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Chapter 1

Introduction and Preliminaries

The two major themes of this thesis are the dueling banditsand the corrupt bandits

which are both variants of the multi-armed bandit (MAB) problem with unconven-

tional forms of feedback. In this introductory chapter, we lay the foundation of the

thesis by introducing the conventional MAB problem. We also introduce the more

general concept of partial monitoring. We emphasize that the aim of this chapter is

not to present an extensive and complete survey of these two vast �elds but merely

to introduce the key notions which aid the reading of the thesis. For a survey on

multi-armed bandits, we point the readers to Bubeck and Cesa-Bianchi[2012]. For

further reading on partial monitoring, we recommend Bartók et al. [2014].

This chapter is organized as follows: Firstly, we brie�y describe the sequential

decision making problem in Section 1.1, since the MAB problem is a sequential de-

cision making problem with a form of incomplete feedback called bandit feedback, as

we shall see in Section 1.2. We enlist in Section 1.3 some of the major practical appli-

cations of the MAB problem. In Section 1.4, we take a look at a few algorithms for

the various settings of the MAB problem. As we are dealing with forms of feedback

which differ from the conventional bandit feedback, it is natural to pose the con-

sidered problems in a more general paradigm for sequential decision making. This

paradigm known as partial monitoring in introduced in Section 1.5.

1.1 Sequential decision making

As the name suggests, sequential decision making proceeds in a sequence of con-

secutive rounds. In each round, the learner has a number of available actions and

its task is to select one to be taken. Action selection is based on the value associated
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with each action by the environment. In the context of this thesis, a learner is simply

a system which interacts with the environment and makes the decisions of selecting

actions and the environment is anything external to the learner. At this point, we

make no statistical assumptions about how the actions values are generated by the

environment. The learner's goal is to select an action during each round to optimize

the associated value. In order to do so, the learner forms suitable estimations for all

the action values. Based on these estimations, the learner chooses one of the avail-

able actions accordingly. At the end of the round, feedback about the action value/s

is revealed to the learner. Using this feedback, the learner can update the estimates

for the action values in the next round. For a more detailed portrayal, please refer to

Littman [1996, Chapter 1].

The most descriptive feedback that could be available to the learner is the obser-

vation of all the action values. We term such feedback as complete feedback. Sequential

decision making with complete feedback is depicted in Figure 1.1. The key feature

Sequential decision making with complete feedback

At round (or time) t = 1; : : : ;

1. The environment assigns the values to all the available actions.

2. The learner chooses an action.

3. The learner receives the reward for the selected action.

4. The learner observers the rewards for all the actions.

FIGURE 1.1: Sequential decision making with complete feedback

of the complete feedback is the availability of all the action values at all the time

periods, even for the actions not taken by the learner. While complete feedback is

available in some scenarios like portfolio management, it is still a strong assump-

tion. A natural relaxation of this assumption leads us to bandit feedback in which

the learner, at any time period, only receives the feedback for the action taken and

not for the remaining actions. Bandit feedback is motivated from practical applica-

tions like clinical trials, Internet advertising and online recommendation which are

detailed in Section 1.3. A MAB problem is a mathematical formulation of sequential

decision making with bandit feedback. In the next section, we formally de�ne the
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MAB problem and its various settings.

1.2 Multi-armed bandits

In a MAB problem, actions are symbolized by arms in reference to the arm of a slot

machine or a one-armed bandit and selecting an action is symbolized by pulling the

corresponding arm 1. A learner has to iteratively pull an arm from a set of available

arms. With each arm, there is an associated value. On selecting a particular arm,

the learner receives the value (gains the reward or suffers the loss) corresponding to

the arm it chose. For the purpose of this thesis, we work exclusively with rewards

and not losses as they can be considered mirror images. As a feedback, the learner

only observes the received reward corresponding to the selected arm and is given

no other information as to the merit of other available arms. The learner's goal is to

optimize the reward of the arms it chooses.

The learner can maintain the history of previous selections and the subsequent

rewards it received and observed as feedback to estimate the action rewards for the

next round. Higher the number of times a particular arm is selected, more accu-

rate is the estimate of its reward. At any round, the learner can decide to select

an arm with the current highest reward estimate. Such a choice is called a greedy

choice. With a greedy choice, the learner is said to exploit its current knowledge of

the action rewards. However, if the learner has inaccurate estimates of the other arm

rewards then one of the those arms might turn out to have a higher reward than the

greedy choice. Hence the learner can decide to choose an arm which currently has

an inferior reward estimate in order to have a more accurate estimate of its reward.

With such a non-greedy choice, the learner is said to explore. With exploration, re-

ceived reward is inferior in the short run, but if the exploration leads to discovery

of arms with rewards higher than that of the current greedy choice, then the learner

can obtain superior reward in the longer run by exploiting the said better arms.

Hence the learner faces the exploration-exploitation dilemma which is inherent to

reinforcement learning problems. This dilemma is mathematically formalized as a

MAB problem as follows.

1For the rest of thesis, we shall use pulling or selecting or choosing an arm interchangeably.
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1.2.1 Formalization of the problem

It is symbolized as a repeated game between a learner and the environment. The

learner has a set of arms A = f1; : : : ; K g available to it. At every time period

t = 1; : : : , each arm a is associated with a numerical reward. The reward vector

x t consists of fx 1(t); : : : ; x K (t)g where xa(t) 2 is the reward associated with the arm

a at time t. Simultaneously at time period t, the learner pulls an arm at and receives

the reward xat (t). Observation of the received reward xa(t) i.e. bandit feedback is

available to the learner and it does not have access to the rewards of the other arms.

For most of the settings we consider, the game described above is restricted to a

�nite time period f1; : : : ; T g where T is called the horizon. In�nite-horizon setting the

horizon is known to the learner and it is unknown to the learner in anytimesetting.

For most of the problems, we assume the rewards are bounded in [0;1]. In a

binary multi-armed bandit or a Bernoulli multi-armed bandit problem, the reward

values are restricted to 0 and 1. The reward values can be generated by the following

two ways:

Stochastic rewards

The crux of this formulation is the presence of the stationary reward probability

associated with each arm. There areK probability distributions � 1; : : : ; � K over [0;1]

associated respectively with arms 1; : : : ; K . Let � 1; : : : ; � K be the respective means of

� 1; : : : ; � K . When an arm a is pulled, its reward xa is drawn from the corresponding

distribution � a. This setting can be described as a game between the learner and the

environment as follows:

Bandit game with stochastic rewards

At t = 1; : : : ; T

1. The environment draws a reward vector x t according to � 1 � � � � � � K .

2. The learner chooses an armat 2 A = f1; : : : ; K g.

3. The learner observes and receives the rewardxat (t).

FIGURE 1.2: Bandit game with stochastic rewards

2When t is clear from the context, we simply write xa instead of xa (t).
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Adversarial rewards

Unlike in the case of stochastic rewards, the reward probabilities may not be station-

ary but the rewards are generated by an adversary. The adversary can be either obliv-

ious or malicious. An oblivious adversary selects all the reward vectors x1; : : : ; xT

beforehand. It can be described as a game given below.

Bandit game with oblivious adversarial rewards

The adversary draws reward vectors x t 2 [0;1]K for t = 1; : : : ; T .
At t = 1; : : : ; T

1. The learner chooses an armat 2 A = f1; : : : ; K g.

2. The learner observes and receives the rewardxat (t).

FIGURE 1.3: Bandit game with oblivious adversarial rewards

However, a malicious adversary chooses a reward vector x t at time t having

access tox1; : : : ; x t�1 and a1; : : : ; at�1 . It can be described as a game below.

Bandit game with malicious adversarial rewards

At t = 1; : : : ; T

1. The adversary draws a reward vector x t 2 [0;1]K .

2. The learner chooses an armat 2 A = f1; : : : ; K g.

3. The learner observes and receives the rewardxat (t).

4. The adversary observes the learner's arm selectionat and the received
reward xat (t).

FIGURE 1.4: Bandit game with malicious adversarial rewards

1.2.2 Performance measure: regret

A policy is a mapping from time period t 2 f 1; : : : ; Tg to at 2 A i.e. the arm selected

at time t. Let the policy with the highest associated arm reward be called the optimal

policy. The optimal policy could be single-armed or multiple-armed. If the learner

knew the optimal policy beforehand, then at every time period, it would simply pull
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the arm given by the optimal policy and receive the highest possible reward. How-

ever, in most problems worth solving, the learner does not have access to the optimal

policy. The learner has to conjecture the best arm from the available bandit feedback

i.e. the rewards of the previously chosen arms. In other words, the learner's goal is

to �nd a policy which is the closest approximation to the optimal policy. Every time

the learner pulls a sub-optimal arm , it is losing out on the difference of the rewards

between those two arms. Since the learner's goal is to maximize the reward of its

chosen arms, it follows that the learner should try to minimize this difference i.e. the

regret.

Regret can be classi�ed into two kinds depending upon whether the exploration

and the exploitation overlap. Based on these two kinds of regret, which we will

see shortly, the MAB problem can be divided into two settings: pure exploration

and exploration-exploitation. The third MAB setting, calledbest arm identi�cation, uses

other performance measures. All of these three settings are introduced next.

1.2.3 Pure exploration setting

In this setting, introduced by Bubeck et al. [2009], the learner has to deal with two

tasks. The secondary task is of exploration i.e of selecting an arm for sampling at ev-

ery time period. Based on the rewards it observes for the selected arms, the learner's

primary task is to select an arm at the end of each time period to be used as a rec-

ommendation if/when the environment sends a stopping signal indicating that the

exploration phase is over. The goal of the learner is to minimize the simple regret.

De�nition 1.1. Simple regret (SRegret): Simple regret is de�ned as the difference between

the expected reward of the optimal arm (in hindsight) and the expected reward of the arm

recommended by the learner.

In other words, the learner �rst explores through the arms in the exploration

phase to gain knowledge about the rewards of the arms and then it exploits the

acquired knowledge to recommend an arm. The exploration phase and the exploita-

tion phase do not overlap. The rewards of the arms selected by the learner during

the exploration phase are not considered for computing the simple regret; only the

reward of the recommended arm is considered.
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1.2.4 Exploration-exploitation setting

In this setting, introduced by Robbins [1952], the exploration phase and the exploita-

tion phase overlap. The learner's task is not to recommend an arm at the end of the

game, but to �nd a policy which selects an arm at every time period such that the

cumulative regretis minimized.

De�nition 1.2. Cumulative regret (CRegret): Cumulative regret is de�ned as the differ-

ence between the expected cumulative reward of the optimal policy and the expected cumula-

tive reward of the learner's policy.

So while exploring through the arms, the learner also has to exploit its knowl-

edge about the rewards of the arms as the rewards of the selected arms are being

considered for the computation of the cumulative regret. This captures the classic

exploration vs exploitation dilemma in reinforcement learning.

Cumulative regret can be computed against a single arm optimal policy, in which

case it is called theweak regret, or a dynamic multi-arm optimal policy, in which case

it is called the strong regret.

Weak regret = E

"
TX

t=1

max(x t )

#

�
TX

t=1

xat (t)

Strong regret =
TX

t=1

E(max(x t )) �
TX

t=1

xat (t)

In all of the cases where this setting is used in this thesis, we use the notion of weak

regret.

1.2.5 Best arm identi�cation

The early occurrences of this setting are considered byBechhofer [1958] andPaulson

[1964]. In this setting, by convention, the rewards are assumed to be stochastic. The

arm with highest mean reward is called the optimal arm or the best arm and is

denoted by a� i.e. a� := argmax
a=1;:::;K

� a. The corresponding optimal mean reward is

denoted by � � .

Unlike the settings of pure exploration and exploration-exploitation, this setting

does not use regret as the measure of performance. The learner, as usual, samples
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the available arms to acquire knowledge about their rewards. The learner's goal

is to recommend an approximation of the best arm. The learner's decision to stop

sampling the arms and make its recommendation is in�uenced by either �xing the

con�dencein the recommendation or �xing the budgetfor sampling.

