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Résumé

Le suivi de la mise en place du magma a faible profondeur et de sa migration vers la
surface est crucial pour prévoir les éruptions volcaniques. Or, la prédiction des éruptions
est sans doute I'un des domaines les plus difficiles en volcanologie, non seulement a cause
du comportement non linéaire complexe et de I'imprévisibilité intrinseque des volcans,
mais aussi a cause de notre manque d’observation directe de ce qui se passe sous la surface.
Pourtant la nécessité de fournir des prédictions précises est fondamentale, en particulier
pour les agences de protection civile afin d’évaluer correctement 1’aléa et de diminuer les
risques.

Avec les progres récents de I'imagerie SAR (Synthetic Aperture Radar) et le nombre
croissant de réseaux GNSS (Global Navigation Satellite System) continus sur les volcans,
il est maintenant possible de fournir une évolution continue et spatialement étendue des
déplacements de surface pendant les périodes inter-éruptives. Pour les volcans basaltiques,
ces mesures combinées a des modeles dynamiques simples peuvent étre exploitées pour
caractériser et contraindre la mise en pression d’un ou de plusieurs réservoirs magma-
tiques, ce qui fournit une meilleure information prédictive sur 'emplacement du magma
a faible profondeur. L’assimilation de données—un processus séquentiel qui combine
au mieux les modeles et les observations, en utilisant parfois une information a priori
basée sur les statistiques des erreurs, pour prédire I'état d’un systeme dynamique—a
récemment gagné en popularité dans divers domaines des géosciences (par exemple, les
prédictions océan-météo, le géomagnétisme et 'exploration des ressources naturelles).
Dans cette these, je présente la toute premiere application de I'assimilation de données en
volcanologie en allant des tests synthétiques a 'utilisation de données géodésiques réelles.

La premiere partie de ce travail se concentre sur le développement de stratégies afin
d’évaluer le potentiel de 'assimilation de données. En particulier, le filtre de Kalman
d’Ensemble (EnKF) a été utilisé avec un modele dynamique simple a deux chambres
(Reverso et al|[2014]) et de données géodésiques synthétiques pour aborder les points
suivants : 1) suivi de I’évolution de la pression magmatique en profondeur et des dé-
placements de surface et estimation des parametres statiques incertains du modele, 2)
assimilation des données GNSS et InSAR, 3) mise en évidence des avantages ou des
inconvénients de 'EnKF par rapport a une technique d’inversion bayésienne (par exemple,
la méthode de Monte Carlo par chaine de Markov). Les résultats montrent que 'EnKF



fonctionne de maniere satisfaisante et que ’assimilation de données semble prometteuse
pour la surveillance en temps réel des volcans.

La deuxieme partie de la these est dédiée a 'application de la stratégie mise au point
précédemment a l'exploitation des données GPS inter-éruptives enregistrées de 2004 a
2011 au volcan Grimsvotn en Islande, afin de tester notre capacité a prédire la rupture
d’une chambre magmatique en temps réel. Nous avons introduit ici le concept de “niveau
critique” basé sur ’estimation de la probabilité d’une éruption a chaque pas de temps.
Cette probabilité est définie a partir de la proportion d’ensembles de modeles qui dé-
passent un seuil critique, initialement assigné selon une distribution donnée. Nos résultats
montrent que lorsque 2541 % des ensembles du modele ont dépassé la surpression critique
une éruption est imminente. De plus, dans ce chapitre, nous élargissons également les
tests synthétiques précédents en améliorant la stratégie EnKF d’assimilation des données
géodésiques pour 'adapter a I'utilisation de données réelles en nombre limité. Les outils
de diagnostiques couramment utilisés en assimilation de données sont mis en oeuvre et
présentés.

Enfin, je démontre qu’en plus de son intérét pour prédire les éruptions volcaniques,
I’assimilation séquentielle de données géodésiques basée sur 'utilisation de 'EnKF présente
un potentiel unique pour apporter une information sur I’alimentation profonde du systeme
volcanique. En utilisant le modele dynamique a deux réservoirs pour le systeme de
plomberie de Grimsvotn” et en supposant une géométrie fixe et des propriétés magmatiques
invariantes, nous mettons en évidence que 'apport basal en magma sous Grimsvétn”
diminue de 85 % au cours des 10 mois précédant le début de I’événement de rifting
de Bardarbunga. La perte d’au moins 0.016 km?® dans I’approvisionnement en magma
de Grimsvotn” est interprétée comme une conséquence de ’accumulation de magma
sous Bardarbunga et de ’alimentation consécutive de I’éruption Holuhraun a 41 km de
distance.
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Abstract

Tracking magma emplacement at shallow depth as well as its migration towards the
Earth’s surface is crucial to forecast volcanic eruptions. Indeed, eruption forecasting is
perhaps one of the most challenging field in volcanology, not only because of the complex
nonlinear behavior and intrinsic unpredicitability of volcanoes but also because of our
lack of direct observation on what is exactly happening underground. Yet, the need
to provide accurate forecast is certainly fundamental especially for the civil protection
agencies to mitigate risks and properly assess hazards.

With the recent advances in Interferometric Synthetic Aperture Radar (InSAR) imag-
ing and the increasing number of continuous Global Navigation Satellite System (GNSS)
networks recorded on volcanoes, it is now possible to provide continuous and spatially
extensive evolution of surface displacements during inter-eruptive periods. For basaltic
volcanoes, these measurements combined with simple dynamical models can be exploited
to characterise and to constrain magma pressure building within one or several magma
reservoirs, allowing better predictive information on the emplacement of magma at shallow
depths. Data assimilation—a sequential time-forward process that best combines models
and observations, sometimes a priori information based on error statistics, to predict the
state of a dynamical system—has recently gained popularity in various fields of geosciences
(e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this
dissertation, I present the very first application of data assimilation in volcanology from
synthetic tests to analyzing real geodetic data.

The first part of this work focuses on the development of strategies in order to test the
applicability and to assess the potential of data assimilation, in particular, the Ensemble
Kalman Filter (EnKF) using a simple two-chamber dynamical model (Reverso et al.
[2014]) and artificial geodetic data. Synthetic tests are performed in order to address the
following: 1) track the magma pressure evolution at depth and reconstruct the synthetic
ground surface displacements as well as estimate non-evolving uncertain model parameters,
2) properly assimilate GNSS and InSAR data, 3) highlight the strengths and weaknesses
of EnKF in comparison with a Bayesian-based inversion technique (e.g. Markov Chain
Monte Carlo). Results show that EnKF works well with the synthetic cases and there
is a great potential in utilising data assimilation for real-time monitoring of volcanic unrest.



The second part is focused on applying the strategy that we developed through syn-
thetic tests in order to forecast the rupture of a magma chamber in real time. We basically
explored the 2004-2011 inter-eruptive dataset at Grimsvotn volcano in Iceland. Here, we
introduced the concept of “eruption zones” based on the evaluation of the probability of
eruption at each time step estimated as the percentage of model ensembles that exceeded
their failure overpressure values initially assigned following a given distribution. Our
results show that when 2541 % of the model ensembles exceeded the failure overpressure,
an actual eruption is imminent. Furthermore, in this chapter, we also extend the previous
synthetic tests by further enhancing the EnKF strategy of assimilating geodetic data
in order to adapt to real world problems such as, the limited amount of geodetic data
available to monitor ice-covered active volcanoes. Common diagnostic tools in data
assimilation are presented.

Finally, I demonstrate that in addition to the interest of predicting volcanic erup-
tions, sequential assimilation of geodetic data on the basis of EnKF shows a unique
potential to give insights into volcanic system roots. Using the two-reservoir dynamical
model for Grimsvotn ’s plumbing system and assuming a fixed geometry and constant
magma properties, we retrieve the temporal evolution of the basal magma inflow beneath
Grimsvotn that drops up to 85 % during the 10 months preceding the initiation of
the Bardarbunga rifting event. The loss of at least 0.016 km? in the magma supply of
Grimsvotn is interpreted as a consequence of magma accumulation beneath Bardarbunga
and subsequent feeding of the Holuhraun eruption 41 km away.
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Influence of the spatial density of observations on the assimi-

lation: GNSS (10 observations that are assimilated every time-step,
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time-step, fo, = 1, with distance to the volcanic center ranging from 1 to
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beginning of the assimilation. The light blue and red shades correspond to

the spreads (1o). Note that for the overpressures, the spreads are difficult

to discern since they are very small when compared to the scale of the plot.
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GNSS (10 observations that are assimilated every time step, fos = 1, with

distance to the volcanic center ranging from 1 to 5 km) vs. InSAR-like
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their spread (1o). Note that these values are difficult to discern since they
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lines represent the true values. | . . . . . . . ... ... ...

B12

The estimated overpressures (A) and uncertain parameters (B) after jointly

assimilating GNSS (10 observations that are assimilated every time-step,

fors = 1, with distance to the volcanic center ranging from 1 to 5 km) and
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5v/2 km). The initial conditions of the uncertain parameters are similar to

those of in Figure|3.5C. The inset in A) provides a magnified view of the
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A) The locations of the 242 observations (i.e. 121 radial and 121 vertical

points) in gray dots and their corresponding displacement values at t =

10. The observations are assimilated every time-step such that f,, = 1.

Note that the x and y axis are in kilometers. The EnKF-estimated

B) overpressures and C) uncertain parameters after performing state-

parameter estimation using the observations in A). We used a biased prior

distribution for the uncertain parameters like in Figure [3.5C or Figure

[3.7C. Note that the pink shades represent the spread (1) of the estimation.

The true values are the black broken lmmes. 1. . . . . . . . . . . . . . ...
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Comparison between the EnKF-predicted and MCMC-predicted A) over-

pressures and C) uncertain model parameters given the prior distributions

of ag and Qin in B). For the two techniques, we used 80 synthetic observa-
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light blue and pink shades represent the spread (lo) of the estimation.
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(A) Landsat TM map of Iceland in RGB colors showing the outlines of

the volcanic zones with emphasis on the Grimsvotn volcanic system. The

1mage 1S based on the mosaicked data from the National Land Survey

of Iceland (Landmaelingar Islands [1995]).(B) The caldera of Grimsvitn

volcano with the location of its past eruptions (e.g. 1934, 1983, 1998,

2004 and 2011). The red line and brown outline mark the 2011 fissure

eruption and the melted part of the glacier as a result of the eruption,

respectively. The colored data points are the North and East components

of the horizontal displacement measured from GFUM station indicating

the evolution of the displacements from the day of the eruption (e.g. 0h00O

UTC of 21 May 2011); from Hreinsdottir et al[[2014]]. . . . . . . . . .. 154
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The GPS time series of GEUM station from 21 Nov 2004 to 21 May 2011.

The actual data are in blue points. The red broken lines mark the onsets of

the 01 Nov 2004 and 21 May 2011 eruptions. The horizontal black broken

line 1s the zero-displacement reference. The shaded green area covers

the time window of the inversion (see Step 1: MCMC of Section [4.3.2]).

The NS and EW components are corrected for tectonic trend whereas the

vertical component (UD) is not corrected for GIA or seasonal effects. | . .
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Posterior probability density functions (PDF) of the uncertain model

parameters after performing MCMC inversion using only the initial part of

the 2004-2011 inter-eruptive dataset. The marginal PDF for each uncertain

parameter 1s shown in the diagonal histogram plots. The green vertical

lines with numbers indicate the best-fit values ot the parameters. The off-

diagonal contour plots are the joint kernel-density estimate between pairs

of parameters with their corresponding Pearson correlation coeflicients. A

p-value close to =1 1mplies strong correlation between the parameters. | .
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Data fit (green) for the radial and vertical displacement using the MCMC-

derived best-fit values of the uncertain model parameters and re-defined

();, distribution. The actual data are represented by black solid lines. Note

that the vertical component is not corrected either for GIA or seasonal

effects. The radial component is corrected for tectonic trend. | . . . . . .

A5

Data-fits and ();,, estimates. (A) The entire 2004-2011 inter-eruptive radial

dataset used in this study (black) and the resulting data-fits by: 1) solely

free-running the dynamical model (green) and 2) data assimilation via

EnKF (red). The green dotted box covers the dataset used to estimate the

non-evolving uncertain parameters (step 1). (B) Estimated value of the

magma inflow rate, (J;,, as a function of time using: the free-run (green)

and EnKF (red). (C) The distribution of Q,, used as a prior information
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The shallow and deep overpressure values after performing EnKF (red).

Note that the corresponding data fit is illustrated in Figure |4.5 The

pink color represents each model ensemble members whereas the dark

red shade is the standard deviation. It tollows that the pink line within

the dark red shade is the mean of the ensemble. For comparison, we

also presented the result of “free-running” the dynamical model (green)

using the prior distribution of ¢);, and the MCMC-derived non-evolving

uncertain parameters from Figure |[4.3] Similarly, the light green colors

are the ensemble members and the darker green shade is the standard

deviation. The purple broken lines mark the 2011 eruption at Grimsvotn. 168
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(A) The evolution of the EnKF-derived shallow overpressure—constrained

by the initial part of the 2004-2011 radial displacement dataset (i.e. Fig-

ure |4.6)—embedded on the eruption zones. Note that we define the

eruption zones based on the estimated rock tensile strength in Iceland

which consequently provides the failure overpressure distribution (i.e. Py)

needed to trigger the rupture of a magma chamber (i.e. |Albino et al.

2010]). (B) The cumulative distribution function (CDF) illustrating the

failure overpressue (blue) as well as the overpressures at the end of the

assimilation window (red) and at the end of free-run (green). Note that

the latter 1s performed just atter the assimilation to further predict the

evolution of the overpressure. (C) The probability of rupture calculated

from the /V-ensemble of models that exceeded the tailure overpressure

described by the distribution in (D). (E) The percentage of ensemble

members entering each eruption zones as a function of time.| . . . . . . .
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(A) Forecast day of eruption based on a “probability of rupture” criterion

(i.e. 0.25+ 0.01). The blue line is the forecast day based on the 25%

probability whereas the light blue shade corresponds to the +1%. (B)

Number of days prior to eruption as a function of time calculated from

Figure [4.8/A. (C) The probability of rupture at the end of the assimilation

window (blue) as shown in Figure 4.7|C along with the cumulative number

of earthquakes (red). Note that Figure [4.8D and E provide a closer look

at the forecast roughly 14 days prior to the actual eruption.| . . . . . ..
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Data-fits and ();,, estimates of MCMC as compared to EnKF. (A) The entire

2004-2011 inter-eruptive radial dataset used in this study (black) and the

resulting data-fits by: 1) solely free-running the dynamical model (green), 2)

data assimilation via EnKF (red) and 3) Bayesian-based inversion through

MCMC (blue). (B) Estimated value of the magma inflow rate, Q;,, as

a function of time using: the free-run (green), EnKF (red) and MCMC

(blue). Note that both in (A) and (B), the dark solid lines correspond to

the mean of the free-run (green), EnKF (red) and MCMC (blue), whereas
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The MCMC-derived shallow and deep overpressure values (blue) as com-

pared to EnKF-derived estimates (red). Note that the corresponding data

fit 1s illustrated in Figure [4.10, Note that we also presented the result

of “free-running” the dynamical model (green) using the prior distribution

of Q;, (Figure [4.5[C) and the MCMC-derived non-evolving uncertain

parameters from Figure |4.3}| . . . . . ... ... ... .. L.
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(A) The eruption zones with the evolution of the shallow overpressures

after the 2011 Grimsvotn eruption until the 2014 rifting event.

