T. W. Engelmann, Neue methode zur untersuchung der sauerstoffausscheidung pflanzlicher und tierischer organismen (New method for investigation of oxygen-searching plant and animal organisms), Pflugers Arch. Gesammte Physiol, pp.285-292, 1881.

B. L. Taylor, I. B. Zhulin, and M. S. Johnson, Aerotaxis and other energy-sensing behavior in bacteria, Annu. Rev. Microbiol, vol.53, pp.103-128, 1999.

J. B. Kirkegaard, A. Bouillant, A. O. Marron, K. C. Leptos, and R. E. Goldstein, Aerotaxis in the closest relatives of animals. Elife, vol.5, 2016.

C. Loenarz, The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens, EMBO Rep, vol.12, pp.63-70, 2011.

R. K. Bruick, Oxygen sensing in the hypoxic response pathway: regulation of the hypoxiainducible transcription factor, Genes & Development, vol.17, pp.2614-2623, 2003.

W. G. Kaelin and P. J. Ratcliffe, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Molecular Cell, vol.30, pp.393-402, 2008.

S. L. Dunwoodie, The Role of Hypoxia in Development of the Mammalian Embryo, Developmental Cell, vol.17, pp.755-773, 2009.

M. C. Simon and B. Keith, The role of oxygen availability in embryonic development and stem cell function, Nat Rev Mol Cell Biol, vol.9, pp.285-296, 2008.

O. Genbacev, Y. Zhou, J. W. Ludlow, and S. J. Fisher, Regulation of human placental development by oxygen tension, Science, vol.277, pp.1669-1672, 1997.

J. A. Bertout, S. A. Patel, and M. C. Simon, The impact of O2 availability on human cancer, Nat. Rev. Cancer, vol.8, pp.967-975, 2008.

E. B. Rankin and A. J. Giaccia, Hypoxic control of metastasis, Science, vol.352, pp.175-180, 2016.

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition, Nat Rev Mol Cell Biol, vol.15, pp.178-196, 2014.

D. M. Lewis, Intratumoral oxygen gradients mediate sarcoma cell invasion, Proceedings of the National Academy of Sciences, vol.113, pp.9292-9297, 2016.

B. Mosadegh, Biomaterials. Biomaterials, vol.52, pp.262-271, 2015.

R. M. Kenney, M. W. Boyce, A. S. Truong, C. R. Bagnell, and M. R. Lockett, Real-time imaging of cancer cell chemotaxis in paper-based scaffolds, Analyst, vol.141, pp.661-668, 2016.

C. Lennicke, J. Rahn, R. Lichtenfels, L. A. Wessjohann, and B. Seliger, Hydrogen peroxideproduction, fate and role in redox signaling of tumor cells, Cell Communication and Signaling, vol.13, p.39, 2015.

M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol, vol.24, pp.453-62, 2014.

A. Corcoran and T. G. Cotter, Redox regulation of protein kinases, FEBS J, vol.280, pp.1944-1965, 2013.

T. H. Truong and K. S. Carroll, Redox regulation of protein kinases, Crit. Rev. Biochem. Mol. Biol, vol.48, pp.332-356, 2013.

L. Bundy, S. Wells, and L. Sealy, EBPbeta-2 confers EGF-independent growth and disrupts the normal acinar architecture of human mammary epithelial cells, Molecular Cancer, vol.4, p.43, 2005.

H. Greulich, Oncogenic Transformation by Inhibitor-Sensitive and-Resistant EGFR Mutants, Plos Med, vol.2, p.313, 2005.
DOI : 10.1371/journal.pmed.0020313

URL : https://doi.org/10.1371/journal.pmed.0020313

C. E. Paulsen, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat Chem Biol, vol.8, pp.57-64, 2012.
DOI : 10.1038/nchembio.736

URL : http://europepmc.org/articles/pmc3528018?pdf=render

T. H. Truong, Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase, Cell Chemical Biology, vol.23, pp.837-848, 2016.

Y. Chen, Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia, Autophagy, vol.12, pp.1029-1046, 2016.

W. R. Wilson and M. P. Hay, Targeting hypoxia in cancer therapy, Nat. Rev. Cancer, vol.11, pp.393-410, 2011.

M. Sundaresan, Z. X. Yu, V. J. Ferrans, K. Irani, and T. Finkel, Requirement for generation of H2O2 for platelet-derived growth factor signal transduction, Science, vol.270, pp.296-299, 1995.
DOI : 10.1126/science.270.5234.296

URL : https://zenodo.org/record/1231056/files/article.pdf

Y. S. Bae, Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation, J. Biol. Chem, vol.272, pp.217-221, 1997.
DOI : 10.1074/jbc.272.1.217

URL : http://www.jbc.org/content/272/1/217.full.pdf

A. M. Garrido and K. K. Griendling, NADPH oxidases and angiotensin II receptor signaling, Mol. Cell. Endocrinol, vol.302, pp.148-158, 2009.
DOI : 10.1016/j.mce.2008.11.003

URL : http://europepmc.org/articles/pmc2835147?pdf=render

G. Sirokmány, Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1, Free Radical Biology and Medicine, vol.97, pp.204-211, 2016.

T. Meng, T. Fukada, and N. K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo, Molecular Cell, vol.9, pp.387-399, 2002.
DOI : 10.1016/s1097-2765(02)00445-8

URL : https://doi.org/10.1016/s1097-2765(02)00445-8

B. Elenbaas, Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells, Genes & Development, vol.15, pp.50-65, 2001.
DOI : 10.1101/gad.828901

URL : http://genesdev.cshlp.org/content/15/1/50.full.pdf

Y. G. Ermakova, Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide, Nature Communications, vol.5, p.5222, 2014.
DOI : 10.1038/ncomms6222

URL : http://www.nature.com/articles/ncomms6222.pdf

D. S. Bilan, HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging, ACS Chem. Biol, vol.8, pp.535-542, 2013.
DOI : 10.1021/cb300625g

URL : https://pure.uva.nl/ws/files/1564273/134625_HyPer_3.pdf

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nat Meth, vol.11, pp.783-784, 2014.
DOI : 10.1038/nmeth.3047

URL : http://europepmc.org/articles/pmc4486245?pdf=render

M. P. King and G. Attardi, Isolation of human cell lines lacking mitochondrial DNA, Meth. Enzymol, vol.264, pp.304-313, 1996.
DOI : 10.1016/s0076-6879(96)64029-4

A. Kukat, Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses, Nucleic Acids Res, vol.36, p.44, 2008.
DOI : 10.1093/nar/gkn124

URL : https://academic.oup.com/nar/article-pdf/36/7/e44/16752917/gkn124.pdf

, ANNEXES

, Au cours de ma thèse, j'ai participé à d'autres travaux qui ont fait l'objet de publications

J. Prudent, N. Popgeorgiev, R. Gadet, M. Deygas, R. Rimokh et al., Jun Combination of a discovery LC-MS/MS analysis and a label-free quantification for the characterization of an epithelial-mesenchymal transition signature, 2014.

M. Abercrombie, J. E. Heaysman, and S. M. Pegrum, The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res, vol.62, pp.389-398, 1970.

M. Abercrombie, J. E. Heaysman, and S. M. Pegrum, The locomotion of fibroblasts in culture. I. Movements of the leading edge, Exp. Cell Res, vol.59, pp.393-398, 1970.

M. Abercrombie, J. E. Heaysman, and S. M. Pegrum, The locomotion of fibroblasts in culture. II, Exp. Cell Res, vol.60, pp.437-444, 1970.

N. Aceto, A. Bardia, D. T. Miyamoto, M. C. Donaldson, B. S. Wittner et al., Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis, Cell, vol.158, pp.1110-1122, 2014.
DOI : 10.1016/j.cell.2014.07.013

URL : https://doi.org/10.1016/j.cell.2014.07.013

N. Aceto, A. Bardia, D. T. Miyamoto, M. C. Donaldson, B. S. Wittner et al., Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis, Cell, vol.158, pp.1110-1122, 2014.
DOI : 10.1016/j.cell.2014.07.013

URL : https://doi.org/10.1016/j.cell.2014.07.013

M. Adler, M. Erickstad, E. Gutierrez, G. , and A. , Studies of bacterial aerotaxis in a microfluidic device, Lab. Chip, vol.12, pp.4835-4847, 2012.

P. V. Afonso, M. Janka-junttila, Y. J. Lee, C. P. Mccann, C. M. Oliver et al., LTB4 Is a Signal-Relay Molecule during Neutrophil Chemotaxis, Dev. Cell, vol.22, pp.1079-1091, 2012.
DOI : 10.1016/j.devcel.2012.02.003

URL : https://doi.org/10.1016/j.devcel.2012.02.003

R. Aguilar-cuenca, A. Juanes-garcía, V. , and M. , Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer, Cell. Mol. Life Sci, vol.71, pp.479-492, 2014.
DOI : 10.1007/s00018-013-1439-5

S. Altenhöfer, K. A. Radermacher, P. W. Kleikers, K. Wingler, and H. H. Schmidt, Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement, Antioxid. Redox Signal, vol.23, pp.406-427, 2014.

