, Lorsqu'un matériau est éclairé par la lumière, de nombreux phénomènes peuvent être observés à la fois en surface et a l'intérieure du matériau (voir la Fig. R.A). À la surface

E. Une-fois-transmise and . Peut-Être-diffusée, A son tour, le rayonnement qui se propage dans le matériau peut être diffusé élastiquement ou inélastiquement selon que l'impulsion du photon incident est conservée ou pas. À ce stade là, la lumière diffusée inélastiquement par les ondes acoustiques est généralement appelée diffusion de Brillouin (ce phénomène a été découvert indépendamment par Mandelstam). d'autre part, La diffusion par les autres excitations élémentaires du matériau (phonons optiques, plasmons, ..etc.) est appelée la diffusion Raman (Sir C.V. Raman a reçu le Prix Nobel de Physique en 1930 pour la découverte, en 1928 à Calcutta, en Inde

T. Dans-cette, seuls les phonons seront considérés. Par conséquent, un processus de diffusion Raman est dit du 1 er , 2 ème , .., n ème ordre suivant le nombre de phonons qui ont été émis (diffusion dite de Stokes) ou absorbés

R. Figure, A-Schéma simplifié montrant les processus optiques linéaires à l

M. Cardona and G. Güntherodt, Light scattering in solids II: basic concepts and instrumentation. Topics in applied physics, p.121, 1982.

Y. U. Peter and M. Cardona, Fundamentals of semiconductors: physics and materials properties, vol.39, p.121, 2010.

M. Lazzeri and F. Mauri, First-principles calculation of vibrational raman spectra in large systems: Signature of small rings in crystalline SiO 2, Physical Review Letters, vol.90, issue.3, p.36401, 2003.

M. Veithen, X. Gonze, and P. Ghosez, Nonlinear optical susceptibilities, raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory, Phys. Rev. B, vol.71, issue.12, p.36, 2005.

P. Knoll and C. Ambrosch-draxl, Raman scattering of atomic vibrations in anharmonic potentials, Anharmonic Properties of High-Ic Cuprates, vol.13, p.46, 1995.

S. Baroni, S. De-gironcoli, A. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics, vol.73, issue.2, p.44, 2001.

E. Bobocioiu and R. Caracas, The wurm project-a freely available web-based repository of computed physical data for minerals, American Mineralogist, vol.96, p.46, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00676731

Y. Gillet, M. Giantomassi, and X. Gonze, First-principles study of excitonic effects in raman intensities, Phys. Rev. B, vol.88, issue.9, p.46, 2013.
DOI : 10.1103/physrevb.88.094305

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:135677&datastream=PDF_01&disclaimer=2cf6012d0bb2b59d91503745c8cfbde17fbd3cb9fa8a1602d15c7b70f84830cb

E. Del-corro, A. Botello-méndez, Y. Gillet, A. L. Elias, H. Terrones et al., Atypical exciton-phonon interactions in WS 2 and WSe 2 monolayers revealed by resonance raman spectroscopy, Nano Letters, vol.16, issue.4, p.2363, 2016.

L. Hedin, New method for calculating the one-particle green's function with application to the electron-gas problem, Physical Review, vol.139, issue.3A, p.41, 1965.
DOI : 10.1103/physrev.139.a796

URL : http://lup.lub.lu.se/search/ws/files/5381803/8835242.pdf

M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B, vol.34, p.41, 1986.
DOI : 10.1103/physrevb.34.5390

A. K. Ganguly and J. L. Birman, Theory of lattice raman scattering in insulators, Physical Review, vol.162, issue.3, p.30, 1967.
DOI : 10.1103/physrev.162.806

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett, vol.97, issue.18, p.128, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

J. D. Bernal, The structure of graphite, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.106, issue.740, p.87, 1924.

N. B. Kopnina and T. T. Heikkiläa, Surface superconductivity in rhombohedral graphite, Carbon-based Superconductors: Towards High-Tc Superconductivity, vol.87, p.123, 2014.

