P. J. Abbas, C. J. Brown, J. K. Shallop, J. B. Firszt, M. L. Hughes et al., Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential, Ear Hear, vol.20, pp.45-59, 1999.

P. J. Abbas, M. L. Hughes, C. J. Brown, C. A. Miller, and H. South, Channel Interaction in Cochlear Implant Users Evaluated Using the Electrically Evoked Compound Action Potential, Audiol. Neurotol, vol.9, pp.203-213, 2004.

C. L. Adamson, M. A. Reid, Z. Mo, J. Bowne-english, D. et al., Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location, J. Comp. Neurol, vol.447, pp.331-350, 2002.

I. Akin, G. Kuran, C. Saka, and M. Vural, Preliminary results on correlation between neural response imaging and "most comfortable levels" in cochlear implantation, J. Laryngol. Otol, vol.120, pp.261-265, 2006.

I. Alvarez, A. De-la-torre, M. Sainz, C. Roldan, H. Schoesser et al., , 2007.

, Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials, J. Neurosci. Methods, vol.165, pp.95-103

I. Alvarez, A. De-la-torre, M. Sainz, C. Roldan, H. Schoesser et al., An improved masker-probe method for stimulus artifact reduction in electrically evoked compound action potentials, J. Neurosci. Methods, vol.175, pp.143-147, 2008.

I. Alvarez, A. De-la-torre, M. Sainz, C. Roldán, H. Schoesser et al., , 2010.

, Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor, Ear Hear, vol.31, pp.134-145

K. Arora, P. Dawson, R. Dowell, and A. Vandali, Electrical stimulation rate effects on speech perception in cochlear implants, Int. J. Audiol, vol.48, pp.561-567, 2009.

S. R. Atcherson and T. M. Stoody, Auditory electrophysiology: a clinical guide, Thieme), 2012.

A. Bahmer and U. Baumann, Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. amplitude growth functions, J. Neurosci. Methods, vol.205, pp.202-211, 2012.

A. Bahmer, O. Peter, and U. Baumann, Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab, J. Neurosci. Methods, vol.191, pp.66-74, 2010.

R. D. Battmer, N. Dillier, W. K. Lai, B. P. Weber, C. Brown et al.,

N. J. Cohen, W. Shapiro, and J. Pesch, Evaluation of the neural response telemetry (NRT) capabilities of the nucleus research platform 8: initial results from the NRT trial, Int. J. Audiol, vol.43, pp.10-15, 2004.

J. L. Baudhuin, M. L. Hughes, J. L. Goehring, F. B. Van-der-beek, J. J. Briaire et al., A Comparison of Alternating Polarity and Forward Masking Artifact-Reduction Methods to Resolve the Electrically Evoked Compound Action Potential, Int. J. Audiol, vol.37, pp.465-474, 2012.

G. V. Békésy, Experiments in Hearing, 1960.

J. A. Bierer and J. C. Middlebrooks, Cortical responses to cochlear implant stimulation: channel interactions, J. Assoc. Res. Otolaryngol. JARO, vol.5, pp.32-48, 2004.
DOI : 10.1007/s10162-003-3057-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs10162-003-3057-7.pdf

P. Blamey, F. Artieres, D. Ba?kent, F. Bergeron, A. Beynon et al.,

R. Dowell, B. Fraysse, and S. Gallégo, Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients, Audiol. Neurootol, vol.18, pp.36-47, 2013.

P. J. Blamey, G. J. Dooley, E. S. Parisi, C. , and G. M. , Pitch comparisons of acoustically and electrically evoked auditory sensations, Hear. Res, vol.99, pp.139-150, 1996.
DOI : 10.1016/s0378-5955(96)00095-0

C. Boëx, L. Baud, G. Cosendai, A. Sigrist, M. Kós et al., Acoustic to Electric Pitch Comparisons in Cochlear Implant Subjects with Residual Hearing, JARO J. Assoc. Res. Otolaryngol, vol.7, pp.110-124, 2006.

B. H. Bonham and L. M. Litvak, Current focusing and steering, Hear. Res, vol.242, pp.141-153, 2008.
DOI : 10.1016/j.heares.2008.03.006

URL : http://europepmc.org/articles/pmc2562351?pdf=render

A. Botros, P. , and C. , Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness, Ear Hear, vol.31, pp.380-391, 2010.

A. Botros, P. , and C. , Neural response telemetry reconsidered: I. The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting, Ear Hear, vol.31, pp.367-379, 2010.

J. Boulet, M. White, and I. C. Bruce, Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants, J. Assoc. Res. Otolaryngol. JARO, vol.17, pp.1-17, 2016.
DOI : 10.1007/s10162-015-0545-5

URL : http://europepmc.org/articles/pmc4722016?pdf=render

P. Boyd and A. Euthymiades, Comparison of loudness adjustments by MCL and maplaw in users of the MED-EL COMBI 40/40+ cochlear implant system, Cochlear Implants Int, vol.10, pp.203-217, 2009.

G. Bredberg, Cellular pattern and nerve supply of the human organ of Corti, Acta Otolaryngol. (Stockh.), vol.236, p.1, 1968.

J. J. Briaire and J. H. Frijns, Unraveling the electrically evoked compound action potential, Hear. Res, vol.205, pp.143-156, 2005.
DOI : 10.1016/j.heares.2005.03.020

J. J. Briaire and J. H. Frijns, The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach, Hear. Res, vol.214, pp.17-27, 2006.

S. Brill, J. Müller, R. Hagen, A. Möltner, S. Brockmeier et al., Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array, Biomed. Eng. Online, vol.8, p.40, 2009.

