D. Abdallah, E. Hamade, R. A. Merhi, B. Bassam, R. Buchet et al., Fatty acid composition in matrix vesicles and in microvilli from femurs of chicken embryos revealed selective recruitment of fatty acids, Biochem Biophys Res Commun, vol.446, pp.1161-1164, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991044

A. Abdelbaky, E. Corsini, A. L. Figueroa, S. Fontanez, S. Subramanian et al., Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study, Circ Cardiovasc Imaging, vol.6, pp.747-754, 2013.

G. S. Abela, A. , and K. , Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis, Clin Cardiol, vol.28, pp.413-420, 2005.

G. S. Abela, K. Aziz, A. Vedre, D. R. Pathak, J. D. Talbott et al., Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes, Am J Cardiol, vol.103, pp.959-968, 2009.

W. N. Addison, F. Azari, E. S. Sørensen, M. T. Kaartinen, and M. D. Mckee, , 2007.

, Pyrophosphate Inhibits Mineralization of Osteoblast Cultures by Binding to Mineral, Upregulating Osteopontin, and Inhibiting Alkaline Phosphatase Activity, J Biol Chem, vol.282, pp.15872-15883

T. Aigner, D. Neureiter, V. Câmpean, S. Soder, A. et al., Expression of cartilage-specific markers in calcified and non-calcified atherosclerotic lesions, Atherosclerosis, vol.196, pp.37-41, 2008.

E. Aikawa, M. Nahrendorf, J. Figueiredo, F. K. Swirski, T. Shtatland et al., Osteogenesis Associates With Inflammation in Early-Stage Atherosclerosis Evaluated by Molecular Imaging In Vivo, vol.116, pp.2841-2850, 2007.

Y. J. Geng, L. , and P. , Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme, Am J Pathol, vol.147, pp.251-266, 1995.

Y. Geng, J. J. Hsu, J. Lu, T. C. Ting, M. Miyazaki et al., Role of Cellular Cholesterol Metabolism in Vascular Cell Calcification, J Biol Chem, vol.286, pp.33701-33706, 2011.

B. R. Genge, L. N. Wu, and R. E. Wuthier, Kinetic analysis of mineral formation during in vitro modeling of matrix vesicle mineralization: Effect of annexin A5, phosphatidylserine, and type II collagen, Anal Biochem, vol.367, pp.159-166, 2007.

B. R. Genge, L. N. Wu, and R. E. Wuthier, Mineralization of Annexin-5-containing Lipid-Calcium-Phosphate Complexes: modulation by varying lipid composition and incubation with cartilage collagens, J Biol Chem, vol.283, pp.9737-9748, 2008.

A. Gericke, C. Qin, L. Spevak, Y. Fujimoto, W. T. Butler et al., Importance of phosphorylation for osteopontin regulation of biomineralization, Calcif Tissue Int, vol.77, pp.45-54, 2005.

V. Gerke and S. E. Moss, Annexins: From Structure to Function, Physiol Rev, vol.82, pp.331-371, 2002.

G. S. Getz and C. A. Reardon, Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall, J Lipid Res, vol.50, pp.156-161, 2009.

J. M. Gillette and S. M. Nielsen-preiss, The role of annexin 2 in osteoblastic mineralization, J Cell Sci, vol.117, pp.441-449, 2004.

C. K. Glass and J. L. Witztum, Atherosclerosis: the road ahead, Cell, vol.104, pp.503-516, 2001.

C. Goettsch, J. D. Hutcheson, M. Aikawa, H. Iwata, T. Pham et al., Sortilin mediates vascular calcification via its recruitment into extracellular vesicles, J Clin Invest, vol.126, pp.1323-1336, 2016.

M. B. Goldring, K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis, J Cell Biochem, vol.97, pp.33-44, 2006.

E. E. Golub, Role of matrix vesicles in biomineralization, Biochim Biophys Acta, vol.1790, pp.1592-1598, 2009.

M. Gosset, F. Berenbaum, S. Thirion, J. , and C. , Primary culture and phenotyping of murine chondrocytes, Nat Protoc, vol.3, pp.1253-1260, 2008.

A. Grebe and E. Latz, Cholesterol crystals and inflammation, Curr Rheumatol Rep, vol.15, p.313, 2013.

P. Greenland, S. C. Smith, and S. M. Grundy, Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests, Circulation, vol.104, pp.1863-1867, 2001.

I. Grskovic, A. Kutsch, C. Frie, G. Groma, J. Stermann et al., , 2012.

A. P. Burke, A. Farb, G. T. Malcom, Y. Liang, J. E. Smialek et al., Plaque rupture and sudden death related to exertion in men with coronary artery disease, JAMA, vol.281, issue.10, pp.921-926, 1999.

R. Vliegenthart, M. Oudkerk, A. Hofman, H. H. Oei, W. Van-dijck et al., Coronary calcification improves cardiovascular risk prediction in the elderly, Circulation, vol.112, issue.4, pp.572-577, 2005.

G. Pugliese, C. Iacobini, C. B. Fantauzzi, and S. Menini, The dark and bright side of atherosclerotic calcification, Atherosclerosis, vol.238, issue.2, pp.220-230, 2015.

M. E. Rosenfeld, P. Polinsky, R. Virmani, K. Kauser, G. Rubanyi et al., Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse, Arterioscler. Thromb. Vasc. Biol, vol.20, issue.12, pp.2587-2592, 2000.

M. Rattazzi, B. J. Bennett, F. Bea, E. A. Kirk, J. L. Ricks et al., Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells, Arterioscler. Thromb. Vasc. Biol, vol.25, issue.7, pp.1420-1425, 2005.

Y. Sun, C. H. Byon, K. Yuan, J. Chen, X. Mao et al., Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification, Circ. Res, vol.111, issue.5, pp.543-552, 2012.
DOI : 10.1161/circresaha.112.267237

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.112.267237

F. Herisson, M. F. Heymann, M. Chétiveaux, C. Charrier, S. Battaglia et al., Carotid and femoral atherosclerotic plaques show different morphology, Atherosclerosis, vol.216, issue.2, pp.348-354, 2011.
DOI : 10.1016/j.atherosclerosis.2011.02.004

URL : https://hal.archives-ouvertes.fr/inserm-00642808

T. Aigner, D. Neureiter, V. Câmpean, S. Soder, and K. Amann, Expression of cartilage-specific markers in calcified and non-calcified atherosclerotic lesions, Atherosclerosis, vol.196, issue.1, pp.37-41, 2008.
DOI : 10.1016/j.atherosclerosis.2007.01.020

H. Huang, R. Virmani, H. Younis, A. P. Burke, R. D. Kamm et al., The impact of calcification on the biomechanical stability of atherosclerotic plaques, Circulation, vol.103, issue.8, pp.1051-1056, 2001.

S. Ehara, Y. Kobayashi, M. Yoshiyama, K. Shimada, Y. Shimada et al.,

J. Becker, M. Yoshikawa, and . Ueda, Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study, Circulation, vol.110, issue.22, pp.3424-3429, 2004.

R. B. Roijers, N. Debernardi, J. P. Cleutjens, L. J. Schurgers, P. H. Mutsaers et al., Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries, vol.178, pp.2879-2887, 2011.

M. L. Chatrou, J. P. Cleutjens, G. J. Van-der-vusse, R. B. Roijers, P. H. Mutsaers et al., Intra-section analysis of human coronary arteries reveals a potential role for micro-calcifications in macrophage recruitment in the early stage of atherosclerosis, PLoS One, vol.10, issue.11, 2015.

Y. Vengrenyuk, S. Carlier, S. Xanthos, L. Cardoso, P. Ganatos et al., A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.40, pp.14678-14683, 2006.

A. Kelly-arnold, N. Maldonado, D. Laudier, E. Aikawa, L. Cardoso et al., Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.26, pp.10741-10746, 2013.
DOI : 10.1073/pnas.1308814110

URL : http://www.pnas.org/content/110/26/10741.full.pdf

P. Lencel, P. Hardouin, and D. Magne, Do cytokines induce vascular calcification by the mere stimulation of TNAP activity?, Med. Hypotheses, vol.75, issue.6, pp.517-521, 2010.

R. Buchet, J. L. Millán, and D. Magne, Multisystemic functions of alkaline phosphatases, Methods Mol. Biol, vol.1053, pp.27-51, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917994

L. Bessueille and D. Magne, Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes, Cell. Mol. Life Sci, pp.2475-2489, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01414372

P. Lencel, S. Delplace, P. Pilet, D. Leterme, F. Miellot et al., Cell-specific effects of TNF-? and IL-1? on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification, Lab. Investig, vol.91, issue.10, pp.1434-1442, 2011.

Y. Tintut, J. Patel, F. Parhami, and L. L. Demer, Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway, Circulation, vol.102, issue.21, pp.2636-2642, 2000.

A. Shioi, M. Katagi, Y. Okuno, K. Mori, S. Jono et al., Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages, Circ. Res, vol.91, issue.1, pp.9-16, 2002.

H. L. Lee, K. M. Woo, H. M. Ryoo, and J. H. Baek, Tumor necrosis factor-alpha increases alkaline phosphatase expression in vascular smooth muscle cells via MSX2 induction, Biochem. Biophys. Res. Commun, vol.391, issue.1, pp.1087-1092, 2010.

C. R. Sheen, P. Kuss, S. Narisawa, M. C. Yadav, J. Nigro et al., Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification, J. Bone Miner. Res, pp.824-836, 2015.

M. Gosset, F. Berenbaum, S. Thirion, and C. Jacques, Primary culture and phenotyping of murine chondrocytes, Nat. Protoc, vol.3, issue.8, pp.1253-1260, 2008.

A. Idelevich, Y. Rais, and E. Monsonego-ornan, Bone Gla protein increases HIF-1alphadependent glucose metabolism and induces cartilage and vascular calcification, Arterioscler. Thromb. Vasc. Biol, vol.31, issue.9, pp.55-71, 2011.

L. Bessueille, M. Fakhry, E. Hamade, B. Badran, and D. Magne, Glucose stimulates chondrocyte differentiation of vascular smooth muscle cells and calcification: a possible role for IL-1?, FEBS Lett, pp.2797-2804, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01414233

M. Díez-zaera, J. I. Díaz-hernández, E. Hernández-Álvarez, H. Zimmermann, M. Díaz-hernández et al., Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons, Mol. Biol. Cell, vol.22, issue.7, pp.1014-1024, 2011.

K. W. Harder, P. Owen, L. K. Wong, R. Aebersold, I. Clark-lewis et al., Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides, Biochem. J, vol.298, issue.2, pp.395-401, 1994.

A. Perrier, V. Dumas, M. T. Linossier, C. Fournier, P. Jurdic et al., Apatite content of collagen materials dose-dependently increases pre-osteoblastic cell deposition of a cement line-like matrix, Bone, vol.47, issue.1, pp.23-33, 2010.

J. Ding, O. Ghali, P. Lencel, O. Broux, C. Chauveau et al., TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells, Life Sci, vol.84, pp.499-504, 2009.

K. L. Lauing, M. Cortes, M. S. Domowicz, J. G. Henry, A. T. Baria et al., Aggrecan is required for growth plate cytoarchitecture and differentiation, Dev. Biol, vol.396, issue.2, pp.224-236, 2014.