Fixed-con�dence setting (PAC setting)

In �xed-con�dence best arm identi�cation setting, considered by both Bechhofer

[1958] and Paulson [1964], the learner is obliged to recommend an arm with a certain

level of con�dence de�ned by two parameters � and � . The parameter � is used to

indicate the degree of acceptable approximation for the recommended arm, while

� is the maximum allowable error probability. The learner's goal is to recommend

an �-approximate arm, i.e. an arm a having the mean reward � a � � � � �, with the

probability of at-least 1 � � . This is also called asProbably approximate correct(PAC)

setting. The performance of the learner is measured in terms of the sample complexity

which is the number of samples required by the learner to achieve its goal.

Fixed-budget setting

In �xed-budget best arm identi�cation setting, introduced by Audibert et al. [2010],

every arm a is associated with a costca known to the learner. The learner has to pay

the cost ca every time it decides to sample the corresponding arm a. The learner is

further given a �xed budget which speci�es the maximum permissible cumulative

cost. The learner's goal is to recommend an �-approximate arm before exhausting

the given budget. The cost for sampling could be different for all the arms. This

setting addresses the best possible use of available resources (e.g. cpu time) in order

to optimize the performance of some decision-making task. That is, it is used to

model situations with a preliminary exploration phase in which costs are measured

in terms of resources constrained by a limited budget. In a special case, the cost

for every arm could be set to 1 to restrict the total number of samples the learner

is allowed to make. The probability with which the learner fails to a recommend

an �-approximate arm is termed as the error probability � . The performance of the

learner is measured in terms of the error probability.



1.3. Applications of the MAB problem 11

1.3 Applications of the MAB problem

The original motivation of Thompson [1933] for studying the MAB problem came

from clinical trials. Subsequently, the MAB problem has found its application in

other �elds as well. In this section we shall take a look at some practical applications

of the MAB problem.

1.3.1 Clinical trials

In a clinical trial, a researcher would like to �nd the best treatment for a particu-

lar disease, out of many possible treatments. In a MAB formulation of a clinical

trial, arms represent the treatments while sampling an arm signi�es applying the

corresponding treatment on the test subjects. We shall use this application to fur-

ther explain the difference between the exploration-exploitation setting and best arm

identi�cation setting.

Consider a clinical trial for a severe disease in which a number of people suffer-

ing from the disease are used as the test subjects. In such a trial, the loss of trying a

wrong treatment is high (or in terms of reward, the associated reward would equal

a large negative value). It is important to minimize the cumulative regret, since the

test and cure phases coincide. Therefore exploration-exploitation setting is suitable

in this case.

On the other hand, consider a clinical trial for a cosmetic product in which var-

ious possible formulae are tested on animals used as the test subjects. In such a

trial, the loss of trying a wrong formula is minimal, excusing the ethical concerns re-

lated to harming the animals. There exists a test phase in which all the formulae are

tried on the test subjects without taking into consideration the incurred immediate

loss. The test phase is limited by a �xed allocation of funds (�xed-budget) or the re-

quired level of quality of the recommendation (�xed-con�dence). At the end of the

test phase, the best-performing formula is recommended for the commercialization

phase, and one aims at maximizing the quality of the recommended formula which

is to be regarded as a commercialized product.
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1.3.2 Internet advertising

Nowadays companies have a suite of potential online ads they can be displayed to

the users, but they need to know which ad strategy to follow to maximize sales.

This is similar to A/B testing, but has the added advantage of naturally minimizing

strategies that do not work (and generalizes to A/B/C/D... strategies). A classical

MAB problem can be utilised for this application but the presence of extra informa-

tion or contextpaves the way for another setting of MAB problem called contextual

bandits. Context is any additional information that can be used to make a better de-

cision when choosing among all the ads. It includes user's age, location, previous

buying habits, all of which can be highly informative of what type of products they

might purchase in the future.

1.3.3 Online recommendation

On the Internet, a huge amount of digital information hinders the users from ac-

cessing the items they are interested in. To solve this problem, online recommender

systems provide personalized item recommendations to users. Recommender sys-

tems are bene�cial for online vendors too as they enhance their revenues by provid-

ing them effective means of showcasing the products the users are more likely to

buy. The scenario of online recommendation can be modeled as a contextual MAB

problem by considering the items as the arms to be selected by the learner i.e. the

recommender system.

1.4 Algorithms for the MAB problem

In this section, we take a look at some of the popular algorithms for some of the

variations of the MAB problem. These algorithms form the basis of the algorithms

introduced in this thesis (Chapters 4 and 9). Firstly, we shall see two algorithms for

best arm identi�cation with �xed con�dence.



1.4. Algorithms for the MAB problem 13

1.4.1 Algorithms for best arm identi�cation with �xed con�dence

Many algorithms for the best arm identi�cation with �xed con�dence are elimina-

tion strategies that work in rounds. Elimination strategies can be described suc-

cinctly using the following:

1. Sampling rule: to decide which arm (or arms) to pull during a round.

2. Elimination rule: to decide which arm (or arms) to eliminate at the end of a

round.

3. Stopping rule: to decide when to stop sampling and recommend an arm.

We provide below the earliest and the simplest elimination algorithm for best arm

identi�cation with �xed con�dence.

� Median elimination: Median elimination (ME), given by Even-Dar et al. [2006],

eliminates the worst half of the arms at each iteration. The step 4 of ME (given

in Algorithm 1) speci�es the sampling rule, in which every remaining arm is

pulled a certain number of times depending upon the approximation param-

eter �, the error probability � and the current round number. The mean of the

Algorithm 1 Median elimination (ME)

Input: A bandit model with a set of arms A := f1; : : : ; K g arms with unknown
reward means � 1; : : : ; � K .

1: Parameters: � > 0, � > 0
2: SetS1  A; � 1  �=4; �  �=2; l  1
3: Do
4: Sample every arm a in Sl for 1=(� l =2)2 log (3=� l ) times and let �̂ l

a be its mean
empirical reward.

5: Let Medl be the median of f �̂ l
aga2S .

6: Sl+1  Sl n fa : �̂ l
a < Medl g

7: � l+1  3
4 � l ; � l+1  �

2 ; l  l + 1

8: Until jSl j = 1
9: Output the arm in Sl

observed rewards for each arm serves as the reward estimate for the arm. By

the elimination rule, given in step 6, the arms with lower reward estimate than

the median reward estimate are eliminated. The algorithm stops when there is

only one arm remaining and recommends the remaining arm. This algorithm

serves as a baseline for the algorithm ME-CF, which we introduce in Section

9.1.1.
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� Exponential gap elimination: Exponential gap elimination (EGE), given by

Karnin et al. [2013], aims to eliminate (1=2)l -suboptimal arms at round l. This

algorithm uses ME as a subroutine to estimate the suboptimality of each arm.

EGE is described in Algorithm 2. This algorithm serves as a baseline for the

algorithm EGE-CF, which we introduce in Section 9.1.2.

Algorithm 2 Exponential-gap elimination (EGE)

1: Input: A bandit model with a set of arms A := f1; : : : ; K g arms with unknown
reward means � 1; : : : ; � K

1
� .

2: Parameters: � > 0
3: SetS1  A; l  1
4: While jSl j > 1

5: let � l  2�l =4and � l  �=(50l 3)
6: Sample each arma 2 Sl for (2=�2l ) log (2=� l ) and let �̂ l

a be its mean empirical
reward.

7: Invoke al  ME(Sl ; � l =2; � l )
8: SetSl+1  Sl n fa 2 Sl : �̂ l

a < �̂ l
al

� � l g
9: l  l + 1

10: End while
11: Output the arm in Sl

1.4.2 Algorithms for exploration-exploitation

� UCB1: Upper con�dence bound policies are classical algorithms for the stochas-

tic MAB problem. They work on the principle of “optimism in the face of un-

certainty". These policies compute an upper con�dence bound(UCB) for each

arm and use it as the estimate of its reward. At each time period, the arm with

the highest upper con�dence bound is pulled. UCB1 (Algorithm 3), given by

Auer et al. [2002a], is the simplest UCB algorithm. This algorithm serves a

baseline for the algorithm UCB-CF, which we introduce in Section 9.2.2.

Algorithm 3 UCB1

Input: A bandit model with a set of arms A := f1; : : : ; K g arms with unknown
reward means � 1; : : : ; � K .

1: Initialization: Play each arm once.
2: for t = K + 1; : : : do

3: Pull arm ât = argmaxa x̂a +
q

2�log K
Na (t�1) , where x̂a is the average reward from

arm a and Na(t � 1) is the number of arms pulled till time t � 1.
4: end for
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� kl-UCB: kl-UCB, given by Cappé et al. [2013], is an upper con�dence bound

based policy for the stochastic MAB problem. It uses upper con�dence bounds

for the arm rewards based on Kullback-Leibler divergence. The precise de-

Algorithm 4 kl-UCB

Input: A bandit model with a set of arms A := f1; : : : ; K g arms with un-

known mean rewards � 1; : : : ; � K .

Parameters: A non-decreasing (exploration) function f : N ! R, d(x; y ) :=

KL(B (x); B(y)), Time horizon T.

1: Initialization: Pull each arm once.

2: for time t = K; : : : ; T � 1 do

3: Compute for each arm a in A the quantity

Indexa(t) := sup fq : Na(t) � d(�̂ a(t); q ) � f (t)g

4: Pull arm ât+1 := argmax
a2A

Indexa(t).

5: end for

scription of kl-UCB is given in Algorithm 4. The empirical mean of the reward

obtained from the arm a until time t is denoted by �̂ a(t). This algorithm serves

a baseline for the algorithm kl-UCB-CF, which we introduce in Section 9.2.1.

� Exponential-weight algorithm for Exploration and Exploitation (EXP3): EXP3,

given by Auer et al. [2002b], is a randomized algorithm for the adversarial

MAB problem. It is a variant of the Hedge algorithm introduced by Freund

and Schapire [1997].

At every time step t, EXP3 pulls an arm ât according to a distribution which is

a mixture of the uniform distribution and a distribution which assigns to each

arm a probability mass exponential in the estimated reward for that action.

Therefore the algorithm, at all times, selects every arm with at-least a non-zero

probability of =K , thus ensuring continual exploration, where  is the explo-

ration parameter and K is the number of arms. For computing the estimated

reward, the algorithm makes use of importance sampling. This choice guar-

antees that the expectation of the estimated reward for each arm is equal to its
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Algorithm 5 EXP3

Input: A bandit model with a set A = f1; : : : ; K g
Parameters: Real  = (0 ; 1]

1: Initialization: wa(1) = 1 for a 2 A
2: for t = 1; 2; : : : do
3: Set

pa(t) = (1 �  )
wa(t)

P K
b=1 wb(t)

+

K

a = 1 ; : : : ; K

4: Draw ât randomly according to the probabilities p1(t); : : : ; p K (t)
5: Observe the receivex ât (t) 2 [0;1]
6: for b = 1; : : : ; k do, set

7: x̂b(t) =

(
xb(t)=pb(t) if b = at ;

0 otherwise

8: end for
9: end for

actual reward. This algorithm serves a baseline for the algorithm REX3, which

we introduce in Section 4.1.

� Thompson sampling: Thompson sampling (TS), given by Thompson [1933],

is an algorithm for the stochastic MAB problem. It follows a Bayesian ap-

proach, where Bayesian priors are used as a tool to encode the current knowl-

edge about the arm rewards. TS maintains a Beta posterior distribution on the

Algorithm 6 Thompson sampling for Bernoulli bandits

Input: A Bernoulli bandit model with a set of arms A := f1; : : : ; K g arms with
unknown reward means � 1; : : : ; � K .

1: Initialization: For each arm a in A, set successa = 0 and faila = 0
2: for t = 0; : : : do.
3: For each arm a in A, sample � a(t) from Beta(successa +1; faila +1)
4: Pull arm ât+1 := arg max

a
� a(t) and receive the reward x ât (t + 1)

5: if x ât (t + 1) = 1 then
6: succesŝat+1 = succesŝat+1 +1
7: else
8: fail ât+1 = fail ât+1 +1
9: end if

10: end for

mean reward of each arm. At round t+1, for each arm a, it draws a sample � a(t)

from the posterior distribution on coreeposnding to arm a and pulls the arm

for which g�1
a (� a(t)) is largest. This mechanism ensures that at each round, the

probability that arm a is played is the posterior probability of this arm to be op-

timal. Algorithm 6 describes the Thompson sampling algorithm for stochastic
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bandits with Bernoulli rewards. Agrawal and Goyal [2012] provide a simple

extension which works for bandits with arbitrary reward distributions with

support [0;1]. This algorithm serves a baseline for the algorithm TS-CF, which

we introduce in Section 9.2.3.