C. J. Brown, P. J. Abbas, and B. Gantz, Electrically evoked whole-nerve action potentials: data from human cochlear implant users, J. Acoust. Soc. Am, vol.88, pp.1385-1391, 1990.
DOI : 10.1121/1.399716

C. J. Brown, P. J. Abbas, M. Bertschy, R. S. Tyler, M. Lowder et al., Longitudinal assessment of physiological and psychophysical measures in cochlear implant users, Ear Hear, vol.16, pp.439-449, 1995.
DOI : 10.1097/00003446-199510000-00001

C. J. Brown, M. L. Hughes, B. Luk, P. J. Abbas, A. Wolaver et al., The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults, Ear Hear, vol.21, pp.151-163, 2000.
DOI : 10.1097/00003446-200004000-00009

C. J. Brown, P. J. Abbas, C. P. Etlert, S. O'brient, and J. J. Oleson, Effects of longterm use of a cochlear implant on the electrically evoked compound action potential, J. Am. Acad. Audiol, vol.21, pp.5-15, 2010.

V. Bruns and E. Schmieszek, Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea, Hear. Res, vol.3, pp.27-43, 1980.

P. Buser, Neurophysiologie fonctionnelle. III, Audition, 1921.

M. T. Caldwell, N. T. Jiam, and C. J. Limb, Assessment and improvement of sound quality in cochlear implant users, Laryngoscope Investig. Otolaryngol, vol.2, pp.119-124, 2017.

G. Caner, L. Olgun, G. Gültekin, and M. Balaban, Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold, Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol, vol.28, pp.637-640, 2007.

B. Charasse, H. Thai-van, C. Berger-vachon, C. , and L. , Assessing auditory nerve recovery function with a modified subtraction method: results and mathematical modeling, Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol, vol.114, pp.1307-1315, 2003.

R. Charlet-de-sauvage, D. Lima-da-costa, J. P. Erre, A. , and J. M. , Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea, Hear. Res, vol.110, pp.119-134, 1997.

M. Chatterjee, Q. J. Fu, and R. V. Shannon, Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners, J. Acoust. Soc. Am, vol.107, pp.1637-1644, 2000.

G. Clark, Cochlear implants: fundamentals and applications, 2003.

G. M. Clark, S. A. Shute, R. K. Shepherd, and T. D. Carter, Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing, Ann. Otol. Rhinol. Laryngol. Suppl, vol.166, pp.40-42, 1995.

L. T. Cohen, Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current, Hear. Res, vol.247, pp.87-99, 2009.

L. T. Cohen, Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration, Hear. Res, vol.247, pp.112-121, 2009.

L. T. Cohen, L. M. Richardson, E. Saunders, and R. S. Cowan, Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking, Hear. Res, vol.179, pp.72-87, 2003.

L. T. Cohen, E. Saunders, and L. M. Richardson, Spatial spread of neural excitation: comparison of compound action potential and forward-masking data in cochlear implant recipients, Int. J. Audiol, vol.43, pp.346-355, 2004.

J. F. Culling, S. Jelfs, A. Talbert, J. A. Grange, and S. S. Backhouse, The benefit of bilateral versus unilateral cochlear implantation to speech intelligibility in noise, Ear Hear, vol.33, pp.673-682, 2012.

H. Cullington, Preliminary neural response telemetry results, Br. J. Audiol, vol.34, p.131, 2000.

D. Dees and N. D. , Normative Findings of Electrically Evoked Compound Action Potential Measurements Using the Neural Response Telemetry of the Nucleus CI24M Cochlear Implant System, Audiol. Amp Neuro-Otol, vol.10, pp.105-116, 2005.

P. W. Dawson, C. M. Mckay, P. A. Busby, D. B. Grayden, C. et al., Electrode discrimination and speech perception in young children using cochlear implants, Ear Hear, vol.21, pp.597-607, 2000.

D. Nardo, W. Ippolito, S. Quaranta, N. Cadoni, G. Galli et al., Correlation between NRT measurement and behavioural levels in patients with the Nucleus 24 cochlear implant, Acta Otorhinolaryngol. Ital. Organo Uff. Della Soc. Ital. Otorinolaringol. E Chir. Cerv.Facc, vol.23, pp.352-355, 2003.

N. Dillier, W. K. Lai, B. Almqvist, C. Frohne, J. Müller-deile et al., Measurement of the electrically evoked compound action potential via a neural response telemetry system, Ann. Otol. Rhinol. Laryngol, vol.111, pp.407-414, 2002.

R. A. Dobie and C. I. Berlin, Binaural interaction in brainstem-evoked responses, Arch. Otolaryngol. Chic. Ill, vol.105, pp.391-398, 1960.

R. A. Dobie, N. , and S. J. , Binaural interaction in human auditory evoked potentials, Electroencephalogr. Clin. Neurophysiol, vol.49, pp.303-313, 1980.

M. F. Dorman, L. Loiselle, J. Stohl, W. A. Yost, A. Spahr et al., , 2014.

, Interaural level differences and sound source localization for bilateral cochlear implant patients, Ear Hear, vol.35, pp.633-640

, Étude quantitative sur le handicap auditif à partir de l'enquête "Handicapsanté"-dt131-etudes_et_recherches, DREES, 2014.

M. D. Eisen and K. H. Franck, Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects, Ear Hear, vol.25, pp.528-538, 2004.

M. Eybalin, Neurotransmitters and neuromodulators of the mammalian cochlea, Physiol. Rev, vol.73, pp.309-373, 1993.

R. Filipo, P. Mancini, C. D'elia, B. , and M. , Objective measurement (NRI) from intracochlear electric stimulation in Clarion CII adult implantees, Cochlear Implants Int, vol.5, 2004.