R. Xiao, F. Tasnadi, K. Koepernik, J. W. Venderbos, M. Richter et al., Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit, Phys. Rev. B, vol.84, issue.16, p.123, 2011.
DOI : 10.1103/physrevb.84.165404

URL : http://liu.diva-portal.org/smash/get/diva2:496527/FULLTEXT01

B. Pamuk, J. Baima, F. Mauri, and M. Calandra, Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles, Phys. Rev. B, vol.95, p.123, 2017.
DOI : 10.1103/physrevb.95.075422

URL : https://hal.archives-ouvertes.fr/hal-01507073

C. E. Precker, P. D. Esquinazi, A. Champi, J. Barzola-quiquia, M. Zoraghi et al., Identification of a possible superconducting transition above room temperature in natural graphite crystals, New J. Phys, vol.18, p.123, 2016.

P. Venezuela, M. Lazzeri, and F. Mauri, Theory of double-resonant raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands, Phys. Rev. B, vol.84, issue.3, p.110, 2011.

V. N. Popov, Two-phonon raman bands of bilayer graphene: revisited. Carbon, 91:436, vol.47, p.67, 2015.
DOI : 10.1016/j.carbon.2015.05.020

URL : http://arxiv.org/pdf/1504.04980

E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim et al., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proceedings of the National Academy of Sciences, vol.104, issue.22, p.9209, 2007.

T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, vol.391, issue.6662, p.3, 1998.

P. R. Wallace, The band theory of graphite, Physical Review, vol.71, issue.9, p.622, 1947.
DOI : 10.1103/physrev.71.622

E. F. Weisner, J. R. Churchill, and W. F. Banks, Graphite moderated nuclear reactor, US Patent, vol.3, issue.2, 1965.

T. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, Superconductivity in the intercalated graphite compounds C 6 Yb and C 6 Ca, Nature Physics, vol.1, issue.1, p.3941, 2005.
DOI : 10.1038/nphys0010

URL : http://arxiv.org/pdf/cond-mat/0503570

T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, Journal of The Electrochemical Society, vol.140, issue.9, p.2490, 1993.

T. Inoshita, K. Nakao, and H. Kamimura, Electronic structure of potassiumgraphite intercalation compound: C 8 K, Journal of the Physical Society of Japan, vol.43, issue.4, p.1237, 1977.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, issue.5696, p.3, 2004.
DOI : 10.1126/science.1102896

URL : http://arxiv.org/pdf/cond-mat/0410550

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, issue.3, p.183, 2007.

S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney et al., Graphene-based composite materials, Nature, vol.442, issue.7100, p.282, 2006.

A. H. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.109, 2009.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters, vol.9, issue.1, p.30, 2008.
DOI : 10.1021/nl801827v

J. Nilsson, A. H. Neto, F. Guinea, and N. M. Peres, Electronic properties of bilayer and multilayer graphene, Phys. Rev. B, vol.78, issue.4, p.45405, 2008.
DOI : 10.1103/physrevb.78.045405

URL : http://arxiv.org/pdf/0712.3259

J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic?, Phys. Rev. Lett, vol.68, p.631, 1992.
DOI : 10.1103/physrevlett.68.631

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of graphene tubules based on C 60, Phys. Rev. B, vol.46, issue.3, p.1804, 1992.
DOI : 10.1103/physrevb.46.1804

R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical properties of carbon nanotubes, World Scientific, vol.35, issue.3, 1998.

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik, vol.389, issue.20, p.457, 1927.
DOI : 10.1007/978-3-642-61659-4_16

J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, 2006.
DOI : 10.1017/cbo9780511755613

M. Born and K. Huang, Dynamical theory of crystal lattices, 1954.

L. M. Malard, M. H. Guimaraes, D. L. Mafra, and A. Jorio, Group-theory analysis of electrons and phonons in n-layer graphene systems, Phys. Rev. B, vol.79, issue.12, p.96, 2009.
DOI : 10.1103/physrevb.79.125426

URL : http://arxiv.org/pdf/0812.1293

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene, Nature, vol.459, issue.7248, p.820, 2009.
DOI : 10.1038/nature08105

W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu et al., Stacking-dependent band gap and quantum transport in trilayer graphene, Nature Physics, vol.7, issue.12, p.948, 2011.
DOI : 10.1038/nphys2103

URL : https://www.nature.com/articles/nphys2103.pdf

M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory: application to the physics of condensed matter, 2007.

S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.362, issue.9, p.88, 1824.

W. Kohn, Image of the fermi surface in the vibration spectrum of a metal, Physical Review Letters, vol.2, issue.9, p.393, 1959.

