of Segment 4, it is as simple as Segment 1. The
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heading errors make the tracking path diverge from the truth path from checkpoint 2. How-
ever, due to the path’s characteristics, the distance errors are kept around 6m. The two paths

stay closer at the end of the segment (checkpoint number 6 and 7).

(a) Segment 1, S3 Phone (b) Segment 4, S4 Phone

Figure 48. The blue path is the real user moving path and the green path is the approxi-
mation path by particle filter method

4.5.4 Fusing with Wi-Fi Data Stream

From the previous results, a Wi-Fi fingerprinting model is fused for with the output. The Wi-
Fi fingerprint model is not only used to calibrate the drifting errors but also to localize the
user at the starting point. The starting position of the user corresponds to the first completed
scan cycle of the Wi-Fi data. The calculated starting point, however, is not guaranteed to be
accurate because there are also some degrees of errors for the Wi-Fi fingerprinting position-
ing model. When the Wi-Fi output position is not present at the start of the testing segment,
an additional particle filter is carried out to construct the previous missing part. As there is no
additional Wi-Fi data for the missing part, the particle process would use the moving distance

and heading output.

From the first available Wi-Fi output position to the end of the testing segment, the tracking

progress is straightforward as more Wi-Fi information would be available. From the results
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shown in Table 14 of combining Wi-Fi fingerprinting models, we select the Remove Noisy
Models for the position output and Classifier Models Only for building the observation
model. The Remove Noisy Models has a mean distance error of 5.12m while the Classifier
Models Only reaches around 6.00m of mean distance error. Nevertheless, the latter approach
is able to output the prediction as a list of probability, which is mandatory to build the obser-
vation model in particle filter step. In the Direct Adjust method, the Wi-Fi output positions
would be combined with the SHS output part. In Equation ( 36 ), the fusing weight w is se-
lected as 0.5, which equalizes the contribution from the Wi-Fi data and SHS data. The window
effect length is selected at 5s, which is the approximated time of a Wi-Fi scan cycle. For the
observation model, with each input scan X, the nine probability outputs proby from all the
classifier models are used. Because the cluster centers are identical across all the configura-
tions, it is able to take the sum of all the nine probabilities for each center. After that, the sum
sum

probability probz*™ is normalized to unit vector. The window effect is the same as the Direct

Adjust.

Table 16 shows the results of the two approaches together. The Wi-Fi only output serves as a
reference solution. For constructing the Wi-Fi only output path, simple linear interpolation is
used for each pair of consecutive complete Wi-Fi scans. Compared with the results in Table
15, the fusing approaches could out-perform the inertial-sensors based approach. Without
the need of starting point, both fusing approach have better mean distance errors and std. In
general, the two fusing-based approaches depend mainly on the performance of Wi-Fi finger-
printing model as it provides the first output position for the user’s starting point. From the
results in Section 3.5.3, it is shown that the Wi-Fi fingerprinting could reach a low distance
error of 5m in average. However, it also has to deal with the high distance errors, for example
the errors in Segment 1 of Phone Model S3. By combining with the SHS output, these high
distance errors could be reduced significantly. In addition to that, the combination approach
provides more stable tracking results across the tested segments. The linear approximation
step in Wi-Fi Only setting only outperforms the fusing-based approaches when the finger-
printing outputs have good tracking results, for example the result of Segment 1 with S4
phone model. When the errors increase, information from the inertial sensors provide more

useful data of the user’s movement between two consecutive Wi-Fi scans. Among the fusing-

104



Improving Inertial Sensors Tracking with Wi-Fi Data

based approaches, the Use Observation Model performs slightly better than the Direct Adjust.
Figure 49 presents the distribution of distance errors of the three approaches in Table 16. The
low error region, which is less than 5m distance error, illustrates the tracking parts where the
Wi-Fi Only approach output positions give good tracking outputs. The three approaches have

a closed performance in the low regions. However, in the high error region, the two fusion-

based approaches outperform the Wi-Fi Only significantly.

Table 16. Distance errors for each test segment file

Distance errors (in meter)
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Segment | Phone Model | Wi-Fi Only | Direct Adjust | Use Observation Model
Segment 1 S3 15.18m + 12.62 | 7.26m + 4.25 4.74m + 1.79
Segment 1 S4 4.15m + 248 | 451m +2.72 4.78m + 2.95
Segment 2 S3 6.48m + 3.55 | 523m + 2.17 4.04m + 2.00
Segment 2 S4 3.84m + 1.44 | 4.05m £+ 1.57 3.81m + 2.09
Segment 3 S3 6.79m + 521 | 525m + 3.17 5.08m + 3.10
Segment 3 S4 5.15m £ 3.02 | 5.13m + 3.05 5.35m £ 3.05
Segment 4 S3 15.95m + 7.27 | 8.73m + 2.50 7.48m + 1.64
Segment 4 S4 5.73m £ 3.70 | 5.60m + 3.29 4.06m + 1.73
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Figure 49. The distribution of distance errors of the three approaches present in Table 16

The biggest improvements are the capability of fixing the noisy fingerprinting errors in Seg-
ment 1 -S3 and Segment 4 - S4. For example, Figure 50 illustrates the in Segment 4 - S3. Nearly
half of the path is missing Wi-Fi data. The missing Wi-Fi scanning causes the errors increase
to as high as 15m in the Wi-Fi Only approach. The approach provides the tracking outputs
around a small area (Figure 50a). However, both fusing methods are able to reduce those
errors to around 8m (Figure 50b and Figure 50c). The sub-path has 120 seconds but has only
6 complete Wi-Fi scans. There is a lagging interval of around 90 seconds at the beginning of
the segment which is needed a long back tracking process. The Use Observation Model ap-

proach has a better approximation because it is more independent of the Wi-Fi output.

(c) Use Observation Model

Figure 50. Tracking results on the Segment 4, with Samsung Galaxy S3 model. The blue
path is the ground truth path and the green path is the approximation path

Figure 51 illustrates the same path with a good number of Wi-Fi scans. The complete Wi-Fi
scan are distributed uniformly along the moving path. The Wi-Fi only approach has a mean
distance error of 5.73m with a std value of 3.70. Although the method has a good positioning
result, the linear approximation path results in a completely noisy line. It is difficult to identify

critical points such as turning point from the approximation path (Figure 51a). Providing a
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good tracking results, the raw Wi-Fi output positions is then capable for improving the SHS

output in both fusion methods.