R. Ameziane-el-hassani, M. Schlumberger, and C. Dupuy, NADPH oxidases: new actors in thyroid cancer?, Nat. Rev. Endocrinol, vol.12, pp.485-494, 2016.
DOI : 10.1038/nrendo.2016.64

N. Andrew and R. H. Insall, Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions, Nat. Cell Biol, vol.9, pp.193-200, 2007.

Z. Arany, S. Foo, Y. Ma, J. L. Ruas, A. Bommi-reddy et al., HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1?, Nature, vol.451, pp.1008-1012, 2008.
DOI : 10.1038/nature06613

URL : http://www.nature.com/nature/journal/v451/n7181/pdf/nature06613.pdf

C. Arrieumerlou, M. , and T. , A Local Coupling Model and Compass Parameter for Eukaryotic Chemotaxis, Dev. Cell, vol.8, pp.215-227, 2005.
DOI : 10.1016/j.devcel.2004.12.007

URL : https://doi.org/10.1016/j.devcel.2004.12.007

A. M. Arsham, J. J. Howell, and M. C. Simon, A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets, J. Biol. Chem, vol.278, pp.29655-29660, 2003.
DOI : 10.1074/jbc.m212770200

URL : http://www.jbc.org/content/278/32/29655.full.pdf

J. M. Ayuso, M. Virumbrales-muñoz, A. Lacueva, P. M. Lanuza, E. Checa-chavarria et al., Development and characterization of a microfluidic model of the tumour microenvironment, Sci. Rep, vol.6, p.36086, 2016.

Y. S. Bae, S. W. Kang, M. S. Seo, I. C. Baines, E. Tekle et al., Epidermal Growth Factor (EGF)-induced Generation of Hydrogen Peroxide ROLE IN EGF RECEPTORMEDIATED TYROSINE PHOSPHORYLATION, J. Biol. Chem, vol.272, pp.217-221, 1997.
DOI : 10.1074/jbc.272.1.217

URL : http://www.jbc.org/content/272/1/217.full.pdf

*. Bae, Y. S. Oh, H. Rhee, *. , S. G. Yoo et al., Regulation of Reactive Oxygen Species Generation in Cell Signaling, Mol. Cells, vol.32, pp.491-509, 2011.
DOI : 10.1007/s10059-011-0276-3

URL : http://europepmc.org/articles/pmc3887685?pdf=render

E. H. Barriga, P. H. Maxwell, A. E. Reyes, M. , and R. , The hypoxia factor Hif-1? controls neural crest chemotaxis and epithelial to mesenchymal transition, J. Cell Biol, vol.201, pp.759-776, 2013.
DOI : 10.1083/jcb.201212100

URL : http://jcb.rupress.org/content/jcb/201/5/759.full.pdf

K. E. Bass, D. Morrish, I. Roth, D. Bhardwaj, R. Taylor et al., Human cytotrophoblast invasion is up-regulated by epidermal growth factor: Evidence that paracrine factors modify this process, Dev. Biol, vol.164, pp.550-561, 1994.
DOI : 10.1006/dbio.1994.1223

G. Bellot, R. Garcia-medina, P. Gounon, J. Chiche, D. Roux et al., Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains, Mol. Cell. Biol, vol.29, pp.2570-2581, 2009.
DOI : 10.1128/mcb.00166-09

URL : http://mcb.asm.org/content/29/10/2570.full.pdf

E. Berra, D. Roux, D. E. Richard, P. , and J. , Hypoxia-inducible factor-1 alpha (HIF1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm, EMBO Rep, vol.2, pp.615-620, 2001.

M. V. Berridge, L. Dong, and J. Neuzil, Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer, Cancer Res, vol.75, pp.3203-3208, 2015.

A. W. Bigham and F. S. Lee, Human high-altitude adaptation: forward genetics meets the HIF pathway, Genes Dev, vol.28, pp.2189-2204, 2014.

P. Birner, M. Schindl, A. Obermair, C. Plank, G. Breitenecker et al., , 2000.

, Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer, Cancer Res, vol.60, pp.4693-4696

P. Birner, M. Schindl, A. Obermair, G. Breitenecker, and G. Oberhuber, Expression of Hypoxia-inducible Factor 1? in Epithelial Ovarian Tumors: Its Impact on Prognosis and on Response to, Chemotherapy. Clin. Cancer Res, vol.7, pp.1661-1668, 2001.

H. Blaser, M. Reichman-fried, I. Castanon, K. Dumstrei, F. L. Marlow et al., Migration of Zebrafish Primordial Germ Cells: A Role for Myosin Contraction and Cytoplasmic Flow, Dev. Cell, vol.11, pp.613-627, 2006.

I. Bogeski and B. A. Niemeyer, Redox Regulation of Ion Channels, Antioxid. Redox Signal, vol.21, pp.859-862, 2014.

M. Bonora, S. Patergnani, A. Rimessi, E. D. Marchi, J. M. Suski et al., ATP synthesis and storage, Purinergic Signal, vol.8, pp.343-357, 2012.

M. C. Brahimi-horn, P. , and J. , Oxygen, a source of life and stress, FEBS Lett, vol.581, pp.3582-3591, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319870

M. C. Brahimi-horn, J. Chiche, P. , and J. , Hypoxia signalling controls metabolic demand, Curr. Opin. Cell Biol, vol.19, pp.223-229, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319880

M. C. Brahimi-horn, D. Ben-hail, M. Ilie, P. Gounon, M. Rouleau et al., Expression of a Truncated Active Form of VDAC1 in Lung Cancer Associates with Hypoxic Cell Survival and Correlates with Progression to Chemotherapy Resistance, Cancer Res, vol.72, pp.2140-2150, 2012.

R. P. Brandes, N. Weissmann, and K. Schröder, Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic, Biol. Med, vol.76, pp.208-226, 2014.

M. Brezis, S. Rosen, P. Silva, and F. H. Epstein, Renal ischemia: A new perspective, Kidney Int, vol.26, pp.375-383, 1984.

J. A. Broussard, D. J. Webb, and I. Kaverina, Asymmetric focal adhesion disassembly in motile cells, Curr. Opin. Cell Biol, vol.20, pp.85-90, 2008.

R. K. Bruick and S. L. Mcknight, A conserved family of prolyl-4-hydroxylases that modify HIF, Science, vol.294, pp.1337-1340, 2001.

R. A. Brundage, K. E. Fogarty, R. A. Tuft, F. , and F. S. , Calcium gradients underlying polarization and chemotaxis of eosinophils, Science, vol.254, pp.703-706, 1991.

A. C. Bulua, A. Simon, R. Maddipati, M. Pelletier, H. Park et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS), J. Exp. Med, vol.208, pp.519-533, 2011.

G. J. Burton, E. Jauniaux, C. , and D. S. , Human Early Placental Development: Potential Roles of the Endometrial Glands, Placenta, vol.28, pp.64-69, 2007.

R. I. Bustos, M. Forget, J. E. Settleman, and S. H. Hansen, Coordination of Rho and Rac GTPase Function via p190B RhoGAP, Curr. Biol, vol.18, pp.1606-1611, 2008.

D. Cai and D. J. Montell, Diverse and dynamic sources and sinks in gradient formation and directed migration, Curr. Opin. Cell Biol, vol.30, pp.91-98, 2014.
DOI : 10.1016/j.ceb.2014.06.009

URL : http://europepmc.org/articles/pmc4177943?pdf=render

R. J. Cain and A. J. Ridley, Phosphoinositide 3-kinases in cell migration, Biol. Cell, vol.101, pp.13-29, 2009.
DOI : 10.1042/bc20080079

J. M. Cameron, M. Gabrielsen, Y. H. Chim, J. Munro, E. J. Mcghee et al., Polarized Cell Motility Induces Hydrogen Peroxide to Inhibit Cofilin via Cysteine Oxidation, Curr. Biol, vol.25, pp.1520-1525, 2015.
DOI : 10.1016/j.cub.2015.04.020

URL : https://doi.org/10.1016/j.cub.2015.04.020

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, pp.249-257, 2000.
DOI : 10.1038/35025220

P. Carmeliet, V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens et al., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele, Nature, vol.380, pp.435-439, 1996.
DOI : 10.1038/380435a0

URL : http://www.nature.com/nature/journal/v380/n6573/pdf/380435a0.pdf

A. Carreau, B. E. Hafny-rahbi, A. Matejuk, C. Grillon, and C. Kieda, Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia, J. Cell. Mol. Med, vol.15, pp.1239-1253, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00608215

T. P. Cash, Y. Pan, and M. C. Simon, Reactive oxygen species and cellular oxygen sensing. Free Radic, Biol. Med, vol.43, pp.1219-1225, 2007.