G. , The electron-phonon interaction in metals, vol.8, p.34, 1981.

J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Phonon dispersion in graphite, Phys. Rev. Lett, vol.92, issue.7, p.11, 2004.
DOI : 10.1103/physrevlett.92.075501

S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, Kohn anomalies and electron-phonon interactions in graphite, Phys. Rev. Lett, vol.93, issue.18, p.113, 2004.
DOI : 10.1103/physrevlett.93.185503

URL : http://arxiv.org/pdf/cond-mat/0407164

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim et al., Breakdown of the adiabatic born-oppenheimer approximation in graphene, Nature Materials, vol.6, issue.3, p.21, 2007.
DOI : 10.1038/nmat1846

URL : https://hal.archives-ouvertes.fr/hal-00135075

S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, Optical phonons in carbon nanotubes: Kohn anomalies, peierls distortions, and dynamic effects, Phys. Rev. B, vol.75, issue.3, p.12, 2007.
DOI : 10.1103/physrevb.75.035427

URL : https://hal.archives-ouvertes.fr/hal-00129683

D. M. Basko, Calculation of the raman G peak intensity in monolayer graphene: role of ward identities, New Journal of Physics, vol.11, issue.9, p.30, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00421212

S. Reichardt and L. Wirtz, Ab initio, Phys. Rev. B, vol.95, p.47, 2017.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.8, issue.4, p.88, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

C. Thomsen and S. Reich, Double resonant raman scattering in graphite, Physical Review Letters, vol.85, issue.24, p.88, 2000.
DOI : 10.1103/physrevlett.85.5214

T. M. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation, Phys. Rev. B, vol.79, issue.20, p.19, 2009.
DOI : 10.1103/physrevb.79.205433

URL : http://dspace.mit.edu/bitstream/1721.1/51376/1/Mohiuddin-2009-Uniaxial%20strain%20in%20g.pdf

M. Huang, H. Yan, C. Chen, D. Song, T. F. Heinz et al., Phonon softening and crystallographic orientation of strained graphene studied by raman spectroscopy, Proceedings of the National Academy of Sciences, vol.106, issue.18, p.19, 2009.
DOI : 10.1073/pnas.0811754106

URL : http://www.pnas.org/content/106/18/7304.full.pdf

M. Mohr, K. Papagelis, J. Maultzsch, and C. Thomsen, Two-dimensional electronic and vibrational band structure of uniaxially strained graphene from ab initio calculations, Phys. Rev. B, vol.80, issue.20, p.18, 2009.
DOI : 10.1103/physrevb.80.205410

URL : http://arxiv.org/pdf/0908.0895

M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett, vol.98, issue.20, p.19, 2007.
DOI : 10.1103/physrevlett.98.206805

URL : http://arxiv.org/pdf/cond-mat/0702511

L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill et al., Chaotic dirac billiard in graphene quantum dots, Science, vol.320, issue.5874, p.19, 2008.
DOI : 10.1126/science.1154663

URL : http://arxiv.org/pdf/0801.0160

M. Huang, H. Yan, T. F. Heinz, and J. Hone, Probing strain-induced electronic structure change in graphene by raman spectroscopy, Nano Letters, vol.10, issue.10, p.20, 2010.
DOI : 10.1021/nl102123c

URL : http://heinz.phys.columbia.edu/publications/Pub175.pdf

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha et al., Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.3, issue.4, p.22, 1920.
DOI : 10.1038/nnano.2008.67

URL : http://arxiv.org/pdf/0709.1174

A. Paradisi, J. Biscaras, and A. Shukla, Space charge induced electrostatic doping of two-dimensional materials: graphene as a case study, Applied Physics Letters, vol.107, issue.14, p.20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220521

A. C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electronphonon coupling, doping and nonadiabatic effects, Solid state Communications, vol.143, issue.1, p.22, 2007.
DOI : 10.1016/j.ssc.2007.03.052

M. Lazzeri and F. Mauri, Nonadiabatic kohn anomaly in a doped graphene monolayer, Phys. Rev. Lett, vol.97, issue.26, p.22, 2006.
DOI : 10.1103/physrevlett.97.266407

URL : https://hal.archives-ouvertes.fr/hal-00129684

L. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete et al., Quantifying defects in graphene via raman spectroscopy at different excitation energies, Nano Letters, vol.11, issue.8, p.23, 2011.

F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, The Journal of Chemical Physics, vol.53, issue.3, p.88, 1970.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, vol.102, p.10451, 2005.

