, The human C-terminal DNMT3A (a.a. 623-908) was added to each well (200 ng/well) and mixed with the tested compound at the desired concentration (in DMSO) and SAM (10 mM final concentration) to start the reaction in a total, methylation-sensitive restriction enzyme (HpyCH4IV), p.40

, ) was added to the wells. After incubation for 1 hour at 37 °C, each well was washed three times with phosphate-buffered saline (PBS) containing 0.05% Tween-20 and NaCl (500 mM, After incubation for 1h at 37°C, each well was washed three times with phosphate-buffered saline (PBS) containing 0.05% Tween-20 and NaCl, vol.500

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 227

, Références bibliographiques Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer Références bibliographiques 1

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012: Globocan 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

O. Castillo-aguilera, P. Depreux, L. Halby, P. B. Arimondo, and L. Goossens, DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge, vol.7, p.3, 2017.

J. Dunn and S. Rao, Epigenetics and immunotherapy: The current state of play, Mol. Immunol, vol.87, pp.227-239, 2017.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone Deacetylase Inhibitors as Anticancer Drugs, Int. J. Mol. Sci, vol.18, p.1414, 2017.
DOI : 10.3390/ijms18071414

URL : http://www.mdpi.com/1422-0067/18/7/1414/pdf

A. , C. D. Jenuwein, and T. , The molecular hallmarks of epigenetic control, Nat. Rev. Genet, vol.17, pp.487-500, 2016.

A. T. Nguyen and Y. Zhang, The diverse functions of Dot1 and H3K79 methylation, Genes Dev, vol.25, pp.1345-1358, 2011.

K. M. Bernt, N. Zhu, A. U. Sinha, S. Vempati, J. Faber et al.,

A. Daigle, L. Bullinger, R. M. Pollock, V. M. Richon, A. L. Kung et al., MLLrearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L, Cancer Cell, vol.20, pp.66-78, 2011.

C. Chen and S. A. Armstrong, Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond, Exp. Hematol, vol.43, pp.673-684, 2015.

J. N. Haladyna, T. Yamauchi, T. Neff, and K. M. Bernt, Epigenetic modifiers in normal and malignant hematopoiesis, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.7, p.229, 2015.

I. Epizyme, EPZM) Available online:www, 2017.

D. M. Hellebrekers, A. W. Griffioen, and M. Van-engeland, Dual targeting of epigenetic therapy in cancer, Biochim. Biophys. Acta BBARev. Cancer, vol.1775, pp.76-91, 2007.

D. Rotili, D. Tarantino, B. Marrocco, C. Gros, V. Masson et al., Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA

. Methyltransferase and . Activity, PLoS ONE, vol.9, p.96941, 2014.

R. Kanwal, M. Datt, X. Liu, and S. Gupta, Dietary Flavones as Dual Inhibitors of DNA Methyltransferases and Histone Methyltransferases, PLoS ONE, vol.11, 2016.

E. S. José-enériz, X. Agirre, O. Rabal, A. Vilas-zornoza, J. A. Sanchez-arias et al.,

A. Ugarte, S. Roa, B. Paiva, A. E. Mendoza, and . De,

R. M. Alvarez, N. Casares, V. Segura, J. I. Martín-subero, F. Ogi et al.,

J. A. Martinez-climent, J. Oyarzabal, and F. Prosper, Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies, Nat. Commun, 2017.

D. Tomizawa, Recent progress in the treatment of infant acute lymphoblastic leukemia

. Int, . J. Off, and . Jpn, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.57, p.230, 2015.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

M. Plummer, C. Martel, J. De;-vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: a synthetic analysis, Lancet Glob. Health, vol.4, issue.16, pp.30143-30150, 2016.

A. L. Kierszenbaum, Histologie et biologie cellulaire: Une introduction à l'anatomie pathologique

. De-boeck-supérieur, , 2006.

E. M. Stein and M. S. Tallman, Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L, Curr. Opin. Hematol, vol.22, pp.92-96, 2015.

J. Fahy, A. Jeltsch, and P. B. Arimondo, DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies, Expert Opin. Ther. Pat, vol.22, pp.1427-1442, 2012.

A. Erdmann, L. Halby, J. Fahy, and P. B. Arimondo, Targeting DNA Methylation with Small Molecules: What's Next?, J. Med. Chem, vol.58, pp.2569-2583, 2015.

S. Deltour, V. Chopin, and D. Leprince, Modifications épigénétiques et cancer

, MEDECINE/SCIENCES, vol.21, pp.405-416, 2005.

C. B. Yoo and P. A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov, vol.5, pp.37-50, 2006.

C. Gros, J. Fahy, L. Halby, I. Dufau, A. Erdmann et al., DNA methylation inhibitors in cancer: recent and future approaches, Biochimie, vol.94, pp.2280-2296, 2012.

J. L. Anglin and Y. Song, A medicinal chemistry perspective for targeting histone, pp.3-79

D. , J. Med. Chem, vol.56, pp.8972-8983, 2013.

J. Du, L. M. Johnson, S. E. Jacobsen, and D. J. Patel, DNA methylation pathways and their crosstalk with histone methylation, /nrm4043. Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.16, p.231, 2015.