(B) The cumulative distribution function (CDF) illustrating the failure

overpressue (blue) as well as the overpressures at the end of the assimilation

window (red) and at the end of free-run (green). Note that the latter

1s performed just after the assimilation to further predict the evolution

of the overpressure. (C) The probability of rupture calculated from the

N-ensemble of models that exceeded the tailure overpressure described by

the distribution in (D). (E) The percentage of ensemble members entering

each eruption zones as a function of time.|. . . . . . . .. ... ... L.
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(A) The eruption zones with the evolution of the shallow overpressures

after the 2011 Grimsvotn eruption until 01 September 2016. (B)

The cumulative distribution function (CDF) illustrating the failure over-

pressue (blue) as well as the overpressures at the end of the assimilation

window (red) and at the end of free-run (green). Note that the latter

1s performed just after the assimilation to further predict the evolution

of the overpressure. (C) The probability of rupture calculated from the

N-ensemble of models that exceeded the tailure overpressure described by

the distribution in (D). (E) The percentage of ensemble members entering

each eruption zones as a function of time. | . . . . . ... ...
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[>.1 Landsat-8 image taken on 06 September 2014, showing the principal |
volcanoes and fissure swarms (e.g. Bardarbunga (Br), Grimsvotn (Gr)
and Askja(As)) near the Vatnajokull icecap. The image is based on the
mosaicked data from the National Land Survey of Iceland (NASA Landsat
Program| [2014], [Landmaelingar Islands| [2015])). Fissure eruptions of

[ Laki (1783-1784) and Gjalp (1996) as well as the on-going Holuhraun
| eruption when the image is captured are also presented. The locations of [

Al Al Al J

are marked as yellow triangles. Inset: map of Iceland (modified after
Reverso et al [2014]) outlining its volcanic zones (e.g. West Volcanic
Zone (WVZ), East Volcanic Zone (EVZ), North Volcanic Zone (NVZ))
and transform zones (e.g. South Iceland Seismic Zone (SISZ) and Tjornes
Fracture Zone (TFZ)). The Reykjanes Ridge and Reykjanes Peninsula Rift
(RPR), and the Kolbeinsey Ridge which mark the limits of the volcanic
zone are 1llustrated for reference. The rate of the plate spreading is 9.8 mm
yr— ! (DeMets et al.|[2010], Reverso et al.| [2014]). The shaded gray area is
| the region covered by the Landsat-8 image in the main figure. | . . . . . . 184

(5.2 GPS time series of GFUM station from 22 May 2011 to 30 Nov 2014. The [
[ actual data are in blue points, the red solid line 1s the linear fit of the |
points within the shaded gray area (assumed shift from linear to constant
trend), and the black solid line represents the linear fit prior to the shaded
gray area. 1 he latter was extended up to the end ot the dataset to estimate |
the expected displacements after the assumed change of slope (14 October
2013). The red broken lines mark the onset of the May 2011 eruption and
| the August 2014 rifting event at Grimsvotn and Bardarbunga, respectively. |
[ The horizontal black broken line 1s the zero-displacement reference. The |
shaded green area covers the dataset used during the inversion (step 1 of our
approach). The insets (orange box) provide a closer look on the data points
near the time ot the rifting episode. Note that the vertical displacement i1s |
not corrected for GIA and seasonal effects. We applied a tectonic correction |
for the NS and EW components tollowing the estimations of |Reverso et al. |
12014, |. . o o 186

5.3  GPS time series measured at GFUM station from 30 Sep 2004 to 01 Sep |
L 2016. The blue dots are the actual data. The red broken lines mark |
the 2004 and 2011 Grimsvotn eruptions as well as the 2014 major rifting
event. The black solid lines are the linear fit to the linear part of each
post-eruptive event. The black broken lines are shown as a reterence tfor
the zero-displacement value. The shaded gray area corresponds to the
| TS T T ] 10 Is ol ] l
| 2014 ritting event. Note that the vertical component of the time series is |
| not corrected for either GIA or seasonal effects. ['he horizontal component |
[ 1s however, corrected for tectonic trend.|. . . . . . . .. .. ... ... .. 187
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GPS time series measured at DYNC station from 22 May 2011 to 30 Nov

2014. The blue dots are the actual data, the red solid line is the linear fit

of the points within the shaded gray area (i.e. area that corresponds to the

assumed shift from linear to constant trend detected at GFUM station),

and the black solid line represents the linear fit prior to the shaded gray

area. 1he latter was extended up to the end of the dataset. The red broken

lines mark the onset of the May 2011 eruption and the August 2014 rifting

event at Grimsvotn and Bardarbunga, respectively. The horizontal black

broken line is the zero-displacement reference. The insets (orange box)

provide a closer look on the data points near the time ot the rifting episode.[191

55

The ratio of the radial and vertical displacements (gray solid line) at

GFUM GPS station from 24 May 2011 to 16 Aug 2014. The horizontal

black line is the mean ratio (i.e. Ug/U, = 2.4). The blue points are the

actual radial and vertical displacements. Tectonic correction i1s applied

on the radial component. The vertical component is neither corrected for

GIA nor seasonal effects. The black broken line marks the assumed change

of slope| . . . . . .

[5.6

The expected radial displacement time series measured at a GPS station

located 15 km away from Grimsvotn’s volcanic center. (A) U, , and (B)

U, 4 are the radial displacements contributed by the shallow and deep

reservoirs, respectively. (C) U, ;. is the combined displacement of the two

reservoirs (the data measured at the surface). The black arrow in Figure

[5.6|C points at the deflected part of the surface displacement curve. This

1s similarly observed in the radial displacement contribution ot the deep

reservoir (Figure [5.6B), implying that the measured radial displacement

at 1okm 1s mainly dominated by the deep reservoir. The black broken line

marks the assumed change of slope prior to the start of the 2014 rifting

event (tge, =875 d) . . . . oo

5.7

EnKF synthetic test to track sudden change in ();,, value. The true behavior

of the system 1s the black solid line. The radial displacement data used

for the EnKF i1s in gray. The result of free running the forward model

is in green (the darker green is the mean and the lighter green lines are

the ensemble members of the model state), whereas the EnKF result is in

red (dark red is the mean value and the lighter red color are the ensemble

members of the model state). The vertical black broken lines mark the

change of slope (i.e. 875 d). Note that the prior distribution of ();, used

for the assimilation is also presented. . . . . . . . ... .. ... ... ..
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53

Posterior probability density functions (PDF) of the uncertain model

parameters after MCMC inversion (step 1). The marginal PDF for each

uncertain parameter is shown in the diagonal histogram plots. The green

vertical lines with numbers indicate the best-fit values of the parameters.

The off-diagonal contour plots are the joint kernel-density estimate between

pairs of parameters with their corresponding Pearson correlation coethicients.

A p-value close to +1 implies strong correlation between the parameters. | 200

.0

Data-fits and ();, estimates. (A) The entire 2011 post-eruptive dataset

used in this study (black) and the resulting data-fits by: 1) solely free-

running the dynamical model (green), 2) performing MCMC based on

a classical inversion approach/setup (blue), and 3) data assimilation via

EnKF (red). The green dotted box covers the dataset used to estimate

the non-evolving uncertain parameters (step 1). The robustness of each

approach 1s depicted on how 1t fits the radial displacement dataset which |

clearly favors the EnKF method. (B) Estimated value of the magma inflow

rate, ()i, as a function of time using: the free-run (green), EnKF (red)

and MCMC (blue). Note that the gray and black broken lines (Figure

[5.9/A and[5.9B) correspond to the points where a decreasing trend in Qy,,

tracked via EnKF, are observed. (C) The distribution of Q;, used as a

prior information for the free-run, the data assimilation and the inversion. |202

Data fit (green) using the MCMC-derived values of the uncertain model |

parameters as inputs to the forward model. The actual data are represented |

by gray solid lines. Note that the vertical component is not corrected either |

[ for GIA or seasonal effects. T'he black broken line marks the assumed |

change of slope preceding the start of the 2014 rifting event (¢4, = 875 d).[203

Testing different sets of uncertain model parameters as prior inputs to

EnKF to track the evolution of ();,. Case I: The values ot the 6 uncertain

Case II: Values of ay, H; and Ap tfrom Case | are adopted, whereas

I
I
parameters are derived using the entire 2004 post-eruptive radial dataset. |
I
|

the remaining 3 uncertain parameters are determined by inverting the

initial part of the 2011 post-eruptive radial dataset. Case III (Main result

discussed in the paper): The 6 uncertain model parameters are estimated

using the mitial part of the 2011 post-eruptive radial dataset. The black |

broken line marks the assumed change of slope betore the start of the 2014 |

rifting event (fee, =870 d)| . . . . ..o 206

5.12

Proposed schematic cross-section beneath Grimsvotn and Bardarbunga

illustrating the two possible deep mechanism connecting the two volcanic

systems: 1) lateral low hypothesis and 2) magma reservoir hypothesis.

link between Bardarbunga and Holuhraun during the 2014-2015 eruption

I
|
|
GFUM and DYNC GPS stations are represented as yellow triangles. The |
|
|

(green sketch) is shown after Gudmundsson et al.|[2016]; however it does

not follow the cross-section path in the inset igure,| . . . . . . . . . . .. 208
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A1

An example of the InSAR displacement field at ¢ = 10 in (a) ascending and

(b) descending LOS view. The observation error is 10 mm. Note that the

gray dots are the locations of the 121 observations used in the assimilation.

The x and y-axes are in kilometers. | . . . . . . .. .. ... ... ....
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The EnKF-estimated (A) overpressures and (B) uncertain model parame-

ters after performing state-parameter estimation using jointly GNSS and

descending InSAR data. Note that we used prior distribution for the

uncertain parameters that are similar to Figure 15C. The red solid lines

are the mean of the ensemble whereas the pink lines represent each of the

B1

The resulting (A) overpressures and (B) uncertain model parameters after

assimilating data with gaps. The gray area in (A) emphasizes the time

where gaps in the data are introduced. The black broken lines represent

the ground truth.| . . . . . ... ... o
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B2

The resulting (A) overpressures and (B) uncertain model parameters after

assimilating data with gaps and subsequently “re-running” the forward

model using the estimated values of the uncertain parameters at the analysis

step (see Appendix |[B.1|for details). The gray area in (A) emphasizes

the time where gaps in the data are introduced. The black broken lines

represent the ground truth.| . . . . . ... ... ...
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The (A) innovation and (B) residual vectors as well as the L*-norms of

the (C) cumulative mean innovation and (D) cumulative mean residual.| .

B4

The evolution of the error covariance of the state variables (AP, and AF,)

before (i.e. forecast error covariance, P/) and after (i.e. analysis error

covariance, P?) the correction given by the observations. The correction is

in the order of (0.001M ]-3a)z such that it appears almost overlapping in this

figure. The pink lines correspond to the absence of data to assimilate. In

Figure [B.5| we provide a closer look to the covariances during the last few

days prior to the 2011 eruption. Note that the square root of the diagonal
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B5

A closer look on the evolution of the covariance of the state variables (AP,

and AP;) before (i.e. forecast covariance, P/) and after (i.e. analysis co-
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General Introduction

To the best of my knowledge, this manuscript— Towards the assimilation of deforma-
tion measurements in volcanology —is the first dissertation dedicated on the application
of data assimilation in volcanology. Here, I will attempt to demonstrate the potential of
EnKF from synthetic cases to assimilation of real geodetic data. Indeed, it is too ambitious
to be able to totally describe all the capabilities of volcanic data assimilation in just three
years of research. However, I believe that the work that I will present in this dissertation,
despite its infancy, is a leap towards a better approach in combining vast amount of
dataset and physics-based models not only to forecast volcanic eruptions but also to fill-in

some of the gaps in our understanding of subsurface processes occuring beneath volcanoes.

I think that we are in an era in the field of geodesy, where we benefit a lot from rapid
technological developments both in terms of satellite imaging of the Earth and in situ
measurements. Permanent GNSS stations permit daily or even hourly measurements of
ground deformation such that, with GNSS we can have a good temporal resolution of
the evolution of ground deformation. Because of this, having permanent GNSS network
installed on an active volcano has become one of the “must-haves” of a volcano observatory.
Satellite-based acquisitions, in particular, the Sentinel 1 satellite, can be considered as a
game changer in the scientific community providing unprecedented spatial coverage every
6-12 days. The data availability of Sentinel-1 allowed each and everyone of us to have free
access to tremendous amount of SAR data around the world. In terms of volcano defor-
mation studies, this means we can literally observe and extract signals of every deforming
volcano on Earth. However, measuring and/or monitoring volcano deformation is not
enough. We have to dig deeper and understand the causative processes that brought these
observations. Typically, in order to fill the gaps in our understanding, we use models to
interpret our data through inversion techniques. Inversion is a proven, very effective tool
for volcanologists to infer parameters of the deformation source. When bayesian-based

inversion such as MCMC—which is a much sophisticated inversion technique—is coupled
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with physics-based forward models, important questions can be addressed that are related
to the processes within the volcanic system and are expressed in the form of probabilities
to allow uncertainties in the results. For example, |Anderson et Segall [2013] were able to
demonstrate this by estimating not only the volume of the magma chamber at Mount
St. Helens but also its volatile content which is several kilometers deep into the Earth.
Although the model is deterministic, the results yield probabilistic estimates since their
model parameters are sampled from a prior distribution and constrained by a given
dataset. As a reader, you might be wondering, if all is working well with inversion, then
“What else can data assimilation bring new to the volcano community?”. This basic yet
very challenging question is indeed the core objective of this thesis which I will attempt

to answer towards the end of this manuscript.

Thesis Roadmap

Chapter [1| describes the 1) the common volcano monitoring practices with emphasis
on ground deformation monitoring, 2) the development of volcano models, from kinematic
to physics-based approaches used to deduce information from deformation data, and

3) the common eruption forecasting approach in terms of long- and short-term time scales.

Chapter [2| provides an overview about data assimilation, basically, the mathematical
formulation as well as the elements and the two main approaches of data assimilation
based on: 1) estimation theory and 2) optimal control theory. I will give focus on
sequential data assimilation in particular, EnKF which is the main assimilation method
used in this thesis. In the last part of this chapter, I will provide a brief review of the
studies that have applied Kalman filter-based approaches to problems in volcanology as

well as the recent developments in volcanic data assimilation.