K. E. Fishman, R. V. Shannon, and W. H. Slattery, Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor, J. Speech Lang. Hear. Res. JSLHR, vol.40, pp.1201-1215, 1997.

E. P. Fowler, The recruitment of loudness phenomenon, The Laryngoscope, vol.60, pp.680-695, 1950.

K. H. Franck, N. , and S. J. , Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation's CI24M device, Ear Hear, vol.22, pp.289-299, 2001.

L. M. Friesen, R. V. Shannon, D. Baskent, W. , and X. , Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants, J. Acoust. Soc. Am, vol.110, pp.1150-1163, 2001.

J. H. Frijns, J. J. Briaire, J. A. De-laat, and J. J. Grote, , 2002.

, Clarion CII cochlear implant: speech perception and neural response imaging, Ear Hear, vol.23, pp.184-197

M. Gani, G. Valentini, A. Sigrist, M. Kós, and C. Boëx, Implications of deep electrode insertion on cochlear implant fitting, J. Assoc. Res. Otolaryngol. JARO, vol.8, pp.69-83, 2007.

G. A. Gates and J. H. Mills, Presbycusis. Lancet Lond. Engl, vol.366, pp.1111-1120, 2005.

R. Glueckert, K. Pfaller, A. Kinnefors, H. Rask-andersen, and A. Schrott-fischer, , 2005.

, The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants, Audiol. Neurootol, vol.10, pp.258-273

K. A. Gordon, K. A. Ebinger, J. E. Gilden, and W. H. Shapiro, Neural response telemetry in 12-to 24-month-old children, Ann. Otol. Rhinol. Laryngol. Suppl, vol.189, pp.42-48, 2002.

D. D. Greenwood, Critical Bandwidth and the Frequency Coordinates of the Basilar Membrane, J. Acoust. Soc. Am, vol.33, pp.1344-1356, 1961.

D. D. Greenwood, A cochlear frequencyposition function for several species-29 years later, J. Acoust. Soc. Am, vol.87, pp.2592-2605, 1990.

R. Greisiger, J. K. Shallop, P. K. Hol, O. J. Elle, and G. E. Jablonski, Cochlear implantees: Analysis of behavioral and objective measures for a clinical population of various age groups, Cochlear Implants Int, vol.16, pp.1-19, 2015.

G. Guenser, J. Laudanski, B. Phillipon, B. C. Backus, P. Bordure et al., The relationship between electrical auditory brainstem responses and perceptual thresholds in Digisonic(®) SP cochlear implant users, Cochlear Implants Int, vol.16, pp.32-38, 2015.
DOI : 10.1179/1754762814y.0000000082

URL : https://hal.archives-ouvertes.fr/hal-01713934

N. Guevara, M. Hoen, E. Truy, and S. Gallego, A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses), PLoS ONE, p.11, 2016.
DOI : 10.1371/journal.pone.0155008

URL : http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155008&type=printable

A. Haenggeli, J. S. Zhang, M. W. Vischer, M. Pelizzone, and E. M. Rouiller, , 1998.

, Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates, Audiol. Off. Organ Int. Soc. Audiol, vol.37, pp.353-371

R. D. Hall, Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response, Hear. Res, vol.49, pp.155-168, 1990.

D. Han, X. Chen, X. Zhao, Y. Kong, Y. Li et al., Comparisons between neural response imaging thresholds, electrically evoked auditory reflex thresholds and most comfortable loudness levels in CII bionic ear users with HiResolution sound processing strategies, Acta Otolaryngol. (Stockh.), vol.125, pp.732-735, 2005.

, Haute Autorité de Santé-Traitement de la surdité par pose d'implants cochléaires ou d'implants du tronc cérébral, HAS, 2007.

, Haute Autorité de Santé-Le traitement de la surdité par implants cochléaires ou du tronc cérébral-Fiche BUTS-Actualisation Janvier, HAS, 2012.

S. He, C. J. Brown, A. , and P. J. , Effects of stimulation level and electrode pairing on the binaural interaction component of the electrically evoked auditory brain stem response, Ear Hear, vol.31, pp.457-470, 2010.

S. He, C. J. Brown, A. , and P. J. , Preliminary results of the relationship between the binaural interaction component of the electrically evoked auditory brainstem response and interaural pitch comparisons in bilateral cochlear implant recipients, Ear Hear, vol.33, pp.57-68, 2012.

B. A. Henry, C. M. Mckay, H. J. Mcdermott, C. , and G. M. , The relationship between speech perception and electrode discrimination in cochlear implantees, J. Acoust. Soc. Am, vol.108, pp.1269-1280, 2000.

P. Heyning, . Van-de, S. L. Arauz, M. Atlas, W. Baumgartner et al., Electrically evoked compound action potentials are different depending on the site of cochlear stimulation, Cochlear Implants Int, vol.17, pp.251-262, 2016.

I. J. Hirsh, The Relation between Localization and Intelligibility, J. Acoust. Soc. Am, vol.22, pp.196-200, 1950.

A. V. Hodges, T. J. Balkany, R. A. Ruth, P. R. Lambert, S. Dolan-ash et al., Electrical middle ear muscle reflex: use in cochlear implant programming. Otolaryngol.Head Neck Surg, Off. J. Am. Acad. Otolaryngol.-Head Neck Surg, vol.117, pp.255-261, 1997.

B. A. Holstad, V. G. Sonneveldt, B. T. Fears, L. S. Davidson, R. J. Aaron et al., Relation of electrically evoked compound action potential thresholds to behavioral T-and C-levels in children with cochlear implants, Ear Hear, vol.30, pp.115-127, 2009.