N. S. Chandel, D. S. Mcclintock, C. E. Feliciano, T. M. Wood, J. A. Melendez et al., Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1? during Hypoxia A MECHANISM OF O2 SENSING, J. Biol. Chem, vol.275, pp.25130-25138, 2000.
DOI : 10.1074/jbc.m001914200

URL : http://www.jbc.org/content/275/33/25130.full.pdf

G. Charras, P. , and E. , Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol, vol.9, pp.730-736, 2008.
DOI : 10.1038/nrm2453

L. Chen, M. Iijima, M. Tang, M. A. Landree, Y. E. Huang et al., PLA2 and PI3K/PTEN Pathways Act in Parallel to Mediate Chemotaxis, Dev. Cell, vol.12, pp.603-614, 2007.
DOI : 10.1016/j.devcel.2007.03.005

URL : https://doi.org/10.1016/j.devcel.2007.03.005

Y. Chen, E. S. Henson, W. Xiao, D. Huang, E. M. Mcmillan-ward et al., , 2016.

, Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia, Autophagy, vol.12, pp.1029-1046

E. S. Chhabra and H. N. Higgs, The many faces of actin: matching assembly factors with cellular structures, Nat. Cell Biol, vol.9, pp.1110-1121, 2007.

J. Chiche, M. C. Brahimi-horn, P. , and J. , Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer, J. Cell. Mol. Med, vol.14, pp.771-794, 2010.

C. K. Choi, M. Vicente-manzanares, J. Zareno, L. A. Whitmore, A. Mogilner et al., Actin and ?-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner, Nat. Cell Biol, vol.10, pp.1039-1050, 2008.

G. Christofori, New signals from the invasive front, Nature, vol.441, pp.444-450, 2006.

M. E. Cockman, D. E. Lancaster, I. P. Stolze, K. S. Hewitson, M. A. Mcdonough et al., Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH), Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.14767-14772, 2006.

M. L. Coleman, M. A. Mcdonough, K. S. Hewitson, C. Coles, J. Mecinovic et al., Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor, J. Biol. Chem, vol.282, pp.24027-24038, 2007.

V. Compernolle, K. Brusselmans, D. Franco, A. Moorman, M. Dewerchin et al., Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha, Cardiovasc. Res, vol.60, pp.569-579, 2003.

K. L. Covello, J. Kehler, H. Yu, J. D. Gordan, A. M. Arsham et al., HIF-2? regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth, Genes Dev, vol.20, pp.557-570, 2006.

T. R. Cox, R. M. Rumney, E. M. Schoof, L. Perryman, A. M. Høye et al., The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase, Nature, vol.522, pp.106-110, 2015.

L. P. Cramer, Mechanism of cell rear retraction in migrating cells, Curr. Opin. Cell Biol, vol.25, pp.591-599, 2013.

F. Crick, Diffusion in embryogenesis, Nature, vol.225, pp.420-422, 1970.

E. P. Cummins, T. , and C. T. , Hypoxia-responsive transcription factors, Pflüg. Arch, vol.450, pp.363-371, 2005.

V. Desmarais, F. Macaluso, J. Condeelis, and M. Bailly, Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension, J. Cell Sci, vol.117, pp.3499-3510, 2004.

V. Desmarais, H. Yamaguchi, M. Oser, L. Soon, G. Mouneimne et al., N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells, Cell Motil. Cytoskeleton, vol.66, pp.303-316, 2009.

P. N. Devreotes, S. Bhattacharya, M. Edwards, P. A. Iglesias, T. Lampert et al., , 2017.

, Excitable Signal Transduction Networks in Directed Cell Migration, Annu. Rev. Cell Dev. Biol, vol.33

G. J. Deyulia, J. M. Cárcamo, O. Bórquez-ojeda, C. C. Shelton, and D. W. Golde, Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5044-5049, 2005.

?. Disanza, A. Steffen, ?. , A. Hertzog, ?. et al., Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement, Cell. Mol. Life Sci. CMLS, vol.62, pp.955-970, 2005.

E. Donà, J. D. Barry, G. Valentin, C. Quirin, A. Khmelinskii et al., Directional tissue migration through a selfgenerated chemokine gradient, Nature, vol.503, pp.285-289, 2013.

L. Dong, J. Kovarova, M. Bajzikova, A. Bezawork-geleta, D. Svec et al., Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells, p.22187, 2017.

C. Duan, Hypoxia-inducible factor 3 biology: complexities and emerging themes, Am. J. Physiol.-Cell Physiol, vol.310, pp.260-269, 2016.

P. Duchek, R. , and P. , Guidance of Cell Migration by EGF Receptor Signaling During Drosophila Oogenesis, Science, vol.291, pp.131-133, 2001.

P. Duchek, K. Somogyi, G. Jékely, S. Beccari, R. et al., Guidance of Cell Migration by the Drosophila PDGF/VEGF Receptor, Cell, vol.107, pp.17-26, 2001.

S. L. Dunwoodie, The Role of Hypoxia in Development of the Mammalian Embryo, Dev. Cell, vol.17, pp.755-773, 2009.

T. S. Eisinger-mathason, M. Zhang, Q. Qiu, N. Skuli, M. S. Nakazawa et al., Hypoxia-Dependent Modification of Collagen Networks Promotes Sarcoma Metastasis, Cancer Discov, vol.3, pp.1190-1205, 2013.

B. Erdogan, M. Ao, L. M. White, A. L. Means, B. M. Brewer et al., Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin, J Cell Biol jcb, 2017.

M. Ereci?ska and I. A. Silver, Tissue oxygen tension and brain sensitivity to hypoxia, Respir. Physiol, vol.128, pp.263-276, 2001.

J. T. Erler, K. L. Bennewith, T. R. Cox, G. Lang, D. Bird et al., , 2009.

. Hypoxia-induced, Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche, Cancer Cell, vol.15, pp.35-44

S. Etienne-manneville, Cdc42-the centre of polarity, J. Cell Sci, vol.117, pp.1291-1300, 2004.

S. Etienne-manneville, Microtubules in Cell Migration, Annu. Rev. Cell Dev. Biol, vol.29, pp.471-499, 2013.

T. Ezashi, P. Das, and R. M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.4783-4788, 2005.

B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska et al., AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo, Cell Metab, vol.17, pp.113-124, 2013.

O. Felfoul, M. Mohammadi, S. Taherkhani, D. De-lanauze, Y. Zhong-xu et al., Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nat. Nanotechnol, vol.11, pp.941-947, 2016.

M. C. Fernández-agüera, L. Gao, P. González-rodríguez, C. O. Pintado, I. Arias-mayenco et al., Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling, Cell Metab, vol.22, pp.825-837, 2015.

K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, vol.527, pp.472-476, 2015.

A. Franovic, L. Gunaratnam, K. Smith, I. Robert, D. Patten et al., Translational upregulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer, Proc. Natl. Acad. Sci, vol.104, pp.13092-13097, 2007.

C. Frantz, A. Karydis, P. Nalbant, K. M. Hahn, and D. L. Barber, Positive feedback between Cdc42 activity and H + efflux by the Na-H exchanger NHE1 for polarity of migrating cells, J. Cell Biol, vol.179, pp.403-410, 2007.

C. Frantz, G. Barreiro, L. Dominguez, X. Chen, R. Eddy et al., Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding, J. Cell Biol, vol.183, pp.865-879, 2008.

B. A. Freeman and J. D. Crapo, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria, J. Biol. Chem, vol.256, pp.10986-10992, 1981.

P. Friedl, A. , and S. , Cancer Invasion and the Microenvironment: Plasticity and Reciprocity, Cell, vol.147, pp.992-1009, 2011.

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol, vol.10, pp.445-457, 2009.

P. Friedl, W. , and K. , Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer, vol.3, pp.362-374, 2003.

P. Friedl, W. , and K. , Plasticity of cell migration: a multiscale tuning model, J. Cell Biol, vol.188, pp.11-19, 2010.

P. Friedl, J. Locker, E. Sahai, and J. E. Segall, Classifying collective cancer cell invasion, Nat. Cell Biol, vol.14, pp.777-783, 2012.

S. Fujiwara, K. Nakagawa, H. Harada, S. Nagato, K. Furukawa et al., Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas, Int. J. Oncol, vol.30, pp.793-802, 2007.

R. Fukuda, H. Zhang, J. Kim, L. Shimoda, C. V. Dang et al., HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells, Cell, vol.129, pp.111-122, 2007.

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nat. Rev. Cancer, vol.4, pp.891-899, 2004.

O. Genbacev, Y. Zhou, J. W. Ludlow, and S. J. Fisher, Regulation of Human Placental Development by Oxygen Tension, Science, vol.277, pp.1669-1672, 1997.

N. J. German, H. Yoon, R. Z. Yusuf, J. P. Murphy, L. W. Finley et al., PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2, Mol. Cell, vol.63, pp.1006-1020, 2016.

M. Ghosh, X. Song, G. Mouneimne, M. Sidani, D. S. Lawrence et al., Cofilin Promotes Actin Polymerization and Defines the Direction of Cell Motility, Science, vol.304, pp.743-746, 2004.

