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Chapter 1

Modeling of active matter, simple
models and continuous theories

1.1 The world of nonequilibrium statistical mechanics

Statistical mechanics is the field of physics that aims at solving problems with a large
number of degrees of freedom. Since for many applications this one is typically of
the order of the Avogadro number, is not possible to integrate all the microscopic
laws of motion for the elementary constituents of a system, and statistical methods
are required. Hopefully, isolated systems at equilibrium are fully characterized by a
few macroscopic parameters (temperature, pressure, etc...) which can be expressed
as ensemble averages of the microscopic ones under the ergodicity postulate. There-
fore, statistical mechanics builds the link between the equilibrium thermodynamics,
which relies on principles based on empirical studies, and the microscopic details of
matter [1].

Equilibrium statistical mechanics is the origin of powerful tools such as the Gibbs
measure, the Monte Carlo methods, the Ginzburg-Landau phenomenological theory,
or the (Nonperturbative) Renormalization Group formalisms that allow the study of
very distinct systems from Bose Einstein condensates to protein folding. These ones
instigated important concepts in modern physics such as the notion of universality [2],
which states that the description of systems near criticality can be done based on
symmetry arguments and dimensionality only, and is independent of their microscopic
details. However, most systems in nature are subject to fluxes of matter and energy
and are thus out of the scope of equilibrium thermodynamics. Formally, thinking
in terms of problems composed of elementary processes, this means that transitions
between these states do not satisfy the detailed balance condition in their stationary
state [3].

In practice, there are various ways to be out of equilibrium. The first one is to
remain close to equilibrium by, for example, considering isolated systems that relax to
their steady state, or that are subject to small external perturbations. For those small
deviations from equilibrium one can apply the linear response theory which provides
a unified framework and strong results like the fluctuation dissipation theorem [4].

On the contrary, many nonequilibrium systems cannot be studied from linear the-
ory and are said to be far from equilibrium. This is the case for glasses, made from
fast cooled liquids that end up trapped in an energy landscape providing an infinity
of metastable states. These materials thus relax to equilibrium on timescales much
larger than the ones accessible experimentally [5]. Other examples are found consid-
ering large perturbations w.r.t. equilibrium [6]: driven diffusive systems [7], interface
growth [8], turbulent flows that spread energy from its injection on large scales to
the microscopic Kolmogorov scales 9], or quantum systems coupled to nonequilib-
rium reservoirs [10]. Finally, the last class of systems are the ones whose microscopic
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dynamics is already out of equilibrium. This includes systems with absorbing states
such as reaction diffusion processes [11] and the subject of this thesis, active matter.

Absence of detailed balance prevents a description of these open systems in terms
of a small number of phenomenological variable. This is why their study typically
requires a more complicated framework, and the far from equilibrium world is still
an active research topic in modern statistical mechanics. Because the equilibrium
statistical physics toolkit is not relevant for those cases, several useful techniques have
been developed over the years in order to solve them. We can cite for instance the
Langevin and master equations, large deviations theory, or kinetic approaches such
as the Bolztmann and Fokker-Planck equations from which hydrodynamic theories
in terms of slow modes of the dynamics can be derived [12]. Moreover, remarkable
progress in computing power in past decades now allow for both extensive numeri-
cal studies directly at the microscopic level and numerical solving of the, typically
nonlinear, equations that statistical physicists encounter everyday. It should finally
be mentioned that a substantial part of nonequilibrium systems exhibit generic scale
invariance [13]. Therefore, based on Renormalization Group ideas, the concept of uni-
versality has also naturally emerged out of equilibrium and several universality classes
can be defined in this context [11, 14-17].

1.2 Active matter

1.2.1 Definition and experimental realizations

Are referred as active matter all systems composed of microscopic units that are
capable of dissipating locally the energy present in their environment into systematic
motion. As mentioned earlier, contrary to systems that are driven out of equilibrium
by external forces, it is nonequilibrium in its bulk. This peculiar feature yields new
physics such as the generic properties of ensembles of coherently moving agents, known
as collective motion. Active matter has therefore attracted a lot of interest from soft
matter and statistical mechanics communities in the past decades [18-23].

Nature provides many examples of active matter systems, at the macroscopic scale
we find human crowds [24, 25|, or animal groups that can move collectively without
leader [20]. Among them we can cite starling flocks, for which 3 dimensional re-
constructions of individual trajectories within in vivo experiments have allowed the
measure of scale free velocity correlations and the characterization of pairwise inter-
actions [26-28]. In 2 dimensions, we find studies of fish trajectories in groups ranging
from a few individuals in order to infer interaction rules [29, 30|, to schools of few
hundreds of animals that exhibit collective motion [31]. Swarms of midges, on the
contrary, do not show any obvious collective behavior although interactions between
insects play a crucial role. Indeed, Attanasi, Cavagna el al. have shown that these
assemblies display strong correlations and even obey dynamic scaling laws, suggesting
that they are driven close to a critical point [32-34].

At microscopic scales, it has been reported that dense colonies of certain bacteria
self organize into large scale collective oscillatory motion [35], which is well reproduced
by a simple model considering short range interactions. At lower densities and in quasi-
2-dimensional geometry, elongated mutants of Escherichia coli show collective motion
with long range correlations and strong density fluctuations [36]. For bacteria with
lower aspect ratio, such as Bacillus subtilis, organization into swarming clusters [37]
and chaotic phases [38, 39| are observed. One more topic related to biology is cell
migration, which is involved in various phenomena such as morphogenesis, wound
healing, or cancer development [40].
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FIGURE 1.1 — Selection of active matter experiments. (a): Reconstruction of the
3 dimensional velocity field of a starling flock in [27]. (b): From [35], the red
curve shows the trajectory of a passive tracer that highlights collective oscillation
of bacteria. Other curves represent single bacteria trajectories, scale bar: 20um.
(¢c): E. coli mutants forming an ordered nematic phase, taken from [36]. (d): Self-
propelled colloids from [44] organized into a flocking phase. (e): Vortex array of
microtubules from [41], scale bar: 2mm. (f): Microtubules from [42] forming an
active nematics phase with half integer charged topological defects, scale bar: 50pum.
(g): Flocking dynamics of polar disks from [45].

Collective behavior also occurs at the sub-cellular scale. In wvitro collections of
15um long microtubules propelled by a carpet of molecular motors whose non motile
head is attached to a substrate, known as motility assays, constitute interesting active
matter examples. Indeed, the self organization of these filaments into millimeter large
vortex structures, themselves organized in hexagonal arrays, was observed in these
systems [41|. Experiments where the microtubules are confined between two fluid
layers and propelled when bound together by the same molecular motor constitute a
realization of the so called active nematics phase, in which topological defects exhibit
genuine nonequilibrium behavior [42]. Another constituent of the cytoskeleton, the
actin filaments, show patterns that possess a different symmetry. Namely, motility
assays experiments have shown the emergence of polar waves and vortices [43].

Moreover, numerous man-made active matter systems have been designed, which
often offer better experimental control. Although there exist realizations of swim-
mers in 3 dimensions [46], most of artificial systems evolve in 2 dimensions. The
first example are spherical colloids whose hemispheres are covered with two different
materials, plastic and platinum for instance. When immersed in hydrogen-peroxyde,
chemical reactions occur only on one side and the particle self-propels [47-51]. In
the same spirit, similar particles can also be put into moton because of thermophore-
sis when exposed to a laser beam [52], or from and electroosmotic flow induced by
surface charges if in presence of an external electric field [53]. Other self propulsion
mechanisms do not rely on asymmetry of particles such as the water droplets of [54,
55| that, in an oil and surfactant environment, spontaneously break the rotational
symmetry and move thanks to Marangoni effect. Motile colloids studied by Bricard
et al. self-propel because, when subject to a large enough electric field in the third
direction, an instability mediated by the electric charge distribution on their surface
occurs, resulting in a rotating motion [44, 56]. We note that an interesting property
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of this system is that, because of hydrodynamics, colloids interact in the form of ve-
locity alignement and can thus move collectively. Collective motion are also observed
in assemblies of elongated particles endowed with polar symmetry that are shaken
vertically [45, 57, 58], contrary to symmetric rods [59] that nevertheless show genuine
nonequilibrium behavior.

We see from this (non extensive) list of examples that active matter covers a wide
range of scales with systems whose self-propulsion mechanisms are disparate. However
most of them, despite their differences, exhibit similar collective properties due to the
interplay of activity and interactions among agents, their description is thus routinely
done with simple models.

1.2.2 Active matter from the physicist viewpoint: minimal models
and universality

Even though minimal models of active matter do not seek quantitative agreement
with experiments, they have been decisive for the deep understanding of active matter
generic features. Indeed, in addition to the fact that they usually depend on a few
independent control parameters, their simplicity makes them numerically efficient.
Therefore, they allow for simulations of large systems in situations that are often
subject to strong finite size effects, in addition to extensive studies of parameter
spaces. Moreover, their simple dynamics can often be coarse-grained in field theories,
building the link between microscopic dynamics and phenomenological equations.

All active particles are immersed in a fluid, which introduces long range hydrody-
namic interactions between them. However, in many situations this effect is negligible.
This is the case for instance in 2 dimensional systems where particles are in contact,
and exchange momentum, with a substrate. More generally the fluid can be neglected,
or taken into account effectively (friction forces), in any situation where the dynamics
is dominated by local interactions. Models that follow this path, which are typically
simpler, are referred as dry.

The simplest model of dry active matter consists of self-propelled particles which
move at constant speed vy and experience angular noise. Denoting by 7 and 6 the
position and velocity orientation of one of these Active Brownian Particle (ABP), its
2 dimensional dynamics is thus governed by

T —we0) : 5 = VaDe), (11)
t dt

where € is a unit vector, £ a Gaussian white noise with unit variance, and D, the
rotational diffusion coefficient. Most active particles are subject to a constant active
force and thus experience and overdamped dynamics. Therefore, this model faith-
fully accounts for the dynamics of single animals like birds or fishes, non tumbling
bacteria, or Janus colloids and shaken polar grains as in [45, 58]. Despite their mini-
malistic dynamics, ABPs that interact though for example, hard sphere repulsion, can
form clusters in absence of attractive forces [60, 61] (see Figure 1.2(a)). This Motility
Induced Phase Separation (MIPS), due to introduction of activity in the form of per-
sistence in the individual motion, has no equivalent at equilibrium. On the theoretical
side it can be explained by the fact that such particles move effectively slower in dense
areas, and in return tend to accumulate in regions where their velocity is small, cre-
ating a positive feedback loop for clusterization. Moreover the MIPS phenomenology
is common to any system whose constituents have a velocity that decreases with their
density [62, 63]. The genericity of this behavior thus defines a universality class in
which other models like run and tumbles and quorum sensing particles fall [64].
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FIGURE 1.2 — Phase separation occurring in simple active matter models. (a):
MIPS observed in a numerical simulation of ABPs with hard sphere potential,
from [61]. (b) and (c): Snapshots of respectively Vicsek and Active Ising bands
taken from [67]. Red arrows indicate the direction of the global magnetization.

The study of collective motion requires addition of other ingredients in the models.
Indeed, in most of situations where agents move coherently, the global dynamics is
dominated by their interactions [20]. In real systems these can take the form of
“social forces” that encourage animals to move together, synchronization of bacterial
motion due to exchange of chemicals or coupling with a fluid, or more simply hard
core repulsion between elongated objects. All these effects can of course be taken into
account explicitly in sophisticated models. However, it is simpler and often sufficient
to come up with models where they appear implicitly through velocity alignment
interactions.

One of such models considers particles whose velocities are modeled by +1 Ising
spins in 2 dimensions, hopping stochastically on a lattice [65, 66]. The dynamical rules
are such that the transition rates from one site to another are biased (in the direction
given by the spins, the other one being symmetric) according to the current spin
orientation. In that situation the temperature T' competes with spin-spin interactions:
when T is large the system is globally disordered, however decreasing it leads to a
spontaneous symmetry breaking and macroscopic alignment of the spins, which in
turn generates collective motion. This Active Ising Model (AIM) therefore defines a
universality class of collective motion with discrete symmetries.

In fact, natural systems possess a continuous symmetry of orientations, which
imposes to study off-lattice models. This problem, namely the self-propelled version
of the XY model, is addressed in the following Section.

1.3 Dry aligning active matter, the Vicsek model

1.3.1 The transition to collective motion

In their celebrated paper from 1995 [68], Vicsek and collaborators introduced what
has probably become the most popular model for collective motion. This one consists
of a simple discrete time dynamics in which N point-like particles, that move at
constant speed vg in a periodic 2 dimensional domain, interact by local alignment

of their directions of motion in presence of angular noise!. This is summarized in

Vectorial version of the noise has also been studied [69, 70], but its precise form do not affect
qualitatively the asymptotic properties of the model.
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the following evolution equations for a particle i at a position 7, that points in the
direction #; at time t,

F;t—i-l _ Fit‘i‘voé (934—1) , (12&)

ot = Arg (e (6)),] + el (1.2b)

where the & are independent white noises that draw random numbers uniformly
distributed in (—m; 7] and 7 denotes the noise amplitude. The average over neighbors
(...); is taken in the disk of radius ry centered in 7; as sketched in Figure 1.3(a),
and the function Arg returns the angle parametrizing the direction of this vector. A
non metric version of the model is briefly discussed in Section 2.1.2. Rescaling space
we set the radius of interaction to 1, the model is therefore defined by three control
parameters: the average density of particles pg, their velocity vy, and the noise n. In
practice, vg does not change qualitatively the results but only affects the size below
which finite size effects occur [70], and can thus be fixed (usually to 0.5). Finally, the
phase space of the Vicsek model is limited to two independent parameters: pg and 7
which reflect the competition between local alignment, strengthened at high densities,
and noise.

The only conservation law for the Vicsek dynamics concerns the total number of
particles. Therefore, since momentum is not conserved, the model does not satisfy
Galilean invariance. We conclude that it has to be formulated in the reference frame
where the momentum sink, i.e. the substrate on which particles move, is at rest.

Applying the Vicsek rules (1.2) at large noises and/or low densities results in a
disordered phase characterized by exponentially decaying correlations and zero order
parameter M (t) = + ‘Zf\il é(Gi)). Decreasing 7 (or equivalently increasing pp), the
model exhibits a nonequilibrium phase transition to a symmetry broken state with
M > 0 because the agents globally move collectively in a given direction. In terms of
self-propelled XY spins, this phase exhibits true long range polar order, something
impossible at equilibrium because of spin wave excitations |71], anomalous fluctua-
tions and superdiffusion |70, 72-74]. Giant density fluctuations can be identified by
computing the number of particles in boxes of various sizes, in the flocking phase of
the Vicsek model the variance of this number grows faster than its mean as shown in
Figure 1.3(b). This has been reported in several experiments [36, 37, 45, 58, 59, 75|,
and constitute one of the typical feature of collective motion.

The transition to collective motion was initially believed to be continuous |68, 77].
However, both large scale molecular dynamics simulations [69, 70] and hydrodynamic
theories derived from microscopic models [78-80| have shown that this was due to
finite size effects. It is in fact discontinuous and well understood as a phase separation
scenarto with coexistence of dense ordered liquid patches and a disordered dilute gas.
This phenomenology, characteristic of the Vicsek class, is due to the interplay between
local density and order that destabilizes the homogeneous system close to the tran-
sition: aligned particles are harder to separate and denser regions are more ordered.
The dense ordered structures are elongated and the order, such as their direction of
propagation, are transversal to their axis. They are usually referred as bands and have
a well defined size, leading to a typical smectic arrangement as shown in Figure 1.2(b),
so called microphase separation. Note that contrary to equilibrium liquid-gas transi-
tion, the two phases at play possess different symmetries, which prevents the existence
of a supercritical regime, the critical point is thus sent to infinite densities. The phase
diagram of the Vicsek model therefore shows three distinct phases: disordered gas,
ordered liquid and phase coexistence between the two (see Figure 1.3(c)).
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FIGURE 1.3 — (a): Illustration of the Vicsek-style alignment of the red particle’s
velocity with its neighbors (in blue) within the disk of radius rg. (b): The variance
of the number of particles in boxes of various sizes vs. its mean (see text) showing
giant density fluctuations in the polar phase of the Vicsek model for different system
sizes L, adapted from [76]. (c): Phase diagram of the Vicsek model in the particle
density pp and noise amplitude 7 plane, taken from [67]. The lines are the binodals
that mark the limit of stability of the coexistence phase.

The AIM introduced in Section 1.2.2, exhibits a similar phase diagram with three
phases. However the nature of its coexistence phase is different than in the Vicsek
model. In this case, bands do not have a characteristic width but adapt to the system
size as shown in Figure 1.2(c) [65-67]. This case is referred as macrophase separation
or simply phase separation.

Many real systems presented in Section 1.2.1 do not belong to the Vicsek class.
In fact several universality classes for collective motion, defined from symmetries of
the motion and interaction, have been explored both at microscopic and continuous
levels [80-95], and will be presented in Section 2.1.1. Moreover, these minimal mod-
els have been extended in order to account for additional properties of dry active
matter systems such as the presence of chirality [96-100], memory [101], asymmetric
interactions [102-105|, inertia [106-108], or static obstacles [23, 109-111].

1.3.2 Theoretical description of the flocking phase: the Toner Tu
phenomenological approach

Hydrodynamic equations describing the Vicsek class were first written on the basis of
symmetry arguments by Toner and Tu [72-74]. In that case the relevant hydrodynamic
fields are the coarse grained density p(7,t) and polarity p(7,t), which satisfy

Dp+ % F=0, (1.38)
P+ M <]7 6) D+ A2 (6 17) P+ AV (|ﬁ|2) =
(

—

o= BIp?) §~ VP + DiAF+ DAV (V-5) + 7, (1.3D)

and where a priori all the seven coeflicients, plus the pressure, are arbitrary functions

of the microscopic parameters, p and |p]. Note that the space and time dependencies
of the fields have been omitted in order to lighten the notations. The first equation
describes the conservation of the total number of particles, which are advected by
their polarity.
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In Equation (1.3b), the polar order is advected by itself through the A terms. If
the system was invariant under Galilean transformations:

Foptp ;oo (1.4)
the coefficients A; and Ay would have been equal to + together with A3 = 02. The first
term on the r.h.s. of Equation (1.3b) is a Ginzburg-Landau potential that models the
ordering of polarities. For low enough noise and/or large enough densities we expect
a and S to be positive, then Equations (1.3) admit a homogeneous ordered solution

L a.
pP=po ; p=p0=,/56, (1.5)

with é an arbitrary unit vector. The next term on the r.h.s. is the pressure, that
Toner and Tu expressed in terms of an expansion around the average density P =
> on (p— po)" with coefficients {o;}. Finally, the system shows both isotropic (Dr)
and anisotropic (Dy) spatial diffusion and f is an additive Gaussian white noise.

Hydrodynamic Equations (1.3) are the starting point of Toner and Tu “quantitative
theory of flocking” in which, using Dynamical Renormalization Group techniques, they
characterized the fluctuations of the fields around the solution (1.5). We give a short
summary of their results, whose discussion is the subject of Chapter 3.

In 73], Toner and Tu compute an algebraic expression for the velocity and density
two-point equal time correlation functions. Since the Vicsek model shows long range
order even in two dimensions, for any d < 4 the corresponding scaling exponents are
different along, and in any direction perpendicular to the order. The algebraic decay
of correlations is therefore characterized by two exponents. The roughness exponent,
X, measures how velocity fluctuations decay with system size in the direction(s) or-
thogonal to the global order. The anisotropy of the scaling is then characterized by
the exponent £. Note that, even in d = 2, x is negative so that the system shows long
range order.

Another important result is the presence of propagating sound modes whose speed
depends on the direction w.r.t. the global order. Moreover, for a given direction there
are two modes propagating at two different speeds which is shown to be related to the
non conservation of momentum. The dynamical exponent z characterizes the damping
of the modes, which is also anisotropic.

Toner and Tu firstly claimed an exact computation of the exponents x, £ and z
in d = 2 because of a special symmetry present only in this dimension. However, in
a more recent publication [112] Toner argued that possibly relevant terms had not
been taken into account previously, and that they could invalidate this statement.
Although there is no apparent reason that the exact values of the exponents are the
ones computed in [73], their qualitative predictions, namely the true polar order in 2
dimensions, the presence of propagative sound modes and the anomalous fluctuations,
remain valid.

Even though the Toner Tu theory succeeds in reproducing the large-scale long time
behavior of the flocking phase, it lacks from connexions with microscopic models. As
we already mentioned most of the terms in Equations (1.3) have coefficients whose
dependencies on the physical fields and particle-level parameters are unknown. Such
information may be precious, for instance, to account for the nature of the transition.

2 The formulation is different than in the original papers from Toner and Tu [72, 73] because we
wrote equations for the polarization and not velocity fields: p'= pv.



1.4. Hydrodynamic description of active matter models: derivation from
microscopic dynamics

Indeed, in Section 1.3.1 it was argued that the formation of polar bands is due to the
fact that polarity grows with density locally. We thus expect the linear coefficient «a to
depend explicitly on the density field. Moreover Toner and Tu considered an additive
noise f In fact, as for reaction diffusion processes [113, 114], there must be no fluc-
tuations in regions deprived of particles, therefore the noise has to be multiplicative.
We see here that the nature of the noise in coarse-grained Langevin theories relates
to relevant physical mechanisms, this point happens to be crucial in nonequilibrium
systems showing absorbing states [115]. Although it is not clear whether the precise
form of noise correlations affects the long time and large distance behavior of the
Toner Tu equations, it may be important if one wants to reach a more quantitative
description.

More generally, such equations written on symmetry arguments, or from equilib-
rium theories adding “active contributions” [116], often possess a large number of free
parameters, which makes extensive studies of phase diagrams difficult, if not impossi-
ble. One would therefore know the dependencies of the coefficients of these equations
as function of the, typically small number of, microscopic parameters in the models.
In the next section, we review the different approaches that can be employed to derive
continuous theories, such as the Toner Tu hydrodynamic equations, by coarse grain-
ing Vicsek-like microscopic models. The different equations, their behavior, and their
coefficients as well as their dependencies as function of the particle-level parameters,
are discussed.

1.4 Hydrodynamic description of active matter models:
derivation from microscopic dynamics

1.4.1 The Boltzmann-Ginzburg-Landau approach
The Boltzmann equation

The first approach we consider is the one proposed by Bertin et al. in |78, 79], that
we detail because it will be regurlarly used throughout this manuscript. Its starting
point is to write a Boltzmann equation describing the evolution of the single-particle
distribution f(7,0,t) that measures the probability of being at a position 7 with
an orientation 6 at time . One way to achieve that is to coarse grain a model
which belongs to the Vicsek class, but showing a slightly different dynamics. Indeed,
a convenient way to model stochastic interactions is to consider particles moving
ballistically at constant speed vy and experiencing random tumblings with a rate .
The equation for f(7,0,t) thus reads

O f(7,0,1) +voe(0) - Vf(7,0,t) = Lalf] + Leonlf], (1.6)

where the integrals of the r.h.s. model tumbling, or “angular self-diffusion” events

2
Lalf] = =M f(70,0) + X [ d0'f(7,. 0", )Py (0 - 0'), (1.7a)
0

with P, the noise distribution of variance n?, and collisions

27
Teonlf) =—¢maw£ K0~ 0)f(7.0,1) + (L.7b)

27 27
+/ dby dls f (7, 01,t) f(F,02,t) K (62 — 61) Py (0 — 01 — H(02 — 61)) .
0 0
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In the last equation K (0) = 4rguvg !sin (g) }, with r¢ the interaction radius, measures
the frequency of collisions and H (6) = g denotes the post-collisionnal alignment rule.
Collisions are assumed to be punctual because the model considers particles with no
spatial extension.

The Boltzmann equation is therefore written under two assumptions [117]. The
first one is that the collisions are essentially binary, meaning that the equation should
hold in the dilute limit: r¢ < \/% where pg is the average density of particles. Sec-
ondly, we used the molecular chaos hypothesis in order to express the two-particle
distribution as the product of two single-particle distributions. Physically, it is as-
sumed that the states of a pair of particles are uncorrelated prior to collision, which
corresponds to the case where the typical flight distance voA™! is much larger than
the collision radius ry. This approximations have been discussed in the context of ac-
tive systems [118, 119|. Indeed the Boltzmann approach supposes that the timescale
of a collision is much smaller than any other timescale of the dynamics. Because of
the aligning nature of the interactions, this is probably not verified in most systems,
and regular interactions between more than two particles should be likely. However,
as we discuss in Section 1.4.3, considering more than two-body collisions leads to a
much more complicated framework that is not necessary in order to achieve qualitative
agreement with microscopic models.

In the following we will consider a nondimensional version of (1.6), obtained by
rescaling time, space, the kernel of interaction K, and f as

t—> A% . Fo oA o K= 2r0uK 5 f = pof. (1.8)

Then the equation depends on only two parameters that are the noise variance % and
the nondimensional density g = 2rovoA ™" po.

Since 0 is a 2m-periodic variable, the next step of the procedure is to expand the
distribution f in terms of angular Fourier modes:

F0,8) = o= Y ful@t)e ", (1.9)
L

where, because of the reality of the distribution, the complex modes satisfy f_k(f’, t) =
f7(7,t). The resulting Boltzmann hierarchy reads

Ocfi + % (v*fk—H + ka—1) = (Pk - 1) fot D Teafofi—q (1.10)

g=—00

where P is the k™ mode of the distribution P,, the complex gradient V = 0, + 19,
and the Jyg = fo (Pl — Tog) with

—(k— _ in( Ex

Ikz,q = 1—(k—2q)*

(1.11)
% otherwise

Here the space and time dependencies of the modes have been omitted in order to
lighten the notations, for the same reason we drop hats and tildes in the following.

3The noise distributions in (1.7a) and (1.7b) have been assumed to be the same for simplicity. In
general one could consider two different distributions.
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Truncation and closure

The first angular modes of the distribution correspond to the complex representation
of the density p, polarity 7 and nematic Q fields*:

2

fo = /0 dof(6) = p, (1.12a)
2

1= /0 d@f(@)ew:px—i—zpy, (1.12b)
21

fo = /0 dOf(0)e*? = 2(Que +1Quy) - (1.12¢)

In this model with polar symmetry, we expect all the modes with £ > 1 to have
a fast dynamics. Formally, the linear stability of the disordered state, p = 1 and
fi = 0 Vk > 0, to homogeneous perturbations is ruled by the linear coefficients
pe = P — 14 (Jg0 + Ji ). Moreover it has been shown [80] that, except for yy, these
coefficients are all negative for any value of pg and 7, which indicates that the higher
modes are slaved to fi.

When the disordered solution becomes unstable, i.e. when p; becomes positive,
we assume that |fi]| ~ ¢ with ¢ < 1 that measures the distance from the transition.
Then the only possible scaling allowed by the hierarchy (1.10) is given by |[p — 1| = ¢
and |f| ~ ¥ for k > 0. In order to take into account the spatial and temporal
variations of the fields, we need to assign a scaling to the 0; and V operators. Since
the dynamics of particles is propagative, the two scale the same way, therefore and in
a Ginzburg-Landau spirit we set 0y = V =~ ¢.

The Boltzmann-Ginzburg-Landau hydrodynamic equations

Truncating (1.10) at the first non trivial order €3, we get equations for p, fi and fs.
Comparing the terms in fo equation, d;fy can be set to 0 so that it is slaved to the
density and polar fields and we recover the Toner Tu equations (1.3), here expressed
in complex notations:

Dp+ R (V*f1) =0, (1.13a)
o fr = —%VP+ (1alp] — €LAP) AL+ vAfL — ki AV fL — Ko fiV i, (1.13b)

where the Laplacian A = VV* and all coefficients expressions as functions of the
density and the moments of the distribution P, in addition to their correspondence
with Equations (1.3) are given in Table 1.1.

We first comment on the coefficients of Equations (1.13): the linear coefficient,
w1]p], depends explicitly on the density as indicated by the brackets. Moreover they
admit positive cubic (§) and diffusion (v) coefficients, and are thus expected to be
well behaved. We also note that, using Toner and Tu notations, A3 = —% which
means that Equations (1.13) can be formally derived from a free energy® [21]. The
pressure is simply linear in density which corresponds to keeping only the first term
in the expansion from Toner and Tu, and although authorized by symmetries, there
is no anisotropic diffusion. Finally, this approach provides deterministic equations
and thus there is no noise term to compare with the one in (1.3). Noise terms could

4The reference frame has been chosen so that the z direction in tensorial representation corre-
sponds to the real axis in complex notations.
5This would of course reintroduce phenomenological parameters in the equations.
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FIGURE 1.4 — (a): Linear stability of the homogeneous ordered solution of the
hydrodynamic equations (1.13) derived from the Boltzmann-Ginzburg-Landau ap-
proach in the density noise plane (a gaussian noise distribution P, = exp(—k?n?/2)
was assumed). The blue line marks the linear stability limit of the disordered so-
lution and the color code indicates the direction of the most unstable wave vector
w.r.t. the order (white means that the solution is stable). From top to bottom we
thus see the band region, a domain with stable homogeneous order and the spurious
instability (see text). (b): Simulation of a stochastic hydrodynamic equation for the
Vicsek class with noise on the polar field from [67]. The large band, stable at the
deterministic level, becomes unstable at the fluctuating level and the microscopic
picture is recovered (see Figure 1.2(b)).

nevertheless be computed from the Boltzmann equation using perturbative techniques
developed in [120].

Equations (1.13) show an homogeneous ordered solution for pu; > 0: p = 1,
If1]? = % A linear stability analysis of this solution reveals an instability, whose most
unstable wave vector ¢ is longitudinal to the global order, close to the transition [79]
(see Figure 1.4(a)). A computation in the limit of small |§| reveals that this instability
is in fact triggered by the explicit density dependence of pp, and thus could not be
seen by Toner and Tu. Deeper in the ordered phase another instability, no more
longitudinal to the order, develops [80]. This one is not observed in microscopic
simulations, moreover its spatial extension reduces adding positional diffusion by hand.
As we will see in Chapter 3, this instability results from the truncation procedure,
whose validity is ensured only close to the transition, and is considered as spurious
because it is not present at the kinetic level.

At the nonlinear level the longitudinal instability close to the transition leads to
the formation of the bands observed in microscopic simulations of the Vicsek model.
However Caussin, Solon et al. have shown that, at a given phase space point, the
band solutions of (1.13) are not unique [121, 122|. In particular the deterministic
hydrodynamic level does not make any selection between the phase and microphase
separation scenarios that take place respectively in the Active Ising and Vicsek models.
This selection nevertheless occurs adding a noise term® in Equations (1.13), so that
the correct scenario is recovered at the fluctuating level [67] (see Figure 1.4(b)).

As a conclusion to this section, the Boltzmann-Ginzburg-Landau approach pro-
vides a systematic procedure to derive well behaved hydrodynamic equations from a
Vicsek-like microscopic model. It therefore allows to study the phase diagram of the
model at the continuous level. Despite the differences that occur in the deep ordered
region and that are due to the truncation procedure, good agreement with molecular

5 Additive or multiplicative.
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Toner Tu Boltzmann Smoluchowski
a plpl =P —1+2 (P —2) pop 5[0 = ppe — 1
G €= P i mscr o (> 0) £=4
P =3, 0u(p—po)" 3P 3P
Dr V= 4(157r(1—P2;—5|—7é(7+5P2)p0) (>0) VS = 1
Dy 0 0
3 o Iy v
A2 k1= k2= 1572r%f?}21)32+§<175f§3:€2%p0 Ry — k3 = 556
(fz(ﬁ O f (1) = (Ei(r )5, (7, 1)) =
AS;;o(F— 7)ot —t') Deterministic equations (p5w + [3Vip; — pepiPi)gr)
(additive) xO(F— 7)ot — 1)

TABLE 1.1 — Correspondence between the coefficients of the hydrodynamic equa-
tions for the Vicsek class written by Toner and Tu (1.3) and the ones derived from
the Boltzmann (1.13) and Smoluchowski (1.17) equations. [Q;;]sT gives the ij
component of the symmetric traceless part of the tensor Q.

dynamics simulations is found and the correct qualitative phase diagram is recovered.
This approach has also been generalized to other active matter models with different
symmetries [80, 89-91], showing similar success. We therefore apply it in Chapter 2
to derive hydrodynamic equations for a new class of dry active matter and its formal-
ism in 3 dimensions is developed in Chapter 5. A detailed study of the Boltzmann
equation itself is done in Chapter 3.

1.4.2 The Smoluchowski approach

Another approach to derive the Toner Tu equations consists to start from a Smolu-
chowski equation. This one can be derived from an explicit rod model as in (84,
86, 123| assuming binary collisions, or as the equation governing the evolution of the
marginal distribution from a Fokker-Planck equation [124-128]. Equations presented
in these references globally show additional terms than (1.13) because of the presence
of volume exclusion, different interactions, or because a higher truncation order was
chosen. In [124, 128], the derivation is based on a Maxwellian approximation for the
single-particle distribution. The resulting “Self-Organized Hydrodynamic” equations
are unfortunately not able to account for any phase transition in the overdamped limit.
However, it is shown below that applying the truncation and closure schemes intro-
duced earlier leads to hydrodynamic equations which are formally the same as (1.3)
and (1.13).

Another derivation of the Smoluchowski equation can be done from the approach
proposed by Dean in [129] and that was used in [130] to derive hydrodynamic equations
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from a continuous-time version of the Vicsek model. Considering a particle ¢ at
position 7; with a velocity along 6; at time ¢, the corresponding Langevin equations
read .

d’l“i

. do; vy )
o voé(6;) = = 717(2) ;sm(é’j —6;) + /2D;&(t), (1.14)

where we have noted vy the speed of particles, v the strength of the interaction and
D, the angular diffusion coefficient. The interaction is computed over all neighbors
inside a disk of radius r¢ and £ is a Gaussian white noise with unit variance. From
these equations and denoting by f(7,6,t) = >, 6(7 — i(t))6(6 — 6;(t)) the density of
particles, the Dean approach allows to derive a stochastic version of the Smoluchowski
equation

8tf(777 07 t) + Uoé(e) : ﬁf("?v 0) t) = DTang(’F; 97 t) - 69 (\/ 2D7'f(777 07 t)é) (115)
2w
0y [ F(7.0,1) / 40§ (7,0, ) sin(0' — 9)} .
0

The Lh.s. of this equation is the same as in the Boltzmann (1.6) case, i.e. usual
advection at constant speed vg. On the contrary, since we have considered angular
diffusion and not tumblings, the “self-diffusion” term in the r.h.s. is different. Be-
cause the derivation relies on the expression of f in terms of Dirac distribution, this
procedure gives an exact mean field form of the interaction. We note however that
this approximation is verified only in the high density regime, since in practice we
are looking for smooth solutions of the equation. Finally, the Dean approach is par-
ticularly interesting because it allows for the derivation of noise terms at the kinetic
level. Here € is a Gaussian white noise such that the variance of the total noise in the
equation scales like 2Dr(9§9 f(7,0,t), the latter therefore being multiplicative. As in
the Boltzmann case, Equation (1.15) can be de-dimensionalized using

t— D't 5 FowD 5 fpof 3 €= (Depo)2é, (1.16)

so that it depends on a single nondimensional parameter: I' = ypoD; ! (we note
Pe = g in the following)”.

We can now apply the procedure detailed in Section 1.4.1 in order to derive hy-
drodynamic equations. However, the treatment of the noise term in (1.15) requires
some care. Indeed, since all the angular Fourier modes are stochastic processes we
cannot set O;fo to zero for the closure, but need to consider a more sophisticated
procedure [131, 132|. In fact, following the scaling approximation of Section 1.4.1,
timescales associated to the evolution of fs scale like the ones related to the polar
field f; times a factor e. Therefore f5 is ergodic on timescales where fi is almost
constant and we can safely consider the equation for f; averaged over the stationary
distribution of fo. After some algebra, this results in the following hydrodynamic
equations

G RTR)= 0, (1.17a)

oty =5+ (1o = EIAP) fi + S AR = SV f — KEAVAHE, (117D
' (B(F )= (F, ) = 2p0(F — 7)ot — t')

i { (E(F O ) = (V1 = pefi) 0(F = 7)ot =) 7 (1.17¢)

"Contrary to the Boltzmann case in Section 1.4.1, there is just one independent parameter because
rotational diffusion has been considered instead of tumblings.
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FIGURE 1.5 — (a) Homogeneous ordered solution of the Smoluchowski (full black)
and Boltzmann (dashed red) hydrodynamic equations vs. respectively p. and pg.
While the solution corresponding to the Boltzmann case is monotonous and satu-
rates at a finite value, the one corresponding to Smoluchowski shows a maximum
and tends to 0 when p. — oo. The Boltzmann curve has been evaluated at constant
noise = 0.645 using a Gaussian distribution P, = exp(—k?n?/2). (b): Growth
rate of the linear instability of the homogeneous ordered solution of the determin-
istic version of Equations (1.17). With and without additional spatial diffusion
(in the form DyAf in (1.15)), the solution is unstable in all its existence domain.
When the lines are continuous, the instability is longitudinal to the order, it is
purely transversal deeper in the ordered phase only in the large Dy limit.

where all the coefficients are given in Table 1.1 so as their expression as function
of p.. Because the interaction is mean field, they are typically simpler than in the
Boltzmann case. We note that Equations (1.17) share similarities with (1.13): the
linear coefficient depends explicitly on density, the cubic and diffusion coefficients are
positive, the pressure is linear in p, there is no anisotropic spatial diffusion, and the
relation A3 = f% still holds. However a Gaussian white noise term, whose variance
is linear in p and depends non trivially on the order, was derived in the polar field
equation. To our knowledge, all the studies until now have focused on the deterministic
part of the equations, so that an extensive study of the stochastic hydrodynamic theory
for the Vicsek model is still missing. More generally, the effect of the precise form of
the noise on the solutions of these equations is completely unexplored.