H. Hu, B. Kollmeier, and M. Dietz, Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants, Adv. Exp. Med. Biol, vol.894, pp.57-64, 2016.

A. J. Hudspeth, C. , and D. P. , Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Natl. Acad. Sci. U. S. A, vol.74, pp.2407-2411, 1977.

M. L. Hughes, L. Michelle, and . Hughes, Fundamentals of Clinical ECAP Measures in Cochlear Implants: Part 1: Use of the ECAP in Speech Processor Programming, 2010.

M. L. Hughes, A. , and P. J. , The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients, J. Acoust. Soc. Am, vol.119, pp.1527-1537, 2006.

M. L. Hughes and L. J. Stille, Psychophysical and physiological measures of electrical-field interaction in cochlear implants, J. Acoust. Soc. Am, vol.125, pp.247-260, 2009.

M. L. Hughes, C. J. Brown, P. J. Abbas, A. A. Wolaver, and J. P. Gervais, Comparison of EAP thresholds with MAP levels in the nucleus 24 cochlear implant: data from children, Ear Hear, vol.21, pp.164-174, 2000.

M. L. Hughes, K. R. Vander-werff, C. J. Brown, P. J. Abbas, D. M. Kelsay et al., A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users, Ear Hear, vol.22, pp.471-486, 2001.

A. Incesulu and J. B. Nadol, Correlation of acoustic threshold measures and spiral ganglion cell survival in severe to profound sensorineural hearing loss: implications for cochlear implantation, Ann. Otol. Rhinol. Laryngol, vol.107, pp.906-911, 1998.

L. Jeffress, A place theory of sound localization, J. Comp. Physiol. Psychol, vol.41, pp.35-39, 1948.

E. K. Jeon, C. J. Brown, C. P. Etler, S. O'brien, L. Chiou et al., , 2010.

, Comparison of Electrically Evoked Compound Action Potential Thresholds and Loudness Estimates for the Stimuli Used to Program the Advanced Bionics Cochlear Implant, J. Am. Acad. Audiol, vol.21, pp.16-27

F. Ji, K. Liu, Y. , and S. , Clinical application of electrically evoked compound action potentials, J. Otol, vol.9, pp.117-121, 2014.

A. Kan and R. Y. Litovsky, Binaural hearing with electrical stimulation, Hear. Res, vol.322, pp.127-137, 2015.

S. A. Karg, C. Lackner, and W. Hemmert, Temporal interaction in electrical hearing elucidates auditory nerve dynamics in humans, Hear. Res, vol.299, pp.10-18, 2013.

A. M. Khan, D. M. Whiten, J. B. Nadol, and D. K. Eddington, Histopathology of human cochlear implants: correlation of psychophysical and anatomical measures, Hear. Res, vol.205, pp.83-93, 2005.

J. E. King, M. Polak, A. V. Hodges, S. Payne, and F. F. Telischi, Use of neural response telemetry measures to objectively set the comfort levels in the Nucleus 24 cochlear implant, J. Am. Acad. Audiol, vol.17, pp.413-431, 2006.

A. Kral, R. Hartmann, D. Mortazavi, K. , and R. , Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents, Hear. Res, vol.121, pp.11-28, 1998.

W. Lai and N. Dillier, Neural adaptation and the ECAP response threshold: A pilot study, Cochlear Implants Int, vol.10, pp.63-67, 2009.

W. K. Lai, M. Aksit, F. Akdas, and N. Dillier, Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications, Int. J. Audiol, vol.43, pp.252-263, 2004.

D. S. Lazard, C. Vincent, F. Venail, P. Van-de-heyning, E. Truy et al., Pre-, per-and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time, PloS One, vol.7, p.48739, 2012.

M. C. Liberman, Noise-induced and age-related hearing loss: new perspectives and potential therapies, 0927.

M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia et al., Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier, Nature, vol.419, pp.300-304, 2002.

P. C. Loizou, O. Poroy, and M. Dorman, The effect of parametric variations of cochlear implant processors on speech understanding, J. Acoust. Soc. Am, vol.108, pp.790-802, 2000.

O. Macherey, A. Van-wieringen, R. P. Carlyon, J. M. Deeks, W. et al., , 2006.

, Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate, J. Assoc. Res. Otolaryngol. JARO, vol.7, pp.253-266

N. W. Mackeith and R. R. Coles, Binaural advantages in hearing of speech, J. Laryngol. Otol, vol.85, pp.213-232, 1971.

S. M. Mason, Y. Cope, J. Garnham, G. M. O'donoghue, and K. P. Gibbin, Intraoperative recordings of electrically evoked auditory nerve action potentials in young children by use of neural response telemetry with the nucleus C124M cochlear implant, Br. J. Audiol, vol.35, pp.225-235, 2001.

C. M. Mckay, L. Fewster, D. , and P. , A different approach to using neural response telemetry for automated cochlear implant processor programming, Ear Hear, vol.26, pp.38-44, 2005.

L. H. Mens, Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity, Trends Amplif, vol.11, pp.143-159, 2007.

J. C. Middlebrooks and D. M. Green, Sound Localization by Human Listeners, Annu. Rev. Psychol, vol.42, pp.135-159, 1991.

J. C. Middlebrooks, J. A. Bierer, and R. L. Snyder, Cochlear implants: the view from the brain, Curr. Opin. Neurobiol, vol.15, pp.488-493, 2005.

C. A. Miller, P. J. Abbas, R. , and B. K. , The use of long-duration current pulses to assess nerve survival, Hear. Res, vol.78, pp.11-26, 1994.

C. A. Miller, P. J. Abbas, and C. J. Brown, An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential, Ear Hear, vol.21, pp.280-290, 2000.