A. Giatromanolaki, M. I. Koukourakis, E. Sivridis, H. Turley, K. Talks et al., Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival, Br. J. Cancer, vol.85, pp.881-890, 2001.

D. M. Gilkes, G. L. Semenza, and D. Wirtz, Hypoxia and the extracellular matrix: drivers of tumour metastasis, Nat. Rev. Cancer, vol.14, pp.430-439, 2014.

S. Gopal, L. Veracini, D. Grall, C. Butori, S. Schaub et al., Fibronectin-guided migration of carcinoma collectives, Nat. Commun, vol.8, 2017.
DOI : 10.1038/ncomms14105

URL : https://hal.archives-ouvertes.fr/hal-01783964

S. Goswami, E. Sahai, J. B. Wyckoff, M. Cammer, D. Cox et al., Macrophages Promote the Invasion of Breast Carcinoma Cells via a ColonyStimulating Factor-1/Epidermal Growth Factor Paracrine Loop, Cancer Res, vol.65, pp.5278-5283, 2005.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons et al., Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.466, pp.263-266, 2010.
DOI : 10.1038/nature09198

URL : http://europepmc.org/articles/pmc2901888?pdf=render

J. Guo, A. A. Chakraborty, P. Liu, W. Gan, X. Zheng et al., pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner, Science, vol.353, pp.929-932, 2016.

S. L. Gupton and C. M. Waterman-storer, Spatiotemporal Feedback between Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration, Cell, vol.125, pp.1361-1374, 2006.
DOI : 10.1016/j.cell.2006.05.029

URL : https://doi.org/10.1016/j.cell.2006.05.029

A. Habibovic, M. Hristova, D. E. Heppner, K. Danyal, J. L. Ather et al., DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma, JCI Insight, vol.1
DOI : 10.1172/jci.insight.88811

URL : http://insight.jci.org/articles/view/88811/files/pdf

K. Hayakawa, E. Esposito, X. Wang, Y. Terasaki, Y. Liu et al., Transfer of mitochondria from astrocytes to neurons after stroke, Nature, vol.535, pp.551-555, 2016.

G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation, Nat. Med, vol.3, pp.177-182, 1997.

D. E. Heppner, . Van-der, and A. Vliet, Redox-dependent regulation of epidermal growth factor receptor signaling, Redox Biol, vol.8, pp.24-27, 2016.
DOI : 10.1016/j.redox.2015.12.002

URL : https://doi.org/10.1016/j.redox.2015.12.002

D. E. Heppner, M. Hristova, C. M. Dustin, K. Danyal, A. Habibovic et al., The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of Epidermal Growth Factor Receptor Signaling, J. Biol. Chem, vol.291, pp.23282-23293, 2016.

P. Hernansanz-agustín, E. Ramos, E. Navarro, E. Parada, N. Sánchez-lópez et al., Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia, Redox Biol, vol.12, pp.1040-1051, 2017.

T. Hiraga, S. Kizaka-kondoh, K. Hirota, M. Hiraoka, Y. et al., Hypoxia and HypoxiaInducible Factor-1 Expression Enhance Osteolytic Bone Metastases of Breast Cancer, Cancer Res, vol.67, pp.4157-4163, 2007.

R. G. Hodge and A. J. Ridley, Regulating Rho GTPases and their regulators, Nat. Rev. Mol. Cell Biol, vol.17, pp.496-510, 2016.
DOI : 10.1038/nrm.2016.67

O. Hoeller, K. , and R. R. , Chemotaxis in the Absence of PIP3 Gradients, Curr. Biol, vol.17, pp.813-817, 2007.

K. M. Holmström and T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol, vol.15, pp.411-421, 2014.

W. X. Hong, M. S. Hu, M. Esquivel, G. Y. Liang, R. C. Rennert et al., The Role of Hypoxia-Inducible Factor in Wound Healing, Adv. Wound Care, vol.3, pp.390-399, 2014.

M. E. Hubbi, . Kshitiz, D. M. Gilkes, S. Rey, C. C. Wong et al., A Nontranscriptional Role for HIF-1? as a Direct Inhibitor of DNA Replication, Sci Signal, vol.6, pp.10-10, 2013.

C. C. Hudson, M. Liu, G. G. Chiang, D. M. Otterness, D. C. Loomis et al., Regulation of Hypoxia-Inducible Factor 1? Expression and Function by the Mammalian Target of Rapamycin, Mol. Cell. Biol, vol.22, pp.7004-7014, 2002.

T. R. Hurd, M. Degennaro, and R. Lehmann, Redox regulation of cell migration and adhesion, Trends Cell Biol, vol.22, pp.107-115, 2012.

S. Iden, C. , and J. G. , Crosstalk between small GTPases and polarity proteins in cell polarization, Nat. Rev. Mol. Cell Biol, vol.9, pp.846-859, 2008.

M. Iijima and P. Devreotes, Tumor Suppressor PTEN Mediates Sensing of Chemoattractant Gradients, Cell, vol.109, pp.599-610, 2002.

D. Ili?, Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue et al., Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice, Nature, vol.377, pp.539-544, 1995.

R. Insall, The interaction between pseudopods and extracellular signalling during chemotaxis and directed migration, Curr. Opin. Cell Biol, vol.25, pp.526-531, 2013.

R. H. Insall, Understanding eukaryotic chemotaxis: a pseudopod-centred view, Nat. Rev. Mol. Cell Biol, vol.11, pp.453-458, 2010.

K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi et al., ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis, Science, vol.320, pp.661-664, 2008.

M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando et al., HIF? Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing, Science, vol.292, pp.464-468, 2001.

N. V. Iyer, L. E. Kotch, F. Agani, S. W. Leung, E. Laughner et al., Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1?, Genes Dev, vol.12, pp.149-162, 1998.

G. Jacquemet, H. Hamidi, and J. Ivaska, Filopodia in cell adhesion, 3D migration and cancer cell invasion, Curr. Opin. Cell Biol, vol.36, pp.23-31, 2015.

I. H. Jain, L. Zazzeron, R. Goli, K. Alexa, S. Schatzman-bone et al., Hypoxia as a therapy for mitochondrial disease, Science, vol.352, pp.54-61, 2016.

P. K. Jensen, Antimycin-insensitive oxidation of succinate and reduced nicotinamideadenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation, Biochim. Biophys. Acta, vol.122, pp.157-166, 1966.

L. Ji, Y. Liu, C. Yang, W. Yue, S. Shi et al., Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1?, J. Cell. Physiol, vol.221, pp.54-66, 2009.

B. H. Jiang, G. L. Semenza, C. Bauer, M. , and H. H. , Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension, Am. J. Physiol, vol.271, pp.1172-1180, 1996.

J. Jiang, Y. Tang, and X. Liang, EMT: a new vision of hypoxia promoting cancer progression, Cancer Biol. Ther, vol.11, pp.714-723, 2011.

X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, Directing cell migration with asymmetric micropatterns, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.975-978, 2005.

W. G. Kaelin, ROS: Really involved in Oxygen Sensing, Cell Metab, vol.1, pp.357-358, 2005.

W. G. Kaelin, Cancer and Altered Metabolism: Potential Importance of Hypoxia-Inducible Factor and 2-Oxoglutarate-Dependent Dioxygenases, Cold Spring Harb. Symp. Quant. Biol, vol.76, pp.335-345, 2011.

R. M. Kenney, M. W. Boyce, A. S. Truong, C. R. Bagnell, and M. R. Lockett, Real-time imaging of cancer cell chemotaxis in paper-based scaffolds, Analyst, vol.141, pp.661-668, 2016.

J. B. Kirkegaard, A. Bouillant, A. O. Marron, K. C. Leptos, and R. E. Goldstein, Aerotaxis in the closest relatives of animals, vol.5, 2016.

C. Klomsiri, K. J. Nelson, E. Bechtold, L. Soito, L. C. Johnson et al., Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins, Methods Enzymol, vol.473, pp.77-94, 2010.

I. V. Klyubin, K. M. Kirpichnikova, and I. A. Gamaley, Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils, Eur. J. Cell Biol, vol.70, pp.347-351, 1996.

V. Kölsch, P. G. Charest, and R. A. Firtel, The regulation of cell motility and chemotaxis by phospholipid signaling, J Cell Sci, vol.121, pp.551-559, 2008.

K. Kondo, J. Klco, E. Nakamura, M. Lechpammer, and W. G. Kaelin, Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein, Cancer Cell, vol.1, pp.237-246, 2002.

M. I. Koukourakis, A. Giatromanolaki, E. Sivridis, C. Simopoulos, H. Turley et al., Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.53, pp.1192-1202, 2002.

K. R. Kozak, B. Abbott, and O. Hankinson, ARNT-Deficient Mice and Placental Differentiation, Dev. Biol, vol.191, pp.297-305, 1997.