In the next section, we take a look at a general paradigm for sequential decision

making with incomplete feedback.

1.5 Partial monitoring

Partial Monitoring (PM) provides a generic mathematical model for sequential de-

cision making with incomplete feedback. In this section, we take a brief review of

the basic concepts of partial monitoring problems. Most of the information in this

section is taken from Bartók et al. [2011] and Bartók [2013].

A partial monitoring game (PM) is de�ned by a tuple hN ; M ; �; L; Hi where N ,

M , � , L and H are the action set, the outcome set, the feedback alphabet, the loss

function and the feedback function respectively. To each action I 2 N and outcome

J 2 M , the loss function L associates a real-valued lossL(I; J ) and the feedback

function H associates a feedback symbolH(I; J ) 2 � .

In every round, the opponent and the learner simultaneously choose an outcome

Jt from M and an action I t from N , respectively. The learner then suffers the loss

L(I t ; Jt ) and receives the feedbackH(I t ; Jt ). Only the feedback is revealed to the

learner, the outcome and the reward remain hidden. In some problems, gain G is

considered instead of loss. The loss function L and the feedback function H are

known to the learner. When both N and M are �nite, the reward function and the

feedback function can be encoded by matrices, namely reward matrix and feedback

matrix each of size jN j � j M j. We take the liberty of overloading the notations L

and H to also mean loss matrix and feedback matrix respectively. The learner's aim

is to control the cumulative regret against the best single-action policy at time T:

CRegretT = max
i

TX

t=1

L(I t ; Jt ) � L(i; J t )
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Partial monitoring game

At time t = 1; : : : ;

1. The opponent chooses an outcomeJt 2 M .

2. The learner chooses an actionI t 2 N .

3. The learner suffers the lossL(I t ; Jt ) (or receives the the reward G(I t ; Jt )).

4. The learner observers the feedbackH(I t ; Jt ) 2 � .

FIGURE 1.5: Partial monitoring game

1.5.1 Examples of partial monitoring game

Various interesting problems can be modeled as partial monitoring games, such

as the multi-armed bandit problem, learning with expect advice (Littlestone and

Warmuth [1994]), dynamic pricing (Kleinberg and Leighton [2003]), the dark pool

problem (Agarwal et al. [2010]), label ef�cient prediction (Cesa-bianchi et al. [2005]),

and linear and convex optimization with full or bandit feedback (Zinkevich [2003a],

Abernethy et al. [2008],Flaxman et al. [2004]).

The Bernoulli multi-armed bandit problem: A partial monitoring formulation of

this problem is provided with a set of K arms/actions i 2 N = f1; : : : ; K g, an

alphabet � = [0 ; 1], and a set of environment outcomes which are vectors m 2 M =

[0;1]K . The entry with index i (m i ) denotes the instantaneous gain of the i th arm.

Assuming binary gains, M is �nite and of size 2K .

G(i; m) = m i H(i; m) = m i

The dynamic pricing problem: A seller has a product to sell and the customers

wish to buy it. At each time period, the customer secretly decides on a maximum

amount she is willing to pay and the seller sets a selling price. If the selling price is

below the maximum amount the buyer is willing to pay, she buys the product and

the seller's gain is the selling price she �xed. If the selling price is too expensive,

her gain is zero. The feedback is incomplete because the seller only receives binary

information stating whether the customer has bought the product or not. A PM
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formulation of this problem is provided below:

x 2 N � R; y 2 M � R; � = f“sold"; “not sold"g

G(x; y ) =

8
>><

>>:

0; if x > y;

x; if x � y;
H (x; y ) =

8
>><

>>:

“not sold"; if x > y;

“sold"; if x � y;

1.5.2 Hierarchy of �nite stochastic partial monitoring games

Consider a �nite partial monitoring game with action set N , outcome set M , loss

matrix L and feedback matrix H . For any action i 2 N , loss vector loss i denotes

the column vector consisting of i th row in L. Correspondingly, gain vector gain i

denotes the column vector consisting of i th row in G. Let � jM j be the jM j � 1-

dimensional probability simplex i.e. � jM j =
�

q 2 [0;1]jM j j jj qjj1 = 1
	

. For any

outcome sequence of length T, the vector q denoting the relative frequencies with

which each outcome occurs is in � jM j . The cumulative loss of action i for this out-

come sequence can hence be described as follows:

TX

t=1

L(i; J t ) = T � l |
i q

The vectors denoting the outcome frequencies can be thought of as the opponent

strategies. These opponent strategies determine which action is optimal i.e. the

action with the lowest cumulative loss. This induces a cell decompositionon � jM j .

De�nition 1.3 (Cells). The cell of an actioni is de�ned as

Ci =
�

q 2 � jM j j l |
i q = min

j 2M
l |
j q

�

In other words, a cell of an action consists of those opponent strategies in the

probability simplex for which it is the optimal action. An action i is said to be

Pareto-optimalif there exists an opponent strategy q such that the action i is opti-

mal under q. The actions whose cells have a positive(jM j � 1)-dimensional volume
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are called Strongly Pareto-optimal. Actions that are Pareto-optimal but not strongly

Pareto-optimal are called degenerate.

De�nition 1.4 (Cell decomposition). The cells of strongly Pareto-optimal actions form a

�nite cover of� M called as the cell-decomposition.

Two actions cells i and j from the cell decomposition are neighborsif their inter-

section is an (jM j � 2)-dimensional polytope. The actions corresponding to these

cells are also called asneighbors. The raw feedback matrices can be `standardized' by

encoding their symbols in signal matrices:

De�nition 1.5 (Signal matrices). For an actioni , let � 1; : : : ; � si 2 � be the symbols

occurring in rowi of H . The signal matrixSi of actioni is de�ned as the incidence matrix

of symbols and outcomes i.e.Si (k; m) = 1H (i;m)=� k
k = 1 ; : : : ; si ; for m 2 M .

Observabilityis a key notion to assess the dif�culty of a PM problem in terms of

regret CRegretT against best action at time T.

De�nition 1.6 (Observability). For actionsi and j , we say thatl i � l j is globally ob-

servable if l i � l j 2 Im S| . Where the global signal matrixS is obtained by stacking all

signal matrices. Furthermore, ifi andj are neighboring actions, thenl i � l j is calledlocally

observable if l i � l j 2 Im S|
i;j where the local signal matrixSi;j is obtained by stacking the

signal matrices of all neighboring actions fori; j : Sk for k 2 f k 2 N j Ci \ Cj � Ckg.

Theorem 1.1 (Classi�cation of partial monitoring problems). Let (N ; M ; �; L; H ) be

a partial monitoring game. LetfC 1; : : : ; Ckg be its cell decomposition, with corresponding

loss vectorsl 1; : : : ; l k . The game falls into the following four regret categories.

� CRegretT = 0 if there exists an action withCi = � jM j . This case is calledtrivial.

� CRegretT 2 �(T ) if there exist two strongly Pareto-optimal actionsi andj such that

l i � l j is not globally observable. This case is calledhopeless.

� CRegretT 2 ~�(
p

T) if it is not trivial and for all pairs of (strongly Pareto-optimal)

neighboring actionsi andj , l i � l j is locally observable. This case is calledeasy.

� CRegretT 2 �(T 2=3) if G is not hopeless and there exists a pair of neighboring actions

i andj such thatl i � l j is not locally observable. This case is calledhard.
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1.5.3 Expressing MAB problems as partial monitoring game

In Section 1.5.1 we described how a classical MAB problem can be expressed as a

partial monitoring game. The formulation of a K -armed Bernoulli MAB problem as

a partial monitoring game requires matrices of dimension K � 2K for gain matrix and

feedback matrix. Even for moderate values of K , this requirement is impractical.

In Part II of this thesis, we shall focus on the dueling bandit problem which is a

MAB problem with unconventional feedback. In Chapter 6, we illustrate how the

Bernoulli dueling bandits can be formulated as a partial monitoring game. This

formulation too proves to be impractical due the large sizes of the gain matrix and

the feedback matrix. In the same chapter, we see how the performance guarantees

given by the general partial monitoring algorithms are not as tight as that of the

algorithm we propose for the dueling bandit problem.

In Part III of this thesis, we introduce the corrupt bandit problem which is an-

other MAB problem with unconventional feedback. In Chapter 12, we illustrate

how the Bernoulli corrupt bandits can be formulated as a partial monitoring game.

This formulation is also unsuitable due the large sizes of the gain matrix and the

feedback matrix.

With this, we conclude the introductory part of the thesis. In the next two parts,

we study in detail the MAB problem with different kinds of unconventional feed-

back.
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Part II

Dueling Bandits
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Chapter 2

The Dueling Bandits problem

In this part of the thesis, we consider the multi-armed bandit problem with a partic-

ular kind of unconventional feedback called relative feedback. In the classical multi-

armed bandit problem, the learner receives absolute feedback about its choices.

However as we shall see shortly, only relative feedback is available in many practical

scenarios. This chapter provides an introduction to the MAB problem with relative

feedback.

In Section 2.1, we motivate the relative feedback from the practical applications

of the MAB problem. In Section 2.2, we formally de�ne the MAB problem with

relative feedback and its various settings. Our contributions to this problem are

enlisted in Section 2.3. At the end, in Section 2.4, we take an overview of the related

work.

2.1 Motivation

Humans �nd it much easier to choose from one of the given options rather than

giving absolute feedback about only one choice. For example, if the following two

questions are asked to a group of people :

1 : Which sport do you prefer - football or basketball?

2 : How do you rate football out of 50?

The �rst question would receive greater number of responses than the second ques-

tion. Hence relative feedback is naturally suited to many practical applications
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where humans are expected to provide feedback like user-perceived product pref-

erences, where a relative perception: “A is better than B” is easier to obtain than its

absolute counterpart: “A's value is 42, B is worth 33”.

A more commercial application of relative feedback comes from information re-

trieval systems where users provide implicit feedbackabout the provided results. This

implicit feedback is collected in various ways e.g. a click on a link, a tap, or any mon-

itored action of the user. In all these ways however, this kind of feedback is often

strongly biased by the model itself (the user cannot click on a link which was not

proposed).

FIGURE 2.1: Results of querying "partial feedback" on two search en-
gines

Consider the task of training search engines through machine learning. The �g-

ure 2.1 depicts a scenario where the same search query generates two varying re-

sults. While the user preference for either the �rst or the second result depends

majorly upon whether their motivation behind the search has been satis�ed, it is

also affected by other factors such as presence of certain results and their rank on

the page. In the past, click-through logs that passively collect user interactions with

search engines were used as the source of training data. However Radlinski and

Joachims [2007] showed that passively collecting data leads to the learned ranking

never converging to an optimal ranking. This is because a number of studies have
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shown that users tend to click on results ranked highly on search engines more of-

ten than the those ranked lower. Agichtein et al. [2006] study the click frequency

on search engine results for 120,000 searches for 3,500 queries. They show that the

relative number of clicks drop rapidly with the rank from the following observation

in their study - compared to the top ranked result, ��� as many clicks on the sec-

ond result, ��� as many clicks on the third, and ��� as many clicks on the fourth.

This observation might lead to an interpretation that top ranked results are clicked

more, simply because they are better. However Joachims et al.[2007] showed that

users still click more often on higher ranked results even if the top ten results are

presented in reverse order. In general, users very rarely see beyond the �rst page, so

highly relevant search results that are not initially highly ranked may never be seen

and evaluated.

To remove the aforementioned bias in search engines, Radlinski and Joachims

[2007] propose to interleave the outputs of different ranking models. If the user

clicks on the link from a certain ranking, that ranking is said to win the duel. The

accuracy of this interleaved ranking method(�gure 2.2) was highlighted in several ex-

perimental studies Radlinski and Joachims [2007], Joachims et al.[2007], Chapelle

et al. [2012].

���������������� A ���������������� B
Interleaved

Ranking

���������������� A

FIGURE 2.2: Interleaved ranking

Learning from relative feedback is relevant to many other �elds, such as recom-

mender systems (Gemmis et al. [2009]), and natural language processing (Callison-

Burch et al. [2011]), which involve explicit or implicit feedback provided by humans.