K. Helin and D. Dhanak, Chromatin proteins and modifications as drug targets, Nature, vol.502, pp.480-488, 2013.

T. Oike, H. Ogiwara, N. Amornwichet, T. Nakano, and T. Kohno, Chromatin-regulating proteins as targets for cancer therapy, J. Radiat. Res, vol.55, pp.613-628, 2014.

J. De-lartigue, Targeting Epigenetics for Cancer Therapy: Scores of Agents Capture Interest of Researchers, 2013.

A. Ceccaldi, A. Rajavelu, S. Ragozin, C. Sénamaud-beaufort, and P. Bashtrykov,

H. Ali, C. Maulay-bailly, S. Amand, D. Guianvarc'h, A. Jeltsch et al., Identification of novel inhibitors of DNA methylation by screening of a chemical library, ACS Chem. Biol, vol.8, pp.543-548, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00777786

S. Valente, Y. Liu, M. Schnekenburger, C. Zwergel, S. Cosconati et al., Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells, J. Med. Chem, vol.57, pp.701-713, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01494552

L. Morera, M. Lübbert, and M. Jung, Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy, Clin. Epigenetics, vol.8, p.57, 2016.

C. Plass, S. M. Pfister, A. M. Lindroth, O. Bogatyrova, R. Claus et al., Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer, Nat. Rev. Genet, vol.14, pp.765-780, 2013.

S. Heerboth, K. Lapinska, N. Snyder, M. Leary, S. Rollinson et al., Use of Epigenetic Drugs in Disease: An Overview, Genet. Epigenetics, vol.6, pp.9-19, 2014.

S. Asgatay, C. Champion, G. Marloie, T. Drujon, C. Senamaud-beaufort et al.,

A. Erdmann, A. Rajavelu, P. Schambel, A. Jeltsch, O. Lequin et al., Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1, /jm401419p. Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.57, p.232, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00920710

M. Tanaka, J. M. Roberts, J. Qi, and J. E. Bradner, Inhibitors of emerging epigenetic targets for cancer therapy: a patent review, Pharm. Pat. Anal, vol.4, pp.261-284, 2010.

P. Xu, G. Hu, C. Luo, and Z. Liang, DNA methyltransferase inhibitors: an updated patent review, Expert Opin. Ther. Pat, 2012.

K. A. Gelato, Z. Shaikhibrahim, M. Ocker, and B. Haendler, Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs, Expert Opin. Ther. Targets, vol.20, pp.783-799, 2016.

T. Ye and C. Hui, Synthesis of lysine methyltransferase inhibitors, Chem. Biol, p.44, 2015.

S. Gopalakrishnan, B. O. Van-emburgh, J. Shan, Z. Su, C. R. Fields et al.,

P. H. Schwartz, N. Terada, and K. D. Robertson, A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding, Mol. Cancer Res. MCR, vol.7, pp.1622-1634, 2009.

C. E. Duymich, J. Charlet, X. Yang, P. A. Jones, and G. Liang, DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells, Nat. Commun, vol.7, p.11453, 2016.

J. Lan, S. Hua, X. He, and Y. Zhang, DNA methyltransferases and methyl-binding proteins of mammals, Acta Biochim. Biophys. Sin, vol.42, pp.243-252, 2010.

G. Rondelet, T. Dal-maso, L. Willems, and J. Wouters, Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B, J. Struct. Biol, vol.194, pp.357-367, 2016.

A. Jeltsch and R. Z. Jurkowska, Allosteric control of mammalian DNA methyltransferases-a new regulatory paradigm, Nucleic Acids Res, 2016.

S. Gabbara and A. S. Bhagwat, The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor, Biochem. J, pp.87-92, 1995.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 233

C. Stresemann and F. Lyko, Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine, Int. J. Cancer, vol.123, pp.8-13, 2008.

C. B. Yoo, S. Jeong, G. Egger, G. Liang, P. Phiasivongsa et al., Delivery of 5-aza-2'-deoxycytidine to cells using oligodeoxynucleotides, Cancer Res, vol.67, pp.6400-6408, 2007.

C. H. Kim, V. E. Marquez, D. T. Mao, D. R. Haines, and J. J. Mccormack, Synthesis of pyrimidin-2one nucleosides as acid-stable inhibitors of cytidine deaminase, J. Med. Chem, vol.29, pp.1374-1380, 1986.

J. C. Cheng, C. B. Matsen, F. A. Gonzales, W. Ye, S. Greer et al., Inhibition of DNA methylation and reactivation of silenced genes by zebularine, J. Natl. Cancer Inst, vol.95, pp.399-409, 2003.

C. Champion, D. Guianvarc'h, C. Sénamaud-beaufort, R. Z. Jurkowska, A. Jeltsch et al., Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine, PloS One, vol.5, p.12388, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00627422

B. Brueckner, M. Rius, M. R. Markelova, I. Fichtner, P. Hals et al., Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy, Mol. Cancer Ther, vol.9, pp.1256-1264, 2010.
DOI : 10.1158/1535-7163.mct-09-1202

URL : http://mct.aacrjournals.org/content/molcanther/9/5/1256.full.pdf

L. Chen, W. Han, Y. Geng, and J. Su, A genome-wide study of DNA methylation modified by epigallocatechin-3-gallate in the CAL-27 cell line, Mol. Med. Rep, vol.12, pp.5886-5890, 2015.