Restricting ourselves to the deterministic equations, their homogeneous solution
for p. > 1is given by p = 1 and |f1|? = 2’);—?. We first note that, contrary to solutions
\/%
the high density limit as shown in Figure 1.5(a). Moreover, a linear stability analysis

of this solution shows that it is always unstable, contrary to the Boltzmann case
which exhibits an intermediate region of stability (see Figure 1.4(a)). The instability
is longitudinal to the order close to the transition, then rotates and gets a transversal
component. Contrary to the Boltzmann equation, adding spatial diffusion does not
suppress the instability at large p., even at large values of the diffusion coefficient as
shown in Figure 1.5(b).

To conclude this section, hydrodynamic equations derived from the Boltzmann
approach at this point are more successful at reproducing the Vicsek phase diagram
than the ones obtained from the Smoluchowski equation (1.15), even in dense sys-
tems where the later is supposed to be a better description. A comparison of these
approaches at the kinetic level is proposed in Chapter 3.

of Equations (1.13), the order is not monotonous with pe, and even vanish like in
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1.4.3 Other approaches
The Thle approach

In [133, 134] Ihle proposed a direct coarse graining of the discrete time Visek model (1.2).
Contrary to the Boltzmann case, this approach considers multi-body interactions and
thus, does not assume a dilute system. The kinetic equation is then obtained from the
molecular chaos hypothesis that allows the factorization of the N-particle distribu-
tion. This one is used for the derivation of a hydrodynamic description of the Vicsek
model by mean of a Chapman-Enskog expansion. Because the truncation procedure
is different, the resulting equations for the density and polar fields show additional
terms than (1.13), using notations of Section 1.4.1, they are of order up to 5. While
they succeed at reproducing the generic linear instability of the ordered solution close
to the threshold, Thle’s hydrodynamic equations are not well behaved and cannot
account for the solitary wave solutions.

Simulations of his kinetic equation are typically difficult because they rely on colli-
sional integrals that are not local neither analytic. Practically, additional assumptions
are necessary such as restricting the dynamics to two-body collisions. This was done
in [135] where Thle simulated his kinetic equation truncated at the 5™ Fourier mode. In
a quasi-one dimensional geometry, he was able to reproduce the usual band solutions,
although no discussion about selection is proposed.

The Langevin formulation

In [90], Bertin et al. show how to derive stochastic hydrodynamic equations by di-
rect coarse graining of a Vicsek-like microscopic model. The Langevin equations are
build by defining fluctuating coarse grained density and order fields. However, as op-
posed to the Dean approach the authors did consider smooth distributions. Because
of this, there were able to treat only the collisionless dynamics, dealing with inter-
actions separately using the Boltmann-Ginzburg-Landau formalism. This approach
thus provides stochastic equations that show, as expected, multiplicative noise terms.
Its limitations mostly lie in the fact that it does not consider fluctuations due to col-
lisions, which are taken into account effectively at the cost of an unknown rescaling
phenomenological constant. As we mentioned in Section 1.4.2, extensive studies of
Langevin formulations of active matter are still missing and we cannot comment on
any result.

Active matter on lattice, exact equations

We finally mention a work that focusses on active matter models on lattices and
allows for a derivation of ezact hydrodynamic equations [136]. The authors study
two of these models, respectively in the MIPS and Active Ising universality classes.
The principle of their derivation relies on a clever choice of the microscopic transition
rates such that diffusion dominates locally, while all process of the dynamics are
equivalent macroscopically. This in fact allows to safely neglect two points correlations
in the asymptotic limit and leads to exact equations. Although it surely constitutes
a powerful tool for the study of active matter systems, which as we mentioned earlier
are typically subject to strong finite size effects, this procedure is probably impossible
to apply to models with continuous symmetries.
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1.5 Organization of the manuscript

This thesis is divided into four main themes.

Chapter 2 first presents the different universality classes of dry active matter, de-
fined from symmetries of the motion and interaction. It then introduces a Vicsek-style
model defining a new class, whose phenomenology is characterized by means of both
numerical and analytical studies. It is based on a work that is now published [137].

Chapter 3 is devoted to the study of the Boltzmann and Smoluchowski kinetic
theories introduced in Sections 1.4.1 and 1.4.2. We discuss the linear stability of the
homogeneous ordered solution of these equations and characterize the phase diagram.
A discussion about the selection of band solutions at the kinetic level is given.

In Chapter 4 we quantitatively assess the Toner Tu theory, briefly introduced in
Section 1.3.2, by mean of large scale molecular dynamics simulations of the Vicsek
model. We show measurements of the critical exponents of the flocking phase in 2
and 3 dimensions, and compare them to the Toner Tu theory [72, 73].

Chapter 5 is the reproduction of an article submitted to the Journal of Statisti-
cal Mechanics: Theory and Experiment that establishes the formalism to apply the
Boltzmann-Ginzburg-Landau approach, presented in Section 1.4.1, to three dimen-
sions. 3 dimensional hydrodynamic equations are derived for several classes of active
systems and compared to the 2 dimensional case. Solutions of these equations are
computed and their linear stability is discussed.
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Chapter 2

Active matter class with
second-order transition to
quasi-long-range polar order

2.1 Classification of dry aligning active matter models

2.1.1 The Vicsek universality classes, a common phase separation
scenario

The Vicsek model introducted in Section 1.3.1 constitutes a minimal description of
self-propelled particles that align their velocities with a polar symmetry. However, in
many situations, the active units do not have distinct head and tail and the symmetries
of their walk and/or interaction can be different. For instance, the shaken rods in [59]
do not move ballistically but exhibit an apolar walk which is diffusive on large scales,
and interact via volume exclusion forces that equate to a nematic alignment. This
system therefore possess a full nematic symmetry. On the contrary, while the bacteria
of [36], the microtubules in [41, 42], or the rods of [57] show similar alignment, they
move persistently and thus form systems with mixed symmetries. To account for this
diversity, different active matter universality classes can be built as function of the
symmetries of the particles free motion and alignment.

The three classes of dry active matter studied so far all possess a Vicsek-style
representative. Polar particles with ferromagnetic alignment have been addressed in
Section 1.3.1 and are described by the original Vicsek model. Such particles interacting
nematically, i.e. which anti-align if their pre-collisional directions form an obtuse
angle, are known as self propelled rods [87]. On the contrary, if such particles reverse
their velocities at some rate, their free motion has an apolar symmetry and they define
the active nematics class [82].

Similarly to the original polar case, these additional classes have been studied
intensively both numerically [82, 85, 87, 91, 94] and at the continuous level [80, 81, 84,
86, 88-90, 95, 123]. The Vicsek-style dynamics for such particles moving at constant
speed vg reads

()

01 = Avg[(sen (¢ (0) - ¢ (0)) ¢ (01)),) +mél + b, (210)

= e (0711) (2.1a)

where, as usual, we denote by 7/ and 6! the position and orientation of the particle
1 at time t. The processes €; model velocity reversals, at each timestep they take the
values 0, with a probability 1 — «, and 1 otherwise. In the propagative rods case, «
and ¢; are therefore equal to 0. The functions sgn(x) returns the sign of = so that
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2000

FIGURE 2.1 — (a) & (b): Snapshots of the spatiotemporal chaos observed in the
phase coexistence region of active nematics in simulations of, respectively the mi-
croscopic model and the hydrodynamic equations derived from the Boltzmann-
Ginzburg-Landau approach. The white dashed arrow in (a) shows the local orien-
tation of the order, directed along the nematic bands. Adapted from [91].

two particles initially pointing in opposite directions will anti-align. The resulting
interaction, taken within the disk of radius rg, has the nematic symmetry that is
found, for instance, in liquid crystals [138]. Finally the angular noise, uniform in
) — nm;nw], competes with alignment as in the polar case.

We have shown in Section 1.3.1 that ry can be set to 1 and that vy does not
affect qualitatively the results. Moreover in the active nematics case, the reversal
probability a has no incidence on the conclusions presented below, as soon as it
remains finite. It is thus usually fixed to its maximum value: % The phase diagram
for these class therefore depends on two parameters: the average density of particles
po and the amplitude of the noise 5. Its structure remains the same as the one shown
in Figure 1.3(c) for the Vicsek model, with three distinct phases.

The low noise/large density nematic ordered phase is quasi-long-ranged in the
finite velocity reversal case [81, 82, 88, 91|, i.e. it vanishes in the infinite size limit and
there is no symmetry breaking asymptotically. Self-propelled rods are theoretically
expected to exhibit the same behavior, however both numerical and experimental
studies suggest true long-range order [36, 87]. Shankar et al. have discussed the
existence of a nonuniversal crossover scale below which no power law decrease of the
order vs. system size can be observed [95]. This means that the current observations
are probably strongly influenced by finite size effects and larger systems need to be
considered to draw any definitive conclusion. Anyhow, in both cases the presence of
long-range correlations in the nematic ordered phase gives rise to the generic giant
density fluctuations observed in the polar class.

Another common feature with the original Vicsek model is the intermediate coex-
istence phase separating the disordered and ordered regions. Indeed, the order also
emerges from a phase separation mechanism where the liquid structures now take
the form of nematic bands oriented along the direction of the order. These ones are
unstable to long wavelength longitudinal perturbations, leading to a spatiotemporal
chaotic regime pictured in Figure 2.1(a).

The approaches presented in Section 1.4 to derive hydrodynamic equations for the
polar class are applicable to the other cases. After writing the kinetic equation with the
correct symmetries, the main difference lies in the choice of the scaling ansatz for the
truncation and closure. This one indeed needs to be chosen according to the symmetry
breaking field and the type of dynamics considered (propagative or diffusive) [80], as
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presented in Section 2.3. Like in the polar case, the Boltzmann-Ginzburg-Landau ap-
proach allows to recover the phase diagram of both active nematics and self-propelled
rods models [89-91], and even accounts for the chaotic coexistence phase as shown in
Figure 2.1(b).

2.1.2 The several routes to criticality

In the preceding section we have discussed the different classes of dry active matter
with local alignment interactions. In particular, we have seen that all of them exhibit
the phase separation mechanism that prevents the emergence of a continuous transi-
tion to order. As it relies on one of the main characteristic of these simple models,
interplay between local density and order, this scenario is in fact very robust. For the
same reasons as the ones exposed in Section 1.3.1, criticality thus cannot be observed
in these dry active matter systems.

Different paths exist to get rid of phase separation. The first one is to consider sys-
tems with birth and death processes, i.e. making the density non-hydrodynamic [139].
The second way consists in imposing an incompressibility condition on the ordering
field (6 -p = 0 in the polar case) that effectively introduces long range interactions
and suppresses the density dynamics [140, 141]. The only hydrodynamic field is then
the order, and the generic instability driving the apparition of phase coexistence is
trivially suppressed. Although these models exhibit nonequilibrium phase transitions
and critical behavior, their ordered phase does not show any anomalous density fluc-
tuations, which makes them stand further from real systems.

The third possibility, that allows to keep the density dynamics, is to consider metric
free interactions. This can be achieved either by choosing “topological” neighbors from
a Voronoi paving of space [142, 143], or by always interacting with the same fixed
number of closest particles [144, 145]. This way, the interaction strength does no
more depend on the local density, which kills one of the feedback mechanism for phase
separation. Such non-metric interaction rules have been shown to be relevant in flocks
of birds |26, 28|, that always interact with on average six or seven closest neighbors.
In addition to showing a nonequilibrium continuous transition, the ordered phase in
metric free models have giant density fluctuations, akin to their metric counterparts.

In summary, the different approaches for which phase separation is suppressed so
far rely on either the removal of the density field and/or introduction of long range
interactions. A natural question is wether criticality can be observed in a system with
only local alignment. In this Chapter we show that this can be done defining a new
class of dry active matter, namely apolar particles that interact ferromagnetically. Us-
ing the Boltzmann-Ginzburg-Landau approach introduced in 1.4.1, we derive kinetic
and hydrodynamic equations for this new class. In both cases the linear instability
of the ordered solution responsible for the coexistence phase in the other classes is
absent. This point is confirmed by simulations of the microscopic model, that show
a continuous transition to a quasi-ordered polar phase with continuously varying ex-
ponents and giant number fluctuations. Although this new case possesses many of
the properties of the (equilibrium) XY model, surprisingly, an extensive numerical
study of the transition leads to conclude that it does not belong to the Berezinskii-
Kosterlitz-Thouless universality class [146-148|. We give strong evidence that it is in
fact best described as a standard critical point with algebraic divergence of correla-
tions. Finally, these findings are rationalized by showing that the coupling between
density and order deprives defects from their usual role.
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2.2 A new class of dry active matter with continuous tran-
sition

In the restricted Vicsek framework, this fourth class is a trivial problem because it
obviously cannot give rise to any orientational order. Indeed, because of the “Vic-
sek constraint” that the polarity of particles is given by their velocity, the order is
destroyed by stochastic reversals. This difficulty can be overcome considering agents
that are conferred a polarity and are able to move along or against it. Thinking the
Vicsek model in terms of flying spins, this case therefore corresponds to shaken spins,
and we name is the Vicsek-shake model. An experimental realization could consist in
vertically-shaken granular disks, such as in [45], but endowed with two identical legs
and carrying magnets. The symmetric legs would induce apolar motion with reversals.
The magnets could dominate the interactions and lead to ferromagnetic alignment.
A mathematical definition of the model reads

I = b vgete (0111 (2.2a)

ot = Arg (e (6)),] + el (2.2b)

where we have kept the notations of Sections 1.3.1 and 2.1.1. Contrary to (2.1),
the reversals now take place in the dynamics for positions rather than the one for
orientations, which allows to preserve local ordering of the system. The processes ¢;
are therefore equal to +1 and change sign with a probability a. We checked that the
results presented below are not sensitive to the value of «, provided that it remains
finite. It is thus fixed in the following to the numerically-convenient value % Following
the literature on the other classes [70], we also don’t expect to see any qualitative
change varying the speed v, which is set to % With « and v fixed, the main
parameters remain those of classic Vicsek-style models, the mean density of particles
po, and the noise amplitude 7.

We first determined numerically the phase diagram of our model in the (po,n)
plane (see Figure 2.2(a)). We find a single transition line from the disordered gas
observed at strong noise and/or low densities to a phase with global ordering of po-
larities, characterized, at finite size, by a finite average value of the magnetization

M(t) = ‘Zf\il é(@f)‘. Contrary to the other known classes mentioned in Section 1.3.1

and 2.1.1, we do not see any sign of phase separation. The transition seems contin-
uous, with only quasi-long-range order: the time averaged magnetization decreases
algebraically with system size: (M) ~ L~*( with x increasing continuously with
the noise 1 as shown in Figure 2.2(c). At strong-enough noise, the correlation length
of the system remains finite. Therefore, at large-enough sizes, the systems is com-
posed of uncorrelated parts and, frlorn the central limit theorem, a crossover to a fully
disordered phase with (M) ~ N™2 ~ L~! is observed (see Figure 2.2(d)). Here the
brackets (...) stand for an ensemble average, that we equate to a time average in the
following.

Like in all known orientationally-ordered dry active matter phases, Figure 2.2(b)
shows that giant number fluctuations are present: the variance (AN?) of the number
of particles in a sub-system containing on average (IN) particles grows faster than (V).
We find that (AN?) ~ (N)¢ with ¢ = 1.73(3), a value similar to those reported for
the other classes |70, 72, 73, 87, 91].
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FIGURE 2.2 — (a): Phase diagram of the Vicsek-shake model in the (pg,n) plane.
The asymptotic order-disorder transition line is shown in black. The red curve
reports the location of the susceptibility peak 7, measured for L = 256 (error bars
are smaller than symbols). Inset: same data in logarithmic scales, with the dashed
line marking slope 0.66. (b): Variance (AN?) over mean (N) of the number of
particles present in sub-systems in the quasi-ordered (circles, 7 = 0.2) and disor-
dered (squares, 7 = 0.5) phases for various system sizes L (pg = 2). The dashed
line corresponds to ¢ = 1.73. (c) and (d): Averaged magnetization as a function
of system size for several noise values in the quasi-ordered and disordered phases
(po = 1). In the quasi-ordered state, (M) decays algebraically, with an 7-dependent
exponent x(n)). Curves in (c¢) correspond to, from top to bottom, n = 0.05, 0.1,
0.15, 0.2, 0.24, 0.25, 0.255 and 0.26. In (c) (resp. (d)) the dashed black line marks
slope — (resp. —1).

2.3 Hydrodynamic description of the Vicsek-shake model

We now turn to the derivation of hydrodynamic equations for the Vicsek-shake class
from a microscopic model sharing same symmetries. Encouraged by its overall success
in the other cases, we adopt the Boltzmann-Ginzburg-Landau approach presented in
Section 1.4.1. These equations are derived in the finite and infinite velocity reversal
rate limits in respectively Sections 2.3.1 and 2.3.2. Then Section 2.3.3 connects the
two sets of equations. Finally, their homogeneous solutions, as well as their stability,
are studied in 2.3.4.

2.3.1 Derivation of hydrodynamic equations with finite reversal

In the finite velocity reversal rate limit, the model considers two sub-populations:
the particles which move along and against their polarity that we denote respectively
by “4” and “—” in the following. We thus start by writing two coupled Boltzmann
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equations for the corresponding single-particle distributions fi(7,0,1):

8tf:|: + Uog(e) . ﬁfi =a (fq: - f:l:) + Isd[f:l:] + Icoll[f:b f:F] ) (23)

where, as before, €(f) in the material derivative of fi is the unit vector directed along
6 and a is the exchange rate between the two sub-populations (akin to the microscopic
reversal probability «). Space, time and orientation dependencies of the distributions
have been omitted for the sake of clarity. The self-diffusion and collisional integrals
read

2m
Iqlf+] = —Af++ )\/ do' f+(0")P,(0 —¢'), (2.4a)
0
2m
Toilfeo ) = ~fo [ a8 [F(0)KT(E —6) + (VK 6)
0
2m 2m
+/ doq / dfa f+(01) (f+(92)K+((92 —01)+ f_(QQ)Ki(HQ — 01))
0 0
xPn(G—Hl —H(92 —61)). (24b)
where ) is the tumbling rate and P, is the noise distribution of variance n?. H(f) = g
models the ferromagnetic alignment of polarities and the kernels of interactions
n . R . (02— 0,
K™ (6 — 01) = 2rgug|é(h2) — é(01)] = 4ropvg |sin 5 , (2.5a)

K_(QQ — 01) = 2TOU0‘é(92) + é(@l)’ = 4ryvg

cos <02 ; 91)‘ , (2.5b)

are different and are used depending on whether the two colliding particles belong to
the same population or not. De-dimentionalization of these kinetic equations is done
with

t— )\_lt s 7 — 2}0)\_1’F s Ki — 2TOUOKi s fi — POfi s (26)

except that now, in addition to the noise intensity 7, we do not have one but two
nondimensional control parameters that are the rescaled density pg = 2rovoA ! po and
reversal rate @ = A" 'a.

Hydrodynamic equations are then derived from (2.3) by expanding the distribu-
tions in terms of their angular Fourier modes

fe0)= > fre ™, (2.7)

k=—0oc0

truncating and closing the resulting hierarchies as presented in Section 1.4.1. In the
Vicsek polar case the remaining hydrodynamic (or slow) fields correspond to the first
two angular modes of the distribution, i.e. density and polarity (equal to velocity).
Here these fields are the zeroth and first modes of the sum f = f, + f_, i.e. the
density and polarity of the total population, while the velocity field, now distinct from
polarity, is the first mode of the difference ¢ = f — f—. Rewriting the Boltzmann
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equations in terms of the modes of f and g, we obtain

A A . . >0 . .
Ocfr + 9 (Vk+1+ Vig—1) = (Pk; - 1) Je + Z Ak,qquk—q + Bi,q9q9k—q (2.8a)
qg=—00
oGk + 5 (V Fo1 + Ve 1) = (Pk: -1- 2&) G+ Y Crafodi—q (2.8b)
qg=—00

where P, = [ d0P,(0) exp(:kf), the complex gradient V = 9, + 1d,, and the coef-
ficients are Ay, = (J;', + J5)/2: Brg = (Ji, — Ji)/2 and Cry = Ay + Brp—q
with

Jl;t,q = /o (P’“I/;t,q - ISEQ)

1—(k—2 1)7 sin
P -2 11 C5) i 1k — 29 £ 1
4 2 otherwise
Lc (ﬁ(k 2q)
I, = (=T - if |k —2q| # 1

1 0therw1se

In the following, we will choose a Gaussian noise distribution P, = exp(—k?n?/2) for
all numerical applications and drop hats and tildes in order to lighten notations.

Similarly to the polar case, at the onset of order the polar field grows like a small
parameter £. Then the Hierarchies (2.8) impose the following ansatz

lp— 1| = |go| = e, |fxl = |gs| =" Yk >0, (2.9)

and we keep the propagative scaling 0; = V & ¢ for space and time derivatives. The
order €3 gives equations for p, go, fi, g1, fo and go. The last two modes are then
enslaved to the four remaining ones, yielding

Op = —RV'q1), (2.10a)
dgo = —2ago—R(V'f1), (2.10b)
Ocfi = (mlp) =&l =dlgul*) fr + TASL + (vg0] — Bfig1)

—%Vgo +mfiVar +m26V i +n3V* (fig) , (2.10c)
gy = (ol = 7loil’ — wlfil?) g1 + AMAg1 + (k[go] — xg7 f1) f1

1 * * * *
—5 VP +o1iVar + 02 fiVfi + 03V [T 404V}, (2.10d)

where the Laplacian A = VV* and all coefficients, expressed as functions of the
microscopic parameters pg, a and the moments of P, are listed in Table 2.1, while
their dependence on local density and gp has been made explicit. Equations (2.10)
can be seen as two coupled Toner-Tu equations (1.3) (or (1.13) for the same equations
in complex notations). Note, however, that here density is not advected by the order
field fq, but by g1, in strong contrast to the classic polar case.
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f1 equation

g1 equation

pilp] =P —1+1(2+m)P—4)pop

8Py (15P1—2)p2
£= n(157?(1432)+5%0p0) (>0)

mlpl =P —1—2a— 2 (4—3P1) pop (< 0)

8(5P1 —4)pg
m(157(1—P2)+56p0)

T =

5= 8(3P1—2)(1+3P2)p3 B 8P (143P2)p2
= 3rGr(1—P212a) H4(3+P2)p0) W= rBr(—P212a)+4(3+P2)po)
_ 3 _ 157
I'= si=pra)raserom (> 0) A = T05r(1- By 75600 > 0)
2 2
Y[90] = 157 (2 = 15P1)pogo k[go] = £ P1pogo
= 8(15P1—2)p2 _ 24Py(5P1—4)p2
— 3n(15w(1—P2)+56p0) — w(157(1—P2)+56p0)
_ __(5PA—2)po o1 = —3(B6P1i=4)po
" = T5x(1—P3)+56p0 1 = T5x(1—P2)+56p0
_ (3P1—2)po oo — 3P1po
2 = 37(0—P,+2a)+4(3+P2)po 2 = 37(1—Pat2a)+4(3+P2)po
_ 2(3P2+1)po __ 30Pwypo
13 = 3a(1—P+2a)+4(3+P2)po 93 = ~157(1-P2)+56p0
o4 = 10p0

" 157 (1—P2)+56p0

TABLE 2.1 — Coefficients of the hydrodynamic equations (2.10) for the Vicsek-shake
model in the low reversale rate limit.

2.3.2 Derivation of hydrodynamic equations in the large reversal
rate limit

In this section we consider that the timescale associated to velocity reversal is smaller
than any other timescale of the problem. In this limit the microscopic dynamics is
essentially diffusive, as for active nematics. Therefore g is a fast mode by construction
and we can write a Boltzmann equation for f only:

0uf = DoAS + Diusdadsf + alf] + L ol 1 (211)

where summation of repeated indices is assumed and the self-diffusion and collisional
integrals have been defined in (2.4). Contrary to Equation (2.3), the free transport
term in (2.11) is not trivial and needs to be derived. On the scales resolved by the
Boltzmann equation, a given particle will move with a displacement vgAt along or
against its orientation with equal probabilities such that we can write [90]

FF 0,6+ At) = = [f (7 — voAté(0),0,t) + f (7 + voAté(6),0,1)] . (2.12)

N | =

Expanding the r.h.s. to second order in vy At, then separating it into isotropic (~ dap)
and anisotropic (~ gag = €n€g — 0ap/2) parts gives the free transport term in (2.11)
2
with D, = !
equation using

and D1 = 2Dg. As usual, we de-dimentionalize the Boltzmann

t—= A", 7= 2D\ K* = 2rquoK* | f— pof., (2.13)



2.3. Hydrodynamic description of the Vicsek-shake model 27

palpl = PL =14 L ((2+m) P —4) pop | palp) = Po — 1 — $pop (< 0)

¢ = 2(2—15P1)pg [ — _ 8P(F15(2+m)Py)pf
- 157 — 225m(w(1—-P3)+2(2+P3)po)
O = 4220 = _ 2P0
™ = 15(71'(1—P3)+2(2+P3)p0)

TABLE 2.2 — Coeflicients of the hydrodynamic equations (2.15) for the Vicsek-shake
model in the large reversal rate limit.

so that the only two parameters of the problem are the noise variance 7% and average
(rescaled) density po.
The hierarchy for the angular Fourier modes of f then reads

Oufe = gDt 1 (V7 fira 4 V2 ia) + (Pe— 1) fit Y Agfuficq, (214

q=—00

with the Ay, 4 coefficients defined in the preceding section. From the symmetry of the
interaction, the scaling ansatz for the & > 0 modes is still given by (2.9). However,
because the diffusive dynamics considered here, space and time are not expected to
scale the same way and we choose 9; =~ V? ~ ¢2. The continuity equation

1 1 <2
Op = S0p+ 3R (v f2> : (2.15a)

then imposes that density variations |p—1| scale like £2. It also suggests that the order
of the truncation should be at least %, otherwise the density would be decoupled from
the order. From this analysis, we identify fo as a relevant field and obtain equations
for p, f1, f2, and f3. The later is finally enslaved to the other three fields in order to
obtain

ofi = mllfi+Chifat A+ (VO (2.15b)
ofo = (ualp] —TIA12) o+ Q2 + %Afg 4 %v% SRV, (2150)

where the coefficients expressions as functions of pg and the moments of P, are listed
in Table 2.2.

2.3.3 Connexion between finite and infinite velocity reversal rate
limits
In this section, we present how to pass from the finite to the infinite velocity reversal
rate limits. Indeed, in the limit a — oo, we must recover (2.11) from the Boltzmann
equation (2.3). Let us consider these equations expressed in Fourier space. When a
is sent to infinity, the g; modes in (2.8) acquire a diverging damping term (~ —2a)
and can thus be enslaved to the fi fields. These ones, previously advected by the g
modes, get an effective diffusion coefficient scaling like v3a~!. To keep it finite, we
therefore need to impose that vg ~ a when a — oo. After enslaving the g modes and
keeping terms up to O(v3a~!), the hierarchy (2.3) is formally the same as (2.14) with

Do =8 and Dy = 2D,
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Therefore, the two hierarchies can be studied from (2.3) setting, for instance,
v9 = v14 a and varying the value of the reversal rate. Unfortunately, this is not
true at the hydrodynamic level because we have considered two different truncation
orders. In the following section, we will thus study the two sets of equations (2.10)
and (2.15).

2.3.4 Homogeneous solutions, linear stability analysis

The linear coefficients vq[p] and us[p] of, respectively, g1 and fo are always negative.
Moreover p1[p] can change sign, so that in both cases the transition to polar oder is
given, as expected, by

1
,u1:P1—1+;((2+W)P1—4)p0:0, (2.16)

that defines a line in the (pg,7) plane (see Figure 2.3). Expanding P ~ 1 — P{n?!,
this mean field transition line goes to the origin as n ~ /(7 — 2)po/(7P]) ~ \/po.
Furthermore, since p1 does not depend on a, the location of the transition is insensitive
to the reversal rate, in agreement with the microscopic model of Section 2.2. When
w1 < 0 the disordered solution

go=fi=g1=0 (a<o0)
p=1; ) (2.17)
fi=fa=0 (a— o)

is linearly stable, and becomes unstable when p; > 0. It is then replaced by the
homogeneous ordered solution?

go=g1=0; fi=,/ (a<o0)
p=1; . (2.18)
h=\/ctin: fo=-1 (a—00)

Linearizing the hydrodynamic equations (2.10) and (2.15) around the solutions (2.18),
we can study their stability numerically by solving the corresponding eigenvalue prob-
lem. For low values of a, the homogeneous ordered solution is unstable to perturba-
tions transversal to the order deep in the ordered phase (see Figure 2.3(a)). In the
limit of infinite reversal, Figure 2.3(b) shows that a longitudinal instability is present
at low noises. The discrepancy between the two cases is probably due to the fact
that the equations are obtained at different orders of €, which is known to affect the
stability of the homogeneous ordered solutions far from the transition [80].

This is a strong indication that both of these instabilities are spurious, which
is confirmed by an analysis at the kinetic level, i.e. truncating the Fourier hierar-
chies (2.8) and (2.14) at a given (large) order eN*! by setting all the modes with
an index k > N to 0. The homogeneous ordered solutions are then computed nu-
merically, but the global procedure remains the same and is detailed in Section 3.2.
For both finite and infinite velocity reversal rates, considering N < 10 is enough to
suppress any spurious instability. The polar order is then stable everywhere below the
transition line.

This result can be understood from the analytic structure of the hydrodynamic
equations. Contrary to the order classes, here the density is not directly advected by

'There is no chirality in the system, so P, has to be symmetric w.r.t. n — —.
?We can assume that the order is along the z axis without loss of generality.
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FIGURE 2.3 — (a): Phase diagram determined from Equations (2.10) in the finite
reversal limit. The dashed lines mark the upper limit of existence of an instability
of the homogeneous solution, transversal to it, for reversal values, from left to right,
a=5-1073,1072,2.5-1072,5-1072, and 10~ !. (b): Phase diagram determined
from Equations (2.15) in the infinite reversal limit. The homogeneous polar order
is linearly unstable to longitudinal perturbations below the red dashed line. In (a)
and (b) the thick black line represents the mean field transition given by py = 0.

the ordering field, which breaks the feedback loop responsible for the generic insta-
bility leading to the phase separation scenario. Therefore, we have a single transition
line separating polar order from the disordered phase. Moreover, the order f; either
diffuses or is advected by the auxiliary field g;, thus the mechanism proven by Toner
and Tu to generate true long-range order is absent [72, 73]. With fluctuations, polar
order is only quasi-long-range, as in equilibrium. Consequently, our problem possesses
many of the hallmarks of the XY model. In the next section we investigate whether
this extends to the nature of the transition, ¢.e. whether it belongs to the celebrated
Berezinskii-Kosterlitz-Thouless (BKT) universality class.

2.4 Characterization of the transition

2.4.1 The Berezinskii-Kosterlitz-Thouless universality class

The BKT transition was firstly described in the context of the two dimensional XY
model [146-148|. The low-temperature ordered phase of this model is characterized by
absence of global magnetization due to spin waves |71], but algebraic correlations with
continuously varying exponents. Above the critical temperature TgkT, topological
excitations of the order, or vortices, become energetically favorable. As a consequence,
pairs of vortices unbind and long-ranged correlations are destroyed. The BKT theory
therefore describes an unusual transition with no symmetry breaking occuring at
TskT, but rather a modification of the behavior of correlations in the system. This
transition is not restricted to the only XY model but is general for any system that
can be mapped to a Coulomb gas of particles with logarithmic interactions such as
superfluids, superconductors, or dislocations in two dimensional crystals [149].

Approaching Tk from above, a particularity of the BKT transition is the expo-
nential divergence of the correlation length

5 ~ e(T—TBKT)7V , (2.19)
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where the exponent v = % is universal. Another universal feature of the BKT class is

the value of the decay exponent of the correlation functions at the critical point, from
which we can deduce the corresponding scaling of the magnetization with system size

(M) ~ L7r{Tosr) (2.20)

with k(TBkT) = % = /v using the classic notations for phase transitions. The hyper-
scaling relation v 4 28 = dv with d = 2 then gives the divergence of the susceptibility
at the transition

x = L2 ((M?) — (M)*) ~ L7, (2.21)

with v/v = %. The BKT universality class can therefore be identified measuring the
functional form of the divergence of the correlation length £, in addition to the two
independent exponents v and /v as it was done at equilibrium [150-152].

2.4.2 Numerical study of the transition

In order to find out the nature of the transition to polar quasi-long-range order in
the Vicsek-shake class, we have carried out molecular dynamics simulations of the
microscopic model (2.2) for densities ranging from % to 2. With system sizes up to
10242, the largest runs represent a numerical effort of more than a million particles,
collecting statistics on typically 108 timesteps in order to get satisfactory averaging.
Such large scales cannot be reached with the usual single-core, even optimized, codes
in a reasonable amount of time. Therefore a parallelized code, based on the Message
Passing Interface library [153] and whose performances scale roughly as the inverse
of the number of processors, was designed and run on a supercomputer on which we
used of the order of 102 cores for the largest sizes.

Susceptibility

At finite size L and fixed density, decreasing the noise 7 from the disordered phase the
susceptibility x exhibits a maximum ymax(L) located at 1, (L). Assuming BKT scaling
and increasing L, xmax diverges and from (2.19), 7, converges to the asymptotic
threshold 7, like

~

Xmax(L) ~ Lv, (2.22a)
(L) —7me ~ (log(L) —c) v, (2.22b)

with ¢ a nonuniversal constant, v = % and v/v = %. We have measured the depen-

dence of the magnetization (M) and x on 7 for various densities and system sizes.
However, the susceptibility curves being numerically costly, we focused most of our
numerical effort on a single value of the density, thus, otherwise stated pg = 1 in
what follows®. As shown in Figure 2.4(a), for both py = i and 1 the susceptibility
peak maximum ymax does diverge algebraically with an exponent /v = 1.755(6)

in full agreement with the BKT /Ising value g. Moreover, scaling the corresponding
curves with L™4 allows us to identify the (density-dependent) characteristic system
size L*(po) below which the scaling regime is not attained. We find L* (%) 2 200 and
L* (1) = 100, the points for which L < L* are thus not used in the following analy-
sis. The peak location 7, at density 1 is reasonably well fitted by Equation (2.22b)

3We recall that o and vy have been fixed to % in Section 2.2, the results presented here are
insensitive to their values as soon as they remain finite.
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with v = %, yielding an estimate of the asymptotic threshold 7. = 0.247(2) (see
Figure 2.4(b)).
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FIGURE 2.4 — (a): Susceptibility peak maximum ymax Vvs. system size L. The

dashed line has slope g. Inset: same data scaled with L~%. Here and in (b,c)

errorbars if not present, are smaller than symbols and the vertical dashed line
delimits system sizes below which the scaling regime is not reached (these points
are not used for the fits in (b), (c¢) and (d)). (b): Position of Ymax vs. L%
The different lines are fits using (2.22b) (BKT-like scaling) for several values of
v, and (2.26b) (Algebraic scaling). (c): same as (b) but for the divergence of the
correlation length with noise. (d): asymptotic threshold 7. obtained from fits of
¢ and 7, with BKT-like scaling (2.24) and (2.22b) varying the exponent v. The
dashed lines represent the confidence intervals on 7. given by the fits.

Correlation length

The correlation length ¢ was defined from the decay of the magnetization (M) with
system size L. As explained in Section 2.2, in the disordered phase where £ is finite,
(M) vs. L undergoes a crossover between two power laws (see Figure 2.2(d)): at small
L we observe a slow algebraic decay like in the quasi-ordered-phase, but at large L
(M) ~ L7, Therefore, as L increases, L*(M) with 0 < a < 1 shows a maximum
(see Figure 2.5(a)) whose position is directly related to £. Acceptable choices for «
(that prevent finite size effects) are from 0.4 to 0.6 and we verified that they all lead
to similar results. Data presented here corresponds to a = 0.55.