(c) Use Observation Model

Figure 51. Tracking results on the Segment 4, with Samsung Galaxy S4 model. The blue
path is the ground truth path and the green path is the approximation path

In the Direct Adjust method, it results in a similarity performance, which has a distance error
of 5.60m. Because of a large numbers of Wi-Fi output positions, the SHS path is the same as
the linear approximation path. Instead of following the heading direction from the inertial
sensors data, the tracking path would move from one Wi-Fi output position to the next Wi-Fi
output position. We could reduce this effect by changing the value of the fusing constant w
in Equation ( 36 ). The second method of fusing, Use Observation Model, results in a much
better path approximation (Figure 51c). The structure of the SHS approximation path is pre-
served mostly and aligned with the probability output from the Wi-Fi classifier models. It re-
sults in a mean distant errors of 4.06m with a std value 1.73m. Compare with the result of
using particle in Table 15, the fusing-based approach outperforms the standard result in both
distant errors and the stability of the output. Moreover, the fusing method do not need to
know the starting point for initializing the particles. In Figure 51c, the starting point of the

approximate path is miss-identified to stay inside the stair (the point is numbered with 0).
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However, there are some other regions where the Wi-Fi fingerprinting output could add con-
fusion to the SHS path. In the region near the point number 6 and 7, the Wi-Fi output suggests
that the user would stay in the area while the real path go to the stair for moving to the next

floor.

4.6 Summary

In this chapter, we study several aspects of the SHS tracking for indoor environment. While
the moving distance tracking results are quite stable, the heading output is clearly affected
by noisy data. The errors in the heading contribute the tracking results mostly. In the later
phase, by combining with the Wi-Fi fingerprinting output, the drifting errors could be reduced
significant. The Direct Adjust is a weighted-combination between the inertial-sensors-based
tracking and Wi-Fi fingerprinting based tracking. In the Use Observation Model combination
method, we focus on finding an agreement between the two tracking approaches in a more
general way. The Wi-Fi data is incorporated into the tracking path through the observation
model. From the experiment results, the Use Observation Model method provides more sta-

ble tracking paths than the Direct Adjust method.

There are several limitations in the works. For example, the phone’s position is restricted to
be handled and pointed forward. In a more general phone handling setup, the standard Com-
plimentary Filter is unable to match the device’s heading to the user’s heading. Besides that,
complicated walking patterns, such as moving in elevators and stairs, are not considered.
Apart from these limitations, the performance of two fusion approaches depends on several
parameters, which control the contribution between the SHS output and Wi-Fi output. We

would like to address the issues in future works.
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Chapter 5  Using Bluetooth-based Distance
for Improving Wi-Fi Fingerprinting Track-
ing

5.1 Introduction

In a GPS denied environment, Wi-Fi and Bluetooth could be considered as alternative wire-
less-based solutions for positioning purpose. Novel Wi-Fi-based positioning methods on
smartphones can find the position by scanning the available Wi-Fi access points in the sur-
rounding environment. Due to the unreliable characteristics of the Wi-Fi signal propagation
inindoor environment, it is expected that there is a mean distance error of around 5m (results
from Section 3.5.3). In case of Bluetooth-base positioning, the Bluetooth technology available
on smartphone nowadays is much similar to the Wi-Fi technology in terms of underlying radio
physics characteristics and application level. Therefore, it is possible to create a similar posi-
tioning system similar to the Wi-Fi ones. However, the Bluetooth communication range is
smaller than the range of Wi-Fi. Therefore, it requires a higher number of static beacons for
deployment in a large area. Moreover, the standard Bluetooth usage on smartphones only
focuses on pair-to-pair communication. Thus, an additional network infrastructure could

make the positioning system costlier.

Apart from the short-range communication, the Bluetooth protocol on smartphones is de-
signed to focus on pair-to-pair communication, which can be employed in the context of mul-
tiple users in the area. When each user moves with his/her smartphone within a public area,
it is able to let the smartphone’s Bluetooth stay at visible mode. Other smartphones then
could acquire the Bluetooth RSS signal value from the Bluetooth enquiry process. The RSS

could give an approximation of the relative range between the two devices in the area. By
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combining the computed Bluetooth-based distance with the Wi-Fi positioning output, it is
able to refine the devices’ position. This approach does not require to install additional infra-
structures and can work on the standard Bluetooth protocol which is supported by standard

on smartphones

There remain several key challenges of the mentioned approach. The first difficulty is that the
Wi-Fi positioning output is not accurate. The errors from the Wi-Fi output is expected to have
a mean value in the range from 5m to 7m. In addition, the distance error depends on specific
users’ location in the area. The second difficulty is that the inferred distance from the RSS
value in the Bluetooth enquiry process also suffers some degree of error. The source of Wi-Fi
and Bluetooth output errors is the noisy propagation characteristics in indoor environment.
For example, None-Line-of-Sight and multipath effect are among the main reasons of the
noise. The third difficulty is the non-synchronization between the Wi-Fi scanning process and
Bluetooth scanning process. Specifically, the scanning cycle for each technology in the
smartphone are not guaranteed to start and finish at the same time. In case of moving users,

the time difference causes more noise to the estimated users’ position and relative distance.

In this work, we try to overcome these problems by considering both non-temporal and tem-
poral approaches. In the non-temporal approach, the distance error of the Wi-Fi output posi-
tion is modeled by a Gaussian distribution. Similarly, another Gaussian distribution is used to
describe the distance error between two devices from the Bluetooth enquiry process. Wi-Fi
and Bluetooth outputs within a short time period are treated as if they happen in a same time
window. An error function is then created to measure the mismatch between the two distri-
butions. By neutralizing the mismatch, it is able to improve the position results of Wi-Fi out-
put. In the temporal approach, the time component of the users’ movement is incorporated
into the error function. The error function uses the position of all the users as its parameters.
We employ particle-filter-based tracking to minimize the error function. The particle filter has

the observation model as a combination between Wi-Fi and Bluetooth scanning data.

The experiments were conducted with real scenarios with up to four users. Both the non-

temporal and temporal approach results are tested against the standard Wi-Fi fingerprinting
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model. Our results show that it is able to make use of Bluetooth signal to improve the posi-

tioning output of the Wi-Fi fingerprinting model.

5.2 Literature Review

In the state of the art, the most straightforward approach is to deploy static Bluetooth devices
in the environment, which act with a similar role to wireless access points of Wi-Fi based
technology. Bandara et al. [2004] use up to four Bluetooth antennas as the static station. The
proposed system is able to locate a Bluetooth tag within a room with area of 4.5m x 5.5m.
The RSSI value is used to classify the tag’s position between different areas of the room. Pei
et al. [2010] employ fingerprinting based approach for tracking a moving phone. The setup
includes only three Bluetooth beacons in a corridor-like space of 80m long, approximately.
The horizontal error is reported at 5.1m. For comparison, the Wi-Fi based solution has an
error of 2.2m in the same area. However, these results are possible thanks to the 8 installed
WLAN access points. More recent works employ the new BLE technology. The BLE beacons
are smaller and more energy efficient. They are able to power up for a long period of time
[Gomez et al., 2012]. Thus, it is more convenient to create Bluetooth beacon networks for
positioning purpose. Faragher and Harle [2014] provide an in-depth study of using BLE for
indoor localization purpose. The distance error of Bluetooth-based approach could reach as
low as 2.6m for 95% of time. However, a high number of beacons should be deployed to reach
the above performance. The study also addresses some issues of the BLE signal such as the
scanning cycle, fast fading effects and Wi-Fi scanning interference. A similar performance for
BLE-based indoor positioning is reported in Zhuang et al. [2016]. The authors employed fin-

gerprinting based approach with the RSS value from the installed BLE beacons.