S. Kuriyama, M. , and R. , Molecular analysis of neural crest migration, Philos. Trans. R. Soc. B Biol. Sci, vol.363, pp.1349-1362, 2008.

E. L. Lagory and A. J. Giaccia, The ever-expanding role of HIF in tumour and stromal biology, Nat. Cell Biol, vol.18, pp.356-365, 2016.

T. Lämmermann and M. Sixt, Mechanical modes of "amoeboid" cell migration, Curr. Opin. Cell Biol, vol.21, pp.636-644, 2009.

T. Lämmermann, P. V. Afonso, B. R. Angermann, J. M. Wang, W. Kastenmüller et al., Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo, Nature, vol.498, pp.371-375, 2013.

C. D. Lawson and K. Burridge, The on-off relationship of Rho and Rac during integrinmediated adhesion and cell migration, 2014.

V. S. Lebleu, J. T. O'connell, K. N. Gonzalez-herrera, H. Wikman, K. Pantel et al., PGC-1? mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis, Nat. Cell Biol, vol.16, pp.992-1003, 2014.

D. C. Lee, H. A. Sohn, Z. Park, S. Oh, Y. K. Kang et al., A Lactate-Induced Response to Hypoxia, Cell, vol.161, pp.595-609, 2015.

M. Lee, W. C. Choy, A. , and M. R. , Direct Sensing of Endothelial Oxidants by Vascular Endothelial Growth Factor Receptor-2 and c-Src, PLOS ONE, vol.6, p.28454, 2011.

S. Lee, K. Kwon, S. Kim, R. , and S. G. , Reversible Inactivation of Protein-tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor, J. Biol. Chem, vol.273, pp.15366-15372, 1998.

Y. M. Lee, C. Jeong, S. Koo, M. J. Son, H. S. Song et al., Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development, Dev. Dyn, vol.220, pp.175-186, 2001.

S. Lehmann, V. Te-boekhorst, J. Odenthal, R. Bianchi, S. Van-helvert et al., Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells, Curr. Biol, vol.27, pp.392-400, 2017.

N. R. Leslie, D. Bennett, Y. E. Lindsay, H. Stewart, A. Gray et al., Redox regulation of PI 3-kinase signalling via inactivation of PTEN, EMBO J, vol.22, pp.5501-5510, 2003.

D. M. Lewis, K. M. Park, V. Tang, Y. Xu, K. Pak et al., Intratumoral oxygen gradients mediate sarcoma cell invasion, Proc. Natl. Acad. Sci, vol.113, pp.9292-9297, 2016.

R. Li and G. G. Gundersen, Beyond polymer polarity: how the cytoskeleton builds a polarized cell, Nat. Rev. Mol. Cell Biol, vol.9, pp.860-873, 2008.

W. Li, G. Liu, I. N. Chou, and H. M. Kagan, Hydrogen peroxide-mediated, lysyl oxidasedependent chemotaxis of vascular smooth muscle cells, J. Cell. Biochem, vol.78, pp.550-557, 2000.

Z. Li, M. Hannigan, Z. Mo, B. Liu, W. Lu et al., Directional Sensing Requires G??-Mediated PAK1 and PIX?-Dependent Activation of Cdc42, Cell, vol.114, pp.215-227, 2003.

B. Lin, T. Yin, Y. I. Wu, T. Inoue, and A. Levchenko, Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration, Nat. Commun, vol.6, p.7619, 2015.

S. G. Lindahl, Oxygen and Life on EarthAn Anesthesiologist's Views on Oxygen Evolution, Discovery, Sensing, and Utilization, Anesthesiol. J. Am. Soc. Anesthesiol, vol.109, pp.7-13, 2008.

Y. Liu, M. Le-berre, F. Lautenschlaeger, P. Maiuri, A. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, pp.659-672, 2015.

Z. Lokmic, J. Musyoka, T. D. Hewitson, D. , and I. A. , Hypoxia and Hypoxia Signaling in Tissue Repair and Fibrosis, Int. Rev. Cell Mol. Biol, vol.296, pp.139-185, 2012.

R. R. Lonser, G. M. Glenn, M. Walther, E. Y. Chew, S. K. Libutti et al., von Hippel-Lindau disease, vol.361, pp.2059-2067, 2003.

F. R. Lorenzo, C. Huff, M. Myllymäki, B. Olenchock, S. Swierczek et al., A genetic mechanism for Tibetan high-altitude adaptation, Nat. Genet, vol.46, pp.951-956, 2014.

W. Luo, H. Hu, R. Chang, J. Zhong, M. Knabel et al., Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1, Cell, vol.145, pp.732-744, 2011.

W. Luo, B. Lin, Y. Wang, J. Zhong, R. O'meally et al., PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility, Mol. Biol. Cell, vol.25, pp.2788-2796, 2014.

W. J. Mach, A. R. Thimmesch, J. T. Pierce, P. , and J. D. , Consequences of Hyperoxia and the Toxicity of Oxygen in the Lung, 2011.

P. Maiuri, E. Terriac, P. Paul-gilloteaux, T. Vignaud, K. Mcnally et al., The first World Cell Race, Curr. Biol, vol.22, pp.673-675, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744751

A. J. Majmundar, W. J. Wong, and M. C. Simon, Hypoxia-Inducible Factors and the Response to Hypoxic Stress, Mol. Cell, vol.40, pp.294-309, 2010.

J. K. Maranchie, J. R. Vasselli, J. Riss, J. S. Bonifacino, W. M. Linehan et al., The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma, Cancer Cell, vol.1, pp.247-255, 2002.

C. Martin, S. F. Pedersen, A. Schwab, and C. Stock, Intracellular pH gradients in migrating cells, Am. J. Physiol. Cell Physiol, vol.300, pp.490-495, 2011.

N. Masson, R. S. Singleton, R. Sekirnik, D. C. Trudgian, L. J. Ambrose et al., The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity, EMBO Rep, vol.13, pp.251-257, 2012.

P. K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions, Nat. Rev. Mol. Cell Biol, vol.9, pp.446-454, 2008.

N. M. Mazure, P. , and J. , Hypoxia-induced autophagy: cell death or cell survival?, Curr. Opin. Cell Biol, vol.22, pp.177-180, 2010.
DOI : 10.1016/j.ceb.2009.11.015

URL : https://hal.archives-ouvertes.fr/hal-00457667

B. C. Mazzag, I. B. Zhulin, and A. Mogilner, Model of Bacterial Band Formation in Aerotaxis, Biophys. J, vol.85, pp.3558-3574, 2003.

N. M. Mishina, P. A. Tyurin-kuzmin, K. N. Markvicheva, A. V. Vorotnikov, V. A. Tkachuk et al., Does Cellular Hydrogen Peroxide Diffuse or Act Locally?, Antioxid. Redox Signal, vol.14, pp.1-7, 2010.
DOI : 10.1089/ars.2010.3539

N. M. Mishina, K. N. Markvicheva, A. F. Fradkov, E. V. Zagaynova, C. Schultz et al., Imaging H2O2 microdomains in receptor tyrosine kinases signaling, Methods Enzymol, vol.526, pp.175-187, 2013.

A. Misra, C. Pandey, S. K. Sze, and T. Thanabalu, Hypoxia Activated EGFR Signaling Induces Epithelial to Mesenchymal Transition (EMT), PLOS ONE, vol.7, p.49766, 2012.

S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility, Nat. Rev. Mol. Cell Biol, vol.6, pp.56-68, 2005.

A. Mohyeldin, T. Garzón-muvdi, and A. Hinojosa, Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche, Cell Stem Cell, vol.7, pp.150-161, 2010.

D. J. Montell, Border-cell migration: the race is on, Nat. Rev. Mol. Cell Biol, vol.4, pp.13-24, 2003.

G. M. Morriss, D. New, and .. T. , Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos, Development, vol.54, pp.17-35, 1979.

B. Mosadegh, M. R. Lockett, K. T. Minn, K. A. Simon, K. Gilbert et al., A paper-based invasion assay: Assessing chemotaxis of cancer cells in gradients of oxygen, Biomaterials, vol.52, pp.262-271, 2015.

R. Moschoi, V. Imbert, M. Nebout, J. Chiche, D. Mary et al., Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy, Blood, vol.128, pp.253-264, 2016.

G. Mouneimne, V. Desmarais, M. Sidani, E. Scemes, W. Wang et al., Spatial and Temporal Control of Cofilin Activity Is Required for Directional Sensing during Chemotaxis, Curr. Biol, vol.16, pp.2193-2205, 2006.

A. J. Muinonen-martin, O. Susanto, Q. Zhang, E. Smethurst, W. J. Faller et al., Melanoma Cells Break Down LPA to Establish Local Gradients That Drive Chemotactic Dispersal, PLOS Biol, vol.12, p.1001966, 2014.

