C. Bauckhage, A purely geometric approach to non-negative matrix factorization, pp.125-136, 2014.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in, Machine Learning, vol.3, issue.1, pp.1-122, 2011.

N. Gillis, The why and how of nonnegative matrix factorization, Regularization, Optimization, Kernels, and Support Vector Machines, vol.12, p.257, 2014.

T. Goldstein, O. Brendan, S. Donoghue, R. Setzer, and . Baraniuk, Fast alternating direction optimization methods, SIAM Journal on Imaging Sciences, vol.7, issue.3, pp.1588-1623, 2014.
DOI : 10.1137/120896219

O. Patrik and . Hoyer, Non-negative matrix factorization with sparseness constraints, The Journal of Machine Learning Research, vol.5, pp.1457-1469, 2004.

M. Iordache, M. José, A. Bioucas-dias, and . Plaza, Total variation spatial regularization for sparse hyperspectral unmixing, Geoscience and Remote Sensing, IEEE Transactions on, vol.50, issue.11, pp.4484-4502, 2012.
DOI : 10.1109/tgrs.2012.2191590

URL : http://www.lx.it.pt/~bioucas/files/ieee_tgrs_12_sparse_unmix_tv.pdf

V. Krishnamurthy-and-alexandre-d'aspremont, Convex algorithms for nonnegative matrix factorization, 2012.

D. Daniel, H. Lee, and . Seung, Algorithms for non-negative matrix factorization, Advances in neural information processing systems, pp.556-562, 2001.

M. P. José, . Nascimento, . José, and . Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.898-910, 2005.

. Michael-k-ng, H. Raymond, W. Chan, and . Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM Journal on Scientific Computing, vol.21, issue.3, pp.851-866, 1999.

S. Leonid-i-rudin, E. Osher, and . Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1, pp.259-268, 1992.

A. Stephen and . Vavasis, On the complexity of nonnegative matrix factorization, SIAM Journal on Optimization, vol.20, issue.3, pp.1364-1377, 2009.

R. Warren and . Osher, Hyperspectral unmixing by the alternating direction method of multipliers, Inverse Problems and Imaging, vol.14, issue.3, pp.0-00, 2015.
DOI : 10.3934/ipi.2015.9.917

URL : http://www.aimsciences.org/journals/doIpChk.jsp?paperID=11487&mode=full

J. Yang, W. Yin, Y. Zhang, and Y. Wang, A fast algorithm for edge-preserving variational multichannel image restoration, SIAM Journal on Imaging Sciences, vol.2, issue.2, pp.569-592, 2009.
DOI : 10.1137/080730421

URL : http://www.caam.rice.edu/%7Eyzhang/reports/tr0809.pdf

Y. Zhang, An alternating direction algorithm for nonnegative matrix factorization, 2010.

S. Aaronson, G. Kuperberg, and C. Et-granade, The complexity zoo, 2015.

A. , D. Deshpande, A. Hansen, P. Popat, and P. , Np-hardness of euclidean sum-of-squares clustering, Machine learning, vol.75, issue.2, pp.245-248, 2009.

A. Anandkumar, R. Ge, D. Hsu, and S. Et-kakade, A tensor spectral approach to learning mixed membership community models, Conference on Learning Theory, pp.867-881, 2013.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, Tensor decompositions for learning latent variable models, Journal of Machine Learning Research, vol.15, pp.2773-2832, 2014.
DOI : 10.21236/ada604494

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a604494.pdf

J. Anderson, N. Goyal, and L. Et-rademacher, Efficient learning of simplices, Conference on Learning Theory, pp.1020-1045, 2013.

N. Halko, P. Martinsson, Y. Shkolnisky, and M. Tygert, An algorithm for the principal component analysis of large data sets, SIAM Journal on Scientific computing, vol.33, issue.5, pp.2580-2594, 2011.

G. Hamerly, Making k-means even faster, SDM, pp.130-140, 2010.
DOI : 10.1137/1.9781611972801.12

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.12

J. Hartmann, C. Boulet, and D. Robert, Collisional effects on molecular spectra : laboratory experiments and models, consequences for applications, 2008.

R. Heylen, D. Burazerovic, and P. Scheunders, Non-linear spectral unmixing by geodesic simplex volume maximization, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.3, pp.534-542, 2011.
DOI : 10.1109/jstsp.2010.2088377

P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, Journal of machine learning research, vol.5, pp.1457-1469, 2004.

K. Huang, N. D. Sidiropoulos, and A. Swami, Non-negative matrix factorization revisited : Uniqueness and algorithm for symmetric decomposition, IEEE Transactions on Signal Processing, vol.62, issue.1, pp.211-224, 2014.
DOI : 10.1109/tsp.2013.2285514

URL : http://www.ece.umn.edu/~nikos/06630130.pdf

M. Iordache, J. M. Bioucas-dias, and A. Plaza, Total variation spatial regularization for sparse hyperspectral unmixing. Geoscience and Remote Sensing, IEEE Transactions on, vol.50, issue.11, pp.4484-4502, 2012.
DOI : 10.1109/tgrs.2012.2191590

URL : http://www.lx.it.pt/~bioucas/files/ieee_tgrs_12_sparse_unmix_tv.pdf

M. Iordache, A. Plaza, and J. Bioucas-dias, On the use of spectral libraries to perform sparse unmixing of hyperspectral data, Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), pp.1-4, 2010.

V. Kaibel, Extended formulations in combinatorial optimization, 2011.

N. Keshava and J. F. Et-mustard, Spectral unmixing. IEEE signal processing magazine, vol.19, pp.44-57, 2002.

D. Kim, S. Sra, and I. S. Et-dhillon, Fast newton-type methods for the least squares nonnegative matrix approximation problem, Proceedings of the 2007 SIAM international conference on data mining, pp.343-354, 2007.
DOI : 10.1137/1.9781611972771.31

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972771.31

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111x

URL : http://csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/SAND2007-6702.pdf

V. Krishnamurthy and A. Et-d'aspremont, Convex algorithms for nonnegative matrix factorization, 2012.

V. Kuleshov, A. Chaganty, and P. Liang, Tensor factorization via matrix factorization, Artificial Intelligence and Statistics, pp.507-516, 2015.

B. Kulis, A. C. Surendran, and J. C. Platt, Fast low-rank semidefinite programming for embedding and clustering, International Conference on Artificial Intelligence and Statistics, pp.235-242, 2007.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Advances in neural information processing systems, pp.556-562, 2001.

J. Li, A. Agathos, D. Zaharie, J. M. Bioucas-dias, A. Plaza et al., Minimum volume simplex analysis : A fast algorithm for linear hyperspectral unmixing, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.9, pp.5067-5082, 2015.

L. Lovász, Semidefinite programs and combinatorial optimization, Recent advances in algorithms and combinatorics, pp.137-194, 2003.

T. Maehara and K. Murota, Algorithm for error-controlled simultaneous block-diagonalization of matrices, SIAM Journal on Matrix Analysis and Applications, vol.32, issue.2, pp.605-620, 2011.
DOI : 10.1137/090779966

J. Marot and S. Et-bourennane, Fast tensor signal filtering using fixed point algorithm, Acoustics, Speech and Signal Processing, pp.921-924, 2008.
DOI : 10.1109/icassp.2008.4517761

URL : https://hal.archives-ouvertes.fr/hal-00201974