C. A. Miller, P. J. Abbas, M. J. Hay-mccutcheon, B. K. Robinson, K. V. Nourski et al., Intracochlear and extracochlear ECAPs suggest antidromic action potentials, Hear. Res, vol.198, pp.75-86, 2004.

C. A. Miller, C. J. Brown, P. J. Abbas, C. , and S. , The clinical application of potentials evoked from the peripheral auditory system, Hear. Res, vol.242, pp.184-197, 2008.

A. W. Mills, On the Minimum Audible Angle, J. Acoust. Soc. Am, vol.30, pp.237-246, 1958.

R. Mittal and S. S. Panwar, Correlation between intra-operative high rate neural response telemetry measurements and behaviourally obtained threshold and comfort levels in patients using Nucleus 24 cochlear implants, Cochlear Implants Int, vol.10, pp.103-111, 2009.

A. R. Møller, Hearing: anatomy, physiology, and disorders of the auditory system, 2006.

A. K. Moon, T. A. Zwolan, and B. E. Pfingst, Effects of phase duration on detection of electrical stimulation of the human cochlea, Hear. Res, vol.67, pp.166-178, 1993.

B. C. Moore, Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants, Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol, vol.24, pp.243-254, 2003.

D. R. Moore, Anatomy and physiology of binaural hearing, Audiol. Off. Organ Int. Soc. Audiol, vol.30, pp.125-134, 1991.

F. Mosca, R. Grassia, L. , and C. A. , Longitudinal variations in fitting parameters for adult cochlear implant recipients, Acta Otorhinolaryngol. Ital. Organo Uff. Della Soc. Ital. Otorinolaringol. E Chir. Cerv.-Facc, vol.34, pp.111-116, 2014.

J. Müller, F. Schön, and J. Helms, Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implant system, Ear Hear, vol.23, pp.198-206, 2002.

J. B. Nadol, Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol.-Head Neck Surg, Off. J. Am. Acad. Otolaryngol.-Head Neck Surg, vol.117, pp.220-228, 1997.

J. B. Nadol, Y. S. Young, G. , and R. J. , Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation, Ann. Otol. Rhinol. Laryngol, vol.98, pp.411-416, 1989.

B. A. Nayagam, M. A. Muniak, and D. K. Ryugo, The spiral ganglion: connecting the peripheral and central auditory systems, Hear. Res, vol.278, pp.2-20, 2011.

A. Nehmé, E. El-zir, N. Moukarzel, H. Haidar, F. Vanpoucke et al., , 2014.

, Measures of the electrically evoked compound action potential threshold and slope in HiRes 90K(TM) users, Cochlear Implants Int, vol.15, pp.53-60

D. A. Nelson, J. L. Schmitz, G. S. Donaldson, N. F. Viemeister, J. et al., , 1996.

, Intensity discrimination as a function of stimulus level with electric stimulation, J. Acoust. Soc. Am, vol.100, pp.2393-2414

M. Nilsson, S. Soli, and J. A. Sullivan, Development of the Hearing In Noise Test (HINT) for the measurement of speech reception thresholds in quiet and in noise, J. Acoust. Soc. Am, vol.95, pp.1085-1099, 1994.

A. R. Palmer, R. , and I. J. , Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells, Hear. Res, vol.24, pp.1-15, 1986.

S. H. Park, E. Kim, H. Lee, K. , and H. , Effects of Electrical Stimulation Rate on Speech Recognition in Cochlear Implant Users, Korean J. Audiol, vol.16, pp.6-9, 2012.

M. Pelizzone, A. Kasper, M. , and P. , Binaural interaction in a cochlear implant patient, Hear. Res, vol.48, pp.287-290, 1990.

J. Pinheiro and D. Bates, Mixed-Effects Models in S and S-PLUS, 2000.

J. Pinheiro, D. Bates, and . Saikat-debroy, Deepayan Sarkar, EISPACK authors, Siem Heisterkamp (Author fixed sigma), Bert Van Willigen (Programmer fixed sigma), and R-core, 2016.

M. Polak, A. V. Hodges, J. E. King, and T. J. Balkany, Further prospective findings with compound action potentials from Nucleus 24 cochlear implants, Hear. Res, vol.188, pp.104-116, 2004.

M. Polak, A. Hodges, and T. Balkany, ECAP, ESR and subjective levels for two different nucleus 24 electrode arrays, Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol, vol.26, pp.639-645, 2005.

L. G. Potts, M. W. Skinner, B. D. Gotter, M. J. Strube, and C. A. Brenner, Relation between neural response telemetry thresholds, T-and C-levels, and loudness judgments in 12 adult nucleus 24 cochlear implant recipients, Ear Hear, vol.28, pp.495-511, 2007.

D. Purves, Neurosciences, 2013.

S. Raghunandhan, A. Ravikumar, M. Kameswaran, K. Mandke, R. et al., A clinical study of electrophysiological correlates of behavioural comfort levels in cochlear implantees, Cochlear Implants Int, 2014.

H. Rask-andersen, W. Liu, E. Erixon, A. Kinnefors, K. Pfaller et al., Human cochlea: anatomical characteristics and their relevance for cochlear implantation, Anat. Rec. Hoboken NJ, vol.295, pp.1791-1811, 2007.

M. A. Reid, J. Flores-otero, D. , and R. L. , Firing patterns of type II spiral ganglion neurons in vitro, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.733-742, 2004.

J. T. Rubinstein, An introduction to the biophysics of the electrically evoked compound action potential, Int. J. Audiol, vol.43, 2004.