P. T. Mungai, G. B. Waypa, A. Jairaman, M. Prakriya, D. Dokic et al., Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels, Mol. Cell. Biol, vol.31, pp.3531-3545, 2011.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J, vol.417, pp.1-13, 2009.
DOI : 10.1042/bj20081386

URL : http://www.biochemj.org/content/417/1/1.full.pdf

T. D. Nauta, V. W. Van-hinsbergh, and P. Koolwijk, Hypoxic Signaling During Tissue Repair and Regenerative Medicine, Int. J. Mol. Sci, vol.15, pp.19791-19815, 2014.

P. Niethammer, Wound redox gradients revisited, Semin. Cell Dev. Biol, 2017.

P. Niethammer, C. Grabher, A. T. Look, and T. J. Mitchison, A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish, Nature, vol.459, pp.996-999, 2009.

A. S. Nimnual, L. J. Taylor, and D. Bar-sagi, Redox-dependent downregulation of Rho by Rac, Nat. Cell Biol, vol.5, pp.236-241, 2003.

Y. Nisimoto, B. A. Diebold, D. Cosentino-gomes, and J. D. Lambeth, Nox4: A Hydrogen Peroxide-Generating Oxygen Sensor, Biochemistry (Mosc.), vol.53, pp.5111-5120, 2014.

H. Niwa, J. Miyazaki, and A. G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells, Nat. Genet, vol.24, pp.372-376, 2000.
DOI : 10.1038/74199

P. W. Oakes and M. L. Gardel, Stressing the limits of focal adhesion mechanosensitivity, Curr. Opin. Cell Biol, vol.30, pp.68-73, 2014.
DOI : 10.1016/j.ceb.2014.06.003

URL : http://europepmc.org/articles/pmc4459577?pdf=render

K. O'connor, C. , and M. , Dynamic functions of RhoA in tumor cell migration and invasion, Small GTPases, vol.4, pp.141-147, 2013.

Y. Ohta, J. H. Hartwig, and T. P. Stossel, FilGAP, a Rho-and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling, Nat. Cell Biol, vol.8, pp.803-814, 2006.
DOI : 10.1038/ncb1437

M. A. Olayioye, R. M. Neve, H. A. Lane, and N. E. Hynes, The ErbB signaling network: receptor heterodimerization in development and cancer, EMBO J, vol.19, pp.3159-3167, 2000.
DOI : 10.1093/emboj/19.13.3159

URL : http://emboj.embopress.org/content/embojnl/19/13/3159.full.pdf

M. Osswald, E. Jung, F. Sahm, G. Solecki, V. Venkataramani et al., Brain tumour cells interconnect to a functional and resistant network, Nature, vol.528, pp.93-98, 2015.
DOI : 10.1038/nature16071

M. J. Oudin and V. M. Weaver, Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis, Cold Spring Harb. Symp. Quant. Biol, vol.81, pp.189-205, 2016.
DOI : 10.1101/sqb.2016.81.030817

URL : http://symposium.cshlp.org/content/81/189.full.pdf

S. P. Palecek, J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz, Integrinligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature, vol.385, pp.537-540, 1997.
DOI : 10.1038/385537a0

R. Pankov, Y. Endo, S. Even-ram, M. Araki, K. Clark et al., A Rac switch regulates random versus directionally persistent cell migration, J Cell Biol, vol.170, pp.793-802, 2005.
DOI : 10.1083/jcb.200503152

URL : http://europepmc.org/articles/pmc2171343?pdf=render

C. A. Parent and P. N. Devreotes, A Cell's Sense of Direction, Science, vol.284, pp.765-770, 1999.

K. M. Park, G. , and S. , Hypoxia-inducible hydrogels, Nat. Commun, vol.5, p.5075, 2014.
DOI : 10.1038/ncomms5075

URL : http://www.nature.com/articles/ncomms5075.pdf

J. T. Parsons, A. R. Horwitz, and M. A. Schwartz, Cell adhesion: integrating cytoskeletal dynamics and cellular tension, Nat. Rev. Mol. Cell Biol, vol.11, pp.633-643, 2010.
DOI : 10.1038/nrm2957

URL : http://europepmc.org/articles/pmc2992881?pdf=render

S. A. Patel and M. C. Simon, Biology of Hypoxia-Inducible Factor-2? in Development and Disease, Cell Death Differ, vol.15, pp.628-634, 2008.

C. E. Paulsen, T. H. Truong, F. J. Garcia, A. Homann, V. Gupta et al., , 2012.

, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol, vol.8, pp.57-64

S. Pellegrin and H. Mellor, Actin stress fibres, J. Cell Sci, vol.120, pp.3491-3499, 2007.

R. J. Petrie, A. D. Doyle, and K. M. Yamada, Random versus directionally persistent cell migration, Nat. Rev. Mol. Cell Biol, vol.10, pp.538-549, 2009.

R. J. Petrie, H. Koo, and K. M. Yamada, Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix, Science, vol.345, pp.1062-1065, 2014.

S. Pinner and E. Sahai, Imaging amoeboid cancer cell motility in vivo, J. Microsc, vol.231, pp.441-445, 2008.

T. D. Pollard and G. G. Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, vol.112, pp.453-465, 2003.

A. Ponti, M. Machacek, S. L. Gupton, C. M. Waterman-storer, and G. Danuser, Two Distinct Actin Networks Drive the Protrusion of Migrating Cells, Science, vol.305, pp.1782-1786, 2004.

P. E. Porporato, V. L. Payen, J. Pérez-escuredo, C. J. De-saedeleer, P. Danhier et al., A Mitochondrial Switch Promotes Tumor Metastasis. Cell Rep, vol.8, pp.754-766, 2014.

J. Pouysségur, F. Dayan, and N. M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.441, pp.437-443, 2006.

N. R. Prabhakar and G. L. Semenza, Adaptive and Maladaptive Cardiorespiratory Responses to Continuous and Intermittent Hypoxia Mediated by Hypoxia-Inducible Factors 1 and 2, Physiol. Rev, vol.92, pp.967-1003, 2012.

R. C. Rabinovitch, B. Samborska, B. Faubert, E. H. Ma, S. Gravel et al., AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species, Cell Rep, vol.21, pp.1-9, 2017.

W. K. Raja, B. Gligorijevic, J. Wyckoff, J. S. Condeelis, C. et al., A new chemotaxis device for cell migration studies, Integr. Biol, vol.2, pp.696-706, 2010.

E. B. Rankin and A. J. Giaccia, Hypoxic control of metastasis, Science, vol.352, pp.175-180, 2016.

E. B. Rankin, J. Nam, and A. J. Giaccia, Hypoxia: Signaling the Metastatic Cascade, Trends Cancer, vol.2, pp.295-304, 2016.

R. Rathore, Y. Zheng, C. Niu, Q. Liu, A. Korde et al., Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKC? signaling axis in pulmonary artery smooth muscle cells. Free Radic, Biol. Med, vol.45, pp.1223-1231, 2008.

R. R. Raval, K. W. Lau, M. G. Tran, H. M. Sowter, S. J. Mandriota et al., Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF, 2005.

, HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma, Mol. Cell. Biol, vol.25, pp.5675-5686

A. Rebbapragada, M. S. Johnson, G. P. Harding, A. J. Zuccarelli, H. M. Fletcher et al., The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior, Proc. Natl. Acad. Sci, vol.94, pp.10541-10546, 1997.

M. Reffay, M. C. Parrini, O. Cochet-escartin, B. Ladoux, A. Buguin et al., Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells, Nat. Cell Biol, vol.16, pp.217-223, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00992150

G. Reig, E. Pulgar, C. , and M. L. , Cell migration: from tissue culture to embryos, Development, vol.141, pp.1999-2013, 2014.

J. P. Remensnyder and G. Majno, Oxygen gradients in healing wounds, Am. J. Pathol, vol.52, pp.301-323, 1968.

S. G. Rhee, H. A. Woo, I. S. Kil, and S. H. Bae, Peroxiredoxin Functions as a Peroxidase and a Regulator and Sensor of Local Peroxides, J. Biol. Chem, vol.287, pp.4403-4410, 2012.

B. E. Richardson and R. Lehmann, Mechanisms guiding primordial germ cell migration: strategies from different organisms, Nat. Rev. Mol. Cell Biol, vol.11, pp.37-49, 2010.

P. Rickert, O. D. Weiner, F. Wang, H. R. Bourne, and G. Servant, Leukocytes navigate by compass: roles of PI3K? and its lipid products, Trends Cell Biol, vol.10, pp.466-473, 2000.

A. J. Ridley, Life at the Leading Edge, Cell, vol.145, pp.1012-1022, 2011.

A. J. Ridley, Rho GTPase signalling in cell migration, Curr. Opin. Cell Biol, vol.36, pp.103-112, 2015.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg et al., Cell Migration: Integrating Signals from Front to Back, Science, vol.302, pp.1704-1709, 2003.

N. Rocco-machado, D. Cosentino-gomes, M. , and J. R. , Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis, PLOS ONE, vol.10, 2015.