To check the validity of this measure, we remark that above the threshold, the
decay exponent of the magnetization k is fixed to its value at the transition: %.
Therefore, (M) depends on the noise only through £ and we can write

(M)(L,n) = L™"0)T <£(Ln)> : (2.23)



32 Chapter 2. Active matter class with 2" order transition to polar glro

(b)
s ' 0.300 ——
<0 vy, 0.295 —«—
SN 0.290
1 0.287
0.285
0.282
0.280

3 0277 ——

N 0.275
| - 0.272

. 0.270
L \L(§ 0.265

=1 0.1 ‘
10° 10°

107 10° 10’

FIGURE 2.5 — (a): The magnetization curves scaled by L® vs. system size, with
a = 0.55 for different values of 1. (b): Collapse of the magnetization curves from
(2.23) and using correlation lengths ¢ shown in Figure 2.4(c) with s(n.) = 5. The
black (respectively red) dashed line marks the slope —é (respectively —1)

with I' an unspecified nonuniversal function. Consequently, &(n)*) (M) as function
of L/¢(n) will collapse on a universal curve independent of the noise amplitude 7.
This is indeed what is observed in Figure 2.5(b) using k. = é.

The divergence of ¢ with decreasing 7 is well fitted by

g~ el ™ (2.24)

with v = 1 (see Figure 2.4(c)). This fit yields and estimate 7, = 0.244(2) (barely)
compatible with that obtained from the susceptibility. However, for 0.244 < n <
0.247, (M) decreases with an exponent £ =~ 0.100(5) incompatible with the BKT
value § (see Figure 2.2(c)). Repeating the procedure for py = 3 and 2 we reach the

same conclusion and find different values of k(7.), respectively 0.089(6) and 0.117(2).

Algebraic scaling

Allowing v to vary in a range [0.1;2], we find fits of the variations of 7, and { as
convincing as for the BK'T value % Interestingly, as shown in Figure 2.4(d) the two
independent estimates of 1. become closer to each other as v — 0. In this limit,
considering A and b real

A b(n—mne)™" _ A be— log(n—nc) ~ A b(1-vlog(n—nc)) — A b —bu. 29
‘ ‘ ~ A () (2.25)
This therefore suggests an algebraic divergence for £ at threshold. We consequently
redefine the exponent v as that of a standard second-order phase transition:

£~ (=)™, (2.26a)
(L) = e~ L7 . (2.26b)

Fitting our data accordingly, we obtain better fits for both £ and 7, and, importantly,
fully-compatible threshold values at which, moreover, x(n.) ~ %. Imposing a common
value for the asymptotic threshold, both datasets give the same estimate of v, and we
finally conclude that n. = 0.257(1) with v = 2.4(1).
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FIGURE 2.6 — (a) and (b): Collapses of the susceptibility and magnetization curves
at density pp = 1. (c¢): Collapses of the magnetization curves with various system

size (labeled by the color code in the caption) for densities, from top to bottom, %6,
%, %, %, 1 and 2. The curves have been shifted vertically for clarity and normalized

by the critical noise 7. horizontally.

From these values and assuming the following scaling forms of the magnetization
and susceptibility

(M) = LM ((n—m)L?) , (2.27a)

x = Lvx ((n - nc)L%) ; (2.27b)

with v/v = £ and B/v = 1, panels (a) and (b) of Figure 2.6 show that both datasets
collapse, confirming the algebraic scaling (2.26). The hyperscaling relation y+25 = dv
with d = 2 is thus satisfied. Using data obtained at various global densities, we find the
same values for /v and /v (see Figures 2.4(a) and 2.6(c)), although our estimate of
v shows some variations due to its sensitivity to the estimated value of the threshold
Ne. As shown in Figure 2.2(a), the asymptotic thresholds thus obtained behave as
Ne ~ pg with h ~ 0.66, in clear departure from the mean field value %

Our numerical analysis leads us to conclude that the transition to polar order
exhibited by our system is not of the BKT-type. As mentioned in Section 2.4.1, this
transition is closely related to the (effective) Coulomb interactions between topolog-
ical singularities of the ordering field that unbind and proliferate above the critical
temperature. The following section is therefore dedicated to the study of such objects
in our system. We show that, due to coupling between density and order, they exhibit
genuine nonequilibrium behavior, which supports the above conclusion.
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2.5 Defects dynamics in dry active matter

2.5.1 Annihilation of a pair of defects

Detecting defects in simulations of our microscopic model is made very difficult, if not
impossible, by the presence of strong density fluctuations. Indeed, the very existence of
topologically constrained defects requires that order can be defined everywhere. Here,
the local order is hard to measure in sparse regions, and even impossible to define if
the local density is below the ordering threshold p§(n), the transitional density found
by varying po keeping 7 fixed.

One can nevertheless study the fate of defects from carefully prepared initial con-
figurations containing a +1 pair?. Running the model (2.2) deep in the ordered phase,
we observe that the positive defect expels particles from its core and is quickly trans-
formed into a sparse, almost void circular region as shown in Figure 2.7. Meanwhile,

“We consider integer charged defects because of the polar symmetry of the interaction.
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FIGURE 2.7 — Annihilation of an initially prepared +1 pair of defects deep in the
ordered phase. We show snapshots of the density and polarity orientation fields
from our microscopic model at different times (pg = 4, n = 0.2, L? = 10242).
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FIGURE 2.8 — (a): Annihilation of an initially prepared £1 pair of defects deep
in the ordered phase. Snapshot of the density and polarity orientation fields from
simulations of the hydrodynamic equations (2.10) (pg = 3, n = 0.4, a = 1, L? =
256, t = 2500, dz = %, dt = 1072). (b): Time-rescaled radial density profiles
around the 41 defect in microscopic simulations (same parameters as in Figure 2.7).
The dashed black line indicates the transitional density p§(n) corresponding to
1 = 0.2. The continuous red line is a fit of the ¢ = 2000 profile with (2.39a).

the negative defect reorganizes the flow in a cross-like shape over length scales com-
parable to the system size. Since the density is high in its core, its position is more
sensitive to fluctuations than the center of the dilute region created by the positive
defect, that is almost motionless. After some time, this void domain has become suf-
ficiently large so that it reaches the negative defect and the system eventually repairs
itself. This behavior is also reproduced in simulations of the deterministic hydrody-
namic equations derived in both finite (2.10) and infinite (2.15) reversal rate limits as
shown in Figure 2.8(a).

Time averaging the radial density profiles around the positive defects in the molec-
ular dynamics simulations, we show that the diameter of the circular, near-empty, re-
gion grows like v/ (see Figure 2.8(b)). Moreover, the averaged density in the vicinity
of the center is found to be smaller than the ordering threshold pf(n), showing that the
core of the positive defect is disordered. Considering larger and larger system sizes,
we did not find any saturation of the diameter of this disordered region, suggesting
that it will not stop growing until it meets an oppositely charged defect. This simple
simulation has thus revealed that, contrary to equilibrium, defects are not topologi-
cally constrained objects in the context of dry active matter. Closer to the transition,
we obviously expect fluctuations to play a major role, but this conclusion should still
hold. As we will show in the next section, this phenomenology is intrinsically related
to the coupling between density and order. It thus occurs to all the dry active matter
classes presented in Sections 1.3.1 and 2.1.1.

2.5.2 Derivation of the positive defect dynamics

In this section we derive the dynamic of the +1 charged defect described previously.
In order to get analytical results, we consider our hydrodynamic equations retaining
density and polar order only:

1 2
Op = SAp—osR (v* ff) , (2.28a)

wfi = (mle) —&lAP) AL+ %Afl + ivsz : (2.28D)

where all the coefficients are defined in Table 2.1. These equations can be obtained
from (2.10) enslaving gop and g1, but keeping the nonequilibrium advection term in
the continuity equation, that is of order %, in order to avoid trivial results. We
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FIGURE 2.9 — Sketches of defects of the polar field. Left and center panels show
respectively an anti-clockwise vortex and a sink, defined by a positive charge and
a phase shift §p = 7 and 7. Right panel represents a saddle that is negatively
charged and for which 6y = .

place ourselves in the ordered phase, i.e. where p; > 0, and recall that from our
computation £ > 0 and o3 < 0.

From the symmetries of the problem, we consider polar coordinates (r,¢) and
a frame centered on the defect position. The polar field can then be written as
filryp,t) =U(r,p,t) exp(16(r, p,t)) and we give the expression of the spatial deriva-
tive operators in these coordinates

= O+ a + 28@, (2.29a)
1 2 1
2 21 2 2 2
VE o= e ((% -0, - QBW <aw - T@,)) : (2.29¢)

Replacing this expression for the polar field in (2.28), equations for U and 6 read

U = (ulp) - §U2)U+ (AU — U|VO) + (‘“’Vfo>7 (2.30a)
* 1 o —1 *
80 = A0+5§R(VUV e)+wd(e 9V2f1) . (2.30b)

These equations are essentially the ones derived from a Ginzburg-Landau theory at
equilibrium [154] plus the anisotropic diffusion term.

We consider a n = +1 charged defect configuration defined by 6 = ne + 6o,
where 6 is a global phase shift, defined in Figure 2.9. We note that, because of the
anisotropic diffusion terms in Equations (2.30), these ones depend explicitly on 6.
Therefore, two defects with same charge but different global phase, vortices and sink
or sources for instance, are not equivalent, in strong contrast to equilibrium. Replacing
this expression in (2.30b), we get

n cos(2(1—n)p—26y) (o n—1
0 == —ﬁawU + 27‘ 87“30 + r 84)0 U
sin(2(1 —n)e —26p) (o  2n—1 1—2n 9
- 1 Oyt =0t 5 Qaw (2.31)

where the two last terms of the r.h.s. are brought by anisotropic diffusion. Because
of the cosine and sine functions dependencies, the positive defect is easier to treat. In
the following we will thus set n = +1 and leave the other case for future work.
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We are interested in solutions of the form 6y = £ with k € Z. From (2.31), the
corresponding polar field norm U must then satisfy

<(_1)ka - ) d,U =0. (2.32)

As we are looking for nontrivial solutions and U cannot diverge in both r = 0 and
r — 00, the only way to satisfy this condition is to impose that it is isotropic: 9,U = 0.
Then the density must have the same symmetry and Equations (2.28) simplify as

op = 5 <83r + Té%«) pt (=1 loy <83r + i&«) 02, (2.334)

k
U = (wlp] —€U*) U + % (1 - ( 21) ) <a§r + %ar — :2> U. (2.33b)
We note that the sign of the advection term in the density equation depends on k,
in fact numerical simulations of the hydrodynamic equations (2.10) and (2.15) show
that the positive defect configurations with even k are always unstable and converge
to the odd k solutions. In the following we will thus consider &£ odd only.

At equilibrium, the equation for U is the same as (2.33b) except for the density de-
pendence of the linear coefficient. With p constant, this equation admits a stationary
solution [154], this is however no more true outside equilibrium. Because its dynamics
is not conserved, U evolves on smaller timescales than p, we can thus enslave it to the
density:

02 = ’”g[p] = ag+ p, (2.34)

with ag < 0 and a1 > 0. The equation for the density then reads
_ 1 o _ 1/1 _
Op = 3 +ayo3 ) 0%.p+ 13 + 3aq03 | Orp. (2.35)

From the analysis of Section 2.5.1, we know that the solutions to this equation are
written in the form p(r,t) = p(r?/t) = p(z), which yields an equation for the density
profile

x (; + am) 7(x) + K; + 2a103> + Z] Flz) =0, (2.36)

where p/ and p” are respectively the first and second derivatives of p w.r.t. . The
solutions of this equation are given by

~ 20&10‘3 i
=Co+CT |- , 2.37
plz) =Co+ G [ 1+ 20105 2(1 +2a103)] (2:37)
where I'[s, z] is the incomplete Gamma function: I'[s,z] = [ o051 exp(—t)dt and

Cy and C two real constants. For s > 0, the incomplete Gamma function has the
following behaviors in x = 0 and x* — +o0:

C[s,z] = TIs,0] + Ty O(z*™) when z—0, (2.38a)
s
[[s,z] = 27 'e ™ (1+0(z™")) when z— +oo. (2.38b)

We thus identify Cp as the average density 1 that is attained when r? > t. Cj is
computed from Equation (2.34): the solution can be continuous only if the polar field



2nd

38 Chapter 2. Active matter class with order transition to polar qlro

cancels at the center of the defect, hence we have p(0) = —ag/a1 = p. the mean field
transitional density. The positive defect solution finally reads

T |:_ 200103 ( T ):|
_ 1+2a1037 2(142a10
plx) = 1—(1-pe) ! 2‘;10_3 L , (2.39a)
r |:_ 1+2a103? :|
T [_ 200103 ( x ):|
~ 142 ’ 2(142
U%z) = on(1—po)|1— “1‘;“;103 o (2.39b)
I [_ 1+2a103? 0:|

In the range of microscopic parameters we consider, 0 < —aj03 < 1 so that the
solution (2.39) is always well defined. As pointed out in microscopic simulations, p
decreases in the core of the defect until it reaches the (mean-field) transitional density.
With fluctuations, we thus expect the region around the center of the positive defect
to be disordered, such that it can no more be considered as a singularity of the polar
order. Figure 2.8(b) shows that the density profiles are indeed well fitted by the
incomplete Gamma function.

Following this computation, we note that a derivation of the interaction force
between defects using usual equilibrium techniques [154, 155] will suffer severe diffi-
culties. Firstly, the negative defect is not isotropic, the equation describing the polar
field in its vicinity is thus no more the same as the one for the positive defect. More-
over, we were not able to find any analytical solution for this case, which is more
complicated. Secondly, we have shown the study of defects in the active matter con-
text requires an additional field that is density. This one indeed triggers nontrivial
and significant effects. Thirdly, because of the interplay between polar and density
fields, the defects are no more singularities of the order but dynamical objects with a
spatial extension, which breaks down the equilibrium picture.

2.6 Conclusion

In this Chapter, we have studied the collective behavior of active particles with veloc-
ity reversals that align ferromagnetically their polarities. Using kinetic and hydrody-
namic level descriptions derived from the microscopic model, we demonstrated that
the analytic structure of this problem is qualitatively different from that of the three
other classes of dry, dilute, aligning active matter. In particular, the generic linear
instability at the root of the liquid-gas phase separation scenario is absent, and for
the first time is prevented “structurally”.

This new class is therefore characterized by a continuous transition to a phase
with quasi-long-range polar order and anomalous number fluctuations. Like in the
XY model, scaling exponents vary continuously in this phase. However, an extensive
numerical study of the transition led to conclude that it shows algebraic, and not
exponential, divergences of correlations, ruling out the BK'T hypothesis. We computed
the associated exponents, §/v and /v that take the BKT /Ising values % and g, and
v = 2.4(1). The latter does not seem to correspond to any known class. To our
knowledge, this model thus defines a new nonequilibrium critical point.

Finally, this result was strengthened by a study of the defects dynamics at both
microscopic and hydrodynamic levels. Both approaches agree on the fact that, because
of the coupling between density and order, defects cannot be considered as point-like
objects, which deprives them from their usual role. This phenomenology should be
generic in the context of dry active matter, and be present in the other classes.
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Chapter 3

Robustness of kinetic theories for
dry aligning active matter

3.1 Limits of the hydrodynamic description of active mat-
ter models

The different approaches for the derivation of hydrodynamic equations from simple
models of active matter have been reviewed in Section 1.4. Most of them are based
on a kinetic equation for the single particle distribution written in the dilute [80],
mean field [123-125], or intermediate [133| regime, but always assuming molecular
chaos. Well-behaved hydrodynamic equations, expressed in terms of the slow modes
of the dynamics, can then be derived from a controlled truncation and closure proce-
dure, as detailed in Section 1.4.1. Most of the time, they show almost all the terms
allowed, and are formally the same as equations written heuristically on symmetry
arguments. However, the main interest of such approaches is that they keep track of
the microscopic details in the (typically many) coefficients of the equations, which are
all expressed as functions of the (typically few) particle-level parameters and physical
fields. The phase space of the problem is thus considerably reduced.

While it plays the role of an intermediate step in the computation, one would
expect that more information is present at the kinetic than at the hydrodynamic levels,
especially far from the transition. Indeed, although in the best cases they are able
to reproduce the phase diagram of the microscopic models, hydrodynamic equations
rely on a perturbative scheme, and are thus, in principle, a correct description only
at the onset of order. Deep in the ordered phase, they can therefore show spurious
instabilities [80, 89| (see Figures 1.4(a),1.5(b) and 2.3), or non monotonicity of the
order (see Figure 1.5(a)). Moreover, we know that in the polar class the band solution
selection is done at the hydrodynamic level only in presence of stochastic terms [67]
(see Section 1.4.1), it is not obvious whether it should occur or not in the deterministic
kinetic equations. Despite several works at the kinetic level [133, 156|, this point is
still unexplored.

This Chapter is thus dedicated to the study of the Boltzmann and Smoluchowski
equations introduced in Section 1.4. We determine their phase diagram from the linear
stability analysis of their homogeneous solutions, and show that it is qualitatively
different from the one of the Vicsek model presented in Section 1.3.1. Indeed, the
homogeneous ordered solution computed at the kinetic level is found to be unstable
in the low noise/large density regime for Boltzmann, and for any parameter in the
Smoluchowski case. The correct picture with the coexistence region confined close to
the transition is recovered in the Boltzmann, but not Smoluchowski, case considering
equations with additional spatial diffusion terms. We further discuss how such terms
can be derived from a discrete time dynamics. Numerical simulations of the Boltzmann
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equation reveal that the instability of the order is at the origin of the coexistence
phase close to the transition. However, deeper in the ordered phase it leads to a polar
liquid in which small amplitude waves propagate. A detailed study of the propagating
solutions of the Boltzmann equation leads to conclude that, as at the deterministic
hydrodynamic level, there is no band selection. Finally, the Boltzmann equations
for the other classes are presented and the corresponding linear phase diagrams are
computed.

3.2 The Boltzmann equation

In this section we study the homogeneous solutions and the linear phase diagram of
the Boltzmann equation introduced in Chapter 1. We recall its expression for the
modes of the single-particle distribution expressed in angular Fourier space

O fr + % (Vfer1 + Vi) = (Pe =D fo+ D Jeqfafi—q (3.1)

g=—o00

where we have considered its nondimensional form. We recall the notations that will
be used throughout this Chapter: the Py are the modes of the noise distribution whose
variance is ? (we choose it Gaussian for numerical evaluations: Pj, = exp(—k?n?/2)),
the complex gradient V = 0, 410, and the collisional integral coefficients are defined
by Jiq = po (Piliq — lo,q) with po the nondimensional density and

(e — sin( Ex
{il (k—29)(=1)7sin( ) if |k —2q| #1

1—(k—2q)*

% otherwise

Ly = (3.2)

The problem therefore has two independent control parameters: pg and 7.

Homogeneous solutions

For any density and noise values, the Hierarchy (3.1) admits a space-independent fixed
point F = {fk}k>0, satisfying

(Pe—=D) e+ Y Jrgfafig=0 VE>0 (3.3)

g=—o00

and fo = p = 1 from the density conservation. Because of the rotational invariance
of the problem, we choose the global polar order f; to be real, thus and since there is
no explicit chirality!, the modes of the corresponding solution are all real.

The nature of F is determined by the sign of the linear coefficient of the polar
field equation: pu; = P — 1+ % (P1 — %) po. When p; < 0, the only solution is
disordered: fr = 0 Vk > 0. On the contrary, if p; is positive f; starts to grow
as well as the other fields thanks to the nonlinear couplings, finally all saturate to
reach the homogeneous ordered solution f; # 0 Vk > 0. F can be numerically
approximated truncating (3.1) at a given order K, i.e. setting all the modes with
index k£ > K to 0. Hydrodynamic equations derived from the Boltzmann-Ginzburg-
Landau approach (1.13) (see Section 1.4.1) are thus obtained with K = 1, but using
a more sophisticated closure scheme that consists in enslaving the second mode to

'Otherwise the Jy 4 coefficients could be complex.
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FIGURE 3.1 — Homogeneous solution of the Boltzmann equation (3.1) at fixed
po = 0.5 varying the noise nn at K = 100. (a): The modes as function of . The
dashed lines correspond, from right to left, to &k = 5, 6, 7, 8, 9, 10, 12, 15, 20,
30, 60, 100. The dashed-dotted black line shows the homogeneous solution of the
hydrodynamic equations (1.13) at same parameters. (b): The modes as function of
k for several noise values (transition at 7. = 0.527) showing an exponential decay.
Inset: Zoom at smaller k for the same curves divided by fF. Their collapse in the
vicinity of the mean field transition indicates the scaling behavior (3.4).

the first one. In the following we will refer to truncations of the Hierarchy (3.1) with
K > 1 without closure? as kinetic level .

The homogeneous solution of (3.3) is shown in Figure 3.1(a) for K = 100 at
fixed density pp = 0.5, for which the transition occurs at n, ~ 0.527. We find a
good agreement with the polar field solution of the hydrodynamic equations (1.13)
for 0.48 < n < 1., indicating that the scaling of the modes used for their derivation

fem ¥, (3.4)

should be valid in this region. Conversely, while the large £ modes are negligible close
to the ordering transition, they are all O(1) when 1 becomes small, leading to large
deviations between hydrodynamic and kinetic levels.

Figure 3.1(b) shows that the modes at fixed noise scale exponentially with k large
enough. The scaling hypothesis(3.4) implies that the modes f, = akff where oy is
independent of n. Plotting fi/ fF for various noise values we indeed find that the curves
collapse for low k and 0.48 < n < 7, in agreement with our preceding evaluation of
the region where the scaling holds.

Linear stability analysis

In order to compute the stability of the numerical solution F, we linearize the modes
as fr = fx + 0fr. The corresponding hierarchy for the perturbations reads

K

1. i
00 fut5 (V*0fis1 + Vofi1) = (Pe = 1) 6fxt D (Jog + Jnk—q) fr—qdfq, (3.5)
——K
Ilg—qISK

2We checked that for K large enough closure has no qualitative effect.
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FIGURE 3.2 — (a): Asymptotic phase diagram of the Boltzmann equation (3.1) in
the (po, n) plane. The colored surface marks points where the homogeneous ordered
solution is unstable, the color code indicates the direction of the most unstable
wave vector w.r.t. the order. (b): Evolution of the line marking the existence of
the instability of the homogeneous ordered solution with the truncation order K.
The inset shows the corresponding contours marking the upper limit of existence
of the spurious instability. In both (a) and (b) the continuous blue line labels the
mean field transition.

which can be written, defining the (K +1)-dimensional vector 5_} = (0p,0f1,...,0fK),
as

8f =T6f. (3.6)
The complex matrix is given by
1, 1
qu = (Pk — 1) 5kq — *v 5k+1q 5 (5k05q119 +Il—k‘6k—lq)
—k
+ (Jig + Jhp—q) frq + Z (To,—p + Jigetp) FrrpOpg? (3.7)
p=1

where d;; is the Kronecker delta, the indicator function Z; returns 1 if 7 < 0 and 0 other-
wise, and ¥ fy = f/ is the complex conjugate operator. F is stable if and only if all the
real parts of the eigenvalues of this matrix are negative or zero®. We computed them
numerically in the spatial Fourier space, i.e. for 5g (q,t) = [dr 5 f(7,t) exp(—2imq-T),
and the resulting phase diagram is shown in Figure 3.2.

As expected, the disordered solution for p; < 0 is always stable. Considering
u1 > 0, for truncation orders K < 10 the behavior of the hydrodynamic equations
is recovered: the homogeneous ordered solution is unstable to longitudinal pertur-
bations close to the line p; = 0 and the low noise phase exhibits another region of
instability, already mentioned in Section 1.4.1. Increasing K this second instability
becomes confined to lower noises so that it almost disappears at K = 100 (see in-
set of Figure 3.2(b)). We therefore conclude that it is an artifact of the truncation
procedure.

However, for K > 10 the longitudinal instability domain, initially next to the
transition, invades the whole low noise region, leaving asymptotically a pocket of
stability limited to intermediate n and pp 2 1 (see Figure 3.2(a)). Consequently, the

3Because of the symmetries of the problem, we expect a Goldstone mode associated to zero
eigenvalue, which corresponds to global rotations of the solution. Therefore its stability, in the sense
considered here, does not require that all eigenvalues of I' are strictly negative.
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Boltzmann equation (3.1) does not show any homogeneous ordered solution stable
at low densities, similarly to what was observed in Vicsek-style models with fore-aft
asymmetry [105]. This result in particular contradicts the numerical study of the
Boltmann equation carried out by Thiiroff et al. [156] where a more “classic” phase
diagram, with an instability restricted to the vicinity of the transition, was found. As
we will show in Section 3.4, this discrepancy is related to their numerical scheme that
is shown to suppress the low noise instability.

3.3 The Smoluchowski equation

We now study the mean field Smoluchowski equation introduced in Section 1.4.2,
whose expression for the angular Fourier modes reads

Oufit 5 (V it + Vi) = RS+ pck (fificr = fifin) - (38)

In this case the linear coefficient of the polar field is given by p. — 1 and the transition
to order occurs at p. = 1. Contrary to the Boltzmann case, for p. > 1 perturbations
of the disordered solution p = 1, f, = 0 Yk > 0 are not bounded so that the hier-
archy (3.8) truncated at any order K does not admit a homogeneous ordered fixed
point. We thus need to close it, to do so let us write the equation for the K + 1 mode

O fk+1+ %V*fK+2 +pe(K+ 1) ff frco = —(K+1)* fx i1 — %va +pe(K+1) fifx,

(3.9)
where, considering the scaling ansatz introduced in Section 1.4.1, terms on the r.h.s.
scale like e5+1 while the ones on the Lh.s. are of order greater than K + 2 and can be
discarded. fx 41 can then be slaved to f; and fx. Moreover, it appears only in the
equation of fx, which yields

2
Ohfk = —-K <K+ Kpjr : \f1!2> fre + peK frfx—1 — %va_l
1 A Pe K ry o 210
+m fK+2(K+1) [K+1f1 fx =V* (fifx)| , (3.10)

where we note that setting K = 1, we recover the deterministic hydrodynamic equa-
tion (1.17) for the polar field fi.

Homogeneous Equations (3.8) for £ < K and (3.10) together are well behaved
and admit an ordered solution F = {fk}ogkgK‘ Figure 3.3(a) shows that for p. 2 1
kinetic and hydrodynamic level solutions are in good agreement. On the contrary, for
larger p., f1 is monotonous at the kinetic level while its hydrodynamic counterpart
is not, leading to large deviations. We deduce that the scaling (3.4) is verified only
in the immediate vicinity of the transition, which is confirmed by the collapse of the
curves fi./fF occurring only for p. < 1.1.

Using the procedure presented in the previous section, we study the linear stability
of the solution F. It is found to converge with K is faster than for the Boltzmann
equation, probably because of the few nonlinearities at play, and we can safely consider
K =10. As at the hydrodynamic level, F is unstable for any p. > 1, but for K large
enough to longitudinal perturbations only, as shown in Figure 3.3(b). Contrary to
the Boltzmann case, we therefore conclude that the large p. instability seen at the
hydrodynamic level is not spurious.
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FIGURE 3.3 — (a): Polar order given by the homogeneous solution of the Smolu-
chowski equation (3.8) for K = 10. The dashed-dotted black line shows the homo-
geneous solution of the deterministic hydrodynamic equations (1.17). Inset: The
modes as function of k divided by fF for p. = 1, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5 show-
ing the scaling close to the transition. (b): Growth rate of the instability of the
homogeneous solution of Equation (3.8) for various K (K = 1 corresponding to
the hydrodynamic equations). When continuous, the lines indicate that the most
unstable wave vector is longitudinal to the order.

3.4 Introduction of spatial diffusion

3.4.1 Phase diagram with spatial diffusion

The phase diagram of Figure 3.2(a) is qualitatively different than the one determined
in [156] from numerical simulations of the Boltzmann equation. The algorithm used
in this work is based on first order in time finite volume methods. Such schemes
are popular in the hydrodynamic community because they support steep solutions,
such as the Vicsek polar waves present close to the ordering transition, and allow to
consider irregular meshes and various types of boundary conditions [157]. However,
these methods are known to introduce numerical diffusion, whose amplitude scales like
dTﬁ, where dz and T are respectively space and time resolutions. Correction terms of
next order in 7 can balance this effect, but were not considered in [156]. Moreover,
the values used there are dr = 5 and 7 < 1, we thus expect that the corresponding
simulations were subject to strong numerical diffusion.

In order to study the effect of spatial diffusion on the phase diagram of the Boltz-
mann equation (3.1), we compute its linear stability in the presence of an additional
Laplacian term: DA fy. Figure 3.4(a) shows that the instability on the low noise re-
gion disappears progressively increasing Dg. Finally, for Dy = 0.5 the phase diagram
corresponds to the one of the microscopic model with an instability confined close to
the transition line, as observed by Thiiroff et al.. The same analysis carried out for
the Smoluchowski equation (3.8) reveals that the large p. instability persists, even for
large Dy, but becomes transversal (see Figure 3.4(b)).

To summarize at this point, the Boltzmann equation proposed by Bertin et al.
exhibits an intriguing low noise instability of its homogeneous ordered solution. We
have furthermore shown that adding positional diffusion, the “usual” phase diagram of
the Vicsek model is recovered. Moreover, since spatial diffusion is nominally present
at the hydrodynamic level because of the truncation and closure procedure (see Sec-
tion 1.4.1, Equations (1.13)), the latter cannot capture the low noise instability of the
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FIGURE 3.4 — Linear stability of the Boltzmann (3.1) and Smoluchowski (3.8)
equations in presence of additional spatial diffusion (of the form DoAfy). (a): The
dashed lines delimit the instability region of the homogeneous ordered solution of
the Boltzmann equation for several values of Dy and K = 50. The mean field
transition is given by the continuous blue line. (b): Growth rate of the instability
of the homogeneous ordered solution of the Smoluchowski equation as function of
pe for, from top to bottom, Dy = 0, 0.01, 0.1, 1, 5 and K = 10. The instability is
directed along the order when lines are continuous.

order. On the contrary, the Smoluchowski equation does not have a stable homoge-
neous ordered solution for any parameter and additional diffusion. The Boltzmann
description is thus found to be more faithful to the microscopic models it aims to
describe, in the following we will therefore focus on this case.

The Vicsek model was first expressed in a discrete time form [68] (7 = 1) and most
of numerical studies are done in this framework. However, continuous descriptions
are usually derived in the limit 7 — 0 limit*. Because of this approximation, the
resulting continuous equations lack of spatial diffusion. In the next section, we show
how positional diffusion terms naturally arise in the finite 7 limit.

3.4.2 Derivation of spatial diffusion terms: the discrete time limit

We thus consider Vicsek-style point-like particles that, at every timestep 7, jump with
length vg7 in the direction given by their polarity. In a Boltzmann spirit, collisions
are treated separately from the free motion dynamics. We show that the resulting
equations, written at second order in 7, have new spatial diffusion terms that modify
substantially the phase diagram of the system at the kinetic level.

Free motion

Let us first write the evolution of the single-particle distribution function considering
a collisionless dynamics. The discrete time Vicsek algorithm (1.2) is divided into two
steps: agents first update their direction of motion, so with only noise kicks here, and
then their position with the new velocity. The master equation for the distribution
f4(7,0) thus reads

FET(E0) = /O " P60 — 0)fL(7 — 67(6),0') (3.11)

“Except for Thle’s approach from [133], where the kinetic equation is derived for finite timesteps,
but no discussion of the low noise regime is provided.
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where 67(0) = voTé(0), P; is the 7-dependent noise distribution and we have adopted
the superscript notation in order to emphasize that time is discrete. Naturally P;
converges to a Dirac distribution when 7 — 0. Since Equation (3.11) describes a
dynamics where angles are updated before positions, the careful reader will remark
that the two angles in the arguments of f! inside the integral are different. The other
scheme, which gives essentially the same results, is addressed in Section 3.4.3.

We note that in the discrete time implementations of the Vicsek rules, vg7 is not
small but of order < 1. In the following we thus Taylor expand of the r.h.s. of this
equation keeping terms up to order v372

2.2

FHT(7,0) = [1 — voTea(0)dn + “ea(e)eﬁ(e)aaaﬁ] (P, = 1), (3.12)

where summation over repeated indices is assumed and the angular convolution is de-
fined as (P ft) = 027r o’ P-(0—0") f'(7,0'). Denoting by A, f* = L (f57(7,0) — f(7,0))
the time differential operator, we get the following evolution equation

U2T

Oea(e)eg(ﬁ)aaﬁg] (Pr= f1) .

Acft= 5
(3.13)

RE R

[(Pr* 1) — F{7.0)] + [—voeaw)aa ‘

Continuous time limit

In the limit 7 — 0, P- converges to a Dirac distribution. Thus we can write for
small

P.(0) = 5(0) + TA(6), (3.14)

where, from the conservation of Py, A must satisfy [~ df A(f) = 0. We therefore
get
lim A ft=0uf = (Ax f) — voea(0)0af (3.15)
T—

which corresponds to the collisionless part of the Boltzmann equation (1.6) that uses
A(0) = P,(0)—6(0) with n? the variance of the noise distribution P,°. In the following
we will thus use P, to the detriment of P;.

Inserting this expression of P; in Equation (3.11), it formally describes a dynamics
where tumblings occur at a probability 7. (Inversely the particles do not change
their direction of motion with a probability 1 — 7.) This model therefore interpolates
between discrete (7 = 1) and continuous (7 — 0) time versions of the Vicsek rules.

The Boltzmann equation

To write the complete Boltzmann equation, we treat interactions separately from the
free motion dynamics. Assuming binary collisions and molecular chaos, the collisional
integral remains the one defined in the 7 — 0 limit

21
Lai[ff] = —f.0) / KO — 0)f(7.0) (3.16)

0
21 27
+/ db / d92ft(F, 91)ft(f’, 02) K (02 — 601)Py(0 — 61 — H(02 — 61)),
0 0

5The tumbling rate )\ in Equation (1.6) is given in units of 7 and is by definition 1 here.
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with K (0) = 4rou |sin (g)‘ and H(6) = g as defined in Section 1.4.1. The complete
equation reads

Arft = —voea(0)daf' + (Py* f1) = f* + Lo [f']
+'U[)’7' [—ea(e)aoz ((Pn * ft) - f) + %Aft + %qaﬁ(e)aaaﬁft ) (317)

where we have decomposed the spatial diffusion into an isotropic (Laplacian) and

anisotropic (~ ¢ag(0) = eq(0)ep(d) — dap/2) parts. Equation (3.17) describes the

evolution of a discrete time aligning active matter model belonging to the Vicsek

universality class. It simply takes the form of the continuous time Boltzmann equation

to which are added advection and positional diffusion terms that vanish in the limit
1

7 — 0. After rescaling space, K, f' and denoting Dy = 7 and Dy = 2Dy we get a

nondimensional equation, whose expression in angular Fourier space reads

1—-7(1—- P . 1—7(1— P_
afp = T gy 2ETOSBa)ony L m g
[o¢] D .
+ Y Tkafyfhog T [DoAf;i+41 (v 2f£+2+v2f;i_2)} , (3.18)
q=—00

where we kept the same notations as in Section 3.2. We choose P, = exp(—k?n?/2)
for numerical evaluations in the following.

Truncation and closure, hydrodynamic equations

As in the continuous time case, hydrodynamic equations can be derived from the
Hierarchy (3.18). Since the new advection terms do not influence the stability of
the disordered solution, we use the truncation and closure techniques presented in
Section 1.4.1, which yield

Apt = TDoAP —[1—7(1—P)IR(V*fL) , (3.19a)
1 *
Acff = 5V + ([0 = EAP) f v A XV
FRTAN L4 /S POV, (3.19D)

where the coefficients are listed in Table 3.1 and their dependences in p and 7 have
been made explicit. We note that Equations (3.19) have been derived assuming that
the time evolution operator A, ~ |f{| ~ ¢ < 1 in the vicinity of the the ordering
transition. Therefore, these hydrodynamic equations are valid in the limit of 7 “small”.
We nevertheless checked that the coefficient of the Laplacian, v7, remains positive for
7 < 1 in the range of parameters we consider.