Chapter (3| is primarily concerned with the development of a strategy to assimilate
GNSS and InSAR data into a two-magma chamber model based on synthetic simulations.
This chapter is built on the material published in Frontiers in Farth Science as “Assimi-
lation of Deformation Data for Eruption Forecasting: Potentiality Assessment Based on
Synthetic Cases” (Bato et al.| [2017]).
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Chapter 4] describes an application of the strategy developed in Chapter 3| with
slight improvements on the approach, using real GNSS data recorded at Grimsvétn
volcano in Iceland between 2004 and 2011 in order to forecast the rupture of a magma
chamber in real time. This chapter will be submitted as “Forecasting the rupture of a

magma chamber in real-time using sequential data assimilation”.

Chapter [5| showcases the potential of data assimilation other than the interest of
eruption forecasting. I demonstrated the unique potential of EnKF to give insights into
volcanic system roots and how neighboring volcanoes, such as Bardarbunga and Grimsvotn
volcanoes in Iceland, interact. This chapter was published as “Possible deep connection
between volcanic systems evidenced by sequential assimilation of geodetic data”, Nature
Scientific Reports (2018) 8:11702, https://doi.org/10.1038/s41598-018-29811-x.

Chapter [6] concludes this thesis and gives future directions about further exploitation

of data assimilation in volcanology.
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Chapter 1

Volcano Monitoring and Eruption

Forecasting

Contents
(1.1  Monitoring volcanicunrest|. . . . . . . ... ... ... ... 41
1.2 Modeling deformation|. . . . ... ... ... ... ....... 57
1.3  Eruption forecasting|. . . . .. ... ... ... ... L. 68
1.4 Summary and Perspectives] . . ... ... ........... 71

Forecasting volcanic eruption is perhaps one of the most challenging and at the same
time, one of the most exciting field in volcanology. Not only because of the complex
nonlinear behavior and intrinsic unpredicitability of volcanoes (e.g. [Sparks| [2003]) but
also because of our lack of direct observation on what is exactly happening underground.
Yet, the need to provide accurate forecast on when and where the eruption will occur,
how long it will last and what other impending catastrophic or transient events that
might happen, is indeed fundamental especially for the civil protection group to mitigate

risks and properly assess hazards.

Current practices that lead to successful eruption forecasting are mostly based on
empirical pattern recognition, which relies on combining monitoring data with information
from global volcanic databases, local knowledge of a volcano’s past behavior (geological
and historical) and scientific insights based on experience and knowledge about the
volcano (Segall [2013]). In general, volcano observatories subdivide their monitoring

system based on three major categories: 1) gas emission, 2) seismicity and 3) ground
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deformation. Although the contributions of other datasets in volcanology (e.g. electrical
resistivity, gravity, magnetics, thermal anomaly and infrasound) are also acknowledged
with importance. On one hand, geochemical data are used to measure gas fluxes and
fumerole compositions to constrain the dynamics of magma degassing or the separation of
dissolved gases from the melt as the magma moves towards weaker pressure or shallower
depth. Magmatic gas fluxes in volcanic plumes allow estimation of the volume of degassing
magma, magma supply rates (Allard et al.| [1994], |Sutton et al.|[1992]) and the depth of a
residing magma reservoir (Harris et Stevenson| [1997], |Lu et Dzurisin [2014]). Gas fluxes
can also aid in detecting recently active volcanic systems (e.g. Sutton et al. [1992], Lu et
Dzurisin [2014]). On the other hand, seismicity as well as ground deformation are often
associated with the ascent of magma, such that geophysical signals recorded on active
volcanoes are used to infer magma path and magma plumbing system characteristics
(e.g. [Swanson et al.| |[1983], Voight et al.| [199§], Aoki et al. [1999], Roult et al. [2012],
Sigmundsson et al.| [2015]).

Geodetic observations are proven effective and have always provided meaningful in-
sights on what is going-on beneath the Earth’s surface. Traditionally, simple kinematic
models are constrained by geodetic data to infer properties of magma reservoirs such
as source location and volume change (Anderson et Segall [2013]). Kinematic models
provide a way to interpret these surface displacements at a given time step in terms
of “source” by a distribution of the displacement field at depth (i.e. displacement field
induced by magma inflow) without considering the processes, forces and mechanisms
at the origin of this displacement field. When they are used in inversion, a lot of infor-
mation (e.g. overpressure evolution in the magma chamber) that often gives rise to the
temporal evolution of the dataset is not fully exploited. Recently, major advancement in
forecasting involves the development of more realistic physics-based models where diverse
datasets are coupled with dynamical models of volcanic processes to relate properties
of volcanic systems (Segall [2013]). Sparks| [2003] have previously noted the need to
evolve from forecasting based on empirical pattern recognition to forecasting based on the
understanding of the physics of causative processes, and the forecast should be expressed
in probabilistic terms to account for uncertainties. Recent studies in Mount St. Helens
have demonstrated such idea with success by applying a probabilistic (Bayesian-based)
inversion technique to a deterministic (physics-based) model and geophysical datasets
such as lava dome extrusion and GPS data (Anderson et Segall| [2013],|Wong et al|[2017]).
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In this chapter, I will present the common volcano monitoring practices with emphasis
on ground deformation monitoring. Afterwards, I will discuss the development of volcano
models, from kinematic to physics-based approaches, that are used to deduce information
(e.g. change in pressure, change in volume, radius of the reservoir, etc.) from deformation
data. Finally, I will briefly discuss common eruption forecasting methods in terms of: 1)
long-term (i.e. also known as long-range forecasting) and 2) short-term (i.e. also known
as short-range forecasting) time scales. Long-range forecasting involves interpretations of
the evidences of magma emplacement at depth in storage zones (i.e. increasing pressure)
which can take up to several years or decades. Determining the moment of rupture of
the chamber walls is crucial since this will give an idea when the magma will further
migrate after being stored in a chamber. Indeed, long-range forecasting is largely the
motivation of this work by integrating a dynamical model and dense amount of incoming
deformation data during inter-eruptive periods, particularly, at basaltic volcanoes. Short-
range forecasting is more of intended to track the migration of magma. It could be within
weeks, days or minutes prior to the eruption. In this kind of forecasting, determining if,
when, and where the magma will reach the surface (e.g. |(Cannavo et al|[2015], Guldstrand
et al.[[2018]) are essential to aid in the decision-making of the authorities or civil protection

groups.

1.1 Monitoring volcanic unrest

The ascent of magma towards the Earth’s surface often leads to anomalous signals
(precursors) that are detectable by geochemical and geophysical instruments. As the
magma moves, it actually interacts with the surrounding rock, such that subsurface
process occuring beneath the volcano can be recorded. The behavior of each volcano
is unique, as a consequence, interpreting the precursors should be done per specific
case. Volcano monitoring serves two purposes: 1) it provides deeper understanding
on the physical and chemical processes that governs the volcanic system, and 2) it is
crucial to mitigate risks, assess hazards and issue warnings in times of unrest (Pallister et
McNutt [2015]). The 1991 Pinatubo eruption in the Philippines and the 2010 Merapi
eruption in Indonesia are two of the most successful eruption forecasting in the history of
mankind. Although the events are catastrophic, costing millions of euros in properties,
still, thousands of lives were saved. In this section, I will discuss the monitoring practices

currently implemented in volcano observatories around the world (Figure [1.1]).
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GPS Receiver

Photo credit: Pascale Bascou

Figure 1.1: Three major monitoring practices carried out by volcano observatories around
the world. Liliana Torres of the Instituto Geofisico del Pert, taking a) gas and b) seismic
measurements. ¢) CGPS instrument for monitoring deformation installed near Hofn in
Iceland.
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Volcanic gases

Magmatic chambers contain gas volume fraction of volatiles (insoluble and relatively
soluble gases). As the magma depressurizes during ascent, volatiles escape from the
magma, leading to magma degassing which consequently supplies gas flux to the at-
mosphere and also lowers the density of the residing magma in the chamber. When
volatiles are released as gases through active vents, fumeroles and hotsprings, they can be
considered as precursors to an imminent eruption. Such that, monitoring volcanic gases
have long been acknowledged as an important aspect in volcano monitoring. Magma
degassing mainly controls the eruption style (i.e. explosive or effusive) by either releasing
or not the magmatic pressure. It can also provide insights about the sources of magma
and how magma interacts [if present] with a hydrothermal system beneath a volcano.
However, the interpretation of volcanic gases alone is not always straightforward and

requires expertise and years of experience.

When magma is located very deep into the Earth, it is rich in SOy, CO,, H>O and
HCIl. However, as it moves towards lower pressure conditions, less soluble gases such as
SOy and C'O, are gradually lost while gases with high solubility such as H,O and HC'
are retained. Magmatic water often mixes with atmospheric and/or meteoric water hence
water obviously dominates the gas emitted at the surface of the Earth. Typically, when
volcanoes are reactivated, elevated volcanic gas flux is observed. If continuous degassing
of magma occurs but without any injection of fresh magma into the chamber, SO, and
C' O, concentrations decline with time whereas HyO concentration progressively increases
due to the infiltration of surface water into the system. In 1980 at Mount St. Helens
(Washington, USA), COy measurements were initially high but declined slowly towards
the end of 1981 as the gas was enriched in water due to the absence of new magma input
(Stix et Gaonach! [2000]).

Monitoring volcanic gases can also indicate if there is any transient process that
occurred within the volcano (i.e. if the plumbing system was initially “open” and after-
wards became partially sealed due to plug formation). Elevated magmatic gas flux and
increased amounts of SO, and HC' are often indicative that the volcanic system is “open”
whereas, the decline in magmatic gas flux and increased concentrations of COy and HsS
(i.e. produced by the interaction of acidic magmatic water with meteoric water) are often

associated with “closed or partially closed” system. Note that when the system is sealed,
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undegassed magma can result in accumulation or built-up of internal pressures within
the volcano. For example, in early June of 1991, prior to the Pinatubo eruption, SO,
flux suddenly decreased indicating that the system was sealed, pressurizing and soon to

reach critical conditions for an explosive eruption (Daag et al|[1996], [Sparks| [2003]).

Measuring volcanic gases can either be done by direct sampling (i.e. from a fumerole,
crater or volcanic flanks) or through ground-based (e.g. FTIR spectrometer, COSPEC,
DOAS) and satellite-based remote sensing (e.g. ASTER, MODIS, OMI, SEVIRI, TOMS,
TOVS). Although magma degassing plays a crucial role in understanding the behavior of
a volcano, measuring volcanic gases remains challenging up to now. Direct measurements
are often dangerous as it requires sampling close to the vent or crater. If the volcano is
very active or in the course of unrest, sampling may only be limited (i.e. weeks, months
or even years in terms of sampling interval), thus inhibits our ability to use gas emission
data alone to forecast eruption. Remote sensing can often circumvent the issue, but
detectability of volcanic gases other than SO, remains a limitation for satellite-based
measurements. Basically, SO, emissions from satellite-based measurements are only
useful when gas plumes reach high in the atmosphere, that is to say, when the eruption
already occured. For a more comprehensive review of satellite measurements of global
volcanic degassing, the reader should refer to|Carn et al.||2016]. The 2018 Mayon volcano
eruption provides as an example of the difficulty of using satellite data to detect and
quantify SO, emissions. The Mayon phreatic eruption started on the 13 January 2018
followed by lava dome formation and lava flow eruption the next day. However, SO, gases
were only detected by satellite measurements after the volcano spewed ~ 3 — 5 km of
ash into the atmosphere. Ground-based gas sensors are often more useful for forecasting
eruption and can complement the satellite measurements. As for the 2018 Mayon eruption,
elevated SO, emission was measured using ground-based instruments at an average of
856 tonnes/day weeks before the unrest (PHIVOLCS| [2018]).

Seismicity

Prior to volcanic eruption, as the magma finds its way to the surface, rocks are pushed
apart resulting in fracturing and small earthquakes. Earthquakes are often clustered
around magma chambers or on fractures associated with magma conduit or dyking events.
Migrating magma can also be tracked with migrating earthquakes. As a consequence,

seismicity has been used effectively for decades as a forecasting tool. Seismic monitoring
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is relatively cheap and more importantly, provides real-time data. To properly evaluate
precursors, it requires years of gathering data to first establish a baseline for each volcano.
When seismicity rates are above ambient, they usually signal magma migration that
could potentially lead to eruption. Seismicity before eruption typically occurs in swarms
characterized by: 1) earthquake magnitude M < 5, 2) many similar events of the same
waveform, 3) high b-values (i.e. b is the slope in the Gutenberg-Richter relation; it is
used to determine large vs. small earthquake events), and 4) occur near the eruption
locations (McNutt et al.| [2000]). In many cases, seismic precursors are often presented
in terms of the number of events, energy released or RSAM/RSEM (Endo et al.| [1996],
Boué| [2015]). Note that not all detected seismic events lead to eruptions (Newhall [2000],
McNutt et al. [2000], Sparks [2003]). This is because seismic sources at volcanoes are

difficult to distinguish as they involve complex interaction of melts, gases and the host

rock (McNutt et al.| [2000]).

Seismologists are adept at classifying different types of volcanic events. Four of the
important types of events are: 1) High-frequency earthquakes (i.e. also known as VT
events), 2) Low-frequency earthquakes (i.e. also known as LP events), 3) Explosion and
4) Tremors. VT events correspond to the formation of fractures as the magma forcibly
creates its path. The number of recorded VT events is usually high at the beginning of
volcanic unrest because of the accumulation of damage in the edifice of the volcano. LP
events are more complex. They are possibly due to: a) resonance in magmatic conduit, b)
magmatic-hydrothermal interactions, c¢) degassing of magma, d) brittle failure of melt, e)
stick-slip of a plug (e.g. Boué| [2015]). Explosion events, sometimes accompanied by shock-
waves are, by its name, related to explosive eruptions. Although smaller explosions can
also be detected, they are usually indicative of intense surface degassing. Volcanic tremors
are periods of long-lasting vibrations that can last from minutes to years suggesting: a)
the movement of magma, gas and/or hydrothermal fluids, b) excitation and resonance
of fluid-filled cracks, ¢) magma wagging (i.e. alternate compression and restoration of
gas spring force in a bubble-filled part of the magma conduit) and d) hydrothermal
processes in the volcano (Newhall [2007]). The last mechanism can result in phreatic
eruptions. Other recorded seismic signals on volcanoes include: 5) Hybrid earthquakes
(i.e. earthquakes that share the characteristics of high- and low-frequency events), 6) Very
Long Period earthquakes (i.e. also known as VLP events) and 7) Superficial events (e.g.
landslides, rockfalls, glacier activities, shore ice events, pyroclastic flows, and outburst
floods and lahars).
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The Pinatubo 1991 plinian eruption is by far, one of the most succesful forecasting
that was based mainly on seismic data. Although visual observations, reconnaissance
mapping, gas emission (e.g. SO,), and deformation (e.g. tiltmeter) were also considered.
Between March and April 1991, seismicity increased at Pinatubo due to the magma
rising towards the surface, roughly ~ 32 km beneath the volcano. In early April, phreatic
eruption occured, blasting three craters located on the North flank of the volcano. Seismic
events intensified and epicenters shifted towards shallower depth beneath the NW flank
near the summit of the volcano on 03 June. At the same time, tremors were also detected.
By 07 June, a lava dome was emplaced. The first plinian eruption occurred on 12 June ac-

companied by the build up of LP events before Pinatubo’s cataclysmic eruption on 15 June.