E. T. Roussos, J. S. Condeelis, and A. Patsialou, Chemotaxis in cancer, Nat. Rev. Cancer, vol.11, pp.573-587, 2011.

D. A. Rudzka, J. M. Cameron, and M. F. Olson, Reactive oxygen species and hydrogen peroxide generation in cell migration, Commun. Integr. Biol, vol.8, 2015.

E. Sahai, Mechanisms of cancer cell invasion, Curr. Opin. Genet. Dev, vol.15, pp.87-96, 2005.

D. Samanta and G. L. Semenza, Maintenance of redox homeostasis by hypoxia-inducible factors, Redox Biol, vol.13, pp.331-335, 2017.

D. Samanta, N. R. Prabhakar, and G. L. Semenza, Systems biology of oxygen homeostasis, Wiley Interdiscip. Rev. Syst. Biol. Med, vol.9, 2017.

V. Sanz-moreno, G. Gadea, J. Ahn, H. Paterson, P. Marra et al., Rac Activation and Inactivation Control Plasticity of Tumor Cell Movement, Cell, vol.135, pp.510-523, 2008.

C. Scherber, A. J. Aranyosi, B. Kulemann, S. P. Thayer, M. Toner et al., Epithelial cell guidance by self-generated EGF gradients, Integr. Biol, vol.4, pp.259-269, 2012.

M. Schieber and N. S. Chandel, ROS Function in Redox Signaling and Oxidative Stress, Curr. Biol, vol.24, pp.453-462, 2014.

M. Schindl, S. F. Schoppmann, H. Samonigg, H. Hausmaninger, W. Kwasny et al., Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.8, pp.1831-1837, 2002.

G. L. Semenza, Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, vol.3, pp.721-732, 2003.

G. L. Semenza, Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics, Oncogene, vol.29, pp.625-634, 2009.

G. L. Semenza, Oxygen Sensing, Homeostasis, and Disease, N. Engl. J. Med, vol.365, pp.537-547, 2011.

G. L. Semenza, Hypoxia-Inducible Factors in, Physiology and Medicine. Cell, vol.148, pp.399-408, 2012.

G. L. Semenza, W. , and G. L. , A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol, vol.12, pp.5447-5454, 1992.

L. A. Sena and N. S. Chandel, Physiological Roles of Mitochondrial Reactive Oxygen Species, Mol. Cell, vol.48, pp.158-167, 2012.

G. Sgarbi, G. Gorini, A. Costanzini, S. Barbato, G. Solaini et al., Hypoxia decreases ROS level in human fibroblasts, Int. J. Biochem. Cell Biol, vol.88, pp.133-144, 2017.

M. P. Sheetz, D. Felsenfeld, C. G. Galbraith, C. , and D. , Cell migration as a five-step cycle, Biochem. Soc. Symp, vol.65, pp.233-243, 1999.

S. E. Shoelson, SH2 and PTB domain interactions in tyrosine kinase signal transduction, Curr. Opin. Chem. Biol, vol.1, pp.227-234, 1997.

M. C. Simon, K. , and B. , The role of oxygen availability in embryonic development and stem cell function, Nat. Rev. Mol. Cell Biol, vol.9, pp.285-296, 2008.

A. Singh and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene, vol.29, pp.4741-4751, 2010.

N. K. Singh, D. Wang, V. Kundumani-sridharan, D. Van-quyen, J. Niu et al., 15Lipoxygenase-1-enhanced Src-Janus Kinase 2-Signal Transducer and Activator of Transcription 3 Stimulation and Monocyte Chemoattractant Protein-1 Expression Require Redox-sensitive Activation of Epidermal Growth Factor Receptor in Vascular Wall Remodeling, J. Biol. Chem, vol.286, pp.22478-22488, 2011.

G. Sirokmány, A. Pató, M. Zana, Á. Donkó, A. Bíró et al., Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1. Free Radic, Biol. Med, vol.97, pp.204-211, 2016.

E. Sivridis, A. Giatromanolaki, K. C. Gatter, A. L. Harris, M. I. Koukourakis et al., Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma, Cancer, vol.95, pp.1055-1063, 2002.

K. A. Smith, G. B. Waypa, and P. T. Schumacker, Redox signaling during hypoxia in mammalian cells, Redox Biol, vol.13, pp.228-234, 2017.

J. L. Spees, S. D. Olson, M. J. Whitney, and D. J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration, Proc. Natl. Acad. Sci, vol.103, pp.1283-1288, 2006.

K. Stamati, V. Mudera, C. , and U. , Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering, J. Tissue Eng, vol.2, 2011.

B. Stramer, M. , and R. , Mechanisms and in vivo functions of contact inhibition of locomotion, Nat. Rev. Mol. Cell Biol, 2016.

K. M. Stroka, H. Jiang, S. Chen, Z. Tong, D. Wirtz et al., , 2014.

, Water Permeation Drives Tumor Cell Migration in Confined Microenvironments, Cell, vol.157, pp.611-623

M. Sundaresan, Z. Yu, V. J. Ferrans, K. Irani, and T. Finkel, Requirement for Generation of H2O2 for Platelet-Derived Growth Factor Signal Transduction, Science, vol.270, pp.296-299, 1995.

T. M. Svitkina and G. G. Borisy, Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia, J. Cell Biol, vol.145, pp.1009-1026, 1999.

V. Swaminathan and C. M. Waterman, The molecular clutch model for mechanotransduction evolves, Nat. Cell Biol, vol.18, pp.459-461, 2016.

K. F. Swaney, C. Huang, and P. N. Devreotes, Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity, Annu. Rev. Biophys, vol.39, pp.265-289, 2010.

C. Y. Taabazuing, J. A. Hangasky, and M. J. Knapp, Oxygen sensing strategies in mammals and bacteria, J. Inorg. Biochem, vol.133, pp.63-72, 2014.

N. Takahashi, T. Kuwaki, S. Kiyonaka, T. Numata, D. Kozai et al., TRPA1 underlies a sensing mechanism for O2, Nat. Chem. Biol, vol.7, pp.701-711, 2011.

A. S. Tan, J. W. Baty, L. Dong, A. Bezawork-geleta, B. Endaya et al., Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA, Cell Metab, vol.21, pp.81-94, 2015.

K. Tarbashevich, M. Reichman-fried, C. Grimaldi, R. , and E. , Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells, Curr. Biol, vol.25, pp.1096-1103, 2015.

B. L. Taylor, I. B. Zhulin, J. , and M. S. , Aerotaxis and Other Energy-Sensing Behavior in Bacteria, Annu. Rev. Microbiol, vol.53, pp.103-128, 1999.

É. Theveneau, D. , and N. , Migrations cellulaires collectives. médecine/sciences, vol.30, pp.751-757, 2014.
DOI : 10.1051/medsci/20143008012

URL : https://www.medecinesciences.org/articles/medsci/pdf/2014/08/medsci2014308-9p751.pdf

E. Theveneau, B. Steventon, E. Scarpa, S. Garcia, X. Trepat et al., Chaseand-run between adjacent cell populations promotes directional collective migration, Nat. Cell Biol, vol.15, pp.763-772, 2013.
DOI : 10.1038/ncb2772

URL : http://europepmc.org/articles/pmc4910871?pdf=render

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

URL : https://doi.org/10.1016/j.cell.2009.11.007

M. A. Titus and H. V. Goodson, An evolutionary perspective on cell migration: Digging for the roots of amoeboid motility, J Cell Biol jcb, 2017.

N. K. Tonks, Redox Redux: Revisiting PTPs and the Control of Cell Signaling, Cell, vol.121, pp.667-670, 2005.

M. Tozluo?lu, A. L. Tournier, R. P. Jenkins, S. Hooper, P. A. Bates et al., Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions, Nat. Cell Biol, vol.15, pp.751-762, 2013.

D. Trachootham, J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discov, vol.8, pp.579-591, 2009.
DOI : 10.1038/nrd2803

A. D. Tran, T. P. Marmo, A. A. Salam, S. Che, E. Finkelstein et al., HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions, J. Cell Sci, vol.120, pp.1469-1479, 2007.

A. S. Truong and M. R. Lockett, Oxygen as a chemoattractant: confirming cellular hypoxia in paper-based invasion assays, Analyst, vol.141, pp.3874-3882, 2016.
DOI : 10.1039/c6an00630b

T. H. Truong, C. , and K. S. , Redox Regulation of Epidermal Growth Factor Receptor Signaling through Cysteine Oxidation, Biochemistry (Mosc.), vol.51, pp.9954-9965, 2012.
DOI : 10.1021/bi301441e

URL : http://europepmc.org/articles/pmc3525721?pdf=render

T. H. Truong, P. M. Ung, P. B. Palde, C. E. Paulsen, A. Schlessinger et al., , 2016.

, Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase, Cell Chem. Biol, vol.23, pp.837-848

J. H. Tsai, J. L. Donaher, D. A. Murphy, S. Chau, Y. et al., Spatiotemporal Regulation of Epithelial-Mesenchymal Transition Is Essential for Squamous Cell Carcinoma Metastasis, Cancer Cell, vol.22, pp.725-736, 2012.