A. F. Ryan, D. Brumm, and M. Kraft, Occurrence and distribution of non-NMDA glutamate receptor mRNAs in the cochlea, Neuroreport, vol.2, pp.643-646, 1991.

M. Sainz, A. De-la-torre, C. Roldán, J. M. Ruiz, and J. L. Vargas, Analysis of programming maps and its application for balancing multichannel cochlear implants, Int. J. Audiol, vol.42, pp.43-51, 2003.

R. A. Scheperle, A. , and P. J. , Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users, Ear Hear, vol.36, pp.441-453, 2015.

P. Schleich, P. Nopp, and P. Haese, Head shadow, squelch, and summation effects in bilateral users of the MED-EL COMBI 40/40+ cochlear implant, Ear Hear, vol.25, pp.197-204, 2004.

C. E. Schreiner and M. W. Raggio, Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding, J. Neurophysiol, vol.75, pp.1283-1300, 1996.

H. F. Schuknecht and M. R. Gacek, Cochlear pathology in presbycusis, Ann. Otol. Rhinol. Laryngol, vol.102, pp.1-16, 1993.

K. Seyle and C. J. Brown, Speech perception using maps based on neural response telemetry measures, Ear Hear, vol.23, pp.72-79, 2002.

J. K. Shallop, Objective electrophysiological measures from cochlear implant patients, Ear Hear, vol.14, pp.58-63, 1993.

R. V. Shannon, Threshold and loudness functions for pulsatile stimulation of cochlear implants, Hear. Res, vol.18, pp.135-143, 1985.

R. V. Shannon, R. J. Cruz, and J. J. Galvin, Effect of stimulation rate on cochlear implant users' phoneme, word and sentence recognition in quiet and in noise, Audiol. Neurootol, vol.16, pp.113-123, 2011.

R. K. Shepherd, G. M. Clark, and R. C. Black, Chronic Electrical Stimulation of the Auditory Nerve in Cats, Acta Otolaryngol. (Stockh.), vol.95, pp.19-31, 1983.

R. K. Shepherd, S. Hatsushika, C. , and G. M. , Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation, Hear. Res, vol.66, pp.108-120, 1993.

M. W. Skinner, L. K. Holden, T. A. Holden, and M. E. Demorest, Effect of stimulation rate on cochlear implant recipients' thresholds and maximum acceptable loudness levels, J. Am. Acad. Audiol, vol.11, pp.203-213, 2000.

L. Smith and F. B. Simmons, Estimating eighth nerve survival by electrical stimulation, Ann. Otol. Rhinol. Laryngol, vol.92, pp.19-23, 1983.

Z. M. Smith, D. , and B. , Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants, J. Assoc. Res. Otolaryngol. JARO, vol.8, pp.134-151, 2007.

G. F. Smoorenburg, C. Willeboer, and J. E. Van-dijk, Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds, Audiol. Neurootol, vol.7, pp.335-347, 2002.

A. J. Spahr and M. F. Dorman, Effects of minimum stimulation settings for the Med El Tempo+ speech processor on speech understanding, Ear Hear, vol.26, pp.2-6, 2005.

L. G. Spivak and P. M. Chute, The relationship between electrical acoustic reflex thresholds and behavioral comfort levels in children and adult cochlear implant patients, Ear Hear, vol.15, pp.184-192, 1994.

L. Spivak, C. Auerbach, A. Vambutas, S. Geshkovich, L. Wexler et al., , 2011.

, Electrical compound action potentials recorded with automated neural response telemetry: threshold changes as a function of time and electrode position, Ear Hear, vol.32, pp.104-113

H. Spoendlin and A. Schrott, The spiral ganglion and the innervation of the human organ of Corti, Acta Otolaryngol. (Stockh.), vol.105, pp.403-410, 1988.

H. Spoendlin and A. Schrott, Analysis of the human auditory nerve, Hear. Res, vol.43, pp.25-38, 1989.

O. Stakhovskaya, D. Sridhar, B. H. Bonham, and P. A. Leake, Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants, JARO J. Assoc. Res. Otolaryngol, vol.8, pp.220-233, 2007.

S. S. Stevens and E. B. Newman, The Localization of Actual Sources of Sound, Am. J. Psychol, vol.48, pp.297-306, 1936.

M. A. Svirsky, S. Teoh, and H. Neuburger, Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation, Audiol. Neurootol, vol.9, pp.224-233, 2004.

Q. Tang, R. Benítez, and F. Zeng, Spatial channel interactions in cochlear implants, J. Neural Eng, vol.8, p.46029, 2011.

H. Thai-van, J. Chanal, C. Coudert, E. Veuillet, E. Truy et al., , 2001.

, Relationship between NRT measurements and behavioral levels in children with the Nucleus 24 cochlear implant may change over time: preliminary report, Int. J. Pediatr. Otorhinolaryngol, vol.58, pp.153-162

H. Thai-van, E. Truy, B. Charasse, F. Boutitie, J. Chanal et al., Modeling the relationship between psychophysical perception and electrically evoked compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting, Clin. Neurophysiol, vol.115, pp.2811-2824, 2004.

C. S. Throckmorton, C. , and L. M. , Investigation of the effects of temporal and spatial interactions on speech-recognition skills in cochlear-implant subjects, J. Acoust. Soc. Am, vol.105, pp.861-873, 1999.

P. Ungan, Y. , and S. , Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem, Hear. Res, vol.167, pp.81-101, 2002.

T. Van-den-abbeele, N. Noël-petroff, I. Akin, G. Caner, L. Olgun et al., Multicentre investigation on electrically evoked compound action potential and stapedius reflex: how do these objective measures relate to implant programming parameters, Cochlear Implants Int, vol.13, pp.26-34, 2012.