The 2014 Bardarbunga dyking event in Iceland is another remarkable example of
monitoring volcanic unrest using seismicity. Seismic data allowed scientists to actually “see-
through” beneath the ground to follow the propagation of the dyke until its eruption on 29
August 2014 at Holuhraun. The volcanic unrest started as intense seismic swarm beneath
Bardarbunga volcano, followed by its ~ 41 km lateral migration, overcoming topographic
barriers, before breaching the surface and becoming a fissure eruption (Sigmundsson et al.
[2015], Gudmundsson et al. [2016]).

Deformation

Magma from the deep part of the Earth (e.g. lower crust, CMB) migrates towards
shallower depths in the form of melt “pockets” or series of dyke injections. Discontinuities
within the crust allows favourable condition for these pockets of melt and/or intrusions to
accumulate, forming a so-called “magma chamber” or “magma reservoir”. As the chamber
is continuously filled with magma, pressure increases within the system, also driven by
the exsolution of gases from the melt. An excess pressure (i.e. also known as overpressure)
is generated if the chamber pressure exceeds the lithostatic pressure (i.e. pressure of
the surrounding rock). This continuous pressurization causes the ground to deform (i.e.
inflate in this case) and can be measured as displacement, tilt or strain on the surface
of the Earth. Once the overpressure reaches a critical value, the magma chamber may
rupture allowing the stored magma to “leak” and further migrate towards the surface.

When the overpressure is released, a “deflating” signal can be observed.
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For many volcanoes, ground deformation is a powerful indicator of their long-term
and short-term behaviors. Although in terms of timescales, inflation and/or deflation
varies from volcano to volcano. It is worth noting that ground deformation measured
on volcanoes is not only limited to the behavior of magmatic storages at depth that
can be linked to volcanic unrest. Indeed, some of the deformations related to volcanic
activities have been discussed by Pinel et al.| [2014], including: a) the emplacement
and displacement of erupted volcanic materials (e.g. [Voight| [1981], Briole et al.| [1997],
Grandin et al.| [2010], Bato et al.| [2016]), b) hydrothermal system activity (e.g. Vadon et
Sigmundsson| [1997]), ¢) intrusion propagation and emplacement (e.g. Froger et al.| [2004],
Sigmundsson et al.|[2015]), d) flank sliding (e.g. |Clarke et al. [2013], [Tridon et al| [2016],
Chen et al.|[2017]), e) caldera collapse (e.g. |De Natale et al.|[1997], |Gudmundsson et al.
[2016], |Coppola et al. [2017]) and glacier surface loading (e.g. [Pinel et al.| [2014], |[Spaans
et al. [2015]).

Measuring ground deformation can be performed in several ways using: 1) GNSS, 2)
InSAR, 3) tiltmeter, 4) strainmeter and 5) precision leveling. Although in this thesis,
we have mainly developed strategies using GNSS and InSAR as they are nowadays the

common tools used to study deformation on volcanoes.

GPS or more generally called as GNSS (i.e. generic term for satellite navigation
systems including but not limited to GPS (US), GLONASS (Russia), Galileo (Europe)
and Beidou (China)) is a constellation of satellites, where each satellite transmits radio
navigation signals about its location and time at current intervals. The information is then
intercepted by a receiver, which computes the distance between each satellite based on
the timing of the arrival of information. The position of the receiver can be derived when
these distances are combined with ephemerides for the satellite orbits and satellite clock
corrections (i.e. available from commercial vendors or IGS). Multi-GNSS receivers are
becoming common, allowing simultaneous measurements from multiple navigation satellite
systems, therefore providing high-precision measurements. Typically, the positions are
averaged in either static (i.e. daily or hourly) or kinematic mode (i.e. series of independent
position at each epoch). Static mode is preferred for permanent GNSS measurements
whereas kinematic mode is favoured for the campaign type of measurement (i.e. field
surveying). An accuracy of ~ 1 mm for the horizontal component and ~ 3 mm for the
vertical component is typical from static daily postprocessed data and about one order

of magnitude higher for kinematic measurements (Freymueller et al|[2015]). Note that
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Table 1.1: Past and present (highlighted in gray) SAR systems. The wavelengths of the
satellite missions are: L-band=23.5 cm, C-band=5.6 to 5.8 cm, X-band=3 to 3.1 cm.
Modified after [Pinel et al.| [2014].

Mission Band Period of operation Repeat orbit time
SEASAT L Jun-Oct 1978 17 days
JERS-1 Feb 1992 to Oct 1998 44 days
ALOS Jan 2006 to Apr 2011 46 days
ALOS-2 2014 to present 14 days
ERS-1 C Jul 1991 to Mar 2000 3 or 35 days
ERS-2 Apr 1995 to Sep 2011 3 or 35 days
RADARSAT-1 Nov 1995 to Mar 2013 24 days
ENVISAT Mar 2002 to Apr 2012 35 days
RADARSAT-2 Dec 2007 to present 24 days
SENTINEL-1A Apr 2014 to present 6 or 12 days
SENTINEL-1B Apr 2016 to present 6 or 12 days
COSMO-SKYMED X Jun 2007 to present 16 days
(constellation Dec 2007 to present 16 days
of 4 satellites) Oct 2008 to present 16 days
Nov 2010 to present 16 days
TerraSAR-X Jun 2007 to present 11 days
TanDEM-X Jun 2010 to present 11 days
SIR-C/X-SAR L,C.X 09-20 Apr 1994; 30 Sept to 11 Oct 1994 NA
SRTM C,X 11-22 Feb 2000 NA

the vertical component is always less accurate than the horizontal component because it
is more sensitive to atmospheric delays. Most active volcanoes around the world have
at least one CGPS installed to monitor its activity in real-time. Indeed, a network of
permanent GNSS scatterred around the volcano is an ideal monitoring system. Campaign
GNSS measurements can be performed at least once a year to provide better spatial
coverage, however, this painstaking fieldwork is sometimes very costly especially when

the volcano of interest is in a remote area.

Radar interferometry or more commonly known as InSAR, circumvents the spatial

coverage issue of GNSS. SAR technology uses the microwave region of the electromagnetic
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Figure 1.2: How SAR system acquires image on Earth. (a) The radar satellite follows a
LEO polar orbit in a side-looking view (i.e. normally right-looking). (b) The satellite
emits signal towards the LOS direction with a look angle (i.e. 6 incidence angle) that
varies from 20 — 50 degrees. Radar interferometry measures the phase difference between
two acquisitions (i.e. t; and t3). This will give the actual ground displacement (e.g.
displacement due to the inflation of the volcano) along the LOS direction.

spectrum to image the Earth, thus it can work even with the presence of clouds. SAR is
usually mounted in a satellite or aircraft while orbitting the Earth. The satellite-based
SAR systems, for example, move in a sun-synchronous LEO polar orbit (Figure .
SAR satellites operate as an active system (i.e. no need for the radiation emitted by the
sun), thus they have the capabilities to image the Earth during day and night. Most of
the operational SAR systems today are in L, C and X-bands (Table . SAR images
are formed when microwave signals emitted by the satellite are backscattered by the
ground after it has been “illuminated” by a radar pulse. Each pixel in a radar image
contains amplitude and phase information. The amplitude is the record of the reflected
energy transmitted by the radar to the ground and then back to the radar. A calm water
body for example, appears dark in a radar image because it acts as a perfect reflector,
similar to a mirror. The incident radar wave in this case is reflected away from the
satellite. Indeed, cornered structures such as built-ups (e.g. buildings, roads, bridges,
roofs) appear bright in a radar image because they transmit part of the energy back to

the radar sensor (i.e. multiple scattering process).
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A SAR image alone cannot give information about any surface change. Obviously,
at least two properly co-registered SAR images taken at two distinct dates are needed.
The first image acquired by the satellite is called the “master” image which is typically
the reference image. The second acqisition is called the “slave” image. This pair of SAR
image can be useful to detect any surface change (e.g. emplacement of volcanic materials)
by calculating the amplitude and/or phase variation. Amplitude change can be quantified
by differencing the amplitude of the master and slave images or by computing for their
ampitude ratio. Although in some cases, amplitude information is also used in the family
of offset tracking methods to calculate for ground surface displacements. The phase
variation on the other hand, can be measured by calculating the decorrelation of the

pixels or “coherence”; 4, between the two images:

E[z129]
HAEAREEAN

(1.1)

where £[] is the expectation, z; and zy are the complex values of the images. Figure
provides a good example on mapping and estimating the area of recently emplaced lava

flow by computing for the coherence.

The principle of InSAR exploits the phase differences of the two SAR images (Figure
1.2)). If there is a local surface displacement of the ground occurring between two
acquisition, concentric pattern of “fringes” can be observed. The resulting phase map
(e.g. Figure is basically the sum of the phases contributed by the topography, ¢,
orbit of the satellites, ¢orp (1.€. Propo and Py, are due to the small difference of satellite
position between the two acquisitions), ground displacement, ¢g;s,, atmospheric delay,
Gatm, and other noise signals, ¢., (Massonnet et Feigl [1998]). Such that,

A¢ - thopo + ¢disp + Qbm"b + ¢atm + §be (12)

Obviously in monitoring volcanic unrest, only the phase due to the displacement
of the ground is important whereas the others are corrected and/or reduced (e.g. ¢op
for example can be removed by using the satellite’s orbit data). In other cases where
mapping and possibly quantifying the volume of erupted volcanic deposits (e.g. lava flow
emplacement and lava dome formation) are of priorities, the phase due to topography is

rather retained (Bato et al|[2016]); provided that the temporal baseline (i.e. difference
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Figure 1.3: The coherence map computed from (a) ascending (20100919 and 20101022)
and (b) descending (20100901 and 20101026) T'SX radar data used to map the October
2010 lava flow emplacement at Piton de la Fournaise, La Reunion, France. A value close
to zero signifies strong decorrelation, whereas closer to 1 means strong correlation between
the master and slave images. Note that the area covered by the lava flow in (a) is 0.71
km? (blue outline), whereas in (b) the area is 0.75 km? (red outline). The maps are in
UTM km coordinate systems. From Bato et al. [2016].

between the acquisition dates) remains small such that the magnitude of displacement

can be ignored.

The ground displacement retrieved from one pair of interferogram is in fact the
displacement along the LOS direction. In order to derive the three-component displace-
ment vector, a more discriminating dataset characterized by several interfergrams having
different acquisition geometries (i.e. different look angles and orbit directions) is needed
(e.g. Wright et al|[2004]/Yan [2011]).

When interferograms are stacked together, persistent deformation can be highlighted

while minimizing the contribution of unwanted signals. Indeed, this can only be appro-

priate when the source of deformation is episodic or in steady-state (Pinel et al|[2014]).

InSAR time-series analysis addresses decorrelation issues as well as permits the estimation
of non-deformation signals. Most of the multi-temporal InSAR processing algorithms
nowadays are based on: 1) PSInSAR (e.g. [Perissin et Ferretti| [2007], Hooper et al. [2004]),
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Figure 1.4: Example of InSAR ground deformation data covering the October 2010
eruption at Piton de la Fournaise, La Reunion Island, France. (a) Interferogram calculated
from ascending TSX radar images. (b) Interferogram calculated from descending TSX
radar images. (c¢) Corresponding horizontal and (d) vertical displacements, obtained from
(a) and (b). The maps are in UTM km coordinate system. From Bato et al|[2016].
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2) SBAS (e.g. [Berardino et al. [2002], Doin et al.| [2011]) and 3) phase linking or phase
triangulation (e.g. Ferretti et al. [2011], Samiei-Esfahany et Hanssen| [2013], Fornaro et al.
[2015]). For a comprehensive review of PS-based and SBAS multi-temporal processing,
the reader is encouraged to see [Hooper et al.| [2012]. Note however, that another huge
family of multi-temporal InSAR processing methods have been developed after 2012 (e.g.
Ferretti et al.|[2011], Samiei-Esfahany et Hanssen| [2013], [Fornaro et al.| [2015]). To learn
more about the recent progress and application of SAR data in volcanology, see [Pinel
et al| [2014].

All in all, InSAR is a valuable tool in deformation monitoring. Although it cannot
beat the [near| real-time data capability of GNSS, still, the progress in terms of temporal
and spatial resolution of InSAR has escalated over the years. The launch of Sentinel-1A
satellite in 2014 and Sentinel-1B in 2016 are indeed a game changer for everyone working
on deformation monitoring, given that one can have access to free SAR data once every 6
or 12 days. This is crucial especially during volcanic crisis. Surely, the next challenge is
how to integrate and use the large amount of datasets to fill the gaps in our understanding

of Earth processes.

Tiltmeters and strainmeters are also important tools to measure ground deforma-
tion continuously. Tiltmeters measure the relative inclination due to the movement of the
ground. They are known as a good indicator of deformation source geometry (Dzurisin
[2003]). Wheareas borehole strainmeters measure small changes (i.e. strains on the order
of 1071 in the dimension of a borehole (e.g. diameter or volume). However, both the
tiltmeters and strainmeters are also known to suffer from instrument drift (Freymueller
et al.|[2015]). Moreover, strainmeters are very expensive to install and maintain and

require expertise in order to properly position them in a volcano.

The 2000 Hekla eruption in Iceland is one of the most remarkable forecasting story
using strainmeters. Five borehole strainmeters, located ~ 15 — 45 km away from the
volcano detected the injection of a dyke, 30 mins before the magma reached the surface
(Sturkell et al|[2006]). Thanks to this, along with seismic data, Icelandic scientists were
able to issue aviation warning of an impending eruption ~ 17 mins prior to the actual
eruption (Sparks| [2003]).
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Precision leveling and other conventional ground surveying methods such as using
EDM, theodolite and total stations, are already classified as obsolete defomation moni-
toring practices. Before, leveling was used to study the 1910 Usu and 1914 Sakurajima
eruptions in Japan (Freymueller et al.|[2015]). Indeed, surveying techniques still remain as
the most accurate means to measure relative displacements up until today (i.e. 0.88 mm
for 1 km area, |Freymueller et al.| [2015]). With the advances in GNSS technology, in
particular, the installation of permanent GPS stations, these surveying techniques are
only conducted when submillimeter accuracy is needed. The reason behind involves
intensive amount of fieldwork and that it requires a lot of time as well as expensive

logistics.