In the aspect of presence of multiple devices, there are several works on collaborative locali-
zation. Those works rely on some specific wireless technologies, which support the peer-to-
peer communication. The technologies include Bluetooth, Wi-Fi Direct and Sound. These
technologies are capable to discover the existence of nearby neighbors. In Liu et al. [2014],
the task of detecting face-to-face proximity is researched. The smartphones are used to scan
nearby visible Bluetooth devices in daily usage. From the received RSSI, relative distance be-
tween two devices is calculated. The distance is then used to detect whether the two users
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are closed to each other. For dealing with noisy Bluetooth signals, additional techniques such
as RSSI smoothing and light sensor data are introduced for calculating a more accurate dis-
tance. Jun et al. [2013] propose the Social-Loc system, which uses Wi-Fi Direct technology for
detecting two events: Encounter and Non-Encounter between each pair of users. In the work,
the authors find the RSSI peak for separating Encounter and Non-Encounter events. These
detected events are then used to improve the Wi-Fi fingerprinting and Dead Reckoning track-
ing. The drawback of Wi-Fi Direct technology is that it does not allow the regular Wi-Fi scan-
ning. Therefore, the proposed Social-Loc is more suitable for improving the Dead Reckoning
tracking than the Wi-Fi fingerprinting tracking. Sound-based ranging is also useful for detect
the relative distance between two devices. In Liu et al. [2012], the authors use the Sound-
based distance to improve Wi-Fi fingerprinting positioning system. The acoustic ranging is de-
signed with TOA method for calculating the distance between devices. The estimated ranges
are then used to form a graph between participated devices. The graph’s vertices are derived
from the Wi-Fi positioning output. A search progress is then performed to find the best match
position for the graph. The searching task aims to find an agreement between the vertices’
position and the edges’ length. The proposed approach has a mean error of around 1.6m,
depending on specific setups. However, the study only mentions the cases when all the de-

vices are in static position.

5.3 Using Bluetooth Data to Improve Wi-Fi Positioning

Within the context of multiple users, the available data from the environment includes the
absolute positions of each device and the relative distances between each pair of devices. In
order to implement our idea of data fusion, the participated devices need to know each other
absolute positioning. In this step, there are two feasible approaches. The first one is each pair
of devices maintains a direct communication, which used to exchange their positions. The
pair communication could be carried out by using a Bluetooth-based exchange information.
However, it would be inefficient because a participated device is required to communicate to
several other devices within a short period of time. The devices, therefore, should be able to
maintain several Bluetooth connections at the same time. Moreover, standard Bluetooth API

requires the user intervention for accepting incoming connection, which make the approach
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less user-friendly. The second approach is to employ an additional central sever which keeps
all the available information about the devices’ position and their distance to the neighbor
devices. The server and the devices could communicate by using Wi-Fi connections. The se-
cond approach is more user-friendly, energy efficient and has higher computing capability
than the first approach. Hence, we choose the second approach for fusing the Wi-Fi position-

ing and Bluetooth pair distance.

5.3.1 Centralized Positioning Framework with Wi-Fi and Bluetooth

The usage of a central server for indoor positioning is a popular approach. For example, Dao
et al. [2014] use a server-based solution for combining different information to improve the
localization results. The additional server acts as a central node which gathers all the available
information from each participated smartphones. They also employ the server to carry inten-

sive complexity computation in the positioning computing process.

In our task of fusing Wi-Fi and Bluetooth data, the server-based approach can be implemented
easily because we can minimize the need for exchange information between the participated
smartphones and the server. The information mostly includes the device identifiers and the
RSS values. The upload rate is in the range of several seconds. There are two types of infor-
mation which are required to send for the server side. The first type is the scanned Wi-Fi
information of access points. For each completed scan cycle, the device sends the identifier
(Wi-Fi MAC address) of the seen access points and their RSS values. Roughly, there is a five-
second interval between two consecutive scans. The second type is the Bluetooth scanned
information. The needed data is also the Bluetooth MAC addresses of the seen devices and
their RSS values. The time of a complete Bluetooth scan is not clearly defined. When a new
Bluetooth device is seen, it could be sent to the server immediately. In practice, there can be
many visible Bluetooth devices within the environment such as wireless headphones or wire-
less mice. The server side maintains a list of active devices. From the list, only the Bluetooth

information from the participant devices is used for the positioning purpose.

On the server side, the data from Wi-Fi scans and Bluetooth scans gives different ways for
calculate the user’s positions. Figure 52 illustrates the principle of our approach. For simplic-

ity, we consider the context of positioning within a floor. Each user can be characterized by
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his smartphone. The example context involves two users, namely the it* and j* users. The
two users’ devices keep gathering Wi-Fi access points data and Bluetooth inquiry data within
the environment and send to the server. The server receives the data and stores as an Event,
which could be of Wi-Fi type or Bluetooth type. In Figure 52, there are three Events: two Wi-
Fi scans and a Bluetooth scan. The real position of user i" and jt* are denoted as

(xiruene Yiruene) and (x],on o Yiruent), respectively. The subscript t is the time parameter.

The real distance between the two usersis d,. ., .-
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Figure 52. Example of using both the WLAN scan and Bluetooth scan for user positioning
system

At time t;, we can determine the position of user it" is (9’%21 ,f/il) from the WLAN scan infor-

mation of the it" device. The Wi-Fi position output, however, could be different to the real

position (xéruth‘tl,yfmth'tl) the user. Similarly, at time t,, when the device j** completes a
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Wi-Fi scan, we can compute the Wi-Fi position output of user jt". Let the result of this com-
putation be (9’222 ,f/;z). Besides that, the Bluetooth scanning process could give an estimation
between the two users. At time t5, if the two users it" and j* are within the Bluetooth scan-

ning range, we could find the relative distance lg from the RSS value of Bluetooth scanning

process. The value of lf:’S is an approximation of the real distance between the two users at

ij

. ij
timet;, d truth,ts

truth,t,- AN alternative way for calculating d

is using the output position from
the Wi-Fi data of the users i" and j'*. For example, if both t; and t, are closed enough to

ij

. AL Al Al Al AL
ts, the distance d,, between (X, ,ytl) and (X, ,ytz) is @ measurement of the value dtmth‘t?’.