V. Nandakumar, M. Vaid, and S. K. Katiyar, ?)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells, Carcinogenesis, vol.32, pp.537-544, 2011.
DOI : 10.1093/carcin/bgq285

URL : https://academic.oup.com/carcin/article-pdf/32/4/537/7457323/bgq285.pdf

M. Z. Fang, Y. Wang, N. Ai, Z. Hou, Y. Sun et al., Tea polyphenol (-)epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines, Cancer Res, vol.63, pp.7563-7570, 2003.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 234

D. Kuck, T. Caulfield, F. Lyko, and J. L. Medina-franco, Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells, Mol. Cancer Ther, vol.9, pp.3015-3023, 2010.

T. Caulfield and J. L. Medina-franco, Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A, J. Struct. Biol, vol.176, pp.185-191, 2011.

B. Segura-pacheco, C. Trejo-becerril, E. Perez-cardenas, L. Taja-chayeb, and I. Mariscal,

A. Chavez, C. Acuña, A. M. Salazar, M. Lizano, and A. Dueñas-gonzalez, Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.9, pp.1596-1603, 2003.

A. Villar-garea, M. F. Fraga, J. Espada, and M. Esteller, Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells, Cancer Res, vol.63, pp.4984-4989, 2003.

B. H. Lee, S. Yegnasubramanian, X. Lin, and W. G. Nelson, Procainamide Is a Specific Inhibitor of DNA Methyltransferase 1, J. Biol. Chem, vol.280, pp.40749-40756, 2005.

M. J. Ruiz-magaña, R. Martínez-aguilar, E. Lucendo, D. Campillo-davo, K. Schulze-osthoff et al., The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells, Oncotarget, vol.7, pp.21875-21886, 2016.

A. Ceccaldi, A. Rajavelu, C. Champion, C. Rampon, R. Jurkowska et al., C5-DNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development, ChemBioChem, vol.12, pp.1337-1345, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632453

J. L. Medina-franco, O. Méndez-lucio, A. Dueñas-gonzález, and J. Yoo, Discovery and development of DNA methyltransferase inhibitors using in silico approaches, Drug Discov. Today, vol.20, pp.569-577, 2015.

E. Rilova, A. Erdmann, C. Gros, V. Masson, Y. Aussagues et al., Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, p.235

F. Sautel, P. B. Arimondo, F. Cantagrel, and . Design, Synthesis and Biological Evaluation of 4-AminoN-(4-aminophenyl)benzamide Analogues of Quinoline-Based SGI-1027 as Inhibitors of DNA

, Methylation. ChemMedChem, vol.9, pp.590-601, 2014.

R. L. Fagan, D. E. Cryderman, L. Kopelovich, L. L. Wallrath, and C. Brenner, Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1, J. Biol. Chem, vol.288, pp.23858-23867, 2013.

J. A. Kilgore, X. Du, L. Melito, S. Wei, C. Wang et al.,

M. Williams and N. S. , Identification of DNMT1 selective antagonists using a novel scintillation proximity assay, J. Biol. Chem, vol.288, 2013.

J. L. Medina-franco, O. Méndez-lucio, and J. Yoo, Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking, Int. J. Mol. Sci, vol.15, pp.3253-3261, 2014.

P. Siedlecki, R. G. Boy, T. Musch, B. Brueckner, S. Suhai et al., Discovery of Two Novel, Small-Molecule Inhibitors of DNA Methylation, J. Med. Chem, vol.49, pp.678-683, 2006.

B. Brueckner, R. Garcia-boy, P. Siedlecki, T. Musch, H. C. Kliem et al., Epigenetic reactivation of tumor suppressor genes by a novel smallmolecule inhibitor of human DNA methyltransferases, Cancer Res, vol.65, pp.6305-6311, 2005.

T. Suzuki, R. Tanaka, S. Hamada, H. Nakagawa, and N. Miyata, Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors, Bioorg. Med. Chem

. Lett, , vol.20, pp.1124-1127, 2010.

W. A. Denny, G. J. Atwell, B. C. Baguley, and B. F. Cain, Potential antitumor agents. 29. Quantitative structure-activity relationships for the antileukemic bisquaternary ammonium heterocycles, J. Med

. Chem, , vol.22, pp.134-150, 1979.

C. Gros, L. Fleury, V. Nahoum, C. Faux, S. Valente et al.,

M. A. Bouhlel, M. David-cordonnier, I. Dufau, F. Ausseil, A. Mai et al., Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

P. Arimondo, New insights on the mechanism of quinoline-based DNA Methyltransferase inhibitors, J. Biol. Chem, vol.290, pp.6293-6302, 2015.

J. Datta, K. Ghoshal, H. Kutay, P. Phiasivongsa, S. Redkar et al., Novel DNA hypomethylating agents: non-nucleoside compounds that do not incorporate into DNA selectively induce degradation of DNA methyltransferase I (DNMT1) in human cancer cells by the proteasomal pathway and re-express silenced tumor suppressor genes. Cancer Res, vol.67, pp.4142-4142, 2007.

J. Datta, K. Ghoshal, W. A. Denny, S. A. Gamage, D. G. Brooke et al.,

S. T. Jacob, A New Class of Quinoline-Based DNA Hypomethylating Agents Reactivates Tumor Suppressor Genes by Blocking DNA Methyltransferase 1 Activity and Inducing Its Degradation

, Cancer Res, vol.69, pp.4277-4285, 2009.