Other monitoring tools: gravity, magnetics, electrical-resistivity,

thermal anomaly, water level and infrasound

Other precursory to volcanic unrest involves changes in microgravity, magnetic and
electrical resistivity. However, these are typically performed irregularly since they require
fieldwork and expensive logistics, and sometimes the results are ambiguous. The resolu-
tion of the resulting maps is also dependent on the density of points taken in the field.
Furthermore, solid expertise and experience is crucial for modeling and more importantly
for the interpretation. Microgravity measures small gravitational changes (i.e. usually in
Gal units; 1 Gal = 0.01 m s?) due to variation in elevation or heteregeneities in subsurface
density. Spatial variation mapping of gravity changes allows to identify buried dykes,
feeder conduits and magma chamber (Freymueller et al|[2015]). It follows that repeated
surveys can detect the addition or removal of magma. One important application of
microgravity monitoring refers to its ability to distinguish changes in pressurization due
to variations in mass from those that reflect exsolution of volatiles or other chemical
processes (Freymueller et al.| [2015]). Similarly, muon tomography, electrical-resistivity
and magnetic monitoring can be used to model internal structures of a volcano and to
characterize its plumbing system. For example, fumerolic system at Solfatara volcano
in Italy was imaged using 3D resistivity tomography (Gresse et al.| [2017]) and muon
radiography was used to determine average density of geologic bodies at La Soufriére

volcano in Guadeloupe (Lesparre et al.|[2012]).

Thermal anomaly and infrasound monitoring are used in complementary with volcanic

gas and seismic monitoring, respectively, especially for well-monitored active volcanoes.
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1.1 Monitoring volcanic unrest

The advances in satellite remote sensing permit automatic global “hotspots” (i.e. areas
with anomalously high temperatures) detection (e.g. Wright et al.|[2002} 2004]) that
would indicate that an eruption already occured. But of course, these thermal anomalies
can often be confused with forest fires resulting in false warnings. One advantage of
detecting hotspots and taking their surface radiances during an on-going eruption allows
daily estimations of lava discharge rates and volume of the lava flow (e.g. Harris et al.
[2007]). Infrasound monitoring is rather a new field in volcano monitoring. Infrasound
sensors measure sound waves below 20 GHz as a result of explosive release of fluid into
the atmosphere (e.g. explosions, degassing bursts, jetting and eruption tremor, Pallister

et McNutt| [2015]) and can therefore act as an indicator that an eruption already happened.

Lastly, changes in water level measurements are often use as another precursory to
an impending eruption. The rationale was based on the water’s response to mechanical
compression or dilatation of confined aquifers (Newhall [2007]). In Mayon volcano for
example, local residents typically correlate the lowering of the water table to an eruption
that is soon to happen. However, in most cases of volcanic unrest worldwide, changes in

water level are not often observed, therefore can be inconclusive.

Further discussion

It has long been recognized that deformation alone is not sufficient to provide compre-
hensive insights about the mechanism of a volcano. For example, at Campi Flegrei, three
episodes of rapid uplift have been documented for the last seven decades but no eruption
occurred (Kilburn et al|[2017]). Indeed, integrated datasets are highly recommended
to ensure successful forecasting and timely delivery of warning especially to population
at risk. However, geodesy as a whole, has also been proven effective to detect volcanic
unrest that might have been neglected otherwise. For instance, out of the 198 volcanoes
systematically monitored by InSAR, Biggs et al|[2014] reported that 54 deformed and 25
from these deforming volcanoes actually erupted. Moreover, several basaltic volcanoes
have demonstrated pre-eruptive inflation behaviour such as: Kilauea and Mauna Loa vol-
canoes in Hawaii (e.g. |[Dvorak et Dzurisin [1993|, Lengliné et al.|[2008]), Axial Seamount
in Pacific ridge (e.g. Nooner et Chadwick| [2009]), Grimsvotn, Krafla and Askja volcanoes
in Iceland (e.g. |Sigmundsson| [2006], Sturkell et al. [2006], Lengliné et al. [2008], Reverso
et al| [2014]) and Okmok volcano in Alaska (e.g. [Lu et Dzurisin [2014]). It is worth

emphasizing that although magma can accumulate or be intruded at shallow depths,
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Figure 1.5: The mogi model in Cartesian coordinate system, N and E denote Northings
and Fastings. H; is the depth and a, is the radius of the magma chamber (spherical
cavity). Elastic constants, v and G are the Poisson’s ratio and shear modulus (i.e.
modulus of rigidity of the medium surrounding the sphere), respectively. In practice,
modelers use v = 0.25 and G = 10 — 30 GPa. ugr and u, are the radial and vertical
displacements measured by GNSS and/or InSAR at point S. The radial distance of S from

the magma chamber is Ry = /22 + 42 + H,? whereas, from the center of the volcano
axis it is given by, r = /22 4+ y2. Modified after Mogi [1958] and |Lisowski [2007].
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1.2 Modeling deformation

resulting in deformation at the surface, they can be arrested by cooling and solidification
or by intersection with a stress barrier (Rivalta et al|[2015], Biggs et al. [2016]). Thus,
volcanic eruption may be postponed or impeded. Nonetheless, deformation can be used
to detect precursors earlier than what volcanic gas and seismic monitoring can. For
example, according to [Sparks [2003], seismicity does not start until ~ 10™* of strain is
exceeded. [Dzurisin [2003] believes, including the author of this thesis, that the next
step is to formulate a deformation monitoring strategy especially at volcanoes where
magma accumulates aseismically, due to subsurface processes that are not detectable at

the surface by other monitoring techniques.

1.2 Modeling deformation

Modeling deformation data is necessary not only to understand the forces that acted
beneath the Earth but more importantly because it gives information regarding a potential
eruption. For example, what volume of magma must be injected into the shallow reservoir
to facilitate the rupture of this magma chamber and allow the magma to propagate as
hydrofracture? Or perhaps, what is the critical overpressure value (or displacement value)
required to initiate the tensile failure of the surrounding rock? (e.g. Pinel et Jaupart
[2003], |Albino et al.|[2018]).

Scientists approach the problem by comparing or fitting the data to the model predic-
tions provided by mathematical /numerical models. Often times, kinematic models are
used because of their simplicity and convenience. As mentioned earlier, kinematic models
interpret the observations without considering the processes, forces and mechanisms that
lead to these observable fields. In the context of volcano source modeling, kinematic
models are characterized by the location, shape and strength of the source of deformation.
In many cases, these models are based on elastic half-space assumption—a first approxi-
mation of the Earth. Basically, the Earth’s crust is assumed to be an ideal semi-elastic
body that is materially homogeneous and mechanically isotropic, such that it behaves
as an isotropic linear elastic solid (Lisowski [2007]). Laboratory tests show that rocks
behave elastically at low temperatures such that this becomes a valid approximation at
least for the upper crust. It follows that a viscoelastic medium is more appropriate for

the lower crust.
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The most famous and widely used model is the Mogi model (i.e. also known as point
pressure source, Mogi [1958]) or more generally known as the spherical pressure source
model after the corrections made by McTigue [1987]. The spherical source model can
actually be either kinematic or dynamical, depending on how the modeler approaches the
problem. If the change in volume is inferred at depth, then it is purely kinematic, however
if the change in pressure is rather estimated then it becomes dynamical. Note however,
that change in pressure can only be inferred if the radius of the magma chamber is quite
known (e.g. obtained from tomography), otherwise, it is impossible to separate the radius
and the pressure change for Mogi model. In Iceland, most of the deformation data are
interpreted using this spherical pressure source (Sigmundsson/[2006]). Although, there
are other existing volcano source models which are tied to specific geometries such as
sills, dykes, and ellipsoidal shapes (i.e. a comprehensive discussion on analytical volcano

deformation source models is written by |Lisowski [2007]).

In this section, I will not review all the models used in deformation modeling, rather,
I will attempt to build a discussion on the development of volcano deformation source
models, starting from a simple Mogi source model to more complex physics-based dynam-
ical models (e.g. Lengliné et al. [2008], |Anderson et Segalll [2011} [2013], Reverso et al.
[2014], Wong et al.| [2017]). The latter offers great potential for eruption forecasting.

The point pressure source model (Figure was proposed by Kiyoo Mogi after
observing that the vertical and horizontal displacements at Sakurajima volcano, Japan
and Kilauea volcano, Hawaii (Mogi| [1958]) can be explained by the inflation and deflation
of a magma body within the volcanoes. The accumulation of magma is represented
as a dilating point source in an elastic half-space. Given the elastic assumptions, the
3D surface displacement generated by the hydrostatic pressure change, AP;, within the

spherical shell is expressed as:

T

Up

1- Ra®
wn | = a2apt = V) A (1.3)
Uy 5553

It follows that the radial displacement can be written as, up = vVug? + un?.

One assumption of the point source model is that a, and AP, cannot be separated
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since they are characteristics of the source strength, C"

C = a AP, (1.4)

To show this, consider the two cases in Figure [1.6] Indeed, the same deformation field

can be observed given two different sets of a, and AP,.

Mogi| [1958] assumes that the radius of the magma chamber is very small compared to
its depth so that it acts like a dilating point. But this is not often the case because magma
bodies can be shallow and have finite shapes. McTigue| [1987] introduced a correction to
account for the finite shape of the source by applying higher order corrections for stresses
reflected back on the source by its image (Lisowski| [2007]). Equation therefore

becomes:

T

|- ) < ) [
" (1.5)

The first term describes the point pressure source and the second term is the correction
for a finite-sized cavity. If Mogi’s assumption is satisfied (i.e. as << Hy), the ratio of
the radius and the depth of the cavity will approach to zero (i.e. (as/Hs) — 0), and
everything will be simplified to equation (|1.3)).

In practice, modelers typically follow Mogi’s assumption as this offers diverse appli-
cations. For example, the point pressure source is valid to represent either a magma

intruding into a non pre-existing magma chamber or into a pre-existing one.

Volume estimation is one interesting advantage of using deformation data when com-
pared with any other monitoring techniques. Deformation can directly give information
about the volume of magma that flows in or out of the reservoir (AV,qgma) based on the
volume of the uplifted/subsided surface, AV.4;fice. The latter is defined as the integrated

ground surface change expressed as (Sigmundsson| [2006]):

oo 1 _
AVegifice = / wu2mrdr = 27TC'( e V) (1.6)

=0
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Figure 1.6: Vertical displacement maps given two different conditions of the magma
reservoir: Case A) smaller radius but higher overpressure, Case B) larger radius but lower
overpressure. Obviously, there is almost no difference between the two deformation maps.
This example is based on Westdhal volcano, Alaska (Lu et al. [2000]) where an inflation
of 16 cm was measured by InSAR between September 1993 and October 1998 due to an

inferred 9 km deep reservoir. After [2015].

According to Delaney et McTigue| [1994], for a spherical chamber, the ratio between

the surface volume change, AV,g;fic., and the change in the chamber’s volume, AV pamper,

only depends on the Poisson’s ratio:

A‘/edifice
A‘/chamber

This implies that for incompressible materials (i.e. v = 0.5), AVigifice = AVehamper- I

—2(1 1) (1.7)

practice, modelers use v = 0.25 (i.e. Poisson’s ratio for perfectly isotropic elastic material).

In this case,

2
AV;:hamber = gA‘/edifice (18)

Note that the volume of expansion/contraction of the magma chamber is not necessarily

equal to the volume of magma that flows in/out of the chamber (i.e. AViiumper =
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AV,agma)- This can be true, only if, the magma can be considered as incompressible,

otherwise if the magma is considered compressible, according to |Johnson et al.| [2000]:

()
A‘/ma ma — —A‘/e ifice 1.9
g 2(1 o I/) di f ( )

where GG is the modulus of rigidity of the host rock and K is the bulk modulus of magma

in the chamber.

For an oblate reservoir with a small thickness compared to its lateral dimension (i.e.
8(1—v)

sill-type), a scaling factor, 7, = =5, can be introduced (Amoruso et Crescentini [2009)],

Reverso et al. [2014]), equation (|1.9)) then becomes:

(1+§7€>

Avaa ma — S—A‘/e i fice 1.10

gma =Tyl =y T (1.10)
4 4G

=—|(1+— | AV 4 1.11

37T( + 3K> Vvedzfzce ( )

and equation ([1.7)) is expressed as (i.e. if AVyagma = AVeramber):

4
A‘/magma = 3_7TA‘/;difice (112)

Although the mathematics is simple and beautifully formulated to model volcanic
deformation, the spherical /point pressure source is mostly used as kinematic (i.e. because
it is not at all times that the radius of the reservoir is known to infer the change in
pressure). Therefore, it is not well-suited for constraints given by diverse time-dependent
data (Anderson et Segall [2013]). For example, the ambiguity in Figure can easily be
determined by exploiting the temporal evolution of the displacement field considering sim-
ilar magma and crustal rheologies—the pressurization of a small chamber is much quicker
than the larger one. Furthermore, although we can estimate the location of the source
and the surface volume change using the spherical pressure source model, the magmatic
processes (e.g. evolution of the stresses) or magma properties (e.g. viscosity, magma
compressibility) that give rise to the observations are difficult to obtain. Physics-based
dynamical models can rather relate magmatic processes to diverse sets of time-dependent

observations and allow predictions of the full evolution of the system (Anderson et Segall
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[2013]).

Consider a simple case where there is a continuous flow of magma towards the magma
chamber as shown in the physical model in Figure Under these circumstances,
magma travels towards shallow depth like a fluid lowing through a cylindrical conduit
(or pipe). Assuming that the ascent of magma follows a Poiseuille flow, then we can
derive the volumetric flow rate within the pipe (i.e. also equivalent to mass flux when

considering a given density) using (Pinel et Jaupart [2003]):

rat dP
=%

e 1.13
3 P g] (1.13)
where a. is the radius of the conduit, p is the viscosity of magma, p,, is the density of

magma, g is the gravitational force and dP/dz is the vertical pressure gradient.

In this model, there are two different pressures acting on the magma in the conduit: 1)
the [deep] source pressure, P;, which can be considered as a constant and 2) the evolving
pressure at the top of the hydraulic pipe within the magma chamber, P,(t). The latter
is caused by the constant replenishment from the deep source (Lengliné et al.| [2008]).
After accounting for these pressure sources, the evolution of the flow rate, Q(¢), can be

expressed as (Pinel et Jaupart| [2003]):

Ta.t

Qt) = 81 H, [(pr — pm)gHe + AP(t) — Apd} (1.14)

where p, is the density of the surrounding rock, AP;(t) is the overpressure on top of the

conduit (within the magma chamber) and AP, is the overpressure that corresponds to
the deep source pressure. If no magma flows out of the chamber during the accumulation
period, then using equations (1.4)), (1.6)), (1.7) and (L.14)), the overpressure evolution
within the chamber is given by the differential equation (modified from Lengliné et al.
[2008]):

dAP(t)  Ga;
TR (P —AP(t)) (1.15)

where P = AP; — AP,y + (pr — pm)gH. with AP;,;, being an initial overpressure value.
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Figure 1.7: A spherical reservoir fed by constant inflow of magma through a cylindrical
conduit. The model is presented in cartesian coordinate system (N and E denote Northings
and Eastings). H, is the depth and a; is the radius of the magma chamber (spherical
cavity). H. and a, are the length and radius of the conduit, respectively. The magma is
defined by its viscosity, v, and density, p,,. The host rock is characterized by its density,
pr, and elastic constants, v (i.e. Poisson’s ratio, v = 0.25) and G (i.e. shear modulus,
G = 10 — 30 GPa). ug and u, are the radial and vertical displacements measured by
GNSS and/or InSAR at point S. The radial distance of S from the magma chamber is
R, = /72 + H,? where r = \/22 + 2 is the radial distance from the center of the volcano
to point S. Modified after |Lengliné et al.| [2008].
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The analytical solution to this differential equation is simply:
—t
AP@p:P(l—emm—q) (1.16)
T
8uys Heal

Gat
vs = 1. It follows that equation ([1.3)) remains valid in relating the pressure evolution

where 7 = . For a sill-like reservoir, v = %(1 — v) whereas for a Mogi source,

to the time-dependent surface displacements.