R. Rosati, G. S. Horan, G. J. Pinero, S. Garofalo, D. R. Keene et al., Normal long bone growth and development in type X collagen-null mice, Nat. Genet, vol.8, issue.2, pp.129-135, 1994.

N. K. Lee, H. Sowa, E. Hinoi, M. Ferron, J. D. Ahn et al., Endocrine regulation of energy metabolism by the skeleton, Cell, vol.130, issue.3, pp.456-469, 2007.

K. Johnson, M. Polewski, D. Van-etten, and R. Terkeltaub, Chondrogenesis mediated by PPi depletion promotes spontaneous aortic calcification in NPP1?/? mice, Arterioscler. Thromb. Vasc. Biol, vol.25, issue.4, pp.686-691, 2005.

R. Garimella, X. Bi, H. C. Anderson, and N. P. Camacho, Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: an FTIR imaging study, Bone, vol.38, issue.6, pp.811-817, 2006.

W. N. Addison, F. Azari, E. S. Sørensen, M. T. Kaartinen, and M. D. Mckee, Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity, J. Biol. Chem, vol.282, issue.21, pp.15872-15883, 2007.

S. Khoshniat, A. Bourgine, M. Julien, M. Petit, P. Pilet et al., Phosphate-dependent stimulation of MGP

M. Fakhry, Biochimica et Biophysica Acta, vol.1863, pp.643-653, 2017.

, OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium, Bone, vol.48, issue.4, pp.894-902, 2011.

A. P. Sage, J. Lu, Y. Tintut, and L. L. Demer, Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro, Kidney Int, vol.79, issue.4, pp.414-422, 2011.

D. Magne, G. Bluteau, C. Faucheux, G. Palmer, C. Vignes-colombeix et al., Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification, J. Bone Miner. Res, vol.18, issue.8, pp.1430-1442, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00176537

M. J. Duer, T. Frisci?, D. Proudfoot, D. G. Reid, M. Schoppet et al., Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization, Arterioscler. Thromb. Vasc. Biol, vol.28, issue.11, pp.2030-2034, 2008.

E. Biver, P. Hardouin, and J. Caverzasio, The "bone morphogenic proteins" pathways in bone and joint diseases: translational perspectives from physiopathology to therapeutic targets, Cytokine Growth Factor Rev, vol.24, issue.1, pp.69-81, 2013.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland et al., Osteogenesis associates with inflammation in earlystage atherosclerosis evaluated by molecular imaging in vivo, Circulation, vol.116, issue.24, pp.2841-2850, 2007.
DOI : 10.1161/circulationaha.107.732867

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.107.732867

S. E. New, C. Goettsch, M. Aikawa, J. F. Marchini, M. Shibasaki et al., Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques, Circ. Res, vol.113, issue.1, pp.72-77, 2013.

D. M. Schrijvers, G. R. De-meyer, M. M. Kockx, A. G. Herman, and W. Martinet, Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.25, issue.6, pp.1256-1261, 2005.

H. Kono and K. L. Rock, How dying cells alert the immune system to danger, Nat. Rev. Immunol, vol.8, issue.4, pp.279-289, 2008.
DOI : 10.1038/nri2215

URL : http://europepmc.org/articles/pmc2763408?pdf=render

D. Proudfoot, J. N. Skepper, L. Hegyi, M. R. Bennett, C. M. Shanahan et al., Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies, Circ. Res, vol.87, issue.11, pp.1055-1062, 2000.

D. Estève, J. Galitzky, A. Bouloumié, C. Fonta, R. Buchet et al., Multiple functions of MSCA-1/TNAP in adult mesenchymal progenitor/stromal cells, Stem Cells Int, p.1815982, 2016.

K. ?tefková, J. Procházková, and J. Pacherník, Alkaline phosphatase in stem cells, Stem Cells Int, p.628368, 2015.

M. Murshed, D. Harmey, J. L. Millán, M. D. Mckee, and G. Karsenty, Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone, Genes Dev, vol.19, issue.9, pp.1093-1104, 2005.

M. D. Rekhter, K. Zhang, A. S. Narayanan, S. Phan, M. A. Schork et al., Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions, Am. J. Pathol, vol.143, issue.6, pp.1634-1648, 1993.

A. Abdelbaky, E. Corsini, A. L. Figueroa, S. Fontanez, S. Subramanian et al., Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study, Circ. Cardiovasc. Imaging, vol.6, issue.5, pp.747-754, 2013.

N. V. Joshi, A. T. Vesey, M. C. Williams, A. S. Shah, P. A. Calvert et al., )Ffluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial, Lancet, issue.18, pp.705-713, 2013.

J. Debray, L. Chang, S. Marquès, S. Pellet-rostaing, D. L. Duy et al., Inhibitors of tissue-nonspecific alkaline phosphatase: design, synthesis, kinetics, biomineralization and cellular tests, Bioorg. Med. Chem, pp.7981-7987, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917962

S. Narisawa, D. Harmey, M. C. Yadav, W. C. O'neill, M. F. Hoylaerts et al., Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification, J. Bone Miner. Res, vol.22, issue.11, pp.1700-1710, 2007.

C. Goettsch, J. D. Hutcheson, M. Aikawa, H. Iwata, T. Pham et al., Sortilin mediates vascular calcification via its recruitment into extracellular vesicles, J. Clin. Invest, vol.126, issue.4, pp.1323-1336, 2016.
DOI : 10.1172/jci80851

URL : http://www.jci.org/articles/view/80851/files/pdf

L. Hessle, K. A. Johnson, H. C. Anderson, S. Narisawa, A. Sali et al., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization, Proc. Natl. Acad. Sci. U. S. A, vol.99, issue.14, pp.9445-9449, 2002.

F. Rutsch, S. Vaingankar, K. Johnson, I. Goldfine, B. Maddux et al., PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification, Am. J. Pathol, vol.158, issue.2, pp.543-554, 2001.

W. C. O'neill, K. A. Lomashvili, H. H. Malluche, M. C. Faugere, and B. L. Riser, Treatment with pyrophosphate inhibits uremic vascular calcification, Kidney Int, vol.79, issue.5, pp.512-517, 2011.

B. L. Riser, F. C. Barreto, R. Rezg, P. W. Valaitis, C. S. Cook et al., Daily peritoneal administration of sodium pyrophosphate in a dialysis solution prevents the development of vascular calcification in a mouse model of uraemia, Nephrol. Dial. Transplant, vol.26, issue.10, pp.3349-3357, 2011.

P. Nahar-gohad, N. Gohad, C. C. Tsai, R. Bordia, and N. Vyavahare, Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP2-SMAD-5 pathway, Calcif. Tissue Int, vol.96, issue.4, pp.359-369, 2015.
DOI : 10.1007/s00223-015-9962-z

URL : http://europepmc.org/articles/pmc4393885?pdf=render

M. R. Urist, Bone: formation by autoinduction, Science, vol.150, issue.3698, pp.893-899, 1965.
DOI : 10.1097/00003086-200202000-00002

M. R. Urist and B. S. Strates, Bone morphogenetic protein, J. Dent. Res, vol.50, issue.6, pp.1392-1406, 1971.

Z. Khavandgar, H. Roman, J. Li, S. Lee, H. Vali et al., Elastin haploinsufficiency impedes the progression of arterial calcification in MGPdeficient mice, J. Bone Miner. Res, vol.29, issue.2, pp.327-337, 2014.

P. Talusan, S. Bedri, S. Yang, T. Kattapuram, N. Silva et al., Analysis of intimal proteoglycans in atherosclerosis-prone and atherosclerosis-resistant human arteries by mass spectrometry, Mol. Cell. Proteomics, vol.4, issue.9, pp.1350-1357, 2005.

J. Liu, H. K. Nam, C. Campbell, K. C. Gasque, J. L. Millán et al., Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(?/?) mouse model of infantile hypophosphatasia, Bone, vol.67, pp.81-94, 2014.

S. Narisawa, N. Fröhlander, and J. L. Millán, Inactivation of two mouse alkaline phosphatase and establishment of a model of infantile hypophosphatasia, Dev. Dyn, vol.208, issue.3, pp.432-446, 1997.

M. J. Duer, T. Frisci?, D. Proudfoot, D. G. Reid, M. Schoppet et al., Arterioscler. Thromb. Vasc. Biol, vol.28, issue.11, pp.2030-2034, 2008.

M. L. Chatrou, J. P. Cleutjens, G. J. Van-der-vusse, R. B. Roijers, P. H. Mutsaers et al., PLoS One, vol.10, p.142335, 2015.

A. Kelly-arnold, N. Maldonado, D. Laudier, E. Aikawa, L. Cardoso et al., Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.26, pp.10741-10746, 2013.

S. Ehara, Circulation, vol.110, pp.3424-3429, 2004.

Y. Vengrenyuk, T. J. Kaplan, L. Cardoso, G. J. Randolph, and S. Weinbaum, Ann. Biomed. Eng, vol.38, pp.738-747, 2010.

M. Murshed, D. Harmey, J. L. Millán, M. D. Mckee, and G. Karsenty, Genes Dev, vol.19, issue.9, pp.1093-1104, 2005.

C. R. Sheen, P. Kuss, S. Narisawa, M. C. Yadav, J. Nigro et al., J. Bone Miner. Res, vol.30, issue.5, pp.824-836, 2015.

M. Fakhry, M. Roszkowska, A. Briolay, C. Bougault, A. Guignandon et al., Biochim. Biophys. Acta, vol.863, issue.3, pp.643-653, 2017.

F. Romanelli, A. Corbo, M. Salehi, S. Mc-yadav, D. Petrosian-salman et al., PLoS One, vol.12, issue.10, p.186426, 2017.

R. Buchet, J. L. Millán, and D. Magne, Methods Mol. Biol, vol.1053, pp.27-51, 2013.

S. Narisawa, M. C. Yadav, and J. L. Millán, J. Bone Miner. Res, vol.28, pp.1587-1598, 2013.

W. Tesch, T. Vandenbos, P. Roschgr, N. Fratzl-zelman, K. Klaushofer et al., J. Bone Miner. Res, vol.18, pp.117-125, 2003.

L. Hessle, K. A. Johnson, H. C. Anderson, S. Narisawa, A. Sali et al., Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.9445-9449, 2002.

C. Thouverey, G. Bechkoff, S. Pikula, and R. Buchet, Osteoarthr. Cartil, vol.17, pp.64-72, 2009.

M. Bottini, S. Mebarek, K. L. Anderson, A. Strzelecka-kiliszek, L. Bozycki et al., Biochim. Biophys. Acta, vol.1862, issue.3, pp.532-546, 2017.

D. C. Genetos, A. Wong, T. J. Weber, N. J. Karin, and C. E. Yellowley, PLoS One, vol.9, p.107482, 2014.

A. Sekrecka, M. Balcerzak, C. Thouverey, R. Buchet, and S. Pikula, Postepy Biochem, vol.53, pp.159-163, 2007.

T. Kirsch, G. Harrison, E. E. Golub, and H. D. Nah, J. Biol. Chem, vol.275, issue.45, pp.35577-35583, 2000.

T. Minashima, W. Small, S. E. Moss, and T. Kirsch, J. Biol. Chem, vol.287, pp.14803-14815, 2012.

C. Goettsch, J. D. Hutcheson, M. Aikawa, H. Iwata, T. Pham et al., J. Clin. Invest, vol.126, issue.4, pp.1323-1336, 2016.