L. N. Van-yper, K. Vermeire, E. F. De-vel, R. Battmer, and I. J. Dhooge, , 2015.

, Binaural interaction in the auditory brainstem response: a normative study, Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol, vol.126, pp.772-779

J. J. De-vos, J. D. Biesheuvel, J. J. Briaire, P. S. Boot, M. J. Van-gendt et al., Use of Electrically Evoked Compound Action Potentials for Cochlear Implant Fitting: A Systematic Review, 2017.

A. Walkowiak, A. Lorens, M. Polak, B. Kostek, H. Skarzynski et al., Evoked Stapedius Reflex and Compound Action Potential Thresholds versus Most Comfortable Loudness Level: Assessment of Their Relation for Charge-Based Fitting Strategies in Implant Users, ORL, vol.73, pp.189-195, 2011.

S. B. Waltzman, N. L. Cohen, W. H. Shapiro, G. K. Van-wermeskerken, . Van et al., A comparison of intra-versus post-operatively acquired electrically evoked compound action potentials, The Laryngoscope, vol.96, pp.589-594, 1986.

M. W. White, M. M. Merzenich, J. N. Gardi, A. Van-wieringen, O. Macherey et al., Multichannel cochlear implants. Channel interactions and processor design, Arch. Otolaryngol. Chic. Ill, vol.110, pp.493-501, 1960.

, Alternative pulse shapes in electrical hearing, Hear. Res, vol.242, pp.154-163

B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington et al., Better speech recognition with cochlear implants, Nature, vol.352, pp.236-238, 1991.

J. H. Won, E. L. Humphrey, K. R. Yeager, A. A. Martinez, C. H. Robinson et al., Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users, J. Acoust. Soc. Am, vol.136, pp.2714-2725, 2014.

X. Zhong, W. Yost, and L. Sun, Dynamic binaural sound source localization with ITD cues: Human listeners, J. Acoust. Soc. Am, vol.137, pp.2376-2376, 2015.

M. J. Zimmerling and E. S. Hochmair, EAP recordings in ineraid patientscorrelations with psychophysical measures and possible implications for patient fitting, Ear Hear, vol.23, pp.81-91, 2002.

T. A. Zwolan, L. M. Collins, W. , and G. H. , Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects, J. Acoust. Soc. Am, vol.102, pp.3673-3685, 1997.

, 1; 43 boulevard du 11 Novembre 1918-69622 VILLEURBANNE cedex, France (5) Hospices Civils de Lyon, Department of Otorhinolaryngology-Edouard Herriot Hospital, vol.5

, between each visit are likely due to habituation to increasing stimulation. Indeed, between D0 and M3 the mean MCL had risen of more than 50%

. Lai, Models LMM showed that IO ECAP thresholds were only relevant to estimate MCL set at D0 and D8. In both cases, coefficients in the equation were positive meaning that higher threshold corresponded to higher MCL at activation and after 8 days of use. IO ECAP thresholds were not predictors of MCL set at M1 or M3. None of the others IO ECAP characteristics were selected as predictor of the different MCL values, Correlations between IO ECAP threshold and MCL have been previously reported in studies with Cochlear Corporation, 2004.

. Greisiger, In our models, the MAPE were 1.210 at D0 and 1.439 at D8 indicating that MCL set at activation were better predicted than MCL set at D8. More, with apical MAPE ranging from 0.828 at D0 to1.285 at D8 and basal MAPE from 0.841 at D0 and 1.417 at D8, prediction from ECAP thresholds appeared to be more reflective of apical and basal MCL than middle ones which MAPE were 1.894 at D0 and 1.837 at D8. However, the predicted MCL at activation were superior to the MCL set by expert audiologists in 33 of our 62 observations (53.2%) and 6 (9.7%) of these predicted values exceeded the MCL set at D8. Even if the effect of misestimations varies between subjects, we considered that errors exceeding 10% of the fitted MCL were critical: higher error percentage led to insufficient MCL when MCL were underestimated and to uncomfortable hearing when predictions resulted in overestimations. At activation, 14 of the 62 MCL were overestimated and 13 were underestimated by more than 10%; at D8, 18 of 59 MCL were overestimated and 8 underestimated by more than 10%, Advanced Bionics (Akin et al. 2006) implants. Using faster stimulation rates with Cochlear Corporation implants than those used for our ECAP recordings, Mittal (Mittal and Panwar 2009) found better correlation between IO ECAP thresholds and MCL, 2015.

. Mcl, Glueckert et al. 2005) and, in a previous study, Khan (Khan et al. 2005) found negative correlations between the number of surviving spiral ganglion cell and the MCL suggesting that neuronal degeneration may be positively correlated to MCL The lower degeneration at the apex could lead to the lower MCL values observed. However, this hypothesis would not explain the low MCL values at the base-supposed to present more neural degeneration-compared to the middle ones, the equations, cochlear effect is reflected in additional positive correction factors for the base and the middle compared to the apical equation, 1997.

, Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location, J. Comp. Neurol, vol.447, pp.331-350

I. Akin, G. Kuran, C. Saka, and M. Vural, Preliminary results on correlation between neural response imaging and "most comfortable levels" in cochlear implantation, J. Laryngol. Otol, vol.120, pp.261-265, 2006.

I. Akin, M. Mutlu, G. Kuran, H. Dincer, L. Arnold et al., One-year results of the banded neural response imaging study, Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol, vol.29, pp.635-638, 2008.

I. Alvarez, A. De-la-torre, M. Sainz, C. Roldan, H. Schoesser et al., , 2007.

, Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials, J. Neurosci. Methods, vol.165, pp.95-103

V. V. Bakhshinian, The current tendencies and prospects of the neural response telemetry in the rehabilitation of the patients after cochlear implantation, Vestn. Otorinolaringol, pp.21-25, 2014.

