Towards assimilation of deformation measurements in volcanology

Abstract : Tracking magma emplacement at shallow depth as well as its migration towards the Earth's surface is crucial to forecast volcanic eruptions.With the recent advances in Interferometric Synthetic Aperture Radar (InSAR) imaging and the increasing number of continuous Global Navigation Satellite System (GNSS) networks recorded on volcanoes, it is now possible to provide continuous and spatially extensive evolution of surface displacements during inter-eruptive periods. For basaltic volcanoes, these measurements combined with simple dynamical models can be exploited to characterise and to constrain magma pressure building within one or several magma reservoirs, allowing better predictive information on the emplacement of magma at shallow depths. Data assimilation—a sequential time-forward process that best combines models and observations, sometimes a priori information based on error statistics, to predict the state of a dynamical system—has recently gained popularity in various fields of geoscience (e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this dissertation, I present the very first application of data assimilation in volcanology from synthetic tests to analyzing real geodetic data.The first part of this work focuses on the development of strategies in order to test the applicability and to assess the potential of data assimilation, in particular, the Ensemble Kalman Filter (EnKF) using a simple two-chamber dynamical model (Reverso2014) and artificial geodetic data. Synthetic tests are performed in order to address the following: 1) track the magma pressure evolution at depth and reconstruct the synthetic ground surface displacements as well as estimate non-evolving uncertain model parameters, 2) properly assimilate GNSS and InSAR data, 3) highlight the strengths and weaknesses of EnKF in comparison with a Bayesian-based inversion technique (e.g. Markov Chain Monte Carlo). Results show that EnKF works well with the synthetic cases and there is a great potential in utilising data assimilation for real-time monitoring of volcanic unrest.The second part is focused on applying the strategy that we developed through synthetic tests in order to forecast the rupture of a magma chamber in real time. We basically explored the 2004-2011 inter-eruptive dataset at Grímsvötn volcano in Iceland. Here, we introduced the concept of “eruption zones” based on the evaluation of the probability of eruption at each time step estimated as the percentage of model ensembles that exceeded their failure overpressure values initially assigned following a given distribution. Our results show that when 25 +/- 1% of the model ensembles exceeded the failure overpressure, an actual eruption is imminent. Furthermore, in this chapter, we also extend the previous synthetic tests by further enhancing the EnKF strategy of assimilating geodetic data in order to adapt to real world problems such as, the limited amount of geodetic data available to monitor ice-covered active volcanoes. Common diagnostic tools in data assimilation are presented.Finally, I demonstrate that in addition to the interest of predicting volcanic eruptions, sequential assimilation of geodetic data on the basis of EnKF shows a unique potential to give insights into volcanic system roots. Using the two-reservoir dynamical model for Grímsvötn 's plumbing system and assuming a fixed geometry and constant magma properties, we retrieve the temporal evolution of the basal magma inflow beneath Grímsvötn that drops up to 85% during the 10 months preceding the initiation of the Bárdarbunga rifting event. The loss of at least 0.016 km3 in the magma supply of Grímsvötn is interpreted as a consequence of magma accumulation beneath Bárdarbunga and subsequent feeding of the Holuhraun eruption 41 km away.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01882443
Contributor : Abes Star <>
Submitted on : Monday, October 1, 2018 - 4:13:10 PM
Last modification on : Friday, April 5, 2019 - 8:21:11 PM
Long-term archiving on : Wednesday, January 2, 2019 - 2:34:09 PM

File

BATO_2018_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01882443, version 2

Collections

Citation

Mary Grace Bato. Towards assimilation of deformation measurements in volcanology. Volcanology. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAU018⟩. ⟨tel-01882443v2⟩

Share

Metrics

Record views

335

Files downloads

44