Linear stability analysis of the homogeneous ordered solution

We now compute the linear stability of the homogeneous ordered solution of the ki-
netic (3.18) and hydrodynamic (3.19) equations. Because these equations are derived
in the discrete time limit, the stability condition at finite 7 is expressed slightly dif-
ferently. In the following we detail the procedure for the kinetic case, which is easily
generalizable to the hydrodynamic equation.
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p[p] Pr—1+2 (P —2)pop

16 (5P1—2)(3P2+1)p2
§ =P8t 5P > 0)

r 157(1—7(2—P1— P
v | mDo + 4(157T(£—P2()+8(71+51§£po) (>0)

T 7Dy

X 1

s 20(14+-3P;)(1—-7(1—P%))po
1 15#(17P2)+8(7+5P2)p0

KT 6(2=5P1)(1—7(1—P1))po
2 157 (1—P2)+8(7+5P2)po

TABLE 3.1 — Coeflicients of the hydrodynamic equations (3.19).

We note { fx }0 <p< ¢ the homogeneous fixed point of the truncated Hierarchy (3.18).
Small perturbations § f around this solution evolve according to
1—7(1-P 1—7(1—- P
R B e T e SRR R

K
_ D <2
+ 3" g+ Jik—q) frad i 47 [D0A5f£+41 (v Sft +2+v25f,§_2)] (3.20)
=K

q
|k—q|<K

Therefore, the vector 53”t = ((5f(§, Sfh, ..., (5f}5() satisfies

t+7

5f [1+T)6f (3.21)

where I is the identity matrix and T' is computed from Equation (3.20). The fixed

point { fk} is stable if and only if \5}” t+T| < |5_]’t\, i.e. if the eigenvalues of the matrix
I are all negative or zeroS.

The linear stability of the homogeneous ordered solution of the kinetic equa-
tion (3.18) is shown in Figure 3.5(a) for K = 50. A value of 7 larger than 102
is sufficient to suppress any instability far from the transition. In the scope of the
preceding section, we relate this result to the additional diffusion terms appearing at
this order in 7. The phase diagram of the Vicsek model is thus recovered in the finite
T regime.

At the hydrodynamic level, the region of spurious instability of the order is sub-
stantially reduced to low densities increasing 7, although not suppressed (see Fig-
ure 3.5(b)). At the same time, the instability close to the threshold is barely affected by
the values of 7. As mentioned in Section 1.4.1, is it known that adding positional dif-
fusion to the hydrodynamic equations derived from the Boltzmann-Ginzburg-Landau
approach has a similar effect on the spurious instability [80]. We conclude that these
hydrodynamic equations, as before, remain a good description at the onset of order.

. . . . -t -t

6As in the continuous time case, the Goldstone mode satisfies [§f = | = |6/ |. Therefore the sta-

bility of the homogeneous solution, in the sense considered here, does not require a strictly contracting
operator.
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FIGURE 3.5 — Linear stability of the discrete time Boltzmann (3.17) (a) and hydro-
dynamic (3.19) (b) equations in the density-noise plane. (a): Limit of the instability
region of the homogeneous ordered solution for different values of the timestep 7
at K = 50. (b): Direction of the most unstable wave vector w.r.t. the order (white
meaning that the solution is found stable) at 7 = 0. The dashed lines show the
shape of the spurious instability region at finite 7. In both (a) and (b) the contin-
uous blue line marks the mean field transition.

3.4.3 Forward vs. backward update rules

The formalism presented above allows to treat the “backward” case, i.e. when positions
are updated before orientations. The corresponding Master equation reads

2
FHT (7, 0) = /O o' [7P,(0 — 0) + (1 —1)6(6 — 0)] f1(7 — 67(0)),0)),  (3.22)

and differs from (3.11) only in the angular dependence of the position increment 07
The procedure to derive the discrete time kinetic equation is essentially the same as
presented before, after some algebra we find the following hierarchy for the modes

1—7(1—-Fy) . 1—-7(1- P
Agt = AT g ST Mg g
o0 _D .
£ ealyftg 7 |Dodst+ D (Vs + ) o)
q=——00

We note that the difference between these equations and (3.18) lies in the coefficients
of the advection terms that now depend on k instead of k+ 1. It is then easy to check
that, as in the other case, taking the limit 7 — 0 we recover the continuous time
Boltzmann equation (3.1).

The homogeneous ordered solution between the two cases is therefore the same.
We computed its stability numerically and it is compared to the forward rule in
Figure 3.6. The two schemes are shown to be qualitatively the same except that the
wavelength of the most unstable mode is found to be larger in the backward than in
the forward case, contrary to the growth rate of the instability that is smaller. We
conclude that the backward scheme should be more subject to finite size effects. This
result is in agreement with microscopic simulations of the Vicsek model for which it is
known that the band regime typically appears for larger sizes and longer times using
the backward update rule [158].
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FIGURE 3.6 — Linear stability of the homogeneous ordered solution of the kinetic
equations (3.18) and (3.23) for the forward and backward updating rules at pg = 0.5,
7 =1and K = 100. (a) and (b) represent respectively the growth rate of the
instability and the wavelength of its most unstable mode. In both panels the
vertical dashed line indicates the mean field transition at 7. ~ 0.527.

3.5 Numerical integration of the Boltzmann equation

In order to go beyond the linear level, we simulated the hierarchy (3.1) with a pseudo-
spectral scheme iterated in time by means of an explicit fourth-order Runge-Kutta
method. In order to avoid confusion, we point out that simulations are done in angular
Fourier space, pseudo-spectral referring only to space derivatives. The linear terms
(advection, spatial and angular diffusions) were thus evaluated from the Fourier trans-
form of the modes gy (¢, t) = [ dFfi(7,t) exp(—2u7q-7), while nonlinearities (collisions)
were computed from the modes in real space. We considered rectangular domains of
size Nydx x Nydy with periodic boundary conditions. In order to avoid aliasing ef-
fects due to the square nonlinearities, we applied the the 2/3 Rule, i.e. zero-padding
9k(q,t) for |gy| > 2w /(3dx) or |g,| > 2m/(3dy). A large spatial resolution was needed
because of the steep wave fronts that take place in regions where the order is unstable,
in most cases we considered dxr = dy = % and 7 > 1073, The simulations were all
run until they reach a fixed point (or a limit cycle) of the equation, i.e. until all the
space-averaged values of the modes (fy)., converge to numerical precision. The code
was parallelized in order to run large systems over long times.

The Smoluchowski equation (3.8) was simulated with the same code. Starting from
an ordered initial condition close to the transition with 10 modes, we could observe
its linear instability. However, the resulting band-like structures show sharp fronts
and their amplitude is not bounded, we were not able to stabilize them increasing the
spatial resolution. The full equations thus seem ill-behaved. Adding isotropic spatial
diffusion regularizes the solutions and we were able to see the formation of polar
bands. This case is still under investigation during the redaction of this manuscript,
this section being entirely devoted to the Boltzmann approach.

3.5.1 Inhomogeneous solutions of the Boltzmann equation

Propagating band solutions

The Boltzmann equation was first integrated close to the transition starting from the
homogeneous ordered solution, that was determined numerically, and on top of which
some noise was added. Because of the instability highlighted previously, we observed
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FIGURE 3.7 — Traveling solutions of the Boltzmann equation (3.1). (a): Snapshot of
the density field at pg = 1, n = 0.55, K = 30 (A, < 20), dz = dy = 1. (b): Profile of
the modes along the x axis in a quasi-one dimensional geometry. The curves show,
from top to bottom, p, f1, f2, f5 and fio at po = 0.5, n = 0.5, K = 10, system size
128 x 1, dz = 35, and dy = §. (c): Trajectories of the band solutions in the (f1, f1)
plane for different noise values showing smaller cycles as 7 decreases. (d): The
polar field profiles corresponding to (c) for n = 0.5 (A, < 45) and 0.2 (A, < 20).
In (c-d) p = 0.5, K = 20, system size is 128 x 1, and dx = dy = %. The black
arrow in (a) indicates the direction of propagation of the solutions. Simulations
in (a,c-d) and (b) have been done starting respectively from homogeneous ordered
and disordered initial conditions.

the formation of a train of one dimensional propagating structures (see Figure 3.7(a))
that constitutes a stable limit cycle of the equations. These bands can have large
amplitudes, and in general exhibit abrupt fronts as shown in Figure 3.7(b). Because
of this, numerical instabilities for low values of the fields can be avoided only with
high resolution, thus in this part most of our simulations have been done in quasi-one
dimensional geometries.

The number of bands is roughly given by the wavelength associated to the most
unstable mode of the homogeneous ordered solution A, (see Figures 3.7(a,d)). How-
ever, starting from a disordered initial condition as in Figure 3.7(b), or moving them
in the (po,n) plane, we notice that solutions with different number of bands are ac-
cessible. We checked that all of them remain stable when truncating the hierarchy for
larger K.

The density and polar order decay exponentially to p4, the mean field transitional
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density at fixed n, and 0 both at the front and the tail of the bands (see Figure 3.7(b)),
as observed in micro simulations of the Vicsek model [70]. The associated lengthscales
are generally much larger at the back than at the front, both remain constant when
varying the number of bands. The other modes show a similar behavior but oscillate
around fr = 0, the number of oscillations being given by k— 1. Except for the density,
all the modes decrease quickly by several orders of magnitude when going away from
the bands’ maximum, we thus expect weak interactions between these objects.

It was shown in Section 3.2 that the homogeneous ordered solution of the Boltz-
mann equation is unstable in the whole low noise region and for all py < 1 (see
Figure 3.2(a)). Fixing the density to pp = 0.5, we ran simulations for various values of
n from 0.5 to 0.2 starting from homogeneous ordered initial condition. We observed
that when n decreases the “gas” level, i.e. the density far from the band, rises and
become much larger than py, so that their amplitude decreases and the final state of
the system consists is a spatially modulated ordered liquid with propagating waves
shown in Figure 3.7(d). Bringing the bands initially close to the transition deeper in
the ordered phase, their gas level also increases and they end up in a similar state. We
thus conclude that band solutions corresponding to coexistence between disordered
gas and polar liquid cannot be found in the low noise, large density regime.

In [121, 122], Caussin, Solon et al. have characterized the solutions propagating
along = at constant speed c¢ of the one dimensional hydrodynamic equations for the
Vicsek class from a mapping to a dynamical system. In their approach, the band
profiles correspond to the dynamics of a particle in a potential in presence of nonlinear
energy sink and sources, where space and time coordinates are given respectively by
the polar field f; and z = x — ¢t. Because of periodic boundary conditions, these
solutions require closed trajectories in the (f1, f1) plane (see Figure 3.7(c,d)), where
the dot denotes derivative w.r.t. z. Three of them have been identified:

e Smectic arrangement of polar bands, that corresponds to periodic orbits.

e Solitary localized wave, characterized by a homoclinic orbit that includes one
saddle point of the potential: (f; = 0, fi = 0). Its width is then given by the
time it takes for the particle to visit this point. These two types of solutions are
the ones observed in our simulations of the Boltzmann equation and are shown
in Figure 3.7.

e Polar liquid droplet, i.e. a macroscopic ordered domain traveling in a disordered
gas, corresponding to a heteroclinic cycle in the dynamical system representa-
tion. This case thus requires that the particle visits two saddle points, the size
of the object being given by the ratio of the waiting times there. Note that
the second saddle point, which corresponds to a maxima of the potential, can
be computed analytically from the hydrodynamic equations, but is a priori un-
known at the kinetic level. These solutions are further discussed in Section 3.5.2.

These three families of solutions coexist at the hydrodynamic level. However only
periodic orbits with a large enough amplitude are found to be stable, such that their
cycle all visit the vicinity of the (f; = 0, fi = 0) saddle point. They thus correspond
to phase separation between ordered liquid and disordered gas and are similar to
the homoclinic trajectories. Trains of bands corresponding to the small cycles of
Figure 3.7(c) can therefore be observed at the kinetic level only. Since they mainly
consists of (weak) perturbations of the homogeneous ordered state, these solutions
are probably destroyed by fluctuations. Indeed, the main effect of a noise term in the
Boltzmann equation would be to introduce additional spatial diffusion, and we know



3.5. Numerical integration of the Boltzmann equation 53

from the linear stability analysis that the latter suppresses the low noise band phase.
We looked for them in a continuous time version of the Vicsek model”, but could not
identify any deterministic structure for low values of the noise.

Cluster lane solutions

In [156], Thiiroff et al. found out solutions made of polar clusters shifted transver-
sally to their propagating axis and traveling in opposite directions, as shown in Fig-
ure 3.8(a). They identified the mechanism responsible for the stability of these con-
figuration that is the following: While clusters tend to spread transversally when they
travel alone, they exchange particles during their interactions and thus reinforce each
other. This way, the system manages to balance density fluxes and this solution is
stable. In this arrangement and if the bands have the same transversal size, the sys-
tem has therefore a global nematic symmetry and the average polar order converges
to zero. Thiiroff and collaborators finally argued that these solutions appear more
frequently when increasing system size.

In order to investigate whether cluster lanes are stable solutions of the Boltzmann
equation without additional spatial diffusion, we considered initial conditions built
from a numerically stabilized band propagating along the x axis and replicated it
along y direction. We then applied the parity transformation along x: fi(z,y) —
(—=1)Ffu(N, — x,5) to the copy so that the bands face each other. Running the
dynamics, the system converges to the cluster lanes solutions observed in [156] if
its extension in the y direction is large enough (see Figure 3.8(a)). These solutions
seem to remain stable extending system size in the y direction. However, expanding
them in the other direction, copying a stabilized configuration along = for instance,
we observe that the global polar order grows slowly with time, suggesting that the
solution is unstable and the system favors another configuration. It is nevertheless
not easy to give a definitive conclusion at this stage because the kinetic level does not
give us access to large systems and long timescales.

Applying the same initial condition to the hydrodynamic equations (3.19) (in the
limit 7 — 0), we get the same behavior and we conclude that cluster lanes are also
present at the hydrodynamic level. Therefore, this observation gives us access to larger
systems and longer simulation times for the study the stability of these solutions.
As at the kinetic level, we note that cluster lanes are stable duplicating a stabilized
configuration in the y direction (Figure 3.8(c)). They are moreover robust considering
an initial configuration made from two unequal bands, in that case the system either
equilibrates the sizes of the clusters or remains in a tilted configuration where the
lanes are drifting along the y direction as in Figure 3.8(b). In order to observe them
in microscopic simulations, these solutions need to tolerate the addition of stochastic
terms in the equations. Following the derivation of Section 1.4.2, we considered a
multiplicative noise of the form (+/p(7,t)Z(,t) in the polar field equation. Here E is
complex, has zero mean, (2(7, )2* (7', t')) = 26(F—7")d(t—t'), and (2(7,)E(7", ') =
0. As shown in Figure 3.8(d), building cluster lanes from bands stabilized at the
stochastic hydrodynamic level, we could see them survive on physical timescales of
the order of 10°-10% depending on system sizes, even for fairly large . These solutions
are thus expected to be robust to fluctuations.

Despite all these observations, duplicating a cluster lane configuration in the x
direction we notice that after a time of the order of 10* the polar order grows expo-
nentially, thus the system converges to another solution. Indeed, letting the dynamics
evolve on large times we observe that, while the lanes still still exists at ¢t = 10° they

"See Section 1.14 for a definition.
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FIGURE 3.8 — Cluster lane solutions at the kinetic (a) and hydrodynamic (b-e)
levels. All panels show snapshots of the density an polar orientation fields, the
color code is common to (b-e). (a): pg =1, n = 0.6, K =30, do = dy = 1. (b-e):
po = 0.5, = 0.5, dr = dy = 3. In (d) the amplitude of the stochastic noise is
¢=0.1.

are replaced by a single band at t = 3 - 10° as shown in Figure 3.8(e). We therefore
conclude that asymptotically, 7.e. on large time and length scales, cluster lanes are
not a stable limit cycle of the hydrodynamic equations. This instability appears on
timescales much larger than those considered by Thiiroff and collaborators, and that
are in general difficult to access at the kinetic level. However, since we have shown
that hydrodynamic equations are a faithful approximation of the Boltzmann equation
close to the transition, there is no evidence that the latter would exhibit a different
behavior.

3.5.2 Band selection at the kinetic level

In [121, 122], Caussin, Solon et al. have shown that the three families of inhomoge-
neous propagating solutions of the hydrodynamic equations presented in the previous
section coexist. On the contrary, at the microscopic level the Vicsek waves have a well
defined size |70], macroscopic liquid drops corresponding to heteroclinic cycles are thus
unstable and split into a smectic arrangement of bands. The hydrodynamic equations
are therefore said to not select the correct solution. A faithful qualitative description
of the coexisting phase can be recovered at the fluctuating level [67]. Indeed, large
polar liquid domains that are solution of the deterministic equations are found to be
unstable adding a noise term in the equations (see Section 1.4.1 and Figure 1.4).

In the following we investigate whether selection occurs at the deterministic kinetic
level. Bands in simulations of the Boltzmann equation (3.1) with additional spatial
diffusion DgA fj, are typically smoother and less subject to small wavelength numerical
instabilities. Since introduction of positional diffusion gives a global phase diagram in
qualitative agreement with microscopic simulations and should not bring any major
change in the region close to the mean field transition, from now one we thus set
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FIGURE 3.9 — Coexistence of traveling solutions at the kinetic level. (a): Stabilized
density profiles of the bands increasing pg gradually from 0.7 to 1. (b): Same as
(a) but decreasing the density from 1 to 0.7. (c): Stability of the one band solution
increasing the number of modes K at density pp = 0.7. From top to bottom the
curves represent f1, f5, fio and foo. (d) Trajectories corresponding to the single
and four band(s) solutions in the (f1, f1), plane showing respectively heteroclinic
and homoclinic cycles at pg = 0.7. The black arrow in (b) indicates the direction
of motion of the bands. Parameters: n = 0.5, Dy = 0.5, system size 512 x 1,
dr =dy=%. In (a), (b) and (d) K = 10.

Do = 0.5. Because of the symmetries of this problem we also consider quasi-one
dimensional systems.

At the hydrodynamic level, the saddle points associated to the three families of
solutions can be computed from the dynamical system mapping, which is no more true
here. In order to find out if macroscopic and quantized traveling structures coexist, we
thus consider an arrangement of four bands obtained close to the transition (pg = 0.7,
n = 0.5 and K = 10) from a polar initial condition and that is a limit cycle of the
Boltzmann equation. We then increase the global density of a few percent at fixed
noise and wait that the system relaxes to its new state. Repeating this procedure
multiple times, Figure 3.9(a) shows that while the gas density remains constant, its
fraction decreases. Moreover, we see that bands start to merge for large enough
densities such that at pg = 1 only one remains. Since solutions for large values
of pg could have intrinsic width comparable to our system size, at this point we
cannot draw any conclusion. However, decreasing the density gradually from the
single band configuration, we found the large droplet to be stable also at pg = 0.7
(see Figure 3.9(b)). Figure 3.9(d) shows that the cycle corresponding to this solution
exhibits two saddle points at A = (f; = 0, f; = 0) and B = (f; ~ 1.15, f; = 0). On
the contrary, the orbit associated to the four bands configuration is clearly influenced
by point B, but does not reach it. Hence, we have shown that solutions corresponding
to two types of cycle coexist at the same parameter space point.
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We checked that these two solutions remain stable increasing the number of modes
K. The procedure used to add modes to an existing configuration is detailed in
the following. Neglecting all the terms of order higher than ¢! the Boltzmann
equation (3.1) for the mode K + 1 can be written as

K
1
(1= Pry1— Jr+10 — Jx11,6+1) fr41 = —yVik+ E Jri1,qfefri1—q, (3.24)
q=1

such that fxi1 depends only on the £ = 1,..., K modes. Using Equation (3.24)
we were thus able to add modes progressively without perturbing too much the sys-
tem. Their dynamics was then updated with the full Boltzmann equation (3.1). Fig-
ure 3.9(c) shows the single large band profiles for various truncation order K. We find
that they globally coincide with only minor deviations for low values of the modes.
Similar results have been obtained for the four bands solution, giving strong evidences
that both are stable in the K — oo limit.

3.6 Results for the other classes of dry aligning active
matter

In this section, we briefly present results on Boltzmann equations describing the mod-
els of dry active matter with nematic alignment introduced in Section 2.1.1, i.e. active
nematics and self-propelled rods classes.

3.6.1 Active nematics

We first consider particles with velocity reversals, so called active nematics. The
Boltzmann equation for this case is similar to the one presented in Section 2.3.2 for
the Vicsek-shake model in the infinite reversal limit,

8tf = D()Af + quagaaagf + A [(PU * f) — f] + Icou[f] , (3.25)

where Dy = 2D and I o[f] defined in (3.16), although with different kernel of in-
teraction and alignment rules, that take into account the m-symmetry of motion and

interaction. We thus have [90]
Kpem(0) = 2 < sin <g) ‘ + |cos <g)

0 {0 if 0<10]<3%

Huen®) = 55V 5 it s <l <n

) , (3.26a)

(3.26D)

We note that, because active nematics exhibit apolar motion, diffusion has replaced
advection in the Boltzmann equation. From the results of Section 3.4, we therefore
expect the kinetic level to be better behaved than in the polar case. Since the problem
has the full nematic symmetry, all the odd angular Fourier modes of the distribution f
can be set to zero. After de-dimentionalization of (3.25), the corresponding hierarchy
reads

1 1/, S
Oufore = 50 ok + 7 (V *Fagern) + V2f2(k—1)) + (Por = 1) foe+ D> Ti% Foafage—g)

q=—00

(3.27a)
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FIGURE 3.10 — Linear stability analysis of the homogeneous ordered solution of
Equations (3.25) and (3.28) for classes with nematic alignment in the (pg, ) plane.
In both cases the color code indicates the direction of the most unstable wave vector
w.r.t. the order (white meaning that the solution is stable), and the continuous blue
line marks the mean field transition. (a): The active nematics class with K = 10.
Inset: growth rate of the instability at fixed pg = 1 (transition at 7. ~ 0.280,
marked with vertical blue line) for several values of the truncation, showing how
the spurious instability is suppressed when K increases. (b): The rods class with
K = 60. The dashed lines show the limit of the low noise instability when spatial
diffusion is added to the kinetic equation.

with J2 = po (Pl — 1% ) and

g _ A1 2v2(k — 2¢)(—1)7sin (&F) -
ka ™ 1—4(k —2q)2 (3:27D)

The ordering field triggering the transition to order is now the second mode of
the distribution. Hydrodynamic equations, derived from (3.27), are thus expressed in
terms of the density p and fo [91]. For u§" = Po — 1+ % (5(2v2=1)P> — 7) po > 0,
they show a transition to homogeneous nematic order. This solution is unstable to
transversal perturbations in the vicinity of the 3" = 0 line, leading to a spatiotem-
poral chaos of nematic bands (see Figure 2.1), as observed in molecular dynamics
simulations of the microscopic model (2.1). These equations are well behaved and do
not exhibit any spurious instabilities, they thus provide a phase diagram in qualitative
agreement with the microscopic level.

Using the formalism presented in the previous sections we computed the linear sta-
bility of the homogeneous ordered solution of Equations (3.27) for various truncation
orders K. As shown in Figure 3.10(a), the order is unstable to transversal perturba-
tions in the vicinity of the transition. Moreover a second instability, located at low
noises, appears for finite K. Increasing the truncation order, this one is restricted to
lower and lower values of 7, we conclude thus that it is spurious. Asymptotically, a
phase diagram qualitatively similar to the ones of the hydrodynamic and microscopic
levels is observed.

3.6.2 Self propelled rods

We now turn to the mixed symmetry case, which consists of polar particle interacting

nematically. At the Boltzmann level, it is thus defined by the kernel K,u(6) =

2 |sin (g)‘ and the alignment rule Hpem(f) given in (3.26b). Like in the polar case,
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since particles are self propelled no diffusion appears on timescales resolved by the
kinetic equation. Its nondimensional expression in angular Fourier space thus reads

Ofr + % (Vferr + Vi) = Pe =D fo+ D T fofiyg, (3.28a)

q=—00

: ds _ d d
with JEod = po (PRLiogs — 1598 ) and

2+v/2 |cos (529 ) 4 (k—2¢) sin ( ZE29 ) | [cos (ET ) -1 .
=< ) 1—(1c—2q)g Zeel |k —2q] # 1
’ % otherwise
(3.28b)

From the nature of the alignment, the order parameter in this case is still given
by fa. However, because of the symmetry of the motion, hydrodynamic theory for
this class is written in terms of the fields p, fi and fo [89]. These equations show a
phase diagram with a transition to a homogeneous nematic ordered phase when the
coefficient pi°% = P, — 1+ 2% (5(2v/2 — 1)P, — 7) py becomes positive. As for the
active nematics, the corresponding solution is unstable to transversal perturbations
close to the transition, at the origin of a similar chaotic phase pictured in Figure 2.1,
and also observed in microscopic simulations [87]. Another instability of the homo-
geneous ordered solution, at zero wavenumber and triggered by the polar field f7, is
observed deeper in the ordered phase. This one leads to unbounded solutions and is
likely spurious. The hydrodynamic equations for this class thus constitutes a right
qualitative description of the microscopic model close to the ordering transition.

We expect the Boltzmann equation (3.28) to be a better description far from the
transition. This equation admits an homogeneous nematic solution for p°% > 0. As
at the hydrodynamic level, it is found to be unstable to transversal perturbations close
to the mean field transition line. No zero wavenumber instability was observed, we
therefore conclude that its presence at the hydrodynamic level is due to the truncation.
However, at large K a longitudinal instability of the homogeneous ordered solution
develops for n < 0.13 (Figure 3.10(b)). As in the polar case, it disappears when adding
enough spatial diffusion to the Boltzmann equation.

3.7 Conclusion

In this Chapter, we have studied and compared kinetic, namely Boltzmann and Smolu-
chowski, equations for the polar class of dry aligning active matter. Their phase dia-
grams have been computed from a linear stability analysis of their homogeneous or-
dered solutions, and have been found to be qualitatively different from the microscopic
model phenomenology. Indeed, while the Boltzmann equation shows an instability of
the order close to the transition and in the low noise phase, such that a Toner Tu
liquid is expected for intermediate 7 only, the Smoluchowski case is even worse since
the homogeneous order is always unstable there. In the Boltzmann framework, the
correct phase diagram is recovered with the addition of positional diffusion, which has
been shown to naturally appear in the discrete time limit of the models considered in
most studies of dry aligning active matter. For Smoluchowski on the contrary, spatial
diffusion globally decreases the growth rate of the instability but does not suppress
it. These two approaches rely on two different approximations, the dilute limit with
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binary collisions for Boltzmann, and large densities modeled by mean field interac-
tions for Smoluchowski. The mean field description thus does not seem relevant for
the Vicsek microscopic model, although better results could be obtained considering
other interaction potentials. This is the topic of future work.

At the nonlinear level, numerical simulations of the Boltzmann equation reveal
that propagative solutions close to the mean field transition are similar to the ones
of the hydrodynamic equations, whereas the low noise instability gives rise to limit
cycles that unstable at the hydrodynamic level. They indeed do not correspond to the
usual coexistence between liquid and gas, but to a globally ordered phase in which
small amplitude waves propagate. Like at the hydrodynamic level, the determinis-
tic Boltzmann equation does not provide any band selection, emphasizing again the
importance of fluctuations. Moreover, the cluster lane solutions identified by Thiiroff
and collaborators are also discovered to be solutions of the hydrodynamic equations,
which gave us more freedom to characterize their stability. We found that they are
robust in confined geometries. However, considering systems with a large extension
longitudinal to their propagation axis, they may survive for long times but seem to
be asymptotically unstable.

A linear analysis of the Boltzmann equation applied to classes with nematic align-
ment leads to the similar conclusions. Indeed, while the kinetic level for active nemat-
ics that nominally shows spatial diffusion terms accounts faithfully for the microscopic
phase diagram, the one describing self propelled rods exhibits additional instabilities.
As in the polar case, all dissimilarities are cured introducing positional diffusion in
the Boltzmann equation for the rods.

Following these observations, we conclude that kinetic equations coarse graining
discrete time dry aligning active matter models must possess spatial diffusion terms.
Introduced by the truncation and closure procedure, such terms are present by default
in hydrodynamic theories derived from the microscopic dynamics. We have moreover
gathered evidence that at the onset of order the kinetic level does not seem to contain
more information than the simpler hydrodynamic equations. However, and because
their derivation rely on a perturbative approach, the latter may break down far from
the transition, showing spurious instabilities for instance. On the contrary, if endowed
with additional spatial diffusion terms, the Boltzmann equation constitutes a correct
deterministic description of the simple active matter models, even deep in the ordered
phase.
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Chapter 4

Quantitative assessment of the
Toner Tu theory

4.1 Characterization of fluctuations in the flocking phase:
the Toner Tu theory

The theory proposed by Toner and Tu in [72, 73| describes the large-scale and long-
time universal properties of ordered flocks, such as the fluctuating rotational symmetry
broken phase of the Vicsek model. It is based on continuous equations for the evolution
of the coarse-grained density p and velocity ¥ fields, originally written from symmetry
arguments as

dp+V-(p?) =0, (4.1a)
8+ M\ (17- ﬁ) T+ Ay (6 : 17) T+ AV (\17|2) - (a .y ]6|2> 7-VP
+DAT + DV (6-17) + Dy (aﬁ)QHf, (4.1b)

P=> on(p—po)" . (4.1¢)
n=1

These equations have been introduced in Chapter 1, see Section 1.3.2 for a detailed
discussion of their terms', and can be derived from kinetic descriptions as discussed
in Section 1.4. The most striking conclusion from Toner and Tu theory is that flocks
must exhibit true long-range order, even in two dimensions, whereas in the equilib-
rium world this feature is forbidden by the Mermin-Wagner theorem [71]. This new
nonequilibrium physics is in fact due to the nonlinear terms in Equations (4.1) that are
shown to be relevant in any dimension below 4, implying a breakdown of the linearized
hydrodynamics. Physically, presence of long-range order in two dimensions is related
to the transmission of information that is convective and not diffusive, which because
of interactions between agents, suppresses velocity fluctuations over large scales.

4.1.1 Anisotropic scaling in d < 4

Considering « and f positive, noiseless Equations (4.1) have an homogeneous ordered
solution p = pg and (v)é| = \/a/Bé), where € is an arbitrary unit vector defining
the orientation of the average global order. In the following || and L subscript will be
used for quantities respectively related to longitudinal and transverse directions w.r.t.
the mean motion of particles. Considering the noise term f, coarse grained density

'Because it is of higher order in fields and gradients, the D, nonlinear diffusion term is usually
not considered.
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and velocity can be written in terms of small perturbations,

—~
=

) = Po + 6p(F’ t) ) (42&)
) = ((v) +6v(7t)) & + 6UL(7, ). (4.2b)

p(F,t
o(r,t

—~
!

)

Since the equation describing the evolution of dv) possesses a damping term —2adv
coming from the Ginzburg-Landau potential, perturbations parallel to the mean ori-
entation are nonhydrodynamic and can be enslaved to the other fields.

Therefore, Toner and Tu theory concerns only dp and §0; . The two points equal
time correlation functions of these fields are predicted to be scale-free, as observed
experimentally in starling flocks [27], and as a consequence of long range order, to
exhibit an anisotropic scaling. They are thus defined by two exponents. The velocity

correlation function, C, (ﬁ) = <577L (F—F R, t) - 0U | (T, t)> with brackets denoting
an ensemble average, thus obeys

c (R) =& 1. (M) , (43)

where £j is a microscopic length, the radius of interaction between particles for exam-

ple, and f, is a universal scaling function. The authors were unable to compute f,

however the scaling form of (4.3) imposes that f,(x) ~ O(1) and f,(z) ~ a?X/¢
T— T—00

such that

2 —
Cy (R”) ~ |R||’TX if |R||/£()| > |RJ_/€0|§, (4.4a)
C, (Rl) ~ ’ﬁj_‘QX if |R||/£()‘ <K ’EJ_/E()K. (4.4b)

The roughness exponent y measures the damping of fluctuations in direction trans-
verse to the global order, and the anisotropy is controlled by &. The linear theory pre-
dicts x =1 —d/2 and £ = 1, meaning that for d = 2 the velocity fluctuations should
diverge logarithmically with system size. Yet, advective nonlinearities in (4.1) have
been shown to be relevant perturbations for d < 4, leading to the breakdown of lin-
earized hydrodynamics. Using the dynamical renormalization group approach Toner
and Tu could calculate, within approximations that are discussed in Section 4.1.3, the
exponents x and €. Their computation gives y = % and £ = %, and was initially
claimed to be ezact in two dimensions.

We will see in Section 4.3 that real space correlations are subject to strong finite
size effects, which prevents us from computing the exponents from (4.4). On the
contrary, their Fourier transform exhibit rather “clean” scalings and are thus more
convenient to look at. The Fourier transform of (4.3) reads

A 02 L on—d—ax—¢ 7 ( lagbol
= v 3 4.
5UJ_(Q7 t)‘ > |qJ_| f ’q_'J_£0’§ ( 5)

Cua) =

where f, is an unknown scaling function that nevertheless satisfies f,(z) ~ O(1)

. z—0
and f,(z) - 2(1=4=2x=8)/¢  hence

R 1-d-2x—¢ e
Colq) ~ gl ¢ it qylol > |qLtol (4.6a)
Co(@L) ~ @28 it gulo] < |qLbol* (4.6b)
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The equal time density autocorrelation function was also derived by Toner and Tu
in the Fourier space,

R 3—d—2x—¢& . Y
G = (potar) = o, (M v @

where ¢® = |]?, and fp is unknown but has the same asymptotic properties as fy.
Y is a finite O(1) unknown function that depends only on the direction 6; between
the wave vector and the global order. Because of the 1/¢? pre-factor, OP(J ) exhibits
three different regimes in the small ¢ limit,

1—-d—2x—¢&

Co(@) ~ ™" Iqul it Jgylol > |qLbol, (4.8a)
Co(@) ~ g 21~ i |q1lol* > Jaybol > |1t (4.8b)
Colqr) ~ |qul™"2C it |gubol > |qytol - (4.8¢)

Contrary to velocity correlations, because of the Y factor the functional form of (4.7)
does not allow for computation of density correlations in real space.

From Equations (4.6) and (4.8), we note that examining the velocity and density
correlations both in the longitudinal and transverse directions will give access to the
two exponents y and £. In particular, for d = 2 where Toner and Tu predict x = —%

and £ = %, we should see

_ . — 3
~ gyl i Jgplel > |qLbol5

=

~ @l

)
2u(qL) ol < |70bo]3
Col@) ~ gyl Ll i lgybel > 7Lbol?
(@)
(@)

- T N 3 .
\d) =~ |q||’ g5 if |qLbo]5 > |Q||€0| > |70,
~ s . .
CP q) ~ |QJ_‘ 5 if |qL£0\ > ’quo|.

Giant number fluctuations

x and £ exponents can also be computed indirectly, for instance the scaling form (4.7)
implies that flocks show giant density fluctuations in d < 4. Indeed, since & < 1 the
structure factor S(q) = (Cy(q))ga—1, where S4~! is the unit sphere in d dimensions,
is dominated at small ¢ by contributions from the transverse direction and essentially
diverges as ¢' ~*"2X~¢ when ¢ — 0. Moreover, in the same limit this quantity corre-
sponds to the ratio between the variance and average of the number of particles in a
volume ¢¢ ~ 1/¢¢ [159]. Thus,

2
S(q) ~ AN

~ pA—1H2x+E 4.
So (V) (49)

Noticing that (N) ~ ¢4, we finally get

2y +€&€—1

(AN?) ~ (N)7 with o=2+ y

(4.10)

Because of long-range correlations, the variance of the number of particles in a box
containing on average (IN) particles does not satisfy the central limit theorem and
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scales faster than (V). In d = 2 and 3 Toner and Tu therefore predict respectively
(AN?) ~ (N)5 and (AN?) ~ (N)15.
Transverse superdiffusion

Another consequence of the scaling (4.5) is the presence of super-diffusion in the
direction transverse to the order for d = 2. Computing the mean square orthogonal
displacement of a particle positioned in 77,

wi(t) = (|7, (8) =7, ) ) | (4.11)
Toner and Tu indeed found out that for 2y/{ > —1 it is given by
WA(t) ~ 200X/8) 43 i d=2. (4.12)

In the case where 2y /¢ < —1, which is supposedly true in three dimensions, diffusion
should on the contrary be normal.

4.1.2 Propagative sound modes

Studying the time-dependent two point correlations, Toner and Tu could characterize
the propagation of waves in ordered flocks. They indeed discovered that, for a given
wave vector ¢, the Fourier transform of the density autocorrelation function C,(q,w) =
<|6 p(q, w) \2> as function of the frequency w shows two peaks whose dispersion relations
obey

. sz [ labol
o) = ex (09) 4 — 1 f (50 ) (4.13

The physical interpretation of this result is that the system exhibits density waves,
or sound modes, that propagate with a wavelength 27 /¢ proportional to their period
27 Jw, the constant of proportionality c1+ being therefore the speed of sound. Note that
the latter depends on the direction (w.r.t. the order) in which the wave propagates,
and reads

= T o () = S/ (00) — )7 cos? (8) + achsin® (8). (414)

where (v) = \/a/B, v = Ai(v), and ¢g = /o1po. From this expression, we imme-
diately remark that as a consequence of Galilean invariance (A1 # 1), two modes
with different speeds should propagate in the direction longitudinal w.r.t. the order
(67 = 0). On the contrary, considering 67 = 5 the two modes have the same speed
but travel in opposite directions.