C. Goettsch, H. Iwata, J. D. Hutcheson, C. J. O'donnell, R. Chapurlat et al., Arterioscler. Thromb. Vasc. Biol, vol.37, issue.5, pp.1005-1011, 2017.

N. X. Chen, K. D. O'neill, X. Chen, and S. M. Moe, J. Bone Miner. Res, vol.23, issue.11, pp.1798-1805, 2008.

Y. V. Bobryshev, M. C. Killingsworth, R. S. Lord, and A. J. Grabs, J. Cell. Mol. Med, vol.12, issue.5B, pp.2073-2082, 2008.

A. N. Kapustin, J. D. Davies, J. L. Reynolds, R. Mcnair, G. T. Jones et al., Circ. Res, vol.109, issue.1, pp.1-12, 2011.

J. D. Hutcheson, C. Goettsch, T. Pham, M. Iwashita, M. Aikawa et al., J. Extracell. Vesicles, vol.3, p.25129, 2014.

A. Briolay, R. Jaafar, G. Nemoz, and L. Bessueille, Biochim. Biophys. Acta, vol.1828, pp.602-613, 2013.

R. E. Wuthier, Biochim. Biophys. Acta, vol.409, issue.1, pp.128-143, 1975.

R. Buchet, S. Pikula, D. Magne, and S. Mebarek, Methods Mol. Biol, vol.1053, pp.115-124, 2013.

M. Roszkowska,

L. Bessueille, M. Fakhry, E. Hamade, B. Badran, D. Magne et al., , vol.589, pp.2797-2804, 2015.

D. C. Morris, K. Masuhara, K. Takaoka, K. Ono, and H. C. Anderson, Bone Miner, vol.19, issue.3, pp.287-298, 1992.

K. Hoshi, N. Amizuka, K. Oda, Y. Ikehara, and H. Ozawa, Histochem. Cell Biol, vol.107, issue.3, pp.183-191, 1997.

P. Lencel, S. Delplace, P. Pilet, D. Leterme, F. Miellot et al., Lab. Investig, vol.91, issue.10, pp.1434-1442, 2011.

M. Roszkowska, A. Strzelecka-kiliszek, D. Magne, S. Pikula, and L. Bessueille, Postepy Biochem, vol.62, pp.511-517, 2016.

B. R. Genge, L. N. Wu, and R. E. Wuthier, J. Biol. Chem, vol.283, issue.15, pp.9737-9748, 2008.

J. L. Reynolds, A. J. Joannides, J. N. Skepper, R. Mcnair, L. J. Schurgers et al., J. Am. Soc. Nephrol, vol.15, issue.11, pp.2857-2867, 2004.

D. Magne, P. Weiss, J. M. Bouler, O. Laboux, and G. Daculsi, J. Bone Miner. Res, vol.16, issue.4, pp.750-777, 2001.

D. Magne, P. Pilet, P. Weiss, and G. Daculsi, Bone, vol.29, issue.6, pp.547-552, 2001.

F. Vittur, N. Stagni, L. Moro, and B. Bernard, Experientia, vol.40, pp.836-837, 1984.

Y. Fukumoto, J. O. Deguchi, P. Libby, E. Rabkin-aikawa, Y. Sakata et al., Circulation, vol.110, issue.14, pp.1953-1959, 2004.

G. Pugliese, C. Iacobini, C. B. Fantauzzi, and S. Menini, Atherosclerosis, vol.238, pp.220-230, 2015.

M. Roszkowska,

S. Das and J. C. Crockett, Osteoporosis-a current view of pharmacological prevention and treatment, Drug Des. Devel. Ther, vol.7, pp.435-448, 2013.

H. Orimo, The mechanism of mineralization and the role of alkaline phosphatase in health and disease, J. Nippon Med. Sch, vol.77, pp.4-12, 2010.

H. C. Anderson, The role of matrix vesicles in physiological and pathological calcification, Curr. Opin. Orthop, vol.18, pp.428-433, 2007.

M. Whyte, Physiological role of alkaline phosphatase explored in hypophosphatasia, Ann. N. Y. Acad. Sci, vol.192, pp.190-200, 2010.

H. C. Andersen, D. Mulhall, and R. Garimella, Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis, Lab. Invest, vol.90, pp.1549-1557, 2011.

S. Mebarek, E. Hamade, C. Thouverey, J. Bandorowicz-pikula, S. Pikula et al., Ankylosingspondylarthritis, late osteoarthritis, vascular calcification, chondrocalcinosis and pseudo gout: Toward a possible drug therapy, Curr. Med. Chem, vol.18, pp.2196-2203, 2011.
DOI : 10.2174/092986711795656153

H. W. Sampson, R. W. Davis, and D. C. Dufner, Spondyloarthropathy in progressive ankylosis mice: ultrastructural features of the interverterbral disk, Acta Anat. (Basel), pp.36-41, 1991.

S. Y. Ali, Apatite crystal nodules in arthritic cartilage, Eur. J. Rheumatol. Inflamm, vol.14, pp.115-119, 1978.
DOI : 10.1016/8756-3282(85)90277-7

D. Magne, M. Julien, C. Vinatier, F. Merhi-soussi, P. Weiss et al., Cartilage formation in growth plate and arteries: from physiology to pathology, Bioessays, vol.27, pp.708-716, 2005.
DOI : 10.1002/bies.20254

J. S. Shao, J. Cai, and D. A. Towler, Molecular mechanisms of vascular calcification: lessons learned from the aorta, Arterioscler. Thromb. Vasc. Biol, vol.26, pp.1423-1430, 2006.

S. E. New and E. Aikawa, Role of extracellular vesicles in de novo mineralization. An additional novel mechanism of cardiovascular calcification, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.1753-1758, 2013.

J. E. Everhart, D. J. Pettitt, W. C. Knowler, F. A. Rose, and P. H. Bennett, Medial arterial calcification and its association with mortality and complications of diabetes, Diabetologia, vol.31, pp.16-23, 1988.

S. Lehto, L. Niskanen, M. Suhonen, T. Rönnemaa, and M. Laakso, Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus, Arterioscler. Thromb. Vasc. Biol, vol.16, pp.978-983, 1996.
DOI : 10.1161/01.atv.16.8.978

G. S. Mintz, J. A. Kovach, S. P. Javier, A. D. Pichard, K. M. Kent et al., Mechanisms of lumen enlargement after excimer laser coronary angioplasty. An intravascular ultrasound study, Circulation, vol.92, pp.3408-3414, 1995.
DOI : 10.1161/01.cir.92.12.3408

M. Jeziorska, C. Mccollum, and D. E. Woolley, Calcification in atherosclerotic plaque of human carotid arteries: associations with mast cells and macrophages, J. Pathol, vol.185, pp.10-17, 1998.

T. Yamamoto, Y. Ugawa, K. Yamashiro, M. Shimoe, K. Tomikawa et al., Osteogenic differentiation regulated by Rhokinase in periodontal ligament cells, Differentiation, vol.88, pp.33-41, 2014.
DOI : 10.1016/j.diff.2014.09.002

F. Beier and R. F. Loeser, Biology and pathology of Rho GTPAse, PI-3 Kinase-A and MAP kinase signaling pathways in chondrocytes, J. Cell. Biochem, vol.110, pp.573-580, 2010.

R. Mcbeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev. Cell, vol.6, pp.483-495, 2004.

M. Fakhry, E. Hamade, B. Badran, R. Buchet, and D. Magne, Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts, World J Stem Cells, vol.5, pp.136-148, 2013.
DOI : 10.4252/wjsc.v5.i4.136

URL : https://hal.archives-ouvertes.fr/hal-00917978

S. L. Teitelbaum, Osteoclasts: what do they do and how do they do it?, Am. J. Pathol, vol.170, pp.427-435, 2007.

T. J. Martin and N. A. Sims, Osteoclast-derived activity in the coupling of bone formation to resorption, Trends Mol. Med, vol.11, pp.76-81, 2005.

M. A. Karsdal, T. J. Martin, J. Bollerslev, C. Christiansen, and K. Henriksen, Are nonresorbing osteoclasts sources of bone anabolic activity?, J. Bone Miner. Res, vol.22, pp.487-494, 2007.
DOI : 10.1359/jbmr.070109

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070109/pdf

H. Zhao, Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases, vol.13, pp.1307-1314, 2012.
DOI : 10.1111/j.1600-0854.2012.01395.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2012.01395.x/pdf

J. Li, X. Liu, B. Zuo, and L. Zhang, The role of bone marrow microenvironment in governing the balance between osteoblastogenesis and adipogenesis, Aging Dis, issue.7, pp.514-525, 2015.

R. L. Jilka, R. S. Weinstein, A. M. Parfitt, and S. C. Manolagas, Quantifying osteoblast and osteocyte apoptosis: challenges and rewards, J. Bone Miner. Res, vol.22, pp.1492-1501, 2007.
DOI : 10.1359/jbmr.070518

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070518/pdf

R. L. Jilka, B. Noble, and R. S. Weinstein, Osteocyte apoptosis, Bone, vol.54, pp.264-271, 2013.
DOI : 10.1016/j.bone.2012.11.038

URL : http://europepmc.org/articles/pmc3624050?pdf=render

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.

A. Nazempour and B. J. Van-wie, Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine, Ann. Biomed. Eng, vol.44, pp.1325-1354, 2016.

X. Tang, L. Fan, M. Pei, L. Zeng, and Z. Ge, Evolving concepts of chondrogenic differentiation: history, state-of-the-art and future perspectives, Eur. Cell. Mater, vol.30, pp.12-27, 2015.

S. Mundlos and B. R. Olsen, Heritable diseases of the skeleton. Part I: molecular insights into skeletal development-transcription factors and signaling pathways, FASEB J, vol.11, pp.125-132, 1997.

S. Mundlos and B. R. Olsen, Heritable diseases of the skeleton. Part II: molecular insights into skeletal development-matrix components and their homeostasis, FASEB J, vol.11, pp.227-233, 1997.

E. Zelzer and B. R. Olsen, The genetic basis for skeletal diseases, Nature, vol.423, pp.343-348, 2003.

S. C. Manolagas and A. M. Parfitt, What old means to bone, Trends Endocrinol. Metab, pp.369-374, 2010.

G. Y. Rochefort and C. L. Benhamou, Osteocytes are not only mechanoreceptive cells, Int. J. Numer. Methods Biomed. Eng, vol.29, pp.1082-1088, 2013.

J. T. Compton and F. Y. Lee, A review of osteocyte function and the emerging importance of sclerostin, J. Bone Joint Surg. Am, vol.96, pp.1659-1668, 2014.

T. Komori, Mouse models for the evaluation of osteocyte functions, J. Bone Metab, vol.21, pp.55-60, 2014.

S. C. Manolagas and A. M. Parfitt, For whom the bell tolls: distress signals from longlived osteocytes and the pathogenesis of metabolic bone diseases, Bone, vol.54, pp.272-278, 2013.

J. Xiong, M. Piemontese, M. Onal, J. Campbell, J. J. Goellner et al., Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone, PLoS One, vol.10, p.138189, 2015.