AL y
Therefore, a constraint between d;, and lg could be established such as both values should

be as closed as possible. When there are more devices and scanning data, more constraints
could be included. To use these constraints effectively, it is necessary to deal with the noisy
output of the two technologies. Besides that, the unsynchronized events would add more

ambiguity to the problems.

In order to employ the relationship between Wi-Fi and Bluetooth for improving positioning
results, we propose two different approaches. The first one is a non-temporal based ap-
proach. We remove the temporal relationship between successive events. Closed events
within a time interval window would be treated as if they happened at the same time. Wi-Fi
fingerprinting approach is used for finding user’s positioning from Wi-Fi scan. The LDPL model
in Equation ( 3 ) is used to find the distance from the Bluetooth RSS value. A simple likelihood
function is built with the users’ position as parameters. Based on the function of non-tem-
poral approach, we extend the likelihood function to include the time parameters in the tem-
poral approach. The error function includes the devices’ position at each timestamp as its
parameters. A simple motion model is added to establish the positioning relationship be-
tween closed events. The error function is then computed by using a particle filter approxi-

mation.
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5.3.2 Non-temporal Approach

In the non-temporal approach, a sliding window of length At is used. All of events from t to
t + At are considered happened at the same time. Without loss of generality, we assume that
from t to t + At, it is possible to receive the Bluetooth scan, from the mobile device user it"
which contains the enquiry information from the mobile device of user j*. The Wi-Fi scans
from the mobile device of the user it and j* are aslo available within the time interval [t, t +
At]. Let w! and w’ be the Wi-Fi scans from the two users, and rss¥ is the RSS value of the
Bluetooth scan. For the non-temporal based approach, we remove the time variable from the
parameters. It is able to create a likelihood function with the two users’ position (x!, y*) and

x7,y7) as the parameters P(x!, y!, x/, y/ |wi, w/, rss¥):
y y y

P(xi'yilleyjlwi'wjlrssij) = PW(xilyilwi)PW(xj'yjle)PB(xi'yilxj'yjlrssij)

(39)

In the right hand side of the equation, the two first terms measure the likelihood of the posi-
tion with respect Wi-Fi scan for each user. The third term provides the likelihood of the rela-

tive distance between two users with respect to the Bluetooth scan.

For measuring the Wi-Fi part, for example Py, (x}, y'|lw?), one could assume the Wi-Fi output
w y

position from a fingerprinting model has a Gaussian distribution, like the approach in Evennou
and Marx [2006] . Let (&',%") be the calculated position from the scan w, P, (x!, y!|wi) is

measured by:

. @l-2)2+yi-p")?

Pw(xLyiwh) ~ P,y |2 9) = gme 290 (40)

with §,, is a constant indicating the reliability of the Wi-Fi fingerprinting model

For measuring the Bluetooth part of the estimated likelihood, we first calculate the 1Y from

rss' by using the well known LDPL model:

U = 10  10(rssY~rssi)/(10n) (41)
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where 755} is the RSS value at the distance [, n is the path loss exponent. The three values
1SSy, M, and [, are known constants. The value of Y isan approximation of the real distance,

which comes directly from the real position of users i*" and j**, (x!,y') and (x/,y/):

U =l = x))2 = (' - y))? (42)
By assuming [/ have a Gaussian distribution around d¥, the Bluetooth likelihood can be es-

timated by another Gaussian kernel:

Ps(x',y', ),y [rssl) ~ Pp(dV|1V) = =—e  *% (43)
b

with &, is a constant indicating the reliability of the LDPL on the RSS Bluetooth signal.

From Equations ( 40 ) and ( 43 ), the likelihood function in Equation ( 39 ) could be rewritten

as:
P(x!,yL,xd, yi|wi,wi, rssi) = € x e=9("y' 2 57)

=22+ =P+ (o =22+ ) = )2 N
262

g(xi’yi’xj’yj) =

Wi =20 - ¢ —y))? — 1Y)
252

(44)
with C, §, and §,, are constants.

Our purpose is to find the value of (x;, ;) and (x;,y;) which minimize the value for g, and

thus, maximize the likelihood probability P. If g is rewritten with rt =

\/(xi — A+ (i = H2, ) = \/(xf — %2 + (37 —$’)2 and d¥ from above, the equation

of g is changed into a simpler form:

Y2 D) (dY - 1Y)?
Lyl yd yiy =
gxhyhx!,yl) 262 + 252

(45)
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. AL . ; AL . ; AL
The range of dY is [max(d —1r'—1/,0),d +r'+7r/] withd is the distance between
AL Al

x ,y), (9’%] ,f/]). In general, g could reach the minimum value at various points in the do-

main as we could swap the value of r! and r/ without changing the value of g. Moreover, g

is symmetric by the line between (& ,9)), 2’ ,%’). Therefore, we add two constraints to

make the minimum point of g unique. The first constraint is that the four
. i i N nal AL AT AT . N .
points (x%, "), (x’,y7), (X ,¥ ), (X" ,y") are aligned. The second constraint is that the dis-

tance rt = r/ = r. The function g(x!, y*, x/, y’) is then rewritten as a function of r:

r? (é\lu — 2r — V)2

g(r) = % + 255
(46)
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Figure 53. Several ways for evaluating g. Two pairs of points < (xi, yi), (x{ , ylj )>and

<(xk,yL), (x2,v))> are symmetric by the line through (&, 9") and (&’ ,%). The pair
<(x% yY), (x7,y7)> is used to calculate the minimized value of g

Figure 53 gives an illustration of the above transforming process. The pair of position (x*, y!)
and (x/, y/)can be used for finding the minimum value of g(x%, y*, x/,y/). It also shows the
symmetric property of g. The value g(xi, yi,x/, /) is equal to g (xi, yi, xJ,v)) if i is equal
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to ri and rlj is equal to rzj. It is straightforward to find the minimum value of the function
g(r) in (46 ). The updated positions of user users i" and j¢* are then calculated from the

value of r by using the two added constraints.

The first drawback of the above method is to exclude the temporal-component of the user’s
movement. The WIFI-based position and the Bluetooth-based distance are received at differ-
ent moments. It is also difficult to determine the time interval length At. If it is too large,
noisier output could be added to the adjustment process. If it is too small, there is not enough
related Wi-Fi scans and Bluetooth scan. The other drawback is the use of Gaussian distribution
to model the likelihood Py, (x, y|w?). The later temporal approach is designed to improve

those drawbacks of the temporal approach.