The classical MAB problem can not learn for such relative feedback provided in

above scenarios. Hence it is crucial to devise a model which is able to learn from
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relative feedback1, which is presented in the next section.

2.2 Formalization

The K-armed dueling bandit problemis a variation of the classical Multi-Armed Ban-

dit ( MAB ) problem introduced by Yue and Joachims[2009] to formalize the explo-

ration/exploitation dilemma in learning from preference feedback. To be able to

model the practical scenarios described in the previous section, the learner is to se-

lect two arms from the set A = f1; : : : ; K g at every time period. As a feedback, the

learner sees the information about which arm won the duel i.e. which arm gave

higher reward. Note that the learner has no access to the rewards of the selected

arms, but only to the preference feedback. However, the performance of the learner

is judged on the basis of the rewards of the selected arms and not the feedback. The

dif�culty of this problem stems from the fact that the learner has no way of directly

observing the reward of the selected arms. Hence the learner has to devise a way

to infer from the feedback the necessary information about the rewards. This can be

considered as an example of partial monitoring problem introduced in section 1.5.

We discuss this further in Chapter 6.

Like the classical MAB problem (section 1.2.1), the dueling bandit problem too

can be sub-divided based on the stationarity of the rewards into the following two

categories:

2.2.1 Stochastic dueling bandits

Stochastic dueling bandit problem is characterized by stationarity like its analogue

in the classical bandits described in section 1.2.1. However as for the dueling bandits,

the learner sees only the relative feedback of the two selected arms and not their

reward, the stationarity is exhibited by the preference of one arm over another arm.

2.2.2 Adversarial dueling bandits

In this formulation, the preference of one arm over another arm is non-stationary.

At each time period, the adversary (or the environment) can affect the preference of

1The terms “relative feedback” and “preference feedback” are used interchangeably in this thesis.
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every arm over every other arm.

In both the above categories, the preference of an arm over itself is assumed to

be equal to 0.5. This is called into use when the arms are selected with replacement

and an arm is selected with itself for a duel.

The dueling bandit problem can be formulated by either using utility values for

individual arms or preference values for every pair of arms. Both of these formula-

tions are described below.

2.2.3 Utility-based formulation

In this formulation, every arm is assigned a value. At each time period t, a real-

valued bounded utility xa(t) is associated with each arm a 2 A. When arms a and b

are selected, their utility values determines which arm wins the duel as follows:

xa(t) > x b(t) : a wins the duel

xa(t) = xb(t) : tie

xa(t) < x b(t) : bwins the duel

A tie can be provided as a separate feedback or it can be broken randomly.

Now we describe how both the stochastic and adversarial dueling bandit prob-

lem can be encoded in utility-based formulation.

Stochastic utility-based dueling bandits

Every arm a is associated with a probability distribution � a with mean � a. When an

arm a is selected by the learner, its utility is drawn from � a. The arm with the highest

mean reward is called as the (an, in case of more than one) optimal arm a� .

a� = argmax
a2A

� a

The corresponding highest mean reward is denoted as � � . This formulation is de-

picted below:
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Utilities drawn from � 1; : : : ; � K x1(t) : : : xa(t) : : : xb(t) : : : xK (t)

# #

The learner selects a b

The learner sees  (x a; xb)

The learner receives �(x a; xb)

The feedback seen by the learner provides it relative information about the selected

arms. One of the ways to provide such a relative feedback is as follows:

 (x a; xb) =

8
>>>>>><

>>>>>>:

1 if xa > x b

0 if xa = xb

�1 if xa < x b

On pulling arms a and b, the learner receives a reward given by �(x a; xb). Depending

upon the intent behind formulating the given dueling bandit problem, � can take

various forms. One way could be that the learner receives the highest of the two

rewards i.e.

�(x a; xb) =

8
>><

>>:

xa if xa � xb

xb otherwise

Another way is for the learner to receive the mean reward of the selected arms.

In such cases,� is as follows

�(x a; xb) =
xa + xb

2
(2.1)

Using these notions, the cumulative reward can be de�ned as

CRegretT =
TX

t=1

2xa� (t) � xa(t) � xb(t)
2

(2.2)

where at and bt are the two arms selected at time t till horizon T. In the rest of this

thesis, we shall call this notion of regret as bandit regret.
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Adversarial utility-based dueling bandits

At each time period, an adversary sets a bounded utility value for each of the arms.

This formulation is depicted below:

The adversary sets x1(t) : : : xa(t) : : : xb(t) : : : xK (t)

# #

The learner selects a b

The learner sees  (x a; xb)

The learner receives �(x a; xb)

2.2.4 Preference-based formulation

As the name suggests, this formulation is characterized by preferences. It is more ex-

pressive than utility-based formulation since it allows for a cycle. For example, the

following preference can be expressed in this formulation unlike the utility-based

formulation.

a � b � c � a

Since the preference of every pair of arms is to be speci�ed, a natural way to repre-

sent all the preference values is by a square matrix with its dimension being equal to

the number of arms when the number of arms are �nite. It is called a preference matrix

P. For each pair (a; b) of arms, the element Pa;b contains the unknown probability

with which a wins the duel against b.

An example preference matrix is shown below:

2

6
6
6
6
6
6
6
4

1 2 ��� K

1 1=2 P1;2 P1;K

2 P2;1 1=2 P2;K

...
...

K PK;1 PK;2 1=2

3

7
7
7
7
7
7
7
5
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The matrix P must satisfy the following symmetry property:

8a; b2 f 1; : : : ; K g; Pa;b + Pb;a = 1

Hence on the diagonal: Pa;a = 1
2 8a 2 f 1; : : : ; K g.

Using these preference values, cumulative regret can be de�ned as

CRegretT =
TX

t=1

Pa� ;at + Pa� ;bt � 1
2

(2.3)

where at and bt are the two arms pulled at time t. In the rest of this chapter, this

is called Condorcet regretsince it coincides with the notion of a Condorcet winnera� .

A Condorcet winner is the arm, denoted by a� which is preferred over all the other

arms i.e. 8 a 2 A n f a� g; Pa� ;a > 1=2. Note that if � a > � b for some arms a and b, then

Pa;b > 1=2. The optimal arm in the utility-based formulation thus coincides with the

Condorcet winner in the preference formulation.

Stochastic preference-based formulation

As explained in section 2.2.1, the key characteristic of stochastic dueling bandits is

the stationarity of the preference of one arm over another arm. The preference matrix

directly stores this preference as a probability of arm a winning the duel against

arm b for all a; b. Therefore the matrix based formulation lends itself easily to the

stochastic dueling bandits.

Adversarial preference-based formulation

At each time period t, the adversary chooses a ternary square outcome matrix  (t)

where 2

 (t) a;b =

8
>>>>>><

>>>>>>:

1 a wins the duel against bat time t

0 a tie between a and bat time t

�1 bwins the duel against a at time t

(2.4)

2We overload the previously de�ned symbol for feedback function,  , to express a similar notion
here.
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Naturally the dimension of the outcome matrix is equal to the number of arms.

At the horizon T, the preference matrix can be constructed as follows:

Pa;b =
1

2T

TX

t=1

 (t) a;b +
1
2

8a; b2 A

2.2.5 Relation between utilities and preferences

We can construct, preferences from utilities with randomized tie-breaking as follows:

Pa;b = P(xa > x b) +
1
2

P(xa = xb)

where P(E) indicates the probability of event E . When all va are Bernoulli laws, this

reduces to:

Pa;b =
� a � � b + 1

2
(2.5)

In this case, the bandit regret, given by Eq. (2.2), is twice the Condorcet regret, given

by Eq. (2.3) as:
2� a� � � a � � b

2
= Pa� ;a + Pa� ;b � 1

As utility-based formulation can not express cycles in preferences, there can be no

such general way to convert preferences to utilities.

2.3 Our contributions

Our main contribution is an algorithm designed for the adversarial utility-based

dueling bandit problem in contrast to most of the existing algorithms which assume

a stochastic environment.

Our algorithm, called Relative Exponential-weight algorithm for Exploration and Ex-

ploitation(REX3), is a non-trivial extension of the Exponential-weight algorithm for Ex-

ploration and Exploitation(EXP3) algorithm Auer et al. [2002b] to the dueling bandit

problem. We prove a �nite time expected regret upper bound of order O(
p

K ln(K )T )

and develop an argument initially proposed by Ailon et al. [2014] to exhibit a general

lower bound of order 
(
p

KT ) for this problem.
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These two bounds correspond to the original bounds of the classical EXP3 algo-

rithm and the upper bound strictly improves from the ~O(K
p

T) obtained by existing

generic partial monitoring algorithms. 3

Our experiments on information retrieval datasets show that the anytime ver-

sion of REX3 is a highly competitive algorithm for dueling bandits, especially in the

initial phases of the runs where it clearly outperforms the state of the art.

We study the utility-based dueling bandit problem as an instance of the partial

monitoring problem and prove that it �ts the time-regret partial monitoring hierar-

chy as an easy– i.e. ~�
� p

T
�

– instance. We survey some partial monitoring algo-

rithms and see how they could be used to solve dueling bandits ef�ciently.

2.4 Related work

The conventional MAB problem has been well studied in the stochastic setting as well

as the (oblivious) adversarial setting (see section 1.2). The dueling bandits problem

is recent, although related to previous works on computing with noisy comparison

[see for instance Karp and Kleinberg, 2007]. This problem also falls under the frame-

work of preference learningFreund et al. [2003], Liu [2009], Fürnkranz and Hüller-

meier [2010] which deals with learning of (predictive) preference models from ob-

served (or extracted) preference information i.e. relative feedback which speci�es

which of the chosen alternatives is preferred. Most of the articles hitherto published

on dueling bandits consider the problem under a stochastic assumption.

2.4.1 Dueling Bandit Gradient Descent

Yue and Joachims[2009] consider the setting of stochastic utility-based dueling ban-

dits with a possibly in�nite number of actions. This is closely related to stochas-

tic approximation (Robbins and Monro [1951]). The authors propose an algorithm

called Dueling Bandit Gradient Descent(DBGD) to solve this problem. They approach

this (contextual) dueling bandits problem with on-line convex optimization as fol-

lows: The set of actionsA is embedded within a vector space W . Retrieval functions

3The notation ~O(�) hides logarithmic factors.



2.4. Related work 35

in a search engine is an example of such a space.A is assumed to contain the ori-

gin, is compact, convex and is contained in a d-dimensional ball of radius r . They

assume the existence of a differentiable, strictly concave utility function v : A ! R.

This function re�ects the intrinsic quality of each point in A, and is never directly ob-

served. Sincev is strictly concave, there exists a unique maximum v(a� ) where a� is

the optimum point (or action). A link function ' : R ! [0;1] provides the following

relation:

8a; b2 A : P(a wins against b) = '(v (a) � v(b))

The function ' is assumed to be monotonic increasing, rotation-symmetric with a

single in�ection point at '(0) = 1=2. In the search example, P(a � b) refers to the

fraction of users who prefer the results provided by a over those of b. If at time t, the

algorithm pulls arms at and bt then its regret at time T is given by
P T

t=1 '(v (a� ) �

v(at )) + '(v (a� ) � v(bt )) � 1.

Algorithm 7 Dueling Bandit Gradient Descent ( DBGD)

Input: s1, s2, a1 2 W
for t=1,. . . ,Tdo

Sample unit vector u t uniformly.
bt  projectA (at + s2u t ) //projected back intoA
Compare at and bt

if bt wins then
at+1  projectA (at + s1u t ) //projected back intoA

else
at+1  at

end if
end for

DBGD requires two parameters s1 and s2 which can be interpreted as exploita-

tion and exploration step sizes respectively. The algorithm maintains a candidate at

and compares it with a neighboring point bt which is s2 away from at . If bt wins

the comparison, an update of size s1 is made along ut , and then projected back

into A(denoted by projectA ). The authors prove that, if ' is L 1-Lipschitz and v is

L 2-Lipschitz, and for suitable s1 and s2, the regret of DBGD is in O(T 3=4p rdL 1L 2)

where r is the radius of the d-dimensional ball that is assumed to contain the set of

actions A.
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2.4.2 Interleaved Filtering

Yue et al. [2012] consider stochastic preference-based dueling bandit formulation

where the preference matrix is expected to satisfy the assumptions of a strict linear

order, strong stochastic transitivity and stochastic triangular inequality. They pro-

pose an algorithm called Interleaved Filtering(IF) for K -armed dueling bandit prob-

lem.