The lifetime of such modes, or the inverse of the peaks width, is given by the
imaginary part of wy(q) in (4.13). In the transverse direction it scales as 1/|q|?,
where the dynamical exponent z is universal. This damping is also anisotropic as
suggested by the functions fi that satisfies fi(z) ot O(1) and fi(z) o z?/¢. The

linear theory predicts that z takes the equilibrium value 2, corresponding to viscous
or diffusive damping. Toner and Tu, on the contrary, have shown that taking into

account nonlinearities in (4.1) for d < 4 modifies this value. Their analysis led to
z = % = 2¢ such that damping should be conventional (with an exponent equal

to 2) longitudinally to the order and unconventional in all the other directions. In
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particular, for d = 2 the peaks’ widths are supposed to scale as

_ . — 3
Swig) ~ g™ if gyl > |qLlol5

L6 L3
Sw(@r) ~ g5 if [gbo] < |qLb]5 .

The peaks heights should finally follow

o —(2ts _ay s ( latol
M) = |Gty (A0 (415)
|qLbo]

where fy () o O(1) and fy(z) ol g~ (xH+2436+d=3)/¢  Exponents z and € can

thus in principle be computed from an analysis of the scalings of the peaks widths
and heights with the wave vector ¢.

4.1.3 Discussion of Toner and Tu predictions

The set of universal exponents proposed by Toner and Tu fully characterizes dry
active matter fluctuating polar ordered phases invariant under global rotations. Their
derivation,

_3-2d . _d¥l . _2d+D)
X_ 5 I - 5 I - 5 )

was first claimed to be exact in two dimensions. However, in a more recent publica-
tion [112], it was shown that nonlinear terms essentially coming from the enslaving of
dv| were missed in the original study. Simple power counting shows that these new
nonlinearities are all relevant in the renormalization group sense for any d < 4. The
main consequence of this is that they will a priori affect the values of the exponents
and thus invalidate the exactness of the d = 2 computation, although the presence of
long-range order in two dimensions remains valid. Indeed, relevant nonlinearities tend
to reduce velocity fluctuations, thus if x is different than the original prediction, it is
expected to be lower than —% in d = 2 and lower than —% in d = 3. All the terms omit-
ted in the first works of Toner and Tu are related to density fluctuations §p. Thus the
authors claimed that exact computations, leading possibly to different scaling forms
and values of the exponents, can be carried out if those are suppressed. For example,
dynamics with birth and death processes [139], and ‘incompressible flocks” [140, 141]
were considered.

Numerical tests of the Toner Tu theory thus far mainly rely on indirect measures
of the exponents, and a qualitative agreement with the theory. The giant number
fluctuations exponent has been estimated in both two and three dimensions from
molecular dynamics simulations of the Vicsek model |70, 76]. In d = 2 this one seems
slightly larger than the prediction %, while in d = 3 more limited simulations led to
results compatible with %

The transverse super-diffusion exponent has been measured in d = 2 [70, 160]
and is found to be compatible with 2, although not considering so large systems and
time scales. In three dimensions super-diffusion with an exponent ~ 1.7 has been
reported in a Vicsek-style model with cohesion [85], thus contradicting Toner and Tu
theory. Such measures are however very sensitive to global rotations of the order,
which could easily have introduced some ballistic contribution to the “transverse”
motion of particles, they should thus be considered with caution.

Another contribution to the evaluation of the theory was based on the response
of flocks to external perturbations in d = 2 and 3 [161]. Indeed, the authors showed
that the shift of global order parameter in presence of an external field h follows the

(4.16)
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scaling form

_ hl—l/ h> [~%
_ pl-v z\
60 =h " fe (hL?) { WD he L% (4.17)
where v and v are related to the zero field exponents by
2
R B (4.18)
z

Toner and Tu therefore predict v = % and v = % for d =2 and v = % and v = %

for d = 3. The results from numerical simulations presented in [161]| are compatible
with these values, although the scaling of d¢ with h in the nonlinear regime should be
a transient before its saturation, which makes it difficult to indentify. Moreover the
data, as well as precision, are as usual limited for large system sizes.

The two-point autocorrelations of density and velocity have been measured in [160]
in a system with reflective boundary conditions in one direction (see Figure 4.1(¢e)). In
this work the authors could thus identify the sound modes and their anisotropic speed
predicted by the linear theory. In addition, scale free equal time density correlation
functions were observed, but the computation of the corresponding exponents strongly
suffered from finite size effects. Moreover, we will show in the next section that the
authors did not take into account inhomogeneities created by the walls that could
introduce spurious correlations.

In fine, no precise numerical evaluation of the exponents predicted by Toner and
Tu has been performed yet. In this Chapter, we thus present measures of the density
and velocity aucorrelation functions obtained from large scale simulations of the Vicsek
model. Our data provide a quantitative evaluation of the Toner and Tu theory in 2
dimensions and thus allow us to compute all the exponents characterizing the polar
phase up to two digits. Although combinations of the exponents associated to giant
density fluctuations and super-diffusion are close their predicted values, we find that
the latter are individually in clear departure from their numerical estimates. In 3
dimensions, where our measures are strongly limited by system sizes, our partial
results and a reasoning based on the two dimensional case suggest a similar picture
with deviations from the theory.

4.2 Methodology

4.2.1 Model

We have simulated the discrete time Vicsek model using both scalar and vectorial
noises, considering N particles in a box of size L¢ with d = 2 or 3. Denoting by é;(t)
the polarity of the i*® particle at time ¢, it evolves according to

et +1) = (RypeaoID) [ > e5l(t)| (4.19a)
J€EO;
1 .
e+ 1) = T | D et (t) + Vet 4.19b
& (t+1) M(t)j;aej () +n" @) | ( )

and its position naturally obeys 7;(t + 1) = 7;(t) 4+ voé;(t + 1). Here II is an opera-
tor that normalizes vectors to unity, 0; is the neighborhood of i defined as the disk
(sphere) of radius rg, and N;(t) is the number of particles in 9; at time ¢ (including
i). In the scalar noise case, R, rotates vector uniformly in the interval ) — mn; mn]
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if the dynamics is 2 dimensional, or in the cap of surface 27(1 — cos(n)) for d = 3.
Considering vectorial noise, f (t) is a random vector uniformly distributed on the unit
circle (sphere). 7°® and 7V*°* thus play the same role in the two variations of the
model, thus in the following we will use 77 in both cases. Finally, vg denotes the speed
of particles. Expressing distances in units of rg, the problem depends on the three
usual parameters: the average density pg, the noise n and vy.

Although the models have been written in a general form encompassing the d = 2
and 3 cases, in the following we will mainly consider systems in two dimensions, which
have already required a substantial numerical effort. The three dimensional case will
be addressed in Section 4.5 only. We work at constant density pg = 2. The choice
of the other parameters requires some care, indeed we do not want to sit too deep
in the ordered phase, where fluctuations will be small so that the expected time and
length scales at which scaling appears will be larger. We moreover need to remain
sufficiently far from the coexistence phase such that the system is homogeneous on
average. Since the nonlinear effects that lead to the Toner Tu phenomenology scale in
0(2), we want it to be as large as possible, however vy also corresponds to the distance
travelled by particles at each timestep that should not be large compared to the radius
of interaction. For the study of the phase separation scenario mediating the ordering
transition of the Vicsek model, asymptotic regimes typically appear at lower sizes
considering vectorial noise |69, 70]. We thus expect to see scaling behavior in smaller
systems for this case. We chose two sets of parameters that lead to similar values
of the global order parameter |% > éi(t)} ~ 0.87: the first uses scalar noise with
n = 0.2 and vg = 0.5 (transition around n =~ 0.3), and the second involves vectorial
noise with 7 = 0.5 and vgp = 1 (transition around n ~ 0.6). We checked that for
moderate system sizes, values of these parameter does not dramatically influence the
scaling. Using a parallelized molecular dynamics code based on the Message Passing
Interface language [153], we simulated systems with N ranging from a few millions to
hundreds of millions of particles for the largest runs.

4.2.2 Measurement protocols

We tackle the Toner Tu theory by measuring the two points equal time density and
velocity correlation functions resolved in the L? plane. These functions are obtained
by coarse graining the density and polarity fields on boxes of size 1 x 1, we checked
that this size does not influence our results, which is moreover natural since we are
looking at the large-scale behavior of the system. We then subtract from the fields
their space-averaged value, and compute the Fourier transforms of the fluctuations,
0p(q,t) and dv (g, 1), using a fast Fourier transform algorithm. Finally, the correlation
functions in Fourier space are given by

Co(@) = (Iop(@0P) . (4.20a)
@) = (Por@npP) . (4:20)

and their real space counterparts are obtained from a backward Fourier transform.
Since these correlations are supposed to be anisotropic, their evaluation requires to
define a reference direction that is steady in time. Simulating the Vicsek dynamics in a
periodic box, the global polar order is however free to rotate as shown in Figure 4.1(a).
Therefore, averaging the correlation functions on large timescales, a naive computation
will lead to their isotropic expression, from which we would not be able to deduce the
two exponents x and £. Three strategies have been explored to fix this problem, this
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FIGURE 4.1 — (a): Direction of global polar order as function of time in periodic
boxes of linear sizes L = 250 (red), 500 (black) and 1000 (blue). (b): Same as (a)
but introducing an external field h or doing simulations in a channel configuration,
at linear system size L = 2000. (In that case the global order is computed only in
the region far from the reflective boundaries, see (e).) (c): Density field averaged
over the direction longitudinal to the order as function of I} = (z, /L, — %) for
different system sizes, showing accumulation of particles near the walls in the chan-
nel configuration. In order to observe the exponential decay of the density with a
characteristic length ~ 0.1 x L (dashed line), we have subtracted to it its average
value computed in the central region delimited by the two vertical dashed lines in
the inset. (d) Hlustration of the procedure (i) consisting in rotating a copy of the
system for the measurement of correlation functions. That way the global polar
order (red arrow) is always oriented along the same direction (horizontal here),
the grey shaded regions are not considered in the computation of the fields . (e):
The channel configuration, where reflective boundaries in the vertical direction con-
strain the global order to be horizontal on average. As shown in (c) this creates
density inhomogeneities, correlation functions are thus computed in the half-system
excluding the shaded regions.

section is devoted to their presentation as well as the discussion of their advantages
and drawbacks.

(i) Rotating the system

The first solution we examined was to keep periodic boundary conditions, but rotating
a copy of the system at each measure such that the direction of the global polar order
is kept fixed (see Figure 4.1(d) for an illustration). The main interest of this method
is that it does not affect the dynamics, thus avoiding spurious effects. However, as
pictured in Figure 4.1(a) rotations of the order in time become slower and slower
increasing system size. Time necessary to collect suitable statistics then follows the
same trend, making our access to large sizes limited. For example, L = 1000 requires
typical averaging over of the order of 107 — 10® timesteps.
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(ii) Applying an external field

The second method consists in adding an external field hé) to the interaction in (4.19),
such that the direction of the order is maintained around é; (see Figure 4.1(b)). That
way, satisfactory statistics can be obtained on timescales that are roughly two orders
of magnitude lower than with (i), which opens the way for large scale simulations.
However, the main issue with applying an external field is that it introduces a global
perturbation to the system. The limit of small h therefore needs to be conbldered
Indeed, the latter is expected to attenuate fluctuations on scales ¢~ > h™= [161],
implying to consider lower and lower values when system size is increased. To evaluate
the influence of the field on our measures, we must also do our simulations for several
values of h and check that the results converge in the limit h — 0.

(iii) Simulations in a channel

The third and last protocol we considered is to impose reflective boundary conditions
on one direction, the other one remaining periodic. With this local constraint, the
global order naturally fixes its orientation along the axis parallel to the walls (see
Figure 4.1(b)). As for (ii), this method considerably reduces averaging times, which
enables to simulate large systems. However, active particles tend to stay close to the
reflective border, creating and inhomogeneous density profile in the direction transver-
sal to the order. As shown in Figure 4.1(c), averaging the density along the || axis,
we find that it decays exponentially with the distance from the walls. The associated
characteristic length scales roughly as 0.1 x L., . We conclude that perturbations intro-
duced by the boundaries are local. Therefore, in this case the fields are evaluated from
half of the system only, excluding regions near the reflective walls (see Figure 4.1(e)).
We note that this precaution has not been taken in [160], probably leading to spurious
correlations.

Because of the walls, the fields are no more periodic in the direction transversal
to the order. To avoid apparition of spurious effects in the transversal direction, the
regions near the walls that are not involved in the computation of the fields are zero
padded. Let F'[x|,z1] be a two dimensional field computed this way, the Fast Fourier
transform algorithm assumes that F' is periodic and formally computes

Ly—1 3L, /4-1

Glny,ni] = Z Z Flz),z]exp <—2z7r [QII + I/J_:|> , (4.21)

z =0 2, =L, /4

where we have used that Flz,x ] = 0 for all z; < L,/4 or x; > 3L, /4. From
this expression, we note that for n, = 2k, even, the Fourier transform of the (non
periodic) original field is recovered

Ly—1 3L, /4-1

Ty, kiry
Gy, k1] = Z Z Flz), 1 ]exp <—227r[ L + LL/2:|> ) (4.22)

=0 z, =L, /4

whereas for n, odd the resulting function is shifted in the transverse direction. The
correlation functions of the fields are thus obtained from the zero padded fast trans-
forms considering only even indices.

We have evaluated the velocity and density correlation functions using the pro-
cedures (i), (ii) and (iii) with scalar noise and linear sizes ranging from 500 to 2000.
Figure 4.2 shows the scaling of the velocity correlation functions along the longitu-
dinal and transverse directions as function of ¢ and g;. As expected, applying a
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FIGURE 4.2 — Equal time velocity autocorrelation functions computed from the
methods (i) (periodic systems with rotation), (ii) (applying an external field), and
(iii) (in the channel configuration). (a) and (b) respectively represent the functions
in the longitudinal (n, = 0) and transverse (n| = 0) directions, that are rescaled
in order to make them collapse.

too large external field damps the correlations in the small ¢ limit. Apart from that,
functions computed from simulations with comparable sizes collapse well if we rescale
them properly. We thus conclude that, hopefully, if carried out precautiously the
measure protocol does not influence much of the results. In the following section we
will therefore focus on the channel configuration (iii).

4.3 Equal-time correlation functions, exponents y and ¢

Correlations in Fourier space

We first present results related to the equal-time density and velocity correlation
functions, plotted in the (n)/L| = q/2m,n1 /L1 = q1/27) plane in Figure 4.3. Both
are clearly anisotropic with a ¢ — 0 divergence that appears slower transversally to
the order. Following Toner and Tu theory, from (4.6) and (4.8) the roughness and
anisotropy exponents x and £ can be computed from the scaling of these correlations
in the longitudinal (n, = 0) and transverse (n) = 0) directions.

Our cleanest and most convincing data concern the transverse velocity correlation
function Cy(n| = 0,n), shown in Figure 4.4(b). In this direction, the curves cor-
responding to vectorial noise exhibit a power law behavior at small n| at all sizes.
They moreover collapse well, even in the small ¢, limit, suggesting weak finite size
effects and minor influence from the reflective boundaries. The corresponding expo-
nent is 1 + 2y + £ = 1.33(2), a value relatively close to the theoretical prediction g.
With scalar noise, the scaling is less clear, especially multiplying the curves by qi‘33.
However, it is not excluded that a power law behavior with an exponent —1.33 would
be reached for smaller ¢, 7.e. considering larger systems. This is in agreement with
the fact that asymptotic regimes typically appear at larger sizes using scalar noise [69,
70, 158].

According to Toner and Tu, the density correlation function in the transverse
direction should exhibit the same low ¢, divergence. Figure 4.4(d) shows that this is
indeed the case with vectorial noise, although the scaling is only visible on larger sizes
than for velocity correlations. Using scalar noise, as for C,, the power law behavior
is not that convincing and may occur at larger sizes.
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FIGURE 4.3 — The two dimensional density (a) and velocity (b) equal time corre-
lation functions in Fourier space for scalar noise and L = 2000.

In the longitudinal direction, for n| large enough the velocity correlation function
curves seem to scale with an exponent close to —1.65 (see Figure 4.4(a)). Decreasing
ny /Ly below ~ 1072, we see the apparition of a crossover to (14 2y +&)/¢ = 1.41(2),
that is thus visible only considering very large systems. Contrary to the transverse
direction, this value is in clear departure from the prediction 2. The crossover is
moreover independent of system size, suggesting that it is present asymptotically.
Here too, the scaling behavior occurs at smaller sizes considering vectorial noise,
although it is qualitatively the same for both datasets. This direction also seems to
be more subject to finite size effects, as pointed out by the absence of collapse of
correlations and their saturation for small nj.

Longitudinal density correlations, shown in Figure 4.4(c), are more tricky to inter-
pret. Indeed, like the velocity they exhibit a crossover at small n| but to an exponent
~ —0.67 ~ —1.33/2, far from its predicted values that would be —2 or —4 from Equa-
tion (4.8). This exponent does not have any connection with Toner and Tu theory,
their prediction for the scaling behavior of the density (4.6) could thus be incorrect.
In fact, the new terms initially missed could modify the scaling form of the density
correlation function derived in [73]. Another possibility is that the true asymptotic
scaling could appear for larger systems, as stressed by the large n| range on which
the curves do not collapse.

From the measurement of the decay exponents of the density and velocity cor-
relation functions in the two directions, we deduce x = —0.30(2) and £ = 0.94(2).
Comparing these values to the ones proposed by Toner and Tu, —% and %, we find
that, counterintuitively, flocks are much less anisotropic than expected since £ is close
to 1. Moreover, as mentioned in Section 4.1.3, x is smaller than its prediction, mean-
ing that the new nonlinearities spotted in [112] are relevant and tend to suppress
fluctuations on large scales. It is nevertheless worth noticing that, even if both x and
¢ are different from their predicted values, the quantity 1+ 2x + £ = 1.33(2) remains
close to g. Averaging the correlation functions over all orientations of ¢, since £ < 1
the transversal contributions should dominate in the ¢ — 0 limit. Figures 4.4(c,d)
show that both density and velocity decay with a value in excellent agreement with
—1.33, leading to a giant density fluctuations exponent equal to 1.67(3) instead of %.
We can thus explain why most studies measuring this quantity are compatible with
Toner and Tu theory.

Since our measures cover the correlation functions in the whole space, we can also
test the validity of the scaling forms (4.5) and(4.7) in the (gj,¢1) plane. In order to
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FIGURE 4.4 — Equal-time velocity and density correlation functions in Fourier space
for both scalar and vectorial noises and several system sizes. The functions exhibit
different scaling exponents in the longitudinal (ny = 0) and transverse (n = 0)
directions. Averaging them over all orientations of the wave vector, their ¢ — 0
divergence is dominated by contributions from the L direction. (a): Scaling of

Cy(ny,nL = 0) showing a crossover between two power laws with exponents —1.65

and —1.41. (b): CA'U(nH = 0,n,) showing an algebraic decay with an exponent

—1.33. (c): Cy(ny,n1 = 0) showing a power law decay with an exponent —0.67 for

intermediate longitudinal wave vector. (d): C,(n) = 0,n.) showing a power law
decay with the same exponent —1.33 as the transverse velocity correlations. (e):
Isotropic velocity correlation function showing an algebraic decay with an exponent
—1.33. (f): Isotropic density correlation function showing an algebraic decay with
an exponent in good agreement with —1.33. In all the panels vectorial noise curves
have been shifted vertically for clarity.
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FIGURE 4.5 — (a): Isolines of the function (4.23a) for different system sizes. (b):
Same as (a) but considering the function (4.23b). In (a) and (b) the black and blue
dashed lines respectively mark the curves ¢ ~ ¢}-%* and ¢ ~ ¢{%. (c): Same as (a)
but using the Toner and Tu predicted exponents. The dashed line indicates the line
q ~ qi’_/ 2 (d): Transverse super diffusion in the ordered phase of the 2 dimensional
Vicsek model. The curves correspond to the mean time 7 a pair of particles takes
to double the initial transverse distance d; between them. The slope 1.47 predicted
by our computation of the exponents is marked by the dashed line. Data in (a-d)
correspond to vectorial noise.

do so, let us consider isolines of the functions

13345 (= _  § q)¢o
e s < q¢o ) ]
z Co(@) = fp (L) Y (6;) , (4.23b)

plotted in Figures 4.5(a,b) for our best data corresponding to vectorial noise?. For the
velocity correlations, these lines should in principle correspond to the curves defined
by g1 ~ qﬁ/ ¢
power law behavior with an exponent compatible with 1/ = 1/0.94 = 1.06. At
n /Ly 2 1072 the curves then exhibit a size-independent crossover leading to an
exponent £ ~ 1/1.25 = 0.8. The latter is in agreement with the decay exponent of
the longitudinal velocity correlation function, ~ —1.65, observed at the same values
of n”/ L. On the contrary, contour lines corresponding to the density correlation
function do not show any small n”/ L) crossover, but a power law behavior with an
exponent that stays close to 1. We note that the expected behavior of this function
is not so obvious because of the presence of the Y (95) factor, which could have an

, at least in the ¢ — 0 limit. In this regime, we indeed observe a

2Scalar noise leads to similar results.
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influence in the small ¢ region. Figure 4.5(c) finally shows that using Toner and

Tu prediction, i.e. rescaling C’v((j' ) by q?_/ 5, our data are clearly incompatible with

1/§ =32 ~1.67.

The two exponents x and £ also lead to transverse super-diffusion in the symmetry
broken phase of the Vicsek model. We have measured it in the the channel configura-
tion with vectorial noise for L ranging from 500 to 2000. This computation requires
some care given that small rotations of the global order can easily introduce a ballistic
component to the transverse motion of particles. This is why we adopted the strategy
put forward in [70], which consists in computing the average time 7 two particles need
to double their transverse distance 6. From (4.12) we should thus have

_1
T~ 8 T (4.24)

that is 7 ~ 51'47, corresponding to a super-diffusion exponent equal to 1.36(6). Once
again we note the proximity of this value with the Toner and Tu prediction %. Fig-
ure 4.4(d) shows that our data are roughly compatible with 51'47, although from the
crossover identified previously, this exponent should appear on scales ~ 100, which
correspond to the upper limit of our measurements. In fact, considering the set of

exponents given by the n[l'% decay of the longitudinal velocity correlations leads to

super-diffusion with an exponent 1.38 (corresponding to 7 ~ §145) indistinguishable
from 1.36 with our current data. We thus expect that the super-diffusion exponent
should be almost independent of system size, despite the apparent crossover of the
velocity correlation functions.

Correlations in real space

Transforming back the two dimensional correlations, we obtain their expression in real
space. As in Fourier space, Toner and Tu predict an anisotropic algebraic scaling at
large distances r = |7F] with exponents 2x/£ and 2x respectively in the longitudinal
and transverse directions for the velocity. However, Figure 4.6 shows that for both
velocity and density correlations with vectorial noise, the scaling behaviors are barely,
if not, observed because of finite size effects. We therefore need to implement a finite
size scaling procedure in order to check whether the exponents determined earlier are
compatible with these data.

Let us consider C(r, L), that can be any of the one dimensional correlation func-
tion, which for r large scales like

r
C(r,L —r”f( >, 4.25
(1, L) 0 (4.25)
where ((L) is the correlation length of the system. Because correlations are asymp-
totically scale free, we expect (; ~ L. Hence, denoting ' = r/L, we have

C(r',L)=(r"L)f (r') , (4.26)

such that representing L~YC(r’, L) as function of 7/, our data should collapse on a
universal curve.

Insets of Figures 4.6(a,b) show that applying this procedure to the longitudi-
nal and transverse velocity correlations with the exponents 2y/¢ = —0.64(3) and
2x = —0.60(2) computed previously, we indeed observe a collapse of the curves at
intermediate r on a small decade, in agreement with (4.4). We do not have any pre-
diction for the density correlation function in real space, we nevertheless remark that
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FIGURE 4.6 — Equal-time velocity (top) and density (bottom) correlation functions
in real space for several system sizes. The functions do not exhibit obvious scaling
behaviors neither in longitiuinal (r, = 0) (a,c) nor transverse (r; = 0) (b,d) di-
rections. The insets represent rescalings of the curves according to (4.26) with the
exponents 2x/¢ = —0.64(1) and 2x = —0.60(2) computed previously.

longitudinal density correlations seem to scale as rﬁX/ ¢

, as shown in Figure 4.6(c).
Figure 4.6(d) on the contrary reveals that the transverse density correlation do not
scale as rix. Moreover, we could not find any exponent for which the curves collapse,
suggesting a more complicated behavior. Although the collapses are not precise and
cannot give accurate values of the exponents, we conclude that the above analysis is

compatible with the values y = 0.30(2) and & = 0.94(2).

4.4 Sound modes, dynamical exponent z

In the preceding section, we have determined the exponents x and £. To complete our
assessment of the Toner Tu theory, we now need to evaluate the dynamical exponent
z. From our previous results, we restrict ourselves to the the channel configuration
and vectorial noise that have provided the cleanest data. The computation of z can be
done through the study of the time-resolved density correlation function. The latter
is calculated from the two dimensional field dp(7,t) measured at each time step for

0 <t < T = 1024, and Fourier transformed in space and time3. The correlation

3Since the field iso also not periodic in the “time direction”, we added a L? x T zero padding to
it in order to avoid spurious correlations.
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FIGURE 4.7 — (a): Top: C'p(numl = 0,n,) as function of n,, /T for, from right to
left, n| = 1, 10, 20, 30, 40. Bottom: Same function, but in the transverse direction
(ny = 0), for ny = 1(black), 10(green) and 30(red). The small peak present
at n, = 0 does not spread increasing n and is thus interpreted as spurious.
The vertical arrows indicate the positions of the peaks if visible. (b): Direction
dependent sound waves velocities represented in polar coordinates (87 = 0 on the
horizontal line). The dashed line indicates the prediction (4.14) fitted from the
longitudinal and transversal values of cy. (c): Statistics of the right transversal
peak represented in the bottom panel of (a). Its position increases linearly with
n, , its width scales with an exponent compatible with 1.33 for small n, and its

height decays as n12'55.

function is then simply given by C’p(q_’, w) = <|5ﬁ(q_’, w)\2> and the average is taken
over repetitions of this procedure.

The Toner and Tu theory presented in Section 4.1.2 predicts that at fixed ¢,
ép((f, w) exhibits two peaks situated in wy(q), which follows Equation (4.13). Fig-
ure 4.7(a) shows the behavior of this function in the directions longitudinal (n; = 0)
and transverse (n = 0) to the average order parameter. In each case there are indeed
two peaks whose positions satisfiy Rwy = c4|q] (see the linear behavior in Figure 4.7(c)
for the transverse direction), which defines their speed. In the longitudinal direction,
we find ¢4 (0) >~ 0.93 and c¢_(0) ~ 0.64. Toner and Tu relate these quantities to the
average order parameter c4(0) = (v) = y/a/f and ¢_(0) = v = A1 (v), these values
thus lead to A\ >~ 0.69 # 1 confirming that the system is not Galilean invariant. We
also note that (v) =~ 0.93 is larger but not too far from the measure of the order param-
eter computed in the regions far from reflective boundaries (~ 0.87). The transverse
speeds of sound can be computed setting n| = 0, we find ¢y (g) =~ £0.40 = /o1p0-
This leads to the first moment of the pressure o equal to ~ 0.08, in clear departure
from the value % computed from the coarse graining approaches (see Section 1.4).
According to (4.14), these three values completely determine the speeds of sound for
all directions of ¢. We have measured them for different orientations 0 < 67 < g4
and find that, even if the measure can be complicated because some peaks are barely
visible (see Figure 4.7(a) for example), all of our points nicely fall on the predicted
curve shown in Figure 4.7(b) with no additional adjustable parameters.

The exponent z can be computed independently from the scalings of the widths (4.13)
and the heights (4.15) of the peaks in the longitudinal and transverse directions. How-
ever, Figure 4.7(a) shows that our resolution is too low to characterize the sharp peak
in the longitudinal direction for low ¢;. On the contrary, in the transverse direction
peaks are rather smooth, even for the smallest ¢, values. The easiest measure is the
height of the peaks that should scale as ql(2X+z+3§71). For small g, we indeed find a
power law decay of the height with an exponent —2.55(2) (see inset of Figure 4.7(c)).

4The opposite orientations are then obtained from the invariance of the system under ¢, — —q. .
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Using the exponents computed in the previous section, x = —0.30(2) and £ = 0.94(2),
we thus find z = 1.33(12)%. The uncertainty on z, computed summing the ones on
X, & and the height scaling, is probably overestimated. This value of z satisfies the
hyperscaling relation proposed by Toner and Tu, z = d — 1 + 2x + £, that was used
for their exact derivation in d = 2. In fact, although the exponents are different this
relation seems to remain valid. To explain it, we note that the equal time density
correlation function can be computed from

Co(q) = /(;:Cp(qi w), (4.27)
leading to CA‘p(qL) ~q 7 if g < qi [160]. Identifying this relation with (4.8c), we
indeed get z=d —1+2x+&=1.33(2) ind = 2.

We also computed the width of one of the transversal peaks. This measure is in
fact more difficult than the maximum, because peaks become sharper as ¢; — 0,
which requires a large resolution in frequencies. When ¢, is large enough, on the
contrary, the two peaks are so large that they cover each other near the origin. We
thus define the width as the distance Aw between the maximum position w4 and
the point where C,(q,w) reaches half of the total height when going in the opposite
direction from the other peak. Restricting ourselves to the wave numbers for which
the peak width is well defined, Figure 4.7(c) shows that it is compatible with 1.33 in
the small ¢ limit, although our data lack precision.

4.5 Preliminary results in three dimensions

In this section we present partial results obtained in three dimensions. For these
simulations, we have considered scalar noise with po = 1, n = 0.2, v9 = 0.5 (order
parameter ~ 0.88), and linear system sizes ranging from 100 to 500. These parameters
allow to be safely out of the phase coexistence region, which takes the form of 2
dimensional polar “sheets” pictured in Figure 4.8(a). We imposed reflective boundary
conditions in two directions such that particles are constrained to move globally along
the third one. Figure 4.8(b) shows density profiles averaged over the longitudinal
direction and orientations of 7| . As in two dimensions, particles accumulate near the
walls, moreover their density decreases exponentially when reaching the center of the
channel with a characteristic length ~ 0.1 x L. Following the 2 dimensional case,
we thus use only the central region of the channel, that represents one fourth of the
total system, for the measure of correlations.

The computation of equal time density and velocity autocorrelation functions is
similar to the one presented in Section 4.2.2 for d = 2. Moreover, because the problem
is axisymmetric, correlations only depend on ¢; = |7 |, the norm of the wave vector
orthogonal to the global order. Therefore, we averaged them over all orientations of
q1 . Although the systems we considered are comparable to the two dimensional case
in terms of number of particles, the linear sizes are one order of magnitude smaller.
Figure 4.9 thus shows that scalings of velocity and density correlations are less clean
than the ones presented in Section 4.3.

As for d = 2, the scaling is better in the transverse than in the longitudinal
directions. The exponent predicted by Toner and Tu, with which both density and
velocity correlation functions should diverge in the ¢, — 0 limit (with q < qf_), is

—(24+2x+¢) = —%. Our data shown in Figures 4.9(b,d) are compatible with this

5Note that the set of exponents given by the qf1'65 decay of the longitudinal correlation function,
x =~ —0.24 and £ ~ 0.81, gives z ~ 1.6 that does not satisfy the hyperscaling relation z = d—142x+&.
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FIGURE 4.8 — (a): Snapshot of the phase coexistence in the 3 dimensional Vicsek
model. Particles are colored according to the norm and direction of the projection
of their orientation on the horizontal plane, those moving vertically being white.
The white arrow indicates the direction of the global order. Parameters: py = 1,
n =0.52, L = 64. (b): Density field averaged over the direction longitudinal to the
order and orientations of 7 as function of I, = (|#.|/L, — %) for different system
sizes, showing accumulation of particles near the walls in the channel configuration.
In order to observe the exponential decay of the density with a characteristic length
~ 0.1 x L, (dashed line), we have subtracted to it its average value computed in
the central region delimited by the vertical dashed line in the inset.

value, although the isotropic correlations, represented in Figures 4.9(e,f) suggest a
slightly different estimation >~ —1.65. Our precision is below the difference between
these two values, insets of Figures 4.9(b,d) indeed show that a slope —1.65 or larger
could eventually be reached in bigger systems.

At moderate g, the longitudinal velocity correlation function scales with an expo-
nent ~ —1.9 larger in absolute value, and saturates when ¢ — 0. The two exponents
would give £ ~ 1.65/1.9 ~ 0.87 lower than its estimated value in d = 2 (0.94(2)).
However, since £ =1 for d > 4, we would expect it to interpolate between 0.94 and 1
in d = 3. Assuming § ~ 1, we postulate the apparition of a crossover for ¢; — 0 to a
decay exponent ~ —1.65, thus accessible at larger sizes only. The longitudinal density
correlation function, as in two dimensions, does not fit Toner and Tu predictions. For
intermediate ¢ it scales with an exponent ~ —2.4 then saturates when ¢ — 0. A
crossover to a smaller slope seems to emerge at the largest size we considered, although
our current data are not compete enough to draw any definitive conclusion.

Giant density fluctuations, measured for same parameters but in a fully periodic
configuration, are shown in Figure 4.10(a). We find an exponent ~ 1.56 fully com-
patible with both the Toner and Tu prediction %g ~ 1.53, as well as our estimation
from the correlation functions ~ 1.55. Assuming & ~ 1, 2 + 2y + £ ~ 1.65 thus gives
2x ~ —1.35. With these values 2x/{ < —1, therefore the polar phase of the Vicsek
model should exhibit normal diffusion in three dimensions. We tried to evaluate it
with the same procedure that was employed in Section 4.3, but Figure 4.10(b) shows
that our data are related to too small systems to be able to conclude whether there
is any super-diffusion in the transverse direction.

We did not carry out the analysis of the space-time correlations giving access to the
dynamical exponent z. However, as shown in the preceding section, the hyperscaling
relation z = d—1+42x+¢ is satisfied for d = 2, and should still be valid in 3 dimensions.
Although we do not have a direct estimate of z for d = 3, we can nonetheless postulate
z =~ 1.65, which is compatible with the Toner Tu prediction %.
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FIGURE 4.9 — Equal-time velocity and density correlation functions in Fourier space
for several system sizes and d = 3. The functions exhibit different scaling exponents
in the longitudinal (n; = 0) and transverse (n) = 0) directions. Averaging them
over all orientations of the wave vector, their ¢ — 0 divergence is dominated by
contributions from the L direction. (a): Scaling of C*v(nH,nL = 0) showing a

power law decay with an exponent ~ —1.9. (b): C,(n = 0,n1) showing an

algebraic decay with an exponent ~ —1.65. (c): ép(ﬂ‘l,”l = 0) showing a power
law decay with an exponent ~ —2.4 for intermediate longitudinal wave vectors. (d):
CA’p(nH = 0,n, ) showing a power law decay with the same exponent ~ —1.65, as the
transverse velocity correlations. (e): Isotropic velocity correlation function showing
an algebraic decay with an exponent ~ —1.65. (f): Isotropic density correlation

function showing an algebraic decay with an exponent ~ —1.65.
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FIGURE 4.10 — (a): Variance vs. mean of the number of particles in sub-systems
for several linear sizes showing giant density fluctuations with an exponent ~ 1.56
(dashed line) in 3 dimensions. In the inset, the same curves have been rescaled by
(N)~1:56_ (b): Mean time 7 a pair of particles takes to double the initial transverse
distance ¢, between them for several system sizes. The curves are compared to
the 2 dimensional case (orange) to show that our data in 3 dimensions are still
rudimentary.

4.6 Conclusion

In this Chapter, we have numerically examined the Toner and Tu theory in two and
three dimensions from large scale simulations of the Vicsek model. For d = 2, while the
propagation of sound waves in flocks is in agreement with the analytical predictions
from Toner and Tu and reveals the absence of Galiean invariance, the values of the
exponents are tncompatible with their theory. The latter are summarized in Table 4.1.
Indeed, although the dynamical exponent z = d — 1 + 2x + £ = 1.33(2) is close
to its predicted value %, giving a similar exponent of the giant density fluctuations,
we find for the roughness and anisotropy exponents x = —0.30(2) and & = 0.94(2)
instead of respectively —% and % Flocks are thus much less anisotropic on large scales
than predicted by Toner and Tu. Moreover, since x is lower than its predicted value,
we conclude that the new nonlinearities identified in [112] are relevant and suppress
velocity fluctuations on large distance, confirming the presence of long range order in
d=2.