Reverso et al.| [2014] extended the physical forward model of [Lengliné et al. [2008§]
to having a deep magma reservoir fed by a basal magma inflow rate, );,, instead of
having only a deep pressure source that supplies the upper magma reservoir (Figure .
Basically, in this case, there are two magma chambers embedded in an elastic medium
that are connected by a hydraulic pipe and fed by a constant basal magma inflow. The
model fits well with the post-eruptive displacements observed at Grimsvotn for its last
three eruptions (e.g. 1998, 2004, 2011). Instead of equation , the evolution of

the overpressures for the shallow and deep reservoirs are given by:

.
AP, =A(l—e ~ ti + AP, 1.17
A=) T AR, (117
’YSA _h Gan
AP, = l—e 7))+ t; + AP, 1.18
dy; Ya ( ) 7T<a537s + ad3’7d> dy, ( )
with A = %[AP@O — AP, + (pr — pm)gH.: — mﬁ}fﬁi;ﬁfiz@;)], ag is the radius of

the deep reservoir and v, is a scaling factor defined for the shape of the deep reservoir.

The overpressures are related to the displacements via:

1— 53 3
ug(r,t;) = ( Gv)r(asc—;%—gAPsti + ad%APdti> (1.19)
s d
(1—w) as’ agq’
UZ<7", tl> = (HS&S—APSti + Hdad—APdt_) (120)
G R R

where o, and g4 are scaling factors for the shape of the reservoirs (i.e. 1 for Mogi
source and % for a sill), H; and R, are the depth and radial distance of the reservoir,

respectively.
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Figure 1.8: The sketch of [Reverso et al.|[2014]’s two-chamber model presented in cartesian
coordinate system (N and E denote Northings and Eastings). The shallow reservoir with
dimensions, Hy (depth) and a, (radius), is connected to a deeper reservoir with dimensions,
H, (depth) and a4 (radius), by a hydraulic pipe of radius, a., and length, H.. The shape
of the reservoirs can either be a sill or a sphere. This would only depend on some scaling
factor, ;4 (i.e. for volume-pressure relationship) or as 4 (i.e. for displacement-pressure
relationship). The magma flowing through the hydraulic pipe is defined by its viscosity,
v, and density, p,,. Note that the deep reservoir is continuously fed by basal magma
inflow rate, ();,. The host rock is characterized by its density, p,, and elastic constants,
v (i.e. Poisson’s ratio, v = 0.25) and G (i.e. shear modulus, G = 10 — 30 GPa). ugr
and wu, are the radial and vertical displacements measured by GNSS and/or InSAR at

point S. The distance between S and the shallow chamber is R, = /72 + H,?> whereas,

Ry = \/r2 + H,? for the deep chamber. Note that r = \/22 + y2 is the radial distance
from the center of the volcano axis to point S. Modified after |[Reverso et al.|[2014].
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(a) Chamber-conduit system (b) Conduit model
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Figure 1.9: a) The physics-based forward model of |Anderson et Segall| [2011] for effusive
silicic eruptions, which was further developed by Wong et al| [2017] to include gas
transport and crystallization (b). After Wong et al. [2017].

66



1.2 Modeling deformation

Physics-based models that rather relate magma ascent from a magma chamber flowing
to a conduit and then exiting to a vent (e.g. Figure have been developed to
understand intermediate and silicic eruptions (e.g. Melnik et Sparks| [1999, [2002], Mastin
et al.|]2008]). |Anderson et Segall [2011] developed a physics-based forward model of
an effusive silicic eruption that links magmatic processes to observed time-dependent
data. The authors successfully estimated the volume, pressure, depth, volatile content
and properties of the conduit, by combining the model with Bayesian-based inversion
(i.e. MCMC) of GPS and lava dome extrusion data of Mount St. Helens volcano, USA
(Anderson et Segall| [2013]). Wong et al.|[2017] elaborated Anderson et Segall| [2011]’s
model to include crystallization and gas transport in the conduit to more realistically

emulate phase changes during magma ascent.

Other existing models like BEM, which is also a dynamical model, can account for
realistic topographies and any shape of a pressurized source (Cayol et Cornet| [1997]).
BEM, however, requires intensive calculations as stresses are calculated within patches or

mesh.

Further discussion

Kinematic models can be considered as valuable proxies to explain the displacements
measured at the surface despite the inherent simplifications in their formulation. However,
because they are kinematic, the magmatic processes and/or magma properties that give
rise to the time-dependent dataset are not fully and directly determined. Therefore
kinematic models are not really suitable for analyzing time series of data and thus,
become less interesting in terms of forecasting and undestanding the temporal behavior

of a volcano.

Concerning the Reverso et al| [2014]’s two-chamber model, indeed, the model is
based on idealized assumptions representing the complex plumbing system. For example,
magma compressibility and different crustal rhelogies have so far been disregarded in the
model. However, it is also worth mentioning that the two-chamber model is generic as it
can represent either a single or a multiple reservoir system. The former would require
that ag/as = oo with @Q;, = 0. As for the latter case, the model only represents the
upper part of the multi-reservoir system. Furthermore, the two-chamber forward model

can be implemented with ease and speed. Therefore it becomes an attractive tool, at
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least for first-order approximations, to relate the evolution of subsurface processes to
time-dependent displacements observed at the surface. When coupled with an optimal
estimation technique, which can also accommodate large amount of incoming data, the
strategy can offer great potential to perform [near| real-time forecasting of the rupture of
a magma chamber that may subsequently lead to an eruption. These arguments justify
the choice of using the Reverso et al.|[2014]’s two-chamber model as the [only] forward
dynamical model used in this thesis. This choice is to first build a fast and effective data
assimilation strategy which is a crucial requirement during the monitoring of volcanic
unrest. Further discussion regarding the pros and cons of using this dynamical model

will be presented in the succeeding parts of this work.

1.3 Eruption forecasting

The emplacement and migration of magma at shallow depth leads to precursors that
can be recorded by geophysical and/or geochemical instruments signaling that the volcano
is restless. Eruption forecasting can be divided in at least two phases (Figure [1.10)): 1)
long-range (i.e. forecasting up to the rupture of the magma chamber) and 2) short-range
(i.e. forecasting the timing and location of a possible eruption) forecast. Geodesy allows
tracking of the pressure while it builds up inside the magma chamber during inter-eruptive
periods (typically in years or decades) such that scientists are able to issue long-range
forecast on whether the inflating shallow magma chamber will likely to rupture or not.
Indeed, this thesis is focused mainly on this time window of forecasting by using the
two-chamber dynamical model and fixing a failure overpressure value that would indicate
that the reservoir is already in a critical stage of rupturing. Others link seismicity to the
progressive failure of rocks to model the strain weakening of rocks and the subsequent ac-
celeration of the deformation prior to the failure of the magma chamber using the “damage”
concept (Carrier et al|[2014], Got et al.|[2017]). However, one limitation of the damage
model is related to the downtrending pressure evolution leading to an eruption, which is

actually inconsistent with what is empirically observed and the volume of extruded magma.

One of the most traditional approaches in eruption forecasting is the material failure
forecast (i.e. popularly known as FFM) introduced by [Voight| [1988]. The basic idea
of FFM is to predict the timing at which failure can be reached and eventually initiate
an eruption by fitting a power law curve into the seismicity. However, its successful

application in real-time eruption forecasting as in the case of the explosive eruption
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Phase Il: Short-range forecast

Phase I: Long-range forecast

(hours to weeks or months)

(years to decades)

Magma migration/

Dyke propagation

Inelastic behavior
towards rupture

Magma ascent

Figure 1.10: Sketch showing the two phases in eruption forecasting—Ilong-range and
short-range forecasting.
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at Tungurahua volcano in Ecuador (Tarraga et al|[2008]), is not always the scenario

especially when seismicitiy is characterized by multiple acceleration patterns (Boué et al.

[2015]).

The fate of a rising magma or propagating dyke once tensile failure has started
remains unknown. More often, the propagating magma does not get through at the
surface of the Earth as they get arrested at depth. Nevertheless, once magma migration
is evidenced, the exact timing and the location of the eruption needs to be estimated
in real-time to ensure the timely delivery of warnings. Recent studies in tracking the
migration of magma have been proposed by (Cannavo et al. [2015] and Guldstrand et al.
[2018], highlighting the importance of high-rate deformation data to ensure accuracy in
predicting the location of its emplacement at the surface. In particular, |Guldstrand et al.
[2018] demonstrated through scaled laboratory experiments that following the evolution
of the “vector” between the center of the uplifted area and the point of maximum uplift
can eventually provide the timing and location of the eruption. |Cannavo et al. [2015]
takes advantage of real-time GPS data and a free geometry magmatic source model to
track the inflation and deflation sources in time also allowing to estimate the location of
eruption. Both studies are great examples of helpful tools to activate eruption warning in
time which are indeed beneficial for the civil protection groups. Segall [2013] on the other
hand, emphasized the need to combine diverse datasets, such as seismic and geodetic
data to improve the “imaging” of a propagating dyke. This has been proven effective

during the 2014 Bérdarbunga-Holuhraun eruption (Sigmundsson et al.| [2015]).

Following the onset of eruption, the next step is to predict the future state of the
volcano. In [Segall [2013]’s work, the author was able to successfully combine the physics-
based dynamical model of Anderson et Segall [2011] and MCMC inversion. The model
parameters from the inversion were used as input to the physics-based forward model
in order to estimate the total erupted volume at Mount St. Helens after 3.5 yrs, given
only 2 yrs of data. The resulting volume agrees well with the observed eruptive volume.
However, since the model does not include cooling and crystallization, it was impossible

to actually determine when the eruption will cease.

Newhall| [2007] is rather focused on disaster risk and mitigation as well as the timely
delivery of warnings, believing that information from short-term and long-term forecast
must be integrated through the use of event trees (e.g. Newhall et Hoblitt| [2002], Neri
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et al. [2008], Marzocchi et al.|[2008]) and Bayesian belief (e.g. |Aspinall et Woo, [2014],
Hincks et al.|[2014]) by estimating the probabilities at each node of an event tree and

then performing a Bayesian update once new pieces of information come.

1.4 Summary and Perspectives

Volcano monitoring techniques allow us to record subsurface processes occuring be-
neath the volcano and to detect anomalous signals that can be correlated with imminent
volcanic eruption. However, when used individually, they provide ambiguous analyses
and sometimes unrealiable forecasting results. It has long been recognized the need to
use various datasets and combine them with realistic physics-based dynamical models
(Sparks| [2003], [Segall [2013]) in order to fill the gaps in our understanding of the causative
processes that lead to volcanic unrest. In the next chapter, I will address the issue of
filling the gaps in information and how one can objectively combine models and data to

obtain an optimum result in forecasting.

Without a doubt, in terms of eruption forecasting, we have to move from pattern-
based recognition to a more intuitive physics-based approach. The first step is to build
realistic and deterministic models that we can use as a framework to include various
observation datasets in a single forecast. Subsequently, these physics-based models should
be coupled with a probabilistic technique in order to consider and estimate uncertainties.
In this case, Bayesian-based inversion like the MCMC as adopted by [Anderson et Segall
[2013], demonstrated great potential to infer unknown model parameters. The estimated
model parameters which are in a form of posterior distributions, can then be used as
input to the physics-based forward model to allow forecasting of the next state of the
system, in this case, the next behavior of the volcano. Indeed, although the model is
deterministic, the results yield probabilistic forecast since the model parameters are
sampled from a prior distribution and constrained by given dataset. However, inversion
still has some limitations which includes: a) inefficiency to incorporate data in real time,
b) model errors are often neglected during the process and c) difficulty in estimating
time-dependent parameters. In the following chapters, I will address these issues by
proposing a complementary tool to inversion in order to follow the evolution of the
pressures within the magma chambers as well as to estimate constant and/or evolving

uncertain parameters of the model.
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Chapter 2

Overview of Data Assimilation
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The motivation of this chapter is to present the mathematical formulation of data
assimilation. I will begin by discussing the role of data assimilation in filling the gaps
in information, followed by the fundamentals of data assimilation, its elements and the
two main approaches of data assimilation based on: 1) estimation theory and 2)
optimal control theory. 1 will give focus on sequential data assimilation which is a
subcategory of estimation theory, discussing the family of Kalman Filter methods, in
particular, EnKF which is the main assimilation method used in this thesis. Then, I
will present the strengths and weaknesses of the two standard techniques currently used
in NWP centers—EnKF and 4DVar. Finally, I will provide a review of several studies
that have applied KF-based approaches to problems in volcanology as well as the recent

developments in volcanic data assimilation.



OVERVIEW OF DATA ASSIMILATION

2.1 Data assimilation and the need to fill informa-

tion gaps

Whether we are talking about climate change, thinning of the ozone layer, impact
of natural disasters to humans or simply asking “will it rain tomorrow?”, there is the
obvious need for information in order to make intelligent decisions about our future
actions. Information are obtained not only from observations but also from the results
of model simulations, as such, the reader should refer to this definition of information.
Indeed, the more accurate the information that we have, the better that we can design our
plan of actions. According to |Lahoz et al|[2010], there is a generic chain of information

processing which involves the following:

1. Gathering of information.
2. Testing of hypotheses given the information.

3. Building strategies using the information in order to change, mitigate and/or adjust

to the course of events.