R. Lillico, N. Stesco, T. Khorshid-amhad, C. Cortes, M. P. Namaka et al., Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity

, Future Med. Chem, vol.8, pp.879-897, 2016.

T. Suzuki, M. Terashima, S. Tange, and A. Ishimura, Roles of histone methyl-modifying enzymes in development and progression of cancer, Cancer Sci, vol.104, pp.795-800, 2013.

Y. Furukawa and J. Kikuchi, Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma, Int. J. Hematol, 2016.

T. B. Nicholson, T. Chen, and S. Richard, The physiological and pathophysiological role of PRMT1mediated protein arginine methylation, Pharmacol. Res, vol.60, pp.466-474, 2009.

H. Hu, K. Qian, M. Ho, and Y. G. Zheng, Small Molecule Inhibitors of Protein Arginine Methyltransferases, Expert Opin. Investig. Drugs, vol.25, pp.335-358, 2016.

Y. Yang and M. T. Bedford, Protein arginine methyltransferases and cancer, Nat. Rev. Cancer, vol.13, pp.37-50, 2013.
DOI : 10.1038/nrc3409

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 237

Q. Feng, P. Yi, J. ;. Wong, and B. W. O'malley, Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly, Mol. Cell. Biol, vol.26, pp.7846-7857, 2006.

B. R. Selvi, K. Batta, A. H. Kishore, K. Mantelingu, R. A. Varier et al.,

S. K. Pradhan, D. Dasgupta, S. Sriram, S. Agrawal, T. K. Kundu et al., Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17, Org. Biomol. Chem, vol.285, pp.549-560, 2010.

S. Jahan and J. R. Davie, Protein arginine methyltransferases (PRMTs): role in chromatin organization, Adv. Biol. Regul, vol.57, pp.173-184, 2015.

X. Sheng and Z. Wang, Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation, BMC Cancer, vol.16, 2016.
DOI : 10.1186/s12885-016-2632-3

URL : https://bmccancer.biomedcentral.com/track/pdf/10.1186/s12885-016-2632-3

M. Kanda, D. Shimizu, T. Fujii, H. Tanaka, M. Shibata et al.,

C. Tanaka, S. Yamada, G. Nakayama, H. Sugimoto, M. Koike et al., Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer, Int. J. Oncol, vol.49, pp.1195-1202, 2016.

E. Bissinger, R. Heinke, A. Spannhoff, A. Eberlin, E. Metzger et al., Acyl derivatives of paminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1

, Bioorg. Med. Chem, vol.19, pp.3717-3731, 2011.

E. Inc, Epizyme Earns $6 Million Milestone Payment from GlaxoSmithKline for Initiation of Clinical Development with First, Class PRMT5 Inhibitor Available online

, Milestone-Payment-from-GlaxoSmithKline-for-Initiation-of-Clinical-Development-with-First-inClass-PRMT5-Inhibitor.html (consulté le 15 juillet, 2017.

C. T. Nguyen, D. J. Weisenberger, M. Velicescu, F. A. Gonzales, J. C. Lin et al., Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 91, vol.62, pp.6456-6461, 2002.

O. Andresini, A. Ciotti, M. N. Rossi, C. Battistelli, M. Carbone et al., A cross-talk between DNA methylation and H3 lysine 9 dimethylation at the KvDMR1 region controls the induction of Cdkn1c in muscle cells, Epigenetics, p.0, 2016.

S. Das and B. P. Chadwick, Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells, PloS One, vol.11, p.160022, 2016.

M. Tachibana, Y. Matsumura, M. Fukuda, H. Kimura, and Y. Shinkai, G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription, EMBO J, vol.27, pp.2681-2690, 2008.
DOI : 10.1038/emboj.2008.192

URL : http://emboj.embopress.org/content/embojnl/27/20/2681.full.pdf

M. Tachibana, J. Ueda, M. Fukuda, N. Takeda, T. Ohta et al., Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9, Genes Dev, vol.19, pp.815-826, 2005.

F. Casciello, K. Windloch, F. Gannon, and J. S. Lee, Functional Role of G9a Histone Methyltransferase in Cancer, Front. Immunol, vol.6, p.487, 2015.

J. Ding, T. Li, X. Wang, E. Zhao, J. Choi et al.,

M. Cui, H. Ding, and H. , The histone H3 methyltransferase G9A epigenetically activates the serineglycine synthesis pathway to sustain cancer cell survival and proliferation, Cell Metab, vol.18, pp.896-907, 2013.

K. B. Dong, I. A. Maksakova, F. Mohn, D. Leung, R. Appanah et al.,

D. L. Mager, D. Schübeler, M. Tachibana, Y. Shinkai, and M. C. Lorincz, DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity, EMBO J, vol.27, pp.2691-2701, 2008.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 239

S. Epsztejn-litman, N. Feldman, M. Abu-remaileh, Y. Shufaro, A. Gerson et al., De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes, Nat. Struct. Mol. Biol, vol.15, pp.1176-1183, 2008.

Y. Chang, L. Sun, K. Kokura, J. R. Horton, M. Fukuda et al., MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a, Nat. Commun, 2011.

T. Zhang, A. Termanis, B. Özkan, X. X. Bao, J. Culley et al., Stancheva, I. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells, Cell Rep, vol.15, pp.77-85, 2016.