5.3.3 Temporal Approach

In our temporal approach to the problem, we attempt to use the temporal relationship in the
establishment of the likelihood function P. Instead of relying only on the position of two users
at specific timestamp to measure the errors, the likelihood function could be extended to
include the moving path of all the users. Each moving path is considered as a sequence of

points. The new likelihood function would receive all of the points as its parameters.

We first construct the likelihood function F, which is a more completed form of P based on
three probability functions. A motion model M is used to establish the relationship between
the position at time t and the position at time t + 1 when the user moves within the area. A
probability distribution function W describes the distribution probability from Wi-Fi scan re-
sults. The B function describes the distance distribution based on the Bluetooth RSS value

from each pair of devices.

Assume that there are N users to track in T seconds. Let call the position of user it" at second
as (x, y}). It is required that the time index t contains all the Event timestamps from Wi-Fi
and Bluetooth of all the participant devices. Approximately, all the float-typed timestamps
could be rounded to the nearest integer values. The motion model for each user it" is defined

as a probability function between the previous position and present position,
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M(x;, Ve|Xe—1,Ve—1). The moving component for T seconds for each user i*" is then calcu-

lated by:

FM =TI, M (xb, yt|xt_q, yiog) (47)

For each specific user it", assume that there are K timestamps among the T seconds which

have the Wi-Fi scan results. Let call the timestamp for Wi-Fi events u,, u,,...ug. Then for
each u¥, w),, the function W is used to estimate the likelihood probability W (xi,, yi,, Iwi., ).

Then, the Wi-Fi component F} of the user i*" is built from all the available Wi-Fi scans:
FiW = Ik(=1 w (xlilk’ ylik' IWlllk) ( 48 )

Similarly, we can build the Bluetooth component Fg- from the Bluetooth inquiry process for

each pair of for each pair of users it" and jt". From the Bluetooth data of the user i, it can

be assumed that the Bluetooth scan process results in L timestamps which are v;,v,,...,v;.
Each scan receives a signal strength rl,ll’ We are then able to estimate the probability

B(xiizll YIEZ; xlj;l' ydl Irvll]) The Bluetooth Components for L timEStamps are then calculated by:
O Lol o ) [
Fij = =1 B (Xpp Yo X5 Y, |15, (49)

Then, our probability likelihood function F could be written as:

F= (ﬁFiM)(ﬁFiW)( ﬁ Filj'

i=1,j=1
(50)

At this step, one could select the explicit form of M, Wand Band process to find the maximum
value of F. The number of estimated parameters in F totally depends on the number of users
and the tracking time. As the F function includes a motion model M, particle filter-based ap-
proximation is a natural way for approximating the maximum value of F. In addition to that,
the particle filter process would have a more flexible way for selecting the explicit form of W

and B.

For each user it" at time t, there is a set of particles SE, which represents the position distri-

bution probability. For the motion model M, without the additional information from inertial
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sensors, the movement of the user could take random values as the moving speed v and the
heading direction h. While there is no constraint on the value of h, the moving speed v should
be suitable with a typical indoor movement. In our specific implementation, we generate the
moving speed from a normal distribution around a speed average value. The speed average
is chosen according to the walking action in indoor environment. The heading is generated
from the uniform distribution in the range [0, 2rt]. An additional wall-crossing checking step
is added for removing bad particles. Figure 54 gives an example of the motion model M for
generating the new particles. The center black dot is the initial particle. The wall is repre-
sented with the black lines. New particles are then generated with a normal distribution mov-
ing speed around the speed average value and a uniform heading direction. The green parti-

cles are kept. The gray ones which cross the wall are removed.

Figure 54. An example of the motion model M. The black dot in the center is the original
particle which is used to generate the gray and the green dots. The gray dots are re-
moved because they cross the walls (black lines).

With the particle filter-based approximation, the likelihoods given by Wi-Fi component FW
and Bluetooth component FZcould be transformed into the observation model. The score a

specific pf € S} is calculated by:
score(pf) = scorey, (p!) + scoreg(pf) (51)

with scorey, (pf) is the Wi-Fi component and scoreg (pf) is the Bluetooth component.
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The scorey, (pf) is calculated by using the method described in Section 4.4.2 if there is a scan
at around time [t — A;t,t + A, t] for user it". Otherwise, its value is set to 0. The constant
A, t is the effective window length for each Wi-Fi scan. Similarly, the scoreg(p}) can be cal-
culated if there is any Bluetooth scan involved the user it* around time t. Without loss of

generality, we assume the available Bluetooth scan is rssitj that specifies the RSS value from

the device i*" and j**. The update rule for scoreg (pf) is defined as follow:
scoreg(pf) = Tyt est scorew (Pl * B(pf,pjilrssty) (52)

The subscript k indicates the need to calculate repeatedly for each p; , € Sf. The likelihood
B(pf, pf,klrssfj) is computed by using similar process as the computing of the likelihood
Pz (d|l) in Equation ( 43 ). The distance d is the distance between two particles pf,p}k and
the distance [ is derived from rssfj by the LDPL model. A constant 4,t is added to define the

effective interval length for a Bluetooth scan.

5.4 Experiments and Results

To evaluate the performance, we select up to four devices which are participating in the po-
sitioning scenario. Each device is set to scan Wi-Fi access points and available Bluetooth de-
vices in the environment. The users are instructed to carry the devices and move around the
experiment area. When a checkpoint is reached, the time is registered. The checkpoint’s po-
sition and its reaching time are then used to calculate the user’s trajectory as the ground truth
movement. The testing area is an office environment which includes two floors of the MICA
institute. There is only one tested trajectory which is composed mostly by the corridor and
office rooms. The path is illustrated in Figure 55. The length of the path is around 200m, which
usually takes 300s of walking with average speed. There are four devices in use, including two
smartphones and two tablets. All of them run the Android operating system and use the same
application for collecting the Wi-Fi and Bluetooth data. Table 17 gives some details infor-

mation about the four devices.
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In our experiment, we selected an offline approach. Instead of sending the scan results to a
server, they are stored as text log files and processed later. In general, this approach’s results

are expected to be identical with the online processing.
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Figure 55. Testing path in two floors of MICA institute

Table 17. Detailed information for each devices

Device ID Name Type Operating System
1 Samsung Galaxy Note 4 | Smartphone Android 6.0.1
2 HTC One ME Smartphone Android 5.0.2
3 Asus ME Tablet Android 4.2.2
4 Samsung Galaxy Tab Tablet Android 4.2.1
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5.4.1 Relationship between Bluetooth RSS Value and Distance

In the first part, the parameters for estimating the distance from RSS value are computed.
From Equation ( 43 ), it is mandatory to find the appropriate d0 and the RSS value at dO0,
namely 75540. In this experiment, we select the path loss exponent n = 1.8 because of the
indoor office environment as listed in Table 1. A test device is set to scan the visible Bluetooth
connection of another device in the environment. There is no obstacle between the two de-
vices, thus, the effect of non-line-of-sight propagation is ignored. For each distance, the col-
lection time is set to 300 seconds. The completed inquiry cycle of Bluetooth is around 12 se-
conds in average. This results in around 25 to 30 samples per distance. However, when the
distance is too large, the number of the inquiry samples starts to reduce. At the distance of

20m, there are only 10 inquiry samples. Figure 56 illustrates the experiment results.
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Figure 56. The mean RSS and its std values for selected distances between two
smartphones

The distance d = Om has the highest RSS value and also lowest std. The decrement pattern
become more stable for the distance from 2m to 10m. Outside the range of 10m, it starts to
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fluctuate and drop packages. It is the reason why both mean distance at 15m and 20m is

higher than at the 10m. Knowing the results, we selected d0 = 2m and rss;, = —60dBm.