4. Making predictions based on these strategies.

There are two important steps in this processing chain: the first one corresponds to
acquiring information and the second one is developing methodologies using these informa-
tion. On one hand, observations are the measurements of a particular system-of-interest.
However, because observations are discrete in space and time whereas the true state of
the system is continuous, these often result in [information] gaps. Linear interpolation is
one of the common ways to fill the gaps in the observations especially if a dense amount of
observation is available. Although this approach is consistent [[] it is not objective and we
gain little to nothing of the actual system properties that would explain these observations.
Furthermore, observations are not free of noise, particularly during acquisition and pre-
or post-processing. Models on the other hand, provide quantitative and/or qualitative
understanding on how the system evolves (i.e. spatially and temporally) and give rise to
the observations. In practice, we seek for models that are realistic and tractable. Take
note that it is impossible to represent the true state of the system hence models always

incorporate errors. Combining models with observations while taking into account their

! An estimator is consistent when it converges towards the true value of the parameter if the number
of samples or measurements approach towards infinity
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respective errors are the best way to fill information gaps. However, to determine the

optimal combination that will give the best result remains a challenge.

Thanks to data assimilation, one can have the “best” estimate of the state of the
system objectively by either minimizing a so-called penalty function (i.e. cost function)
or taking the maximum of the a posterior: distribution (i.e. MAP) given an a priori
information about the state. In terms of formal definition, data assimilation refers to a
set of statistical method that uses all the information available in order to improve our
knowledge about the past, present and most importantly, the future state of a system. It
is the opposite of a forward problem where model parameters are known and are used to
estimate or predict the model state that is fully or partially observed. Data assimilation
is rather an inverse problem that utilizes observations to gain information about the
sources of the phenomenon under consideration. The basic concept of data assimilation
consists of correcting the trajectory of a dynamical model of a phenomenon such that it
will provide an optimal fit with the observations over a time window of interest (Fournier
et al][2010]) by controlling: 1) the state variablef?| and/or 2) other model parameters
(Jarlan et Boulet| [2014]). State variables are updated at each time step once observations
are available (e.g. case of KF-based approaches and the Particle Filter) or corrections
are made to the initial state of the state variables while using all the observations within
a given time window (e.g. case of the variational techniques, Kalman Smoother-based
approach). Other model parameters are adjusted or calibrated in order to reduce the

discrepancy between forecasts and observations.

A rough timeline of the development of data assimilation (i.e. based on Fournier et al.
[2010] and [Cosme| [2017]) is presented in Figure [2.1] It was initially intended for NWPs
and started even before the invention of computers. Nowadays, it also gained popularity
in many other fields of geosciences (e.g. natural land surfaces, hydrology, natural resource
exploration and geomagnetism), including the very recent interest to solve problems in

volcanology.

2Model parameters or variables that fully define the physical state of a dynamical system. They have
direct link to the observations through an operator and can evolve from one step to another via model
operator; also known as the prognostic variables.
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1922

1950

1954

1955
1963

T Lewis Fry Richardson first tried the Numerical Weather Prediction (NWP)
using human calculators, but without success.

_|_ Early computers led to the numerical interpolation approach of Charney
et. al. [1950]

Bergthorsson D606 interpolated a numerical forecast to observation location
by introducing the innovation vector (i.e. difference between
observation and forecast) then interpolating back to the numerical grid.

Statistical interpolation: Bayesian approach to put weights to the forecast
and data (Eliassen [1954] and Gandin [1963]).

1970s 7|~ Nudging

1980s |~ 3DVar and Optimal Interpolation

1990s [~ 4DVar and Kalman filter
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Figure 2.1: The historical perspective of atmospheric data assimilation.



2.2 The physical system: State, observations and errors

2.2 The physical system: State, observations and er-

rors

The main elements of data assimilation include the dynamical model, the observations
of all or part of the model variables, the variables related to the model variables and the
error statistics. In this section I will further elaborate their definitions as presented in

data assimilation.

Consider a vector, X, of size N,. Each element of X is a variable defining the
full physical state of a dynamical system (i.e. magma overpressure or volume change).
However, in practice, we may also want to correct and/or estimate several variables
which include control variables such as the initial conditions, the forcing function and/or
uncertain model parameters (e.g. height of the conduit, radius of the reservoir, magma
inflow rate and etc.). If other control variables are included in X, we call it as the
augmented state vector. X represents a continuous state in time and space rather
than a vector of finite dimensional discrete variables. One way to represent a continuous

variable consists of discretizing it:

X =TI(X) (2.1)

IT is the operator that projects the infinite dimensional space to a finite-dimensional
vector and X' is the projection or sample of X, such that, X' can be considered as the
numerical true state vector or simply the “truth”. The explicit estimate of the true state
X1 is written as:

X=X 4¢ (2.2)

X? stands for the background estimate of the unknown state vector X or the prior

obtained from a recent forecast or model simulation, and €’ is the background error.

The data measurements or vector of observations, D, with size IV, is linked to the

continuous space via:

D = h(X) + ™ (2.3)

h is the vector that maps the infinite-dimensional state into the observation space and

€™ is the instrumental error often related to acquisition process. Discretizing equation
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(2.3]), it then takes the form:

D =HII(X)+€em (2.4a)
D=HX")+e +em (2.4b)
D =H(X") +e (2.4¢)

‘H is the discretised observation operator that creates a link between the numerical true
state and the observations, € is the combined representation, ¢, and instrumental errors,
e™. The representation error, €”, provides an additional source of error to account for
the imperfect representation of the map H, as our knowledge of D only gives a partial
and flawed information about X' (Bocquet, [2017]). Moroever, in some cases, there is
no absolute relationship between the true state of the system and the observations. For
example, in volcano deformation studies, we measure the ground deformation at the
Earth’s surface through ground-based or satellite-based instruments and then relate it to
a reservoir beneath a volcano to infer the pressure. However, simple relationship between
ground deformation and pressure such as the Mogi model (Mogi [1958]), is characterised
by geometrical parameters like the radius or the depth of the reservoir, which are often
an oversimplified representation of the actual shape and form of a magma reservoir. Also,
traditionally, volcanologists only consider a single reservoir contributing to the surface
deformation when in reality there may be multiple reservoir governing the system. All of

these arguments further complicate the transformation between D and XT.

Note that €” and € are usually uncorrelated (i.e. Eeb¢’ = 0) in data assimilation. The
covariance of €® is called the background error covariance with dimension, N, x N,. It is
defined by:

P = E[ebe] (2.5)

whereas the error covariance of € is called the observation error covariance having a

dimension, N,, X N,, and is of the form:

R = E[ec" (2.6)

A good knowledge about P and R are important in data assimilation, since they
condition the quality of the analysis. In most cases, a diagonal matrix is used for R

for the sake of simplicity, implying that observation errors are assumed independent
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from each other. However, temporally and/or spatially correlated noise may be present
in the displacement measurement dataset. For instance, in radar interferometric data,
atmospheric noise is embedded within the displacement signal over large area. |Bekaert
et al.| [2016] pointed out that ignoring the covariance of InNSAR measurement errors would
result in treating the spatially correlated atmospheric noise as part of the signal. It
is worth noting that a precise characterization of the covariance between observation
errors is not always possible. An ill-estimated observation error covariance may result in
erroneous estimations. In order to take into account the observation error correlation,

the observation error is usually increased.

Given a discrete series of observations (i.e. t; = [0,1,2,...K]), equation (2.4c| takes

the following form:

Dti+1 = Hti+1 (XT

tit1

) + 6ti+1 (27)

In practice, we use a dynamical model, M, to propagate the true state from one time

step to another (i.e. t; to t;41):

XT - Mti+1 (Xz:r,) + qt;q (28)

tit1
where ¢ is the model error. The model error can be related to errors due to the: 1)
misrepresentation of the system (i.e. simplification and idealization in the modeling),
2) computational grid and discretization of the model, and 3) errors related to model
parameters. In the case of “perfect model” assumption, the dynamical model uniquely
translates the state of the system at all times. Note that data assimilation methods may
or may not consider model errors. For instance, in 4DVAR, model errors are typically
neglected on the basis of “strong constraint” assumption (Talagrand [2010]) whereas in
Kalman-based assimilation, the model errors are taken into account. The covariance

matrix of the model error, (), is written as:

Q= Elaq"] (2.9)

Similar to R, a good knowledge about () is necessary to satisfy the quality of the resulting

state estimation.

Theoretically, it is impossible to exactly know even the numerical true state vector,
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thus we estimate it and the result of the optimal estimation is called the analysis, X“:
X =XT 4 ¢ (2.10)
The error covariance of the analysis, €*, (i.e. dimension is N, x N,) is defined as:

P = Elee™] (2.11)

2.3 Data assimilation methods

If the model and observation errors are considered as random variables, as in the case
of equations and , the model state and observations can also be interpreted
as stochastic variables allowing a Bayesian probabilistic approach of combining them to
obtain an optimal estimation. In this section, I will discuss the Bayesian foundation of
data assimilation followed by the mathematics behind data assimilation methods based

on either the 1) estimation theory or 2) optimal control theory.

The discussion about data assimilation methods that are based on estimation theory
begins with the statistical interpolation technique, in which under special conditions
would lead to the BLUE equations. After that, the KF is introduced. KF is basically
an extended but a more sophisticated approach of the BLUE analysis as it considers
an important factor—the temporal evolution of the system. Afterwards, I will present
some spin-offs of KF that were previously applied in volcanology with focus on the EnKF

approach. EnKF is the assimilation method used in this thesis.

A general discussion about data assimilation methods based on optimal control theory
will be presented. In particular, I will briefly introduce 3DVar and 4DVar. 3DVar is the
variational equivalence of the BLUE analysis (i.e. if the errors are Gaussian) and under
some conditions, the 4DVar becomes a rigorous equivalence of the KF at the end of a
certain time window of interest (i.e. 1) the observation operator H, and model operator,
M, are linear and 2) the evolution of the model is deterministic, meaning, the error of

the model is negligible).

The last part of this section focuses on the advantages and limitations of EnKF and
4DVAR~—the two operational methods currently used in NWP.
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2.3.1 Bayesian formulation of data assimilation

Here, I will revisit the bayesian formulation discussed by |[Evensen| [2009] as the basis

of the assimilation methods. Consider the Bayes’ theorem:

p(x)p(D|x)

D) (2.12)

p(z|D) =

where p(x|D) is the posterior density of x given observation D, p(z) is the prior density
for the first guess X°, p(D|x) is the likelihood of the observations given x, p(D) is a
normalization factor necessary to ensure that the integral of the posterior distribution is
equal to one. Equation can be expressed as:

p(z|D) o< p(x)p(D|x) (2.13)

Assuming that the prior and likelihood functions are Gaussian, then from equations

and we can define:
r~N(X° P, p(x) exp< — %(x — XH)TPt (z — Xb)> (2.14)
and
D|z ~ N(Hz,R), p(D|z) x exp( — %(D —Ha)'RY(D — ’H:c)) (2.15)
This will allow us to write the posterior density as:

plalD) x cap - 37(0)) (2.16)

where

J(x) = |(X* —2)TP" (X" — 2) + (D — Ha)"R~Y(D — Hz) (2.17)

The optimal solution for x (i.e. £ = X) can be done in many ways, such as 1) finding
the mode of p(z|D) (i.e. MLE) by least squares solution or 2) computing for the minimum
variance estimation (i.e. V.J(z) = 0). Note that in the case of Gaussian distribution, the

least square solution is also the minimum variance estimation.
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% : observation y*

I: forecast error e/ (P/) . observation error €’(R)

c(pe) e—=e: Model trajectory

Figure 2.2: The sequential assimilation approach (from [Fournier et al., [2010]). Given
initial conditions at %y, the model can be propagated forward without any constraints
up to a time window of interest, tx. The result is the green dashed line. Notice the
growth of the forecast error while no observation (red star) is available (i.e. error bars of
the green points from ¢, to ¢;1). When observation is entered into the sequential data
assimilation method (i.e. at ¢;11), an analysis (bright green point characterized by a small
error) is performed, correcting the trajectory of the state initially given by the forecast.
The process is repeated until the next observation is available.

2.3.2 Data assimilation based on estimation theory
Statistical interpolation: Best linear unbiased estimate (BLUE)

Statistical interpolation is a basic approach that consists of extrapolating the data
based on statistics and its historical behavior. Under certain conditions that the mean
and covariance of the variables being estimated satistfy the BLUE analysis (i.e. optimal,

linear and unbiased), the statistical interpolation becomes the “optimal” estimator.

Consider X* as the final estimate described by the linear combination of the back-

ground state and the observations, such that:
X*=AX"+ KD (2.18)
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A is a matrix of size N, x N, and K is a matrix of dimension N, x N,,. To achieve

optimality, we seek for A and K such that:

E[e] =0 (2.19)

tr(Pa) — minimum (2.20)
tr(P?®) is the trace of the analysis error covariance. These conditions can be satisfied if:

A=T-KH (2.21)
K = PPHT(HP"H" + R)™ (2.22)

The following analysis equation (i.e. updated equation ([2.18])) and corresponding
error covariance define the best linear unbiased estimate (BLUE) equations based on

minimum variance constraint:

X=X+ K (D—-HX" (2.23)
S~
innovation vector

P*= (I — KH)P* (2.24)

Sequential data assimilation: Kalman Filter

The sequential assimilation method on the basis of Kalman Filtering, extends the
BLUE analysis to a temporal dimension. It introduces the dynamical model in order to
simulate the real evolution of the system through time. Resulting model predictions are
corrected whenever data are made available (Figure [2.2]).

KF or often called as linear KF is the optimal sequential assimilation for linear
dynamical problems initially proposed by Kalman [1960] to track the evolution of the
error covariance. However, KF has been extended to further applications depending
on a given time of observation, t;. There are three possible scenarios (Figure to
constrain the state of the system (Kalman| [1960], Fletcher| [2017]):

1. If t; < tg, this is called data interpolation or smoothing problem. All observa-

tions are used to estimate the past state of the system.
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1. Smoothing

e
t t

0 i

~
x

2. Filtering

t, t t

i= K

3. Prediction

t, t, t

K i

Figure 2.3: Schematic diagram describing the three possible scenarios of the estimation
problem: estimating the 1) past (smoothing), 2) present (filtering) and 3) future (predic-
tion) state of the system. The blue bar corresponds to the dataset used to estimate the
state of the system at ¢; (vertical broken line).

2. If t; = tk, this is called filtering problem. All observations are used to estimate

the state of the system at all times (i.e. estimating the present state of the system).

3. If t; > tg, this is then called prediction problem. Observations up to tx are used

to estimate the future state of the system.

Note that all of these cases are considered by Kalman| [1960| as an estimation problem.