Confronting our estimation of the exponents with the ones extracted from the
response of flocks to external perturbations (see Section 4.1.3), we should get v =

d=2 d=3
TT95 | Simulations | TT95 | Simulations
X —3 —0.30(2) —3 ~ —0.68
3 3 0.94(2) : ~ 1
z=d—-1+2x+¢| ¢ 1.33(2) 8 ~ 1.65

TABLE 4.1 — Comparison between the exponents originally computed by Toner Tu
in [72, 73] and the results of our numerical simulations in two and three dimensions.
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FIGURE 4.11 — Comparison of our estimation of the Toner Tu exponents with
the data presented in [161], based on the scaling of the increment of global order
parameter d® when the system is subject to an external field h (see Equation (4.17)).
(a) and (b): Respectively d = 2 and 3 data points, for which @ should scale as
h'=" in between the linear and saturating regimes, for different system sizes L. The
data are compatible with our estimation of v provided that the scaling appears for
lower h values than if v was the one predicted by the theory. (c) and (d): 2 and
3 dimensional estimation of the susceptibility: at fixed h = 3-107%(d = 2) and
21073 (d = 3) in the linear regime, §® should scale as L”. The data for system
sizes large enough are compatible with our values.

0.55(3) and v = 0.73(5) instead of % and . Figures 4.11(a,c) show that our results are
compatible with the data presented in [161]%. Moreover, our exponents are compatible
with the independent measures of giant density fluctuations and transverse super-
diffusion in the ordered phase of the Vicsek model.

While the scaling of velocity correlations satisfies the form proposed by Toner and
Tu, the last pending issue for d = 2 concerns the scaling of the equal time density
autocorrelation in the longitudinal direction, which does not follow the predicted
behavior. We expect that a further computation of this function, taking into account
the new linear and nonlinear terms related to density fluctuations identified in [112],
would clarify this point.

For d = 3, our results are much more limited by finite size effects. We could yet
safely estimate z = d — 1+ 2y 4+ £ ~ 1.65 compatible with Toner and Tu prediction %
within our accuracy. This value is also compatible with our measure of giant density
fluctuations in the ordered phase of the 3 dimensional Vicsek model. We were unable
to compute directly the exponent related to the decay of correlations in the longitudi-
nal direction. However, from our data in two dimensions, £ should in principle belong
to the interval [0.94,1] and thus be ~ 1. That way, we can postulate that x ~ —0.68
(see Table 4.1 for a summary). From these values we do not expect the presence of

5We thank Francesco Ginelli for sharing these data points with us.
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transverse super-diffusion in 3 dimensions, which still needs to be confirmed by direct
measurements. Comparing with the results of [161], for d = 3 we should have v ~ 0.18
and v ~ 0.29 instead of % and % Figures 4.11(b,d) show again that our values are
compatible with the data. Improvement of the data in 3 dimensions is nonetheless
needed in order to get more accurate estimations of the Toner Tu exponents. This
work is still ongoing during the redaction of this manuscript.

For the first time, we have thus tested the Toner Tu predictions quantitatively. Our
main conclusion is that the universal exponents characterizing the ordered phase of the
Vicsek model, summarized in Table 4.1, are incompatible with the ones computed from
the theory. We interpret this from the fact that the new nonlinearities identified by
Toner in a later publication constitute relevant perturbations of the order. Moreover,
we find that their main effect is to damp velocity fluctuations and make the system
less anisotropic on large scales. We hope that this work will pave the way for new
theoretical studies of the universal properties of ordered flocks, which are crucial for
our understanding of dry aligning active matter.
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Chapter 5

Deriving hydrodynamic equations
for dry active matter models in
three dimensions

5.1 Introduction

This Chapter has been adapted from an article now submitted to Journal of Statistical
Mechanics: Theory and Experiment. In this work, we build a formalism based on
the Boltzmann-Ginzburg-Landau (BGL) approach presented in Section 1.4.1 for the
derivation of hydrodynamic equations describing Vicsek-style models in 3 dimensions
(3D). Indeed, among the several approaches proposed for similar computations in
2D, the BGL framework has been shown to allow for a controlled derivation of well-
behaved nonlinear hydrodynamic equations. Is is in particular able to reproduce
qualitatively the microscopic phase diagrams of Vicsek-style models, and provides a
simple theoretical understanding of the common phase-separation scenario |67, 89, 91,
121, 122|. The above successes were all obtained in 2D and not much is known in
3D. In particular, the connection between the microscopic and hydrodynamic levels
remains essentially unexplored. We thus treat the three universality classes that have
been introduced in 2 dimensions in Section 2.1.1. We study the linear stability of
the spatially-homogeneous solutions of the corresponding equations. All results are
compared to the 2D case.

The organization of the chapter is as follows, in Section 5.2 we define the mi-
croscopic models that we use as a starting point. Section 5.3 introduces the general
framework for the BGL approach in three dimensions. In 5.3.1 we build the Boltzmann
equation for the single particle distribution starting from the microscopic dynamics.
The decomposition of this distribution in terms of spherical harmonics and the con-
nections to physical fields is presented in 5.3.2. The expression of the Boltzmann
equation in terms of spherical harmonics modes is given in 5.3.4. Sections 5.4 and 5.5
are dedicated to the derivation of the hydrodynamic equations and the linear stability
analysis of their homogeneous solutions for, respectively, systems with ferromagnetic
and nematic alignment. A brief discussion of our results and an outlook of future
work can be found in Section 5.6.

5.2 Microscopic models

Vicsek-style models consist of N pointlike particles moving at a constant speed vg in a
periodic domain of volume V. The only interaction, competing with noise, is the local
alignment of particle velocities. Here velocity and position of particle ¢ are updated
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FIGURE 5.1 — The central panel shows the schematic phase diagram of Vicsek-
style models in two dimensions. All classes (polar, active nematics, rods) show a
disordered gas phase at low densities and large noise, a (quasi)-ordered liquid phase
for large densities and low noise, and a coexistence phase in between them. Left
panel: snapshot of the coarse-grained density field in the coexistence phase of the
polar class. Here two parallel high-density ordered bands travel from left to right
amidst a disordered gas. Right panel: same as left panel but in the active nematics
class. Here the nematic order is along the band. Such nematic bands do not travel
ballistically as in the polar class, but they are known to be linearly unstable, so
that the coexistence phase consists in a spatiotemporal chaos of bands.

at discrete time steps following:

Gi(t+1) = (Ryo9)(@(t)) (&-1)
Ft+1) = 7)) +e®)Tt+1),

where ¢ is an operator returning unit vectors (J(«) = @/||u||), and R,¥ rotates the
vector ¥ by a random angle drawn from a uniform distribution inside the cap of surface
27(1—cos(n)) (an arc of length 27m in 2D) centered on ¥. In the polar and rods cases,
€ = 1, while in the active nematics case where velocity reversals occur, ¢ = +1 and
changes sign with probability «. Finally, (-); stands for the (equal-weight) average of
the polarities of all particles present in the local neighborhood of particle i (including i
itself), 0;, defined in 3D (2D) by the sphere (disk) of radius 7o centered on 7;. Particles
interacting ferromagnetically align their polarities while nematic symmetry involves
anti-alignment of polarities that initially point in opposite directions:

@)= gt 5 (@)= sign[di(t) - 7 ()7 (1) . (5-3)

JEO; JEOD;

It is now well-known that the main parameters of these models are the global
number density pg = N/V and the noise strength 7, while the speed of particles vy
and the reversal rate « play only minor roles. As already shown in Section 1.4.1,
ro and vy can be set to unity at the kinetic level, and thus also at hydrodynamic
level. Anticipating our results, we will confirm that in 3D also, the reversal rate « has
no qualitative influence (at least at the deterministic, linear level considered below),
leaving us with the usual two main parameters pg and 7. In this parameter plane, the
phase diagrams of these models for the 2D case all take the form depicted in Figure 5.1.
In the polar case (ferromagnetic alignment and no velocity reversals), the liquid phase
has true long-range polar order, and the coexistence phase is a smectic arrangement of
dense, ordered, traveling bands moving in a disordered gas (left panel of Figure 5.1).
With nematic alignment, the liquid shows global nematic order (quasi-long-range for
active nematics and possibly truly long-range for rods), and a spatiotemporal chaos
of dense, ordered, nematic bands is observed in the coexistence phase (right panel of
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Figure 5.1) [67, 69, 87, 89, 91].

5.3 Boltzmann-Ginzburg-Landau approach in 3 dimensions

In this section we describe the implementation of the Boltzmann-Ginburg-Landau
(BGL) approach in three dimensions. The path followed is the same as in two dimen-
sions, and was described in detail in Section 1.4.1. The aim is to derive hydrodynamic
equations from microscopic models of dry aligning active matter, keeping track of the
particle-level parameters in the transport coefficients. The starting point is a Boltz-
mann equation, considered a good approximation in the dilute regime, although the
results obtained in two dimensions have proven to remain qualitatively good even at
high densities as long as steric interactions do not become dominant. The Boltzmann
equation governs a one-body density. Expanding it in term of spherical harmonics
modes of the orientations, a hierarchy of field equations is obtained. A scaling ansatz
valid near the onset of orientational order is then used to truncate and close this
hierarchy, keeping only the slow modes.

5.3.1 Building blocks of the Boltzmann equation

The easiest way to transform the microscopic model in a time-continuous model is to
consider that the tumbling events, given by the angular noise, become probabilistic
with a time rate A ~ A%s = 1. This preserves the statistical properties of the angular
noise of the microscopic model. Therefore, a particle experiences a random variation
of its direction of motion, drawn from a distribution of width ¢ that plays the role of
the microscopic angular noise strength 7.

In the dilute limit and assuming the molecular chaos hypothesis [117], the evolution
of the system can be reduced to the study of the evolution of the coarse-grained single
particle distribution function f(7,,t), which measures the density of particles in a
phase space domain of mesoscopic dimensions centered on (7, ¥) where 7 is the spatial
location of the particles and ¢ = wvgé is their velocity, with é a unit vector. The
dynamics of f(7,,t) is governed by the generic Boltzmann equation [80]

8tf(F7 17’ t) +ve- 6f(":: U) t) = DOAf(Fa 177 t) + Dl(:Zaﬂaaa,Bf(’Fv 177 t)
—a [f(F’ 27’ t) - f(Fv _177 t)} + Isd[f] + Icol[f] ) (54)

where V = (9, Oy, 02).

The first line of equation (5.4) is the general form of the free motion contribution,
which we derive in detail now [80]. In the case of polar particles, or when velocity
reversals occur on timescales larger than the ones resolved by the Boltzmann equation,
we trivially have v = vg and Dy = D1 = 0. On the other hand if the reversal rate of
velocities is sent to infinity the free motion of particles is apolar at the kinetic level.
In that case particles update their positions with a random displacement /At drawn
from the distribution

B(5' — 1é) = % 5O (" — voe) + 3B (@' + vpe)| (5.5)

The corresponding evolution of f can then be computed from It6 calculus to second

order and reads

vE At
6

O f (7, U,1) = (Af(7,7,t) + 3¢ap0a0s f (7, U, 1)) , (5.6)
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where go3 = eq€eg — 0qp/3 and summation over repeated indices is assumed. We thus
obtain the free transport terms in (5.4) with o = 0, Dy = v3At/6 and D; = 3Dy.
We note that these relations only hold for simple Vicsek-style dynamics while in
more complicated cases v, Dy and D; can be different. However, as we will see in
the following © can be eliminated by nondimensionalizing the Boltzmann equation
and the diffusion coefficients do not affect qualitatively the results, therefore and for
simplicity we focus this work on simple Vicsek-like models.

The second line of equation (5.4) regroups terms that account for the dynamics of
velocities. From left to right we find an exchange term that models reversal of ¥ at
a finite (small) rate a and the integrals describing angular self diffusion of velocities
and collision events.

The integrals Iyq and I, depend on the microscopic model as well. The micro-
scopic dynamics can be described in terms of rotations of the direction of motion
of the particles. Rotation transformations in three dimensions belong to the SO(3)
group, which can be parameterized by the three Euler’s angles. Rotations of a generic
vector U are thus obtained by

5’ = R(0,0,0)7 = R.(¥)Ry(0)R(a)7 (5.7)

where R;(¢) represents a rotation around the i axis of an angle ¢ and «, 6,1 are the
Euler’s angles. Any velocity vector can be obtained from rotations of the north pole
é., which is the unit vector pointing along the z axis. Such a rotation is only given by
the two zenith and azimuthal angles (0, ) (position on the unit sphere, 0 < 6 < 7,
0 <1 < 2m) since the north pole is invariant under rotations around the z axis. In
order to lighten the notations we define the two angles as Q = (0,), and a velocity
vector is represented by

() = v9é(2) = voR(Q)é, . (5.8)

In order to map the action of the microscopic angular noise in the self-diffusion
integral Isq[f] we consider tumbling events that are rotations of the velocity of a
particle. We define the angular noise operator as

PAT(Q) = RQR(ARHQ)FQ) = voR(Q)R(A)é, (5.9)

where the couple of angles A is drawn from a probability distribution Psg(A). The
noise operator first rotates the velocity direction to a reference direction é,, then it
adds the noise in the form of a rotation and finally it rotates back the vector. This
way of applying the noise was chosen so that P,y does not depend on the current
orientation ). The self-diffusion operator is then given by the sum of a loss and a
gain terms

Lalfl = —M\f(Q)+ A / 9 / AAPA(A) F( )5 (5(Q) — PAd())
= AM(9) + A / 4y F(9) P (Arg[R(Q)R(Q)2,))

where [ d€ stands for [ sin(6)d0 fo% d¢. The short notation f(Q) stands for f(7, 7(Q), t)
where we have hidden the space and time dependencies in order to lighten the nota-
tions. The Arg function returns the couple of angles defining the direction of a vector
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on the unit sphere, thus Arg[é(Q2)] = © . The gain term of the self-diffusion corre-
sponds to a kind of angular convolution® [162, 163] between the distribution function
f and the noise probability P.q.

The collision integral is also the sum of a loss and a gain terms, considering the
two processes by which the direction of motion of a reference particle can move away
from or reach ) during a two-body collision

Icol[f] = _Icol,loss[f] + Icol,gain[f] . (511)

The loss part of the integral counts all the collisions of a reference particle moving
initially along the direction €2 with the other particles at distance rg and moving in a
direction parameterized by €’

Ieoljoss f] = f(Q)/dQ’f(Q’)K(Q,Q’) , (5.12)

where the function K(Q,) is the collision kernel that measures the frequency of
collisions. The gain part of the integral, on the contrary, counts all the collisions after
which the reference particle aligns its motion along the direction €2

Icol,galn /dQl/dﬂg/dAPCOI )f(Qg)K(Ql,QQ) X
— PAR(¥(Q1,Q2))] €) . (5.13)

The function (€, s) returns the direction of the post collision state of the two
aligned particles and P, is the probability distribution of the collisional noise.

The collision integral varies with the symmetries of the microscopic dynamics that
define the different classes. First of all, the kernel is proportional to the relative
velocity between the two colliding particles, and depends on how the they approach
each other in the microscopic free motion. In the propagative cases with polar particles
not reversing their velocity, such as in the standard Vicsek and rods models, the kernel
reads K, (1, Q2) = mr3vo|(R(Q1) — R(Q2))é|. Thanks to its invariance under global
rotations, it depends only on the relative zenith angle between the particles

Kp(Q1,9Q2) = mrgug |(I1d — R(Q))é.

(2

where R(Q)) = R71(Q1)R(Q). Conversely, when particles reverse their velocity at
some finite rate (e.g. in active nematics), they locally diffuse and the same collision
cannot discriminate if the colliding particle comes from the front or from the back. In
this case the collisional kernel reads

= Kp(Q) = 2rrdug , (5.14)

Ka(Ql,QQ) ~ |€1 — 52| + |€1 + 52| , (5.15)

since the particles move forward or backward to their velocity director with equal
probability. In the reference frame of the particle 1, the kernel for apolar particles

'In our notation using both rotations and angles, the convolution operation between two functions
A(S2), B() corresponds to (A * B)(2) = [ d1 A(Q1)B(Arg[R™"(Q1)R(2)8é,]) where é. is the north
pole. In 2 dimensions it correspond to the usual convolution operator because Arg[R™(Q21)R(Q)8,] =
0 — 6.
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an(0)] s (2)]) 610

where 6 is the relative zenith angle defining the orientation of the particle 2 with
respect to 1.

The post collisional state of the particles is encoded in the function W that de-
pends on the alignment rules. In the case of polar (ferromagnetic) alignment the
function ¥(Qq, ) returns the mean direction between R({2)e, and R(22)e,. Using
the rotation properties of ¥, the alignment rule is

reads

KA (Q) = mrdvg (

R(U(Q1, Q) = R(Ql)R(Cﬁ(Q)) , (5.17)

where the aligned angle for ferromagnetic alignment is

w(@) = (5.0) - (5.18)

It corresponds to the mean direction of the colliding particles in the reference frame
of the vector ¥(€2;). In the case of nematic alignment the post collisional direction is

B, () = <9+h(9),¢> with{ Z(Q)_g A N CRT)

0
2 3

<
<

IA INA

which is polar alignment at small relative angles and anti-alignment when the relative
angle between the particles is larger than 7.

In order to simplify the derivation of the hydrodynamic equations, we consider
that the distributions of the angular noise in the self-diffusion and collision processes

are identical and that they are isotropic with respect to the azimuthal angle
Py () = Pq(R2) = P(Q2) = P(0) . (5.20)

The same symmetry is also present in the collision kernel K. Finally, we nondi-
mensionalize the Boltzmann equation by rescaling space, time and the homogeneous
density. This is equivalent to set the speed v = vg and the rate of angular self-diffusion
A to unity without loss of generality (equivalently for apolar particles v = 0 and we
set Dg to %) The interaction radius ry is eliminated defining the nondimensional
homogeneous density pyg = m po (we remove the tilde in the following). We are left
with only three free parameters the (nondimensional) density pg, the noise strength
o and the nondimensional velocity reversal rate a.

5.3.2 Generalities on spherical harmonics

In the following, we manipulate functions (distributions) that depend on the two
angles parameterizing the velocity (while the speed is kept constant). This motivates
us to decompose the distribution using Laplace’s spherical harmonics (SH) [164]

=0 m=-I

[e%) l [e%) l
f0,9) = Z Z LYo => "> fLyme), (5.21a)

0)d6 / WY (0,0)f6,0) = [ A7 (@F@), (G210
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where f,ln are called hereafter the modes of the SH decomposition of the function
f(€), or shortly the modes. The functions Y;* are the spherical harmonics. They are
defined by
Y/ (0,) = AP LT (cos(0))e™ | (5.22)
where A" = % is a normalization constant and L is the associated
Legendre polynomial of degree [ and order m defined by:

_1\m l+m
e

w[3

(x> — 1), (5.23)

dxltm

From this definition and after lengthy but straightforward algebra we obtain the fol-
lowing useful recurrence relations

1
2l+1(

VI— 2L @) = 2z1+1 (L —m+ 1) —m +2)L75 (a)
—(l+m-1)(+ m)ﬁlrrjl(a})) (5.24Db)

VI—2LMx) = 2111 (L4 () — L7 (@) | (5.240)

zLM(z) = (L=m+ 1)L (2) + (L+m)L ()  (5.24a)

forall] >0,—l <m <land x € [-1;1].
As a natural basis of L?(S?), the spherical harmonics are an orthogonal and nor-
malized set:

/ QY™ ()Y, () = 81y1,6myms - (5.25)

The SH decomposition of distributions (real, positive and normalizable functions)
induces relations between the modes. The reality of the distribution implies that

flon = (=" fh. (5.26)

The positivity of the distribution implies a bound on the modes
£ m* mx* Al 4
i) < [aam @zl = [aovr @i < o (5.27)
0

since the associated Legendre polynomials are functions of cos(f) and bounded to 1
in the window [—1 : 1]. This relation allows us to separate physical and unphysical
solutions, since all the modes must be smaller or equal to the zero mode times a
constant. 2

The rotation of a spherical harmonic of degree [ is simply given by a linear
combination in terms of spherical harmonics of same degree. Denoting R(Q')e, =
R~ Y(a,0,v)R(Q)e,, with R(a, 0,1) defined in Eq. (5.7), we have

l
Ylm(Q/) - Z Dfn’,m(avaw)ylm/ (Q> ) (5'28)

m/=—I

2The normalization condition means that the distribution f(7,6,¢,t) is L'(R* x §?) and the SH
decomposition requires the modes to be L*(R?) integrable.
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where Dfn,ym(a, 0,v) = dﬁn/’m(@) exp(—wma —wm/1) are the Wigner D-matrices, with

dy o (0) = [+ ) —m)(+m)l—m)]

(=1)" Jeos ()] [sin
Zk: (l+m— kQ)!k‘!(m/ —m+ k)l

0
2
Sy By (5.29)

and the sum over k is taken such that the factorials are non negative. Note that in
the following we will consider only the case corresponding to o = 0 since we deal with
rotations of vectors on the sphere. We therefore introduce the notation D! , (€2) for

Dfn,ym(O, 0,1), which are related to the spherical harmonics from

47(’ *
D! (Q) = Y, (Q .
o) = 5V (@) (5.30)
and follow the condition
dQ D", (Q)D?2, (Q)D' Q) = iyl ml mblis mh) x
my,mi mh,ma my,mi+ms o 23+1 182718 1102103 11E3

<l1 lomq mg‘lg my + m2> R (5.31)

with (I lam1 ma|ls m3) denoting the Clebsch-Gordan coefficient [165] which is non
zero only if |l — la| <3 <y + I3 and my + my = mg.

5.3.3 Relations between the spherical harmonics modes and the
physical fields

We first define the decomposition of the useful observable fields we are interested in.
In order to accomplish this, we simplify the notations considering the functions

g (7t) = ﬂ';(l::; J (5.32)
The density field is the zero mode
ptrot) = B — gz (5.3
The polar field as function of {g;,} reads
2R(5%4)
G(F, 1) = / a7 507 = | 2360 | (0, (5.34)
90

Therefore, when the global polar order points in the z direction, the scalar order
parameter is simply given by [g3].
The nematic tensor q in terms of the director é is defined by

a(8, ) = (6, ) @ &(6,9) — o1, (5.35)

3
with I the identity matrix and ® the tensorial product between the two vectors. Note
that this tensor is traceless and symmetric. Like the polar field, q can be expressed
in term of the spherical harmonics of order [ = 2. Thus the nematic order parameter
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is related to the {§2,} modes by

2R(62,) — +32 23(% ) R(5%,)
Q / i0q 293(i2,) 2R, - LR S(6)
R(52,) 3(52,) 1o

(5.36)
The scalar nematic order parameter is usually defined as the largest eigenvalue (in
absolute value) of the tensor Q [138]. In the reference frame where the nematic order
lies along the z direction, Q is diagonal and the scalar nematic order parameter is

given by g3.

5.3.4 Spherical harmonics decomposition of the Boltzmann equation

Using the SH decomposition (5.21), the advection part of the free transport operator,
—e(Q) - V, can be recast into the following form

— Q)Y = \/? [Yl (QV* — Y H(Q)V — \/iylﬂ(g)az} , (5.37)

where V = 0, 410, and V* = 0, —10,. The decomposition of the corresponding term
in the Boltzmann equation reads

T [{ah}] = -~ [ a0 @A) - 910 = g5 [ty - ]
+2(2l1+1)v* [(Hm— D+ m)ily — (= m 4+ 1) m o+ 2)]
—milaz [(z m+ 1) + (L +m)gt] | (5.38)

which follows from the recurrence relations (5.24) between associated Legendre poly-
nomials.

The Laplacian operator is isotropic and thus commutes with the SH decomposition.
On the contrary, the term associated to the anisotropic spatial diffusion operator,
4030003, is transformed into

o [{it}] = s [ 40 @uns@0,0550) = | g

(I—m+4 . gl ((—m+3) . 2, (l=—m+2)! o
A A YT ) + AR
< W=y ¥ Ime2 T Ty %2V 20 —m)l 9m

(L DALV + V)

1 ((l—m+2).(l+m)! 24 12+l_3m2mg£n

C@=D@E+3)\20—m)((+m -2 T2 3

1
+@2m — 1) —m+ 1)1 +m)d,V*gh,_1 + (2m +1)9, Vg, + Qv%yf,m)

1 (I +m)! ¥2 ]2 (I+m)! ]2
+(2[+1)(2l—1) (4(l—|—m—4)! Im—2 (l _3)!8ZV 1
M ~l—2 Al—2 9.
Tt m oz om0V G+ V gmia )| (5.39)

where [0 = 202, — 92, — 82,
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Considering | = 0 we get the continuity equation
Op = [2§R( L) +0. ]

1
+DoAp + Dy {4% (v* gﬁg) + AR (0.V*§%) + gmgg . (5.40)

which exhibits similar terms as in 2D: if the dynamics of particles is propagative the
density will be advected by the polar field as pointed out on the first line. On the other
hand the terms in the second line reflect a diffusive dynamics with isotropic spatial
diffusion of the density and advection by the curvature induced current generated by
the nematic field.

The SH decomposition of the velocity reversal term is straightforward knowing
how spherical harmonics transform under parity: Y;™(Q) — Y;(IIQ) = (—1)'Y;™(Q)
with IIQ) = (7 — 6,4 + 7). This relation yields

i o [ 40V @ (@) - F9) = ~a (1= (1) g (Ga)

The angular self-diffusion operator, defined in (5.10), can be seen as a convolution
between the distribution and the noise probability. Therefore, as in the 2 dimensional
case, the SH decomposition of the self-diffusion term of the Boltzmann equation is
simply given by the multiplication of the two modes of the convoluted functions.

1

A [ 4 @Lalf) = 4, + Pig, =g+ Blih,  (5.42)

where Pl = P! JAY and P! is the SH mode of degree [ of the noise distribution (5.20).
Note that from the symmetry of P its modes are different from 0 only for m = 0.

We now turn to the spherical harmonics decomposition of the collision gain term
(5.13). In the following and for simplicity we will use a slight abuse of notations and
denote by R(€2;)$22 the orientation of the vector given by R(€1)R(€2)é.. Using the
rotational symmetry properties of the kernel and alignment rule (5.14) and (5.17),
with Q = R71(2)Q, the collision integral reads

Col,gam /dQI /dQP (Q)) R_l<QI)Q> f(Q )f(R(Ql)Q) (Q>
(5.43)
Expanding the distributions in spherical harmonics modes, together with the rotation

identity (5.28) and the axial symmetry of P (5.20), give

1 A
[ Olsnlil = A Y A, SR

l1,m1 l2,m2 I3

Zn/dmfl Y, ™5 (Q) x

mb,mf,m}

/dQl}flTI(QI)D’S

I
ma2,my

(Ql)Dﬁg,mé(Ql) X
/ d YZZLIQ(Q)DZ?’/ . (@(Q)) K@),  (5.44)

where ), is the shortened form of )%, Zin:—l and the sum over integers m with
index ¢ are taken between —I; and [;. We now make use of the orthogonality relation
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(5.25) and the identity (5.31) together with the correspondence between spherical
harmonics and Wigner D-matrices (5.30), this yields

1

AzmlAZ”? [20 +1
Am /dQY} (Q)Icol,gam = Z Z 1 2 01 <l1 l2 mi mgllm) X

l l1,mq la,m2
Min(l,l2)

Yo Kl 0mylimy)| ggn, . (5.45)
mbh=—Min(l,l2)

where, from the properties of the Clebsch-Gordan coefficients, the sum over ls is now
taken between |l — 1] and [ 4 11, and

11,12 \/;/dg Y2 (0 (\TJ(Q)) , (5.46)

Note that the decomposition of the angular self diffusion integral (5.42) can be ob-
tained using the same properties of spherical harmonics as the ones that have been
employed for this calculation. After computation of the SH decomposition of the loss
part of the collision integral, which follows straightforwardly from this derivation and
is thus not detailed here, the decomposition of the full collision term reads

I+

1 A
i / QY™ QLalfl= > >, uidiimOm i, (547)
l1,mq la=|l—11|,m2
where
Ll,l Tl T,

Jm 71771127712 - POJm ;7%1277712 IT’{771”71127m2 ’ (548)
and

AMAT o1 41

Tyl l l 1
Immims = IA;n 2 20+1 ([ la m1 ma|lm)om my+msy X
Min(lz,l)

1,1
> K5l b 0mb[lmb) |
mbh=—Min(lz,l)
~ AMAT? (9 41 -
Thivle T ‘b 1+1 KB (11 1y my ma|l m) (11 1200]10) .

m,mi,ma2 A;n 21l

The function K7, is the SH decomposition of the collision kernel and it is zero ¥V m # 0
thanks to the global rotation invariance of the system.

Collecting all the SH transformed terms of the kinetic equation we obtain the
mode decomposition of the 3 dimensional Boltzmann equation (5.4)

Oghy = Th HginH + DoAgL, + DD, HgﬁnH —a (1 + (_1)l) g
+ [Pé - 1} I+ D Hi S I (5.49)

l1,m1 la=|l—l1]|, m2

where we have removed the hats and tildes in order to simplify the notations.
Although this computation holds for any axisymmetric noise distribution, numer-

ical evaluations of the coefficients of the hydrodynamic equations derived in the fol-

lowing have been done using Gaussian weights P} = exp(—[202/2). We have checked
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that results that are presented are not qualitatively influenced by the precise form of
the distribution.

5.4 Hydrodynamic equations for ferromagnetic alignment

In this section, we derive hydrodynamic equations for particles which align their ve-
locities in a ferromagnetic way. In the restricted Vicsek framework, this symmetry of
the interaction requires the particles to exhibit polar free motion in order to be able to
generate spontaneous order. Therefore, we only consider Vicsek-like particles moving
at constant speed with no velocity reversal.

5.4.1 Derivation of the hydrodynamic equations

As argued in Section 5.3.1, the Boltzmann equation does not show any spatial diffusion
nor velocity reversal term:

I+
Ough =T Lo} + [FE = 1] b+ >0 X0 il dhdh, . (5:50)

l1,m1 l2=|l—l1|, m9

The system of equations (5.50) exhibits a trivial solution: the homogeneous disordered
(HD) solution, existing for any value of the microscopic parameters (pg, o). For this
solution the zero mode is equal to the homogeneous density: gJ = po, and all the other
modes vanish: g!, = 0 for all I > 0 and m. Linearizing the Boltzmann hierarchy (5.50)
around the HD state with respect to homogeneous perturbations (space independent),
the modes evolve as

9 = p=po+6p, g =0g, V>0, (5.51a)
gl = [(BE=1) + (Jno + T 0] 8k (5.51b)
= 14n1P0)0G1ns (5.51c)

where the linear coeflicients ,ulm are given by

l A
; . Po ! 1 S, 70 K -0
Lloo) = Pi—1+ 2= | P == Y KU+ K| - == - K{| . (5.52
timlpo] = Fo \/47r[0<\/2l+1m,_l m 0) V20 +1 0] (5:52)

Note that, as a consequence of global rotational invariance, they do not depend on
the index m, which we omit in the following. The HD state is linearly stable when all
the linear coefficients u! are negative, while the physical field associated to ¢' grows
when ! becomes positive. For [ = 0, 1,2 the coefficients are

o= 0, (5.53a)
pto= (P-1)+ Tp_ B o (5.53b)
0 479 15 ’
2 68
2 2 2
— _ Zp2_ <0). :
@ = B0+ (- ) (<0 (5.53¢)

The linear coefficient pu! associated to the polar field becomes positive at large densities
po and small angular noise strength o. Figure 5.2 shows the line o,(pg) along which
the coefficient u' = 0 in the (pg, o) plane, comparing the 2 dimensional [79] and the
3 dimensional results. The HD state is stable above this line. Below, the Boltzmann
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Po

FIGURE 5.2 — Linear stability limit of the homogeneous disordered solution in the
density-noise plane for the polar class. The transition line given by u! = 0, the
stable region is above. The black and red lines, below which the disordered solution
is unstable to homogeneous perturbations, correspond respectively to the 2D and
3D cases.

equation possesses another homogeneous solution with polar order that we call the
homogeneous ordered (HO) state. We checked until [ = 10 that the linear coefficients
p! are more and more negative with I. We assume that for larger values of [ they do
the same.

From the global rotational invariance of the system we can choose the refer-
ence frame such that the global polar order is along the z axis. In Section 5.3.3
we have shown that this comes down to set the gl fields to 0 for any m # 0.
Then from the property of the nonlinear coefficients in the Boltzmann equation,
Jé{f%ﬁlﬁmQ = Tf{f}ﬁlﬁmﬁm my+msy, the numerical evaluation of its HO solution can be
done considering only real gf) fields for all I.

Figure 5.3 shows the result for the Boltzmann equation (5.49) truncated at the 1
mode with homogeneous density py = 1, varying the noise strength o. (We checked
that results are stable considering up to 20 modes.) As expected, |gi| grows below
the critical noise o, ~ 0.551 like /0. — o, and all the others modes grow consequently
due to nonlinear couplings in the Boltzmann equation. The inset of Figure 5.3 shows
that the first three modes exhibit a scaling behavior in the vicinity of the transition:
comparing |g3| with |g}|? and | gg’|% we show that they fall on the same curve. (This is
also true for the next modes, but they are not shown for clarity.) Defining the scaling
parameter € by the amplitude of the polar field (|g!| ~ & < 1), we thus find that

Oth

g o~el, WI>0, Vm, (5.54)

which we assume to be true in all generality.

Moreover, it is assumed that the spatial and the temporal variations of the modes
are small and comparable in magnitude to the parameter introduced above. For
systems such as the 3 dimensional polar class considered here, one uses the propagative
ansatz where the temporal variations are of the same order as the spatial variations:

VaVicad,~0,~0~¢, (5.55)

implying that the density variations scale as dp = ¢ in order to balance the first
equation of the hierarchy.
Using this scaling ansatz, we expand the Boltzmann hierarchy in series of ¢ and
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FIGURE 5.3 — Numerical evaluation of the homogeneous ordered solution of the
Boltzmann equation for the polar class truncating the hierarchy at the 10" mode
(density pp = 1). The solid black line indicates the first mode |g}|, saturating at a
finite value. The dashed red and dashed-dotted blue lines correspond respectively
to the second and third modes. The next modes from [ = 4 to [ = 9 are shown
with grey lines. The inset shows the scaling between ~ |g3[2, [g2| and ~ |g3| close
to the transition point.

truncate it at the first non-trivial order, 3. This leads to equations for the density,
polar and nematic fields. The density and polar fields are governed by

. 1
op = —Vg,+ §Vg} — 0.0 (5.56a)
. 1
Oty = —2V'g2y+ £(Vag = Vp) = OogZ1 + ' [plgly + X21 110 00951
+X142 00 g9ty + X101 90921 + X117 5 91920 (5.56b)
. 1 2 1
Ogy = —V'li+ Vgl = 30:05 — 30:p+ p'lplog + Xo 111 ghagn
+Xo1%1 95197 + Jo00 9090 + X006 9096 + Xoi21 91921 (5.56¢)
with X}tz = gihle g gllzh The nematic field g2, at this order, is slaved
to the density and the polar fields, as in the 2 dimensional case [79]:
1 235
932 = 102 931 B £1931 )
1 1 X2 0
9-1 = 10,22 Vgo + 57”2@9—1 T 9-190 >
2 1 1 0-11 1 2 Jooo 11
= ——RV —0 2 — .
90 512 (Vig_y) + 52 290 + 2 l9=1] 2 9090

Injecting these relations into Eq. (5.56) we obtain a closed set of equations for the
density and the polar fields. After some algebra and going back to the representation
in the real space (5.34), the hydrodynamic equations for the 3 dimensional polar class
are

Op = -V, (5.57a)
ot = (w1~ $1a?) -

: w) W — AV (|@]?) . (5.57b)
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3D 2D
1 1 1_ 8 8 2
) P=1+(GR —15)p | Pi-1+2(Pi—3)p
£(>0) 2(128—1057P})(24+7P2) 16 (5P —2)(3P2+1)
25(—105—68p0+7(15+2p0) PZ) m 15m(1—P2)+8(7T+5%2)po
42 157
Dr (> 0) 2(105+68p0—7(15+2p0) PZ) 4157 (1—P2)+8(7+5P2)po)
Dp L 0
A\ _ 3(352—105w P} +784P2) 2(16+30P,—15P))
1 40(—105—68po+7(15+2p0) PZ) 15r(1—P2)+8(7+5P2)po
A\ 20841057 P} +1176P2 2(44+30P,+15P;)
2 20(—105—68po+7(15+2p0) PZ) 15r(1—P2)+8(7+5P2)po
A\ 224(2+7P2)+(384—3157P}) X
3 80(105+68p0—7(15+2p0) P2) 2

TABLE 5.1 — Comparison of the hydrodynamic parameters of the polar class be-
tween the 3 dimensional case and the 2 dimensional case [79]. The main difference
between the two cases lies in the fact that there is an anisotropic diffusion term
and Ay # —2A3 in three dimensions. In the right column, the P; parameters are
the moments of the angular noise distribution in 2D, analogous to the P} in 3D.