S. ;. Kubicek, R. J. O'sullivan, E. M. August, E. R. Hickey, Q. Zhang et al., Reversal of H3K9me2 by a Small-Molecule Inhibitor for the G9a Histone Methyltransferase, Mol. Cell, vol.25, pp.473-481, 2007.

Y. Yuan, Q. Wang, J. Paulk, S. Kubicek, M. M. Kemp et al., A Small-Molecule Probe of the Histone Methyltransferase G9a Induces Cellular Senescence in Pancreatic Adenocarcinoma, ACS Chem. Biol, vol.7, pp.1152-1157, 2012.

M. Vedadi, D. Barsyte-lovejoy, F. Liu, S. Rival-gervier, A. Allali-hassani et al.,

I. Chau, T. J. Mangano, X. Huang, C. D. Simpson, S. G. Pattenden et al.,

B. Tripathy, A. Edwards, A. Roth, B. L. Janzen, W. P. Garcia et al., A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells, Nat. Chem. Biol, vol.7, pp.566-574, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001185

E. Viré, C. Brenner, R. Deplus, L. Blanchon, M. Fraga et al., The Polycomb group protein EZH2 directly controls DNA methylation, /nature04431. Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.439, pp.871-874, 2006.

C. Moison, C. Senamaud-beaufort, L. Fourrière, C. Champion, A. Ceccaldi et al., DNA methylation associated with polycomb repression in retinoic acid receptor ? silencing, FASEB J, vol.27, pp.1468-1478, 2013.

C. Moison, F. Assemat, A. Daunay, J. Tost, A. Guieysse-peugeot et al., Synergistic chromatin repression of the tumor suppressor gene RARB in human prostate cancers, Epigenetics, vol.9, pp.477-482, 2014.

X. Ning, Z. Shi, X. Liu, A. Zhang, L. Han et al., DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression

, Cancer Lett, vol.359, pp.198-205, 2015.

J. N. Nichol, D. Dupéré-richer, T. Ezponda, J. D. Licht, and W. H. Miller, H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer, Adv. Cancer Res, vol.131, pp.59-95, 2016.

V. Nayak, C. Xu, and J. Min, Composition, recruitment and regulation of the PRC2 complex, Nucleus, vol.2, pp.277-282, 2011.

W. D. Bradley, S. Arora, J. Busby, S. Balasubramanian, V. S. Gehling et al.,

R. Campbell, N. Cantone, S. Garapaty-rao, J. E. Audia, A. S. Cook et al.,

K. Harmange, J. Daniels, D. L. Cummings, R. T. Bryant, B. M. Normant et al., EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation, Chem. Biol, vol.21, pp.1463-1475, 2014.

V. Balasubramanian, P. Iyer, S. Arora, P. Troyer, and E. Normant, Abstract 1697: CPI-169, a novel and potent EZH2 inhibitor, synergizes with CHOP in vivo and achieves complete regression in lymphoma xenograft models, Cancer Res, vol.74, pp.1697-1697, 2014.

K. Kuntz, R. Chesworth, K. Duncan, H. Keilhack, N. Warholic et al., Aryl-or Heteroaryl-Substituted Benzene Compounds, 2012.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

V. Ribrag, J. Soria, J. Michot, A. Schmitt, S. Postel-vinay et al., Phase 1 Study of Tazemetostat (EPZ-6438), an Inhibitor of Enhancer of ZesteHomolog 2 (EZH2): Preliminary Safety and Activity in Relapsed or Refractory Non-Hodgkin Lymphoma (NHL) Patients, Blood, vol.126, pp.473-473, 2015.

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson et al.,

R. G. Kruger, C. F. Mchugh, M. Brandt, W. H. Miller, D. Dhanak et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, pp.108-112, 2012.

E. Inc, Epizyme Announces Tazemetostat Fast Track Designation for Follicular Lymphoma and Plenary Session on Phase 2 NHL Data at

. Follicular-lymphoma-and-plenary, Session-on-Phase-2-NHL-Data-at-ICML.html, 2017.

V. M. Richon, D. Johnston, C. J. Sneeringer, L. Jin, C. R. Majer et al., Chemogenetic Analysis of Human Protein Methyltransferases, Chem. Biol

, Drug Des, vol.78, pp.199-210, 2011.

W. Kim, M. Choi, and J. Kim, The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle, Cell Cycle Georget. Tex, vol.13, pp.726-738, 2014.

J. Min, Q. Feng, Z. Li, Y. Zhang, and R. Xu, Structure of the Catalytic Domain of Human DOT1L, a Non-SET Domain Nucleosomal Histone Methyltransferase, Cell, vol.112, pp.711-723, 2003.

J. M. Yost, I. Korboukh, F. Liu, C. Gao, and J. Jin, Targets in epigenetics: inhibiting the methyl writers of the histone code, Curr. Chem. Genomics, vol.5, pp.72-84, 2011.

L. Zhang, L. Deng, F. Chen, Y. Yao, B. Wu et al., Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer, Oncotarget, vol.5, pp.10665-10677, 2014.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

J. Lee and G. Kong, DOT1L: a new therapeutic target for aggressive breast cancer, Oncotarget, vol.6, pp.30451-30452, 2015.

W. Kim, R. Kim, G. Park, J. Park, and J. Kim, Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation, J. Biol. Chem, vol.287, pp.5588-5599, 2012.

V. Singh, L. C. Singh, A. P. Singh, J. Sharma, B. B. Borthakur et al., Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population, Am. J. Cancer Res, vol.5, pp.979-999, 2015.