F. Herziger, M. Calandra, P. Gava, P. May, M. Lazzeri et al., Two-dimensional analysis of the double-resonant 2D raman mode in bilayer graphene, Phys. Rev. Lett, vol.113, issue.18, p.107, 2014.

C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus et al., Imaging stacking order in few-layer graphene, Nano Letters, vol.11, issue.1, p.127, 2010.

Y. Lee, D. Tran, K. Myhro, J. Velasco, C. N. Gillgren et al., Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene, Nature communications, vol.5, p.25, 2014.

B. Pamuk, J. Baima, F. Mauri, and M. Calandra, Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles, Phys. Rev. B, vol.95, p.25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01507073

D. Pierucci, H. Sediri, M. Hajlaoui, J. Girard, T. Brumme et al., Evidence for flat bands near the fermi level in epitaxial rhombohedral multilayer graphene, ACS Nano, vol.9, issue.5, p.88, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240494

Y. Henni, H. P. Ojeda-collado, K. Nogajewski, M. R. Molas, G. Usaj et al., Rhombohedral multilayer graphene: A magneto-raman scattering study, Nano Letters, vol.16, issue.6, p.129, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998371

K. F. Mak, M. Y. Sfeir, J. Misewich, and T. F. Heinz, The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy, Proceedings of the National Academy of Sciences, vol.107, issue.34, p.26, 2010.

K. F. Mak, J. Shan, and T. F. Heinz, Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence, Phys. Rev. Lett, vol.104, issue.17

Z. Li, C. H. Lui, E. Cappelluti, L. Benfatto, K. F. Mak et al., Structure-dependent fano resonances in the infrared spectra of phonons in few-layer graphene, Phys. Rev. Lett, vol.108, issue.15, p.26, 2012.

M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Communications, vol.142, issue.3, p.26, 2007.

R. Merlin, A. Pinczuk, and W. H. Weber, Overview of phonon raman scattering in solids, Raman scattering in materials science, vol.29, p.45, 2000.

M. Profeta and F. Mauri, Theory of resonant raman scattering of tetrahedral amorphous carbon, Phys. Rev. B, vol.63, issue.24, p.45, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00135973

G. Placzek, Handbuch der radiologie, Akad. Verlag, Leipzig, vol.6, p.30, 1934.

P. Brüesch, Phonons: Theory and Experiments II: Experiments and Interpretation of Experimental Results, vol.65, p.30, 2012.

Y. Gillet, Ab initio study of Raman and optical spectra of crystalline materials and their temperature dependence, p.30, 2017.

S. Reichardt and L. Wirtz, Raman spectroscopy of graphene. In Optical Properties of Graphene, page 85, vol.30, p.39, 2017.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, vol.140, issue.4A, p.32, 1965.

R. A. Jishi, Feynman diagram techniques in condensed matter physics, vol.32, p.37, 2013.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, vol.33, p.34, 1976.

M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Self-consistent calculation of the q dependence of the electron-phonon coupling in aluminum, Phys. Rev. Lett, vol.55, issue.8, p.35, 1985.

F. Giustino, Electron-phonon interactions from first principles. Reviews of Modern, Physics, vol.89, issue.1, p.36, 2017.

D. Basko, Theory of resonant multiphonon raman scattering in graphene, Phys. Rev. B, vol.78, issue.12, p.39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356402

F. Aryasetiawan and O. Gunnarsson, The gw method, Reports on Progress in Physics, vol.61, issue.3, p.41, 1998.

A. Grüneis, C. Attaccalite, T. Pichler, V. Zabolotnyy, H. Shiozawa et al., Electronelectron correlation in graphite: a combined angle-resolved photoemission and first-principles study, Phys. Rev. Lett, vol.100, issue.3, p.43, 2008.

A. Grüneis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito et al., Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene, Phys. Rev. B, vol.78, p.41, 2008.

A. Grüneis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito et al., Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene, Phys. Rev. B, vol.78, issue.20, p.43, 2008.

M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri, Impact of the electronelectron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite, Phys. Rev. B, vol.78, issue.8, p.113, 2008.

M. Calandra, G. Profeta, and F. Mauri, Adiabatic and nonadiabatic phonon dispersion in a wannier function approach, Phys. Rev. B, vol.82, issue.16, p.56, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00652413

V. N. Popov, L. Henrard, and P. Lambin, Electron-phonon and electron-photon interactions and resonant raman scattering from the radial-breathing mode of single-walled carbon nanotubes, Phys. Rev. B, vol.72, issue.3, p.47, 2005.