A. R. Gohel, A. R. Hand, and G. A. Gronowicz, Immunogold localization of beta 1-integrin in bone: effect of glucocorticoids and insulin-like growth factor I on integrins and osteocyte formation, J. Histochem. Cytochem, vol.43, pp.1085-1096, 1995.

E. M. Aarden, P. J. Nijweide, A. Plas, M. J. Alblas, E. J. Mackie et al., Adhesive properties of iso-lated chick osteocytes in vitro, Bone, vol.18, pp.305-313, 1996.

L. D. You, S. Weinbaum, S. C. Cowin, and M. B. Schaffler, Ultra-structure of the osteocyte process and its pericellular matrix, Anat. Rec, vol.278, pp.505-513, 2004.

H. Touaitahuata, E. Planus, C. Albiges-rizo, A. Blangy, and G. Pawlak, Podosomes are dispensable for osteoclast differentiation and migration, Eur. J. Cell Biol, vol.92, pp.139-149, 2013.

H. Touaitahuata, A. Blangy, and V. Vives, Modulation of osteoclast differentiation and bone resorption by Rho GTPases, Small GTPases, vol.5, p.28119, 2014.

C. Itzstein, F. P. Coxon, and M. J. Rogers, The regulation of osteoclast function and bone resorption by small GTPases, Small GTPases, vol.2, pp.117-130, 2011.

S. Miyamoto, H. Teramoto, O. A. Coso, P. D. Burbello-gutkind, S. K. Akiyama et al., Integrin function: molecular hierarchies of cytoskeletal and signaling proteins, J. Cell Biol, vol.131, pp.791-805, 1995.

J. T. Parsons, K. H. Martin, J. K. Slack, J. M. Taylor, and S. A. Weed, Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement, Oncogene, vol.19, pp.5606-5613, 2000.

P. Keely, L. Parise, and R. Juliano, Integrins and GTPases in tumour cell growth, motility and invasion, Trends Cell Biol, vol.8, pp.101-106, 1998.

C. Maes, Signaling pathways effecting crosstalk between cartilage and adjacent tissues: seminars in cell and developmental biology: the biology and pathology of cartilage, Semin. Cell Dev. Biol, pp.1084-9521, 2016.

B. De-crombrugghe, V. Lefebvre, and K. Nakashima, Regulatory mechanisms in the pathways of cartilage and bone formation, Curr. Opin. Cell Biol, vol.13, pp.721-727, 2001.

T. Kirsch, W. Wang, and D. Pfander, Functional differences between growth plate apoptic bodies and matrix vesicles, J. Bone Miner. Res, vol.18, pp.1872-1881, 2003.

N. Johansson, K. Airola, R. Grénman, A. L. Kariniemi, U. Saarialho-kere et al., Expression of collagenase-3 (matrix metalloproteinase-13) in squamous cell carcinomas of the head and neck, Am. J. Pathol, vol.151, pp.499-508, 1997.

D. Pfander, B. Swoboda, and T. Kirsch, Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes, Am. J. Pathol, vol.159, pp.1777-1783, 2001.

M. Inada, Y. Wang, M. H. Byrne, M. U. Rahman, C. Miyaura et al., Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondrial ossification, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.17192-17197, 2004.

U. Rescher, D. Ruche, C. Ludwig, N. Zobiack, and V. Gerke, Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes, J. Cell Sci, vol.117, pp.3473-3480, 2004.

M. Balcerzak, A. Malinowska, C. Thouverey, A. Sekrecka, M. Dadlez et al., Proteome analysis of matrix vesicles isolated from femurs of chicken embryo, Proteomics, vol.8, pp.192-205, 2008.

D. S. Howell, Articular cartilage calcification and matrix vesicles, Curr. Rheumatol. Rep, vol.4, pp.265-269, 2002.

H. C. Anderson, Matrix vesicles and calcification, Curr. Rheumatol. Rep, vol.5, pp.222-226, 2003.

H. C. Anderson, Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage, Proc. Natl. Acad. Sci. U. S. A, vol.167, pp.1513-1520, 1970.

R. J. Majeska and R. E. Wuthier, Studies on matrix vesicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase, Biochim. Biophys. Acta, vol.60, pp.51-60, 1975.

R. E. Wuthier, R. E. Linder, G. P. Warner, S. T. Gore, and T. K. Borg, Nonenzymatic method for isolation of matrix vesicles: characterization and initial studies on Ca and P orthophosphate metabolism, Metab. Bone Dis. Relat. Res, vol.1, pp.125-136, 1978.

E. L. Watkins, J. V. Stillo, and R. E. Wuthier, Subcellular fractionation of epiphyseal cartilage: isolation of matrix vesicles and profiles of enzymes, phospholipids, calcium and phosphate, Biochim. Biophys. Acta, vol.631, pp.289-304, 1980.

T. Kirsch and R. E. Wuthier, Stimulation of calcification of growth plate cartilage matrix vesicles by binding to type II and X collagens, J. Biol. Chem, vol.269, pp.11462-11469, 1994.

M. Balcerzak, J. Radisson, G. Azzar, D. Farlay, G. Boivin et al., A comparative analysis of strategies for isolation of matrix vesicles, Anal. Biochem, vol.361, pp.176-182, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139316

R. Buchet, S. Pikula, D. Magne, and S. Mebarek, Isolation and characteristics of matrix vesicles, Methods Mol. Biol, vol.1053, pp.115-124, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917990

J. E. Hale and R. E. Wuthier, The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-pertubing agents on cellular vesiculation, J. Biol. Chem, vol.262, pp.1916-1925, 1987.

C. Thouverey, A. Strzelecka-kiliszek, M. Balcerzak, R. Buchet, and S. Pikula, Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells, J. Cell. Biochem, vol.106, pp.127-138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00353017

C. Thouverey, A. Malinowska, M. Balcerzak, A. Strzelecka-kiliszek, R. Buchet et al., Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells, J. Proteomics, vol.74, pp.1123-1134, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00599337

E. E. Golub, Role of matrix vesicles in biomineralization, Biochim. Biophys. Acta, vol.1790, pp.1592-1598, 2009.

R. E. Wuthier and G. F. Lipscomb, Matrix vesicles: structure, composition, formation and function in calcification, Front. Biosci, vol.16, pp.2812-2902, 2011.

I. M. Shapiro, W. J. Landis, and M. V. Risbud, Matrix vesicles: are they anchored exosomes, Bone, vol.79, pp.29-36, 2015.

L. Hessle, K. A. Johnson, H. C. Anderson, S. Narisawa, A. Sali et al., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.9445-9449, 2002.

D. Harmey, L. Hessle, S. Narisawa, K. A. Johnson, R. Terkeltaub et al., Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders, Am. J. Pathol, vol.164, pp.1199-1209, 2004.

J. L. Millan and M. P. Whyte, Alkaline phosphatase and hypophosphatasia, Calcif. Tissue Int, vol.98, pp.398-416, 2016.

A. N. Kapustin, J. D. Davies, J. L. Reynolds, R. Mcnair, G. T. Jones et al., Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization, Circ. Res, vol.109, pp.1-12, 2011.
DOI : 10.1161/circresaha.110.238808

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.110.238808

J. Huang, H. Huang, M. Wu, J. Li, H. Xie et al., Connective tissue growth factor induces osteogenic differentiation of vascular smooth muscle cells through ERK signaling, Int. J. Mol. Med, vol.32, pp.423-429, 2013.

G. Watanabe, Y. Saito, P. Madaule, T. Ishizaki, K. Fujisawa et al., Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho, Science, vol.271, pp.645-648, 1996.
DOI : 10.1126/science.271.5249.645

D. Thumkeo, S. Watanabe, and S. Narumiya, Physiological roles of Rho and Rho effectors in mammals, Eur. J. Cell Biol, vol.92, pp.303-315, 2013.

G. Loirand and P. Pacaud, Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension, Small GTPases, vol.5, p.983666, 2014.

S. Etienne-manneville and A. Hall, Rho GTPases in cell biology, Nature, vol.420, pp.629-635, 2002.
DOI : 10.1038/nature01148

A. Hall, Rho GTPases and the actin cytoskeleton, Science, vol.279, pp.509-514, 1998.

J. F. Cote and K. Vuori, Identification of an evolutionarily conserved super-family of DOCK180-related proteins with guanine nucleotide exchange activity, J. Cell Sci, vol.115, pp.4901-4913, 2002.

N. Meller, S. Merlot, and C. Guda, CZH proteins: a new family of Rho-GEFs, J. Cell Sci, vol.118, pp.4937-4946, 2005.

V. Vives, M. Laurin, G. Cres, P. Larrousse, Z. Morichaud et al., The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts, J. Bone Miner. Res, vol.26, pp.1099-1110, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657347

L. Julian and M. F. Olson, Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions, Small GTPases, vol.5, p.29846, 2014.

A. V. Schofield and O. Bernard, Rho-associated coiled-coil kinase (ROCK) signaling and disease, Crit. Rev. Biochem. Mol. Biol, vol.48, pp.301-316, 2013.
DOI : 10.3109/10409238.2013.786671

S. Hartmann, A. J. Ridley, and S. Lutz, The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease, Front. Pharmacol, vol.276, pp.1-16, 2015.

P. Pan, M. Shen, H. Yu, Y. Li, D. Li et al., Advances in the development of Rho-associated protein kinase (ROCK) inhibitors, Drug Discov. Today, vol.18, pp.1323-1333, 2013.

L. R. Pearce, D. Komander, and D. R. Alesi, The nuts and bolts of AGC protein kinases, Nat. Rev. Mol. Cell Biol, vol.11, pp.9-22, 2010.

T. Leung, E. Manser, L. Tan, and L. Lim, A novel serine/threonine kinase binding the Rasrelated RhoA GTPase which translocates the kinase to peripheral membranes, J. Biol. Chem, vol.270, pp.29051-29054, 1995.

T. Ishizaki, M. Maekawa, K. Fujisawa, K. Okawa, A. Iwamatsu et al., The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase, EMBO J, vol.15, pp.1885-1893, 1996.

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.

T. Leung, X. Q. Chen, E. Manser, and L. Lim, The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton, Mol. Cell. Biol, vol.16, pp.5313-5327, 1996.

M. Amano, K. Chihara, K. Kimura, Y. Fukata, N. Nakamura et al., Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase, Science, vol.275, pp.1308-1311, 1997.
DOI : 10.1126/science.275.5304.1308

M. Amano, Y. Fukata, and K. Kaibuchi, Regulation and functions of Rho-associated kinase, Exp. Cell Res, vol.261, pp.44-51, 2000.

O. Nakagawa, K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao et al., two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice, FEBS Lett, vol.392, pp.189-193, 1996.

C. Hahmann and T. Schroeter, Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity, Cell. Mol. Life Sci, vol.67, pp.171-177, 2010.

W. Wen, W. Liu, J. Yan, and M. Zhang, Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases, J. Biol. Chem, vol.283, pp.26263-26273, 2008.

K. Riento and A. J. Ridley, Rocks: multifunctional kinases in cell behaviors, Nat. Rev. Mol. Cell Biol, vol.4, pp.446-456, 2003.

L. Julian and M. F. Olson, Rho-associated coiled-coil containing kinases (ROCK) structure, regulation and functions, Small GTPases, vol.5, p.229846, 2014.