In order to estimate the distance error, the two selected values d0 and rss,, are substituted
into Equation (41 ) to estimate the distance from the received signal strength. The cumulative
distribution distance error is illustrated Figure 57. From the plot, we set the value of €, in

Equation ( 43 ) to 3.0m, which is near the 9o™ percentile of the distance errors.
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Figure 57. Cumulative distance errors with the selected parameters

5.4.2 Wi-Fi Baseline Model

A Wi-Fi fingerprinting model is trained as a baseline model for the later fusing step with Blue-
tooth data. For building the Wi-Fi fingerprinting database, two the Device 1 (Samsung Galaxy
Note 3) and Device 3 (Asus ME) are used. The database is built with the same method de-
scribed in Chapter 3. One user is asked to carry the device and walk along the test path. Every
time a checkpoint is reached, the timestamp is registered and then used to interpolate the

full moving path in a later stage. The building database process therefore does not take much
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time. There are six training log files in total. Given the specific testing path in Figure 55, all the

data are collected in less than one hour.

Table 18 gives a detailed view of the collected Wi-Fi data. A time threshold of 5s is used to
grouping RSS signals into one complete scan. There are around 400 fingerprinting across 6
training files. We noticed that the number of completed scan Wi-Fi per user’s walks fluctuate
in the range of 50-100 scans. Moreover, the number of seen Wi-Fi access points also depends
on the user’s position and the underlying device running processes. In our case, the average
number of seen Wi-Fi access points per scan is around 7. The minimum number of access

points is 3 and maximum number of access points is 12.

Table 18. Data for training Wi-Fi finger printing model

Number of train files 6
Path Length 220m
Average time length 300 seconds
Average of scan for one path 63 scans
Total of seen access points 138
Average seen access points 7

The distributions of RSS value from two devices are plotted in Figure 58. There are some var-
iations between distributions of the two devices. The variation is noticeable in the region of
less than -85dBm and around -60dBm. In a multiple-device context, those types of variants
could affect the generation of fingerprinting models. In order to reduce the effects of device
diversity, we firstly filter out the RSS values of the region less than -85dBm. Second, a mean
normalization step is used. For each participated device, it is assumed to know the mean RSS
value over the test area. The raw RSS value is then subtracted by this value. Other approaches
such as finding the linear transformation [Bernardos et al, 2010] or using HLF features
[Kjaergaard and Munk, 2008] would be suitable for improving the later training fingerprinting

model step.
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Figure 58. RSS value distribution of collected dataset for training fingerprinting model

For the fingerprinting model, we select the Random Forest based model as the training model.
The Random Forest is trained with 500 trees. Both the raw RSS feature and the mean normal-
ization RSS feature are used in the K-fold cross validation testing with K= 5. As the path con-
tains two floors with some segments within the stairs, the target position is treated as a 2.5D
coordinates. For a triplet (x, y, z), the z value is normalized to receive only one of three values
in [0,0.5,1]. The values 0 and 1 represent the points in the 8" floor and 9" floor while the
value 0.5 is used to indicate that the user moves within the stairs. The distance error between
the target point prarger = (Xtarget» Veargetr Ztarget) and the output position p = (x,y,z) is

calculated by:

d(ptarget' p) = \/(xtarget - x)z + (Ytarget - y)z + 10 = abs(ztarget - Z) ( 53 )
In the experiment, we use 10 as the weight of wrong floor prediction.

The performance of the two preprocessing feature approaches are shown in Figure 59. The

standard raw features result in a mean distance error of 4.21m while the mean normalization

127



Using Bluetooth and Wi-Fi Data for Tracking

one has mean error of 3.61m. The former has a std of 2.65m and the latter has a std of 2.53m.
There is a slightly improvement by changing from the raw features to the preprocessed one.
In terms of maximum distance error, both approaches suffer from large errors of over 10m.
Compared with the published dataset of IPIN 2016, the performance of RF model with the
preprocessing features is comparable. In order to reduce the error further, it would require a

large amount of training data.
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Figure 59. Comparison between the raw feature and the normalization feature in train-
ing with RF model

5.4.3 Positioning Results

The two proposed methods are tested with different scenarios. The scenarios were designed
in such a way that the additional Bluetooth scanning data could provide useful information
for smoothing the Wi-Fi positioning output. Each scenario involves from 2 to 4 users. They
walk in the same path as shown in Figure 55, with different relative distances between each
other. The Wi-Fi only, Non-temporal and Temporal approaches are used to localize the users.

We used a tracking interval of 0.5 second for tracking the users.
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In the Wi-Fi only approach, the output of Wi-Fi fingerprinting method is provided as the ref-
erence tracking results. First, the RF regressor model is trained on the six training files. In the
testing phase, with each completed Wi-Fi scan from the tested devices, the RF model is used
to produce the position output. The full tracking path for each 0.5 second interval is interpo-

lated from the outputs.

In the Non-temporal approach, the output positions from the pre-trained RF regressor model
are calculated for each device. The Bluetooth scanned information is then used for adjusting
the positioning by the updating rule at Non-temporal updating rule. To solve the problem of
non-simultaneous between Wi-Fi scans and Bluetooth scans, we use a time window of length
At = 10 seconds for grouping successive events into the same timestamp. In practice, within
a specific time window A4t, there could exists multiple Bluetooth inquiry information. There-
fore, multiple ways of adjusting the Wi-Fi output positions would be possible. The resulting

position is calculated as the mean value of these adjusted positions.

In the Temporal approach, a RF classifier model is trained from the six training files. To trans-
form the real world coordinates to label index, we perform a K-means clustering of all the
available training positions, similar to what is described in Section 3.5.3.2. The new learning
targets are the indices of the corresponding clusters. In our experiments, we use K = 30 for
clustering all the available points in the tested area. The radius of each cluster in this config-
uration is 4.0m approximately. The probability output of the classifier model is then used to
update the Particle Filter in the time window of 10 seconds. If there are multiple completed
scans within time window of 10 seconds, the nearest completed scan is selected. The Blue-
tooth data has the effective range set to 2.0 seconds. For the moving model, the average
speed of each particle is set to 1 m/s. In the simulation step, the number of particles is set to

1000.