F. Giustino, M. L. Cohen, and S. G. Louie, Electron-phonon interaction using wannier functions, Phys. Rev. B, vol.76, issue.16, p.55, 2007.

N. Marzari and D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands, Phys. Rev. B, vol.56, issue.20, p.50, 1997.

I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized wannier functions for entangled energy bands, Phys. Rev. B, vol.65, issue.3, p.51, 2001.

N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized wannier functions: Theory and applications, Reviews of Modern Physics, vol.84, issue.4, p.53, 2012.

G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Physical Review, vol.52, issue.3, p.50, 1937.

A. A. Mostofi, J. R. Yates, Y. Lee, I. Souza, D. Vanderbilt et al., wannier90: A tool for obtaining maximally-localised wannier functions, Computer physics communications, vol.178, issue.9, p.51, 2008.

W. Kohn, Analytic properties of bloch waves and wannier functions, Physical Review, vol.115, issue.4, p.51, 1959.

C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Exponential localization of wannier functions in insulators, Phys. Rev. Lett, vol.98, issue.4, p.51, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00154225

G. Panati and A. Pisante, Bloch bundles, marzari-vanderbilt functional and maximally localized wannier functions, Communications in Mathematical Physics, vol.322, issue.3, p.51, 2013.

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and fermi surface properties from wannier interpolation, Phys. Rev. B, vol.75, issue.19, p.52, 2007.

A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood et al., Phonon renormalization in doped bilayer graphene, Phys. Rev. B, vol.79, p.65, 2009.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, vol.473, issue.5, p.67, 2009.

M. S. Dresselhaus, A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy, Annual Review of Condensed Matter Physics, vol.1, issue.1, p.67, 2010.

J. Charlier, X. Gonze, and J. Michenaud, First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon, vol.32, issue.2, p.89, 1994.

L. Brown, R. Hovden, P. Huang, M. Wojcik, D. A. Muller et al., Twinning and twisting of tri-and bilayer graphene, Nano Letters, vol.12, issue.3, p.68, 2012.

C. Cong, T. Yu, K. Sato, J. Shang, R. Saito et al., Raman characterization of aba-and abc-stacked trilayer graphene, ACS Nano, vol.5, issue.11, p.126, 2011.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, issue.39, p.96, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

L. Paulatto, F. Mauri, and M. Lazzeri, Anharmonic properties from a generalized third-order ab initio approach: Theory and applications to graphite and graphene, Phys. Rev. B, vol.87, issue.21, p.214303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01049681

D. L. Mafra, E. A. Moujaes, S. K. Doorn, H. Htoon, R. W. Nunes et al., A study of inner process double-resonance raman scattering in bilayer graphene, Carbon, vol.49, issue.5, p.78, 2011.

K. F. Mak, J. Shan, and T. F. Heinz, Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence, Phys. Rev. Lett, vol.104, p.88, 2010.

P. Venezuela, M. Lazzeri, and F. Mauri, Theory of double-resonant raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Phys. Rev. B, vol.84, p.88, 2011.

D. M. Basko, Theory of resonant multiphonon raman scattering in graphene, Phys. Rev. B, vol.78, p.88, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356402

V. N. Popov and P. Lambin, Theoretical 2D raman band of strained graphene, Phys. Rev. B, vol.87, p.88, 2013.

L. G. Cançado, A. Reina, J. Kong, and M. S. Dresselhaus, Geometrical approach for the study of G' band in the raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite, Phys. Rev. B, vol.77, issue.24, p.88, 2008.

R. Narula and S. Reich, Double resonant raman spectra in graphene and graphite: A two-dimensional explanation of the raman amplitude, Phys. Rev. B, vol.78, issue.16, p.88, 2008.

R. Saito, A. Jorio, A. G. Souza-filho, G. Dresselhaus, M. S. Dresselhaus et al., Probing phonon dispersion relations of graphite by double resonance raman scattering, Phys. Rev. Lett, vol.88, issue.2, p.88, 2001.

H. Lipson and A. R. Stokes, The structure of graphite, vol.181, p.101

X. Zhang, Q. Tan, J. Wu, W. Shi, and P. Tan, Review on the raman spectroscopy of different types of layered materials, Nanoscale, vol.8, issue.12, p.128, 2016.