M. Wong, A. E. Tee, G. Milazzo, J. L. Bell, R. C. Poulos et al., The Histone Methyltransferase DOT1L Promotes Neuroblastoma by Regulating Gene Transcription, Cancer Res, vol.77, pp.2522-2533, 2017.
DOI : 10.1158/0008-5472.can-16-1663

H. Pareja-galeano, F. Sanchis-gomar, L. M. Pérez, E. Emanuele, A. Lucia et al., iPSCs-based anti-aging therapies: Recent discoveries and future challenges
DOI : 10.1016/j.arr.2016.02.007

URL : https://digital.csic.es/bitstream/10261/151031/4/ipscsbased.pdf

, Ageing Res. Rev, vol.27, pp.37-41, 2016.

Y. Yao, P. Chen, J. Diao, G. Cheng, L. Deng et al., Selective Inhibitors of Histone Methyltransferase DOT1L: Design, Synthesis, and Crystallographic Studies

, J. Am. Chem. Soc, vol.133, pp.16746-16749, 2011.

J. L. Anglin, L. Deng, Y. Yao, G. Cai, Z. Liu et al., Synthesis and Structure-Activity Relationship Investigation of Adenosine-Containing Inhibitors of

H. Methyltransferase and D. , J. Med. Chem, vol.55, pp.8066-8074, 2012.

L. Deng, L. Zhang, Y. Yao, C. Wang, M. S. Redell et al., Synthesis, activity and metabolic stability of non-ribose containing inhibitors of histone methyltransferase DOT1L, MedChemComm, vol.4, pp.822-826, 2013.

A. Basavapathruni, L. Jin, S. R. Daigle, C. R. Majer, C. A. Therkelsen et al., Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, p.243

E. J. Olhava, Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L, Chem. Biol. Drug Des, vol.80, pp.971-980, 2012.

W. Yu, E. J. Chory, A. K. Wernimont, W. Tempel, A. Scopton et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun, vol.3, p.1288, 2012.

W. Yu, E. J. Chory, A. K. Wernimont, W. Tempel, A. Scopton et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun, 1893.

S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C. J. Sneeringer et al., Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor

, Cancer Cell, vol.20, pp.53-65, 2011.

E. J. Olhava, R. Chesworth, K. Kuntz, and . Carbocycle, , 2012.

S. R. Daigle, E. J. Olhava, C. A. Therkelsen, A. Basavapathruni, L. Jin et al.,

R. A. Copeland, V. M. Richon, and R. M. Pollock, Potent inhibition of DOT1L as treatment of MLLfusion leukemia, Blood, vol.122, pp.1017-1025, 2013.

A. Basavapathruni, E. J. Olhava, S. R. Daigle, C. A. Therkelsen, L. Jin et al.,

M. Copeland, R. A. Moyer, M. P. Chesworth, R. Pearson, P. G. Waters et al., Nonclinical Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 244 pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor, Biopharm. Drug Dispos, vol.35, pp.237-252, 2014.

N. J. Waters, S. A. Smith, E. J. Olhava, K. W. Duncan, R. D. Burton et al., Metabolism and disposition of the DOT1L inhibitor, pinometostat (EPZ-5676), in rat, dog and human, Cancer Chemother. Pharmacol, vol.77, pp.43-62, 2016.

N. J. Waters, Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L, Eur. J. Drug Metab. Pharmacokinet, 2017.

, Epizyme DOT1L Inhibitor EPZ-5676 Shows Clinical and Biological Activity in Adult Patients with Acute Leukemias in Phase 1 Trial (NASDAQ:EPZM) Available online, 2017.

C. T. Campbell, J. N. Haladyna, D. A. Drubin, T. M. Thomson, M. J. Maria et al., Mechanisms of Pinometostat (EPZ-5676) Treatment Emergent Resistance in MLL Rearranged Leukemia, Mol. Cancer Ther, 2017.

C. Scheufler, H. Möbitz, C. Gaul, C. Ragot, C. Be et al., Optimization of a Fragment-Based Screening Hit toward Potent DOT1L Inhibitors Interacting in an Induced Binding Pocket, ACS Med. Chem. Lett, vol.7, pp.730-734, 2016.

C. Chen, H. Zhu, F. Stauffer, G. Caravatti, S. Vollmer et al., Discovery of Novel Dot1L Inhibitors through a Structure-Based Fragmentation Approach

, Med. Chem. Lett, vol.7, pp.735-740, 2016.

H. Möbitz, R. Machauer, P. Holzer, A. Vaupel, F. Stauffer et al., Discovery of Potent, Selective, and Structurally Novel Dot1L Inhibitors by a Fragment Linking Approach

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer, vol.8, p.245, 2017.

M. Luo, H. Wang, Y. Zou, S. Zhang, J. Xiao et al., Identification of phenoxyacetamide derivatives as novel DOT1L inhibitors via docking screening and molecular dynamics simulation, J. Mol. Graph. Model, vol.68, pp.128-139, 2016.

R. J. Wozniak, W. T. Klimecki, S. S. Lau, Y. Feinstein, and B. W. Futscher, 5-Aza-2'-deoxycytidinemediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation, Oncogene, vol.26, pp.77-90, 2007.