These equations are nothing but the Toner-Tu equations presented in Section 1.3.2.
They are formally the same as those derived in 2D using the same method. The defini-
tion of all the hydrodynamic parameters are given in Table 5.1 and their dependency
on the local fields is made explicit with the use of the square brackets.

The non conservation of the momentum in the microscopic model forces the hy-
drodynamic equations to reflect the absence of Galilean invariance which would have
required Ay = Ay = % and A3 = 0. Moreover, although breakdown of Galilean invari-
ance is also allowed at equilibrium, derivation of Equations (5.57) from a free energy
implies that A3 = —2A9 [21]. This relation holds in the 2 dimensional equations for
the Vicsek model without steric interactions, derived from the BGL approach, but
remarkably it is no more the case in 3 dimensions as shown in Table 5.1. Another

difference is the presence of the anisotropic diffusion term V (ﬁ . IU) which is allowed

in 2D although it has a zero coefficient [79]. Finally, similarly to the 2 dimensional
result, the isotropic pressure term is not modified by activity and remains linear in p.

5.4.2 Homogeneous solutions

The homogeneous solutions of (5.57) satisfy p = pg and evolve according to the
Ginzburg-Landau equation

ouan = (o] - $03 ) o, (5.58)

where wy = ||

The homogeneous disordered solution wp = 0 becomes unstable whenever u' be-
comes positive. Below the transition line in the (pg, o) parameter plane, the polar
field grows until the cubic nonlinearity is saturated, and the homogeneous ordered
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FIGURE 5.4 — Phase diagram in the density-noise plane of the hydrodynamic equa-
tions for the polar class. The color codes for wy, the strength of the polar order
of the homogeneous ordered solution. Solid black line: p!'[p] = 0, limit of linear
stability of the homogeneous disordered solution. Red lines: contours wy = 1,2, 3.
Left panel: 3D case for which wq is not monotonously varying with o. Right panel:
2D case, with monotonous variation of wy.

solution is found:
1o
§

When it exists, the HO solution is always physical, being smaller than the homoge-
neous density pg in all the parameter space. This is shown in Figure 5.4 where the
red isolines correspond to the values wg = 1,2, 3. Remarkably, the global order wyq is
not monotonous and shows a maximum at finite noise at any fixed density, in contrast
with the 2 dimensional case. This effect depends on the distribution of the noise con-
sidered. For instance, if one uses the Von Mises distribution, P(6) o exp (cos(6)/0?),
this non-monotonicity is reduced although it is not removed.

p=po ; wo=2 (5.59)

5.4.3 Linear stability analysis

We now compute the linear stability of the homogeneous solutions assuming small
fluctuations of the fields around p = py + dp and W = Wy + dw. The linearized
hydrodynamic equations are

p = V-6, (5.60a)
60 = Ouliedp — gwo(wo - 0@) + DV (V - 6@) + Dr AW
A1 (W - V0w — Mgl (V - 0) — 2X3V (i - 6F) (5.60b)

o I e
o] — S o) — ST,

with dul = Ou'/dp. Using Fourier transform in space (¢ is the wave vector) these
linear equations become

Op = —iq- 00, (5.61a)
oW = Outwodp — gwo(wo - 0wW) — Dp(q - 0w) — Dypq?6w
—)\12(’(50 . @5117 — )\21/[170( . (Slff) — 2)\32(7(1170 . (5117) (5.61b)
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FIGURE 5.5 — Behavior of the real part of the eigenvalue governing the long wave-
length linear stability of the homogeneous ordered solution of the polar hydrody-
namic equations, given by Eq. (5.68). Parameters: pg = 1 and ¢ = 0.55. Solid
black line: real part of s;. Solid red line: real part of s_.

Solving this eigenvalue problem yields four solutions s; = s;(q, o), with ¢ = 1,...,4.
The system is linearly unstable whenever any real part of these solutions is positive.

In the disordered case (@ = 0) the global rotational invariance implies that only

wave-vectors parallel to the perturbation d || ¢ evolve and can destabilize the system.
Inserting the solution of (5.61a) in (5.61b) we obtain the following relations between
the wave vectors and the eigenvalues

(s+ Drg> — ')’ =0, (5.62)
s?+s((Dr+Dp)® —p') +3¢° =0,  q¢=1q|. (5.63)

Defining D = Dy + Dp to lighten notations, the independent solutions are

s, = pl—Dpg?, (5.64)

1 _pg?2 1 1
s. = M2q:|:2\/'u2_2'u1Dq2_3q2+D2q4. (5.65)

They are negative for all Dy > 0, Dy + Dg > 0 and p' < 0. Consequently, the

disordered state is stable in all the region where u! < 0, as in the 2 dimensional case.
Considering only longitudinal perturbations of the ordered state @y = woé # 0,

we have ¢ = ¢é and §w = dwé. The equations for this family of perturbations are

Odp = —gow , (5.66a)
Odw = wedudp —2utéw — %qép — Dg?6w — Awrgdw | (5.66b)

where A = A1 + Ao + 2A3. After some algebra, the corresponding equation for the
eigenvalues 3 reads

1
s+ s (2u1 + Dg? + z)\woq) + <3q2 + 18u1w0q> =0. (5.67)

3The other two relations come from the transverse perturbations.
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FIGURE 5.6 — (a): phase diagram of the hydrodynamic equations for the polar
class. Solid black line: p'[p] = 0. Below this line the homogeneous ordered solution
exists. It is linearly unstable in the colored regions, where the color represents
the direction of the most unstable mode. In the red region close to the transition
the instability is parallel to the global order wy. The green region of transversal
modes deep in the ordered phase corresponds to the spurious instability described
in the text. (b): variation of the upper limit of spurious instability with the spatial
diffusion constant D. Solid red line: D = 0. Dashed blue lines: D = 0.01,0.1,0.5, 1.

Defining B(q) = 2u! + D¢? + 1 woq and C(q) = %qQ +10p woq, the two solutions of
this equation are

Bla) | % B2(q) — 4C(q) . (5.68)

2

The real part of the (—) solution is negative, while the real part of the (+) solution
has a range of wave-vectors for which it is positive as shown in Figure 5.5. Hence, the
ordered phase is longitudinally unstable in the region close to the transition line. At
small wave vectors the solutions behave as

s =

out ((“)ul)Q Aot 1
! 1 2 3
= oyl 4 o | D+ - S P
st I zwo(21 >\>q < 2(u0)%E ¥ 6l q O(q),
ot (8u1)2 Aopt 1Y ¢
l - 3
s, = —ww o q+ < e ¢ o) +0(¢%) . (5.69)

The real part of the (+) solution is driven by a ¢? term that grows at small wave-

vectors on a scale ~ % which is diverging at the transition. The resulting instability

is thus due to the Ou' term, which comes from the density dependence of the linear
coefficient p![p] in the polar field equation.

The full linear stability analysis of the homogeneous solutions was also computed
numerically (Figure 5.6(a)). Close to the order/disorder threshold (black line), the
ordered solution is linearly unstable with respect to longitudinal perturbations at a
finite wavelength. Deeper in the ordered phase the ordered solution becomes linearly
stable. At even lower noise, a second instability appears. From the analysis of the
2 dimensional Boltzmann equation presented in Chapter 3, this instability is likely
to be an artifact of the truncation procedure. Moreover, like in 2D [80], its impact
strongly depends on the presence of spatial diffusion: adding spatial diffusion directly
at the kinetic level, its domain in parameter space shrinks rapidly (Figure 5.6(b)). We
hereafter call it the spurious instability.
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5.5 Hydrodynamic equations for nematic alignment

In this section, we derive the hydrodynamic equations for 3D Vicsek-style systems
with nematic alignment, represented by the active nematics and the rods classes.

5.5.1 Boltzmann equations for classes with nematic alignment
Kinetic equations for active nematics and rods

In the active nematics class, particles reverse their velocity on short time scales, the
computation sketched in Section 5.3.1 shows that the resulting Boltzmann equation
has no drift term but only spatial diffusion with coefficients Dy = % and D; = 3Dg.
Moreover, as this problem possesses a full nematic symmetry, only even modes (with
respect to [ index) need to be considered. Hence, for active nematics the Boltzmann

equation becomes

dgh = DoAgi+ DDA [{g2}] .
o 20,213,21
21 21 A 20202 9 9
+ |:PO - 1:| 9m + Z Z J m,mi,ma gmigmz ) (570)
ll,ml l2=‘l711‘,m2
where the coefficients JATilfrfiiZ are the ones computed in Section 5.3.4 using the
apolar kernel (5.16) and the nematic alignement rule (5.19).
On the contrary, in the rods class particles reverse their directions of motion on a
finite timescale a such that no spatial diffusion is attained at the kinetic level. Their
dynamics is therefore propagative and the resulting Boltzmann equation reads

ogly = Th [{gan —a (1 + (—1)l> g+ [Pé - 1} g
h L1l
D DD DR Ay - (5.71)

ly,my la=|l—11],m2

with J Ryl,’f}n’lf .ms evaluated considering the polar kernel (5.14) and nematic alignment
rule (5.19). Here, as the motion possesses polar symmetry, we can not set the odd
modes to zero.

The large reversal rate diffusive limit (5.70) can be retrieved from the propagative
hierarchy (5.71) with finite reversal. To do this we need to temporarily reintroduce
vg, the microscopic velocity of particles, which was set to 1 in Section 5.3.1 when
the Boltzmann equation was de-dimentionalized. Indeed, in the infinite reversal rate
limit the odd field equations (with respect to [ index) possess a diverging damping

term ~ —2a and can thus be enslaved to the even fields. The latter then acquire an
2
effective diffusion coefficient that scales like %0 In order to keep it finite, we assume

that v3 ~ a. After enslaving the odd modes, the hierarchy (5.71) at O (?) is

a— 00

formally the same as (5.70), with Dy = g and D1 = 3Dg. Therefore, in the following,
when we refer to the large reversal rate limit for the rods we will implicitly consider a
nondimensionalization where ,U(2) ~ q instead of vy = 1 as previously set for the polar
class. For numerical evaluations, we have considered the scaling form vy = V14 a

such that vo = 1 when a = 0 and v3 ~ a when a becomes large.



102 Chapter 5. Deriving hydrodynamic equations for DAM models in 3D

04
03F
b02l

0.1

0 2 4 6 8 10

FIGURE 5.7 — The transition line (u? = 0) delimiting the stability region of the
homogeneous disordered solution in the density-noise plane for the active nematics
class. The solution is unstable to homogeneous perturbations below the black line
in 2D, and below the red line in 3D.

Homogeneous solutions of the Boltzmann equation

In this section, we compute the homogeneous solutions of the Boltzmann equation
considering nematic alignment (both active nematics and rods classes). Since the
rods hierarchy (5.71) does not show any homogeneous solution with non-zero odd
modes, the two classes are formally the same at this stage. Therefore, we will focus
on the active nematics class, the results of this section being easily generalized to the
rods.

The Boltzmann hierarchy (5.70) has the trivial homogeneous disordered solution:
9% = po, g2l = 0Vl > 0 Vm. Homogeneous perturbations of this solution are

90 =p=po+0op, gm=>0gm VI>0,Vm (5.72)

and linearizing the Boltzmann hierarchy around this particular solution gives the
linear coeflicients

a0 (F 1) = [ (P = 1) + (oo + s ) po] 892 = whlpoldgih . (5.73)

As in the polar case, the coefficients 2! do not depend on the index m, and we thus
omit it thereafter. The first three coefficients are

2 68
= (pg_1)+f15 <(8—|—3\/§)P02—7>p0, (5.74a)
1/1 920
4 4 4
= (Pt-1+< (=P - < 74b
1/ 59 952
6 6 6
= (Ph—-1)—=- | ——=PF — < . .74
I (Fy —1) 5<24\/§0+143>P0(_0) (5.74c)

Only the p? coefficient, corresponding to the nematic field, can change sign while the
others are negative. The disordered solution is stable at large noise and small densities
and it becomes unstable to homogeneous perturbations below the line oy(pg) defined
by ©? = 0, as shown in Fig 5.7. Like for the polar case studied in the previous section,
the transition line in 3D is at lower noises than in the 2 dimensional case.

As in the polar case, assuming that the nematic order is along the z direction we
can set all the m # 0 modes to zero for the numerical evaluation of the HO solution of
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FIGURE 5.8 — Numerical evaluation of the homogeneous ordered solution of the
Boltzmann equation for the active nematics class, truncating the hierarchy at the
10*® mode. (a) shows the discontinuous character of the transition with the bista-
bility region between o, and o.. The full lines are the values of the modes following
the uniaxial solution, while the dotted lines are the values of the modes along the
biaxial solution at the transition. The biaxial solution below o; are shown with a
dot-dashed line. (b) shows the rescaled modes following the scaling ansatz (5.76),
giving a good collapse close to the transition, although the first non zero mode g3
is not small. For convenience the positive values of the modes g3, g, . . ., following
the biaxial solution (negative g3) are shown with a minus sign in order to highlight
the validity of the scaling.

the Boltzmann equation (see Section 5.3.3 for details). Figure 5.8(a) shows the result
for the first 10 even modes of the Boltzmann hierarchy (5.70) for py = 1 as function of
the noise. This computation was done using the Newton method in order to capture
both stable and unstable solutions. Decreasing the noise, the disordered solution
becomes unstable for ¢ < gy and the [ > 0 modes jump discontinuously to a positive
value. Then a hysteresis loop can be built increasing the noise up to o, > o defining
an upper bound for the existence of the ordered solution. Therefore, active nematics
in three dimensions exhibit a discontinuous transition with coexistence of disordered
and homogeneous ordered solutions at the mean field level. As for equilibrium liquid
crystals, we will show that this can be understood at the hydrodynamic level from
symmetry reasons [138]. We also see that equations (5.70) admit solutions with a
negative order parameter which will be discussed in the following and are always
unstable to homogeneous perturbations?.

5.5.2 Derivation of the hydrodynamic equations

The following sections are dedicated to the derivation of the hydrodynamic equations
for classes with nematic alignment. As in Section 5.4.1, they are obtained using a
scaling parameter € that allows to truncate and close the Boltzmann hierarchy with
an ansatz compatible with the symmetries of the problem.

Hydrodynamic equations for the active nematics class

The scaling ansatz necessary to truncate and close the infinite Boltzmann hierarchy
(5.70) for active nematics relates space and time diffusively:

A\VEEVA VAN 8%- ~ 0 ~e?, (5.75)

4These solutions are stable considering only the m = 0 modes as we do for the computation of
the HO solution. This is because below o, the instability is located on the other components of the
nematic field (those for which m # 0), as shown in Section 5.5.3.
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with 4,7 = x,y, z. Close to and below the transition line o.(pp), we assume that the
nematic field saturates to a small value ¢, therefore, balancing the hierarchy terms we
can obtain the self-consistent scaling

gme, V>0, Vm. (5.76)

As usual, the first non trivial order is then €2, leaving the density field p, the nematic
field g2, and g}. The dynamics of the g7 ’s is completely slaved to the lower order
modes.

After lengthy algebraic calculations, similar to those shown Section 5.4.1 for fer-
romagnetic alignment, the continuity equation in real space takes the simple form

Owp = DoAp+ Dy (T':Q) , (5.77)

where the traceless symmetric matrix I is

202 — 92 — 92 302 302
r= 1 o 383y - 202 agy 2 3552 5.78
3 zy yy ~ Yzx o Yaz Yz ’ (5.78)
302, 3a§Z 202, — 02, — agy

and the Frobenius inner product between rank 2 tensors is defined by A: B = > iy AnpBag-
Knowing the relation between the second angular mode of the single-particle dis-

tribution f and the nematic order parameter, explicited in Eq. (5.36), we can write

the hydrodynamic equations in real space in the following compact form:

2Dq

0Q==Tp+ [1%[p] — €(Q: Q)] Q + ¢ [QQlgr + DoAQ +

4D,

~ TQlsr . (5.79)

where [A]lgp = %(A + Al — %ITrA) is the symmetric traceless part of the tensor
A and I is the identity matrix. The dependencies of the coefficients in terms of the
microscopic parameters pg and o are listed in Table 5.2. Once more Eq. (5.79) has the
familiar Ginzburg-Landau structure and a linear coupling to the density field. Note,

3D 2D
12 [p] P —1+2((8+3v2)P3 —B)p P—14+&(2vV2-1)R-1)p
£(>0) 393v/2(304—11(—324203+/2) P2)(16+(384+35v2) P§) 4 (1415P,)(9(1+6v2) P4 —13)
528220((393v/2+131p0) P —393v/2—920v/2p0) 457 3157 (1—P4)+8(21 P4+ 155)po
o Z(4+ (16 +21V2)P?) (>0) 0
1 1
Dy 3 1
Dy 3Dy 2Dy

TABLE 5.2 — Comparison of the hydrodynamic coefficients of active nematics equa-
tions between the 3 and 2 dimensional cases [90]. The functional form of the lin-
ear (p?) and the cubic (£) parameters is comparable between the two cases. The
quadratic term («) is absent in 2D because of rotational invariance while it gets a
non zero (positive for rod shaped particles) value in 3D. In the right column, the
P; parameters are the moments of the angular noise distribution in 2D, analogous
to the Pj in 3D.
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however, the presence of the quadratic term in the field tensor Q with coefficient «
in addition to anisotropic spatial diffusion, allowed by the symmetries of the system
5 Unlike in 2D and because of the presence of anisotropic spatial diffusion, the
structure of Eq. (5.79) cannot be derived from a free energy in the single Frank
constant approximation [90] 6. Moreover, as in 2D, the active current in Eq. (5.77)
cannot be derived from a free energy, therefore Egs. (5.77) and (5.79) cannot be
obtained together at equilibrium.

We note that the discontinuous nature of the transition, in principle, prevents us
from using a perturbative analysis to truncate the hierarchy around o;. Indeed when
the disordered solution starts to be unstable, the global nematic order, and thus &,
does not go continuously to zero. However, Figure 5.8(b) shows that the Ginzburg-
Landau ansatz is a good approximation around o., supporting the enslaving of the
higher order modes to the nematic field in this region. Moreover, as shown in the
following, the hydrodynamic equations obtained at the usual third order are well-
behaved, with bounded solutions. We expect them to continue providing the right
qualitative picture.

Hydrodynamic equations for the rods class

Even though only nematic order arises in the rods class, we retain the polar field
in our description because its dynamics depends non-linearly on the density and the
nematic fields. In this case the reversal rate of velocities is sufficiently small so that
no diffusive dynamics is attained on the kinetic timescales. Therefore, we consider
the propagative ansatz from Eq. (5.55) for space and time. Since only nematic order
grows in such system, we consider its saturated value as a small parameter ¢ ~ |g?|.
Balancing the modes in the Boltzmann hierarchy, we obtain the following ansatz for
the relative strength of the fields

op =~ ¢, g,z,i ~ g%il ~ el Vi>1, Vm. (5.80)

The computation of the terms in the hydrodynamic equations follows the procedure
described in the previous sections, truncating the Boltzmann hierarchy at order &3.
We thus retain equations for the fields up to I = 4, but the [ = 3,4 fields can be
enslaved to the [ = 0,1,2 fields. After tedious calculations, we obtain the lengthy
equations:

Op = —0w;, (5.81a)
1 4
Ow; = —OhQir — §3z‘/7 + <2le3kQu + QriQr — 5Qikalel>
6
+ (u'[p] — BQQu) wi + (Qirwy, — 55Qikalwl ; (5.81b)

5In 2 dimensions both these terms are not allowed by rotational symmetry. Although using the
tensorial notation of Eq.(5.79) the reason why these terms are not allowed in 2D is not evident, it is
easy to show that [QQ]st = 0 = [['Q]sr in 2D.

5The structure of Eq. (5.79) can be obtained from a free energy density F = aQ;; afj p+§ (8¢le)z+
5 (8kQ¢k)2 + ..., then denoting by I'q the coupling constant with the nematic order parameter we
have Dy = I‘Q( — %) and D; = %FQC = —12—5FQa. In the single Frank constant approximation
¢ =0 [166].
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2
01 Qi — [Osw;]gp + D1AQij + Da [Tk Qrjlgr

2
—K <wk8inj +2 [wkaiij - 5%’&%@@'] )
ST

—X (ak (wrQij) + 2 [ak (wiQrj) — %ai (kakj)] >
ST
+ (12[p] — £QuQuk) Qij + o [QikQrjlgr

tw [wiws]gr + 7 (117|2Qij + g [Qikwkwj]ST> ; (5.81c)

where implicit summation over repeated indices is assumed. Although this repre-
sentation differs from the compact form (5.79) for active nematics, we kept explicit
notations for tensorial and inner products in order to avoid possible confusions be-
tween similar terms. As before, square brackets take the symmetric traceless part of
a tensor: [A]lgp = 1(A + A') — 2I(TrA), and the operator T', defined in (5.78), is
ry = [3]

The coeflicients in the equation for the polar field are listed in Table 5.3. The
number of parameters does not change between the 2 and the 3 dimensional cases,
although terms coupling the polar field with its gradients are still allowed by rotational
Symmetry.

The coefficients in the equation for the nematic field are listed in Table 5.4. Like
in the case of active nematics, the nematic field equation has a Ginzburg-Landau
term with a quadratic contribution with coefficient v and shows anisotropic spatial
diffusion. Both are not allowed for symmetry reasons in 2 dimensions. The coefficient
in front of the anisotropic diffusion term is smaller in modulus than the isotropic
diffusion one |D 4| < |Dj|, this prevents a trivial short wavelength instability to occur
and we thus expect these equations to be well behaved.

3D 2D
t[p] (< 0) Py—1+ (3P — &) p—2a P—1+2(P—%)p—2a
@ (< 0) P =14 (2%2ZP3 — 2%) py — 2a Py—1—22p, —2q

0 ((—3360+315m) P} +512) (35(4497) P§+512) 32(5P3+4)(TP,—2)

B(>0) 21073920, T 105r%B

3(4—
¢(>0) R ) 5

1[4 5(32—37) p1 4(7P—2)

7 (>0) w3 [E? — %06 to — i

TABLE 5.3 — Comparison of the hydrodynamic coefficients of the equation for the
polar field in the rods class in 3 and 2 dimensions [89]. The form of the equation
does not change with respect to the 2 dimensional case and thus no new parameter
appears. In the right column, the P; parameters are the moments of the angular

noise distribution in 2D, analogous to the P in 3D.
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3D 2D
12 [p] Py -1+ (8+3fpo —W)P Py—14 32 (R(2v2-1)—-{)p
pt(<0) P(;l_1+(6fp4 égg)PO Py—1+ 35 (Pa+ 52) po
Dy (>0) — 53 —5m
Dy (>0) ~5s 0
444 (24—45\/2) P2 8(19-P27(1+v/2))
k - 73513 10573
512+35(44+9m) P 2(5P;+4)
X - 78403 573
o 4+(21\/4§9—16)P§ (> 0) 0
(304+(352—-2233v/2) PZ ) (16+(384+35V2) P}) 128(15P4+1) (13— P9(1+6V/2))
£(>0) 52822042 o 472572 i
8+(15v/2—32) P2 8(1-P23(v/2-1))
w —5 3
(44+(24—45v/2) PZ ) (512+35(4+97) P3) 64(5P34+4) (19— Pa7(1+V/2))
T - 82320043 - 52572113

TABLE 5.4 — Comparison of the hydrodynamic coefficients of the equation for
the nematic field in the rods class in 3 and 2 dimensions [89]. The functional
form of the linear (12) and the cubic (£) parameters is comparable between the
two dimensions, whereas the quadratic term («) is zero in 2 dimensions because
of rotational invariance while it takes a positive value in 3 dimensions. Moreover,
anisotropic diffusion appears in 3D, like for the polar class. In the right column, the
P; parameters are the moments of the angular noise distribution in 2D, analogous
to the P§ in 3D.

5.5.3 Homogeneous and periodic solutions
Homogeneous solutions

Since no polar order can grow homogeneously in these cases, both the hydrodynamic
equations for active nematics (5.79) and for rods (5.81) share the same Ginzburg-
Landau functional form when setting spatial derivatives to zero

9,Q = [ulp] —€(Q: Q)] Q+a[QQ]yr , (5.82)
with p[p] = p?[p]. This equation admits both the homogeneous disordered (p = po,
Qi; = 0 Vi,j) and homogeneous ordered solutions. The case where all particles’

orientations are aligned along a given direction is referred as wuniazial. Assuming
without loss of generality that the direction of global order is along the z axis, the
nematic tensor reads B

—Q/2

0
Q= 0 —-Q/2
0 0

: (5.83)
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FIGURE 5.9 — The homogeneous solutions @ of the hydrodynamic equations for
particles with nematic interactions using the active nematics parameters of Table
5.2 for pg = 1. Like at the kinetic level, there is a region in between o, and
0. where the disordered and uniaxial solutions are both stable, showing a “true”
discontinuous transition.

where the parameter ) solves

a-= 3. =
p+5Q-2¢Q*=0. (5.84)
2 2
This quadratic equation has two solutions

- a 1 /a2
Qi =St by

g Tac\ T T oS (5.85)

that are both real only for o?/4 + 6u¢ > 0. Since a and & are strictly positive in
the range of density and noise we consider (see Tables 5.2 and 5.4), we can define a

critical linear coefficient

a2

pe= 55 (<0), (5.86)

such that these solutions exist for u > .. Thus o.(pg) is defined at the hydrodynamic
level by the line where u = u., two homogeneous solutions stable with respect to
homogeneous perturbations coexist in the region oy < 0 < o.: the disordered solution
and Q, as shown in Figure 5.9. Therefore, the transition from disorder to order is
discontinuous, something already shown at kinetic level in Section 5.5.1. Remarkably,
like in the polar case, the order is not a monotonous function of the noise, as shown
in Figure 5.11, whereas it is in the 2D case (not shown).

Below the transition line o; the disordered solution becomes unstable and the
solution @_ is negative. To get a physical insight of this solution we remark that
a unit vector f can represent both a direction or the Hodge dual of this direction,
corresponding to any plane orthogonal to 7 in 3 dimensions. The dual space can be
represented in tensorial notations by

M;; = gijpnu

where {i,7,k} € {1,2,3} and ¢ is the Levi-Civita totally antisymmetric tensor. From
the definition of the nematic order (5.35), multiplying M by its transpose, removing

the trace, we obtain

2
M'M — gI =-Q. (5.87)
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FIGURE 5.10 — Sketch of configurations of particles in parallel layers leading to
a nematic order parameter Q < 0. (a): cholesteric configuration where rod-like
particles are aligned on parallel planes and order rotates along the third direction.
In (b) the same particles are still arranged on parallel layers but with random
orientations. (¢): ordering of oblate particles on parallel layers.

Thus, a tensor Q whose largest eigenvalue (in absolute value) is negative states that
the order is orthogonal to the direction given by 7, while if it is positive the order is
parallel to the direction 7. ”

Solutions with negative nematic order are physically possible and represent so-
called biazial phases [138], pictured in Figure 5.10. There are two typical homogeneous
configurations: planes of uniaxial particles with random orientations (in the planes),
and oblate particles moving along their axis, with their axes ordered. An elementary
linear stability analysis with respect to homogeneous perturbations shows that Q_
is always unstable whenever the quadratic coefficient « is positive. For instance, in
the case of active nematics, the homogeneous linear perturbations around this state
evolve as

at(stz = :FQ:I: V 65(/// - ,UJC)(stz )

at(sQazw = _%Qiész + Q:i: <3§Qi - 04> 5@22 )

«

8t6Q:cy = _gQﬂ:éQxyu

a

at(SQCCZ = _iQidQCCZ?

a

0u60Qu: = —5Qx0Quy
In the region 0; < o < 0. the solution Q_ is positive and 6Q., is unstable, while
below the transition point o; it is negative and the instability is transferred to the
other directions.

Physically, this instability relies on particle’s shape. Having a homogeneous neg-
ative order along z for rod shaped agents, a small perturbation in the region where
1 < 0 brings the system to the disordered phase. On the contrary, if 4 > 0 a small
perturbation of the order in the (z,y) plane is not damped, aligning the rods in the
same direction favoring the > 0 solution. From the previous linear stability analy-
sis, a stable biaxial nematic state requires the coefficient « to be negative. This would
be the case, for example, considering oblate agents with an alignment rule privileging
biaxial phases, as shown in Figure 5.10(c). However, this is beyond the scope of this
work that deals only with rod shaped particles.

"In 2 dimensions —Q corresponds to a rotation of the space of /2 of the order because the
geometric object perpendicular to a unit vector is a vector itself, instead of a plane.
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Periodic solutions: Cholesterics

The hydrodynamic equations for active nematics and rods possess spatially-periodic
solutions (with zero polar field), called cholesteric, that depend on only one direction,
say x. Borrowing from liquid crystals theory, a cholesteric phase is the assembly of
identical 2 dimensional homogeneously ordered “layers" into a helical structure (see
Figure 5.10(a)). In such solutions, the density and the local norm of the nematic tensor
are homogeneous p(z) = po, |Q|*(z) = (Q:Q)(z) = Q3. Moreover, as the nematic
field is constrained in the plane formed by the y and z axis we impose Qzy = Q> = 0
and Q,; = —Q/2 constant. With these constraints, and after some lengthy algebra,
the hydrodynamic equations for the density and the nematic fields simplify to

(u - aQ - €Q3> ? + a%% =0, (5.88a)
(44 aQe: — £Q3) Qe 40 <Qyz QO) 1 DO2,Q.. = 0. (5.88b)
(u + a% - g@%) Qy- + DO2,.Qy. =0, (5.88c¢)

with D = Do —4D1/21 (or D = Dy — D /3 for rods) positive. Equation (5.88a) gives
a relation between @ and Qo and Eq. (5.88¢) describes a harmonic oscillator

92,Qy: +wWQy. =0, (5.89)
with a twist frequency related to the norm of the nematic field

Dw® =+ acj — Q3 (5.90)

As we are looking for solutions periodic along z, we are interested in the case where

w? is positive. Assuming then that the order is along the z-axis at x = 0 a general

solution of (5.89) can be written as
Qy:(z) = Bsin(wz) . (5.91)

Equations (5.88a) and (5.90) give the expressions of @ and Q3 as a function of w?
and of the hydrodynamic parameters

@ = oD [ e, (5.92)
1 ?)Dz,u2 a? a |2
Q = ¢ ( -~ T 12¢ +35 \/3€(H Hc(wz))> ; (5.93)
2\ 2
pe(w?) = Duw 876 (D + 3§> . (5.94)

Note that in the limit w? — 0 the period of the oscillations goes to infinity, and one
recovers the homogeneous uniaxial phase.
In order to find a solution to Eq. (5.88b) we assume the functional form

Q.2 (x) = Acos(wzx) + Kk , (5.95)
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FIGURE 5.11 — Phase diagrams in the density-noise plane indicating the degree of
nematic order (scalar order parameter) for various homogeneous ordered solutions
of the hydrodynamic equations (5.79) for the active nematics class. In each panel,
the solid and dashed black lines correspond to o, and oy, respectively. Top panels:
uniaxial and biaxial solutions @, and Q_ where the red lines mark the contours
Q4+ = 0.5,0.75,1 and Q_ = 0, —0.25, —0.5. Bottom panels: order Qq of the
cholesteric solution for twists w? = 0.5 and 2.

and we obtain

0 = [(,u — Q3K +a (/12 + A2 - %%)]
+A [ — €QF + 2ak — Dw?| cos(wz) + a [B* — N?] sin®(wz) . (5.96)

For this equation to be satisfied, all three terms inside square brackets must vanish.
The first two correspond to the same constraint, resulting in k = ()/4, while the third
term gives A = B > 0. Finally, knowing the form of the nematic tensor we obtain

5 3Q? 2
where B? has to be positive. Figure 5.11 shows the regions of existence of the
cholesteric states in the phase diagram (pg, o) plane for various twist frequencies w.
Larger the frequency of the solution is, the more it is confined at higher densities.

5.5.4 Linear stability analysis
Homogeneous uniaxial ordered solution

We computed the linear stability analysis of the active nematics hydrodynamic equa-
tions (5.77) and (5.79) around the uniaxial homogeneous ordered state Q semi-numerically
(panel (a) of Figure 5.12). Close to and below the line o, limiting the existence of
the ordered solution a transversal instability appears at finite wavelength, much like
in the 2 dimensional case. Deeper in the ordered phase, the homogeneous order is



112 Chapter 5. Deriving hydrodynamic equations for DAM models in 3D

L=
lEs]

0.05 0.15 0.25 0

0 | | |
0 0.5 1 1.5 2

Po

FIGURE 5.12 — Linear stability of the homogeneous uniaxial ordered solution of
the hydrodynamic equations for the nematic classes in the density-noise plane. The
solid and dashed black lines correspond to o. and oy, respectively. The solution
exists below the black solid line. It is linearly unstable in the colored region, and
stable below. The color represents the angle between the most unstable wave vector
and the direction of order. (a): active nematics case (Eqs.(5.77) and (5.79)). The
instability, confined close to the upper transition line, is transversal to the direction
of the order of the unperturbed solution. Inset: zoom at low densities where the
linear instability covers the mean field bistability region although it does not go
deeper in the ordered phase. (b): rods case (Eqgs.(5.57) at zero reversal rate (a = 0)).
The instability, confined close to the upper transition line, is nearly transversal to
the direction of the order of the unperturbed solution. Inset: zoom close to the
transition line in order to show that the linear instability covers all the region
between the transition line (dashed black line) and critical line (full black line).

stable and, again like in the 2D case, no “spurious instability” is found. The transver-
sal instability region becomes thinner increasing the density while the region where
both the ordered and the disordered phase exist becomes larger. Therefore, it is pos-
sible to find both the homogeneous phases linearly stable, resulting in a bistability of
the system. Note, however, that nonlinear phenomena and strong fluctuations may
invalidate this statement.

In the case of the rods equations the linear stability at finite wavelength of the ne-
matic phase resembles that of the active nematics case, as shown in Figure 5.12(b). The
ordered solution is unstable close to o., but this instability is not purely transversal,
and involves a component along the order, although not a dominant one. Increasing
the reversal rate of velocities a, this instability becomes transversal to the global or-
der. Moreover, for large values of a the homogeneous ordered solution is stable in the
bistability region at large densities, and one retrieves the active nematics structure.
There is, however, a strong difference between the 3D and 2D cases: in 3 dimensions
one does not find an instability deep in the ordered phase where nematic order triggers
polar order and no purely nematic solution is stable [89].

Transverse linear stability of cholesteric solutions

The linear stability analysis of the cholesteric solutions is not straightforward because
of their spatial dependence, leading to non diagonal matrices in Fourier space. It can
however be performed for a family of particular perturbations given by the symmetry
of the solutions. The cholesteric steady solution can be written compactly in the form

Q

QC:Z

Qo+ o (7 Qu+e Q) | (5.98)
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FIGURE 5.13 — Growth rate of the instability of the cholesteric solution of the active
nematics equation for various twists w?. The dashed line represents the instability
of the disordered solution and the full line above the existence of the homogeneous
ordered solution. The first three panels show the linear stability of various fixed
twist solutions in the density-noise plane. The fourth, bottom right panel shows
the linear stability at fixed noise o = 0.1 varying twist and density. The lower limit
of the colored area corresponds to w? = w2, the upper limit of linear stability of
the solution.

with Q and B calculated in the previous section and

-2 0 0 0 0 0
Q= 0 10 Q=0 -1 — | . (5.99)
0 0 1 0 — 1

We consider perturbations of the form of spatially-varying amplitudes. The nematic
field then becomes

Q = Ao(x,t)Qo + A1 (z, 1) Q1 + Al (z, t)e "™ Q1™ , (5.100)

where Ay is real and A is complex. For this family of perturbations the twist w is
kept constant such that they are transversal to the cholesteric axis. In the active
nematics setting, the coupled equations for the density p and the amplitudes Ay and
Aq are

dp = Dyd%.p—2D102, Ay, (5.101a)
4
OAy = (,u[p] —aly —2¢ (3A(2) + 4|A1|2)) Ay + §OZ|A1|2
4D\ o 2Dy .
+ (Do + 71 > 05,40 15 03P (5.101b)

A1 = (ulp] + 204y — 26 (3A2 4 4]A1?)) A

+ (Do - 43) (8 +w)* Ay . (5.101c)
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FIGURE 5.14 — (a): The final twist of the cholesteric state w2, found in numerical
simulations of the one dimensional version of the active nematics equations (5.77)
and (5.79) (see text), as function of the twist of the initial cholesteric configuration
w2, for system sizes L = 512 and 1024. The cholesteric solutions are stable as
long as w?;, is smaller than the linear stability threshold w2, while above it they

u’
are unstable and converge to a new cholesteric solution whose twist depends on
w2, — w2. The inset suggest a possible exponential decay of w%nal as function of
w

2. —w2. (b): Space time variations of the Q,, component of the nematic tensor

(~ Bsin(wz) for a cholesteric solution) starting from a cholesteric configuration
with w2, — w2 ~ 1.69 and ending with w2 ., ~ 0.02 at system size L = 1024.

init
All the simulations are performed at py = 2 and o = 0.1 (w2 ~ 1.97), using a
pseudo-spectral Euler scheme with resolutions dt = 0.01 and dx =

ool

Figure 5.13 shows the numerical evaluation of the linear stability of this set of equa-
tions around the fixed point

;A= = (5.102)
2

For w = 0, we of course recover the phase diagram shown in Figure 5.12. For finite w
we observe that the cholesteric solutions are linearly unstable close to their existence
line, while they are stable deeper in the ordered phase. Note, however, that the
instability region grows quickly with twist.