T. Turner, P. Chen, L. J. Goodly, W. , and A. , EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells, Clin. Exp. Metastasis, vol.14, pp.409-418, 1996.

J. F. Turrens, M. Beconi, J. Barilla, U. B. Chavez, and J. M. Mccord, Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues, Free Radic. Res. Commun, vol.2, pp.681-689, 1991.

L. Tweedy, D. A. Knecht, G. M. Mackay, and R. H. Insall, Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis, PLOS Biol, vol.14, 2016.

L. Tweedy, O. Susanto, and R. H. Insall, Self-generated chemotactic gradients-cells steering themselves, Curr. Opin. Cell Biol, vol.42, pp.46-51, 2016.
DOI : 10.1016/j.ceb.2016.04.003

S. Vanharanta, W. Shu, F. Brenet, A. A. Hakimi, A. Heguy et al., Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer, Nat. Med, vol.19, pp.50-56, 2013.

P. Vargas, L. Barbier, P. J. Sáez, and M. Piel, Mechanisms for fast cell migration in complex environments, Curr. Opin. Cell Biol, vol.48, pp.72-78, 2017.

P. Vaupel, M. , and A. , Hypoxia in cancer: significance and impact on clinical outcome, Cancer Metastasis Rev, vol.26, pp.225-239, 2007.
DOI : 10.1007/s10555-007-9055-1

P. Vaupel, M. , and A. , Availability, not respiratory capacity governs oxygen consumption of solid tumors, Int. J. Biochem. Cell Biol, vol.44, pp.1477-1481, 2012.

B. S. Verbeek, S. S. Adriaansen-slot, T. M. Vroom, T. Beckers, R. et al., , 1998.

, Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts, FEBS Lett, vol.425, pp.145-150

M. Vicente-manzanares, D. J. Webb, and A. R. Horwitz, Cell migration at a glance, J. Cell Sci, vol.118, pp.4917-4919, 2005.

M. Vicente-manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Mol. Cell Biol, vol.10, pp.778-790, 2009.

M. Vicente-manzanares, C. K. Choi, and A. R. Horwitz, Integrins in cell migration-the actin connection, J. Cell Sci, vol.122, pp.199-206, 2009.

J. C. Villa, D. Chiu, A. H. Brandes, F. E. Escorcia, C. H. Villa et al., Nontranscriptional role of Hif-1? in activation of ?-secretase and notch signaling in breast cancer, Cell Rep, vol.8, pp.1077-1092, 2014.

A. F. Vinet, T. Fiedler, V. Studer, R. Froquet, A. Dardel et al., Initiation of multicellular differentiation in Dictyostelium discoideum is regulated by coronin A, Mol. Biol. Cell, vol.25, pp.688-701, 2014.

A. V. Vorotnikov, Chemotaxis: Movement, direction, control, Biochem. Mosc, vol.76, pp.1528-1555, 2011.
DOI : 10.1134/s0006297911130104

A. V. Vorotnikov and P. A. Tyurin-kuzmin, Chemotactic signaling in mesenchymal cells compared to amoeboid cells, Genes Dis, vol.1, pp.162-173, 2014.

G. L. Wang and G. L. Semenza, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.4304-4308, 1993.

X. Wang and H. Gerdes, Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells, Cell Death Differ, vol.22, pp.1181-1191, 2015.

Y. Wang and S. Hekimi, Understanding Ubiquinone, Trends Cell Biol, vol.26, pp.367-378, 2016.
DOI : 10.1016/j.tcb.2015.12.007

X. Wang, L. He, Y. I. Wu, K. M. Hahn, and D. J. Montell, Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo, Nat. Cell Biol, vol.12, pp.591-597, 2010.

X. Wang, M. Yu, K. Zhao, M. He, W. Ge et al., Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2, Cell Death Dis, vol.7, p.2517, 2016.

O. Warburg, On the Origin of Cancer Cells, Science, vol.123, pp.309-314, 1956.

J. P. Ward, Oxygen sensors in context, Biochim. Biophys. Acta BBA-Bioenerg, vol.1777, pp.1-14, 2008.

P. S. Ward and C. B. Thompson, Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate, Cancer Cell, vol.21, pp.297-308, 2012.

G. B. Waypa, R. Guzy, P. T. Mungai, M. M. Mack, J. D. Marks et al., Increases in Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Calcium Responses in Pulmonary Artery Smooth Muscle Cells, Circ. Res, vol.99, pp.970-978, 2006.

G. B. Waypa, J. D. Marks, R. D. Guzy, P. T. Mungai, J. M. Schriewer et al., Superoxide Generated at Mitochondrial Complex III Triggers Acute Responses to Hypoxia in the Pulmonary Circulation, Am. J. Respir. Crit. Care Med, vol.187, pp.424-432, 2013.

C. Wei, X. Wang, M. Chen, K. Ouyang, L. Song et al., Calcium flickers steer cell migration, Nature, vol.457, pp.901-905, 2009.

S. C. Wei, L. Fattet, J. H. Tsai, Y. Guo, V. H. Pai et al., Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway, Nat. Cell Biol, vol.17, pp.678-688, 2015.

E. K. Weir and S. L. Archer, Counterpoint: Hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species, J. Appl. Physiol. Bethesda Md, vol.101, pp.995-998, 1985.

H. C. Welch, W. J. Coadwell, L. R. Stephens, and P. T. Hawkins, Phosphoinositide 3-kinasedependent activation of Rac, FEBS Lett, vol.546, pp.93-97, 2003.

C. C. Winterbourn and M. B. Hampton, Thiol chemistry and specificity in redox signaling. Free Radic, Biol. Med, vol.45, pp.549-561, 2008.

K. Wolf and P. Friedl, Molecular mechanisms of cancer cell invasion and plasticity, Br. J. Dermatol, vol.154, issue.1, pp.11-15, 2006.

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Andrian et al., Compensation mechanism in tumor cell migration, J. Cell Biol, vol.160, pp.267-277, 2003.

B. W. Wong, A. Kuchnio, U. Bruning, C. , and P. , Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes, Trends Biochem. Sci, vol.38, pp.3-11, 2013.

B. G. Wouters and M. Koritzinsky, Hypoxia signalling through mTOR and the unfolded protein response in cancer, Nat. Rev. Cancer, vol.8, pp.851-864, 2008.

J. Xu, F. Wang, A. Van-keymeulen, P. Herzmark, A. Straight et al., Divergent Signals and Cytoskeletal Assemblies Regulate Self-Organizing Polarity in Neutrophils, Cell, vol.114, pp.201-214, 2003.

Y. Yamamoto, M. Ibusuki, Y. Okumura, T. Kawasoe, K. Kai et al., , 2008.

, Hypoxia-inducible factor 1? is closely linked to an aggressive phenotype in breast cancer, Breast Cancer Res. Treat, vol.110, pp.465-475

M. Yang, M. Wu, S. Chiou, P. Chen, S. Chang et al., Direct regulation of TWIST by HIF-1? promotes metastasis, Nat. Cell Biol, vol.10, pp.295-305, 2008.

Y. J. Yang, H. J. Na, M. J. Suh, M. J. Ban, H. K. Byeon et al., Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1?, Yonsei Med. J, vol.56, pp.1503-1514, 2015.

X. Ye and R. A. Weinberg, Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression, Trends Cell Biol, vol.25, pp.675-686, 2015.

S. K. Yoo, T. W. Starnes, Q. Deng, and A. Huttenlocher, Lyn is a redox sensor that mediates leukocyte wound attraction in vivo, Nature, vol.480, pp.109-112, 2011.

Y. Yoshida, K. Takahashi, K. Okita, T. Ichisaka, Y. et al., Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells, Cell Stem Cell, vol.5, pp.237-241, 2009.

H. Zhang, M. Bosch-marce, L. A. Shimoda, Y. S. Tan, J. H. Baek et al., Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia, J. Biol. Chem, vol.283, pp.10892-10903, 2008.

L. Zhang, G. Huang, X. Li, Y. Zhang, Y. Jiang et al., , 2013.

, Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1? in hepatocellular carcinoma, BMC Cancer, vol.13, p.108

W. Zhang, J. S. Olson, and G. N. Phillips, Biophysical and Kinetic Characterization of HemAT, an Aerotaxis Receptor from Bacillus subtilis, Biophys. J, vol.88, pp.2801-2814, 2005.

W. Zhang, X. Shi, Y. Peng, M. Wu, P. Zhang et al., , 2015.

, HIF-1? Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer, PLOS ONE, vol.10, 129603.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol.527, pp.525-530, 2015.

H. Zhong, K. Chiles, D. Feldser, E. Laughner, C. Hanrahan et al., Modulation of Hypoxia-inducible Factor 1? Expression by the Epidermal Growth Factor/Phosphatidylinositol 3-Kinase/PTEN/AKT/FRAP Pathway in Human Prostate Cancer Cells: Implications for Tumor Angiogenesis and Therapeutics, Cancer Res, vol.60, pp.1541-1545, 2000.