P. Blamey, F. Artieres, D. Ba?kent, F. Bergeron, A. Beynon et al.,

R. Dowell, B. Fraysse, and S. Gallégo, Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients, Audiol. Neurootol, vol.18, pp.36-47, 2013.

S. Brill, J. Müller, R. Hagen, A. Möltner, S. Brockmeier et al.,

J. Maurer, T. Zahnert, and C. Zierhofer, Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array, Ann. Otol. Rhinol. Laryngol. Suppl, vol.8, pp.40-42, 1977.

H. Cullington, Preliminary neural response telemetry results, Br. J. Audiol, vol.34, pp.131-140, 2000.
DOI : 10.3109/03005364000000123

D. Dees and N. D. , Normative Findings of Electrically Evoked Compound Action Potential Measurements Using the Neural Response Telemetry of the Nucleus CI24M Cochlear Implant System, Audiol. Amp Neuro-Otol, vol.10, pp.105-116, 2005.

M. D. Eisen and K. H. Franck, Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects, Ear Hear, vol.25, pp.528-538, 2004.

R. Filipo, P. Mancini, C. D'elia, B. , and M. , Objective measurement (NRI) from intracochlear electric stimulation in Clarion CII adult implantees, Cochlear Implants Int, vol.5, issue.1, pp.25-27, 2004.

J. H. Frijns, J. J. Briaire, J. A. De-laat, and J. J. Grote, Initial evaluation of the Clarion CII cochlear implant: speech perception and neural response imaging, Ear Hear, vol.23, pp.184-197, 2002.

R. Glueckert, K. Pfaller, A. Kinnefors, H. Rask-andersen, A. Schrott-fischer et al., Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children, Audiol. Neurootol, vol.10, pp.447-463, 2004.

R. Greisiger, J. K. Shallop, P. K. Hol, O. J. Elle, and G. E. Jablonski, Cochlear implantees: Analysis of behavioral and objective measures for a clinical population of various age groups, Cochlear Implants Int, vol.16, pp.1-19, 2015.

M. Hughes, Objective Measures in Cochlear Implants, 2012.

M. L. Hughes, L. Michelle, . Hughes, M. L. Hughes, K. R. Vander-werff et al., A longitudinal study of electrode impedance, the electrically evoked compound action potential, Fundamentals of Clinical ECAP Measures in Cochlear Implants: Part 1: Use of the ECAP in Speech Processor Programming, vol.22, pp.471-486, 2001.

F. Ji, K. Liu, Y. , and S. , Clinical application of electrically evoked compound action potentials, J. Otol, vol.9, pp.117-121, 2014.

A. M. Khan, D. M. Whiten, J. B. Nadol, and D. K. Eddington, Histopathology of human cochlear implants: correlation of psychophysical and anatomical measures, Hear. Res, vol.205, pp.83-93, 2005.

A. Kral, R. Hartmann, D. Mortazavi, K. , and R. , Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents, Hear. Res, vol.121, pp.11-28, 1998.

W. K. Lai, M. Aksit, F. Akdas, and N. Dillier, Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications, Int. J. Audiol, vol.43, pp.252-263, 2004.

L. H. Mens, Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity, Trends Amplif, vol.11, pp.143-159, 2007.

C. A. Miller, C. J. Brown, P. J. Abbas, C. , and S. , The clinical application of potentials evoked from the peripheral auditory system, Hear. Res, vol.242, pp.184-197, 2008.

R. Mittal and S. S. Panwar, Correlation between intra-operative high rate neural response telemetry measurements and behaviourally obtained threshold and comfort levels in patients using Nucleus 24 cochlear implants, Head Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg, vol.10, pp.220-228, 1997.

A. Nehmé, E. El-zir, N. Moukarzel, H. Haidar, F. Vanpoucke et al., , 2014.

, Measures of the electrically evoked compound action potential threshold and slope in HiRes 90K(TM) users, Cochlear Implants Int, vol.15, pp.53-60

J. Pinheiro and D. Bates, Mixed-Effects Models in S and S-PLUS, 2000.

J. Pinheiro, D. Bates, and . Saikat-debroy, Deepayan Sarkar, EISPACK authors, Siem Heisterkamp (Author fixed sigma), Bert Van Willigen (Programmer fixed sigma), and R-core, 2016.

M. Polak, A. V. Hodges, J. E. King, and T. J. Balkany, Further prospective findings with compound action potentials from Nucleus 24 cochlear implants, Hear. Res, vol.188, pp.104-116, 2004.

M. A. Reid, J. Flores-otero, D. , and R. L. , Firing patterns of type II spiral ganglion neurons in vitro, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.733-742, 2004.

J. K. Shallop, Objective electrophysiological measures from cochlear implant patients, Ear Hear, vol.14, pp.58-63, 1993.

Y. Tian, W. Li, Z. Wang, N. Yang, L. Hui et al., , 2012.

L. Vargas, J. L. Sainz, M. Roldan, C. Alvarez, I. Torre et al., Long-Term Evolution of the Electrical Stimulation Levels for Cochlear Implant Patients, Za Zhi J. Clin. Otorhinolaryngol. Head Neck Surg, vol.26, pp.194-200, 1019.

Z. Wang, W. Li, Y. Tian, J. , and X. , , 2014.

L. Zhi, J. Clin, G. K. Otorhinolaryngol-;-van-wermeskerken, . Van, A. F. Olphen et al., World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects, Head Neck Surg, vol.28, pp.3043-3045, 2000.