V. Schwämmle, S. Sidoli, C. Ruminowicz, X. Wu, C. Lee et al., Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation, Mol. Cell. Proteomics MCP, vol.15, pp.2715-2729, 2016.

T. Baubec, D. F. Colombo, C. Wirbelauer, J. Schmidt, L. Burger et al., Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation, Nature, vol.520, pp.243-247, 2015.

F. Shieh, B. Youngblood, and N. O. Reich, The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI, J. Mol. Biol, vol.362, pp.516-527, 2006.

H. M. Osborn and N. A. Williams, Development of tyrosinase labile protecting groups for amines, Org. Lett, vol.6, pp.3111-3113, 2004.

R. N. Salvatore, A. S. Nagle, S. E. Schmidt, and K. W. Jung, Cesium Hydroxide Promoted Chemoselective N-Alkylation for the Generally Efficient Synthesis of Secondary Amines, Org. Lett, vol.1, pp.1893-1896, 1999.

R. Faghih, W. Dwight, J. B. Pan, G. B. Fox, K. M. Krueger et al., Synthesis and SAR of aminoalkoxy-biaryl-4carboxamides: novel and selective histamine H3 receptor antagonists, Bioorg. Med. Chem. Lett, vol.13, pp.1325-1328, 2003.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 246

R. L. Lucas, M. K. Zart, J. Mukherjee, J. Murkerjee, T. N. Sorrell et al., A modular approach toward regulating the secondary coordination sphere of metal ions: differential dioxygen activation assisted by intramolecular hydrogen bonds, J. Am. Chem. Soc, vol.128, pp.15476-15489, 2006.

C. Lee, K. Huang, D. Chang, J. Hsu, F. Huang et al., synthesis and evaluation of telomerase inhibitory, hTERT repressing, and anti-proliferation activities of symmetrical 1,8-disubstituted amidoanthraquinones, Eur. J. Med. Chem, vol.50, pp.102-112, 2012.

D. Zhou, W. Tuo, H. Hu, J. Xu, H. Chen et al., Synthesis and activity evaluation of tilorone analogs as potential anticancer agents, Eur. J. Med. Chem, vol.64, pp.432-441, 2013.

M. A. Abou-gharbia, W. E. Childers, H. Fletcher, G. Mcgaughey, U. Patel et al., Synthesis and SAR of Adatanserin: Novel Adamantyl Aryl-and Heteroarylpiperazines with Dual Serotonin 5-HT1A and 5-HT2 Activity as Potential Anxiolytic and Antidepressant Agents, J. Med

. Chem, , vol.42, pp.5077-5094, 1999.

G. Balboni, R. Guerrini, S. Salvadori, C. Bianchi, D. Rizzi et al., Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties, J. Med. Chem, vol.45, pp.713-720, 2002.

K. C. Coffman, T. P. Hartley, J. L. Dallas, and M. J. Kurth, Isoxazolodihydropyridinones: 1,3-Dipolar Cycloaddition of Nitrile Oxides onto 2,4-Dioxopiperidines, ACS Comb. Sci, vol.14, pp.280-284, 2012.

G. Balboni, R. Guerrini, S. Salvadori, C. Bianchi, D. Rizzi et al., Evaluation of the Dmt?Tic Pharmacophore: Conversion of a Potent ?-Opioid Receptor Antagonist into a Potent ? Agonist and Ligands with Mixed Properties, J. Med. Chem, vol.45, pp.713-720, 2002.

A. R. Tunoori, D. Dutta, and G. I. Georg, Polymer-bound triphenylphosphine as traceless reagent for mitsunobu reactions in combinatorial chemistry: Synthesis of aryl ethers from phenols and alcohols, Tetrahedron Lett, vol.39, pp.8751-8754, 1998.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

L. Keurulainen, M. Vahermo, M. Puente-felipe, E. Sandoval-izquierdo, B. Crespo-fernández et al., A Developability-Focused Optimization Approach Allows Identification of in Vivo Fast-Acting Antimalarials: N-[3-[(Benzimidazol-2yl)amino]propyl]amides, J.Med Chem, vol.58, pp.4573-4580, 2015.

O. , A. M. Habib, N. S. Aboulwafa, and O. M. , The Cyclodesulfurization of Thio Compounds; XVI. Dicyclohexylcarbodiimide as an Efficient Cyclodesulfurizing Agent in the Synthesis of Heterocyclic Compounds from Various Thio Compounds, Synthesis, pp.864-865, 1977.

V. J. Cee and N. S. Downing, A one-pot method for the synthesis of 2-aminobenzimidazoles and related heterocycles, Tetrahedron Lett, vol.47, pp.3747-3750, 2006.

V. I. Ognyanov, C. Balan, A. W. Bannon, Y. Bo, C. Dominguez et al., Design of Potent, Orally Available Antagonists of the Transient Receptor Potential Vanilloid 1. Structure?Activity Relationships of 2-Piperazin-1-yl-1Hbenzimidazoles, J. Med. Chem, vol.49, pp.3719-3742, 2006.

B. Shao, J. Huang, Q. Sun, K. J. Valenzano, L. Schmid et al., Pyridyl)piperazine-1benzimidazoles as potent TRPV1 antagonists, Bioorg. Med. Chem. Lett, vol.15, issue.2, pp.719-723, 2005.

J. R. Dunetz, J. Magano, and G. A. Weisenburger, Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals, Org. Process Res. Dev, vol.20, pp.140-177, 2016.