The KF method follows a two-step procedure: 1) the forecast step and 2) the analysis
step. In the previous sections, we denote the prior knowledge about the state and its
error covariance as X® and PP, respectively, where b stands for the background. In
the context of sequential assimilation, we shall use X/ and P/ (i.e. f denotes the term
forecast) instead as this comes from a previous forecast. If t; = 0, then f is simply the

background state that often comes from initial conditions.
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Forecast step. The forecast step is basically time stepping the system from ¢; to ;..
As presented in equation [2.8] the true state will evolve according to the dynamical
model, M. The numerical state will evolve by:

Xf

tit1

= Mti+1 (XZ) (2'25)

X7 is the result of the analysis from the previous time step. From equation ([2.2)) we

can write the forecast error as:

f o _ vf 1

Eti+1 - Xt7;+1 - XtH_l 226)
= Mti+1 (XZ) - X;Fi+1 (227)

If M is linear, then using equation ([2.10)) will give us:
el ., =Mt + My, (X)) = X (2.28)

Grrr1
and the forecast error covariance matrix:

£ [€£+1(6£+1)T:| = Ptj;q - |:(Mti+l€?i + Qt¢+1>(Mti+1 EZ + Qti+1)T:| (229)
- Mti+lg |:€Z(€?Z-)T:| Z;_,_l + & |:Qti+1 (Qti+1)T:| (230)
Pt‘}:-!—l = Mtl+lPtalMZ+1 + Qtz‘+1 (2.31)

Analysis step. This step is where corrections to the forecast state vector are made
using available observations at time step, ¢;;;. Unless necessary, I will drop the time
descriptor when presenting the analysis step equations for the sake of simplicity. This will
also be the case for the succeeding subsections describing other members of the KF-family.
The KF analysis step follows exactly the BLUE equations in section [2.3.2] such that:

K = PPHT(HP'H" + R)™ (2.32)
X=X+ K(D—-HX) (2.33)
P*= (I - KH)P! (2.34)
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Practical implementation: Kalman Filter (KF)

1. Initialisation
XtJ; and Pt{)
2. Forecast step
a. Propagate the model (i.e. ¢; to t;41):
X = M (X))
b. Calculate the forecast covariance error:
Pl =M M+ Qi
3. Analysis step (i.e. for ¢;.;)
a. Calculate the Kalman Gain:
K = PH'(HP'H" + R)™!
b. Update the state estimate:
X=X+ K(D-HXT)
c¢. Compute for the analysis covariance error:

P*=(1—-KH)P!

K is called the Kalman gain, which gives weight to the innovation vector (i.e. additional
information brought in by the observations in comparison with the model prediction).
Because this step follows the conditions of the BLUE analysis, X* becomes the optimal
estimate of X1 given a vector of observations D. Note that, X¢ is often called the

updated state vector or analysis state vector.

The innovation vector, Y = D — H X/, and the residual, R = D — HX*?, are common
diagnostic tools to assess the posterior consistency of the data assimilation method
(Fournier et al.[2010]).

Discussions: No observation. What happens when there is lack of data that can be
sequentially assimilated due to unexpected events such as perhaps, problems with the
instrument itself or poor quality of the data? For example, ground-based instruments

such as GPS (or GNSS in general) may require on-site maintenance, replacement of
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antennas or in a more unfortunate scenario, total destruction of the instrument. Another
example concerns the quality of received data, in operational weather forecasting, low
quality data are often disregarded. InSAR data are often perturbed by the atmosphere
and the ionosphere (i.e. for L-Band radar data) and most volcanoes are highly covered by
vegetation which then affects the coherence of the pairs of radar data therefore affecting
their quality. These examples can obviously result in losing several days up to months of
data.

In sequential data assimilation, the dynamical model has the ability to predict the
next state of the system hence the answer simply boils down to the forecast step equations
(e.g. equations and (2.31))) while no observation is available. However, it is
important to note that if the dynamics is unstable and the interval without observation
is sufficiently long, the error will grow uncontrolled and only the re-introduction of data
will reduce the error (Bocquet| [2017]) as shown in Figure [2.2]

Perfect observations. Assuming a strong confidence on the observations (i.e. € = 0)
the Kalman gain from equation ([2.32)) is equal to %! and provided that there are as
many observations as the state variables and that they are independent (Bocquet| [2017])

(i.e. H is invertible). The rest of the KF equations follow the forms:

1. The analysis covariance, P* = 0.
2. The analysis state, X* = H~'D.
3. The forecast error covariance, PY = Q.

4. The forecast state, X/ = MH'D.

In the case that H is an identity matrix, the system is fully estimated by the observations
(ie. X )

tit1

= M, (X{) = My, ,(Dy,)) and the errors are only dependent on the model
= Mti+1 PgMT +Qti+1 = Qti+1)‘

error (i.e. P/ .
tit1

tit1

TV
=0

Limitations. Two main issues arise from the KF algorithm (Evensen| [2009]): 1) stor-
age and computational cost considering high dimensional problems, and 2) when the
dynamical model model, M, is non-linear. For the first issue, the forecast/analysis error

covariance is of the size N,? given a state vector of dimension N,. Rank reduction could
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address the issue in dimensionality (Cosme|[2017]). Furthermore, the computational cost
of propagating the error covariance becomes 2N, of the model integration time. This
makes it impractical for volcano applications especially if one is using a finite element
model with high resolution mesh. A way to get around this is to use the square root
formulation of the covariance matrix. Others settle to adopt a frozen covariance matrix
instead (i.e. known as the optimal interpolation) however, this approach suffers from the

lack of the dynamical information on the error statistics (Sanchez| [2016]).

The second problem concerns the non-linearity of the dynamical model which can
destroy the Gaussianity of statistics. Although replacing M by its tangent linear opera-

tor M’ (i.e. EKF) can solve the issue at least for those systems that are weakly non-linear.

In addition to the aforementioned limitations, take note that KF equations require to
have an estimate of ) in order to calculate P/. This is something that is very difficult
if not impossible to accurately define. In volcanology, available dynamical models are
oversimplified representation of the reality. Besides, there is no direct observation on how

the volcanic system works which adds to the complication when defining the model error.

Kalman Filter spin-offs

Since the development of the linear KF, a lot of studies have been dedicated to improve
and address its main issues. Three of these are discussed below and have been applied to
problems in crustal deformation: 1) EKF, 2) UKF and 3) EnKF.

Extended Kalman Filter As briefly mentioned above, in the case of weakly non-
linear dynamics, the model and observation operators can be linearised by their tangent
linear approximations extending the application of KF to non-linear case hence the name
Extended Kalman Filter:

,  OM

M = e . (2.35)
,  OH

Y = % . (2.36)
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Forecast step. The forecast step for the state vector uses the non-linear model
propagator whereas for the error covariance the tangent linear approximation is adopted:

Xf

tit1

= M,,,, (X}) (2.37)

Pf

tit1

= M/ti+1 PZM/Z;_;H + Qti+1 (238)

Analysis step. The analysis step at ¢;,1 of the EKF is desribed below, except for

X, the rest of the equations use the tangent linear operator.

K = PH"(HPH" + R (2.39)
X=X+ K(D—-HX) (2.40)
P = (I — KH)P! (2.41)

Discussion. The EKF equations are similar in form to the linear KF equations
replacing M and H with their tangent linear approximations for the calculation of the
error covariances and the Kalman Gain. Although it addresses the issues related to
the non-linearities of the model operator or observation operator, EKF often leads to
poor error covariance evolution and unstable error covariance growth (Evensen! [2009]).
Furthermore, like in the linear KF method, EKF can only be used with low-dimensional
dynamical models. UKF and the ensembled-based KF are improvements of the EKF,

targeting high-dimensional non-linear data assimilation problems.

Unscented Kalman Filter UKF is an improvement of the EKF algorithm based on
a deterministic sampling approach (Wan et Van Der Merwe [2000]). Like in the EKF,
the state of the system is also a Gaussian Random Variable for UKF. We know from
section that in the case of EKF, the state is propagated by computing the tangent
linear approximations of M and H to perform first-order linearisation of a non-linear
system. However, this often leads to suboptimal performance and also divergence of the
filter (Wan et Van Der Merwe, [2000]). A rigorous discussion and derivation of the UKF
equations can be found from the works of [Julier et Uhlmann| [1997] and Wan et Van
Der Merwe| [2000]. Below, we will only provide the necessary equations to implement the

technique.
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Practical implementation: Extended Kalman Filter (EKF)

1. Initialisation
X/ and P/
2. Forecast step:

a. Propagate the model (i.e. ¢; to t;41):

X1 =My, (X7
b. Compute for the tangent linear of M:
M= M
0X Xig
c. Calculate the forecast covariance error:
Pt{ﬂ - M,ti+1Pt(ZM/t7;+1 + Qti+1

3. Analysis step (i.e. for ¢;,1):

a. Compute for the tangent linear of H:
b. Calculate the Kalman Gain
K=PHT"HPH" + R
c. Update the state estimate:
X=X+ K(D—-HX7)

Xtg

d. Compute for the analysis covariance error:

P*=(1—-KH)P!

Selection of sigma points. In UKF, the state distribution is represented by a
set of sample points called sigma points, therefore the algorithm starts by carefully
selecting these points. The vector of sigma points, X, is a collection of 2L + 1 sigma

points defined as:

i

Xl = [Xt + /(L + )\)Pﬂ} (2.42)

where A is a composite scaling parameter (hyperparameter), L is the dimension of the

augmented state, X L= [XfithiTetiT]. Note that hyperparameters are used to optimize
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the performance of the filter to get an efficient choice of sample points (Fournier et al.
[2009]).

Forecast step. The forecast state step follows the equation of the linear KF (i.e.
equation ([2.25))) when propagating the state to the next time step. The equation is
applied for each of the sigma points, [ =0, ..., 2L:

Xf

Litig

= Mt¢+1 (Xl?ti) <2'43)

The mean and covariance of the forecast state is given by:

2L
X7 => "Wy (2.44)
=0
2L
PF=Y"wrx{ - X7)(x{ - X7)" (2.45)
=0

W/ and Wy are the mean and covariance weights, respectively. Where, W = W} =

2(L—1+,\). Note that at [ = 0, W* = ﬁ and W§ = (L-)',\-)\) +1—a?+ B. «ais used to

determine the spread of the sigma points and f is used to incorporate prior knowledge of
the distribution (e.g. § = 2 for Gaussian distribution, [Wan et Van Der Merwe, [2000]).

The sigma points are projected to the observation space via:

D] = H(X]) (2.46)
with its mean defined as: .
—f m
D' => Wr(D]) (2.47)
1=0

Analysis step. To calculate the Kalman Gain, K, it is necessary to first calculate
the covariance of the forecast observation vector D and the cross-covariance of the forecast

state X/ and D:
2L

c _f _f
Php =Y WD/ =D)(D/ =D")" (2.48)

=0
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Figure 2.4: The construction of the error covariances in EnKF (from [Sanchez| [2016]).

2L
c _f _f
Pip= Z Wi(X/ - X" (D] - D")" (2.49)
=0
K =Pl P, (2.50)

The analysis state vector and the error covariance at ¢;,, are given by:
X = X7 + K(D] - D) (2.51)
P = Pl — kP K" (2.52)
Discussion Although UKF can better address non-linear dynamics than EKF by
capturing accurately the posterior mean and covariance up to the 3rd order (Wan et

Van Der Merwe| [2000]), the technique is highly dependent on initialization task and the

selection of hyperparameters that are typically problem-dependent (Julier et Uhlmann|

[1997], Shirzaei et Walter| [2010]). Moreover, it is more computationally intensive than

EKF as it requires Cholesky factorizations on every step.

Stochastic Ensemble Kalman Filter EnKF was first developed by [Evensen| [1994]

to address issues related to EKF in the case of stronger non-linear dynamics of the state.

There are two basic approaches to EnKF: 1) stochastic and 2) (deterministic) square

root filter (e.g. [Evensen| [2004], Yan et al][2015]). In this thesis, we will mostly present
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Practical implementation: Unscented Kalman Filter (UKF)

. Initialisation
X/ Pl and X¢ = [(X[)T 0 0
a. Selection of sigma points:
Xl = [Xt + /(L + A)Pg]
. Forecast step:
a. Propagate the model for each sigma points (i.e. from ¢; to ¢;11):

X Mt7,+1 ('X‘l(,ltl)

l tL+1
b. Compute the mean and covariance of the forecast points:
2L
XT=2 W&
1=0

2L
Pl = Z Wi (X! — XN (x{ = X7)"

where, W™ = W[ = A [=0, Wy =

. Analysis step (i.e. for ¢;,):

2
L+>\) L+/\) and W5 = LH)—i-l—a + 8.

a. Calculate the observation error covariance, Pj;D:
2L
c _f _f
Py =) Wi(D - D")(D] - D))"
1=0
where, D/ = H(X{) and D’ = S5, Wi(D{).

b. Calculate the cross-covariance, P)};D'

Pip= Zm xwf -y
c¢. Compute for the Kalman Gam.

K=P )JE,DP 1{,17
d. Update the state estimate:

X=X/ +K(D] — D)

-1

e. Compute for the analysis covariance error:

P* =P/ — KP} K"
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results based on the stochastic EnKF which is the classic prototype of EnKF. This was
proposed by Burgers et al.| [1998] to avoid the underestimation of the analysis covariance
error by perturbing the observations prior to the computation of the analysis. Unlike the
EKF and UKF which are deterministic, the stochastic EnKF is a Monte Carlo alternative
route to address non-linearities (Evensen| [2009]). Basically, EnKF is rooted on the
N,-ensemble of realizations to approximate the mean and covariance of the state vector.
Each ensemble member is propagated by the model without the need for linearizion (i.e.
computation of the tangent linear approximations). Because of its simplicity, relative
ease on implementation and low computational cost when compared with KF, the EnKF
algorithm has gained a lot of development recently and has been proven effective to solve

operational data assimilation problems, thus, adopted by many operational NWP centers.

One important feature of EnKF is the way to construct the model error covariance,
given by equations and ) Figure illustrates the construction of the
forecast and analysis covariance error in EnKF. The initial model ensemble of size N,
from the previous time step (i.e. t — At) are forecasted toward ¢. These result in the
evolution of the model covariance error, P/. Once the observations characterized by
observation error covariance, R, are available, the model ensemble is updated with a new

model error covariance, P®. The process reiterates to the next time step.

Forecast step. The forecast is carried out by the model integration under the
control of the model operator that represents the physical process governing the system.

For each ensemble member, n = 1,..., N,, (i.e. where NN, is the size of the ensemble):

Xf

tit1,m

= MtiJrl (Xg-,n) (253>

The forecast estimate is the mean of the forecast ensemble:

Nn
5 1
X' =—) Xx/ 2.54
Y 250
The forecast error covariance is of the form:
Pl = (X} - XN(x] - XN (2.55)
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Practical implementation: [Stochastic] Ensemble Kalman Filter (EnKF)

1. Initialisation
X/ and P/
2. Forecast step:
a. Propagate the model for each ensemble member (i.e. from ¢; to t;41):

th = Mti+1 (Xg,n)

i+1,1

b. Compute the mean of the forecast ensemble:

1 &
72;1 - Fn ZXtJZHan
c. Calculate the forecast covariance Z;rlor for t;.q:
Pl = (X} - XT)(x] - XN
3. Analysis step (i.e. for t,,):

a. Calculate the Kalman Gain
K = PIHT(HPIHT + R)™*

b. Perturb each observation point (i.e. m =1,..., N,,):
Dy =Dy +1

c. Update the state estimate:
Xo =X+ K(f) —~ ngj)

d. Compute the mean of