A. Yoneda, H. A. Multhaupt, and J. R. Couchman, The Rho kinases I and II regulate different aspects of myosin II activity, J. Cell Biol, vol.170, pp.443-453, 2005.

T. Matsui, M. Amano, T. Yamamoto, K. Chihara, M. Nakafuku et al., Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho, EMBO J, vol.15, pp.2208-2216, 1996.

W. C. Sin, X. Q. Chen, T. Leung, and L. Lim, RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin, Mol. Cell. Biol, vol.18, pp.6325-6339, 1998.

K. Katoh, Y. Kano, M. Amano, H. Onishi, K. Kaibuchi et al., Rho-kinase-mediated contraction of isolated stress fibers, J. Cell Biol, vol.153, pp.569-584, 2001.

S. Kawabata, J. Usukura, N. Morone, M. Ito, A. Iwamatsu et al., Interaction of Rho-kinase with myosin II at stress fibers, Genes Cells, vol.9, pp.653-660, 2004.

Z. Ma, M. Kana, K. Kawamura, K. Kaibuchi, K. Ye et al., Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication, Mol. Cell. Biol, vol.26, pp.9016-9034, 2006.

T. Tanaka, D. Nishimura, R. C. Wu, M. Amano, T. Iso et al., Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase, J. Biol. Chem, vol.281, pp.15320-15329, 2006.

M. Iizuka, K. Kimura, S. Wang, K. Kato, M. Amano et al., Distinct distribution and localization of Rho-kinase in mouse epithelial, muscle and neural tissues, Cell Struct. Funct, vol.37, pp.155-175, 2012.

V. Chevrier, M. Piel, N. Collomb, Y. Saoudi, R. Frank et al., The Rho-associated protein kinase p160ROCK is required for centrosome positioning, J. Cell Biol, vol.157, pp.807-817, 2002.

M. C. Glyn, J. G. Lawrenson, and B. J. Ward, A Rho-associated kinase mitigates reperfusion-induced change in the shape of cardiac capillary endothelial cells in situ, Cardiovasc. Res, vol.57, pp.195-206, 2003.

P. J. Stroeken, B. Alvarez, J. Van-rheenen, Y. M. Wijnands, D. Geerts et al., Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane, J. Cell. Physiol, vol.208, pp.620-628, 2006.

M. Amano, M. Ito, K. Kimura, Y. Fukata, K. Chihara et al., Phosphorylation and activation of myosin by Rho-associated kinase, J. Biol. Chem, vol.271, pp.20246-20249, 1996.

K. Kimura, M. Ito, M. Amano, K. Chihara, Y. Fukata et al., Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase), Science, vol.273, pp.245-248, 1996.

Y. Kawano, Y. Fukata, N. Oshiro, M. Amano, T. Nakamura et al., Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo, J. Cell Biol, vol.147, pp.1023-1038, 1999.

K. H. Chun, K. Araki, D. H. Lee, B. C. Oh, H. Huang et al., Regulation of glucose transport by ROCK1 differs from that of ROCK2 and is controlled by actin polymerization, Endocrinology, vol.153, pp.1649-1662, 2012.

Y. Kureishi, S. Kobayashi, M. Amano, K. Kimura, H. Kanaide et al., Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation, J. Biol. Chem, vol.272, pp.12257-12260, 1997.
DOI : 10.1074/jbc.272.19.12257

URL : http://www.jbc.org/content/272/19/12257.full.pdf

M. Maekawa, T. Ishizaki, S. Boku, N. Watanabe, A. Fujita et al., Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase, Science, vol.285, pp.895-898, 1999.
DOI : 10.1126/science.285.5429.895

K. Ohashi, K. Nagata, M. Maekawa, T. Ishizaki, S. Narumiya et al., Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop, J. Biol. Chem, vol.275, pp.3577-3582, 2000.
DOI : 10.1074/jbc.275.5.3577

URL : http://www.jbc.org/content/275/5/3577.full.pdf

T. Sumi, K. Matsumoto, and T. Nakamura, Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase, J. Biol. Chem, vol.276, pp.670-676, 2001.

T. Amano, K. Tanabe, T. Eto, S. Narumiya, and K. Mizuno, LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505, Biochem. J, vol.354, pp.149-159, 2001.

T. Lin, L. Zeng, Y. Liu, K. Defea, M. A. Schwartz et al., Rho-ROCK-LIMKcofilin pathway regulates shear stress activation of sterol regulatory element binding proteins, Circ. Res, vol.92, pp.1296-1304, 2003.
DOI : 10.1161/01.res.0000078780.65824.8b

URL : http://circresaha.smart01.highwire.org/content/circresaha/92/12/1296.full.pdf

T. Matsui, M. Maeda, Y. Doi, S. Yonemura, M. Amano et al., Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/ moesin (ERM) proteins and regulates their head-to-tail association, J. Cell Biol, vol.140, pp.647-657, 1998.
DOI : 10.1083/jcb.140.3.647

URL : http://jcb.rupress.org/content/jcb/140/3/647.full.pdf

Y. Fukata, N. Oshiro, N. Kinoshita, Y. Kawano, Y. Matsuoka et al., Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility, J. Cell Biol, vol.145, pp.347-361, 1999.

C. B. Li, X. X. Li, Y. G. Chen, H. Q. Gao, M. C. Bao et al., Simvastatin exerts cardioprotective effects and inhibits the activity of Rho-associated protein kinase in rats with metabolic syndrome, Clin. Exp. Pharmacol. Physiol, vol.39, pp.759-764, 2012.

M. Uehata, T. Ishizaki, H. Satoh, T. Ono, T. Kawahara et al., Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hyper-tension, Nature, vol.1389, pp.990-994, 1997.

Y. Wang, X. R. Zheng, N. Riddick, M. Bryden, W. Baur et al., ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells, Circ. Res, vol.104, pp.531-540, 2009.
DOI : 10.1161/circresaha.108.188524

URL : http://circres.ahajournals.org/content/circresaha/104/4/531.full.pdf

J. Shi, X. Wu, M. Surma, S. Vemula, L. Zhang et al., Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment, Cell Death Dis, vol.4, p.483, 2013.

S. Mertsch and S. Thanos, Opposing signaling of ROCK1 and ROCK2 determines the switching of substrate specificity and the mode of migration of glioblastoma cells, Mol. Neurobiol, vol.49, pp.900-915, 2014.

J. Shi, L. Wei, and L. , Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil, J. Cardiovasc. Pharmacol, vol.62, pp.341-354, 2013.

J. Wang, X. Liu, and Y. Zhong, Rho/Rho-associated kinase pathway in glaucoma, Int. J. Oncol, vol.43, pp.1357-1367, 2013.

R. S. Mali, S. Kapur, and R. Kapur, Role of Rho kinases in abnormal and normal hematopoiesis, Curr. Opin. Hematol, vol.21, pp.271-275, 2014.

N. Hensel, S. Rademacher, and P. Claus, Chatting with the neighbors: crosstalk between Rho-kinase (ROCK) and other signaling pathways for treatment of neurological disorders, Front. Neurosci, vol.9, p.198, 2015.

V. T. Chin, A. M. Nagrial, A. Chou, A. V. Biankin, A. J. Gill et al., Rho-associated kinase signaling and the cancer microenvironment: novel biological implications and therapeutic opportunities, Expert Rev. Mol. Med, vol.17, p.17, 2015.
DOI : 10.1017/erm.2015.17

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B700039E2A908F3A2E6FF60FECD7AE0E/S1462399415000174a.pdf/div-class-title-rho-associated-kinase-signalling-and-the-cancer-microenvironment-novel-biological-implications-and-therapeutic-opportunities-div.pdf

T. Shimizu and J. K. Liao, Rho kinases and cardiac remodeling, Circ. J, vol.80, pp.1491-1498, 2016.
DOI : 10.1253/circj.cj-16-0433

URL : https://www.jstage.jst.go.jp/article/circj/80/7/80_CJ-16-0433/_pdf

L. M. Surma, S. Shi, N. Lambert-cheatham, and J. Shi, Novel insights into the roles of Rho kinase in cancer, Arch. Immunol. Ther. Exp. (Warsz.), vol.64, pp.259-278, 2016.

M. Morgan-fisher, U. M. Wewer, and A. Yoneda, Regulation of ROCK activity in cancer, J. Histochem. Cytochem, vol.61, pp.185-198, 2013.

G. Loirand, Rho kinases in health and diseases: from basic science to translational research, Pharmacol. Rev, vol.67, pp.1074-1095, 2015.
DOI : 10.1124/pr.115.010595

URL : http://pharmrev.aspetjournals.org/content/67/4/1074.full.pdf

M. Noguchi, K. Hosoda, J. Fujikura, M. Fujimoto, H. Iwakura et al., Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis, J. Biol. Chem, vol.282, pp.29574-29583, 2007.
DOI : 10.1074/jbc.m705972200

URL : http://www.jbc.org/content/282/40/29574.full.pdf

N. Inaba, S. Ishizawa, M. Kimura, K. Fujioka, M. Watanabe et al., Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells, Anticancer Res, vol.30, pp.3509-3514, 2010.

D. Vigil, T. Y. Kim, A. Plachco, A. J. Garton, L. Castaldo et al., ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion, Cancer Res, vol.72, pp.5338-5347, 2012.
DOI : 10.1158/0008-5472.can-11-2373

URL : http://cancerres.aacrjournals.org/content/canres/72/20/5338.full.pdf

P. Y. Mong and Q. Wang, Activation of Rho kinase isoforms in lung endothelial cells during inflammation, J. Immunol, vol.182, pp.2385-2394, 2009.
DOI : 10.4049/jimmunol.0802811

URL : http://www.jimmunol.org/content/jimmunol/182/4/2385.full.pdf

B. A. Bryan, E. Dennstedt, D. C. Mitchell, T. E. Walshe, K. Noma et al., RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis, FASEB J, vol.24, pp.3186-3195, 2010.
DOI : 10.1096/fj.09-145102

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923346/pdf

H. Shimada and L. E. Rajagopalan, Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65, J. Biol. Chem, vol.285, pp.12536-12542, 2010.

J. Montalvo, C. Spencer, A. Hackathorn, K. Masterjohn, A. Perkins et al., ROCK1 & 2 perform overlapping and unique roles in angiogenesis and angiosarcoma tumor progression, Curr. Mol. Med, vol.13, pp.205-219, 2013.
DOI : 10.2174/156652413804486296

URL : http://europepmc.org/articles/pmc3580831?pdf=render

S. Boku, S. Nakagawa, H. Toda, A. Kato, N. Takamura et al., ROCK2 regulates bFGF-induced proliferation of SH-SY5Y cells through GSK-3? and ?-catenin pathway, Brain Res, vol.1492, pp.7-17, 2013.
DOI : 10.1016/j.brainres.2012.11.034

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/52135/1/BR1492_7-17.pdf

A. Yoneda, D. Ushakov, H. A. Multhaupt, and J. R. Couchman, Fibronectin matrix assembly requires distinct contributions from Rho kinases I and-I, Mol. Biol. Cell, vol.18, pp.66-75, 2007.
DOI : 10.1091/mbc.e06-08-0684

URL : http://www.molbiolcell.org/content/18/1/66.full.pdf

H. Darenfed, B. Dayanandan, T. Zhang, S. H. Hsieh, A. E. Fournier et al., Molecular characterization of the effects of Y-27632, Cell Motil. Cytoskeleton, vol.64, pp.97-109, 2007.