Algorithm 8 Interleaved Filtering ( IF)

Input: T, A = f1; : : : ; K g.
1: �  1=(TK 2)
2: Choose an armâ 2 A randomly
3: W  f1; : : : ; k g n f âg
4: 8a 2 W , maintain estimate P̂â;a of Pâ;a

5: 8a 2 W , compute 1 � � con�dence interval Ĉâ;a = ( P̂â;a � ct ; P̂â;a + ct ) where
ct =

p
log (1=�)=t

6: while W 6=? do
7: for a 2 W do
8: compare a and â
9: update P̂â;a and Ĉâ;a

10: end for
11: while 9a 2 W s.t. (P̂â;a > 1=2^ 1=2 =2 Ĉâ;a) do
12: W  W n fag // â declared winner againsta
13: end while
14: if 9b 2 W s.t. (P̂â;b < 1=2^ 1=2 =2 Ĉâ;b) then
15: while 9b0 2 W s.t. P̂â;b0 > 1=2do
16: W  W n fb0g //pruning
17: end while
18: â  b,W  W n fbg //b declared winner against̂a (new round)
19: 8b0 2 W , resetP̂â;b0 and Ĉâ;b0

20: end if
21: end while
22: T̂  Total comparisons made
23: return (â; T̂ )

Let a� be the best arm. If (at ; bt ) are the two arms selected at time t, strong regret

for dueling bandits is de�ned as,

StrongRegret =
TX

t=1

max fP a� ;at � 1=2; Pa� ;bt � 1=2g

where T is the time horizon. Weak regret for dueling bandits is de�ned as,

WeakRegret =
TX

t=1

min fP a� ;at � 1=2; Pa� ;bt � 1=2g



2.4. Related work 37

Strong regret is computed by comparing the best arm to the worse of the pair of

selected arms, while weak regret is computed by comparing the best arm to the

better of the two selected arms. 4

The algorithm IF is guaranteed to suffer an expected cumulative regret of order

O(K logT). This holds true for any notion of regret that is a linear combination of

weak and strong regret as de�ned earlier.

2.4.3 Beat The Mean

Yue and Joachims [2011] consider the stochastic preference-based dueling bandits

formulation where the preference matrix must only adhere to relaxed stochastic

transitivity instead of strong stochastic transitivity necessitated by IF. They intro-

duce Beat The Mean(BTM), an algorithm which proceeds by successive elimination

of arms.

Algorithm 9 Beat-The-Mean (BTM)

Input: A = f1; : : : ; K g, N , T, c�; (�)
1: W1  f1; : : : ; K g //working set of active arms
2: l  1 (num round),8a 2 Wl ; na  0(num comparisons); wa  0(num wins); p̂a �

wa=na, or 1=2if na = 0
3: n� := min a2W l na, c� := c�; (n � ), or 1 if n� = 0 //con�dence radius
4: t  0 //num iterations
5: while jW l j > 1 and t < T and n� < N do
6: a  argmina2W l

na //break ties randomly
7: selectb 2 Wl at random, compare a vs b
8: If a wins, wa  wa + 1
9: na  na + 1

10: t  t + 1
11: if mina02W l p̂a0 + c� � maxa2W l p̂a � c� then
12: a0  argmina02W l

p̂a0

13: 8a 2 Wl , delete comparisons with a0 from wa, na

14: Wl+1  Wl n fa 0g //update working set
15: l  l + 1 //new round
16: end if
17: end while
18: return argmaxa2W l

p̂a

The algorithm proceeds in rounds and in each round l, a set of active arms is

maintained as Wl . For each arm a 2 Wl , an empirical estimate p̂a is maintained.

In each round, the the arm with the lowest number of comparisons is compared

4This distinction between strong and week regret is different than the one considered in Section 1.2
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with the the arm bsampled uniformly from Wl , in effect comparing a with the mean

arm. Whenever the worst empirical arm is separated from the best empirical arm

by a suf�cient con�dence margin, the worst arm is eliminated from the working set

along with all the comparisons involving it. The algorithm continues till Wl contains

a single arm.

The authors prove that BTM (Algorithm 11) correctly returns the best arm with

probability at least 1 � 1=T while accumulating the cumulative regret CRegret =

O
�
 7K logT

�
. This algorithm can be used for both exploration-exploitation setting

as well as PAC setting.

� Exploration-exploitation setting: In the exploration-exploitation setting, the

goal is to minimize cumulative Condorcet regret. In order to achieve minimum

expected regret, the authors have adopted "explore then exploit" approach. In

Algorithm 10 Beat-The-Mean (Exploration-exploitation)

Input: A = f1; : : : ; K g,  , T
1: �  1=(2TK)

2: c�; (n) := 3 2
q

1
n log 1

�

3: Output Beat-The-Mean(A, 1, T, c�; )

the explore phase, BTM is called with the set of arms A, the horizon T, and the

with the con�dence interval c�; (n) = 3 2
q

1
n log (2KT ). In the exploit phase,

the arm returned by the above invocation of BTM is pulled till horizon T. Thus

the expected cumulative regret is bounded as follows:

E[CRegretT ] � (1 � 1=T)O
�
 7K logT

�
+ (1=T )O(T ) = O

�
 7K logT

�

� PAC setting: In the PAC setting, the goal is to �nd an approximately optimal

arm with a high probability using the minimum number of comparisons. The

Algorithm 11 Beat-The-Mean (PAC)

Input: A = f1; : : : ; K g,  , �, �

1: Declare N to be the smallest integer such that N =
l

36 6

� 2 log K 3N
�

m

2: c�; (n) := 3 2
q

1
n log K 3N

�
3: Output Beat-The-Mean(A, N , 1, c�; )
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authors prove that BTM is an (�; � )-PAC algorithm with sample complexity

O
�

K 6

� 2 log
KN

�

�

where the con�dence interval c�; (n) = 3 2
q

1
n log K 3N

� and N is the smallest

integer such that N =
l

36 6

� 2 log K 3N
�

m
.

2.4.4 Sensitivity Analysis of VAriables for Generic Exploration ( SAVAGE )

Urvoy et al. [2013a] propose a generic algorithm called SAVAGE (for Sensitivity Anal-

ysis of VAriables for Generic Exploration) for stochastic preference-based dueling

bandits. Their setting does away with several assumptions made in the previous al-

gorithms e.g. existence of utility values or a linear order for the arms. In this general

setting, the SAVAGE algorithm obtains a cumulative Condorcet regret bound of order

O(K 2 logT). The key notions they introduce for dueling bandits are the Copeland,

Bordaand Condorcetscores (Charon and Hudry [2010]). The Borda score of an arma

on a preference matrix P is
P K

b=1 Pa;b and its Copeland score is
P K

b=1 1(Pa;b > 1
2 ) (we

use 1 to denote the indicator function). If an arm has a Copeland score of K � 1,

which means that it defeats all the other arms in the long run and it is a Condorcet

winner. There exists however some datasets like MSLR30K [2012] where this Con-

dorcet condition is not satis�ed. It is however possible to de�ne a robust Copeland

regretwhich applies for any preference matrix.

Algorithm 12 SAVAGE

Input: A = f1; : : : ; K g, f , F , T, �
1: W := f1; : : : ; K g; H := F; s := 1
2: 8a 2 W : �̂ a := 1=2and ta := 0
3: while : Accept(f; H; W ) ^ s 6=T do
4: Pick a 2 argminW t1; tK

5: ta := ta + 1
6: Pull the arm a and receive the reward xa

7: �̂ a :=
�

1 � 1
ta

�
�̂ a + 1

ta
xa

8: H := H \ fa j jx a � �̂ aj < c (t a)g
9: W := W n fb j IndepTest(f; H; b)g

10: s := s + 1
11: end while
12: return the single arm in f (H ).
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The algorithm stops exploring an arm when it knows from a sensitivity-analysis

subroutine IndepTest that, given the knowledge of the environment, the �nal de-

cision will not change according to this arm. The termination of the algorithm is

controlled by the predicate:

Accept(f; H; W ) := \ W = ?" = ) j f (H )j = 1

2.4.5 Relative upper con�dence bound ( RUCB)

Zoghi et al. [2014a] consider the stochastic preference-based dueling bandits formu-

lation. They extend the UCB algorithm and propose an algorithm called Relative Up-

per Con�dence Bound(RUCB) provided that the preference matrix admits a Condorcet

winner.

Algorithm 13 RUCB

Input: A = f1; : : : ; K g, � > 1
2 ; T 2 f 1;2; : : :g [ 1

1: B = ? and W = [ wab]  0K �K // wab is the number of times a beat b
2: for t=1, . . . , Tdo

3: U := [ uab] = W
W +W T +

q
� log t

W +W T // all operations are element-wise

4: uaa  1
2 for each a 2 A and C  f a j 8b : uab � 1

2g
5: If C = ?, pick a randomly from A
6: B  B ^ C
7: If jCj = 1, then B  C and a to be the unique arm in C.
8: if jCj > 1 then
9: Sample a from Cusing the distribution:

p(a) =

(
0:5 if a 2 B

1
2jBj jCnBj

otherwise

10: end if
11: b  argmaxc uca, with ties broken randomly. Moreover, if there is a tie, b is

not allowed to be equal to a.
12: Compare a and band increment wab or wba depending on which arm wins.
13: end for
14: return An arm a that beats the most arms, i.e. a with the largest count

#
n

bj wab
wab +w ba

> 1
2

o

RUCB maintains upper con�dence bound on the preference probabilities ff all

possible pairs of arms. It then proceeds in two phases during which it chooses the

two arms to select at the current time period. In the �rst round, an arm which beats

all the other arms according to the optimistic preference estimates is selected as a
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champion. If no such arm exists, a random arm is picked. In the second round,

a normal classical bandit problem is set up using the preference estimates of all the

arms against the champion selected in the �rst phase. The arm which has the highest

preference estimate against the champion is selected as the competitor to the cham-

pion. Both of these arms or selected for a duel and based on which arm wins, the

score sheet storing recording the results is updated which in turn affects the prefer-

ence estimates for the next time period.

This algorithm achieves the upper bound of O(K logT) on the expected cumula-

tive Condorcet regret. Unlike the previous algorithms, RUCB is an anytime dueling

bandits algorithm since it does not require the time horizon T as input.

2.4.6 Relative con�dence sampling ( RCS)

Like RUCB, the relative con�dence sampling( RCS) algorithm proposed by Zoghi et al.

[2014b] deals with the stochastic preference-based dueling bandit formulation. This

algorithm is designed for the task of ranker evaluation on large-scale datasets. RCS

too relies on the presence of a Condorcet winner in the preference matrix.

Algorithm 14 RCS

Input: A = f1; : : : ; K g, � > 1
2

1: W = [ wab]  0K �K // 2D array of wins: wab is the number of times a beat b
2: for t = 1; 2; : : : do
3: Phase I
4: �(t)  1K �K

2
5: for a; b= 1; : : : ; K with a < b do
6: � ab(t) � Beta(W ab + 1; W ba + 1)
7: � ba(t) = 1 � � ab(t)
8: end for
9: Pick c such that � cb(t) � 1=2for all b. If no such arm exists, pick the arm that

has been chosen champion least frequently.
10: Phase II
11: U  W

W +W T +
q

� log t
W +W T // all operations are element-wise and division by

zero is assumed to be zero.
12: U aa  1

2 for each a 2 A
13: d  argmaxb U bc(t)
14: Compare the arms c and d and increment either W cd if c beat d or W dc oth-

erwise.
15: end for

This algorithm works in two phases. In the �rst phase, an arm deemed champion

is elected by ways of a round-robin tournament based on previous arm comparisons.



42 Chapter 2. The Dueling Bandits problem

In the second phase, this champion is compared against a worthy competitor. As

time goes on, the best arm becomes increasingly likely to be the both the champion

and the competitor, thereby causing the regret to fall steeply. A key characteristic of

RCS is the use of sampling to conduct a round-robin tournament in the �rst phase.

It maintains a Beta posterior distribution on Pa;b for every pair of arms a; b. The

samples from these posteriors are used to determine a champion arm c which beats

all the other arms in this tournament. In the second phase, UCB is applied to the the

classical bandit problem with mean rewards fP 1;c; : : : ; PK;c g to select the competitor

d to duel with c.