5.4.3.1 With Two Users

The two specific devices, Device 1 and Device 3, are used. Each user carries one of the two
devices and walk along the trajectory. In the first scenario, they walk together. The distance
between the two users in this case is kept under one meter. In the setup, they walk separately.

The distance between the two users is kept in the range from 5m to 10m.
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Table 19 shows the distance error of the three approaches. With the Wi-Fi only approach, we
have similar results as in the 5-fold cross validation test above. Because both the devices are
used in collecting the data, the Wi-Fi fingerprinting model is unaffected by the device diversity
in this case. When the information from Bluetooth scanning process is added, the distance
error is reduced in both Non-temporal and Temporal approaches. The Non-temporal has a
clear improvement in the One group scenario. However, the impact of Bluetooth data when
discarding the temporal relationship is insignificant in the Two groups scenario. With the Tem-

poral approach, we have stable improvements across the two scenarios.

Table 19. Positioning results when there are two users

Scenario Device Wi-Fi only Non-temporal Temporal
1 3.69m £+ 2.13 2.58m + 1.56 2.18m + 1.61
One group
3 3.72m + 1.79 2.31m £+ 1.58 2.18m £+ 1.45
1 3.77m + 2.81 3.89m + 2.63 2.87m £+ 2.23
Two groups
3 3.05m + 1.90 2.65m + 1.94 2.12m + 1.84

5.4.3.2 With Three Users

In this experiment, three users are asked to carry three devices. Device 1, Device 3 and Device
4 are used. The walking path is the same as the training data. In the first scenario, both three
users are asked to walk together. In the second test, the three users are split into 2 separated
groups. The user carrying the Device 3, is asked to walk as a separated group. The other two
users are asked to walk as the same group. In the third scenario, all the three users walk in
three separated groups When there is more than one group, the distance between groups is

also kept from 5m to 10m approximately throughout the experiments.

Table 20 shows the distance error of the three approaches for each scenario. With the Wi-Fi
only approach, the RF regressor model results in similar distance errors for Device 1 and De-
vice 3. The positioning result for the Device 4 is not as good as the other two devices, because
the data does not contain training samples for Device 4. Compared to the Wi-Fi only approach,
there is a slightly improvement by using the Non-temporal. Across all the devices and scenar-
ios, the average improvement is around 0.5m in mean distance errors. The appearance of the

Device 4 with high distance error clearly affects the performance of the other two devices.
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The Temporal approach provides more stable improvement from the results of Wi-Fi only
methods. It outperforms the two other approaches in all scenarios. The highest improve-
ments are the case of device 1 in One group and device 3 in Three groups settings. With the
contribution of the motion model and the Bluetooth-based distance, the Temporal could

make the effect of non-training data on the Device 4 minimal.

Table 20. Positioning results when there are three users

Scenario Device Wi-Fi only Non-temporal Temporal
1 3.83m £ 2.08 2.99m £ 2.18 2.23m =+ 2.09
One group 3 3.49m £+ 2.29 3.29m £+ 2.13 2.00m + 1.68
4 4.77m £ 2.93 4.32m + 2.19 2.18m + 1.69
1 2.99m £+ 2.05 2.77m + 1.85 231m +1.72
Two groups 3 3.41m £+ 2.60 3.28m £+ 2.32 2.75m + 2.36
4 3.93m £+ 2.55 3.27m £+ 2.29 2.13m + 1.78
1 3.28m + 2.37 2.97m £+ 2.39 2.23m £+ 1.90
Three groups 3 3.50m £+ 2.03 2.67m £ 1.88 2.11lm £+ 1.68
4 3.86m £ 2.05 3.75m * 2.39 2.38m *+ 1.99

5.4.3.3 With Four Users

There are two separated scenarios for the four-user setup. In the first scenario, all of the users
are asked to move together as a group. Compared to the previous One group scenarios, it is
difficult to keep a closely relative distance in this step. The group is supposed to move within
a circle of 2m radius. In the second scenario, the four users are split into two separated
groups. The first group is composed of two users carrying Device 1 and Device 2. For the se-
cond group, users carrying Device 3 and Device 4 are included. The distance between two

groups is then kept in the range from 5m to 10m, similar to the previous scenarios.

Table 21 illustrates the results for each scenario. Similar patterns as the 3-user setup can be
seen in the results of the Wi-Fi only approach. Both new devices, Device 2 and Device 4, have
larger distance errors than the two remaining devices. Device 1 and Device 3 both have similar
performance as the 5-fold cross validation testing. It is clearly that the RF fingerprinting model
has difficulties for tracking Device 2 and Device 4, which are not present in the training data.
The high error from RF finger printing model add some degrees of noise into the later fusion

step with Bluetooth information. The Non-temporal approach can improve the results of Wi-
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Fi only in most of cases. However, its impact is quite low. There are several exceptions which
using the Bluetooth data makes the error increase. For example, the results from Device 1
increases from 3.05m to 3.46m in the One group setting. The Temporal approach results in
lower errors than the other two approaches. In general, good results are obtained on the
Device 1 and Device 3, which RSS data are present in the training phase. There is an exception
on the results of Device 2 in the One group scenario. The Temporal ‘s mean error is slightly

higher than that of the Non-temporal. Nevertheless, it is able to reduce to errors from the Wi-

Fi only method.
Table 21. Positioning results when there are four users
Scenario Device Wi-Fi only Non-temporal Temporal
1 3.05m + 1.90 3.46m £+ 2.33 1.91m +1.48
2 4.95m £ 3.59 4.29m + 3.23 4.62m + 3.11
One group
3 3.48m £+ 2.59 3.04m £+ 2.25 2.40m + 1.82
4 3.54m + 2.35 3.27m £+ 2.37 2.30m £+ 1.63
1 3.22m + 2.25 2.64m + 1.74 2.74m + 2.02
2 4.15m + 2.46 3.51m+2.21 3.16m + 2.26
Two groups
3 3.52m +2.24 3.87m £+ 2.27 1.73m + 1.58
4 4.24m + 2.69 3.89m + 2.87 2.80m + 2.47

Figure 60 illustrates the distance error for three approaches over all the scenarios. Both the
Wi-Fi only and the Non-Temporal have a closed performance. For 75% of time, the distance
errors of two approaches are around 5m. The Bluetooth-based relative distance are employed
more efficiently in to Temporal approach. It has a significant improvement from the Wi-Fi-
based tracking. For 75% of time and 90% of time, the errors of Temporal approach stay around
3.0m and 5.0m respectively. Beside the Bluetooth information, the adding of map-based in-
formation and moving model constraint also reduce much noisy output from the standard