Y. Zhao, M. Lv, H. Lin, Y. Hong, F. Yang et al., ROCK1 induces ERK nuclear translocation in PDGF-BB-stimulated migration of rat vascular smooth muscle cells, IUBMB Life, vol.64, pp.194-202, 2012.
DOI : 10.1002/iub.598

URL : http://onlinelibrary.wiley.com/doi/10.1002/iub.598/pdf

F. E. Lock and H. A. Hotchin, Distinct roles for ROCK1 and ROCK2 in the differential regulation of adhesion complex turnover by ROCK1 and ROCK2, PLoS One, vol.4, p.8190, 2009.

F. E. Lock, K. R. Ryan, N. S. Poulter, M. Parsons, and N. A. Hotchin, Differential regulation of adhesion complex turnover by ROCK1 and ROCK2, PLoS One, vol.7, p.31423, 2012.
DOI : 10.1371/journal.pone.0031423

URL : https://doi.org/10.1371/journal.pone.0031423

R. Kalaji, A. P. Wheeler, J. C. Erasmus, S. Y. Lee, R. G. Endres et al., ROCK1 and ROCK2 regulate epithelial polarization and geometric cell shape, Biol. Cell, vol.104, pp.435-451, 2012.
DOI : 10.1111/boc.201100093

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.

Y. Shimizu, D. Thumkeo, J. Keel, T. Ishizaki, H. Oshima et al., ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles, J. Cell Biol, vol.168, pp.941-953, 2005.

D. Thumkeo, J. Keel, T. Ishizaki, M. Hirose, K. Nonomura et al., Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death, Mol. Cell. Biol, vol.23, pp.5043-5055, 2003.

D. Thumkeo, Y. Shimizu, S. Sakamoto, S. Yamada, and S. Narumiya, ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo, Genes Cells, vol.10, pp.825-834, 2005.

P. Duffy, A. Schmandke, A. Schmandke, J. Sigworth, S. Narumiya et al., Rho-associated kinase II (ROCKII) limits axonal growth after trauma within the adult mouse spinal cord, J. Neurosci, vol.29, pp.15266-15276, 2009.

D. H. Lee, J. Shi, N. H. Jeoung, M. S. Kim, J. M. Zabolotny et al., Targeted disruption of ROCK1 causes insulin resistance in vivo, J. Biol. Chem, vol.284, pp.11776-11780, 2009.

Y. M. Zhang, J. Bo, G. E. Taffet, J. Chang, J. Shi et al., Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis, FASEB J, vol.20, pp.916-925, 2006.

K. Noma, Y. Rikitake, N. Oyama, G. Yan, P. Alcaide et al., ROCK1 mediates leukocyte recruitment and neointima formation following vascular injury, J. Clin. Invest, vol.118, pp.1632-1644, 2008.

S. Vemula, J. Shi, P. Hanneman, L. Wei, and R. Kapur, ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability, Blood, vol.115, pp.1785-1796, 2010.

W. Chen, K. Mao, T. Hua-huy, Y. Bei, Z. Liu et al., Dinh-Xuan, Fasudil inhibits prostate cancer-induced angiogenesis in vitro, Oncol. Rep, vol.32, pp.2795-2802, 2014.

V. T. Chin, A. M. Nagrial, A. Chou, A. V. Biankin, A. J. Gill et al., Rho-associated kinase signaling and the cancer microenvironment: novel biological implications and therapeutic opportunities, Expert Rev. Mol. Med, vol.17, p.17, 2015.

V. P. Kale, J. A. Hengst, D. H. Desai, S. G. Amin, and J. K. Yun, The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration, Cancer Lett, vol.361, pp.185-196, 2015.

N. A. Sopko, J. L. Hannan, and T. J. Bivalacqua, Understanding and targeting the Rho kinase pathway in erectile dysfunction, Nat. Rev. Urol, vol.11, pp.622-628, 2014.

S. K. Wang and R. T. Chang, An emerging treatment option for glaucoma: Rho kinase inhibitors, Clin. Ophthalmol, vol.8, pp.883-890, 2014.

R. S. Knipe, A. M. Tager, and J. K. Liao, The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis, Pharmacol. Rev, vol.67, pp.103-117, 2015.

N. Hensel, S. Rademacher, and P. Claus, Chatting with the neighbors: crosstalk between Rho-kinase (ROCK) and other signaling pathways for treatment of neurological disorders, Front. Neurosci, vol.9, p.198, 2015.

Y. Fujita and T. Yamashita, Axon growth inhibition by RhoA/ROCK in the central nervous system, Front. Neurosci, vol.8, p.338, 2014.

H. Huang, D. H. Lee, J. M. Zabolotny, and Y. B. Kim, Metabolic actions of Rho-kinase in periphery and brain, Trends Endocrinol. Metab, vol.24, pp.506-514, 2013.

E. Coque, C. Raoul, and M. Bowerman, ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets, Front. Neurosci, vol.8, p.271, 2014.

S. Shah and J. Savjani, A review on ROCK-II inhibitors: from molecular modelling to synthesis, Bioorg. Med. Chem. Lett, vol.26, pp.2383-2391, 2016.

P. Pan, M. Shen, H. Yu, Y. Li, and T. Hou, Advances in the development of Rho-associated protein kinase (ROCK) inhibitors, Drug Discov. Today, vol.18, pp.1323-1333, 2013.

T. Asano, I. Ikegaki, S. Satoh, Y. Suzuki, M. Shibuya et al., Mechanism of action of a novel antivasospasm drug, HA1077, J. Pharmacol. Exp. Ther, vol.241, pp.1033-1040, 1987.

S. Narumiya, T. Ishizaki, and M. Uehata, Use and properties of ROCK-specific inhibitor Y-27632, Methods Enzymol, vol.325, pp.273-284, 2000.

L. Wei, M. Surma, S. Shi, N. Lambert-cheatham, and J. Shi, Novel insights into the roles of Rho kinase in cancer, Arch. Immunol. Ther. Exp. (Warsz, 2016.

E. Tachibana, T. Harada, M. Shibuya, K. Saito, M. Takayasu et al., Intra-arterial infusion of fasudil hydrochloride for treating vasospasm following subarachnoid hemorrhage, Acta Neurochir, vol.141, pp.13-19, 1999.
DOI : 10.1007/s007010050260

H. Inazaki, S. Kobayashi, Y. Anzai, H. Satoh, S. Sato et al., Efficacy of the additional use of ripasudil, a Rho-kinase inhibitor, Patients With Glaucoma Inadequately Controlled Under Maximum Medical Therapy, Glaucoma, 2016.

R. A. Lewis, B. Levy, N. Ramirez, C. C. Kopczynski, D. W. Usner et al., PG324CS201 Study Group. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomized, controlled study in patients with open-angle glaucoma or ocular hypertension, Br. J. Ophthalmol, vol.100, pp.339-344, 2016.

S. Van-de-velde, T. Van-bergen, E. Vandewalle, N. Kindt, K. Castermans et al., Moons, I. Stalmans, Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery, Prog. Brain Res, vol.220, pp.283-297, 2015.

M. Boerma, Q. Fu, J. Wang, D. S. Loose, A. Bartolozzi et al., Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin, Blood Coagul. Fibrinolysis, vol.19, pp.709-718, 2008.

J. H. Lee, Y. Zheng, D. Bornstadt, Y. Wei, A. Balcioglu et al., Selective ROCK2 inhibition in focal cerebral ischemia, vol.1, pp.2-14, 2014.

A. Zanin-zhorov, R. Flynn, S. D. Waksal, and B. R. Blazar, Isoform-specific targeting of ROCK proteins in immune cells, Small GTPases, vol.7, pp.173-177, 2016.

M. Takamura, M. Sakamoto, T. Genda, T. Ichida, H. Asakura et al., Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632, Hepatology, vol.33, pp.577-581, 2001.

M. Nakajima, K. Hayashi, K. Katayama, Y. Amano, Y. Egi et al., Wf-536 prevents tumor metastasis by inhibiting both tumor motility and angiogenic actions, Eur. J. Pharmacol, vol.459, pp.113-120, 2003.
DOI : 10.1016/s0014-2999(02)02869-8

M. Nakajima, K. Hayashi, Y. Egi, K. Katayama, Y. Amano et al., Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma, Cancer Chemother. Pharmacol, vol.52, pp.319-324, 2003.

R. A. Patel, Y. Liu, B. Wang, R. Li, and S. M. Sebti, Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities, Oncogene, vol.33, pp.550-555, 2014.
DOI : 10.1038/onc.2012.634

URL : http://europepmc.org/articles/pmc3977753?pdf=render

Y. K. Wang, X. Yu, D. M. Cohen, M. A. Wozniak, M. T. Yang et al., Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension, Stem Cells Dev, vol.21, pp.1176-1186, 2012.
DOI : 10.1089/scd.2011.0293

URL : http://europepmc.org/articles/pmc3328763?pdf=render

J. M. Wozney, V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters et al., Novel regulators of bone formation: molecular clones and activities, Science, vol.242, pp.1528-1534, 1982.
DOI : 10.1126/science.3201241

M. R. Urist, A. Mikulski, and A. Lietze, Solubilized and insolubilized bone morphogenetic protein, Proc. Natl. Acad. Sci. U. S. A, vol.76, pp.1828-1832, 1979.
DOI : 10.1073/pnas.76.4.1828

URL : http://www.pnas.org/content/76/4/1828.full.pdf

A. Santos, A. D. Bakker, J. M. De-blieck-hogervorst, and J. Klein-nulend, WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK, Cytotherapy, vol.12, pp.924-932, 2010.
DOI : 10.3109/14653241003774011

Y. R. Shih, K. F. Tseng, H. Y. Lai, C. H. Lin, and O. K. Lee, Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells, J. Bone Miner. Res, vol.26, pp.730-738, 2011.
DOI : 10.1002/jbmr.278

URL : http://onlinelibrary.wiley.com/doi/10.1002/jbmr.278/pdf

T. Xu, M. Wu, J. Feng, X. Lin, and Z. Gu, RhoA/Rho kinase signaling regulates transforming growth factor-?1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway, Int. J. Mol. Med, vol.30, pp.1119-1125, 2012.

L. Gao, R. Mcbeath, and C. S. Chen, Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin, Stem Cells, vol.28, pp.564-572, 2010.
DOI : 10.1002/stem.308

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.308/pdf

O. Wiggan, A. E. Shaw, and J. R. Bamburg, Essential requirement for Rho family GTPase signaling in Pax3 induced mesenchymal-epithelial transition, Cell. Signal, vol.18, pp.1501-1514, 2006.

I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, and T. Sugimoto, Activation of AMPkinase and inhibition of Rho-kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.139-146, 2008.

H. Yoshikawa, K. Yoshioka, T. Nakase, and K. Itoh, Stimulation of ectopic bone formation in response to BMP-2 by Rho kinase inhibitor: a pilot study, Clin. Orthop. Relat. Res, vol.467, pp.3087-3095, 2009.