RCS can be also used for the explore-then-exploit setting: when the horizon is

reached, it picks any arm that has beat the greatest number of other arms at the �nal

count.

2.4.7 Merge relative upper con�dence bound (M ERGERUCB)

Zoghi et al. [2015b] consider the problem of stochastic preference-based dueling ban-

dit problem. This algorithm aims to avoid the quadratic dependence on the number

of arms in the regret bound. For this purpose, they carry arm duels “locally” i.e.

arms are placed in small batches that are processed separately and then merged to-

gether.

The proposed algorithm, (M ERGERUCB), �rst groups the arms into small batches.

Thereafter the algorithm proceeds in stages. During each stage, the arms within the

same batch are compared against each other. The arms to be compared are chosen

based on the upper con�dence bounds on the preference probabilities. The current

stage ends when the number of arms remaining becomes small and then pairs of

batches are merged to form bigger batches. In the next stage, the same process re-

peats until a single arm remains.

M ERGERUCB takes the initial size of each partition p and exploration parameter

� . It also requires a parameter � which is to be interpreted as the maximum probabil-

ity of failure. With probability 1 � � , it achieves the following cumulative Condorcet

regret

CRegret �
8�pK logT + C(� )
mina;b j Pa;b 6=0:5� 2

ab
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Algorithm 15 M ERGERUCB

Input: A = f1; : : : ; K g, the size of each partition p � 4, the maximum probability
of failure � , � > 1

2
1: W = [ wab]  0K �K // 2D array of wins: wab is the number of times a beat b

2: B1 =
n

f1; : : : ; pg
| {z }

B 1

; : : : ; f(b 1 � 1)p + 1; : : : ; K g
| {z }

B b1

o
// a set of disjoint batches of

rankers, with b1 =
j

K
p

k

3: C(� ) =
� �

(4��1) K 2

(2��1) �

� 1
2� �1

�

4: S = 1 // the current stage of the algorithm
5: for t=1,2,. . . do
6: i = t modbS

7: U  W
W +W T +

q
� log t+C (� )

W +W T // all operations are element-wise

8: For any a 2 B i if U ab < 1
2 for any b 2 B i , remove a from B i .

9: Select anyc 2 B i randomly.
10: Setd  argmaxfaja2B i nfcgg U ac

11: Compare the arms c and d and increment either W cd if c beat d or W dc oth-
erwise.

12: if
P

i jB i j � K
2I then

13: Combine pairs of batches of arms so that each new batch has betweenp=2
and 3p=2arms in it, pairing the smallest batches with the largest ones, making
sure that each batch contains at least two arms. Update the setsB i , putting them
all in the set BS, and de�ne bS := jBS j

14: S = S + 1
15: end if
16: end for

where C(� ) =
� �

(4��1) K 2

(2��1)�

� 1
2� �1

�
. By setting � = 1=T , an upper con�dence bound

on the expected cumulative regret can be achieved too. If � � 1, the expected cumu-

lative regret of M ERGERUCB is upper bounded by O(K logT)

2.4.8 Copeland con�dence bound ( CCB)

Zoghi et al. [2015a] consider the stochastic preference-based dueling bandit problem

in which a Condorcet winner might not exist. Instead they propose an algorithm

called Copeland con�dence bound(CCB) which aims to minimize the cumulative regret

with respect to the Copeland winner, which unlike the Condorcet winner, is guaran-

teed to exist.
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Algorithm 16 CCB

Input: A = f1; : : : ; K g, � > 1
2

1: W = [ wab]  0K �K // 2D array of wins: wab is the number of times a beat b
2: B1 = f1; : : : ; K g //potential best arms
3: Ba

1 = ? for each a = 1; : : : ; K //potential to beat the arm i
4: L C = K // estimated max losses of a Copeland winner
5: for t = 1; 2; : : : ; do

6: U := [u ab] = W
W +W T +

q
� log t

W +W T and L := [l ab] = W
W +W T �

q
� log t

W +W T , with

uab = lab = 1
2 ; 8a

7: Cpld(a) = #fb j uab � 1
2 ; b 6=ag and Cpld(a) = #fb j lab � 1

2 ; b 6=ag
8: Ct = fa j Cpld(a) = max b Cpld(b)g
9: SetBt  B t�1 and Ba

t = Ba
t�1 and update as follows:

A. Reset disproven hypotheses: If for any a and b 2 B a
t we have lab > 0:5, reset

Bt , L C and B c
t for all the c.

B. Remove non-Copeland winners: For eacha 2 B t , if Cpld(a) < Cpld(b) holds
for any b, setBt  B t n fag, and if jB a

t j 6=L C + 1 then set Ba
t  fc j uac < 0:5g.

However if Bt = ?, reset Bt ; L C and B c
t for all c.

C. Add Copeland winners: For any a 2 Ct with Cpld(b) = Cpld (a), set Bt  
Bt [ fag, Ba

t  ? and L C  K � 1 � Cpld(a). For each b 6= a, if we have
jB b

t j < L C + 1, set Ba
t  ?, and if jB b

t j < L C + 1, randomly choose L C + 1
elements of B b

t and remove the rest.
10: With probability 1=4, sample (c; d) uniformly from the set f(a; b) j b 2

B a
t and 0:5 2 [lab; uab]g (if it is non-empty) and skip to Line 14.

11: If Bt \ C t 6=?, then with probability 2=3, setCt  B t \ C t .
12: Sample c from Ct uniformly at random.
13: With probability 1=2, choose the setBa to be either Ba

t or f1; : : : ; K g and then
set d  argmaxb2B a j lbc �0:5 ubc. If there is a tie, d is not allowed to be equal to c.

14: Compare the arms c and d and increment wcd or wdc depending on which
arm wins.

15: end for

2.4.9 Contextual dueling bandits

Dudík et al. [2015] consider the problem of stochastic preference-based dueling ban-

dit problem. The two salient features of this article are the introduction of the Von

Neumann winnerand incorporating context in the dueling bandit problem. Instead of

containing the preference probabilities, they modify the preference matrix to contain

the expectations of outcomes5 of duels between all the pair of actions.

 (a; b) =

8
>><

>>:

+1 a wins the duel

�1 bwins the duel

5Here we overload the de�nition of outcome which is slightly different from the previous de�nition
given in equation 2.4 where it can take the value 0 too.
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The authors assume no ties. Of course, (a; b) and preference matrix element Pa;b

are related as follows:

Pa;b =
 (a; b) + 1

2

With this construction of the preference matrix P, a Von Neumann winner is

de�ned as a probability vector w in the simplex vectors in [0;1]K whose entries sum

to 1 such that
KX

a=1

w(a)Pa;b � 0 for all actions b

Like a Condorcet winner, a Van Neumann winner has at least 50%chance of wining

against any other policy. However, unlike a Condorcet winner, a Von Neumann win-

ner is guaranteed to exist provided that the preference matrix P is skew symmetric

which implies that a duel (b; a) is equivalent to the negation of a duel (a; b), as is

natural.

Furthermore in this setting, the learner is allowed to observe a context selected by

the environment. The authors provide two algorithms to compute an approximation

of a Von Neumann winner for the explore-then-exploit version of this problem. The

�rst algorithm, S PARRINGFPL, is based on the Follow-the-Perturbed-Leader (FPL)

algorithm of Kalai and Vempala [2005]. The second algorithm, PROJECTGD, is based

on online projected gradient descent methods of Zinkevich [2003b].

2.4.10 Double Thompson sampling for dueling bandits

Wu and Liu [2016] consider the problem stochastic preference-based dueling bandit

problem and they propose an algorithm called Double Thompson Sampling (D-TS).

D-TS maintains a posterior distribution for the preference matrix, and chooses the

pair of arms at each time period according to the two set of samples drawn indepen-

dently from the posterior distribution. For Copeland dueling bandits, D-TS achieves

the cumulative regret bound of O(K 2 logT).
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Algorithm 17 D-TS for Copeland dueling bandits

Input: A = f1; : : : ; K g, � > 1
2

1: W = [ wab]  0K �K // 2D array of wins: wab is the number of times a beat b
2: for t = 1; : : : ; T do

// PhaseI : Choose the �rst arma(1)

3: U := [u ab] = W
W +W T +

q
� log t

W +W T and L := [l ab] = W
W +W T �

q
� log t

W +W T , with

uab = lab = 1
2 ; 8a // Division by zero is assumed to be zero.

4: UBa  1
K �1

P
b6=a1(u ab > 1=2) // Upper bound on the normalized Copeland

score.
5: C  fa : UBa = max b UBbg
6: for a; b= 1; : : : ; K with a < b do
7: Sample � (1)

ab � Beta(wab + 1; w ba + 1)

8: � (1)
ba  1 � � (1)

ab
9: end for

10: a(1)  argmaxa2C
P

b6=a1(� (1)
ab >1=2)

// Choosing fromC to eliminate likely non-

winner arms with ties broken randomly.
// PhaseII : Choose the second arm.

11: Sample� (2)
ba(1) � Beta(wba(1) +1; w a(1) b+1) for all b 6=a(1) , and let � (2)

a(1) a(1) = 1=2

12: a(2)  argmaxb:l
ba(1) �1=2 � (2)

ba(1) // Choosing only from uncertain pairs

13: Compare the pair (a(1) ; a(2) ) and increment wa(1) a(2) if a(1) wins or otherwise
increment wa(2) ;a(1)

14: end for

2.4.11 SPARRING

Ailon et al. [2014] reduce the stochastic utility-based dueling bandits problem to the

conventional MAB problem. They use the notion of bandit regret. They propose

an algorithm called S PARRING which uses two separate classical bandit algorithms

(CBA), each for one arm, to choose the pair of arms to be played at every time period.

Algorithm 18 SPARRING

Input: A = f1; : : : ; K g
1: LCBA, RCBA  Two classical bandit algorithms over A
2: LCBA.init(), RCBA.init(), t  1
3: while true do
4: at  LCBA.decide(); bt  RCBA.decide()
5: Play (at ; bt ) and observe yt 2 f 0;1g
6: LCBA.set_feedback(1 (y t =0) ); RCBA.set_feedback(1 (y t =1) )
7: t  t + 1
8: end while

Each CBA has three subroutines: init(), decide() and feedback(). The init()

subroutine simply clears its state. The decide() subroutine returns the next arm to

play and the set_feedback() subroutine provides the feedback to the algorithm.



2.4. Related work 47

SPARRING algorithm, although originally designed for stochastic settings, can

work for adversarial setting as well with an algorithm EXP3 used as CBA. It pre-

serves theO(
p

KT ln K ) upper bound of EXP3.

In Table 2.1, we provide a comparative summary of all the algorithms studied in

this chapter.

TABLE 2.1: Summary of dueling bandit algorithms

Algorithm Rewards Formulation Settings
DBGD Stochastic Utility-based Exploration-exploitation
IF Stochastic Preference-based Exploration-exploitation
BTM Stochastic Preference-based PAC & Exploration-exploitation
SAVAGE Stochastic Preference-based Exploration-exploitation
RUCB Stochastic Preference-based Exploration-exploitation
RCS Stochastic Preference-based Exploration-exploitation
M ERGERUCB Stochastic Preference-based Exploration-exploitation
DTS Stochastic Preference-based Exploration-exploitation
CCB Stochastic Preference-based Exploration-exploitation
SPARRING Stochastic Utility-based Exploration-exploitation

With this, we conclude the overview of the related work on dueling bandits. In

the next chapter, we shall see what is the best possible performance any dueling

bandit algorithm can achieve in the exploration-exploitation setting.
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Chapter 3

The Lower Bound

In this short chapter, we shall prove the lower bound on the cumulative regret of

any dueling bandit algorithm in the exploration-exploitation setting.

To provide a lower bound on the regret of any dueling bandits algorithm, we

use a reduction to the classical MAB problem suggested by Ailon et al. [2014]. Algo-

rithm 19 gives an explicit formulation of this reduction by using a generic dueling

bandits algorithm (DBA) as a black-box having the following public sub-routines:

init(), decide() and feedback(). The subroutine init() is used to initialize the al-

gorithm, decide() returns the pair of arms to be pulled at any given time instant and

set f eedback() provides the relative feedback to the algorithm. The classical bandit

environment (CBE) provides get_reward() which returns the reward of the input

arm.