Wi-Fi fingerprinting model.
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Figure 60. Performance comparison between three approaches

Individual distribution error for each tested device is given in Figure 61. Both smartphones,
Samsung Galaxy Note 4 and HTC One ME, have a similar distribution. The Non-temporal ap-
proach is a slightly improvement from using only Wi-Fi data and the Temporal approach can
reduce the error significantly for the regions less than 7.5m. However, the addition of Blue-
tooth data is unable to reduce the errors at higher region. It even adds more noise to the
tracking results of Device 2. In the case of Device 3 and Device 4, both Non-temporal and Wi-
Fi only have nearly identical distributions and the Temporal one outperforms the two others.
The Temporal has the biggest improvement with Device 4, which can overcome the issue of

non-training data.
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Figure 61. Performance comparison between three approaches for each device

5.5 Summary

In this chapter, we have presented a collaborative tracking framework based on the
smartphone’s Wi-Fi and Bluetooth scanning data. The Wi-Fi data is used as a raw positioning
output, which is then improved by the relative distance from Bluetooth inquiry RSS signals.
Two combination approaches are introduced, which is the Non-temporal approach and Tem-
poral approach. The Non-temporal approach attempts to simplify the information fusion task
by removing the time-relationship between different Wi-Fi scan and Bluetooth scan. The Tem-
poral approach takes a more direct way to establish the conditions between the two types of
data. Two approaches have been tested and compared with the standard Wi-Fi fingerprinting
model. From the testing results, while the Non-temporal is only applicable in some specific

scenarios, the Temporal approach outperforms the Wi-Fi fingerprinting models significantly.
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The study has shown that the collaborative positioning would be applicable in a multi-user
context. However, the testing scenario are still only evolved simple contexts of multiple users.
There are also some remaining issues on the technical aspects, such as the communication
between the users and the server, energy impact on the smartphone and signal inference.

We are going to discuss these issues in future works.

135



Using Bluetooth and Wi-Fi Data for Tracking

136



Chapter 6 Conclusion

In this thesis, several aspects in the field of indoor localization by using smartphones have
been presented. Among available technologies on the smartphones, Wi-Fi, inertial sensors

and Bluetooth are selected.

The Wi-Fi data with fingerprinting approach is well-known for locating the devices within
buildings. Its disadvantage is the need of large amount of training data for a stable perfor-
mance. When there is a limited amount of data, the performance is likely to decrease. Our
approach employs several learning models, features and targets to overcome the issue of
limited training Wi-Fi data. The learning models are selected from the KNN, RF and XGB mod-
els. The features are selected from the raw RSS features, filtering-based features and HLF
features. The learning target is chosen between classification learning and regression learn-
ing. The task of finding the smartphone’s position is split into identifying its floor and its posi-
tion in 2D space. By combining different models, features and learning targets, we have a
wide range of models. The best performance on floor classification is 93.3% in accuracy and
on the positioning is 5.75m in mean distance error. In order to improve the performance,
several ways to develop different models are introduced. Thus, the floor accuracy has a
slightly improvement, from 93.3% to 93.8%. Meanwhile, the mean distance error has a reduc-
tion over 0.5m. Although our approach has prominent results, the unstable characteristics of
Wi-Fi signal still present in the results. The floor classification has issues with the areas near
stairs and elevators. There are a number of positioning outputs with high distance error.
Therefore, approaches employing inertial sensors and Bluetooth should be considered as al-

ternative solutions.

Inertial sensors on smartphones include the accelerometer sensor, gyroscope sensor and
magnetic sensor. The three types of data are used for building a SHS-based tracking. We first
start from the standard SHS which attempts to identify the user’s moving speed and heading

direction. The accelerometer data is used to find the user’s moving speed by the Counting
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Step method and Moving Window method. Three approaches, including direction cosine ma-
trix from accelerometer and magnetic data, Complimentary Filter and Madgwick Filter are
employed for finding the heading direction. The two calculated values, moving speed and
heading, are combined by a particle filter component. Based on the output from SHS, the
tracking path is combined with the Wi-Fi output position with the aim to reduce the effect of
SHS'’s drifting errors. The Direct Adjust combination shifts the SHS path the Wi-Fi output po-
sitioning. The combination weight is introduced to find an agreement between the SHS path
and Wi-Fi output. The second combination approach attempts to build an observation model
in the particle filter step. The observation model is used to score each particle by how far from
it to the Wi-Fi’s prediction probability. From the results on the experiment data, both the
approaches could improve the SHS path and Wi-Fi output to some extends. The latter ap-
proach results in more smooth paths and lower mean distance error. It could avoid the ex-
treme adjustment from the Wi-Fi output positions. However, the two combination ap-
proaches are unable to fix the drifting errors from the noisy sensors data in a systematic way.
In future works, the usage of map information and opportunistic calibration process could be
employed for stabilizing the tracking results over long time. We also want to address the ef-

fect of smartphone’s positions to the performance of SHS systems.

Beside the Wi-Fi technology and inertial sensors technology, the Bluetooth technology is ap-
plicable for positioning purpose. In a multiple-user context, the Bluetooth data provides use-
ful information for estimating the relative distance between different users. When each user
could be localized by the Wi-Fi scan data, it is able to employ the relative distance to improve
the Wi-Fi positioning output. In the Non-temporal combination, the approach attempts to
remove the effect of the user’'s movement between different timestamps. It assumes that the
Wi-Fi data and Bluetooth data are arrived at a same time. Therefore, for each pair of users,
an error function is built to estimate the mismatch between the Wi-Fi output positions and
the relative distance. The adjusted positions are the points which correspond to minimal error
values. In the Temporal approach, the above error function is extended to include the users’
movement through different timestamps. A particle filter based tracking is used to find the
minimal error. A simple motion model with map information is used for replicating the move-

ment in indoor environment. The observation model is built as a combination from the Wi-Fi
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positioning output and Bluetooth relative distance. For evaluating the effectiveness of our
proposed approaches, real experiments are carried out. The scenarios are varied from two to
four users. The results indicate that both the Non-temporal and Temporal could improve the
raw Wi-Fi positioning output to some extends. While the former only has significant improve-
ment when the users move within one group, the latter is applicable across a wide range of
scenarios. In general, the Temporal approach could reduce the mean distance error of the Wi-
Fi output from 1m to 1.5m. In future works, we plan to address several aspects of the prob-
lems which include communication methods between the individual device and the server,
the energy impact when using both Wi-Fi and Bluetooth scanning at the same time and the
effects of signal interference of multiple devices. We also plan to evaluate the approach in

larger areas.
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