M. Hagihara, M. Endo, K. Hata, C. Higuchi, K. Takaoka et al., Neogenin, a receptor for bone morphogenetic proteins, J. Biol. Chem, vol.286, pp.5157-5165, 2011.

M. Onishi, Y. Fujita, H. Yoshikawa, and T. Yamashita, Inhibition of Rac1 promotes BMP2 induced osteoblastic differentiation, Cell Death Dis, vol.27, p.698, 2013.

A. Wong, G. G. Loots, C. E. Yellowley, A. C. Dosé, and D. C. Genetos, Parathyroid hormone regulation of hypoxia-inducible factor signaling in osteoblastic cells, Bone, vol.81, pp.97-103, 2015.

J. Gardinier, W. Yang, G. R. Madden, A. Kronbergs, V. Gangadharan et al., P2Y2 receptors regulate osteoblast mechanosensitivity during fluid flow, vol.306, pp.1058-1067, 2014.

E. Adinolfi, F. Amoroso, and A. L. Giuliani, P2X7 receptor function in bone-related cancer, J. Osteoporos, vol.2012, p.637863, 2012.

N. Wang, B. Robaye, A. Agrawal, T. M. Skerry, J. M. Boeynaems et al., Reduced bone turnover in mice lacking the P2Y13 receptor of ADP, Mol. Endocrinol, vol.26, pp.142-152, 2012.

M. A. Wozniak, R. Desai, P. A. Solski, C. J. Der, and P. J. Keely, ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix, J. Cell Biol, vol.163, pp.583-595, 2003.

J. Parreno and D. A. Hart, Molecular and mechano-biology of collagen gel contraction mediated by human MG-63 cells: involvement of specific intracellular signaling pathways and the cytoskeleton, Biochem. Cell Biol, vol.87, pp.895-904, 2009.

S. Yang and K. M. Kim, The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior, Biomaterials, vol.33, pp.2902-2915, 2012.

Y. Hu, S. Xu, W. Jin, Q. Yi, and W. Wei, Effect of the PTEN gene on adhesion, invasion and metastasis of osteosarcoma cells, Oncol. Rep, vol.32, pp.1741-1747, 2014.

L. Wei, M. Surma, S. Shi, N. Lambert-cheatham, and J. Shi, Novel insights into the roles of Rho kinase in cancer, Arch. Immunol. Ther. Exp. (Warsz.), vol.64, pp.259-278, 2016.

E. Li, J. Zhang, T. Yuan, and B. Ma, miR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1, Tumour Biol, vol.35, pp.7645-7650, 2014.

Y. Wang, W. Zhao, and Q. Fu, miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells, Mol. Cell, Biochem, vol.384, pp.105-111, 2013.

H. Cai, L. Lin, H. Cai, M. Tang, and Z. Wang, Combined microRNA-340 and ROCK1 mRNA profiling predicts tumor progression and prognosis in pediatric osteosarcoma, Int. J. Mol. Sci, vol.15, pp.560-573, 2014.

X. Zhou, M. Wei, and W. Wang, MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1, Biochem. Biophys. Res. Commun, vol.437, pp.653-658, 2013.

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.

A. Woods, G. Wang, and F. Beier, Regulation of chondrocyte differentiation by the actin skeleton and adhesive interactions, J. Cell. Physiol, vol.231, pp.1-8, 2007.

B. A. Kerr, T. Otani, E. Koyama, T. A. Freeman, and M. Enomoto-iwamoto, Small GTPase protein Rac-1 is activated with maturation and regulates cell morphology and function in chondrocytes, Exp. Cell Res, vol.314, pp.1301-1312, 2008.

G. Wang and F. Beier, Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis, J. Bone Miner. Res, vol.20, pp.1022-1031, 2005.
DOI : 10.1359/jbmr.050113

URL : http://onlinelibrary.wiley.com/doi/10.1359/JBMR.050113/pdf

K. Novakofski, A. Boehm, and L. Fortier, The small GTPase Rho mediates articular chondrocyte phenotype and morphology in response to interleukin-1 alpha and insulin-like growth factor-I, J. Orthop. Res, vol.27, pp.58-64, 2009.
DOI : 10.1002/jor.20717

URL : http://onlinelibrary.wiley.com/doi/10.1002/jor.20717/pdf

A. Woods, G. Wang, H. Dupuis, Z. Shao, and F. Beier, Rac1 signaling stimulates Ncadherin expression, mesenchymal condensation, and chondrogenesis, J. Biol. Chem, vol.282, pp.23500-23508, 2007.
DOI : 10.1074/jbc.m700680200

URL : http://www.jbc.org/content/282/32/23500.full.pdf

A. Woods, D. Pala, L. Kennedy, S. Mclean, J. S. Rockel et al., Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes, Osteoarthritis Cartilage, vol.17, pp.406-413, 2009.
DOI : 10.1016/j.joca.2008.07.002

URL : https://doi.org/10.1016/j.joca.2008.07.002

P. M. Jungmann, A. T. Mehlhorn, H. Schmal, H. Schillers, H. Oberleithner et al., Nanomechanics of human adipose-derived stem cells: small GTPases impact chondrogenic differentiation, Tissue Eng. Part A, vol.18, pp.1035-1044, 2012.
DOI : 10.1089/ten.tea.2011.0507

D. Kim, J. Song, S. Kim, H. M. Park, C. H. Chun et al., MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts, J. Biol. Chem, vol.287, pp.12501-12509, 2012.
DOI : 10.1074/jbc.m111.264382

URL : http://www.jbc.org/content/287/15/12501.full.pdf

K. Ren, F. Liu, Y. Huang, W. Liang, W. Cui et al., Periodic mechanical stress activates integrin?1-dependent Src-dependent PLC?1-independent Rac1 mitogenic signal in rat chondrocytes through ERK1/2, Cell. Physiol. Biochem, vol.30, pp.827-842, 2012.
DOI : 10.1159/000341461

W. Liang, K. Ren, F. Liu, W. Cui, Q. Wang et al., Periodic mechanical stress stimulates the FAK mitogenic signal in rat chondrocytes through ERK1/2 activity, Cell. Physiol. Biochem, vol.32, pp.915-930, 2013.
DOI : 10.1159/000354495

URL : https://doi.org/10.1159/000354495

J. Xiao, X. Chen, L. Xu, Y. Zhang, Q. Yin et al., Regulation of c hondrocyte proliferation through GIT1-Rac1-mediated ERK1/2 pathway by PDGF, Cell Biol. Int, vol.38, pp.695-701, 2014.
DOI : 10.1002/cbin.10241

G. Wang, A. Woods, H. Agoston, V. Ulici, M. Glogauer et al., Genetic ablation of Rac1 in cartilage results in chondrodysplasia, Dev. Biol, vol.306, pp.612-623, 2007.

J. W. Shim, K. Hamamura, A. Chen, Q. Wan, S. Na et al., Rac1 mediates loaddriven attenuation of mRNA expression of nerve growth factor beta in cartilage and chondrocytes, J. Musculoskelet. Neuronal Interact, vol.13, pp.372-379, 2013.

K. Hamamura, P. Zhang, L. Zhao, J. W. Shim, A. Chen et al., Knee loading reduces MMP13 activity in the mouse cartilage, BMC Musculoskelet. Disord, vol.14, p.312, 2013.
DOI : 10.1186/1471-2474-14-312

URL : http://doi.org/10.1186/1471-2474-14-312

Z. R. Healy, F. Zhu, J. D. Stull, and K. Konstantopoulos, Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via Rac/ MEKK1/MKK7/JNK2/c-Jun-C/EBPbeta-dependent pathway, Am. J. Physiol. Cell Physiol, vol.294, pp.1146-1157, 2008.

S. Zhu, P. Lu, H. Liu, P. Chen, Y. Wu et al., Inhibition of Rac1 activity by controlled release of NSC23766 from chitosan microspheres effectively ameliorates osteoarthritis development in vivo, Ann. Rheum. Dis, vol.74, pp.285-293, 2015.

D. L. Long, J. S. Willey, and R. F. Loeser, Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments, Arthritis Rheum, vol.65, pp.1561-1568, 2013.
DOI : 10.1002/art.37922

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.37922

Z. G. Sheng, W. Huang, Y. X. Liu, Y. Yuan, and B. Z. Zhu, Ofloxacin induces apoptosis via ?1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes, Toxicol. Appl. Pharmacol, vol.267, pp.74-87, 2013.
DOI : 10.1016/j.taap.2012.12.015

J. H. Exton, Small GTPases minireviw series, J. Biol. Chem, vol.273, pp.19923-21434, 1992.
DOI : 10.1074/jbc.273.32.19923

URL : http://www.jbc.org/content/273/32/19923.full.pdf

Y. Geng, J. Valbracht, and M. Lotz, Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH 2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes, J. Clin. Invest, vol.98, pp.2425-2430, 1996.

G. Jin, R. L. Sah, Y. Li, M. Lotz, J. Y. Shyy et al., Biomedical regulation of matrix metalloproteinase-9 in cultured chondrocytes, J. Orthop. Res, vol.18, pp.899-908, 2000.
DOI : 10.1002/jor.1100180608

K. D. Novakofski, C. J. Torre, and L. A. Fortier, Interleukin-1?,-6, and-8 decrease Cdc42 activity resulting in loss of articular chondrocyte phenotype, J. Orthop. Res, vol.30, pp.246-251, 2012.
DOI : 10.1002/jor.21515

URL : http://onlinelibrary.wiley.com/doi/10.1002/jor.21515/pdf

R. Aizawa, A. Yamada, D. Suzuki, T. Limura, H. Kassai et al., Cdc42 is required for chondrogenesis and interdigital programmed cell death during limb development, Mech. Dev, vol.129, pp.38-50, 2012.

W. Suzuki, A. Yamada, R. Aizawa, D. Suzuki, H. Kassai et al., Cdc42 is critical for cartilage development during endochondral ossification, Endocrinology, vol.156, pp.314-322, 2015.

L. A. Fortier, M. M. Deak, S. A. Semevolos, and R. A. Cerione, Insulin-like growth factor-I diminishes the activation status and expression of the small GTPase Cdc42 in articular chondrocytes, J. Orthop. Res, vol.22, pp.436-445, 2004.

L. A. Fortier and B. J. Miller, Signaling through the small G-protein Cdc42 is involved in insulin-like growth factor-I resistance in aging articular chondrocytes, J. Orthop. Res, vol.24, pp.1765-1772, 2006.

J. L. Gorski, L. Estrada, C. Hu, and Z. Liu, Skeletal-specific expression of Fgd1 during bone formation and skeletal defects in faciogenital dysplasia (FGDY; Aarskog syndrome), Dev. Dyn, vol.218, pp.573-586, 2000.

H. Wang, J. Zhang, Q. Sun, and X. Yang, Altered gene expression in articular chondrocytes of Smad3(ex8/ex8) mice, revealed by gene profiling using microarrays, J. Genet. Genomics, vol.34, pp.698-708, 2007.

K. S. Gill, F. Beier, and H. A. Goldberg, Rho-ROCK signaling differentially regulates chondrocyte spreading on fibronectin and bone sialoprotein, Am. J. Physiol. Cell Physiol, vol.295, pp.38-49, 2008.