Algorithm 19 Reduction to classical MAB

Input: A = f1; : : : ; K g
1: DBA.init()
2: Sett = 1
3: repeat
4: (at ; bt+1 )  DBA.decide()
5: xat  CBE.get_reward()
6: xbt+1  CBE.get_reward()
7: DBA.set_feedback((a t ; bt+1 ); (xat � xbt+1 ))
8: t = t + 2
9: until t � T

Let us consider that the reward at time t in the dueling bandits setting is the mean

of the individual rewards of the chosen arms at that time. This was de�ned earlier in

equation (2.1). Therefore the reward obtained by algorithm 19 on selection of the pair

(at ; bt+1 ) is
xat + xbt +1

2 . On the other hand, in the classical bandit setting, the reward
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obtained on selection of arm at followed by arm bt+1 is xat + xbt +1 . So clearly the

expected classical-bandit reward of Algorithm 19 will be twice to expected reward

of the black-box dueling bandit algorithm it uses. Consequently, the expected regret

of DBA is of the order of the expected regret in classical bandit setting.

It is important to note that this reduction only works for stochastic settings where

the expected reward of each arm remains the same across time instants because the

rewards are drawn from stationary distributions. According to Theorem 5:1 given

by Auer et al. [2002b, section 5], for K � 2, the expected regret in the classical bandit

setting is 
(
p

KT ) (assuming T is large enough i.e. T �
p

KT ). Since this result is

obtained with a stationary stochastic distribution, by extension, the expected regret

for any dueling bandits setting cannot be less than 
(
p

KT ). Therefore we can have

have a lower bound on the expected regret for dueling bandits as follows:

Theorem 3.1. For any number of actionsK � 2 and large enough time horizonT (i.e.

T �
p

KT ), there exists a distribution over assignments of rewards such that the ex-

pected cumulative regret of any utility-based dueling bandits algorithm cannot be less than


(
p

KT ).

After having the lower bound, the next step for us is to devise an algorithm for

the dueling bandit problem in the exploration-exploitation setting. We provide the

same in the next chapter.
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Chapter 4

The Algorithm and its Analysis

In Section 4.1, we introduce the Relative Exponential-weight Algorithm for Exploration

and Exploitation(REX3). The implementation of the algorithm on a simple toy prob-

lem is illustrated in Section 4.2. Lastly, we prove a �nite-horizon upper bound on

the cumulative regret of REX3 in Section 4.3.

4.1 Relative Exponential-weight Algorithm for Exploration

and Exploitation (REX3)

We propose an algorithm for dueling bandits in the exploration-exploitation set-

ting. The pseudo-code for the algorithm we propose, called Relative Exponential-

weight Algorithm for Exploration and Exploitation (REX3) is given in Algorithm 20.

This algorithm is designed to apply for the adversarial utility-based dueling bandits

problem.

It is similar to the original EXP3 from step 1 to step 6 where it computes a distri-

bution p(t) = (p 1(t); : : : ; p K (t)) which is a mixture of a normalized weighing of the

arms wi =
P

i wi and a uniform distribution 1=K. As in EXP3, this uniform probability

is introduced to ensure a minimum exploration of all arms.

At step 7, the algorithm draws two arms a and bindependently according to p(t).

At step 8, the algorithm gets  (x a� xb) as relative feedback . Note that, since arms are

drawn with replacement, we may have a = b, in which case the algorithm will get no

information. This event is indeed expected to become frequent when the p(t) distri-

bution becomes peaked around the best arms. This necessity for a regret-minimizing

dueling bandits algorithm to renounce getting information when con�dent about its
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Algorithm 20 REX3

Input: A = f1; : : : ; K g
Parameters:  2 (0; 1]

1: Initialization: wi (1) = 1 for i = 1; : : : ; K .
2: for t = 1; 2; : : : do
3: for i = 1; : : : ; K do
4: Setpi (t)  (1 �  ) wi (t)P K

j =1 wj (t)
+ 

K

5: end for
6: Pull two arms a and b chosen independently according to the distribution

(p1(t); : : : ; p K (t)).
7: Receive relative feedback (x a � xb) 2 [�1; +1]
8: if a 6=bthen

9: Setwa(t + 1)  wa(t) � e

K

 ( x a �x b)
2p a

10: Setwb(t + 1)  wb(t) � e
� 

K
 ( x a �x b)

2p b

11: end if
12: Update (for anytime version)
13: end for

decision is a structural bias toward exploitation that is not encountered in classical

bandits.

Step 8 is the big difference from EXP3; because we only have access to the relative

 (x a � xb) value, we have no mean to estimate the individual rewards xa or xb. There

is however a solution to circumvent this problem: the best arm in expectation at time

t is not only the one which maximizes the absolute reward. It is indeed the one which

maximizes the regret of any �xed strategy � (t) against it:

argmax
i

x i (t) = argmax
i

�
x i (t) � Ea�� (t) xa

�
:

This reference strategy could be a single-arm or uniform strategy but playing a sub-

optimal strategy to get a reference has a cost in terms of regret. One of our contribu-

tions is to show that the algorithm may use its own strategy as a reference.

At step 9, the condition a 6=b is only a slight improvement for preference-based

dueling bandits where the outcome of a duel of an arm against itself is randomized

as in Eq. (2.5).

At steps 10 and 11, the weights of the played arms are updated. This update

process is the core of our algorithm, it will be detailed in Section 4.3.

Step 13 is only required for the anytime version of the algorithm. It will be ex-

plained in Section 5.2.
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4.2 Illustration of REX3 on a toy problem

To understand the working of this algorithm, let us see how it performs on a 4-armed

dueling bandit problem with the �rst arm being optimal. Let us assume  = 0:4 and

 to be an identity function. Initially, the weights assigned for all the arms are all

equal to 1, as shown in �gure 4.1. Therefore at time instant t = 1, the probability of

any of the fours arms being selected is the same i.e.

p1(1) = p2(1) = p3(1) = p4(1) = 0:25

FIGURE 4.1: REX3: weights at t = 1

Let the arms being picked by the algorithm at time instant t = 1 be 1 and 2, hence

a = 1 and b = 1

Depending upon the rewards of these arms, either the �rst arm or the second one

wins this duel. Let the reward set by the adversary for arm 1 be greater than that of 2

i.e. xa > x b. Since we are dealing with binary rewards, that translates to xa � xb = 1.

Let us now see how REX3 computes the weights for all the arms at t = 2. The weights

of the arms not selected by the algorithm during the previous time period remain the

same, hence

w3(2) = w3(1) = 1

w4(2) = w4(1) = 1
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The weights of the arms selected at t = 1 , however, are computed using the update

rule as follows:

w1(2)  w1(1) � e
0:4
4

1
0:5 � 1:22

w2(2)  w2(1) � e
0:4
4

�1
0:5 � 0:82

These weights are depicted in a bar chart in �gure 4.2

FIGURE 4.2: REX3: weights at t = 2

Using these weights, the logarithm computes the distribution pt as follows:

p1(2)  (1 � 0:4)
1:22
4:04

+
0:4
4

� 0:28

p2(2)  (1 � 0:4)
0:82
4:04

+
0:4
4

� 0:22

p3(2)  (1 � 0:4)
1

4:04
+

0:4
4

� 0:25

p4(2)  (1 � 0:4)
1

4:04
+

0:4
4

� 0:25

Hence arm 1 winning the duel results in its probability of being selected during the

next time period being increased while on the other hand, the probability of arm 2

being selected during the next time period is reduced because it lost the duel. The

algorithms then proceeds to draw a and b according to p(2). Let a = 1 and b = 3.

Assume that 1 wins this duel too because the adversary has set the reward for the

�rst arm higher than that of third arm during t = 2. Therefore xa � xb = 1. The

algorithm then computes the weights for each of the fours arms. The weights of the
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arms not selected att = 2 are not affected, hence

w2(3) = w2(2) = 0 :82

w4(3) = w4(2) = 1

The weights of 1 and 3 are computed as follows:

w1(3)  w1(2) � e
0:4
4

1
0:56 � 1:45

w3(3)  w3(2) � e
0:4
4

�1
0:5 � 0:82

These weights are shown in the form of a bar chart in �gure 4.3

FIGURE 4.3: REX3: weights at t = 3

So we see how the algorithm increases the weight of an arm which wins the duel

and correspondingly also decreases the weight of an arm which loses the duel. The

better arms are likely to win more duels than the worse arms and hence the weights

corresponding to the former are progressively increased by the algorithm after each

duel. This results in higher weights for the better arms. Higher the weight, better is

the probability of the corresponding arm being selected by the algorithm and hence

the algorithm selects better arms with higher and higher probability as they establish

their performance superiority over the worse arms.

4.3 Upper bound on the regret of REX3

In this section, we provide a �nite-horizon upper bound on the expected regret of

REX3. For the analysis, we focus on the simple case where is the identity. It
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provides a ternary win/tie/lossfeedback if we assume binary rewards as follows:

 (x a; xb) =

8
>>>>>><

>>>>>>:

1 if xa = 1 ^ xb = 0

0 if xa = xb = 0 _ xa = xb = 1

�1 if xa = 0 ^ xb = 1

The main difference between EXP3 and our algorithm is at steps 10 and 11 of

Algorithm 20, where we update the weights according to the duel outcome: the

winning arm is grati�ed while the loser is penalized. This `punitive' approach of ex-

ponential weighing departs from EXP3 and other weighing algorithms which grat-

ify the most rewarding arms while kindly ignoring the non-rewarding ones (Freund

and Schapire [1999b],Cesa-Bianchi and Lugosi [2006]).

The steps 10-11 on Algorithm 20 are equivalent to operating for each arm i an

update of the form:

wi (t + 1) = wi (t) � e

K ĉi (t)

where

ĉi (t) = 1(i=a)
 (x a � xb)

2pa
+ 1(i=b)

 (x b � xa)
2pb

(4.1)

One big difference with EXP3 is that ĉi (t) is not an estimator of the reward x i (t). We

instead have:

Lemma 4.1.

E [ĉi (t)j(a 1; b1); ::; (at�1 ; bt�1 )] = Ea�p(t)  (x i (t) � xa(t))

Proof.

ĉi (t) = 1(i=a t )
 (x at � xbt )

2pat (t)
+ 1(i=b t )

 (x bt � xat )
2pbt (t)

E(a;b)�p(t) ĉi (t) =
KX

j =1

KX

k=1

pj (t)p k (t)
�

1(i=j )
 (x j � xk )

2pj
+ 1(i=k )

 (x k � x j )
2pk

�

=
KX

j =1

KX

k=1

pj pk1(i=j )
 (x j � xk )

2pj
+

KX

j =1

KX

k=1

pj pk1(i=k )
 (x k � x j )

2pk
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=
1
2

KX

k=1

pk  (x i � xk ) +
1
2

KX

j =1

pj  (x i � x j )

= Ea�p  (x i � xa)

If  is identity, it simpli�es into:

E(a;b)�p(t) ĉi (t) = x i � Ea�p(t) xa

If  is the identity then Eĉi (t) = x i (t) � Ea�p(t) xa(t) in which case we estimate

the expected instantaneous regret of the algorithm against arm i . If we rather take

 (x) = 1(x>0) , then Eĉi (t) = Pa�p(t) (x i (t) > x a(t)), i.e. the probability for the algo-

rithm to select an arm defeated by i .

Let Gmax = max i
P T

t=1 x i (t) be the best single-arm gain, and let Galg = 1
2

P T
t=1 xa(t)+

xb(t) be the gain of the algorithm. Let EGunif = 1
K

P T
t=1

P K
i=1 x i (t) be the average

value of the game (i.e. the expected gain of the uniform sampling strategy).

Theorem 4.1. If the transfer function is the identity and 2 (0; 1
2), then,

Gmax � E(G alg ) �
K


ln(K ) + �

where� = e � EGalg � (4� e) � EGunif .

Proof sketch:The general structure of the proof is similar to the one of [Auer et al.,

2002b, section 3], but, as explained before, thêci (t) estimator we use differs from the

one of EXP3 because it gives an instantaneous regret estimate instead of an absolute

reward estimate. As such, it may reach negative values and the wi (t) weights may

decrease with time. We only give here a sketch of proof, stressing on the differences

from Auer et al. [2002b]. The complete step-by-step proof is deferred til Appendix A.