To get an idea of the respective stability of cholesteric solutions, we performed
numerical simulations of the hydrodynamic equations (5.77) and (5.79) but in their
reduced one-dimensional form, <.e. setting 9, and 9, to 0, and using a periodic domain
in . As expected, the cholesteric solutions with w? < w?, where w? is the threshold
given by the linear stability analysis performed above, are stable (Figure 5.14(a)).
On the other hand in the linear instability region, we find that a cholesteric initial
configuration of twist w?nit typically settles to a stable, lower-twist, cholesteric solu-
tion (see Figure 5.14(b)). We find that the final cholesteric solution possesses a well
defined twist w3 | independent of system size (for large-enough domains). This final
twist decreases quickly when wfnit
unstable, as shown in the last panel of Figure 5.13. Finally, as we can only simu-
late finite systems, the homogeneous ordered uniaxial solution is always reached for
large-enough unstable initial twist.

For rods one also needs to consider perturbations of the polar field . Those

compatible with (5.100) read

increases, i.e. when the solution is more and more

w = Fy(z,t)wo + Fi(z,t)e 2 wo + Ff (2, t)e” 2 wy* (5.103)
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where the complex vectors are

1 0
wo=| 0 wi=| —t (5.104)
0 1

and the amplitudes Fjy and Fj are equal to zero in the unperturbed state.
Inserting the perturbed cholesteric solution into the hydrodynamic equations for
rods (5.81) we obtain coupled equations for the density and the amplitudes

Op = —0.Fy, (5.105a)

1 2
oly = 2040 — gaxp + v0y <;Ag + 4‘A1|2>

27
+ [ul[p] —2¢ 4 —28 <5A% + 41141\2)} Fy, (5.105b)
1 45 2 2 24 * *
o = ol [p] — ? (9A0 + 16|A1| ) F; — EBAOAIFI + C (AOF1 + 2A1F1) , (51050)
2 2 9 9
OAy = Eang + [ Dr+ gDA 83:on — 5 (liFoaon + Xax(Fvo))
4
+ [MQ[p] — Ay — 2§ (314% + 4’A1|2)] Ao+ §Q|A1‘2
—g (F§ — 2| )?) + 7 [2 (F§ +4|F1]?) Ao — 8% (A“{Ff)} : (5.105d)
2
8tA1 = <DI — 3DA) (69; + ’LU.))2A1 — I{Ao(am + zw)Al — X(ax + ’L(J.))(A(]Al)
+ [1[p] + 2040 — 26 (3AF + 4|41 )] Ay
+ (w + 152¢A0> F? 47 <F02 + 454|F1]2> A . (5.105¢)

Linear stability analysis of these equations gives results similar to the active nematics
case, shown in Figure 5.13, i.e. a region of instability close to the limit of existence
of the solution whose extension grows with w?. This instability region also increases
with the reversal rate, but its size saturates in the limit of large a such that the active
nematics picture is recovered.

5.6 Conclusion

We have derived the hydrodynamic equations of the three main classes of dry, align-
ing, dilute active matter in three spatial dimensions, and compared them to their two-
dimensional counterparts. We have used the Boltzmann-Ginzburg-Landau approach
that, by construction, yields well-behaved partial differential equations governing the
main physical fields. For convenience, we first treated the polar class with ferromag-
netic alignment, then the cases with nematic alignment, i.e. the fast-velocity-reversal
limit of active nematics, and the slow-reversal case, including the zero-reversal “rods”
limit.

For the polar ferromagnetic class, we find the classic Toner-Tu equations, although
here, starting from a Vicsek-style model, we obtain an anisotropic diffusion term not
present in 2D using the same approach. We also find other differences between 2D
and 3D, notably the non-monotonicity of order as a function of noise strength for the
3D homogeneous order solution. The linear stability of the spatially-homogeneous



116 Chapter 5. Deriving hydrodynamic equations for DAM models in 3D

solutions of the 3D Toner-Tu equations is similar to that of the 2D case: the ordered
solution shows a finite wavelength longitudinal instability near the continuous onset
of order, and a residual, “spurious” instability deep in the ordered phase.

In the case of nematic alignment, the differences with the 2D case are much more
pronounced: first of all, the general scenario departs from the ubiquitous liquid-gas
phase separation found in 2D, as the transition to order is found discontinuous even
at the mean-field level studied here. This situation is related to the presence of a
quadratic term in the nematic field equation, a term ruled out by rotational symme-
try in 2D. There is thus a genuine bistability region defining hysteresis loops at the
level of homogeneous solutions. Nevertheless, we find that the homogeneous ordered
solution still retains the generic transversal long-wavelength instability present in 2D,
complicating further the mean-field phase diagram. In addition, we showed that the
3D hydrodynamic equations with nematic alignment support biaxial periodic solu-
tions corresponding to cholesteric configurations. We show that these solutions too
are generically unstable near their existence limit, and we discuss their relative sta-
bility. We note finally that, as in 2D, we find no qualitative difference between the
active nematics and rods cases at the level considered here.

Naturally, this work now calls for further studies at the nonlinear and fluctuating
levels.

At the nonlinear but still deterministic level, the inhomogeneous solutions of the
hydrodynamic equations derived here must be found. As in the 2D case, we expect
them to exist beyond the narrow band of linear instability of the homogeneous order
solution where no homogeneous solutions exist. In the phase-separation framework
described in the introduction, the lines delimiting this region are the spinodal lines.
The binodal lines, which ultimately delimit the domain of existence of the coexistence
phase sketched in Figure 5.1, are determined by the existence and stability limits of
inhomogeneous solutions.

For the polar case, we expect these inhomogeneous solutions to take the form
of travelling dense sheets as observed in microscopic models [70]. For the nematic
alignment cases, as of now, not much is known: the only published account of the
structures observed in 3D can be found in [85]|, where a dense ordered cylinder with
its axis along the global nematic order is shown for the Vicsek-style active nematics
model.

The fluctuating level of either microscopic models or our hydrodynamic equations
complemented by stochastic terms remains, as of now, essentially virgin territory.
Studies of the 3D Vicsek model and others in the same class have revealed the emer-
gence of the dense traveling sheets mentioned above, but no work has studied in
depth the microphase vs macrophase separation scenario found, in 2D, to distinguish
the active Ising and the Vicsek models [67]. For nematic alignment, it is fair to say
that almost everything remains to be done. An interesting study of a microscopic
model of self propelled rods in 3D has shown the existence and stability of cholesteric
solutions that coexist with the homogeneous ordered nematic phase, but it remains
rather partial [167].

Our ongoing work is devoted to the above endeavours: careful study of 3D Vicsek-
style models, search for inhomogeneous solutions to the hydrodynamic equations de-
rived here, and the eventual complete understanding of 3D dry aligning active matter
at the fluctuating hydrodynamic level.
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Chapter 6

(General conclusion and
perspectives

Dry aligning active matter constitutes a simple framework that has been instrumental
to reach a deeper understanding of emergent phenomena such as collective motion.
Despite much progress in the past few years, some issues related to microscopic,
kinetic, and hydrodynamic levels are still pending. A few of them have been addressed
in this thesis, mainly through the study of Vicsek-style models. This global conclusion
is meant to give an overview of the further problems raised by our work and possible
perspectives it can offer.

In Chapter 2, we have shown that despite its apparent proximity with the equi-
librium XY model, the Vicsek-shake class exhibits a novel type of critical point with
a second order transition to a polar quasi-ordered phase with continuously varying
exponents. This feature has been linked to the interplay between density and order
that has a dramatic impact on the nonequilibrium dynamics of defects. We indeed
found that +1 charged defects in particular nucleate dilute, orderless, domains in their
core and can no longer be defined as a singular objects. Similar phenomenology is
also present in the polar class, however in this case we find that the diameter of the
disordered area created by a positive defect does not grow like v/¢ but linearly with
time. More generally, we also expect interesting defects dynamics to show up in the
classes with nematic alignment. Although recent experimental works have stressed
the role of density in the behavior of defects [168, 169], many studies place themselves
in the dense limit and/or neglect it [170-174]. Therefore, defects dynamics in dry
dilute aligning active matter is mostly unexplored and seems promising.

The main conclusion of Chapter 3 is that deterministic kinetic equations are not
necessarily more reliable than the simpler hydrodynamic level description of active
matter models. We indeed found that they can exhibit remarkable qualitative differ-
ences with the microscopic models they are derived from. We have moreover shown
evidence that the two-body collisions assumed in the Boltzmann approach is a better
approximation than the mean field description of interactions provided by the Smolu-
chowski equation. In order to reach more quantitative agreement with microscopic
models, going beyond these approximations and consider multi-particle interactions
is presumably required. This program has been carried out by Ihle [133] although his
resulting kinetic equation seems to be hardly tractable numerically if considering more
than two body-body collisions. He moreover seems to achieve quantitative agreement
only in the limit of large particles’ speed, ensuring molecular chaos, that is usually
not considered in the study of microscopic models. This point thus remains an open
question.

We have shown in Chapter 4 that, while the Toner Tu theory is of precious help
for the understanding of emergence of polar long-range-order in the two dimensional
Vicsek model and thus qualitatively correct, scaling exponents are not those predicted.
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Our numerical study thus calls for further theoretical analysis of the field theory. It
is however probably hopeless to get accurate predictions of the exponents from per-
turbative renormalization group computation in d = 2. The solution to this problem
could then lie in the application of nonperturbative techniques [175].

Our derivation of deterministic hydrodynamic equations for three dimensional dry
aligning active matter models in Chapter 5 calls for the study of corresponding mi-
croscopic models and the characterization of their inhomogeneous solutions. Another
important related problem concerns the derivation of stochastic terms and the study
of fluctuating hydrodynamic equations. Indeed, we know from the band solutions se-
lection in two dimensions that fluctuations play a major role in the correct description
of simple Vicsek-style models. More generally, a pending issue concerns the precise
form of the noise terms (additive or multiplicative, see Section 1.4) and the qualitative
and quantitative effects it could have on the dynamics.

We are moreover now capable of simulating hundreds of millions of particles, which
allows to address problems that were inaccessible before. There is indeed still a
debate on the true nature of the nematic long-range-order of two dimensional self-
propelled rods without reversals, that was identified both numerically [87] and ex-
perimentally [36]. As explained in Section 2.1.1, the theoretical analysis of Shankar
et al. predicts the existence of a nonuniversal length scale below which order could
seem long-ranged, although it would appear quasi-long-ranged above it [95]. In princi-
ple, self-propelled rods are thus expected to behave as active nematics asymptotically.
In [87] Ginelli and collaborators identified another system size independent scale corre-
sponding to the typical distance a particle travels in the nematic ordered phase before
it reverses its velocity. This scale is comparable to the sizes that were simulated in
this paper, it is thus still possible that larger systems would effectively behave as an
active nematics, leading to a power law decay of the order with size. We now have the
numerical power to go beyond those scales and finally answer this long-time pending
question.

Finally, works on simple dry systems are important because they helped to uncover
some of the basic universal features of active matter. However, they often sit far from
reality, for example, when long-ranged hydrodynamic interactions are not negligible.
This is usually the case in systems composed of bacteria [35, 38, 39|, or microtubules
propelled by molecular motors [42]. For these cases we can imagine to generalize the
two and three dimensional approaches presented in Chapters 1 and 5 to the wet case.
This could be done, for instance, coupling a simple model of rod like swimmers (and
thus the corresponding Boltzmann equation) to a Stokes equation for the surrounding
fluid as in 35, 176-178|.
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Annexe A

Résumé de la thése en francais

A.1 La matiére active

Définition et exemples

La matiére active est un champ de recherche de la physique statistique hors équilibre
étudiant des collections de particules pouvant exploiter ’énergie présente dans leur
environnement afin de s’auto-propulser. Les systémes actifs sont donc maintenus hors
d’équilibre au niveau microscopique (dans leur bulk), ce qui leur confére des propriétés
spécifiques telles que celles observées dans les ensembles d’agents de déplacant de fagon
cohérente, phénomeénes connu sous le nom de mouvements collectifs.

Le monde du vivant fournit naturellement de nombreux exemples de systémes
actifs tels que les foules |24, 25| ou les groupes d’animaux [20, 27, 31, 32|. Aux échelles
microscopiques les bactéries [35-37] et cellules [40] montrent aussi des comportements
collectifs pouvant étre décrits par des modéles simples de particules auto-propulsées en
interaction. Au niveau intra-cellulaire, les assemblages de microtubules ou filaments
d’actine avec des moteurs moléculaires peuvent aussi donner lieu a ’émergence de
phénomeéne collectifs [41-43].

Les systémes actifs artificiels, quant & eux, offrent souvent un meilleur controle
expérimental. La plupart sont contraints & deux dimensions tels que les colloides
actifs asymétriques [47-53], les « rollers » de [44, 56|, ou les granulaires agités dans la
troisiéme direction [45, 57-59].

Une illustration de certains des exemples présentés dans cette section est fournie
en Figure 1.1.

Un modéle minimal pour la transition vers le mouvement collectif

Bien que les systémes mentionnés précédemment puissent paraitre dissemblables et
couvrent une large gamme d’échelles, la plupart d’entre eux exhibent des propriétés
collectives similaires provenant de leur caractére actif ainsi que de la nature des inter-
actions entre particules. Leur description en terme de modéles minimaux, sans qu’elle
recherche un accord quantitatif avec les expériences, est donc cruciale pour notre com-
préhension profonde des caractéristiques génériques des systémes actifs. Ces modéles
ont en outre 'avantage de ne dépendre que d’un ensemble restreint de paramétres
de controle, et leur simplicité les rend efficaces a simuler numériquement. De plus,
ils permettent souvent la dérivation de théories continues a partir de leur dynamique
microscopique, faisant le lien entre ce niveau et les équations phénoménologiques.
Un des modeles les plus simple et populaire pour décrire les mouvements collectifs
est sirement celui introduit en 1995 par Vicsek et collaborateurs [68]. Celui-ci consi-
dére des particules se déplagant & vitesse constante a deux dimensions et interagissant
de fagon & aligner leurs orientations localement en présence de bruit angulaire. Ce
modéle ne dépend essentiellement que de deux paramétres de controle : la densité
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moyenne de particules py et 'amplitude du bruit 7, reflétant la compétition entre
Pordre (renforcé lorsque pg est large) et le désordre induit par le bruit. Afin de rester
aussi simple que possible, le modéle de Vicsek ne prend pas en compte les interactions
provenant du fluide entourant les particules, ceci est pertinent dans les situations ou
celles-ci sont en contact et échangent de I'impulsion avec un substrat, on parle alors
de matiére active séche. La seule loi de conservation autorisée par la dynamique est
donc celle du nombre total de particules, en particulier comme I’impulsion totale n’est
pas conservée, le modéle ne satisfait pas l'invariance Galiléenne et doit étre exprimé
dans le référentiel dans lequel I'impulsion est dissipée.

Le diagramme des phases du modéle de Vicsek est représenté en Figure 1.3(c) et
montre trois phases distinctes. A haut bruit (basse densité) le systéme est désordonné,
comme en témoignent les corrélations décroissant exponentiellement et le paramétre
d’ordre M, définit comme la norme de la somme des orientations de toutes les par-
ticules (normalisée), qui prend une valeur nulle. Diminuant 1 (ou augmentant pg),
le systéme subit une transition de phase hors équilibre caractérisée par une brisure
spontanée de symétrie vers un état tel que M > 0 car toutes les particules de dé-
placent dans la méme direction. Cette phase est dotée d’un vrai ordre polaire, une
propriété impossible a 1’équilibre a cause des ondes de spin [71], de fluctuations de
densité géantes et de super-diffusion |70, 72-74]. La transition vers le mouvement col-
lective était initialement décrite comme continue |68, 77|, cependant plusieurs travaux
aux niveaux microscopique [69, 70] et continu [78-80] ont montré que ceci était da a
la présence de forts effets de taille finie. En effet, elle est maintenant bien comprise en
terme d’un scénario impliquant une séparation de phase avec coexistence entre des do-
maines de liquide denses et ordonnés, prenant la forme de bandes se propageant dans
la direction perpendiculaire & leur axe (voir Figure 1.2(b)), et du gas dilué et désor-
donné. Cette phénoménologie, typique de la classe définie par le modéle de Vicsek, est
provoquée par une boucle de rétroaction positive qui déstabilise I’ordre homogeéne prés
de la transition : les particules alignées ont tendance & rester ensemble et les régions
denses sont plus ordonnées. Les bandes ainsi formées possédent une taille caracté-
ristique bien définie, et froment donc asymptotiquement un arrangement smectique
comme représenté en Figure 1.2(b). On parle alors de séparation microphase, a oppo-
ser & la séparation macrophase pour laquelle les domaines de liquide ont une extension
macroscopique (voir Figure 1.2(c)).

Descriptions hydrodynamiques du modéle de Vicsek

Les équations hydrodynamiques décrivant le modéle de Vicsek furent d’abord écrites
par Toner et Tu en considérant tous les termes autorisés par les symétries du pro-
bléme [72-74]. Les modes lents (ou hydrodynamiques) sont alors les champs de densité
et polarité, qui satisfont les Equations (1.3). A partir de celles-ci et sur la base d’argu-
ments provenant du Groupe de Renormalisation Dynamique, Toner et Tu proposérent
une « théorie quantitative » des movements collectifs et purent caractériser les pro-
priétés universelles des fluctuations autour de la phase ordonné du modéle de Vicsek.
Ils furent alors en mesure de montrer I'existence d’un vrai ordre polaire, méme & deux
dimensions, et prédirent les autres propriétés de cette phase. Cependant, leur théorie
ne fournit aucune connexion avec les modéles microscopiques qu’elle cherche a décrire.
En particulier, les nombreux coefficients présents dans les Equations (1.3) ne sont pas
indépendants et sont en principe fonctions des quelques paramétres microscopiques
du modéle, cette information pouvant s’avérer précieuse si ’on veut procéder & une
analyse compléte du diagramme des phases.
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Plusieurs approches permettent d’établir la relation entre les niveaux microsco-
pique et continu, I'une d’entre elles fut proposée par Bertin et al. [78, 79|, dite
Boltzmann-Ginzburg-Landau (BGL), et débute par I’écriture d’une équation de Boltz-
mann (1.6) décrivant 1’évolution de la densité de probabilité f(7,6,t) qu'une particule
a d’étre en une position 7 avec une orientation # &4 un instant ¢t. Comme toutes les
équations de Boltzmann, celle-ci suppose un régime dilué tel que les collisions sont
essentiellement binaires ainsi que le chaos moléculaire nécessaire afin d’exprimer la
distribution & deux corps comme le produit de deux distributions & un corps. f est
ensuite décomposée en termes de modes de Fourier angulaires, conduisant a une hié-
rarchie infinie d’équations non linéaires couplées. Celle-ci est finalement tronquée et
fermée a I'aide d’un ansatz de fagon a ne garder que les modes lents, c.a.d. ceux qui ne
sont pas amortis, et correspondent aux champs de densité et polarité. Les équations
de Toner et Tu sont ainsi obtenues, a ceci prés que leurs coeflicients sont tous exprimés
comme fonctions des champs et parameétres du modeéle microscopique. L’analyse de
leurs solutions homogénes, ainsi que leur stabilité, conduit au diagramme des phase
présenté en Figure 1.4(a), qui montre un accord qualitatif avec celui obtenu via des
simulations du modéle microscopique proche de I’émergence de I'ordre polaire [80].

A.2 Une classe de matiére active avec une transition du
second-ordre vers un quasi-ordre polaire

Les modéles de matiére active séche avec alignement local

Tous les systémes actifs ne présentent pas les mémes symétries que celles du modéle
de Vicsek et appartiennent donc a différentes classes d’universalité. Celles-ci sont au
nombre de trois, et chacune posséde un représentant dans le cadre donné par Vicsek.
Les particules polaires alignant leurs vitesses de fagon ferromagnétiques correspondent
au cas polaire qui est décrit par le modéle de Vicsek original, si a 'inverse ’alignement
se fait de fagon nématique, c.a.d. si les particules anti-alignent leurs directions lorsque
celles-ci forment initialement un angle obtus, alors on parle des rods auto-propulsés.
Si maintenant le mouvement des particules est apolaire, si elles renversent leur vitesse
avec une certaine probabilité par exemple, et qu’elles s’alignent de fagon nématique
elles forment la classe des nématiques actifs.

De facon analogue au cas polaire présenté précédemment, ces classes supplémen-
taires ont été étudiées intensivement a la fois numériquement [82, 85, 87, 91, 94| et
au niveau continu [80, 81, 84, 86, 88-90, 95, 123|. Elles exhibent toutes un diagramme
des phases similaire & celui montré en Figure 1.3(c) avec trois régions distinctes. A
bas bruit (haute densité) la phase ordonnée nématique est quasi-ordonnée dans le cas
des nématiques actifs, alors que des résultats numériques et expérimentaux semblent
pointer vers un vrai ordre nématique pour les rods. Les fluctuations de densité géantes
sont aussi présentes dans les deux cas. Un autre point commun a toutes les classes est
la phase de coexistence séparant les domaines ordonné et désordonné, et qui prend la
forme de bandes dont I'axe est aligné avec I'ordre instables vis & vis des perturbations
de grande longueur d’onde, conduisant donc & un chaos spatio-temporel représenté
Figure 2.1(a). L’approche BGL a aussi été appliquée a ces autres classes, et conduit
4 un diagramme des phases au niveau hydrodynamique qualitativement correct.
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Une nouvelle classe avec une transition continue

Une transition avec un point (ou une ligne) critique ne peut donc pas étre observée
dans ces modéles de matiére active séche avec alignement local. En réalité, cet ob-
jectif peut étre atteint en définissant une nouvelle classe qui considére des particules
apolaires et un alignement ferromagnetique, tout en s’affranchissant de la contrainte
« Vicsek » qui fait correspondre polarité et vitesse. En effet, afin d’obtenir dans ce cas
des résultats non triviaux nous considérons un modéle ou les particules peuvent de
déplacer dans le méme sens que et en opposition avec leur polarité et renversent leurs
vitesse avec une certaine probabilité au cours du temps.

A la fois les simulations numériques ainsi que les équations hydrodynamiques dé-
rivées a l’aide de 'approche BGL confirment que la transition est continue dans ce
cas la (Figures 2.2(a) and 2.3). De plus, la phase ordonnée montre un quasi-ordre po-
laire avec des exposants variant continument (voir Figures 2.2(c,d)), et présente donc
des propriétés similaires au modéle XY a I’équilibre. Etonnamment, une caractérisa-
tion extensive de la transition & ’aide de simulations numériques porte a conclure que
celle-ci n’appartient pas a la classe d’universalité Berezinskii-Kosterlitz-Thouless [146-
148|. En revanche, elle tend fortement a montrer que la transition est mieux décrite
comme un point critique standard avec une divergence algébrique des corrélations. Ce
résultat est enfin rationalisé par une étude de la dynamique des défauts dans la phase
quasi-ordonnée, qui présente des caractéristiques propres a la nature hors d’équilibre
du modéle, et notamment & l'interaction entre densité et polarité. En effet, les défauts
ne peuvent plus étre décrits comme des objets ponctuels (voir Figure 2.7), ce qui les
prive probablement d’exercer leur role habituel.

A.3 Robustesse des théories cinétiques pour la matiére
active séche avec alignement

Les limites de la description hydrodynamique

Bien que le niveau cinétique soit généralement utilisé en tant qu’intermédiaire dans la
dérivation d’équations hydrodynamiques, par exemple en employant ’approche BGL,
on pourrait s’attendre a ce que plus d’information soit présente & ce stade qu’au niveau
hydrodynamique. En effet, ces derniéres proviennent d’une approche perturbative et
ne sont donc en principe valides que proche de la transition. Plus profondément dans
la phase ordonnée, des artefacts de la troncation peuvent en effet se manifester sous
la forme d’instabilités additionnelles de la solution homogeéne ordonnée [80, 89]. De
plus, il a été montré que les équations de Toner et Tu déterministes admettent a la
fois les solutions de bandes correspondant aux séparations microphase et macrophase
[121, 122], et que la sélection du bon profil ne se fait qu’au niveau fluctuant [67]. On
peut alors s’interroger si celle-ci apparait au niveau cinétique déterministe.

L’équation de Boltzmann, solutions et diagramme des phases

L’étude de I’équation de Boltzmann décrivant la classe polaire peut se faire par tron-
cature de la hiérarchie de Fourier en ne gardant que les modes d’indice inférieur a K,
ol K est généralement pris supérieur & 10. La solution homogéne ordonnée du sys-
téme d’équation non linéaires correspondant peut ainsi étre calculée numériquement
et sa stabilité évaluée. La Figure 3.2(b) montre qu’alors que l'instabilité présente au
coeur de la phase ordonnée tend & disparaitre lorsque K augmente, celle confinée
au voisinage de la transition au niveau hydrodynamique, et qui engendre les bandes
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polaires observées dans les simulations microscopiques, s’étend aux bruits faibles ne
laissant qu’une poche de stabilité aux valeurs intermédiaires de 7. Le diagramme des
phases de ’équation de Boltzmann est donc qualitativement différent de celui attendu.
Cependant, on peut voir en Figure 3.4(a) que le diagramme des phases correct peut
étre retrouvé en ajoutant de la diffusion positionnelle au niveau cinétique, celle ci ap-
paraissant notamment lorsque 1’équation est dérivée dans la limite des temps discrets
(voir la Section 3.4.2). Des simulations numériques de I’équation de Boltzmann ré-
vélent que ses solutions propagatives au voisinage de la transition champ moyen sont
similaires a celles des équations hydrodynamiques. A l'inverse, I'instabilité présente &
bas bruits donne lieu & des cycles limite instables au niveau hydrodynamique, corres-
pondant & une phase liquide globalement ordonnée dans laquelle des ondes de faible
amplitude se propagent (voir la Figure 3.7). De plus, comme au niveau hydrodyna-
mique la Figure 3.9 montre que la sélection de la solution de bande correcte ne se fait
pas au niveau cinétique déterministe, soulignant encore une fois le role important des
fluctuations [67].

L’équation de Boltzmann décrivant un modéle de type Vicsek avec alignement a
temps discret doit donc comporter des termes de diffusion spatiale, ceux-ci étant natu-
rellement présents au niveau hydrodynamique car introduits par la procédure de tron-
cature et fermeture. Les observations tendent par ailleurs & montrer qu’a I’émergence
de l'ordre, le niveau cinétique ne contient pas plus d’information que les équations hy-
drodynamiques, pourtant bien plus simples. Néanmoins et parce que leur dérivation
repose sur une approche perturbative, ces derniéres peuvent échouer loin du seuil et
montrer des instabilités supplémentaires n’ayant pas d’existence au niveau microsco-
pique. Au contraire, si dotée de termes de diffusion spatiale additionnels, 1’équation
de Boltzmann constitue une description déterministe qualitativement correcte de la
classe polaire, méme profondément dans la phase ordonnée.

A.4 Une évaluation quantitative de la théorie de Toner et
Tu

La théorie de Toner et Tu

La théorie proposée par Toner et Tu [72, 73] décrit les propriétés asymptotiques uni-
verselles du mouvement collectif tel qu’on le trouve dans la phase ordonnée fluctuante
du modéle de Vicsek. Elle se base sur des équations hydrodynamiques gouvernant
I’évolution des champs de densité et vitesse (voir (4.1)), et a pour but de caractéri-
ser les fluctuations autour de la solution homogéne ordonnée. Toner et Tu prédirent
d’abord une décroissance algébrique des corrélations spatiales & deux points. De plus,
comme le modéle de Vicsek présente un vrai ordre polaire méme & deux dimensions,
quelque soit d < 4 les exposants correspondants sont différents selon que 1'on regarde
le scaling longitudinalement ou transversalement & 'ordre. Celui-ci est donc définit
par deux exposants : xy mesure comment les fluctuations de vitesse décroissent avec
la taille du systéme dans la(les) direction(s) transverse(s) a 'ordre (exp. de rugosité),
alors que ’anisotropie du scaling est caractérisée par £&. Un autre résultat important
de Toner et Tu est la présence d’ondes sonores dont la vitesse dépend de la direction
dans laquelle elles se propagent. Par ailleurs, pour une direction donnée il est prédit
qu’a cause de la non conservation de I'impulsion deux modes avec des vitesses diffé-
rentes coexistent. Finalement, ’exposant dynamique z caractérise 'amortissement de
ces ondes.

Toner et Tu revendiquérent d’abord un calcul exact des exposants x, & et z &
deux dimensions. Cependant, dans une publication plus récente [112], Toner affirme
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que certains termes, probablement importants, n’avaient pas été pris en compte dans
les travaux initiaux, et que ceux-ci pourraient donc invalider cette revendication. Bien
qu’il n’y ait aucune raison pour laquelle les valeurs des exposants soient celles calculées
dans |72, 73], les prédictions qualitatives qui y sont faites, c.a.d. la présence d’un vrai
ordre polaire pour d = 2, la présence d’ondes sonores propagatives, ainsi que les
fluctuations géantes restent valides.

Simulations numériques, mesure des exposants

Jusqu’a présent, les tests numériques de la théorie de Toner et Tu reposent sur des
mesures indirectes des exposants, et se limitent & un accord qualitatif [70, 76, 85, 160,
161]. Aucune mesure précise et directe n’a donc encore été réalisée.

Des simulations numériques du modéle de Vicsek & grande échelle a deux dimen-
sions montrent que la propagation des ondes sonores dans la phase ordonnée est en
accord avec la prédiction de Toner et Tu (voir Figure 4.7). A 'inverse les valeurs des
exposants x, £ et z, répertoriées dans la Table 4.1, sont incompatibles avec la théorie.
Il est donc naturel de conclure que les nouvelles non linéarités identifiées dans [112]
constituent bien des perturbations de l'ordre pertinentes au sens du Groupe de Re-
normalisation. Comparant les valeurs des exposants avec celles prédites, les effets
principaux de ces termes sont d’amortir les fluctuations de vitesses, confirmant la pré-
sence d’un vrai ordre a deux dimensions, et de rendre le systéme moins anisotrope
aux grandes échelles.

A.5 Deérivation d’équation hydrodynamiques pour les mo-
déles de matiére active séche en trois dimensions

A deux dimensions, 'approche BGL permet une dérivation contrélée d’équations non
linéaires hydrodynamiques & partir de dynamiques microscopiques de type Vicsek.
Elle est de plus capable de reproduire qualitativement les diagrammes des phases de
ces modeéles et fournit un cadre théorique simple décrivant la transition comme une
séparation de phases [67, 89, 91, 121, 122|. Malgré ces succés a deux dimensions (2D),
peu est connu & 3D, en particulier la connexion entre les niveaux microscopique et
hydrodynamique reste essentiellement inexplorée.

Un formalisme général pour 'approche BGL & 3D est donc proposé, et les trois
classes d’universalité introduites a la Section A.2 sont traitées. De fagon analogue
au cas 2D, les équations hydrodynamiques sont obtenues a partir d’'une théorie de
Boltzmann exprimée sous la forme d’une expansion en harmoniques sphériques. Le
cas polaire méne aux équations de Toner et Tu qui montrent peu de différences avec le
cas 2D. A l'inverse, pour un alignement nématique les écarts avec les équations & 2D
sont plus prononcés : Premiérement, la transition est trouvée discontinue au niveau
champ moyen avec une région de bistabilité entre les solutions homogénes ordonnée et
désordonnée, et son mécanisme différe donc de la séparation de phase habituelle. Ceci
est dii & un nouveau terme dans I’équation du champ nématique qui n’est pas présent
a 2D pour des raisons de symétrie. De plus, la solution homogéne ordonnée est aussi
trouvée instable proche de la transition, compliquant un peu plus le diagramme des
phases. Deuxiémement, les équations & 3D avec alignement nématique supportent des
solutions périodiques avec un ordre global biaxial correspondant a des configurations
cholestériques. Celles-ci sont instables au voisinage de leur limite d’existence, et leur
stabilité relative est discutée a la Section 5.5.4.
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Résumé : La matiére active, désignant les systemes
hors d’équiliore composés de particules étant ca-
pable d'utiliser I'énergie présente dans leur environ-
nement afin de se déplacer de fagon systématique,
a suscité beaucoup d’attention auprés des commu-
nautés de mécanique statistique et matiére molle ces
derniéres décennies. Les systéemes actifs couvrent en
effet un large panel d’'exemples allant de la biologie
aux granulaires. Cette these se concentre sur 'étude
de modeles minimaux de matiére active seche (ceux
pour lesquels le fluide dans lequel les particles sont
immergées est négligé), tel que le modéle de Vicsek
qui considere des particules ponctuelles se déplagant
a vitesse constante tout en alignant leur direction de
mouvement avec celles de leurs voisins localement
en présence de bruit, et définit une classe d’univer-
salité hors équilibre pour la transition vers le mouve-
ment collectif. Quatre probleémes en suspens ont été
abordés: La définition d’'une classe d’universalité en

matiére active seche qui décrit des systémes de par-
ticles présentant un alignement polaire et un mou-
vement apolaire. Cette nouvelle classe exhibe une
transition continue vers un quasi-ordre polaire doté
d’exposants variant continument, et donc analogue
au modele XY a I'équilibre, mais n’appartenant pas
a la classe d’universalité Kosterlitz-Thouless. Ensuite,
I'étude de la validité des théories cinétiques décrivant
les modeéles de type Vicsek, qui sont confrontées aux
résultats obtenus aux niveaux microscopique et hy-
drodynamique. Puis une évaluation quantitative de la
théorie de Toner et Tu, permettant de mesurer les ex-
posants caractérisant les fluctuations dans la phase
ordonnée du modéle de Vicsek, a partir de simula-
tions numériques a grande échelle du modéle micro-
scopique. Enfin, la création d’'un formalisme pour la
dérivation d’équations hydrodynamiques a partir de
modéles de matiére active seche a trois dimensions,
ainsi que leur étude au niveau linéaire.

Title: Outstanding Problems in the Statistical Physics of Active Matter

Keywords: Nonequilibrium statistical physics, active matter, collective motion, complex phenomena

Abstract: Active matter, i.e. nonequilibrium systems
composed of many particles capable of exploiting the
energy present in their environment in order to pro-
duce systematic motion, has attracted much attention
from the statistical mechanics and soft matter com-
munities in the past decades. Active systems indeed
cover a large variety of examples that range from
biological to granular. This Ph.D. focusses on the
study of minimal models of dry active matter (when
the fluid surrounding particles is neglected), such as
the Vicsek model: point-like particles moving at con-
stant speed and aligning their velocities with those of
their neighbors locally in presence of noise, that de-
fines a nonequilibrium universalilty class for the tran-
sition to collective motion. Four current issues have
been addressed: The definition of a new universality
class of dry active matter with polar alignment and ap-

olar motion, showing a continuous transition to quasi-
long-range polar order with continuously varying ex-
ponents, analogous to the equilibrium XY model, but
that does not belong to the Kosterlitz-Thouless uni-
versality class. Then, the study of the faithfulness
of kinetic theories for simple Vicsek-style models and
their comparison with results obtained at the micro-
scopic and hydrodynamic levels. Follows a quantita-
tive assessment of Toner and Tu theory, which has al-
lowed to compute the exponents characterizing fluctu-
ations in the flocking phase of the Vicsek model, from
large scale numerical simulations of the microscopic
dynamics. Finally, the establishment of a formalism
allowing for the derivation of hydrodynamic field theo-
ries for dry active matter models in three dimensions,
and their study at the linear level.
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