G. Wang, A. Woods, S. Sabari, L. Pagnotta, L. Stanton et al., RhoA/ROCK signaling suppresses hypertrophic chondrocyte differentiation, J. Biol. Chem, vol.279, pp.13205-13214, 2004.

X. Pei, Y. Mo, B. Ning, Z. Yuan, L. Peng et al., The role of TGF?1 stimulating ROCK I signal pathway to reorganize actin in a rat experimental model of developmental dysplasia of the hip, Mol. Cell. Biochem, vol.391, pp.1-9, 2014.

A. Woods, G. Wang, and F. Beier, RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis, J. Biol. Chem, vol.280, pp.11626-11634, 2005.

A. Woods and F. Beier, RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner, J. Biol. Chem, vol.28, pp.13134-13140, 2006.

D. Kumar and A. B. Lassar, The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization, Mol. Cell. Biol, vol.29, pp.4262-4273, 2009.

D. R. Haudenschild, D. D. Lima, and M. K. Lotz, Dynamic compression of chondrocytes induces a Rho kinase-dependent reorganization of the actin cytoskeleton, Biorheology, vol.45, pp.219-228, 2008.

D. R. Haudenschild, J. Chen, N. Pang, M. K. Lotz, and D. D. D'lima, Rho kinase-dependent activation of SOX9 in chondrocytes, Arthritis Rheum, vol.62, pp.191-200, 2010.

E. Matsumoto, T. Furumatsu, T. Kanazawa, M. Tamura, and T. Ozaki, ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes, Biochem. Biophys. Res. Commun, vol.420, pp.124-129, 2012.

A. L. Hallbeck, T. M. Walz, and K. Briheim, TGF-alpha and ErbB2 production in synovial joint tissue: increased expression in arthritic joints, Scand. J. Immunol, vol.34, pp.204-211, 2005.

C. Ritchlin, E. Dwyer, and R. Bucala, Sustained and distinctive patterns of gene activation in synovial fibroblasts and whole synovial tissue obtained from inflammatory synovitis, Scand. J. Immunol, vol.40, pp.292-298, 1994.

C. T. Appleton, S. E. Usmani, J. S. Mort, and F. Beier, Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation, Lab, pp.20-30, 2010.

K. Nakagawa, T. Teramura, T. Takehara, Y. Onodera, C. Hamanishi et al., Cyclic compression-induced p38 activation and subsequent MMP13 expression requires Rho/ROCK activity in bovine cartilage explants, Inflamm. Res, vol.61, pp.1093-1100, 2012.

N. Takeshita, E. Yoshimi, C. Hatori, F. Kumakura, N. Seki et al., Alleviating effects of AS1892802, a Rho kinase inhibitor, on osteoarthritic disorders in rodents, J. Pharmacol. Sci, vol.115, pp.481-489, 2011.

T. Furumatsu, E. Matsumoto-ogawa, T. Tanaka, Z. Lu, and T. Ozaki, ROCK inhibition enhances aggrecan deposition and suppresses matrix metalloproteinase-3 production in human articular chondrocytes, Connect. Tissue Res, vol.55, pp.89-95, 2014.

S. Noriega, G. Hasanova, and A. Subramanian, The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices, Cells Tissues Organs, vol.197, pp.14-26, 2013.

J. Liang, J. Feng, W. K. Wu, J. Xiao, Z. Wu et al., Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway, J. Orthop. Res, vol.29, pp.369-374, 2011.

C. A. Heckman and H. K. , Plummer 3rd., Filopodia as sensors, Cell. Signal, vol.25, pp.2298-2311, 2013.

J. M. Hum, R. N. Day, J. P. Bidwell, Y. Wang, and F. M. Pavalko, Mechanical loading in osteocytes induces formation of a Src/Pyk2/MBD2 complex that suppresses anabolic gene expression, PLoS One, vol.9, p.97942, 2014.

S. Hu, E. Planus, D. Georgess, C. Place, X. Wang et al., Podosome rings generate forces that drive saltatory osteoclast migration, Mol. Biol. Cell, vol.22, pp.3120-3126, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603184

S. Hu, T. Biben, X. Wang, P. Jurdic, and J. C. Géminard, Internal dynamics of actin structures involved in the cell motility and adhesion: modeling of the podosomes at the molecular level, J. Theor. Biol, vol.270, pp.25-30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00536286

H. Sakai, Y. Chen, T. Itokawa, K. P. Yu, M. L. Zhu et al., Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts, Bone, vol.39, pp.1290-1301, 2006.

R. Faccio, S. L. Teitelbaum, K. Fujikawa, J. Chappel, A. Zallone et al., Vav3 regulates osteoclast function and bone mass, Nat. Med, vol.11, pp.284-290, 2005.

A. Fukuda, A. Hikita, H. Wakeyama, T. Akiyama, H. Oda et al., Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1, J. Bone Miner. Res, vol.20, pp.2245-2253, 2005.

W. E. Allen, G. E. Jones, J. W. Pollard, A. J. Ridley, and R. , Rac and Cdc42 regulate actin organization and cell adhesion in macrophages, J. Cell Sci, vol.110, pp.707-720, 1997.

Y. Wang, D. Lebowitz, C. Sun, H. Thang, M. D. Grynpas et al., Identifying the relative contributions of rac1 and rac2 to osteoclastogenesis, J. Bone Miner. Res, vol.23, pp.260-270, 2008.

M. Croke, F. P. Ross, M. Korhonen, D. A. Williams, W. Zou et al., Rac deletion in osteoclasts causes severe osteopetrosis, J. Cell Sci, vol.124, pp.3811-3821, 2011.

T. Itokowa, M. L. Zhu, N. Troiano, J. Bian, T. Kawano et al., Osteoclasts lacking Rac2 have defective chemotaxis and resorptive activity, vol.88, pp.75-86, 2011.

S. R. Goldberg, J. Georgiou, M. Glogauer, and M. D. Grynpas, A 3D scanning confocal imaging method measures pit volume and captures the role of Rac in osteoclast function, Bone, vol.51, pp.145-152, 2012.

M. Zhu, B. H. Sun, K. Saar, C. Simpson, N. Troiano et al.,

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.

, number and a reduced number of osteoblasts in vivo, J. Bone Miner. Res, vol.31, pp.864-873, 2015.

G. Gadea and A. Blangy, Dock-family exchange factors in cell migration and disease, Eur. J. Cell Biol, vol.93, pp.466-477, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01274549

V. Vives, M. Laurin, G. Cres, P. Larrousse, Z. Morichaud et al., The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts, J. Bone Miner. Res, vol.26, pp.1099-1110, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657347

R. Song, J. Gu, X. Liu, J. Zhu, Q. Wang et al., Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone, Int. J. Mol. Med, vol.34, pp.856-862, 2014.

R. Song, X. Liu, J. Zhu, Q. Gao, Q. Wang et al., RhoV mediates apoptosis of RAW264.7 macrophages caused by osteoclast differentiation, Mol. Med. Rep, vol.11, pp.1153-1159, 2015.

D. Georgess, M. Mazzorana, J. Terrado, C. Delprat, C. Chamot et al., Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts, vol.25, pp.380-396, 2014.

Y. Wang, R. Lei, X. Zhuang, N. Zhang, H. Pan et al., DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis, J. Clin. Invest, vol.124, pp.1646-1659, 2014.
DOI : 10.1172/jci71812

URL : http://www.jci.org/articles/view/71812/files/pdf

N. S. Ruppender, A. R. Merkel, T. J. Martin, G. R. Mundy, J. A. Sterling et al., Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells, PLoS One, vol.5, p.15451, 2010.
DOI : 10.1371/journal.pone.0015451

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015451&type=printable

S. Liu, R. H. Goldstein, E. M. Scepansky, and M. Rosenblatt, Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone, Cancer Res, vol.69, pp.8742-8751, 2009.
DOI : 10.1158/0008-5472.can-09-1541

URL : http://cancerres.aacrjournals.org/content/canres/69/22/8742.full.pdf

N. Wang, B. Robaye, F. Gossiel, J. M. Boeynaems, and A. Gartland, The P2Y13 receptor regulates phosphate metabolism and FGF-23 secretion with effects on skeletal development, FASEB J, vol.28, pp.2249-2259, 2014.
DOI : 10.1096/fj.13-243626

URL : http://www.fasebj.org/content/28/5/2249.full.pdf

C. B. Khatiwala, P. D. Kim, S. R. Peyton, and A. J. Putnam, ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK, J. Bone Miner. Res, vol.24, pp.886-889, 2009.
DOI : 10.1359/jbmr.081240

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.081240/pdf

A. I. Idris, A. Idris, E. Mrak, I. Greig, F. Guidobono et al., ABD56 causes osteoclast apoptosis by inhibiting the NF?B and ERK pathways, vol.371, pp.94-98, 2008.
DOI : 10.1016/j.bbrc.2008.04.014

H. Nakamura, A. Hirata, T. Tsuji, and T. Yamamoto, Role of osteoclast extracellular signal-regulated kinase (ERK) in cell survival and maintenance of cell polarity, J. Bone Miner. Res, vol.18, pp.1198-1205, 2003.

G. Y. Jung, Y. J. Park, and J. S. Han, Mediation of Rac1 activation by kindlin-2: an essential function in osteoblast adhesion, spreading, and proliferation, J. Cell. Biochem, vol.112, pp.2541-2548, 2011.

N. Yamamoto, T. Otsuka, A. Kondo, R. Matsushima-nishiwaki, G. Kuroyanagi et al., Rac limits TGF-?-induced VEGF synthesis in osteoblasts, Mol. Cell. Endocrinol, vol.405, pp.35-41, 2015.
DOI : 10.1016/j.mce.2015.02.002

X. Zhang, C. Li, H. Gao, H. Nabeka, T. Shimokawa et al., Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity, Cell. Mol. Biol. Lett, vol.16, pp.279-295, 2011.
DOI : 10.2478/s11658-011-0006-z

URL : http://www.degruyter.com/downloadpdf/j/cmble.2011.16.issue-2/s11658-011-0006-z/s11658-011-0006-z.xml

P. D. Prowse, C. G. Elliott, J. Hutter, and D. W. Hamilton, Inhibition of Rac and ROCK signaling influence osteoblast adhesion, differentiation and mineralization on titanium topographies, PLoS One, vol.8, p.58898, 2013.
DOI : 10.1371/journal.pone.0058898

URL : https://doi.org/10.1371/journal.pone.0058898

A. Calzado-martín, A. Méndez-vilas, M. Multigner, L. Saldaña, J. L. Gonzálezcarrasco et al., On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces, Acta Biomater, vol.7, pp.1890-1901, 2011.

C. Li, S. Gao, T. Terashita, T. Shimokawa, H. Kawahara et al., In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces, Cell Tissue Res, vol.324, pp.369-375, 2006.

P. A. Randazzo, H. Inoue, and S. Bharti, Arf GAPs as regulators of the actin cytoskeleton, Biol. Cell, vol.99, pp.583-600, 2007.

T. Kirsch, Biomineralization-an active or passive process?, Connect. Tissue Res, vol.53, pp.438-445, 2012.
DOI : 10.3109/03008207.2012.730081

A. Strzelecka-kiliszek, Biochimica et Biophysica Acta, vol.1861, pp.1009-1023, 2017.