Let Wt = w1(t) + w2(t) + � � � + wK (t). As in EXP3 proof we consider:

Wt+1

Wt
=

KX

i=1

pi (t) � =K
1 � 

e(=K )ĉi (t)
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The inequality ex � 1 + x + (e � 2)x2 is tight for x 2 [0;1] but it remains valid for

negative values, hence:

Wt+1

Wt
� 1 �

 2=K
1 � 

0

B
B
B
B
@

1
K

KX

i=1

ĉi (t)

| {z }
=�M 1

1

C
C
C
C
A

+
(e � 2) 2=K

1 � 

0

B
B
B
B
@

1
K

KX

i=1

pi (t) ĉi (t) 2

| {z }
=M 2

1

C
C
C
C
A

As in EXP3 we take the logarithm and sum over t. We get for any j :

TX

t=1


K

ĉj (t) � ln(K ) �
 2=K
1 � 

M 1 +
(e � 2) 2=K

1 � 
M 2

By taking the expectation over the algorithm's randomization, we obtain for any j :

TX

t=1


K

E �p ĉj (t)
| {z }

(4.3)

� ln(K ) �
 2=K
1 � 

TX

i=t

E �p M 1| {z }
(4.4)

+
(e � 2) 2=K

1 � 

TX

i=t

E �p M 2| {z }
(4.5)

(4.2)

From Lemma 4.1 we directly get the expected regret against j on the left side of the

inequality:

E �p ĉj (t) = x j � E �p (x a) (4.3)

By averaging (4.3) over the arms, we obtain:

E �p(t) M 1 = �
1
K

KX

i=1

E �p ĉi (t) = E(x a) �
1
K

KX

i=1

x i (4.4)

The following result too is detailed in Appendix A:

E �p(t) M 2 �
1
2

E(x a) +
1

2K

KX

i=1

x i (4.5)

From Lemma 4.1, Equation (4.4) and Inequality (4.5), and by de�nition of Gmax ,

EGalg , and EGunif , the Inequality (4.2) rewrites into:

Gmax � EGalg �
K ln K


�


1 � 

(EG alg � EGunif ) +
(e� 2)
2(1 �  )

(EG alg + EGunif )
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Assuming  � 1
2 , we �nally obtain:

Gmax � EGalg �
K ln K


+  (eEGalg � (4� e)EGunif )

Provided that EGalg � Gmax and EGunif � Gmin , where Gmin = min i
P T

t=1 x i (t)

is the gain of the worst single-arm strategy, we can simplify the bound into:

Corollary 4.1. Gmax � EGalg � K ln K
 +  (eGmax � (4� e)Gmin )

As in [Auer et al., 2002b, section 3], since K
 ln(K ) + � is convex, we can obtain the

optimal  on (0; 1
2):

 � = min

(
1
2

;

r
K ln(K )

�

)

(4.6)

Substituting  in Corollary 4.1 with its optimal value from eq. (4.6) we obtain:

Gmax � E(G alg ) � 2
p

K ln(K ) [eGmax � (4� e)Gmin ]

Hence,

Corollary 4.2. When = min
�

1
2 ;

q
K ln(K )

�

�
, the expected regret ofREX3(Algorithm 20)

is O
� p

K ln(K )T
�

.

The upper bound of REX3 for adversarial utility-based dueling bandits is hence

the same as the one ofEXP3 for classical adversarial MAB s. This is remarkable as the

relative feedback in the dueling bandits can be considered as a more restrictive since

relative feedback For a high-number of arms or a short term horizon, this bound is

competitive against the O (K ln(T )) or O
�
K 2 ln(T )

�
existing bounds for stochastic

dueling bandits.

This corollary brings us to the end of this chapter. In the next chapter, we shall

see how the empirical performance of REX3 on real datasets compares against the

state of the art algorithms.
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Chapter 5

Empirical Evaluation

In the �rst part of this chapter, given in Section 5.1, we provide the experimental

results to verify Corollary 4.1. In the second part of this chapter, given in Section 5.2,

we compare the performance of REX3 to the state of the art algorithms which were

introduced in Section 2.4.

To evaluate REX3 and other dueling bandits algorithms, we have applied them

to the online comparison of rankers for search engines by interleaved �lteringRadlin-

ski and Joachims [2007]. A search-engine ranker is a function that orders a collection

of documents according to their relevancy to a given user search query. By inter-

leaving the output of two rankers and tracking on which ranker's output the user

did click, we are able to get an unbiased feedback about the relative quality of these

two rankers. Given K rankers, the problem of �nding the best ranker is indeed a

K-armed dueling bandits.

In order to obtain reproducible and comparable results, we adopted the stochas-

tic preference-based experiment setup already employed by Yue and Joachims[2011],

Zoghi et al. [2014a,c,2015c] with both the cumulative Condorcet regret as de�ned by

Yue et al. [2012],Urvoy et al. [2013a] and theaccuracyi.e. the best arm selection-rate

over the runs.

This experimental setup uses real search engines' logs to build empirical pref-

erence matrices. We used several preference matrices issued from namely:ARXIV

dataset (Yue and Joachims[2011]), LETOR NP2004 dataset (Liu et al. [2007]), and

MSLR30K dataset(MSLR30K [2012]). The last dataset distinguishes three kinds of

queries: informational, navigational and perfect-hit navigational. These matrices

are courtesy the authors of Zoghi et al. [2014c]. The preference matrices we used
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TABLE 5.1: The preference matrices used for experiments

Dataset � Condorcet =Borda?
ARXIV 2011 6 yes yes
LETOR NP2004 16 yes yes
LETOR NP2004 32 yes yes
LETOR NP2004 64 yes yes
MSLR INF. 136 no -
MSLR N AV. 136 yes yes
MSLR PERF. 136 yes yes
SAVAGE (arti�cial) 6 yes yes
SAVAGE (arti�cial) 30 yes yes
BVS (arti�cial) 20 yes no

and their properties are summarized in Table 5.1.

5.1 Empirical validation of Corollary 4.1

We have usedLETOR NP2004 andMSLR30K datasets (resricted to 64 rankers) to com-

pare the average Condorcet regret of ��� runs of REX3 with � � �� � to the corre-

sponding halved 1 theoretical bounds from Corollary 4.1 for various values of � . The

results of this experiment are summarized in Figure 5.1. The colored areas around

the curves in all the subsequent �gures show the minimal and maximal values over

the runs.
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Random on NP2004
Random on MSLR Inf. (K=64)
Random on MSLR Nav. (K=64)
Rex3 on NP2004
Rex3 on MSLR Inf (K=64)
Rex3 on MSLR Nav. (K=64)
(K ln (K )=(2 ) +  � e � T=2) =2
(K ln (K )=(2 ) +  � e � T=4) =2

FIGURE 5.1: Empirical validation of Corollary 4.1.

1 As mentioned in Section 2.4.3, the utility-based bandit regret is indeed twice the Condorcet regret.
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We plotted two theoretical curves: one with a conservative Gmax = T=2, and a

riskier one with Gmax = T=4. This experiment illustrates the dual impact of the 

parameter on the exploration/exploitation tradeoff: a low value reduces both the

exploration and the reactivity of the algorithm to unexpected feedbacks and a high

value tends to uniformize exploration while increasing reactivity. It also shows that

the theoretical optimal  � we obtain with Equation (4.6) is a good guess even with a

conservative upper-bound for Gmax .

5.2 Interleave �ltering experiments

For our experiments we have considered the following state of the art algorithms:

BTM by Yue and Joachims[2011] (section 2.4.3) with  = 1 :1 and � = 1=T (explore-

then-exploit setting), Condorcet- SAVAGE by Urvoy et al. [2013a] (section 2.4.4) with

� = 1=T, RUCB by Zoghi et al. [2014a] (section 2.4.5) with� = 0:51, and SPARRING

coupled with EXP3 by Ailon et al. [2014] (section 2.4.11). We also took the uniform

sampling strategy R ANDOM as a baseline. We considered three versions of REX3

two non-anytime versions where the optimal  � is computed beforehand according

to (4.6) with Gmax set respectively to T=2 and T=10 and one anytime version where

 � is recomputed at each time step according to Eq. (4.6) [seeSeldin et al., 2012, for

details about this form of “doubling trick”].

A point which makes the comparison dif�cult is that some algorithms are any-

time while others require the horizon as input. For anytime algorithms, namely

RANDOM , RUCB and REX3 with adaptive  , we displayed the average over 100 runs

of the progressive accumulation of regret while for non-anytime algorithms, namely

BTM, CSAVAGE, SPARRING and other versions of REX3 we displayed the average

over 50 runs of the �nal cumulative regret for several �xed and known horizons.

This protocol is slightly favorable to non-anytime algorithms which bene�t from

more information. However, for elimination algorithms like BTM and CSAVAGE the

difference between the anytime regret and the non-anytime regret is small. For ad-

versarial algorithms like S PARRING and REX3 the “doubling trick" can be applied

to make them anytime: the adaptive  version of REX3 is an example of such a

�xed-to-anytime transformation.



64 Chapter 5. Empirical Evaluation

The results of these experiments are summarized in Figure 5.2 and 5.3. On regret

plots, both time and regret scales are logarithmic (
�

� hence appears as���).
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FIGURE 5.2: Regret and accuracy plots averaged over 100 runs (50
runs for �xed-horizon algorithms) respectively on ARXIV dataset (�

rankers) and LETOR NP2004 dataset (�� rankers).
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FIGURE 5.3: On the left: average regret and accuracy plots on
MSLR30K with navigational queries (� � ��� rankers). On the right:
same dataset, average regrets for a �xed � � �� � and � varying from

� to ���.

As expected, the adversarial-setting algorithms SPARRING and REX3 follow an

� �
�

� � regret curve while the stochastic-setting algorithms follow an � ��� � � curve.

Among the adversarial-setting algorithms, REX3 is shown to outperform S PARRING

on all datasets. In the long run, adversarial-setting algorithms continue exploring
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and cannot compete in terms of regret against stochastic-setting algorithms, but the

accuracy curves show that the cost of this exploration is very small. Moreover, for

small horizons or high number of rankers, REX3 is extremely competitive against

other algorithms. This difference is clearly illustrated on the left-hand side of Fig-

ure 5.3 where we show the evolution of the expected cumulative regret at a �xed

time horizon (T = 105) according to the number of arms. To obtain this plot we

averaged the regret over 50 runs. For eachK and each run we sampled uniformly

K dimensions of the original 136� 136MSLR30K navigational preference matrix.

Figure 5.4 gives results for smaller number of rankers on NP2004 dataset. We

give the anytime runs for BTM and SAVAGE too with a conservative � = 10 �8 . Fig-

ure 5.5 gives results for the experiments on MSLR30K dataset. There is no Condorcet

winner on the left-hand-side informational queries matrix (we took a Copeland win-

ner as a placeholder but the regret is negative for some arms).

On Figure 5.6, we added an experiment we made with Sparring coupled with

UCB. We also considered two arti�cial matrices: SAVAGE and BVS. The30� 30SAVAGE

matrix, de�ned by Pi;j = 1
2 + j=(2K ) for i < j as described in Urvoy et al. [2013a].

The 20� 20 BVS matrix is de�ned by: P1;j = 0:51 for any j > 1 and Pi;j = 1 for

any 1 < i < j . Its Condorcet winner has a low Borda score (9:69 against 18:49for

the Borda winner) which makes it dif�cult for algorithms to �nd the real Condorcet

winner. These experiments results are summarized in Figure 5.7.

We conclude these experiments by a non-stationary utility-based dueling ban-

dit simulation where the expected reward gap �(t) between the best arm and the

others is set in order to deceive stochastic algorithms (see Figure 5.8). The rewards

are taken from Bernoulli distributions. The best arm has a time-dependent expected

reward equal to 1=2 + �(t) with �(t) =
p

K � log(t)=t. The others arms' rewards

are stationary with a mean of 1=2. The gap function �(t) has been chosen to de-

ceive stochastic algorithms: O
�

K �log(T )
�(T )

�
� O

� p
KT � log(T)

�
. To ease reading we

provide the same plot with logarithmic scale on the left and linear scale on the right.
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