K. R. Hornberger, J. G. Badiang, J. M. Salovich, K. W. Kuntz, K. A. Emmitte et al., Regioselective synthesis of benzimidazole thiophene inhibitors of polo-like kinase 1, Tetrahedron Lett, vol.49, pp.6348-6351, 2008.

L. V. Dubey and I. Y. Dubey, Side reactions of onium coupling reagents BOP and HBTU in the synthesis of silica polymer supports. Ukr, Bioorganica Acta, vol.1, pp.13-19, 2005.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

D. Lubriks, I. Sokolovs, and E. Suna, Indirect C-H Azidation of Heterocycles via Copper-Catalyzed Regioselective Fragmentation of Unsymmetrical ?3-Iodanes, J. Am. Chem. Soc, vol.134, pp.15436-15442, 2012.

I. Sokolovs, D. Lubriks, and E. Suna, Copper-Catalyzed Intermolecular C-H Amination of (Hetero)arenes via Transient Unsymmetrical ?3-Iodanes, J. Am. Chem. Soc, vol.136, pp.6920-6928, 2014.

O. Castillo-aguilera, P. Depreux, L. Halby, N. Azaroual, P. B. Arimondo et al., Regioselective and efficient halogenation of 4,5-unsubstituted alkyl 3-hydroxypyrrole/3hydroxythiophene-2-yl-carboxylates, Tetrahedron Lett, vol.58, pp.2537-2541, 2017.

T. Momose, T. Tanaka, T. Yokota, N. Nagamoto, and K. Yamada, 3-Hydroxypyrroles. III. Synthesis and Tautomerism of N-Alkyl-3-hydroxypyrroles, Chem. Pharm. Bull. (Tokyo), vol.27, pp.1448-1453, 1979.

B. Capon and F. Kwok, The tautomerism of hydroxy derivatives of five-membered oxygen, nitrogen, and sulfur heterocycles, Tetrahedron Lett, vol.27, pp.84773-84778, 1986.

B. Capon and F. C. Kwok, Tautomerism of the monohydroxy derivatives of five-membered oxygen, nitrogen and sulfur heterocycles, J. Am. Chem. Soc, vol.111, pp.5346-5356, 1989.

H. Mcnab, L. C. Monahan, and R. A. Jones, 3-Hydroxypyrroles, Chemistry of Heterocyclic Compounds, pp.525-616, 1992.

C. Corral and J. Lissavetzky, Reactions with 3-Hydroxy-2-methoxycarbonylthiophene

I. , Synthesis of 3-Thienyloxyacetic Acid and its (Nuclear) Chloro and Bromo Derivatives, Synthesis, pp.847-850, 1984.

M. I. Fernandez, T. M. Hotten, and D. E. Tupper, Organic compounds and their use as pharmaceuticals, 1990.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer

M. S. Kharasch and H. C. Brown, Chlorinations with Sulfuryl Chloride. I. The Peroxide-Catalyzed Chlorination of Hydrocarbons, J. Am. Chem. Soc, vol.61, pp.2142-2150, 1939.

J. P. Wolfe and S. L. Buchwald, Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides, J. Org. Chem, vol.65, pp.1144-1157, 2000.

C. Wolf, S. Liu, X. Mei, A. T. August, and M. D. Casimir, Regioselective copper-catalyzed amination of bromobenzoic acids using aliphatic and aromatic amines, J. Org. Chem, vol.71, pp.3270-3273, 2006.

S. Messaoudi, J. Brion, and M. Alami, Copper-Catalyzed Direct Amination of Halo(hetero)arenes with Sodium Azide as the Amino Source, Mini-Rev. Org. Chem, vol.8, pp.448-454, 2011.

C. Corral and J. Lissavetzky, Reactions with methyl 3-hydroxythiophene-2-carboxylate. Part 2. A new route to mono-and di-alkyl ethers of thiotetronic and ?-halogenothiotetronic acids, J. Chem. Soc, pp.2711-2714

C. E. Corral and J. Mazanares, Mazanares, I. Reactions of methyl 3-hydroxythiophene-2carboxylate. Part 4: Synthesis of methyl 5-azolyl-3-hydroxythiophene-2-carboxylates, J. Het

. Chem, , vol.24, pp.1302-1303, 1987.

K. ;. Groebke-zbinden and . Ch,

W. ;. Haap and . De,

H. ;. Hilpert and . Ch,

N. ;. Panday, F. ;. Ch;-ricklin, and . Fr,

B. Wirz, CH United States Patent: 7820699-Cyclic amines, 2010.

K. Y. Horiuchi, Challenges in profiling and lead optimization of drug discovery for methyltransferases, Drug Discov. Today Technol, vol.18, pp.62-68, 2015.

R. Z. Jurkowska, A. Ceccaldi, Y. Zhang, P. B. Arimondo, A. Jeltsch et al., Epigenetics Protocols, vol.791, pp.157-177, 2011.

, Thèse : Conception, synthèse et évaluation pharmacologique d'inhibiteurs potentiels de DOT1L impliqués dans la régulation épigénétique du cancer 250

D. Cheng, N. Yadav, R. W. King, M. S. Swanson, E. J. Weinstein et al., Small Molecule Regulators of Protein Arginine Methyltransferases, J. Biol. Chem, vol.279, pp.23892-23899, 2004.